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Abstract

Let (M, g) be a compact Riemannian manifold with boundary. This
paper addresses the Yamabe-type problem of finding a conformal
scalar-flat metric on M, which has the boundary as a constant mean
curvature hypersurface. When the boundary is umbilic, we prove an
existence theorem that finishes some remaining cases of this problem.

1 Introduction

In 1992, J. Escobar ([13]) studied the following Yamabe-type problem, for
manifolds with boundary:

YAMABE PROBLEM: Let (M", ) be a compact Riemannian manifold of dimen-
sionn > 3with boundary dM. Is there a scalar-flat metric on M, which is conformal
to g and has M as a constant mean curvature hypersurface?

In dimension two, the classical Riemann mapping theorem says that
any simply connected, proper domain of the plane is conformally diffeo-
morphic to a disk. This theorem is false in higher dimensions since the only
bounded open subsets of R", for n > 3, that are conformally diffeomorphic
to Euclidean balls are the Euclidean balls themselves. The Yamabe-type
problem proposed by Escobar can be viewed as an extension of the Rie-
mann mapping theorem for higher dimensions.

In analytical terms, this problem corresponds to finding a positive solu-
tion to

{Lgu =0, in M, W)

Bgu + Kuiz =0, ondM,



for some constant K, where L, = Ay — 4(7,11___21)Rg is the conformal Laplacian
and B, = % - ”T_Zhg. Here, A, is the Laplace-Beltrami operator, R, is the
scalar curvature, &g is the mean curvature of M and 7 is the inward unit

normal vector to dM.
The solutions of the equations (1.1) are the critical points of the functional

2 n-2 2 n-2 2
flVI |Vgu| + ngu dUg + 5= f(?M hgu dUg
2(;1—l)d Z_:%
LM u n-2 (jg

where dv, and do; denote the volume forms of M and JdM, respectively.
Escobar introduced the conformally invariant Sobolev quotient

Qu) =

Q(M, dM) = inf(Q(u); u € C (M), u % 0 on IM}

and proved that it satisfies Q(M, dM) < Q(B", dB). Here, B" denotes the unit
ball in R” endowed with the Euclidean metric.

Under the hypothesis that Q(M, dM) is finite (which is the case when
Rq > 0), he also showed that the strict inequality

Q(M, dM) < Q(B",3B) (1.2)

implies the existence of a minimizing solution of the equations (1.1).

Notation. In the rest of this work, (M", g) will denote a compact Riemannian
manifold of dimension n > 3 with boundary dM and finite Sobolev quotient
Q(M, IM).

In [13], Escobar proved the following existence result:

Theorem 1.1. (J. Escobar) Assume that one of the following conditions holds:

(1) n > 6 and M has a nonumbilic point on dM;

(2) n > 6, M is locally conformally flat and M is umbilic;
(3) n =4 or 5 and IM is umbilic;

(4)n = 3.

Then Q(M, dM) < Q(B", dB) and there is a minimizing solution to the equations
(1.1).

The proof for n = 6 under the condition (1) appeared later, in [14].
Further existence results were obtained by F. Marques in [24] and [25].
Together, these results can be stated as follows:



Theorem 1.2. (F. Marques) Assume that one of the following conditions holds:

(1)n >8, W(x) # 0 for some x € M and IM is umbilic;
(2) n =9, W(x) # 0 for some x € IM and IM is umbilic;
(3) n = 4 or 5 and dM is not umbilic.

Then Q(M, dM) < Q(B", dB) and there is a minimizing solution to the equations
(1.1).

Here, W denotes the Weyl tensor of M and W the Weyl tensor of M.
Our main result deals with the remaining dimensions n = 6,7 and 8
when the boundary is umbilic and W # 0 at some boundary point:

Theorem 1.3. Suppose that n = 6,7 or 8, M is umbilic and W(x) # 0 for some
x € M. Then Q(M,dM) < Q(B",dB) and there is a minimizing solution to the
equations (1.1).

These cases are similar to the case of dimensions 4 and 5 when the
boundary is not umbilic, studied in [25].

Other works concerning conformal deformation on manifolds with
boundary include [1], [3], [5], [7], [9], [10], [12], [15], [16], [17], [18], [19]
and [20].

We will now discuss the strategy in the proof of Theorem 1.3. We assume
that dM is umbilic and choose xg € dM such that W(xp) # 0. Our proof is
explicitly based on constructing a test function 1 such that

Q) < Q(B",dB). (1.3)

The function ¢ has support in a small half-ball around the point xo. The
usual strategy in this kind of problem (which goes back to Aubin in [4])
consists in defining the function 1, in the small half-ball, as one of the
standard entire solutions to the corresponding Euclidean equations. In our
context those are

n=2
2
€

Ue(x) =
¢ X+ 22+ (e +xy)?

(1.4)

where x = (x1, ..., X;1), X, = 0.

The next step would be to expand the quotient of ¢ in powers of € and,
by exploiting the local geometry around x(, show that the inequality (1.3)
holds if € is small. In order to simplify the asymptotic analysis, we use
conformal Fermi coordinates centered at xp. This concept, introduced in



[24], plays the same role the conformal normal coordinates (see [23]) did in
the case of manifolds without boundary.

When n > 9, the strict inequality (1.3) was proved in [24]. The difficulty
arises because, when 3 < n < 8, the first correction term in the expansion
does not have the right sign. When 3 < n < 5, Escobar proved the strict
inequality by applying the Positive Mass Theorem, a global construction
originally due to Schoen ([26]). This argument does not work when 6 < n <
8 because the metric is not sufficiently flat around the point x.

As we have mentioned before, the situation under the hypothesis of
Theorem 1.3 is much similar to the cases of dimensions 4 and 5 when the
boundary is not umbilic, solved by Marques in [25]. As he pointed out,
the test functions U, are not optimal in these cases but the problem is still
local. This kind of phenomenon does not appear in the classical solution of
the Yamabe problem for manifolds without boundary. However, perturbed
test functions have already been used in the works of Hebey and Vaugon
([21]), Brendle ([8]) and Khuri, Marques and Schoen ([22]).

In order to prove the inequality (1.3), inspired by the ideas of Marques,
we introduce

n-2 _n
Pe(x) = €7 Ryinj(x0)xix x5 (x% SR S (R xn)z) 2
Our test function ¢ is defined as ¢ = U, + ¢ around xg € dM.

In section 2 we write expansions for the metric ¢ in Fermi coordinates
and discuss the concept of conformal Fermi coordinates. In section 3 we
prove Theorem 1.3 by estimating Q(¢).

Notations.

Throughout this work we will make use of the index notation for tensors,
commas denoting covariant differentiation. We will adopt the summation
convention whenever confusion is not possible. When dealing with Fermi
coordinates, we will useindices 1 < i, j,k,[,m,p,r,s <n—-1land1<a,b,c,d <
n. Lines over an object mean the restriction of the metric to the boundary is
involved.

Weset det ¢ = det g,,. We will denoteby V, or V the covariant derivative
and by A or A the Laplacian-Beltrami operator. The full curvature tensor
will be denoted by R4, the Ricci tensor by R, and the scalar curvature by
R, or R. The second fundamental form of the boundary will be denoted by
hij and the mean curvature, ﬁtr(hij), by hg or h. By Wyeq we will denote
the Weyl tensor.

By R} we will denote the half-space {x = (x1,...,x,) € R"; x, > 0}. If
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x € R} we set ¥ = (x1,...,%,-1) € R = JR". We will denote by B; (0) (or
Bg for short) the half-ball B5(0) NIR’}, where Bs(0) is the Euclidean open ball
of radius 6 > 0 centered at the origin of R". Given a subset C C R}, we set
d*C =dC N (R}\JR}) and 'C = C N IRY.

The volume forms of M and dM will be denoted by dv, and do, respec-
tively. The n-dimensional sphere of radius r in R"*! will be denoted by S”.
By 0, we will denote the volume of the n-dimensional unit sphere S7.

For C ¢ M, we define the energy of a function u in C by

n—2 n—2
Ec(u) = IVoul> + Ruz)dv +—f hou’do, .
c(u) L( 8 4(n—1) 8 8 2 > 8 8
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to his advisor Prof. Fernando C. Marques for numerous mathematical
conversations and constant encouragement. While the author was at IMPA,
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2 Coordinate expansions for the metric

In this section we will write expansions for the metric g in Fermi coordinates.
We will also discuss the concept of conformal Fermi coordinates, introduced
by Marques in [24], that will simplify the computations of the next section.
The conformal Fermi coordinates play the same role that the conformal
normal coordinates (see [23]) did in the case of manifolds without boundary.
The results of this section are basically proved on pages 1602-1609 and 1618
of [24].

Definition 2.1. Let xp € dM. We choose geodesic normal coordinates
(x1, ..., x4—1) on the boundary, centered at xo. We say that (xy, ..., x), for small
xn 2> 0, are the Fermi coordinates (centered at xo) of the point exp,.(x,7(x)) €
M. Here, we denote by 7(x) the inward unit vector normal to dM at x € M.

It is easy to see that in these coordinates ¢,, = 1 and g, = 0, for
j=1,.,n-1

We fix xg € dM. The existence of conformal Fermi coordinates is stated
as follows:

Proposition 2.2. For any given integer N > 1 there is a metric §, conformal to g,
such that in 3-Fermi coordinates centered at xg

det 3(x) = 1+ O(lxM).
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Moreover, hg(x) = O(IxN~1).

The first statement of Proposition 2.2 is Proposition 3.1 of [24]. The
second one follows from the equation

-1 y 1
= No.. g
hg 20— 1)g Sijn 2(n_l)(logde’cg),n.

The next three lemmas will also be used in the computations of the next
section.

Lemma 2.3. Suppose that M is umbilic. Then, in conformal Fermi coordinates
centered at xo, h;j(x) = O(|x|N), where N can be taken arbirarily large, and

3

. 1. 1._ 1
2 2
§7(x) = 6ij + 5 Rixjixixt + RyinjXy + —Rikjt; mXiX12m + Ruinj;kXnXk + 5 Ruinj;nXn

3 6 3

1. 1 - -
+ (ERikjl; mp + ERikisjmsp)xkxlxmxp

1 1 -
+ (ERninj;kl + gsymij(Rikisnsnj))x%lxkxl

1 1 2
+ aninj,' nkxixk + (ERninj;nn + aninsRnsnj) Xi + O(|x|5) .

Here, every coefficient is computed at x.

Lemma 2.4. Suppose that M is umbilic. Then, in conformal Fermi coordinates
centered at xo,

(1) R = Symiim(Rig; m) = 0;

(ii) Ryp = Rnn;k = Symkl(Rnn;kl) =0;
(iii) Rnn;n =0

(iv) Symigmy(3Rigmp + $RikjiRimjp) = 0;
(v) Rnn; nk =0;

(01) Ryp;nn + 2(Rm’nj)2 =0

(vii) Rij = Rm’nj;

(0iii) Rijkn = Rijkn;j = 0;

(ix) R=Rj=R,=0;

(%) R ii = = (Wij)*

(xi) Rm‘nj;ij = _%R;nn - (Rninj)z;

where all the quantities are computed at xo.

The idea to prove the items (i),...,(vi) of Lemma 2.4 is to express g;; as the
exponencial of a matrix A;;. Then we just observe that trace(A;;) = O(1x|™)
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for any integer N arbitrarily large. The items (vii)...(xi) are applications
of the Gauss and Codazzi equations and the Bianchi identity. We should
mention that the item (x) uses the fact that Fermi coordinates are normal on
the boundary.

Lemma 2.5. Suppose that M is umbilic. Then, in conformal Fermi coordinates
centered at xo € IM, Wapca(x0) = 0 if and only if Ryinj(x0) = Wijn(xo) = 0.

For the sake of the reader we include the proof of Lemma 2.5 here.

Proof of Lemma 2.5. Recall that the Weyl tensor is defined by

1
Wabea = Raped = n—2 (Rﬂfgbd — Rua&pe + Roa&ac — Rbcgad)
R
+ (1’1 _ 2)(1’1 _ 1) (gﬂCgbd - gadgbc‘) . (21)

By the symmetries of the Weyl tensor, Wy = Wiuni = Winij = 0. By
the identity (2.1) and Lemma 2.4 (viii), Wy;x(xo) = 0. From the identity (2.1)
again and from Lemma 2.4 (ii), (vii), (ix),

n—3

Wm'nj = "

Tsz'n j

and

1
Wi = Wij — p— (Rm'nkg il = Ruinigjk + Rujuiik — Ru jnkgil)

at xo. In the last equation we also used the Gauss equation. Now the result
follows from the above equations. m]

3 Estimating the Sobolev quotient

In this section, we will prove Theorem 1.3 by constructing a function 1) such
that

Q) < Q(B",dB).

We first recall that the positive number Q(B",dB) also appears as the
best constant in the following Sobolev-trace inequality:

[N}

n—

(f luf(":;)df)ﬂ < [ Vulds
IR ~ Q(B",0B) Jrr '

-




for every u € H(R"). It was proven by Escobar ([11]) and independently
by Beckner ([6]) that the equality is achieved by the functions U, defined
in (1.4). They are solutions to the boundary-value problem

AU, =0, inR%,
IUL 2UI? =0, ondR" G-
T (n-=2)Ur?* =0, ondR}.
One can check, using integration by parts, that
21-1)
f VU |*dx = (n - 2) U7 dx
R" IR
and also that
-y
Q(B",dB) = (n-2) (f u.= dx) . (3.2)
IR?

Assumption. In the rest of this work we will assume that JM is umbilic
and there is a point xg € JM such that W(xg) # 0.

Since the Sobolev quotient Q(M, dM) is a conformal invariant, we can
use conformal Fermi coordinates centered at x.

Convention. In what follows, all the curvature terms are evaluated at x.
We fix conformal Fermi coordinates centered at xy and work in a half-ball
Bjs = B;,(0) ¢ R}.
In particular, for any N arbitrarily large, we can write the volume ele-
ment dv, as
dvg = (1 + O(Ix|N))dx . (3.3)

In many parts of the text we will use the fact that, for any homogeneous
polynomial py of degree k,

2
r
\[5;12 pk h k(k +n— 3) Sf—Z Apk ’ (3.4)

We will now construct the test function 1. Set

NI=

Pe(x) = e”TQARninjxixjxfl ((e +x,) + |J?|2)_ (3.5)
for A € R to be fixed later, and
b(y) = ARuinjyiyjya (1 + ya)* +172) * . (3.6)



Thus, ¢c(x) = ez‘%gb(e‘lx). Set U = U;. Thus, U.(x) = e U(e 'x). Note
that Ue(x) + ¢pe(x) = (1 + O(Ix[?))Uc(x). Hence, if 6 is sufficiently small,

1
EUeSUg+¢eS2Ug, lnt—é.

Letr = x(r) be a smooth cut-off function satisfying x(r) = 1for0 <r <9,
x(r) =0forr>250<yx <1land|Y(r) < Co1if 6 <r <25 Our test
function is defined by

() = x(I)(Ue(x) + Pe(x)) .

3.1 Estimating the energy of ¢
The energy of ¢ is given by

Em(p) = fM (|Vg¢|2+ Jn—__zl)Rggz)Z)dvg+ ”T_z fa th¢2dag
= Ep:(¥) + Epy\: (¢).- 3.7)

Observe that

IV > < CIVYP < CIVXPA(Ue + de)® + CXAV(Ue + de)l .

Hence,
Eps\g+(¢) < C f IVx[*UZdx + C f X |IVUdx
B35\B; B3;\By
+ cf RoUZdx + Cf hoUzdx,
B3 \By J'B} \0'By}
Thus,
Ep: \p:(¥) < Ce"25%7 (3.8)



The first term in the right hand side of (3.7) is
EB;(‘P) = EBg(ue + (Pe)
_ 2, N-2 2
_ fB {|vg(u€ # 90 + 35 Re(Ue + 90 }dvg

o
n—

+

2
f he(Ue + ¢e)*doyg
I'B}

IV(Ue + ¢e)Pdx (3.9)
B

+ f (& = 6N9(Ue + )9 (Ue + pe)ix

n-2

FTEETY 2 n—2
201, Re(Ue + @e)dx+ Ce"%.

Here, we used the identity (3.3) for the volume term and Proposition 2.2 for
the integral envolving .

Now, we will handle each of the three integral terms in the right hand
side of (3.9) in the next three lemmas.

Lemma 3.1. We have,

f V(UL + ¢o)Pdx < QB", B”)( |G

HlN

= dx) + Ce 25+

4 442 zf yaly’
————— " A (Ryin; - d
TR RS NN NI (s -Fa e

8n 442 Zf yn|y|4
+ —————€* A (Ryin; — d
e N M R Tk

12n 4 ) f yulyl*
+ —————€" A (Ryin; — d
e R N M R Tk

Proof. Since R, = 0 (see Lemma 2.4(ii)), sz Ruinjyiyjdo,(y) = 0. Thus, we
see that

f IV(Ue + ¢e)Pdx = f VU, [*dx + f IV |*dox . (3.10)

Integrating by parts equations (3.1) and using the identity (3.2) we obtain

n—.

2n-1) n=1
=2 dx .

IB+

2(n=1) ;ﬁ
VULPdx < Q(BY, aB”)( [ ou= dx) < Q(B”,aB">( I
I oM

By
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In the first inequality above we used the fact that aal# > 0on d*B}, where 1

denotes the inward unit normal vector . In the second one we used the fact
that ¢ = 0 on dM.

For the second term in the right hand side of (3.10), an integration by
parts plus a change of variables gives

f |V(l)e|2dx < —¢ f (Ap)pdy + Ce"252"
By B*

e1s

since fa' - g%@dx = 0 and the term €"725%™" comes from the integral over
O'Br.
5

Claim. The function ¢ satisfies

A(P(y) = ZARnin]'yiyj((l + yn)z + le)_% - 4nARninjyiyjyn((1 + yn)z + |y|2)_n%2
— 61AR iy 2 (1 + y)* + 1725

In order to prove the Claim we set Z(y) = ((1+ yn)2 + |]7|2). Since R,;; =0,

ARuiniYiyi¥3Z ™) = MRuini¥iiym)Z ™% + RuinjyiyiyaMZ ™)
+ 20k (RuinYiYiY2)OK(Z ™ 2) + 20u(Roin iy iy2)On(Z77)
= 2Ryinjyiy;Z 7% + 211Rm‘nj]/iyj]/%Z_HT+2
~4nRinYiYYaZF ARy + DZF

_n+2

= 2RyinjYijZ~2 — 6nRyinjyiy Y2 L™ 2
n+2

— 4nRyinjyiyiynZ 2 .

This proves the Claim.
Using the above claim,

L+ (A(P)(de = 2A2 ‘[[; ((1 + yn)2 + |mz)_aniannknlyiyjykyly%dy

se~1 se~1

— 4nA? jl; ) (1 + yu)* + 17 Ruin Rk iy iy y1yady

se~1

— 6nA? fB+ (1 + y)® + 177" Ruin Rt ViV jyicviymdy -
se—1
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Since A?(RuinjRoukntiyjyxyr) = 16(Rpinj)?,

fs ) RuinjRukntyiVjyxyidor =

2012

n+2 N2
mr (an]) .

Thus,
fB (Y =y fB - yyz>|2y li TR
D R fB GE yﬁwflﬂ%m v
e R’ fB e yﬁwflyP)”“ v
Hence,

)

+ 8n
m+1Dn-1

12n
* n+1)(n-1)

+ Ce 25+

Lemma 3.2. We have,

J

+
o

(n - 2)*

v2lglt

4
L — | )
L;* | (P | (1”! + 1)(71 - 1) ( nm]) 326_1 ((1 + yn)2 + |?|2)n y

A

e*AX(Rinj)® f d
) ( nm]) B;_l ((1 + yn)Z + |y|2)n+1 Y

e*A? (Rninj)z f
B

vl
(@ + P + 1P

+
se~1

(§71-6NH(Ue + pe)d;(Ue + de)dx =

2|yl

2 AR f d
(D= Jye @y gy

(n - 2)?
T 2m=1

€4 (Rnin j)2 f
B+

se=1

4n(n - 2)
T+ -1

€*A(Ryinj)* f
( nzn]) B;e_l ((1 +yn)2 + |y|2)n+

yalgl?
1+ yn)z + |]?|2)n

(
Al

1dy+E1,
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where

O(e*o™%) ifn==6,
E; ={0(’log(6e7Y) ifn=7,
O(e) ifn>8.

Proof. Observe that
f (8 = 5NOHUe + Pe);(Ue + deix = f (87 - ool Uedx  (311)
B B
+2 f (g7 = 6")0;Ucdjpedx + f (87 = 6")ipedipedx .
Bf B}

We will handle separately the three terms in the right hand side of (3.11).
The first term is

B3

f (g7 = 6")(x)9iUe(x)0Ue(x)dx = fB ) (g7 - 6")(ey)d:U(y)o;U(y)dy

o€

= (n—2)> fB (1 + ya)* + 17D (ST - 87)ey)yiydy .-

se~1

Hence, using Lemma A-1 we obtain

f (87 — 67)(x); U (x)9;Ue(x)dx =
B}

(n— 2)2 4 f ]/%|]7|4
" = AR d
-1 " f (@R g

se=1
(n-27 , zf yaulgP ,
+ € (Ryini dy+E’,
2-0° &y @ ey
where
O(e*9) ifn=6,
E} =30( log(oe™Y)) ifn=7,
O(€) ifn>8.
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The second term is
2 f (g7 = 67)(x)9;Ue(x)0jpe (x)dx (3.12)
By

=-2 f (87 = 67)(x)0:0, U (x) e (x)dx — 2 f (2i8")(x)0U(x)pe(x)dx
B+

+
o )

+O0(e" 26"

=2 [ (6T =Menao oy -2 | Ogend oy

o€ se—1

+O(e" 265%™,

But,
2 [ (g = 5enod oy 6.1
se=1
= -200-224 [ (@ 15 - )
B
: {7’1]/1']/]' — (A + )+ |}?|2)5ij}Rnknlykyzy,21d]/
dn(n-2) zf yalglt ,
= D) ARy dy +E,,
n+1)(n- 1)6 (Roin) Bl 4 (1 + yn)? + [g12)+! T L
where
O(e*) ifn=6,
E, =30(e’ log(oe™Y)) ifn=7,
) ifn>8.

In the last equality of 3.13, we used Lemma A-2 and the fact that Lemma
2.3, together with Lemma 2.4(i),(ii),(iii), implies

f; H(gij — 6")(ey)SijRukuyiyido,(y) = f; . Oy R yiyidon(y)

We also have, by Lemma 2.3 and Lemma 2.4(i),

O(e*s) ifn==6,
263 f+ (aigij)(ey)ﬁjll(y)q)(y)dy = E’3 ={0( log(ée‘l)) ifn=7
e O(e%) ifn>8.

14



Hence,
2 f (87 = 8")(x)9iUe(x)0jpe(x)dx = Ef + ES
By

dnn-2) ’ f AN
— —————— € A(Ryinj .
R i M N M R o ek

Finally, the third term in the right hand side of (3.11) is written as

[ &= 0gemitx =t [ (- enaomopdy

0 se—1

O(e*9) ifn=6,
={0(’log(6e7t)) ifn=7,
0(e%) ifn>8.

The result now follows if we choose € small such that log(ée‘l) > 527",

O
Lemma 3.3. We have,
n—2 n—2 yz
- - R 2d = — 4R. f 1 d
- ——*(W;; dy + E>,
217 L @ ey R
0~
where
O(e*9) ifn=6,
E; ={O(’log(6e7Y)) ifn=7,
O(e”) ifn>8.

Proof. We first observe that

f Re(Ue + ¢pe)?dx = f RoUzdx +2 f ReUcgpedx + f Rep2dx. (3.14)
B+ B+ + B+

o o o o

We will handle each term in the right hand side of (3.14) separately.
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Using Lemma A-3, we see that the first term is

[ rewuerac=e [ Renumy
Bt B*

o o€

(3.15)

= Leg f Vi dy + E|
28 Jpe (@ gy T

1 e*Wijn)* f Uy dy
2m-1)" Y B, (L yn)> + 1Py

where
O(e*5) ifn=6
E, =30 log(oe™Y) ifn=7,
O(e) ifn>8.

By Lemma 2.4(ix), the second term is

2 f f Rg(x)Ue(x)pe(x)dx = 2¢* fB _ RelenUy)p(y)dy

o se—1

O(e*o) ifn=6,
=10(’ log(oe™Y)) ifn=7,
O(e®) ifn>8
and the last term is
O(e*o) ifn==6,
f Rep2dx = O(e’ log(de™) ifn=7,
By O(%) ifn>8.

3.2 Proof of Theorem 1.3
Now, we proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3. It folows from Lemmas 3.1, 3.2 and 3.3 and the identi-
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ties (3.7), (3.8) and (3.9) that

2(n-1)

Em(y) < Q(B",9B") ( fa e ) - +E

_€4 4A2 (R . )zf ]/%|]7|4
m+)n-1)" " g, @+ ya)? + 72"

2)? Al
+€4(n—Rn- f n d
(e D=0y @y + 17
. 8nA? 2 f Yol
ret (R .
CESVCEEI RN L @ g2+l

. 12nA? By f Yaldl*
FC e e @ e

_pAnn=2A o af yalg*
- L @i

+ e 4(7’1 2) ( . )ZI y%|y|2 y
2= Jge (@ g+ gy

4 N 2 f Yu
+e*——R., d
B=1) " Jue (A yal + g2

L2 gy f L dy.  (316)
48n-12 " g (L4 + IR 2 '
o€~

where
O(e*6™%) ifn=6,
E={0(log(6e7t) ifn=7,
O(€?) ifn>8.

We divide the rest of the proof in two cases.

The casen =7, 8.

Set] = fo (r2 +1)n —L—dr. We will apply the change of variables z = (1+y,) ¥
and Lemmas B-1 and B-2 in order to compare the different integrals in the
expansion (3.16).
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These integrals are

I :f vyt dy dyzfmy2(1+y )B—ndy f z[* s
R @y R o Jh " " Jrer (L4 2Py

~ 2+ 1) 0pn ]
C (n=-3)n-4)(n-5n-6)"

I —f il dy,dy = f 21+ y)™dy f —|Z|4 dz
Ry (1 +yn)? + [gR)met 7" " " " Jre (1 + [22)n

_ 3(71 + 1) onl
T nn=-2)n-3)n-4)n-5)"

I; = f y”|y|4 dy,dy = f y (1 +y )1 "dy f —|Z|4 dz
Ry (1 + yn)? + [gR)mt 7" " " " Jre (1 + [22)n

B 1201+ 1) on_n I
T nn=2)n-3)Yn-4)n-5m-6)"

I :f yhlgP dy dy:fmy4(1+y )1_”dy f |Z|2 iz
T R (1R o Jh " " S (L4 2Py

B 240,51
 (n=2)n-3)(n—-4)n-5)n-6)

and

yn ® 3-n 1 -
o [ P
= e @y 2= | Y A ey

B 8(11 —2) 0yn
T m=3)n-4)n-5m-6)"
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Thus,

EM(ED) < Q(Bn, 8Bn) (f 1)02(:__21))m +F
oM
! A Bnd” (n -2 )2
{_(” +1)(n - 1)11 " (n+1)(n—- 1)I2 * 2(n — 1)14} (Ryinj)
4 12nA2 4n(n - 2)A 2
) {<" T -1 (1 D - 1)}13 Roin)
s_(n-2p o, 42
+ € mh . Rnln];1] +€ —8(1/1 — 1)15 R;nn
LA Mm2 gm0 |7l
€ B -1) (Wijia) fll;’l A+ + 702 dy. (3.17)

where

- O(e’ log(6e™t)) ifn=7,
o) ifn=28.

Using Lemma 2.4(xi) and substituting the expressions obtained for
Iy,...,I5 in the expansion (3.17), the coefficients of R;;,j;ij and R, cancel
out and we obtain

Euy) < Q(B”,aBn)(faMlk%)m +E
+e*oul -y {16(74 +1)A% — 48(n — 2)A + 2(8 — n)(n — 2)2} (Rnin]‘)2

L =2 g ay,
€ Vi) fm v gr2y

(3.18)

where
1

V= =) —2)(n-3)n-4)(n-5)n-6)

Choosing A = 1, the term 16(n + 1)A? — 48(n — 2)A + 2(8 — n)(n — 2) in
the expansion (3.18) is —62 for n = 7 and —144 for n = 8. Thus, for small ¢,
since Wip4(xo) # 0, the expansion (3.18) together with Lemma 2.5 implies
that

n n 2(n-1) Z_:%
Em(yp) < Q(B",dB") f Y2
oM
for dimensions 7 and 8.

The case n = 6.
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We will again apply the change of variables z = (1 + y,)~'% and Lemma
B-1 in order to compare the different integrals in the expansion (3.16). In

the next estimates we are always assuming n = 6.
In this case, the first integral is

21514

Yl _
L3 = f dyd
e e @y

= f Tt g+ o)
B, nly<ojze) (1+ ya)? + 17"

_ f T a5+ o)
ReAye<oze) (L+ yn)2 + Ry 7" '

Hence,
|zI*

0/2€ ) 5 5
hsfe = Ly g, | —o—dz+ 00

q.n+1
= log(de 1)n —0u-2l+0(1).

The second integral is

31514

Yl
I = dy,
20/ fB @+ g2+ 7Ry

oe=1

dy = O(1).

Similarly to I; s/, the others integrals are

4114

Yuldl )
I c = d nd
3/ fB (A + g + gyt

el

= 1+y,)'"d — = z+03
\]; y}’l( yn) yn ‘[I;Vl—l (1+|z|2)n+1 Z ( )
n+1

2n

= log(6e™) on I+ 0(1),

41512
Yl
I = d nd
ole fB @+ yup + 17y
_|2

5/26 4 1 |Z
= n 1+ n _nd nf —_dZ
fo Yu(l+yn)"dy et (Lt ZP)7

=log(6e Hou—2 I+ O(1),
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_ yn
Iss/e = f ((1 PR 2dyndy

6/26 5 s 1
= j; Yu(L+ yn)”"dyn ‘f]l;n_l Wdz + O(1)
( -2

= log(6e™") —-on21+0(1)
and
|72 .
o s/e = dy,d
o fB (T + g2 + lgRy2 Y
o/ 5-n |Z|2 _
= L (1 +y,)’"dyn L" : Wﬂlz + O(1)
1.4n-1D(n-2
= log( 1)% op I+ O(l).
Thus,

Em(¥) < Q(B",9B") ( fa y 1/,2(:‘2”)m + O(e*s™)

447 (n = 2)?

4 e — _

+€ { CE 1)Il,b/e 2(n 1)14 5/e (Rmn])
12nA? dn(n —2)A

* - (R )2
’ {(n +(n-1) @m+1)n- 1)}I3r5/€ (R}

4& I .

€ (n+1)(n- 1)11’5/6 Ryinj;ij + € 8(n — 1_)15,6/6 R;nn
n—2 —

~ € B mpleale Wi (3.19)

Using Lemma 2.4(xi) and substituting the expressions obtained for
I 5/¢,-/16,6/c in expansion (3.19), the coefficients of R;;nj;ij and R, cancel
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out and we obtain

[}

Em(y) < Q(B",9B") ( fa y ﬁ:?)"' +0(e*67Y)

+et log(ée'l)an_zl .

—

6(n-3)—-4 , 2n-2) (n —2)*(n - 5) 0
{(n D=3 =1 At D= 3)} (Ryin)
4 -1 (n —2)? TAT. . \2
—€*log(6€ " )op-21 (Wijka)~ - (3.20)

12(n — 1)(n — 3)(n — 5)

. 6(n—3)—4 2(n-2 (n-2)%(n-5) .
Choosing A = 1, the term (,1(_’11)(r)l_3))A2 - 51” 1)A + 2?11—1)?;—3; in the ex-

pansion (3.20) is —12—5 for n = 6. Thus, for small ¢, since Wy,4(xg) # 0, the
expansion (3.20) together with Lemma 2.5 implies that

En() < Q(B", 9B") (j;M ‘4’2(:‘_21));1_1

for dimension n = 6. O

Appendix A

In this section, we will use the results of Section 2 to calculate some inte-
grals used in the computations of Section 3. We recall that all curvature
coefficients are evaluated at xo € dM and we are making use of conformal
Fermi coordinates centered at this point.

Lemma A-1. We have

(87 = ") ey)yiyjdor(y) = o VT T
512 W T+ ) —1) Y
+0 _2e4ﬂ(12 inj)” + OE|(r, y)"™).
n 2(n _ 1) ninj ryn

Proof. By Lemma 2.3,

(87 = 8")eyyiy;dony) =

n—.
SY

1
et L"-z ERninj;klyiyjykylde(y) + O(E|(r, yu)I™™°)

1 2
+ €4y$1 (1 Rninj; m t _RninsRnsnj)yi]/jdar(y) .
S;}—Z 2 3
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Then we just use the identity (3.4), Lemma 2.4 and the fact that

N*(Ryinj ki yiViVicy1) = 16Rpinj;i; -

Lemma A-2. We have
] — &4 A - - 2.2 n42(p . A2
j; 3_2(8 O €y)Rukn iy iy yidor(y) F D= 1)an_2e Y™ (Rpinj)
+ OE|(r, yn)"*)

Proof. Asin Lemma A-1, the result follows from

fsn-z(gij — ")€Y Rueniyjyiyidor(y) = €24 fs . RuinjRukntyiy jyxyidor(y)
+ OE(r, yn)"™*),
the fact that Az(Rniannknlyiyjykyl) = 16(Rninj)2 and the identity (3.4). O

Lemma A-3. We have
Ry (ey)do,(y) = 0,26 1]/21’”_21{. - ;rﬂ(W-‘H)Z
g2 8 ' " 27" 12 = 1) g

+ OE|(r, yn)"™).

Proof. Asin Lemma A-1, the result follows from
2.2 1 2 1
Rq(ey)dor(y) = €7yy, SRimdor(y) +e SRijyiyidor(y)
53—2 5;1—2 S;rz—Z
+ 0|y,

Lemma 2.4(x) and the identity (3.4). m|

Appendix B

In this section we will perform some integrations by parts that were used
in the computations of Section 3.
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Lemma B-1. We have:

stds 00 4424 .

(a) j(; (1+s2)m — a+1 0 (1+s2)m+1 Jora+1 <2m;
X s _ _ 2m ©  s%s .
® |, Qv = Znea T Jo {asymt ofora+1<2m;

0 s%ds  _ 2m—a=3 [ s**2ds
() fO (1+s2)ym a+a1 J(.) (1+s2)m ,f01’0(+3 <2m.

Proof. Integrating by parts,

f‘x’ s%*2ds _fwsaﬂ sds _a+1f°° s*ds
o (1+s2)ml g 1 +s2ym1 — 2m Jy (1+s2)m’
for a + 1 < 2m, which proves the item (a).

The item (b) follows from the item (a) and from

f‘” sds f‘” s%(1 +5%) ds—foo s%ds +f°° s4*+24s
0 (1 +52)m - o (1 +52)m+1 - o (1 +52)m+l 0o (1 +52)m+1 :

To prove the item (c), observe that, by the item (a),

f“’ stds  2(m—1) f’“’ s%*+2(s
o T+l a+l J; (1+s2)m’

for a + 3 < 2m. But, by the item (b), we have
f‘x’ s%ds 2(m—1) f‘x’ s%ds
0o (1+s2y=1 2m-1)-a-1]J;, (1+s2)m’

Lemma B-2. Form >k+1,

k!
fo 1+ t)mdt S m-1D(m=-2)..(m-1-k)’
Proof. Integrating by parts,

f f1 4 pytmgr = 2 [ kg
0 k 0

On the other hand,

fomtk'l(1+t)l_mdt:j(; f““” f(l f(l
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Hence,

0o k 00 k-1
f . f Ay
0 (1+t)m m-1-k 0 (1+t)m

Now the result follows observing that fooo Wdt = % .
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