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Abstract

Let (M", g) be a compact Riemannian manifold with boundary JM. This
paper is concerned with the set of scalar-flat metrics which are in the con-
formal class of g and have dM as a constant mean curvature hypersurface.
We prove that this set is compact for dimensions n > 7 under the generic
condition that the trace-free 2nd fundamental form of JM is nonzero ev-
erywhere.

1 Introduction

In 1960, H. Yamabe ([44]) raised the following question:

YAMABE PROBLEM: Given (M",g), a compact Riemannian manifold (without
boundary) of dimension n > 3, is there a Riemannian metric, conformal to g, with
constant scalar curvature?

This question was affirmatively answered after the works of Yamabe him-
self, N. Trudinger ([43]), T. Aubin ([4]) and R. Schoen ([39]). (See [30] and [41]
for nice surveys on the issue.)

In 1992, J. Escobar ([21]) studied the following Yamabe-type problem, for
manifolds with boundary:

YAMABE PROBLEM (boundary version): Given (M", ), a compact Riemannian
manifold of dimension n > 3 with boundary, is there a Riemannian metric, conformal
to g, with zero scalar curvature and constant boundary mean curvature?

In analytical terms, the problem proposed by Escobar corresponds to finding
a positive solution to

(1.1)

Lo =0, inM,
Bgu + Kuw2 =0, ondM,

_ _n=2
4(n-1)

By = % — 2h,. Here, A, is the Laplace-Beltrami operator, R, is the scalar

for some constant K, where Ly = A Rg is the conformal Laplacian and



curvature, h, is the mean curvature of JM and 7 is the inward unit normal
vector to dM.
The solutions of the equations (1.1) are the critical points of the functional

2 n=2 2 n=2 2
fM IVoul™ + g Reu*dog + 5 faM hgudog

n-2
2(n-1) o
(g ™= o)

where dv, and do denote the volume forms of M and dM, respectively. In order
to prove the existence of solutions to the equations (1.1), Escobar introduced
the conformally invariant Sobolev quotient

Qu) =

7

QM, dM) = inf{Q(u); u € C*(M),u % 0 on IM}.

The question of existence of solutions to the equations (1.1) was studied in
[2], [12], [21], [22], [23], [36] and [37]. The regularity of these solutions was
established in [13]. Conformal metrics of constant scalar curvature and zero
boundary mean curvature were studied in [9], [20] (see also [3] and [26]).

In the case of manifolds without boundary, the question of compactness of
the full set of solutions to the Yamabe equation was first raised by R. Schoen
in a topics course at Stanford University in 1988. A necessary condition is that
the manifold M" is not conformally equivalent to the sphere S". This problem
was studied in [17], [18], [31], [32], [34], [35], [40] and [42] and was completely
solved in a series of three papers: [8], [10] and [29]. In [8], Brendle discovered
the first smooth counterexamples for dimensions n > 52 (see [6] for nonsmooth
examples). In [29], Khuri, Marques and Schoen proved compactness for di-
mensions 3 < n < 24. Their proof contains both a local and a global aspect. The
local aspect involves the vanishing of the Weyl tensor at any blow-up point and
the global aspect involves the Positive Mass Theorem. Finally, in [10], Brendle
and Marques extended the counterexamples of [8] to the remaining dimensions
25 < n < 51. In [31], [32] and [35] the authors proved compactness for n > 6
under the condition that the Weyl tensor is nonzero everywhere.

In the present work we are interested in the compactness of the set of positive
solutions to

{Lgu =0, in M, w2

Byu +Ku” =0, ondM,

where 1 <p < 5. A necessary condition is that M is not conformally equiva-
lent to B". As stated by Escobar in [21], Q(M, dM) is positive, zero or negative
if the first eigenvalue A1(B,) of the problem

Leu =0, in M,
Beu+Au=0, ondM

is positive, zero or negative, respectively. If A1(Bg) < 0, the solution to the
equations (1.2) is unique. If A1(Bg) = 0, the equations (1.2) become linear and



the solutions are unique up to a multiplication by a positive constant. Hence,
the only interesting case is the one when A(B,) > 0.

We expect that, as in the case of manifolds without boundary, there should
be counterexamples to compactness of the set of solutions to the equations
(1.2) in high dimensions. In this work we address the question of whether
compactness of these solutions holds generically in any dimension.

Our first result is the following:

Theorem 1.1. Let (M",g) be a Riemannian manifold with dimension n > 7 and
boundary oM. Assume that Q(M,dM) > 0. Let {u;} be a sequence of solutions to the
equations (1.2) with p = p; € [1 + o, ;5] for any small fixed yo > 0. Suppose there is
a sequence {x;} C IM, x; — xo, of local maxima points of u;|on such that ui(x;) — co.

Then the trace-free 2nd fundamental form of IM vanishes at x.

By linear elliptic theory, uniform estimates for the solutions of equations
(1.2) imply Ck*-estimates, for some 0 < a < 1. By the Harnack-type inequality
of Lemma 9.3 (proved in [26]), uniform estimates on the boundary dM imply
uniform estimates on M. Hence, an immediate consequence of Theorem 1.1is a
compactness theorem for Riemannian manifolds of dimension # > 7 that satisfy
the condition that the boundary trace-free 2nd fundamental form is nonzero
everywhere. More precisely:

Theorem 1.2. Let (M",g) be a Riemannian manifold with dimension n > 7 and

boundary oM. Suppose Q(M, dM) > 0 and that the trace-free 2nd fundamental form
of M is nonzero everywhere. Then, given a small yo > 0, there exists C > 0 such that

foranyp € [1 +y0, ﬁ] and u > 0 solution to the equations (1.2) we have

Cl'<u<C and |ullcegn <C,
forsome 0 < o < 1.

It was pointed out to me by F. Marques that a transversality argument
implies that the second fundamental form condition above is generic for n > 4.
In other words, the set of the Riemannian metrics on M" such that the trace-free
second fundamental form of dM is nonzero everywhere is open and dense in
the space of all Riemannian metrics on M for n > 4.

We should mention that Theorem 1.2 does not use the Positive Mass Theo-
rem, since the proof of Theorem 1.1 contains only a local argument, based in a
Pohozaev-type identity.

The problem of compactness of solutions to the equations (1.2) was also
studied by V. Felli and M. Ould Ahmedou in the conformally flat case with um-
bilic boundary ([23]) and in the three-dimensional case with umbilic boundary
([24]). Other compactness results for similar equations were obtained by Z.
Han and Y. Li in [26] and by Z. Djadli, A. Malchiodi and M. Ould Ahmedou in
[15] and [16].

A consequence of Theorem 1.2 is the computation of the total Leray-Schauder
degree of all solutions to the equations (1.1), as in [23], [24] and [26] (see



also [29]). When A1(B;) > 0, we can define a map F, : Qpr — C*(M) by
F,(u) = u + T(E(u)u’). Here, E(u) = fM IVoul® + 4(’;—*_21)Rgu2dvg + 2 faM heu*do,
is the energy of u, T is the operator defined by T(v) = u, where u is the unique
solution to

Leu=0, inM,

Beu=v, ondM,
and Qu = {u € C**(M); lulczagyy < A, u > A™'}. From elliptic theory we know
that the map u +— T(E(u)uP) is compact from Q, into C>*(M). Hence, F,is
of the form I + compact. If 0 # F,(dQ,), we may define the Leray-Schauder
degree (see [38]) of F, in the region (2, with respect to 0 € C?>%(M), denoted by
deg(F,, Q4,0). Observe that F,(u) = 0 if and only if u is a solution to

Lgu = O, in M/
Bgu + E(u)u? =0, ondM.

Observe that these equations imply that f&M u*l'do, = 1. By the homotopy

_n_
/ n-2

that 0 # F,(dQ,) for all p € [1, n”j] In the linear case, when p = 1, we
have deg(F1,Q,,0) = —1. This is the content of Lemma 4.2 of [23], which is
a modification of the arguments in [26], pp.528-529. Thus, for A sufficiently

invariance of the degree, deg(F,,(2,,0) is constant for all p € [1 ] provided

large, Theorem 1.2 allow us to calculate the degree for all p € [1, #] Hence,
we have:

Theorem 1.3. Let (M",g) satisfy the assumptions of Theorem 1.2. Then, for A
sufficiently large and all p € [1 L] we have deg(Fy, Q4,0) = —1.

/ n-2

We will now outline the proof of Theorem 1.1. The strategy of the proof
is similar to the one proposed by Schoen in the case of manifolds without
boundary. It is based on finding local obstructions to blow-up by means of
a Pohozaev-type identity. We suppose that there is a simple blow-up point
for a sequence {u;}. We then approximate the sequence {u;} by the standard
Euclidean solution plus a correction term ¢;. The function ¢; is defined as a
solution to a non-homogeneous linear equation. We then use the Pohozaev
identity to prove that the boundary trace-free 2nd fundamental form vanishes
at the blow-up point. Finally we apply the Pohozaev identity to establish, after
rescaling arguments, a sign condition that allows the reduction to the simple
blow-up case.

An important part in our proof is the use of the correction term ¢; to obtain
refined pointwise blow-up estimates. The idea of using a correction term first
appeared in [27] and was significantly improved in [7]. This type of blow-up
estimate was derived in [29] where the authors studied compactness in the case
of manifolds without boundary. Although we do not have the kind of explicit
control of the terms ¢; the authors had in [29], a key observation is that some



orthogonality conditions are sufficient to obtain the vanishing of the boundary
trace-free 2nd fundamental form.

In Section 2 we establish some notation and discuss some basic results. In
Section 3 we prove the Pohozaev identity we will work with. In Section 4 we
discuss the concepts of isolated and isolated simple blow-up points and state
some basic properties. In Section 5 we find the correction term ¢; and prove its
properties. In Section 6 we obtain the pointwise estimates for u;. In Section 7
we prove the vanishing of the trace-free 2nd fundamental form at any isolated
simple blow-up point and prove the Pohozaev sign condition. In Section 8 we
reduce our analysis to the case of isolated simple blow-up points and prove
Theorem 1.1.
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thesis ([1]). The author would like to express his gratitude to his advisor Prof.
Fernando C. Marques for numerous mathematical conversations and constant
encouragement. While the author was at IMPA, he was fully supported by
CNPg-Brazil.

2 Preliminaries

2.1 Notations

Throughout this work we will make use of the index notation for tensors,
commas denoting covariant differentiation. We will adopt the summation
convention whenever confusion is not possible. When dealing with coordinates
on manifolds with boundary, we will use indices 1 < 7,j,k,/ < n—1 and
1 < a,bc,d < n. In this context, lines under or over an object mean the
restriction of the metric to the boundary is involved.

We will denote by g the Riemannian metric and set detg = detgy,. The
induced metric on M will be denoted by 3. We will denote by V, the covariant
derivative and by A, the Laplacian-Beltrami operator. The full curvature tensor
will be denoted by R4, the Ricci tensor by R, and the scalar curvature by R,
or R. The second fundamental form of the boundary will be denoted by h; and
the mean curvature, ﬁtr(hkl), by hg or h. By 1ty we will denote the trace-free
second fundamental form, hy — hgy.

By IR’} we will denote the half-space {z = (21, ..., z,) € R"; z, > 0}. If z € R} we
setZ = (z1,...,zs-1) € R*! = JR". We define B (0) = {z € R} ; Iz| < 6}. We also
denote B = B;(0) for short. We set *B}(0) = dB}(0) "R} = {z € RY; |z = 6}
and d'B}(0) = B{ (0)NIR’} = {z € IR ; [z| < 6}. Thus, dB;(0) = 9"B;(0)Ud*B;(0).

In various parts of the text, we will make use of Fermi coordinates

Y :Bi(0) > M

centered at a point xo € JM. In this case, we will work in B} (0) € R}.
We will denote by Ds(xg) the metric ball on dM (with respect to the induced
metric §) of radius 0 > 0 centered at xg € M. The volume forms of M and dM



will be denoted by dv, and do,, respectively. By 1 we will denote the inward
unit normal vector to M. The n-dimensional sphere of radius r in R"*! will be
denoted by S;'. Finally, 0, will denote the area of the n-dimensional unit sphere
S

2.2 Standard solutions in the Euclidean half-space

In this section we will study the Euclidean Yamabe equation in R’} and its
linearization.

The simplest example of solution to the Yamabe-type problem we are con-
cerned is the ball in R” with the canonical Euclidean metric. This ball is confor-
mally equivalent to the half-space R} by theinversion F : R} — B"\{(0, ...,0, -1)}
with respect to the sphere Sq‘l(O, ...,0,—=1) with center (0, ...,0,—1) and radius 1.
Here, B" = B1,2(0, ..., 0, =1/2) is the Euclidean ball in R" with center (0, ..., 0, —=1/2)
and radius 1/2. The expression for F is

(]/1/ s Yn-1,Yn + 1)

F(y1,...yn) = +(,...,0,-1),
W1, ) VAt A+ (yn+ 1) ( )

and of course its inverse mapping F~! has the same expression. An easy

calculation shows that F is a conformal map and F* g = Uiz Zeuct i R}, where
n=2

Seuct is the Euclidean metric and U(y) = (y] + ... + ¥>_, + (yn + 1)*)" 2. The
function U satisfies

2.1)

AU =0, inR%,
g_ylli +(m-2)Uw2 =0, ondR".

Since the equations (2.1) are invariant by horizontal translations and scalings
with respect to the origin, we obtain the following family of solutions to the
equation (2.1):

VlT—Z
A
A+ + Li5 (yj — 7))
where A > 0and z = (z1, ..., z,-1) € R".

In fact, the converse statement is also true: by a Liouville-type theorem in
[33] (see also [19] and [14]), any non-negative solution to the equations (2.1) is
of the form (2.2) or is identically zero.

The existence of the family of solutions (2.2) has two important conse-
quences. First, we see that the set of solutions to the equations (2.1) is non-
compact. In particular, the set of solutions to the equations (1.1) is not compact

Up:(y) = [ (22)

when M" is conformally equivalent to B". Secondly, the functions g—;, for
j=1,.,n-1,and 52U+ yb%g, are solutions to the following homogeneous
linear problem:
Ay =0, inRY,
2.3
{j—fn+nué¢=o, on JR" . @3



Notation We set J; = g—;, forj=1,.,n-1,and J, = "T_2U+ ybgTLg.

Now, we will show that linear combinations of [, ..., ], are the only solutions
to the equations (2.3) under a certain decay hypothesis. This result is similar
to the one obtained in [11] for the case of manifols without boundary. More
precisely we have:

Lemma 2.1. Suppose  is a solution to

AYp =0, in R}
o 2 IR (2.4)
%+nlln—zyl}—0, on dRY .

IfY(y) = O((1 + |yl)~®) for some a > O, then there exist constants cy, ..., c, such that

n

Y(y) = Z Cala(y) -

a=1
The following result will be used in the proof of Lemma 2.1:

Lemma 2.2. The eigenvalues A of the problem

AP =0, in B, .
F+Ap=0, ondB" @)

are given by {Ax = 2k}° . (Recall that 1 points inwards.) The corresponding eigen-
vectors are the harmonic homogeneous polynomials of degree k restricted to B". Here,
the coefficients of the polynomials are given by the coordinate functions of R" with
center (0, ...,0,=1/2). In particular, the constant function 1 generates the eigenspace
associated to the eigenvalue Ay = 0 and the coordinate functions zi, ..., z, restricted to
B" generate the eigenspace associated to the eigenvalue Ay = 2.

Moreover, zjo F = =L U], for j=1,..,n—1,and z, o F = L U],

Proof. The first part is an easy consequence of the fact that the spherical har-
monics generate L2(S"™!). The last part is a straightforward computation. O

Lemma 2.1. Recall that the conformal Laplacian satisfies
Loty (@) = T Lgu, (2:6)

for any smooth functions ¢ > 0 and u. Similarly, the boundary operator B,
satisfies
Bc%zg(c—lu) = "2 Bgu. (2.7)

Hence, the equations (2.4) are equivalent to

Ay =0, in B"\{(0, ...,0, 1)},
F+2=0, ondB"\((0,..0,-1)),

7



where ¢ = (U'¢) o F~1. The hypothesis ¢(y) = O(1 + [y)™), 0 < a < n -2
implies that ¢ € LP(B"), for any -5 < p < -5—. Lemma 9.1 ensures that ¢ is a
weak solution to )

AD =0, in B,

% +2p=0, ondB".

It follows from elliptic theory that ¢ € C*(B"). In other words, ¢ is a solution
to the equations (2.4) if and only if i) is an eigenfunction associated to the first
nontrivial eigenvalue A; = 2 of the problem (2.5). The result now follows from
Lemma 2.2. O

2.3 Coordinate expansions for the metric

In this section we will write expansions for the metric g in Fermi coordinates.
We will also recall the conformal Fermi coordinates, introduced by Marques in
[36], that will simplify the computations in the next sections. The conformal
Fermi coordinates play the same role that the conformal normal coordinates
(see [30]) did in the case of manifolds without boundary.

Definition 2.1. Let xy € JM. We choose boundary geodesic normal coordinates
(z1, ..., Zn-1), centered at xo, of the point x € M. We say that z = (21, ..., z,), for
small z, > 0, are the Fermi coordinates (centered at xo) of the point exp. (z,,1(x)) €
M. Here, we denote by 7(x) the inward unit normal vector to dM at x. In this
case, we have a map defined by 1(z) = exp,(z.7(x)), taking values in a subset
of R.

Itis easy to see that in these coordinates ¢, = land g, =0, forj =1, ..., n—-1.
We fix xg € M. We use Fermi coordinates i : B} (0) — M centered at xo and
work in B (0) ¢ RY, for some small 6 > 0.

Notation We set

0" = max Y )" 1°gul(¥(2),

2B O0) Gk aom1
where a denotes a multiindex. We write |dg| = |9t gl for short.

The following proposition gives the expansion for the Riemannian metric g
in Fermi coordinates:

Proposition 2.1. Forz = (21, ..., 2,) € B{(0),

g 1.
glj(l]l)(Z)) = 61']' + Zhij(X())Zn + gRikjl(xO)ZkZl + Zhij;lg(xo)znzk
+ (Ryinj + Bhichij)(x0)z, + O(10°gllz).
Proof. This is proved as in Lemma 2.2 of [36]. ]

The existence of conformal Fermi coordinates and some of its consequences
are stated as follows:



Proposition 2.2. For any given integer N > 1, there is a metric g, conformal to g,
such that in -Fermi coordinates 1 : B} (0) — M centered at xo, we have

(detQ)(@() = 1+ O(=I).

Moreover, § can be written as § = fg, where f is a positive function with f(xg) = 1
and %(xo) =0fork=1,..,n—1. In this metric we also have

(i) Rij(xo) = Ryj;x(x0) = 0;
(1) Run(x0) + (hij)*(x0) = 0;
(iii) h(P(z)) = O(|z|N), where N can be taken arbitrarily large.

Proof. The first part is Proposition 3.1 of [36]. Items (i) and (ii) are proved as in
Proposition 3.2 of the same paper. Item (iii) follows from the fact that

= oo =
hg 2(7’1 _ 1)g gl]/n 2(” _ 1) (log det g),n .

2.4 Conformal scalar and mean curvature equations

In this section we will introduce the partial differential equation we will work
with in the next sections. We will also discuss some of its properties related to
conformal deformation of metrics.

Let u be a positive smooth solution to

Leu =0, inM, 2.9)
Bou+ (n—2)f "u’ =0, ondM, '
where 1 = 55 —p, 1+ ¢ < p < ;15 for some fixed o > 0 and f is a positive

function.

Notation We say that u € M, if u is a positive smooth solution to the equations
(2.8).

The equations (2.8) have an important scaling invariance property. We fix
xo € M and let 6 > 0 be small. We consider Fermi coordinates ¢ : B} (0) — M
centered at xg. Given s > 0 we define the renormalized function

o(y) = sMu(y(sy)), fory e BL,(0).
Then

Leo =0, inB?_,(0),
R S
Bgo+(m—2)f"" =0, ond'B;_(0),



where f(y) = f(i(sy)) and the coefficients of the metric § in Fermi coordinates

are given by $u(y) = gu((sy)).

The reason to work with the equations (2.8) instead of the equations (1.2)
is that the first one has an important conformal invariance property. Suppose

g= (i g is a metric conformal to g. It follows from the properties (2.6) and
(2.7) that, if u is a solution to the equations (2.8), then {'u satisfies

Le(C'u) =0, inM,
Bo(C'u) + (n = 2)(Cf)™(C'u)? =0, onoM,

which is again equations of the same type.

Notation Let O C M be a domain in a Riemannian manifold (M, g). Let {g;} be
a sequence of metrics on Q. We say that u; € M; if u; > 0 satisfies

Lgiui = 0, in Q,
o 2.9)
Bg‘.u,'+(n—2)fi uw;' =0, onQNdM,
where 7; = ;%5 —p;and 1 + Yy < p; < ;5 for some fixed yo > 0.

In many parts of this article we will work with sequences {u; € M;}2,. In
this case, we assume that f; — f in the C; topology, for some positive function
f,and that g; — go in fche C?OC topology, for some metric g.

By the conformal invariance stated above, we are allowed to replace the

4
metric g; by (/¢ as long as we have control of the conformal factors ;. In

this case, we replace the sequence {u;} by {Ci‘lui}. In particular, we can use
conformal Fermi coordinates centered at some point x; € IM.

3 A Pohozaev-type identity

In this section we prove the Pohozaev-type identity we will use in the subse-
quent blow-up analysis.
Recall that we have denoted B = B} (0) C R for short (see Section 2.1).

Proposition 3.1. Let u be a solution to

_2 _ .
Agu — hRgu =0, in Bg ,
Ot — “2hu + Kf"uf =0, ondB,

where K is a constant and g is a metric on B. Let 0 <r < 6. We set

-2 9 2
n u r )dar_‘_Lf Kfur*ds, .
p+1Jows

P(u,r) = ——u— — =|Vul?
(u, 1) fam;( > u&r 2| ul*+r

Ju

or

10



Then
P(u,r) = —f (z”&au + n—_zu)Ag(u)dz + n-2 f (Zké?ku + n- zu) houdz
B: 2 2 B 2

T n-1 n-2
- K@Eorf) ftub+ldz + ( - ) f Kf"u*ldz,
p+1LB:r ff p+1 2 B} f

where Ag = Ag — A — 4(’1”—‘_21)Rg. Here, A stands for the Euclidean Laplacian and V for

the Euclidean gradient.

Proof. Observe that, for each a = 1, ..., n fixed, integrating by parts we have

f (20 9y11)d, 0, udz + f 6“b(8bu)(3uu)dz+% f 220, (3,1)%dz
Bf By B}
-1 f (2 Ap11) (2 Dutt)do, — f (2 0010) (@at0) 5" =
r JoBr JI'BF

Summing ina =1, ...,n we obtain

(zPu)Audz + |Vul*dz + 1 Z f zbab((?au)zdz
B 2 & Jp:

=r
9B}

On the other hand, integrating by parts, we have

1 n r
5 Z fB T 290’z =~ Z fB @uw’dz+ 3 Z fa L (Da11)*do,
- %Z fa N 28] (Dpu)dz

= [VulPdz + z \Vul*do, (3.2)
2 Jps 2 Jopy

B}

oul?

» do, — (o) (@,u)ydz. (3.1)

By

11



and

f (Z*oku)(d,u)dz = — f (Z Ohu)(Kf P —
B} J'B;

n-2 (ZOgu)hgudz
By

n—1 1
= Kf ™ ubtldz + —f KE o fyurdz
P+1faf3,+ / p+1Jop: ™)
r
- Kf"uPlds
p+1 fa(arsr) / '

"2 uheudz. (3.3)
B}

n

-2
S hg)dz

+
Substituting equalities (3.2) and (3.3) in (3.1) we obtain

2
@Iy Audz — L= | Vupdz + L f Vuldo,
2 B:r 2 &*B:f

=7
I*B;

By

2 n—1

ALl R f Kfur*ldz
p+1Jyp:

ar

1 r
-— KE o furtldz + — f Kf"uP*ds,
p+1Jos ! p+1Jaas /
-2
I (FDu)hgudz . (3.4)
2 Jopr
Using
f \Vuldz = — f uAudz + f ua—uda, + f (Kf~ub*! - Ehguz)azz
By Bt ogr OF o'B} 2
and Au = —Ag(u) in equality (3.4) we get the result. O

4 Isolated and isolated simple blow-up points

In this section we will discuss the notions of isolated and isolated simple blow-
up points and prove some of their properties. These notions are slight modifi-
cations of the ones used by Felli and Ould Ahmedou in [23] and [24] and are
inspired by similar definitions in the case of manifolds without boundary.

Definition 4.1. Let O C¢ M be a domain in a Riemannian manifold (M, g). We
say that xo € QN dM is a blow-up point for the sequence {u; € M2, if there is
a sequence {x;} C QN JIM such that

12



(1) x;i = xo;

(2) ui(x;) — oo;

(3) x; is a local maximum of u;|js.
Briefly we say that x; — x¢ is a blow-up point for {u;}. The sequence {u;} is
called a blow-up sequence.

Convention If x; — xg is a blow-up point, we use g;-Fermi coordinates
Vi :B;(0) = M
centered at x; (see Section 2.3) and work in B} (0) ¢ R, for some small 6 > 0.

Notation If x; — x¢ is a blow-up point we set M; = u;(x;), €; = M;(p D),

4.1 Isolated blow-up points
We define the notion of an isolated blow-up point as follows:

Definition 4.2. We say that a blow-up point x; — xg is an isolated blow-up point
for {u;} if there exist 6, C > 0 such that

1

ui(x) < Cdg,(x,x;) %, forallx € IM\{xi}, dg,(x,x;) <0.
(We recall that §; denotes the induced metric on the boundary.)

Remark 4.1. Since Fermi coordinates are normal on the boundary, the above
definition is equivalent to

ui(i(2)) < Clz| 77, forall z € &'Bf (0)\[0}. 4.1)

Remark 4.2. Note that the definition of an isolated blow-up point is invariant
under renormalization, which was descrided in Section 2.4. This follows from

the fact that if v;(y) = 57T ui(Yi(sy)), then

I __1
ui(Yi(z)) < Clz| "7 &= vi(y) <Clyl "7,

where z = sy.

The first result concerning isolated blow-up points states that the inequality
(4.1) also holds for points z € B (0)\{0}.

Lemma 4.1. Let x; — xo be an isolated blow-up point. Then {u;} satisfies
wi(Yi(z)) < ClI ™7, forallz € B ()\{0} .

Proof. Let0 < s < § and set v;(y) = g7t u;(1i(sy)) for |y| < 3. Then v; satisfies
{Lgivi -0, in B (0),

(Bg, + (1= 2)f 0" o, =0, ond'B(0),

13



where ($)u(y) = (§)u(Pi(sy)) and fi(y) = fi(i(sy)). By the scaling invariance
(Remark 4.2) v; is uniformly bounded in compact subsets of &’B;(O)\{O}. Hence,
Lemma 9.3 and interior Harnack estimates give

max ©v;<C min v;. (4.2)
B£(0)\B},(0) B} (0)\B;,,(0)
The result now follows from the inequality (4.2). ]

A corollary of the proof of Lemma 4.1 is the following Harnack-type in-
equality:

Lemma 4.2. Let x; — xq be an isolated blow-up point and 6 as in Definition 4.2. Then
there exists C > 0 such that for any 0 < s < § we have

max Wioy;)<C min (u;o01;).
BLO\B,O) yi BL(O\B!,(0) v

The next proposition says that, in the case of an isolated blow-up point,
the sequence {u;}, when renormalized, converges to the standard Euclidean
solution U (see Section 2.2).

Proposition 4.1. Let x; — xq be an isolated blow-up point. We set
oi(y) = M; (i o p)M; " Vy), fory e B, (0).
Then given R; — oo and B; — 0, after choosing subsequences, we have

(a) lv; — Ules; o) < Pis
(0) oo oy = 0;
(c) im0 pi = 715,
The proof of Proposition 4.1 is analogous to Lemma 2.6 of [23] or Proposition

4.3 of [35]. It uses the fact that, by the Liouville-type theorems of [28] and [33],
every non-negative solution to

{Av =0, inR", w3

dyv+ (-2 =0, ondR%,

for 1 < pg < ;75, is either identically zero or is of the form (2.2), in which case
Po = 35

Remark 4.3. Let x; — xp and consider a conformal change Ci”%2 gi of the metrics
gi (see the last paragraph of Section 2.4). Suppose that the conformal factors
Ci > 0 are uniformly bounded (above and below) with C;(x;) = 1 and z—i(x,-) =0
fork=1,..,n—1. Then, once we have proved Proposition 4.1, it is not difficult
to see that x; — x is an isolated blow-up point for {u;} if and only it is for {Ci’1 u;}.
This is the case when we use conformal Fermi coordinates (see Proposition 2.2)
centered at x;.
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The following lemma will be used later when we consider the set of blow-up
points.

Lemma 4.3. Given R, > 0, there exists Co = Co(R, f) > 0 such that if u € M, and
S € dM is a compact set, we have the following:

If max,eanns (u(x)dg(x, S)P%l) > Cy, then -5 —p < B and there exists xo € IM\S,
local maximum of u, such that

Ju(x0) (@) = U@l '2)| s, ) < B (4.4)
0
where ry = Ru(xo)~%~Y. Here, we are using Fermi coordinates 1 : B3, (0) > M
centered at xo € OM. If O is the empty set, we define dg(x, 0) = 1.

Proof. Suppose by contradiction there exist R, 8 > 0 satisfying the following:
for all Cy > 0, there exist p € (1, n—V_‘Z], u € M, and a compact set S C JM such

that )
dy(x,8)71) >
max (u()dg(x, $)77) 2 Co

holds and either p < ;5 — B or no such point x, exists. Hence, we can suppose

that there are sequences p; € (1, ﬁ], u; € My, and

1
w;i(x}) = xergl}&\)(swi(x) — oo, where w;(x) = u;j(x)dg(x, S;)" " .

Here, x| € JdM and S; is a compact subset of JM. We assume that p; — po, for
some pg € (1, nnTZ]’ and x; — x| for some X € JOM. We set N; = u;(x;). Observe
that Nl' — 00,

We use Fermi coordinates ; : By (0) — M centered at x] and set

vi(y) = Ni‘l(u,- o le)(Ni_(p[_l)y) , forye ngl 0).
It follows from the discussion in Section 2.4 that v; satisfies
Lsvi=0, in B;Nfi‘l (0),
Bgvi+(n—2)f, "0 =0, on IB’ .0,
where fi(y) = f(gbi(N;(p iil)y)) and §; stands for the metric with coefficients
(@)ua(y) = gu@iN; " y).

Claim v; < C in compact subsets of R7}.

Let z € 9'B;(0). Since wi(yi(z)) < w;(x}), we have

dg(Si, x}) — dg(x}, Yi(2)) _ 35S ¥i@) _
dg(sl', x:) - dg(S,, x; -

(Naui) )"
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On the other hand,

dg(si’ xll) - dg(xl,'/ 1Pl(z)) —1 Ni_(pi_l)|y|

ot 1 —w)Y Py =1 =041

where we have set y = N/ 12, This proves that v; < C in compact subsets of
JdR". Now the Claim follows from Lemma 9.3.

Hence, we can suppose that v; — v in C} _(R) for some v > 0 satisfying

Av =0, in R},
d,v+ (n— 2)f(x6)”°‘ﬁ v =0, ondR"

and v(0) = 1. It follows from the Liouville-type theorem of [28] that py = ;5.

Hence, v satisfies the equations (4.3) and, by the results in [33], it is of the

form (2.2). Hence, we can find y(; € d’B* , ,(0) local maxima of v;, such that
RN

Y@ — (z1,...,z4-1,0) € IR'.. Then u; satisfies the estimate (4.4), for i large, with

%0 = UiN; PV yp). Since NP 'dg (x!, S;) = wi(x))P ! — oo, we see that xg ¢ S;

for i large. This is a contradiction. a

Once we have proved Lemma 4.3, the proof of the following proposition is
analogous to Proposition 5.1 of [34] (see also Lemma 3.1 of [42] or Proposition
1.1 of [26]):

Proposition 4.2. Given small f > 0 and large R > 0 there exist constants Cy, C1 > 0,
depending only on B, R and (M", g), such that if u € M, and maxyyu > Co, then
5 —p < Band thereexist x1, ..., xN € dM, N = N(u) > 1, local maxima of u, such that:

(1) If rj = Ru(x)) @) for j = 1,..,N, then {Dy(x;) < M}, is a disjoint col-
lection. (We recall that D;,(x;) is the boundary metric ball (see Section 2.1).)
(2) Foreach j=1,..,N, |u(x;)'u(;(2)) - U(u(x,»)v-lzﬂcz(%i o <P

where we are using Fermi coordinates 1); : B, (0) — M centered at x;.
]

(3) We have

1

u(x)dg(x, {x1, ..., xn})7* < Cy, forallx € oM,

u(x))dg(xj, x)71 > Co, foranyj#k, jk=1,.,N.

4.2 Isolated simple blow-up points

Let us introduce the notion of an isolated simple blow-up point. Let x; — xg be
an isolated blow-up point for {u;}. Recall that we are using Fermi coordinates
Y; : Bf(0) = M centered at x;. We set

2
7o) — ) N
ailr) Op-11"1 fa+3r(0)(ul ° vodor
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and w;(r) = rviljﬁi(r), for0 <r <.
Note that the definition of w; is invariant under renormalization, which was
1
descrided in Section 2.4. More precisely, if v;(y) = s#u;(1i(sy)), then

1 1
rritoi(r) = (sr)rii;(sr) .

Definition 4.3. An isolated blow-up pointx; — xj for {u;} is simple if there exists
0 > 0 such that w; has exactly one critical point in the interval (0, 6).

Remark4.4. Letx; — xo be anisolated blow-up pointand R; — co. Using Propo-
1

sition 4.1 it is not difficult to see that, choosing a subsequence, r — r7ii;(r) has

exactly one critical point in the interval (0, r;), where r; = RiMi_(p = 5 0. More-

over, its derivative is negative right after the critical point. Hence, if x; — xo is

isolated simple then there exists 6 > 0 such that wi(r) < 0 for all r € [r;, 6).

Notation In this section we define

oiy) = M; (i o p)(M; " Vy),  fory e B!, (0).
The next proposition is an important property of isolated simple blow-up
points.

Proposition 4.3. Let x; — xg be an isolated simple blow-up point for {u;}. Then there
exist C,6 > 0 such that

(@) Mius(§1(z)) < ClzP™"  for all z € B (0)\(0);

(b) Miu;i(i(z)) = CGi(z) forallz € B; (0)\B;;(0), where G; is the Green's function
so that:

Lg,Gi =0, in BS(0)\{0},
G, =0, on d*B}(0),
By, Gi =0, ond'B;(0)\{0}

and |z|"2G;(z) — 1, as |z| — 0. Here, r; is defined as in Remark 4.4.
For the proof of Proposition 4.3 we will use the following lemma:

Lemma 4.4. Let x; — xo be an isolated simple blow-up point for {u;} and let p be
small. Then there exist C,0 > 0 such that

MY |Vou(1i(z)) < ClaP* ",
for z € B{(0)\{0} and k = 0,1,2. Here, A; = (pi — 1)(n -2 —p) — 1.
The proof of Lemma 4.4 is analogous to Lemma 2.7 of [23]. It uses the

following maximum principle, which is Lemma A.2 of [26]:
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Lemma 4.5. Let (N, g) be a Riemannian manifold and Q0 C N be a connected open set
with piecewise smooth boundary dQ =TUX. Let h € L®(Q) and 0 € L®(X). Suppose
that u € C*(Q) N CYQ), u > 0 in Q, satisfies

Agu+hu<0, inQ,
M 46u<0, onk

v
and v € C(Q) N CH(Q) satisfies
Ago+hv<0, inQ,

%+O‘U§O, onxy,
v=>0, onT,

where v denotes inward unit normal to X. Then v > 0in Q.

Remark 4.5. Suppose that x; — xg is an isolated simple blow-up point for {u;}.
Then, as a consequence of the estimates of Lemma 4.4 and Proposition 4.1, we
see that there exists C > 0 such that

IV¥oil(y) < CMPP (1 + >
forany y € Bngfl (0)and k=0,1,2.
Now we are going to estimate 7; = .5 — p;.

Proposition 4.4. Let x; — xo be an isolated simple blow-up point for {u;} and let
p > 0 be small. Then there exists C > 0 such that

1-2p+0;(1)
Ce. , orn >4,
T = { f (4.5)

C€3—2P+0f(1) 10g(€i_1)’ f01’ n=3.

(Recall that we have set €; = Mi_(p  in the beginning of Section 4.)

Proof. Let x; — xo be an isolated simple blow-up point for the sequence {u;}. In
order to simplify our notations, we will omit the simbol ¢; in the rest of this
proof. Hence, points ¢i(z) € M, forz € B; , = B} _,(0), will be denoted simply
by z. In particular, x; = 1;(0) will be denoted by 0 and u; o Vi by u;.

We write the Pohozaev identity of Proposition 3.1 as

Ti
1 Qi(uj, 1), (4.6)

P(ui/ 7’) = Fi(uir 1’) + Fi(ui/ 7’) + pi

for r < 6, where
Fi(u,r) = = [, (2" 0pu + 2u)(Lg, — Audz,

Fi(u,r) = 552 L,B:(Zhabu + 221 hgu dz,

Q) = O [ futdz - (n-2) [, (20 f)f " iz

18



It follows from Proposition 4.1 that we can choose a subsequence such that

i+1
f ul'™ >¢>0,
IB}

where r; = R;e; — 0 and R; — 0. Hence, for ¥ > 0 small, Q;(u;,7) > ¢ > 0.
Using the estimate of Lemma 4.4 we obtain

24

Pi(u;,7) < Ce]" = Ce] 270, A7)

Changing variables,

_ n—2 --%4+n-1 _ n-—2 _ N
Fi(ui,r) = 56 it L (yb&,vi + Tvi)hgi(eiy)v,-(y)dy.
/B+7

Observe that —’ﬁ +1n—2=—(n-2);% = 0i(1). By Remark 4.5,

Fi(u;,r) = €, 70 fa O((1 + 17> ™O(( + |71)>™)dy
IB+71
S _celm2ero) | 1, forn >4, 48)
- log(e;!), forn=3. ’

Similarly,

-2 4n-2 n—-2
Fi(ui, r) = —€; Pt f (ybabv,' + TU,’)(Lgi - A)Z)idy
B:sfl

= ¢, ol f O((1 + [y)* ™O(elyO((1 + |y ™)dy
B* |

S _Celm2ro) 1, forn >4,

B i log(e;!), forn =3,

where (3)u(y) = (g)u(eiy). This, together with the identities (4.6), (4.7), (4.8)
and the fact that Q;(u;, ) > c > 0, gives the result. ]

Now, we are able to prove Proposition 4.3.

Proposition 4.3. We will first need the following two claims.

Claim 1 Given a small o > 0, there exists C > 0 such that

f wi(Yi(2))P'dz < CM; .
9B}
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If follows from Proposition 4.1 that we can choose a subsequence such that

f W (pi(2)dz = M; O f v(fP'dy < CM; .
+ 0

9By, ,BEI

Here, r; = RiMi_(pi_l) — 0, R; = oo and we used Proposition 4.4 in the last
inequality. On the other hand, by Lemma 4.4,

f ufl(%(z))di < CMi_/\’pi |Z—.|(2fn+p)p,-dz
TENTB IB\J'B},

< CM P RM; Py enppnt < o (1M1

This proves Claim 1.

Claim 2 There exists 01 > 0 such that for all 0 < ¢ < g7 there exists C = C(o) such
that

ui(Qi(z))ui(x;) < C
for any z € d*B}(0).

It is not difficult to see that if 01 > 0 is small we can find a conformal metric,
still denoted by g;, such that Rg, = 0 in B (0) and hg, = 0 on d'B;, (0).

1

We fix ¢ € (0, 01) and choose any x, € ;(d*BZ(0)).
If we set w; = u;(x,)""u; o Y, then w; satisfies

(4.9)

Agqw;i =0, in Bf(0),
Inwi + (n — 2ui(x, P fw! =0, ond’BE(0).

By the Harnack inequality of Lemma 9.3, for each § > 0 there exists Cg > 0 such
that
C;l <wi(z) < Cg

if |z| > B. Observe that Lemma 4.4 implies that ui(x,)P1 = 0asi — co. Hence,

we can suppose that w; — w in CiC(B:;(O)\{O}) for some w > 0 satisfying

{Agow =0, inB(0)\{0}, (4.10)

dyw =0, ondB:(0)\{0}.
Here, g9 = lim;_, gi. It follows from elliptic linear theory that
w(z) = aG(z) + b(z) forz e B (0)\{0},

where a > 0. Here, G is the Green’s function so that

Ay, G =0, in B} (0)\{0},
G=0, on d*B}(0),
2,G =0, on d'B}(0)\{0},

limy 0 |z["%G(z) = 1,
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and b satisfies

Ag,b =0, inBZ(0),
dyb=0, ondB0).

We will prove that a > 0. We set r = [z|. Since the blow-up is isolated
simple, 7 rﬂx‘%l il;(r) is decreasing in (r;, 0) (see Remark 4.4). Taking the limit
as i — oo, we conclude that r — 1'% w(r) is decreasing in (0, o). Hence, w has a

non-removable singularity at the origin. Therefore a > 0.
Observe that there exists ¢; > 0 such that

Jw
. 5 -da, > ci. (4.11)

Integrating by parts the first equation of (4.9) we obtain

Ozf Agowidz=f %dag—f dnwidz
Bf I*BF ar J'BY

= f (&_w + oi(l)) dog + (n = 2)ui(x,) ™" f fi_T"(u,- o Y;)idz
a+p \ O IB}
< —% + Cui(e) ui(x) 7Y, 4.12)

where we used the estimate (4.11) and Claim 1 in the last inequality. This proves
Claim 2.

Now we are going to prove the item (a). Suppose by contradiction it does
not hold. Then passing to a subsequence we can choose {x/} ¢ M such that
dg,(x,x;) — 0 and

()i ()" — oo, (4.13)
where z/ = ¢71(x)).

By Proposition 4.1 we can assume that Riui(x;)~ @1 < lz]| < 6/2 where
R; — co. We set vi(y) = |zlf|m%lui(¢i(|zlf| y)) fory € B:;lz{‘,] (0). Hence, the origin is

an isolated simple blow-up point for {v;}. Thus, by Claim 2, there exists C > 0
such that ,
|z 7T wi(xi)ui(x;) = vi(0)vi(y;) < C
where y/ = |2/|"'z]. This contradicts the hypothesis (4.13).
Item (b) is just an application of Lemma 4.5. m]

Remark 4.6. Suppose that x; — xg is an isolated simple blow-up point for {u;}.
Then, as a consequence of Propositions 4.1 and 4.3, we see that v; < CU in
B* _.(0).

SsMP!
1
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5 The linearized equation

In this section we will be interested in solutions of a certain type of linear
problem. These solutions will be used in the blow-up estimates of the next
section.

Convention In this section, we will always use the conformal equivalence
between R’} U {oo} and B" realized by the inversion F (see Section 2.2).

Let 7 — 0 < x(r) £ 1 be a smooth cut-off function such that x(r) = 1 for
0 <r<dand x(r) = 0 for r > 26. We set xe(r) = x(er). Thus, x.(r) = 1 for
0<r<de!and y.(r) =0 forr > 25e7".
Proposition 5.1. Let {h](("l)};?jl, k,1=1,..,n-1,and {e;};°, be sequences. Suppose that
tr(h](:l)) =0, foreachi,and 0 < e; = 0, as i — oco. Then, for each i, there is a solution

@i to

APi(y) = =22 (Y)ediy ya @A), fory € R, 51)
I @i(y) + nU=2di(y) =0, for i € IR,
where A stands for the Euclidean Laplacian, satisfying
IV'¢il(y) < CedlhI(L + [y)> "™, foryeRL, r=0,10r2, (5.2)
;i ;i
i(0)==—0)=..= 0)=0 5.3
0i0) = 5,-0) = . = 520 (53)
and
[ um@omar-o. 5.4
IR

Proof. We set

FEW) = =2xe(yDeh?) (@) (y)U = (y) fory € R

Observe that f; can be extended as a smooth function to B". According to
Lemma 2.2, the coordinate functions z1, ..., z,, taken with center (0, ...,0,-1/2),
satisfy the equations (2.5) with A = 2 and we also have zj o F = =LU"J;, for
j=1,.,n—1,and z, o F = L5U"'],. Hence,

2 i .
fizjdz = — f Xe(lyDeh) v, (@)@ Udy =0, j=1,.,n-1,
Bn R"

and
-2 (@) n—2 b
fizndz = — Xe(IyDeihy, Yn(9kdiU) (—U +y abu) dy=0.
Bn 7’1 - 2 ]R)-}- 2
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Here, we used the fact that

7’2
fs Pe= ke n—3) Jy " 5-3)

for every homogeneous polynomial p; of degree k. Thus, by elliptic linear
theory, it is possible to find a smooth solution ¢, to

{A@i =fi, in B",

y 5.6
%4420, =0, ondB", (5.6)

LZ(B”)—ortogonal to the coordinate functions zi, ...,z,. We recall that 7 is the
inward unit normal vector to dB".
Let G be the Green’s function on B" so that

n
AG(z,w) = ay Zzawa , forz+w,

a=1

-2

LBy for

subject to the boundary condition (% + 2) G =0ondB". Here, a,, = Iz,
anya =1,..,n,is a constant. By the Green’s formula, G satisfies

(P(Z) = gZ:‘ jf;n AnZgWy (P(w) dw — an G(Z, W)A(p(W) dw

—j;” G(z,w)((;—(f] +2(p)(w)da(w)

for any ¢ € C*(B"). In particular, ¢, satisfies

Pe(z) = — L ) G(z, w) fi(w)dw .
Therefore,
|pe,(2)] < Ceilhl| fB - w?w + (0, ..., 0, 1) *dw.
It follows from the result in [25], p.150 (see also [5], p.108) that
e, (2) < Ceihllz + (0, ..., 0, 1) < Ceh(F )| +1).

Hence, ¢, = U(¢, o F) satisfies the estimate (5.2). By the properties (2.6) and
(2.7) of the operators L and By, ¢, is a solution to the equations (5.1).

. . 9. '
NOW’ . Choose CO@fflClents Cj’i = ﬁ ;;]‘l (0)/ ] = 1,...,1’1 - 1/ and Cn,i =
—:25¢¢,(0) and define
n
(Pi = ¢Ei + Z Cu,i]g .
a=1
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Then ¢); is also a solution to the equations (5.1) and satisfies the identity (5.3).
Since ¢, satisfies the estimate (5.2), we see that |c,;| < Clh,(:l)lei fora=1,..,n.
Hence, ¢; also satisfies the estimate (5.2).

Let us prove the identity (5.4). Observe that ¢; = (U™ '¢;) o F! also satisfies
the equations (5.6) and f; is L*(B")-ortogonal to the constant function 1. Hence,
integrating by parts the equations (5.6) we see that ¢; is L?(dB")-ortogonal to
the funcion 1. This is the identity (5.4). |

The following result is an important estimate that will be used in the subse-
quent local blow-up analysis.

Proposition 5.2. Let ¢;, h](("l) and e€; be as in Proposition 5.1 and suppose that n > 5.
Then ¢; satisfies

i

+
el

n—2 -
. (ybab(p,- + T(P,‘)E’ihl((ll)yn&k&lu dy
- f (4001 + 52U ) eyudidng dy = ~CoDIPEl 267
Bgeﬂ ©

Proof. We first recall that we have denoted Bge_,l = B;Eil (0) c R” for short (see
Section 2.1). Integrating by parts, 1 I

n—2 ;
_£+ (yb5b¢i+ Tqbi)(eih,((l)yn&k&lll)dy

el
i

Zf eih;ia)ynak‘PialUd]/+f eih,(c?yn]/bab&k(i)iBIUdy
B* B

serl el
1 1

n—

2 f ey dupdilidy - ChORe 22 (57)
B+

and
-2 ;
- fl;+ (yb&bu + nTU) (e,-h,(d)y,,&k&cpi)dy

me eih}({il)ynakual¢idy+f8+ eihia)ynyb8b8kU8l¢idy
ser1 el

n-—2

f ey, Udypidy — CI) e =252 (5.8)
B+

se1
1

Here, the terms C Ih,((?|2elf"262‘” come from estimating the integrals over *B;
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using the estimate (5.2). Another integration by parts gives

f e Yy (Ipdrp)Udy + f e Yy (DI )rpidy
B+

B+
o1 sel

>—(n+1) f el yudrpid Udy — IR Pei 265%™,
B+

el
1

This, together with the inequalities (5.7) and (5.8), gives

- fs; (ybﬁbgb,- + anbz) (€ih,(d)yn3k91ll)dy

el
i

n—2 i
- fB+ (ybabu+ TU) (e,vh}(d)ynakc?l(j)i)dy

el
1

> - fB el yudupioUdy - Cliy) P 267"

se1
1

The result now follows from the following Claim:
Claim — [, eh®y,depidUdy > —Clh¥)Per-252"

Integrating by parts and using the first equation of (5.1),

- fB el yuoupioUdy > fB il yudraildy — Cliy) ey 26>
el

el
i

1 )2 -2 <2-n
=3 j;; (A pidy — CIh) Per 267"

oe
i

It follows from the estimate (5.2) and the assumption over the dimension that
- f (Ap))pidy > — f (Ap)pidy — CIR) Per=2627".
B* R"
e *
Hence, in order to prove the Claim, we will show that
- f (Agpi))pidy >0 (5.9)
R!

We set ¢; = (U ¢;) o F1. Observe that, by the properties (2.6) and (2.7), ¢;
satisfies the equations (5.6) and we have

- [ @osoy=- [ @wdipz (5.10)
R? B
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Now, integrating by parts in B”, we obtain

_ DNz = T2 g 22 _
an(AB ¢i)pidz L’ [Voilz.dz ZLB” ¢;do, (5.11)

Using Lemma 2.2 we see that
o Jp IVPPAz
inf ——— =
G<Ct [, G20

where C; = {¢ € H(B"); faBn ¢do = 0}. On the other hand, the identity (5.4) is
equivalent to j{;B,, ¢ido = 0. Hence,

7

IVil3,dz — 2 f $?do > 0. (5.12)
B JBn

Now the inequality (5.9) follows from the equalities (5.10) and (5.11) and the
inequality (5.12). This proves the Claim. m|

6 Blow-up estimates

In this section we will give a pointwise estimate for a blow-up sequence {u;} ina
neighborhood of an isolated simple blow-up point. The arguments given here
are modifications of the ones given in [29] and [35] for the case of manifolds
without boundary.

In what follows, we will make use of the notations ¢; = Mi_(pi_l), introduced
in Section 4, 7; = ;%5 — p; and u; € M, introduced in Section 2.4.

Assumption In this section we assume that n > 5.

Let x; — xo be an isolated simple blow-up point for the sequence {u; €
M;}. We use conformal Fermi Eoordinates centered at x;. Thus we will work
with conformal metrics §; = Ci”Tz gi and sequences {il; = Ci‘lui} and {€;}, where
& = il;(x;,)" "~V = ¢;, since {;(x;) = 1. As observed in the Remark 4.3, x; — xg
is still an isolated blow-up point for the sequence {i;} and satisfies the same
estimates of Proposition 4.3 (since we have uniform control on the conformal
factors C; > 0, these estimates are preserved). Let ¢; : B, (0) — M denote the
gi-Fermi coordinates centered at x;.

In order to simplify our notations, we will omit the simbols ~ and ¥; in
the rest of this section. Thus, the metrics §; will be denoted by g; and points
Yi(z) € M, for z € B}, (0), will be denoted simply by z. In particular, x; = ¢;(0)
will be denoted by 0 and u; o 1; by u;.
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1
We set v;(y) = el.”"1 ui(e;y) fory € BY, | = B;’ - (0). We know that v; satisfies

blei—l S/

Lgv; =0, inBf |,
’ A e 6.1)
Bgvi+(n—2)f, " =0, on Q’B;Ei_l,

where fi(y) = fi(e;y) and §; is the metric with coefficients (3:)u(y) = (gi)u(€iy)-
Let ¢; be the solution to the linearized equation obtained in Proposition 5.1

with h]((ll) = hy(0), observing that the hypothesis tr(h](('l)) = 0 is satisfied due to

Proposition 2.2(iii). The main result of this section is the following:

Proposition 6.1. There exist C,0 > 0 such that
[0; = (U + $I(y) < C(Pgil + 198l (1 + Iy)* ™ + Cef > (1 + Iy ™,
IVo; = V(U + ¢)l(y) < C(Pgil +19gi)er (1 + y)*™ + Cel (A + 1y 2,
IVZ0; = VAU + ¢i)l(y) < C(10°gil + 19gi)eF (1 + [y + Cel (1 + Iy >,
for [yl < de;1. (See Section 2.3 for the notation |0*g;|.)
In order to prove Proposition 6.1 we will first prove some auxiliary results.
Lemma 6.1. There exist 6, C > 0 such that
o — U — $il(y) < Cmax{(19°gil + 10gi*)e7, €7, T3},
for [yl < 6€;.

Proof. We consider 6 < ¢’ to be chosen later and set

A= max [v; — U - ¢il(y) = lv; — U — Pil(yi),
lyl<de;?

for some |yi| < 6€;!. From Remark 4.6 we know that v;(y) < CU(y) for |y| < de; .
Hence, if there exists ¢ > 0 such that |y;| > cei’l, then

Ai = o — U - ¢il(y) < Clyi*™ < Cel™?

where we used the estimate (5.2) in the first inequality. This implies the stronger
inequality [o; — U — ¢il(y) < Ce/2, for |y| < b¢;'. Hence, we can suppose that
lyil < (561._1/2.

Suppose, by contradiction, the result is false. Then, choosing a subsequence
if necessary, we can suppose that

A7 (0%gil +10gi)er — 0, A'e!and Aj't; — 0. 6.2)
We define
wi(y) = AN —U—¢i)(y), for |yl < et
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By the equations (2.1) and (6.1), w; satisfies

Lgiw,' = Q,’ , in BY

Set’
Bgwi +biw; = Q;, ond'B!_,, )
where
po; S —(Ur )

bi==2)f," ey
Qi = —A7H {(Lg, - AU + §) + Ay,
Qi = -AH(n = 2)f (U + ¢ — (n - U = nUz; — 20 (U + ).

Observe that, for any funcion u,

(Lg, = Duy) = (& = 8V WAduy) + k) W)u(y)
n-2 dr/det g
— i ReWu) + ——&' W)u(y)

4n-1) Jdetg o

= (7 - ) (eiy)du(y) + €i(Dkg)(eiy)du(y)

- Jn—_—zne?fagi(e,-y)u(y) + 0l Iy o),

where N can be taken arbitrarily large since we are using conformal Fermi
coordinates. Hence, setting N = n — 3,

Qi(y) = —A71 (g = ) (eiy)di(U + di)(y) — A ei(kg)(eiy) (U + i) (y)

+ 421:21)A;1612Rg1(6i]/)(u +01)(y) — ATTAGi(Y) + O(A T3 ly" (1 + [y)' ™)
= O(A7(1P8il + 198iP)eX(L + [y)* ") + O(A el (1 + Iy) ™), (6.4)

where we have used the identities (5.1) and (5.2) and Proposition 2.1.
Observe that

(n=2)f (U + i) = (n = QU2 = U2ty
= (0 =2) (£ U+ = (U +¢i)72) + OU ¢7)
= (0 =2)f 7 (U + )" = (U +pi)72)
+(n = 2)(f; " = (U + P72 + OU = ¢).
Using

U2 = OE2[ha(O)P(1 + lyl)>™),

he,(U + ) = O(€21Pgil(1 + [y)>™),

£ (U + @iy = (U + i) ) = O(rilU + i) 72 log(U + ) = O(ti(1 + [y ™),
(7 = DU + $)™= = O(t;log(F)(U + ¢1)72) = O(zi(1 + [y) ™),
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where in the second line we used Proposition 2.2(iii), we obtain

Qi) = O(A;'eX(10gil + 19giP)(1 +[7)° ™) + O (AT w1 + 7)) . (65)

Moreover, .
bi(y) » nU=, inC?

loc

(RY), (6.6)
and

bi(y) < C(A +y)™2, forlyl < det. (6.7)

Since |w;| < |w;(y;)| = 1, we can use standard elliptic estimates to conclude
that w; —» w, in Clzo C(IR'}r), for some function w, choosing a subsequence if
necessary. From the identities (6.2), (6.4), (6.5) and (6.6), we see that w satisfies

(6.8)

Aw=0, inR",
8nw+nuﬁw =0, ondR.

Claim w(y) = O((1 + |y|)™"), for y € R™.

Choosing 0 > 0 sufficiently small, we can consider the Green’s function
Gi for the conformal Laplacian Lg, in B; _, subject to the boundary conditions
BsGi = 0 on B'Bgel,] and G; = 0 on 8+Bg€:1. Let 7; be the inward unit normal

vector to d*B; _,. Then the Green’s formula gives

0G;
wi(y) = - f Gi(&, y)Qi(&) dug, (&) + f T(é,y)wi(é)dogi(é)
Bt ¢?+B;71 Mi

ser1 e
1 1

[ ot (Beme -0) dog ). 69)

ser1
i

Using the estimates (6.4), (6.5) and (6.7) in the equation (6.9), we obtain

lwi(y)l < CA; (1078l + 10gil*)e? f &= yPT (A + &> dE
B+

el
1

+ C/\i1€73f & — P +1E)2dE + Cf €=y (1 +1E)2dE
B* B

J'B
de; 1 ser1

+CA;1(10%gil +19gi)e? fa €=y +1E)*"dE
/B+

se; 1
1

+ CAi‘lT,-f €=y (1 +1E)'"dE + CA el f
B+

B* 9*BY
Oe‘.’ bei
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for |yl < 561._1 /2. Here, we have used the fact that |G;(x,y)| < C|x — y|*™" for
lyl < 6e;'/2 and, since vi(y) < CU(y), lwi(y)l < CA7'e!2 for |y| = d¢;'. Hence,
using Lemma 9.2 and the assumption over the dimension,

lwi(y)l < C ((1 + Iyl)_1 + A;l(lazg,'l + |(9g,'|2)ei2 + Ai_le;’_3 + Ai‘lfci) (6.10)

for |y| < 6€;! /2. The Claim now follows from the hypothesis (6.2).
Now, we can use the claim above and Lemma 2.1 to see that
n—1
w(y) = c;d;iU(y) + cu (TU(y) +vy QbU(y)) ,
1

=

for some constantscy, ..., ¢,. It follows from the identity (5.3) that w;(0) = 31_;], 0) =

0 for j =1,..,n —1. Thus we conclude that c; = ... = ¢, = 0. Hence, w = 0.
Since w;(y;) = 1, we have |y;| — oo. This, together with the hypothesis (6.2),
contradicts the estimate (6.10), since |y;| < 561._1/2, and concludes the proof of
Lemma 6.1. O

Lemma 6.2. There exists C > 0 such that

T; < Cmax{(l&zgil + Iag,llz).s2 €3y,

ir€i
Proof. Suppose, by contradiction, the result is false. Then we can suppose that
(1078l + 19gi*)e}, 17l =0 (6.11)
and, by Lemma 6.1, there exists C > 0 such that
lo; — (U + ¢p)l(y) < Ct;, for |yl < St

We define
wi(y) = 7; o — (U + ¢))(y), for |yl < et
Then w; satisfies the equations (6.3) with

a ivfz_(u+¢l)ﬂl
bi= (=2, " =gy

Qi = -7 {(Lg, - AU + 1) + Adi),
Qi = -t = 2f U+ @i — (n = DU — nl ¢y — “F2hg (U + ).
Similarly to the estimates (6.4) and (6.5) we have
1Qi(y)| < Ct;1(1%gil + 19gi)e? (1 + [yI)* ™ + Cz; el (L + yl) 2, (6.12)
Q)| < Ct;1(10°gil + 19giP)eF (1 + [y)*> ™ + C(1 + [yl) ™ (6.13)

and b; satisfies the estimate (6.7).
By definition, w; < C and, by elliptic standard estimates, we can suppose
that w; — w in C; (R}) for some function w. By the identity (6.6) and the

30



estimates (6.12) and (6.13) we see that w satisfies the equations (6.8). Recall that
Jn(y) = ”7_2 U(y) + y*d,U(y) also satisfies the equations (6.8) (see Section 2.2).
Let 7n; be the inward unit normal vector to d*B; ,. Using the Green’s

formula, we have

f Ju - (Bgwi + biw;) dog, = f (Bg,(Ju) + biu) - widog, (6.14)
B* Bt

el se1
1 1

I )
+ ]n ;
ja‘m;_l (‘9771 N %%

+f+ (wiLgl(]n)_]nLg,(wi)) dvg, .

B
ver

It follows from the estimate (5.2) and the hypothesis (6.11) that

. In )
lim ]n . =0. (6.15)
, »B (9171 ni 92

i—00

Using the first equation of (6.3), the estimate (6.12) and again the hypothesis
(6.11), we have

i—o00 Bt

lim JuLg,(w;) dvg, = limf JnQidvug, = 0. (6.16)
1—0oo Jp+
-1 e

We will now derive a contradiction using the identity (6.14). First observe

that
n-2 1-r2

(1+m?)%’

Jn(y) = if y,=0. (6.17)

2 _ 2 2
Here, r° = y; + ... + y;,_;. Then

" n-2 1= .,
24y = ——Q0._ _ d
R JoUm2dy ) On 2](; (1+r2)nr r

n—2 ! -7 -2
2 %*( u+ﬂw a+ﬂw d)

where in the last equality we change variables s = r!. Now, observe that
tim 77 (£ W)U + ¢ (1) = (U +§)72 () = = (log flxo) +log Uy) U2 (y),
where f = lim;_,, f;. Similarly to the estimate (6.13), we have

Q) + (=207 (£ W)U + 6P () — (U + 67 ()|
< Ct; 1 (10%gil + 19giP)er (1 + ly)> ™.
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Therefore, since faJR" J.U= dig =0,

tim [ pQudog = (-2 [ Jlogurdy, (619
o o IR

where we have used the hypothesis (6.11).

Claim [, Ja log(U)U#= dg > 0.
By the identity (6.17),

PP R EEL -
am]n(logll)ll dy = 7 On-2 ATy log(1 + r*)r"=dr.

1

Changing variables s = r', we obtain

f UL e ARy = 2 f T Lo r ey <0
o A+ 8 ), T 8 ’

which concludes the proof of the Claim.
On the other hand, the equation (6.14) together with the equations (6.3),
(6.6), (6.8), (6.15) and (6.16) gives

1

lim JuQidag = lim w; + (Bg,(Ju) + biJn) dog, + lim f wiLg,(Jn) dvg,
1—00 BOE‘_l

1—00 a/B+ | 1—00 a!B+ +
bel,_ oel_

:f w-(a]"+nu»«22],,)dy+f wAJ,dy=0. (6.19)
IR WY R

n
+

Here, we have used the fact that, by the identity (6.18), this limit should be
independent of 6 > 0 arbitrarily small. By the previous claim, this contradicts
the identity (6.18). |

Proposition 6.2. There exist C,0 > 0 such that

lo; = (U + ¢)l(y) < Cmax{(19%gil +19gil*)e?, €/},
for [yl < 6€;.
Proof. This result follows from Lemmas 6.1 and 6.2. m]

Now, we are able to prove Proposition 6.1.

Proposition 6.1. We define

wi(y) = i — U+ P))(y), for |yl < €.

Then w; satisfies the equations (6.3) with
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pt; U —(Ui)
bi=(n-2)f, Tcp)
Qi = —{(Lg — AU + ) + Ay,
Qi =—{(n=2f U+ ¢ — (n - 2U"z — U s — “F2hg, (U + ).
Observe that b; satisfies the estimate (6.7). Similarly to the estimates (6.4), (6.5)
we have
1Qi(W)| < CeZ(10%gil + 19gi)(A + ly)*™" + Cel > (1 + [y) >, (6.20)

1Qi()| < Ce2(19%gil + 19gi*)(L + [yl)>™ + Cri(1 + |y))'™
< Ce2(10%gil + 19giP)(L + [y)*™ + Cel 3 (1 + |yl)' ™, (6.21)

where in the last inequality we used Lemma 6.2.
The Green’s formula gives

dG;
ww=- [ Gena@dg©+ [ e e ©

+LB+ Gi(ér}/)(b:‘(é)wi(é)—éi(é)) dog,(E). (6.22)

where 7; is the inward unit normal vector to 8+B;’€‘,1 and G; is the Green’s
function G; for the conformal Laplacian Ly, in B} . subject to the boundary
conditions By, G; = 0 on 8’B+ - and G; = 0on 8+B+ .- Using the estimates (6.7),
(6.20), (6.21) and Propos1t10n 6.2 in equation (6. 22) as in the proof of Lemma
6.1 we obtain

lwi(y)l < Cez(19%gil +19gi*) (A +1y) ™" + Cef (1 + Iy ™", (6.23)

for |y| < 6€;'/2. If n = 5, we have the result. If n > 6, we plug the inequality
(6.23) in the Green’s formula (6.22) until we reach

lwi(y)l < CeF (1% gil +19gi)(L + [y~ + Cef (L + [y) ™" -

The derivative estimates follow from elliptic theory, finishing the proof. O

7 Local blow-up analysis

In this section we will prove the vanishing of the trace-free second fundamental
formin an isolated simple blow-up pointifn > 7. We will also prove a Pohozaev
sign condition that will be used later in the study of the blow-up set. The basic
tool here will be the Pohozaev-type the identity of Section 3 and the blow-up
estimates of Section 6.
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7.1 Vanishing of the trace-free 2nd fundamental form

The vanishing of 7y, the trace-free 2nd fundamental form of the boundary, in
an isolated simple blow-up point is stated as follows:

Theorem 7.1. Suppose that n > 7. Let x; — xo be an isolated simple blow-up point
for the sequence {u; € M;}. Then

|7t (xi)I* < Ce; .
In particular, i(xo) = 0.

Proof. Let x; — xj be an isolated simple blow-up point for the sequence {u;}.
We use conformal Fermi cioordinates centered at x;. Thus we will work with
conformal metrics §; = Ci”Tz gi and sequences {ii; = Ci‘lui} and {é;}, where €; =
ii;(x;))~ P~ = ¢;, since (;(x;) = 1. As observed in the Remark 4.3, x; — xq is still
an isolated blow-up point for the sequence {ii;} and satisfy the same estimates
of Proposition 4.3 (since we have uniform control on the conformal factors
Ci > 0, these estimates are preserved). Let ¢; : B; (0) — M denote the §;-Fermi
coordinates centered at x;.

In order to simplify our notations, we will omit the simbols ~ and 1); in
the rest of this section. Thus, the metrics §; will be denoted by g; and points
Yi(z) € M, for z € B;(0), will be denoted simply by z. In particular, x; = 1;(0)
will be denoted by 0 and u; o 1; by u;.

1

We set v;(y) = 61’1’7’1 ui(eiy) for y € B;e__l = B;-l (0). We know that v; satisfies

Lsv; =0 in Bt _
8i 4 ot

Bgivi + (1’1 - Z)fi_—[ivfi =0, on 8/3;;1,

where ﬁ(y) = fi(eiy) and §; is the metric with coefficients ($/)u(y) = (3 (€iy).
Observe that, from Remark 4.6, we know that v; < CU in Bgeq.

i

By Proposition 2.2 (iii), we can suppose that #(0) = & x(0) = 0. In particular,
1111(0) = hy(0). Recall that we use indices 1 <k, ] <n—-1and 1 <a,b <n when
working with coordinates. In many parts of the proof we will use the identity
(5.5).

We write the Pohozaev identity of Proposition 3.1 as

T

P(u;,r) = Fi(ui, ¥) + Fy(ui, 1) + — Qi 1), (7.1)

pi+

where
Fi(u,r) = — fo (2"dpu + %52u)(Lg, — Audz,

Fi(u,r) = %52 L,B:(Zl’&bu + 221 hgu dz,

Qi(u,r) = &2 [ope [z = (n=2) [ Gaf)f ™ urtdz.
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We choose r > 0 small enough such that Q;(u;, ) > 0. For the term F; we
have,

- n—2 —gp+n-2 n—2
Fi(u;,r) = Tei 2 f (gbBbvi + 5 vi)eihgi(ei]])vi(y)dy,
a,B:cfl
Since h(0) = h(0) = 0 and the fact that, according to Proposition 4.4,
-2 4n-2 —(n-2)
pi-1 pi-1

lim; e €; = lim;_ 00 €; =1, we have

Fi(ui, ) = (1 +0,(1)) fa " O((1 + 71> MO 10 gill g0 + 171> ")dy

> —Ce}|0°gil fa (1 + |g)*~>"dy . (7.2)
’B;—l

1

We set U;(z) = ei_ U+ ql)i)(ei‘lz), where ¢; is as in Section 6. Using the facts
that ¢/ =1 and gf” = 0 in Fermi coordinates, we have

Fiwin) == [ @+ 2Ly - Mz
B}
= —e;m“l‘z f (1" dpv; + ; Zvi)(Lgi N
B:efl
. b n—2. .
Fi(Ui,r) =- | (U + Tui)(l‘gi - A)Udz

B

-2 +n-2 n—2
=—¢ "7 f (ybab(u + i) + T(U + qb,-)) (Lg, = AU + ¢y)dy .

B+

re;
i

It follows from Proposition 6.1 that

IFi(ui, 7) = Fi(U;, 1)) < Ce}(19gil + 107 gil)(19°gil + 19gil) f3+ (1 +1y)>*"dy

+ Ce?‘z(l&g,-l + |32gi|)f 1+ ly)"dy. (7.3)
Bt

We write
Fi(U;,r) = (1+0,() {Ri(U, U) + Ri(U, ) + Rilpi, L) + Rilpi, $)) , (7.4

where we have defined

n—2
Ri(wy, ws) = —f (v Ipwr + > w1)(Lg, — A)wady .
B+

re;1
i
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Using the identities (7.2), (7.3) and (7.4) and the fact that Q;(u;, ) > 0 in the
equality (7.1), we have

Pu;, ) 2 (1 + 0i(1)) {Ri(U, U) + Ri(U, ) + Ri(bi, U) + Ri(bi, 1)
— C(I9gill*gil + 19gi® +10°gil* +10°gil) €]
- C(ldgil + |82g,-|) e;’_Z log(ei—l) logr. (7.5)

By Proposition 2.1 and the estimate (5.2),

)
Ri(U, ¢:) + Ri(¢;, U) = — fB ) (yb9b¢z’ + nT‘Pf) (Lg, — A)Udy

re;1
i

_ f (ybahu + ”T_zu) (Lg, — A)pidy
B+

re1
i

-2
> —f (]/bab(Pi + 1 > <Pi) (2€ih(0)y o U)dy
B+

re;1
i

-2
- f (ybahu + nTU) (Ze,-hk,(O)ynakalcp,-)dy
B

+
re1
i

— C€?|hk1(0)|(|&2g1| + |ag1|2)f (1 + |y|)5—2ndy.
BJ"._1

Now we apply Proposition 5.2 to this inequality to ensure that
Ri(U, ) + Ri(ei, U) = —C (€a(O)1(6°gil + 10gil?) + ()Pl 2>") . (7.6)

On the other hand, it follows from the estimate (5.2) that

Ri(¢i, ¢i) = € Iha(0)P|9gi| fB oo+ ly)> ")y . 7.7)

We will now handle the term R;(U, U). Observe that
HU(Y) = —(n = 2) ((1+ yu)* +17P) " wi,

HoU(y) = (n=2) (A +ya +197) * (nyas — (@ + yu)? +157)0) ,
b n-2. n-2 2 =272 42
YU + —=U = === (14 ya)* +17P) (P = 1).
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Using this we obtain

(n —2)? f lyl> — 1
R, U =
1( ) 2 B:'e_l ((1 + yn)Z + |y|2)n+1

(88 = ) eww) (myiyr — (1 + ya)® + [72)0k) dy

_ (n- 2)2 f |y|2 -1 | -
2y @y ey SOSDCEAY

(-2 Iy -
8(n—1) Jp-, (1 +yn)?+ Iy

1 eizRg,-(Ei]/)d%

Using Proposition 2.1, we have

—2)2
Rz 7 E(Ar+ 4 + 4+ 4 - C(Pgi + i)l 2",

where
&—M}fmwﬂ%mﬁuf W@WMWM&MM
= [ o i e — 9 e)ou o) sy,
Lrﬁogxﬂm4ag4&§mwmmmwﬁw%,
= D 1) f =0 f 0 (szf(y:?m)” T { z‘zfsgfz Ry (eiy) dGS(y)} dsdyy.

Using Propositions 2.1 and 2.2 we see that

21

S
f (& = ™)) ykyi dos = 0,-r€? 3

-2l O)F + €]1°gilO(s, yu)I"*),

f(f 5K ery)out 40y = G262 - 12572 - 2 O)

+€10°gilO((s, y)I"™),

€ f @k ey dos = €1 gilO(s, y)I™),
si-2

1

& [ Reendo. = 0,26 - IO
-2
+e2(10%gil + 102 gillagiNOU(s, yl"™™),

where in the last equality we used the fact that, by the Gauss equation, R(0) +
|hq(0))> = 0. We set I = fo T +1),, ——=ds. Using Corollary 9.1 and the four equalities
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above, we obtain

0o 00 Zry2 -1
A= 2L OF [ @] [ s,
1= Op€r 115 (0)] fyn—oy"{ » (52+(yn+1)2)n+1s Sray

+ g f O((1 + )™y
R!

n
= a,,_zeizl .
n

1 00
O [ i+ 17y,
yn:O

+ 0nal - IO f A=+ )y,
e

+ &Pl f O((L + )™y,
R!

©0 © 24+ yr-1
Ay = —0,0€2 -2 Zf 2 f _5 YTl a2
2 = —0u-2€; - 2/ (0)| o yn{ = 1)2)ns ds ¢ dy,

+ e gl f O((1 + |yl ~>")dy
R}

= —0y_2€71 - 2|l (0)1* f Ya(yn + D' dy,
yn=0

— G2 - 2 (O) f P02 = 1)y + 1)y,
Yu=0

+ gl f O((1 + Iy)* ")y,
R}

As = EPgl f O((1 + ly)*2")dy
R!

1 0 o0 s+ -1
2. 2 n n—-2
C 3= O fyo {fo @+ DT ds} il

+ e,3(|83g,| + |&2g1”&gl|)f O((1 + |y|)5—2n)dy
R}

and

A4 = 0p-2€

= oual- O f (n + 1"y,
2(n ~ ) Yu=0

+ O'n_26121

SO f 1)y + 1)y
Yn

+ (0 + 1P g o) f O((1 + ly)*2")dy
R!

38



We set [ = fooo %dyn. It follows from the above computations that
Ri(U, U) > =Ce}(16°gil + 107 gilldgil) — Cer2r* (10 gil + 10gil*)

Z t 1(13 +h)+ (3 —L)—2(I3 + ) — 2(I3 — 12)} I (0)*

+on_26?1- {
2 1 1 2
+G”—2€i1 . 2(n — 3) (13 + 3 + 3 + 10) + m([g, +I, -1 — Io) |I’lk1(0)|

= o‘n_QG?I . (0(313 + 0(212 + 0(111 + CY()I()) . |hkl(0)|2
- Ce}(10°gil +10°gillagil) — Celr*~"(10°gil + 10gil*) (7.8)

5 3

_ 5
a2 = 365,53

-1y’

a1 = === — =1~ and

+ m-3)  2-D)

where a3 = -2 + _2(,11,3) * 21
1

— 1
A0 = 33) T =D
By Lemma 9.5, I, = %521, I; = @20 ang [y = @ADL, Then a

directy computation shows that

-6

n
aply + a1 + arlh + azl; = Is.

This, together with the inequality (7.8), implies that

1

Ri(U U) > oy2€ I- I3|hkl(0)|2 — C€?72727W(|&2gi| + |8gi|2)
- CeX(1°gil + 107 gillogil) - (7.9)
Hence, by the estimates (7.5), (7.6), (7.7) and (7.9),

n—=6

P(ui, 1) 2 (1 +0i(1))0s-2€; I Ll (0)F — Cej~ log(e; )r* ™ (19gil +10°gi)

— Ce}(10°gil + 19gill*gil + 10°gil* + 19gil°) - (7.10)
— 1
On the other hand, by Proposition 4.3 we can assume that €, "' u; converges

in Cij (B5(0)\{0}) for 6 > 0 small. Hence, for r > 0 small fixed, (—:1._”"'1 P(u;, 1)

converges as i — oo and

P(u;, r) < Cel 2. (7.11)
Then the estimate (7.10) together with the estimate (7.11) and our dimension

assumption gives [hq(0)> < Ce;. This proves Theorem 7.1, since under our
assumptions 1y (x;) = hy(0). O
7.2 Pohozaev sign condition

Now we will state and prove the Pohozaev sign condition.

We set
n-2 du r oul?
P, , = —_— ___V 2 - d i
(u,r) L+B:(0)( > uar 2| ul”+r 5 ) o,

where V stands for the Euclidean gradient.
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Theorem 7.2. Let x; — xg be a blow-up point for the sequence {u; € M;}. Assume
that 1ty(x0) # 0 and n > 7. We use Fermi coordinates y; : B{ (0) — M centered at x;.
For 0 < t; = 0, we set

wi(y) = Tf]ﬁ ui(Yi(tiy)), forye€ B;Iﬂ (0).

Suppose that the origin 0 is an isolated simple blow-up point for the sequence {w;} and
that w;(0)w; — G away from the origin, for some function G. Then

liminf P'(G,7) 2 0. (7.12)

Proof. We will use conformal Fermi coordinates centered at x;. Hence, we

4
actually work with a sequence {iI; = Ci‘lui} and metrics §; = Ci“ gi and we have

uniform control on the conformal factors (; > 0. Since 7; — 0 and (;(x;) = 1,
1

we see that @;(0)@;(y) — G(y), where @;(y) = Ti" “i;(Yi(tiy)). Thus, we will use
the same notations and conventions of the proof of Theorem 7.1, omiting the
symbols ~ and ;.

Observe that | (x;)| = %|7Tkz(x0)| for i large. We will restringe our analysis
to B;(0) ¢ By _,(0), for some 5 > 0 fixed. We set & = w;(0)"?~) — 0. Hence,

€= €1'Tl._1. Let ¢; be the metric on Bg(O) with coefficients ($:)u(y) = (g)r(tiy) and

denote by fiy; the corresponding 2nd fundamental form.
Similarly to the estimate (7.10), we have

6 A MI— ~— -n X x
I- I3l (0)* — C&/ 2 log(&;1)r* (19| + 9°&il)
— CE(P & + 108ill* il + 10 &I + 108 - (7.13)

on—
P(w;,r) > (1 + 01(1))0,4,2612

By the Young’s inequality,
&2 log(&THr* 0%l < 1017 log (&) 2" + &7
Hence, writing the inequality (7.13) in terms of the metric g; we have

n—=6
P(w;, 1) > (1 + 0i(1))oy—2€7

I LI () — Ce2(19gil* + 17gi)&r* log (& 1)~
— CeX(10%gil + 19gill0*gil + Tild*gil* + 19gil®) — C&2r?
> —-C&22,

for large i and r > 0 small fixed. Here, we used our dimension assumption and
the fact that |1(0)| = |rx(x;)] > %|71k1(xo)| > 0 in the last inequality. Hence,

__2
P'(G,r) =lim¢, " P(w;, 1) > =Cr?,

where we also used Proposition 4.4. This proves Theorem 7.2. ]
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8 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

The first proposition of this section states that every isolated blow-up point
xij — X is also simple, as long as 7y, the boundary trace-free 2nd fundamental
form, does not vanish at xg.

Proposition 8.1. Let x; — xo be a blow-up point for the sequence {u; € M;}. Assume
that 1j(x0) # 0 and n > 7. We use Fermi coordinates ¢; : B} (0) — M centered at x;.
If0<t; = 0o0rt; =1, weset

W) =7 ey, fory € B (0).

Suppose that the origin 0 is an isolated blow-up point for the sequence {w;}. Then it is
also isolated simple.

Proof. Suppose that the origin is an isolated blow-up point for {w;} but is not

simple. By definition, passing to a subsequence, there are at least two critical

points of 7 - r’“ili'lwi(r) in an interval (0, p;), pi — 0. Let r; = Riw;(0)"?~Y — 0

and R; — oo be as in Proposition 4.1. By Remark 4.4, there is exactly one critical

point in the interval (0, 7;). Let p; be the second critical point. Then p; > p; > 7;.
1

We set vi(z) = pl”i’1 wi(piz), for z € ng;lri‘l (0). Observe that, since p; > 7;,

0i(0P ! = pw; (0" > R; > .

Hence, v;(0) — oo.
By the scaling invariance (see Remark 4.2), the origin is an isolated blow-up

point for {v;}. By the definitions, r Pt 0;(r) has exactly one critical point in
the interval (0,1) and

1

T 5())le1 = 0. (8.1)

ar"
Hence, the origin is an isolated simple blow-up point for {v;}. It follows from
Proposition 4.3(a) that v;(0)v; is uniformly bounded in compact subsets of
R}\{0}. Using the equations (2.9), we can suppose that v;(0)v; converges in
C? (R"\{0}) for some function G satisfying

loc

AG=0, inR"\{0},
2,G=0, ondR"\{0}.

From elliptic linear theory we know that G(z) = alz|*"+b(z), where b is harmonic
on R’} with Neumann boundary condition on dR’;. It follows from Proposition
4.3(b) thata > 0. Since G > 0, lim infy,, b(z) > 0. By the Liouville’s theorem, b
is constant. By the equality (8.1),

d n—.
T h())=1 =0,
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which implies that b = a > 0. This contradicts the sign condition of Theorem
7.2. O

The next proposition ensures that the set {x1, ..., x5} € dM of points obtained
in Proposition 4.2 can only contain isolated blow-up points for any blow-up
sequence {u;} as long as 1y does not vanish at the blow-up point. Recall that
we denote by Ds(xo) the metric ball of M with radius 6 centered at xo € IM
and by g the boundary metric.

Proposition 8.2. Assume that n > 7. Let f > 0 be small, R > 0 be large and consider
Co = Co(B,R) and C1 = Cy1(B, R) as in Proposition 4.2. Let xo € IM be a point such
that my(xo) # 0. Then there exists 6 > 0 such that, for any u € M, satisfying
maxgp U = Co, the set Ds(xo) N {x1(1), ..., xn (1)} consists of at most one point. Here,
x1(u), ..., xn(u) € IM, with N = N(u), are the points obtained in Proposition 4.2.

Proof. Suppose theresultisnottrue. Then there exist sequencesp; € (% - B, ﬁ]
and u; € M, with maxyy u; > Co, such that after relabeling the indices we have
(1) x(l — X9, as i — oo. Here, we have set x(li)
N N (uy).
We define

= xl(u,-),..., N = = xn,(u;) and

= dg(x?,20)F S co.

Claim 1 There exist 1 < j; # k; < N; such that xﬁf),x}if) € Dy (x(li)),
_ dg(x () x(l)) < dg(x(') (l)),
M )y 1 M 0 0
dg (X", xy,) 2 0is forallx)”, x,, € Ds,.gl.(x].i ), l#£m.

Suppose that Claim 1 is false. Then there exist xg) (’) € D, 1(x(’)) Iy #+ mq,
with
ooy Lo 1

X)) < 500,

01,=dg(x 5 ’_Esi .

If we repeat this procedure, we obtain sequences xl(’_‘), xf,?) € Dg,.y; (xgiz1 ), I # m,,
with

1
(Z)) < 50r-1,i-

2

Since N; < oo, this procedure has to stop and we reach a contradiction. This
proves Claim 1.

a,l—d( , X

Using Claim 1 and a relabeling of indices, we find x(li), xg) — xgand s; — o

so that, if 0; = dg(x(l) xg)), we have s;0; — 0 and

1 .
g(x(l) 2y > 01/ for all x(') X0 e Dsigi(x(ll)), l£m.
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By the item (3) of Proposition 4.2 we have ui(x(li>), ui(xg)) — 0o
Now we use Fermi coordinates 1; : B (0) — M centered at xgl) and set

o) = o " uiilow), fory € B(0).

If xgi) € Dsigi(x(li)), we set yl(i) = ai‘ld)i‘l(x;i)) € d'B{(0). In particular, ygi) =

Then each ygi) is a local maximum of v; and by the item (3) of Proposition 4.2,
mlin{|y - yf)|m7-1}v,-(y) <C, forye 8’B;i(0).

(@)

(21)| = 1 and miny,, Iyg') — Yl 2= % + 0i(1).

Furthermore, |yg)| - |y§i) —y
(1)

Claim 2 vi(y\"), vi(y\

) — oo.

If vi(yg)) stays bounded but v,«(y(li)) — oo, then ygi) = (0 is an isolated blow-up
point for {v;} and hence is isolated simple. Since v; remains uniformly bounded
near y(zl), it follows from Lemma 9.3 and Proposition 4.3 that vi(y(zl)) — 0. This

is a contradiction since the item (1) of Proposition 4.2 implies that

0; 2 max{Ru,-(x(li))‘(”"_]),Rui(x(zi))‘(p“l)},

thus ‘ . :
oi(y)), i) = R7T. (82)
Of course the same argument holds if we exchange the roles of vi(ygi)) and
@
vi(y,)-

On the other hand, if both vi(y(li)) and vi(yg)) remain bounded, we can sup-
pose that any other vi(ygl)) also does, using the same argument above. Then,
after passing to a subsequence, v; — v in C} (R?}) for some v > 0 satisfying

Av =0, inRY,
v+ f(xo)P~ 2 v =0, ondR",

and dxv(0) = do(y2) =0 fork = 1,...,n — 1. Here pp = lim; o p; € [;75 — B, 551
and 1, = im0 y(zl). Note that [y»| = 1. Then the Liouville-type theorems of

[28] and [33] yield that v = 0, which contradicts the inequalities (8.2). This
proves Claim 2.

It follows from Claim 2 that 0 = y(li) and yg) are isolated blow-up points for
{v;}. Thus Proposition 8.1 implies that they are isolated simple.
Then, similarly to the proof of Proposition 8.1,

vy )oily) = G(y) = mlyP™ + azly — 2P + b(y)
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in Clzoc(]RZ\S). Here, S denotes the set of blow-up points for {v;}, b(y) is a
harmonic function on R}\(S\{0, y»}) with Neumann boundary condition and
a1, a; > 0. By the maximum principle, b(y) > 0. Hence, for |y| near 0,

G(y) = amly™" + b+ O(lyl)

for some constant b > 0. This contradicts the sign condition of Theorem 7.2 and
proves Proposition 8.2. O

Now we are able to prove Theorem 1.1.

Theorem 1.1. Suppose by contradiction that x; — x¢ is a blow-up point for
a sequence {u; € M,} and mu(xo) # 0. Let x1(;), ..., Xn@,)(1i) be the points
obtained in Proposition 4.2. By the item (3) of this Proposition, we must have
dg(xi, xx, (7)) — 0 for some 1 < k; < N(u;). If xp, = x3,(wy), it is not difficult
to see that u;(xy,) — oo. Thus xt, — x¢ is a blow-up point for {u;}. It follows
from Propositions 8.1 and 8.2 that x, — X is isolated simple. This contradicts
Theorem 7.1. O

9 Appendix

In this section we will state some technical results that were used in the previous
computations.

Our first result is a modification of Proposition 2.7 in [30]. The proof is
similar.

Lemma 9.1. Let (M, Q) be a Riemannian manifold with boundary dM. Let x € M
and U C M be an open set containing x. Let u be a weak solution to

Au=0, in U\{x}
(%’ +P)u=0, onUnoM\{x},

where 1 is the inward unit normal vector to M. Suppose that u € LI(U) for some
q> -5 and u,yu € L'(U N IM). Then u is a weak solution to

Au=0, in(L{/
(%+1]b)u=0, onUNIM.

The proof of the following lemma is similar to the result in [25], p.150 (see
also [5], p.108).

Lemma 9.2. Let p > 0 be small and suppose that p < f < f+p <a <n—p. Then
there exists C = C(n, p) > 0 such that

ly — 2P~ (1 + |x])"%dx < C(1 + [y])f @
]Rn

foranyy € R™* > R~
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For the proof we decompose R" in three regions
A= {x e R x—yl < 3yl + 3),
B:={x e R%; |x =yl > 5lyl + 3, x| < 2|yl + 1},
C:={xeR" x| =2yl + 1},
and perform the estimates in each one separately.

The following Harnack-type inequality is Lemma A.1 of [26]:
Lemma 9.3. Let L be an operator of the form
Lu =9, (a“b(x)abu + ﬁ”(x)u) + Y (x)du+C(x)u, ab=1,.,n
and assume that for some constant A > 1 the coefficient functions satisfy
ATIER < (0 < AP,

IB* (Il + [y ()] + IC)I < A,
for all x € B} = B;((land all & € R". If |q(x)| < A, for any x € J'B], and
u € C3(B3\d'B}) N C'(B}) satisfies

Lu=0, u>0, in B;\d'Bj,
a™(x)dpu = q(x)u, ond'B,
then there exists C = C(n, A) > 1 such that

maxu <Cminu.
B} Bf

Next we will perform some computations.

Lemma 9.4. We have:

® s _ 2m [ _s**2ds .
(ﬂ) j(; (1+52)m = a+l 0 (1+52)m+1 /for a+ 1 < zmr

® s%ds  _ _ 2m 0 s%s .
(b) j(; @+s2)" ~ 2m—a-1Jo (1+s2)m+1 ,fora +1< Zmr

o0 4 _ 2m—-a-3 00 ca+2g
(c) fO T = 28 fo Gy o for a+3 < 2m.

Proof. Integrating by parts,

f‘x’ s%*2ds _f‘x’saﬂ sds _a+1f°° s%ds
o (L+s)mt g (L+s2)m1 — 2m J, (1+s2)m’
for a +1 < 2m, which proves the item (a).

The item (b) follows from the item (a) and from

® s%ds T s*(1+s%) 7 s%ds . ® 5024
0 (1+52)m_ o (1 +52)m+1 - 0 (1+52)m+1 0 (1+52)m+1'
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To prove the item (c), observe that, by the item (a),

f‘x’ s'ds  2(m—1) f s%*2(s
o (1+s)m 1 a+1 (1+s2)ym’

for a + 3 < 2m. But, by the item (b), we have

f“’ s'ds 2(m—1) f‘x’ s%ds
o I+l 2m—-1)—a-1J) (1+s2)m’

o
Corollary 9.1. Weset I = fo @ +1),st Then
M (S:+5$1)5)2,+1 stds = {52 (t+ 1)1 + SLE - 1)+ )7,
(ii) [} et 2ds = I{(£+ 1) + (P = 1)(t + 1)),
(iii) [} et s 2ds = [{282L(t+ 1) + 22 - 1)(t + '),
Proof. By a change of variables we obtain
2 S n
B e tsnds = (t+ D) [ Seds + (P - D)(E+ D)7 [T mds,
0 SH(E-1) p2g. _ 1- 2 1-
b e ds=(t+ 1) [~ (Szﬂ)nds + (2 =1+ 1) [T (sz+1 ,1ds
s2+(2-1) 240 _ 3— 2 1-
N T s = (£ + 17 N s + (= D+ )" N (SZH),, = ds.
Then we use Lemma 9.4 to see that fooo % = olp, fo sz+1)”+1 = =1,
5~ -2 _ 1 5~ -2 _
b #& =Ly w5 =25 and [T Gl = 2L o
Lemma 9.5. Form > k+1,
k!
[ it = .
o (@+pm (m—=1)(m=2)..(m—1-k)
Proof. Integrating by parts,
00 _ 1 (o]
f T e T *@Q+H)™"dr .
0 kJo
On the other hand,
* #1(1 +t <
f F11 + ) dr = f ) f —d f dt .
0 0 (1+1) (1+pm
Hence,
| we i a
1+t)ym - 1 - 1+ t)m
Now the result follows observing that fo o +t)m et = L ]
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