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Abstract

Let (Mn, g) be a compact Riemannian manifold with boundary ∂M. This
paper is concerned with the set of scalar-flat metrics which are in the con-
formal class of g and have ∂M as a constant mean curvature hypersurface.
We prove that this set is compact for dimensions n ≥ 7 under the generic
condition that the trace-free 2nd fundamental form of ∂M is nonzero ev-
erywhere.

1 Introduction

In 1960, H. Yamabe ([44]) raised the following question:

YAMABE PROBLEM: Given (Mn, g), a compact Riemannian manifold (without
boundary) of dimension n ≥ 3, is there a Riemannian metric, conformal to g, with
constant scalar curvature?

This question was affirmatively answered after the works of Yamabe him-
self, N. Trudinger ([43]), T. Aubin ([4]) and R. Schoen ([39]). (See [30] and [41]
for nice surveys on the issue.)

In 1992, J. Escobar ([21]) studied the following Yamabe-type problem, for
manifolds with boundary:

YAMABE PROBLEM (boundary version): Given (Mn, g), a compact Riemannian
manifold of dimension n ≥ 3 with boundary, is there a Riemannian metric, conformal
to g, with zero scalar curvature and constant boundary mean curvature?

In analytical terms, the problem proposed by Escobar corresponds to finding
a positive solution to Lgu = 0, in M,

Bgu + Ku
n

n−2 = 0, on ∂M,
(1.1)

for some constant K, where Lg = ∆g −
n−2

4(n−1) Rg is the conformal Laplacian and
Bg = ∂

∂η −
n−2

2 hg. Here, ∆g is the Laplace-Beltrami operator, Rg is the scalar
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curvature, hg is the mean curvature of ∂M and η is the inward unit normal
vector to ∂M.

The solutions of the equations (1.1) are the critical points of the functional

Q(u) =

∫
M |∇gu|2 + n−2

4(n−1) Rgu2dvg + n−2
2

∫
∂M hgu2dσg(∫

∂M |u|
2(n−1)

n−2 dσg

) n−2
n−1

,

where dvg and dσg denote the volume forms of M and ∂M, respectively. In order
to prove the existence of solutions to the equations (1.1), Escobar introduced
the conformally invariant Sobolev quotient

Q(M, ∂M) = inf{Q(u); u ∈ C1(M̄),u . 0 on ∂M} .

The question of existence of solutions to the equations (1.1) was studied in
[2], [12], [21], [22], [23], [36] and [37]. The regularity of these solutions was
established in [13]. Conformal metrics of constant scalar curvature and zero
boundary mean curvature were studied in [9], [20] (see also [3] and [26]).

In the case of manifolds without boundary, the question of compactness of
the full set of solutions to the Yamabe equation was first raised by R. Schoen
in a topics course at Stanford University in 1988. A necessary condition is that
the manifold Mn is not conformally equivalent to the sphere Sn. This problem
was studied in [17], [18], [31], [32], [34], [35], [40] and [42] and was completely
solved in a series of three papers: [8], [10] and [29]. In [8], Brendle discovered
the first smooth counterexamples for dimensions n ≥ 52 (see [6] for nonsmooth
examples). In [29], Khuri, Marques and Schoen proved compactness for di-
mensions 3 ≤ n ≤ 24. Their proof contains both a local and a global aspect. The
local aspect involves the vanishing of the Weyl tensor at any blow-up point and
the global aspect involves the Positive Mass Theorem. Finally, in [10], Brendle
and Marques extended the counterexamples of [8] to the remaining dimensions
25 ≤ n ≤ 51. In [31], [32] and [35] the authors proved compactness for n ≥ 6
under the condition that the Weyl tensor is nonzero everywhere.

In the present work we are interested in the compactness of the set of positive
solutions to Lgu = 0, in M,

Bgu + Kup = 0, on ∂M,
(1.2)

where 1 < p ≤ n
n−2 . A necessary condition is that M is not conformally equiva-

lent to Bn. As stated by Escobar in [21], Q(M, ∂M) is positive, zero or negative
if the first eigenvalue λ1(Bg) of the problemLgu = 0, in M,

Bgu + λu = 0, on ∂M

is positive, zero or negative, respectively. If λ1(Bg) < 0, the solution to the
equations (1.2) is unique. If λ1(Bg) = 0, the equations (1.2) become linear and
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the solutions are unique up to a multiplication by a positive constant. Hence,
the only interesting case is the one when λ1(Bg) > 0.

We expect that, as in the case of manifolds without boundary, there should
be counterexamples to compactness of the set of solutions to the equations
(1.2) in high dimensions. In this work we address the question of whether
compactness of these solutions holds generically in any dimension.

Our first result is the following:

Theorem 1.1. Let (Mn, g) be a Riemannian manifold with dimension n ≥ 7 and
boundary ∂M. Assume that Q(M, ∂M) > 0. Let {ui} be a sequence of solutions to the
equations (1.2) with p = pi ∈ [1 + γ0, n

n−2 ] for any small fixed γ0 > 0. Suppose there is
a sequence {xi} ⊂ ∂M, xi → x0, of local maxima points of ui|∂M such that ui(xi)→ ∞.
Then the trace-free 2nd fundamental form of ∂M vanishes at x0.

By linear elliptic theory, uniform estimates for the solutions of equations
(1.2) imply Ck,α-estimates, for some 0 < α < 1. By the Harnack-type inequality
of Lemma 9.3 (proved in [26]), uniform estimates on the boundary ∂M imply
uniform estimates on M. Hence, an immediate consequence of Theorem 1.1 is a
compactness theorem for Riemannian manifolds of dimension n ≥ 7 that satisfy
the condition that the boundary trace-free 2nd fundamental form is nonzero
everywhere. More precisely:

Theorem 1.2. Let (Mn, g) be a Riemannian manifold with dimension n ≥ 7 and
boundary ∂M. Suppose Q(M, ∂M) > 0 and that the trace-free 2nd fundamental form
of ∂M is nonzero everywhere. Then, given a small γ0 > 0, there exists C > 0 such that
for any p ∈

[
1 + γ0, n

n−2

]
and u > 0 solution to the equations (1.2) we have

C−1
≤ u ≤ C and ‖u‖C2,α(M) ≤ C ,

for some 0 < α < 1.

It was pointed out to me by F. Marques that a transversality argument
implies that the second fundamental form condition above is generic for n ≥ 4.
In other words, the set of the Riemannian metrics on Mn such that the trace-free
second fundamental form of ∂M is nonzero everywhere is open and dense in
the space of all Riemannian metrics on M for n ≥ 4.

We should mention that Theorem 1.2 does not use the Positive Mass Theo-
rem, since the proof of Theorem 1.1 contains only a local argument, based in a
Pohozaev-type identity.

The problem of compactness of solutions to the equations (1.2) was also
studied by V. Felli and M. Ould Ahmedou in the conformally flat case with um-
bilic boundary ([23]) and in the three-dimensional case with umbilic boundary
([24]). Other compactness results for similar equations were obtained by Z.
Han and Y. Li in [26] and by Z. Djadli, A. Malchiodi and M. Ould Ahmedou in
[15] and [16].

A consequence of Theorem 1.2 is the computation of the total Leray-Schauder
degree of all solutions to the equations (1.1), as in [23], [24] and [26] (see
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also [29]). When λ1(Bg) > 0, we can define a map Fp : Ω̄Λ → C2,α(M) by
Fp(u) = u + T(E(u)up). Here, E(u) =

∫
M |∇gu|2 + n−2

4(n−1) Rgu2dvg + n−2
2

∫
∂M hgu2dσg

is the energy of u, T is the operator defined by T(v) = u, where u is the unique
solution to Lgu = 0, in M ,

Bgu = v, on ∂M ,

and ΩΛ = {u ∈ C2,α(M); |u|C2,α(M) < Λ, u > Λ−1
}. From elliptic theory we know

that the map u 7→ T(E(u)up) is compact from Ω̄Λ into C2,α(M). Hence, Fp is
of the form I + compact. If 0 , Fp(∂ΩΛ), we may define the Leray-Schauder
degree (see [38]) of Fp in the region ΩΛ with respect to 0 ∈ C2,α(M), denoted by
deg(Fp,ΩΛ, 0). Observe that Fp(u) = 0 if and only if u is a solution toLgu = 0, in M,

Bgu + E(u)up = 0, on ∂M.

Observe that these equations imply that
∫
∂M up+1dσg = 1. By the homotopy

invariance of the degree, deg(Fp,ΩΛ, 0) is constant for all p ∈
[
1, n

n−2

]
provided

that 0 , Fp(∂ΩΛ) for all p ∈
[
1, n

n−2

]
. In the linear case, when p = 1, we

have deg(F1,ΩΛ, 0) = −1. This is the content of Lemma 4.2 of [23], which is
a modification of the arguments in [26], pp.528-529. Thus, for Λ sufficiently
large, Theorem 1.2 allow us to calculate the degree for all p ∈

[
1, n

n−2

]
. Hence,

we have:

Theorem 1.3. Let (Mn, g) satisfy the assumptions of Theorem 1.2. Then, for Λ

sufficiently large and all p ∈
[
1, n

n−2

]
, we have deg(Fp,ΩΛ, 0) = −1.

We will now outline the proof of Theorem 1.1. The strategy of the proof
is similar to the one proposed by Schoen in the case of manifolds without
boundary. It is based on finding local obstructions to blow-up by means of
a Pohozaev-type identity. We suppose that there is a simple blow-up point
for a sequence {ui}. We then approximate the sequence {ui} by the standard
Euclidean solution plus a correction term φi. The function φi is defined as a
solution to a non-homogeneous linear equation. We then use the Pohozaev
identity to prove that the boundary trace-free 2nd fundamental form vanishes
at the blow-up point. Finally we apply the Pohozaev identity to establish, after
rescaling arguments, a sign condition that allows the reduction to the simple
blow-up case.

An important part in our proof is the use of the correction term φi to obtain
refined pointwise blow-up estimates. The idea of using a correction term first
appeared in [27] and was significantly improved in [7]. This type of blow-up
estimate was derived in [29] where the authors studied compactness in the case
of manifolds without boundary. Although we do not have the kind of explicit
control of the terms φi the authors had in [29], a key observation is that some

4



orthogonality conditions are sufficient to obtain the vanishing of the boundary
trace-free 2nd fundamental form.

In Section 2 we establish some notation and discuss some basic results. In
Section 3 we prove the Pohozaev identity we will work with. In Section 4 we
discuss the concepts of isolated and isolated simple blow-up points and state
some basic properties. In Section 5 we find the correction term φi and prove its
properties. In Section 6 we obtain the pointwise estimates for ui. In Section 7
we prove the vanishing of the trace-free 2nd fundamental form at any isolated
simple blow-up point and prove the Pohozaev sign condition. In Section 8 we
reduce our analysis to the case of isolated simple blow-up points and prove
Theorem 1.1.

Acknowledgements. The content of this paper is a part of the author’s doctoral
thesis ([1]). The author would like to express his gratitude to his advisor Prof.
Fernando C. Marques for numerous mathematical conversations and constant
encouragement. While the author was at IMPA, he was fully supported by
CNPq-Brazil.

2 Preliminaries

2.1 Notations

Throughout this work we will make use of the index notation for tensors,
commas denoting covariant differentiation. We will adopt the summation
convention whenever confusion is not possible. When dealing with coordinates
on manifolds with boundary, we will use indices 1 ≤ i, j, k, l ≤ n − 1 and
1 ≤ a, b, c, d ≤ n. In this context, lines under or over an object mean the
restriction of the metric to the boundary is involved.

We will denote by g the Riemannian metric and set det g = det gab. The
induced metric on ∂M will be denoted by ḡ. We will denote by ∇g the covariant
derivative and by ∆g the Laplacian-Beltrami operator. The full curvature tensor
will be denoted by Rabcd, the Ricci tensor by Rab and the scalar curvature by Rg
or R. The second fundamental form of the boundary will be denoted by hkl and
the mean curvature, 1

n−1 tr(hkl), by hg or h. By πkl we will denote the trace-free
second fundamental form, hkl − hḡkl.

ByRn
+ we will denote the half-space {z = (z1, ..., zn) ∈ Rn; zn ≥ 0}. If z ∈ Rn

+ we
set z̄ = (z1, ..., zn−1) ∈ Rn−1 � ∂Rn

+. We define B+
δ (0) = {z ∈ Rn

+ ; |z| < δ}. We also
denote B+

δ = B+
δ (0) for short. We set ∂+B+

δ (0) = ∂B+
δ (0) ∩ Rn

+ = {z ∈ Rn
+ ; |z| = δ}

and ∂′B+
δ (0) = B+

δ (0)∩∂Rn
+ = {z ∈ ∂Rn

+ ; |z| < δ}. Thus, ∂B+
δ (0) = ∂′B+

δ (0)∪∂+B+
δ (0).

In various parts of the text, we will make use of Fermi coordinates

ψ : B+
δ (0)→M

centered at a point x0 ∈ ∂M. In this case, we will work in B+
δ (0) ⊂ Rn

+.
We will denote by Dδ(x0) the metric ball on ∂M (with respect to the induced

metric ḡ) of radius δ > 0 centered at x0 ∈ ∂M. The volume forms of M and ∂M
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will be denoted by dvg and dσg, respectively. By η we will denote the inward
unit normal vector to ∂M. The n-dimensional sphere of radius r inRn+1 will be
denoted by Sn

r . Finally, σn will denote the area of the n-dimensional unit sphere
Sn

1 .

2.2 Standard solutions in the Euclidean half-space

In this section we will study the Euclidean Yamabe equation in Rn
+ and its

linearization.
The simplest example of solution to the Yamabe-type problem we are con-

cerned is the ball inRn with the canonical Euclidean metric. This ball is confor-
mally equivalent to the half-spaceRn

+ by the inversion F : Rn
+ → Bn

\{(0, ..., 0,−1)}
with respect to the sphere Sn−1

1 (0, ..., 0,−1) with center (0, ..., 0,−1) and radius 1.
Here, Bn = B1/2(0, ..., 0,−1/2) is the Euclidean ball inRn with center (0, ..., 0,−1/2)
and radius 1/2. The expression for F is

F(y1, ...yn) =
(y1, ..., yn−1, yn + 1)

y2
1 + ... + y2

n−1 + (yn + 1)2
+ (0, ..., 0,−1) ,

and of course its inverse mapping F−1 has the same expression. An easy
calculation shows that F is a conformal map and F∗geucl = U

4
n−2 geucl inRn

+, where
geucl is the Euclidean metric and U(y) = (y2

1 + ... + y2
n−1 + (yn + 1)2)−

n−2
2 . The

function U satisfies ∆U = 0 , inRn
+ ,

∂U
∂yn

+ (n − 2)U
n

n−2 = 0 , on ∂Rn
+ .

(2.1)

Since the equations (2.1) are invariant by horizontal translations and scalings
with respect to the origin, we obtain the following family of solutions to the
equation (2.1):

Uλ,z(y) =

 λ

(λ + yn)2 +
∑n−1

j=1 (y j − z j)2


n−2

2

, (2.2)

where λ > 0 and z = (z1, ..., zn−1) ∈ Rn−1.
In fact, the converse statement is also true: by a Liouville-type theorem in

[33] (see also [19] and [14]), any non-negative solution to the equations (2.1) is
of the form (2.2) or is identically zero.

The existence of the family of solutions (2.2) has two important conse-
quences. First, we see that the set of solutions to the equations (2.1) is non-
compact. In particular, the set of solutions to the equations (1.1) is not compact
when Mn is conformally equivalent to Bn. Secondly, the functions ∂U

∂y j
, for

j = 1, ...,n − 1, and n−2
2 U + yb ∂U

∂yb , are solutions to the following homogeneous
linear problem: ∆ψ = 0 , inRn

+ ,
∂ψ
∂yn

+ nU
2

n−2ψ = 0 , on ∂Rn
+ .

(2.3)
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Notation We set J j = ∂U
∂y j

, for j = 1, ...,n − 1, and Jn = n−2
2 U + yb ∂U

∂yb .

Now, we will show that linear combinations of J1, ..., Jn are the only solutions
to the equations (2.3) under a certain decay hypothesis. This result is similar
to the one obtained in [11] for the case of manifols without boundary. More
precisely we have:

Lemma 2.1. Suppose ψ is a solution to∆ψ = 0 , inRn
+

∂ψ
∂yn

+ nU
2

n−2ψ = 0 , on ∂Rn
+ .

(2.4)

If ψ(y) = O((1 + |y|)−α) for some α > 0, then there exist constants c1, ..., cn such that

ψ(y) =

n∑
a=1

ca Ja(y) .

The following result will be used in the proof of Lemma 2.1:

Lemma 2.2. The eigenvalues λ of the problem∆ψ̄ = 0 , in Bn ,
∂ψ̄
∂η + λψ̄ = 0 , on ∂Bn (2.5)

are given by {λk = 2k}∞k=0. (Recall that η points inwards.) The corresponding eigen-
vectors are the harmonic homogeneous polynomials of degree k restricted to Bn. Here,
the coefficients of the polynomials are given by the coordinate functions of Rn with
center (0, ..., 0,−1/2). In particular, the constant function 1 generates the eigenspace
associated to the eigenvalue λ0 = 0 and the coordinate functions z1, ..., zn restricted to
Bn generate the eigenspace associated to the eigenvalue λ1 = 2.

Moreover, z j ◦ F = −1
n−2 U−1 J j, for j = 1, ...,n − 1, and zn ◦ F = 1

n−2 U−1 Jn.

Proof. The first part is an easy consequence of the fact that the spherical har-
monics generate L2(Sn−1). The last part is a straightforward computation. �

Lemma 2.1. Recall that the conformal Laplacian satisfies

L
ζ

4
n−2 g

(ζ−1u) = ζ−
n+2
n−2 Lgu, (2.6)

for any smooth functions ζ > 0 and u. Similarly, the boundary operator Bg
satisfies

B
ζ

4
n−2 g

(ζ−1u) = ζ−
n

n−2 Bgu . (2.7)

Hence, the equations (2.4) are equivalent to∆ψ̄ = 0 , in Bn
\{(0, ..., 0,−1)} ,

∂ψ̄
∂η + 2ψ̄ = 0 , on ∂Bn

\{(0, ..., 0,−1)} ,
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where ψ̄ = (U−1ψ) ◦ F−1. The hypothesis ψ(y) = O((1 + |y|)−α), 0 < α < n − 2
implies that ψ̄ ∈ Lp(Bn), for any n

n−2 < p < n
n−2−α . Lemma 9.1 ensures that ψ̄ is a

weak solution to ∆ψ̄ = 0 , in Bn ,
∂ψ̄
∂η + 2ψ̄ = 0 , on ∂Bn .

It follows from elliptic theory that ψ̄ ∈ C∞(Bn). In other words, ψ is a solution
to the equations (2.4) if and only if ψ̄ is an eigenfunction associated to the first
nontrivial eigenvalue λ1 = 2 of the problem (2.5). The result now follows from
Lemma 2.2. �

2.3 Coordinate expansions for the metric

In this section we will write expansions for the metric g in Fermi coordinates.
We will also recall the conformal Fermi coordinates, introduced by Marques in
[36], that will simplify the computations in the next sections. The conformal
Fermi coordinates play the same role that the conformal normal coordinates
(see [30]) did in the case of manifolds without boundary.

Definition 2.1. Let x0 ∈ ∂M. We choose boundary geodesic normal coordinates
(z1, ..., zn−1), centered at x0, of the point x ∈ ∂M. We say that z = (z1, ..., zn), for
small zn ≥ 0, are the Fermi coordinates (centered at x0) of the point expx(znη(x)) ∈
M. Here, we denote by η(x) the inward unit normal vector to ∂M at x. In this
case, we have a map defined by ψ(z) = expx(znη(x)), taking values in a subset
of Rn

+.

It is easy to see that in these coordinates gnn ≡ 1 and g jn ≡ 0, for j = 1, ...,n−1.
We fix x0 ∈ ∂M. We use Fermi coordinates ψ : B+

δ (0)→M centered at x0 and
work in B+

δ (0) ⊂ Rn
+, for some small δ > 0.

Notation We set

|∂kg| = max
z∈B+

δ (0)

∑
|α|=k

n∑
a,b=1

|∂αgab|(ψ(z)) ,

where α denotes a multiindex. We write |∂g| = |∂1g| for short.

The following proposition gives the expansion for the Riemannian metric g
in Fermi coordinates:

Proposition 2.1. For z = (z1, ..., zn) ∈ B+
δ (0),

gi j(ψ(z)) = δi j + 2hi j(x0)zn +
1
3

R̄ik jl(x0)zkzl + 2hi j; k(x0)znzk

+ (Rninj + 3hikhkj)(x0)z2
n + O(|∂3g||z|3).

Proof. This is proved as in Lemma 2.2 of [36]. �

The existence of conformal Fermi coordinates and some of its consequences
are stated as follows:
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Proposition 2.2. For any given integer N ≥ 1, there is a metric g̃, conformal to g,
such that in g̃-Fermi coordinates ψ̃ : B+

δ (0)→M centered at x0, we have

(det g̃)(ψ̃(z)) = 1 + O(|z|N) .

Moreover, g̃ can be written as g̃ = f g, where f is a positive function with f (x0) = 1
and ∂ f

∂zk
(x0) = 0 for k = 1, ...,n − 1. In this metric we also have

(i) R̄i j(x0) = R̄i j; k(x0) = 0;
(ii) Rnn(x0) + (hi j)2(x0) = 0;
(iii) h(ψ̃(z)) = O(|z|N), where N can be taken arbitrarily large.

Proof. The first part is Proposition 3.1 of [36]. Items (i) and (ii) are proved as in
Proposition 3.2 of the same paper. Item (iii) follows from the fact that

hg =
−1

2(n − 1)
gi jgi j,n =

−1
2(n − 1)

(log det g),n .

�

2.4 Conformal scalar and mean curvature equations

In this section we will introduce the partial differential equation we will work
with in the next sections. We will also discuss some of its properties related to
conformal deformation of metrics.

Let u be a positive smooth solution toLgu = 0, in M ,

Bgu + (n − 2) f−τup = 0, on ∂M ,
(2.8)

where τ = n
n−2 − p, 1 + γ0 ≤ p ≤ n

n−2 for some fixed γ0 > 0 and f is a positive
function.

Notation We say that u ∈ Mp if u is a positive smooth solution to the equations
(2.8).

The equations (2.8) have an important scaling invariance property. We fix
x0 ∈ ∂M and let δ > 0 be small. We consider Fermi coordinates ψ : B+

δ (0) → M
centered at x0. Given s > 0 we define the renormalized function

v(y) = s
1

p−1 u(ψ(sy)) , for y ∈ B+
δs−1 (0) .

Then Lĝv = 0, in B+
δs−1 (0) ,

Bĝv + (n − 2) f̂−τvp = 0, on ∂′B+
δs−1 (0) ,
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where f̂ (y) = f (ψ(sy)) and the coefficients of the metric ĝ in Fermi coordinates
are given by ĝkl(y) = gkl(ψ(sy)).

The reason to work with the equations (2.8) instead of the equations (1.2)
is that the first one has an important conformal invariance property. Suppose
g̃ = ζ

4
n−2 g is a metric conformal to g. It follows from the properties (2.6) and

(2.7) that, if u is a solution to the equations (2.8), then ζ−1u satisfiesLg̃(ζ−1u) = 0, in M ,

Bg̃(ζ−1u) + (n − 2)(ζ f )−τ(ζ−1u)p = 0, on ∂M ,

which is again equations of the same type.

Notation Let Ω ⊂M be a domain in a Riemannian manifold (M, g). Let {gi} be
a sequence of metrics on Ω. We say that ui ∈ Mi if ui > 0 satisfiesLgi ui = 0, in Ω ,

Bgi ui + (n − 2) f−τi
i upi

i = 0, on Ω ∩ ∂M ,
(2.9)

where τi = n
n−2 − pi and 1 + γ0 ≤ pi ≤

n
n−2 for some fixed γ0 > 0.

In many parts of this article we will work with sequences {ui ∈ Mi}
∞

i=1. In
this case, we assume that fi → f in the C1

loc topology, for some positive function
f , and that gi → g0 in the C3

loc topology, for some metric g0.
By the conformal invariance stated above, we are allowed to replace the

metric gi by ζ
4

n−2
i gi as long as we have control of the conformal factors ζi. In

this case, we replace the sequence {ui} by {ζ−1
i ui}. In particular, we can use

conformal Fermi coordinates centered at some point xi ∈ ∂M.

3 A Pohozaev-type identity

In this section we prove the Pohozaev-type identity we will use in the subse-
quent blow-up analysis.

Recall that we have denoted B+
δ = B+

δ (0) ⊂ Rn
+ for short (see Section 2.1).

Proposition 3.1. Let u be a solution to∆gu − n−2
4(n−1) Rgu = 0 , in B+

δ ,

∂nu − n−2
2 hgu + K f−τup = 0 , on ∂′B+

δ ,

where K is a constant and g is a metric on B+
δ . Let 0 < r < δ. We set

P(u, r) =

∫
∂+B+

r

(
n − 2

2
u
∂u
∂r
−

r
2
|∇u|2 + r

∣∣∣∣∣∂u
∂r

∣∣∣∣∣2) dσr +
r

p + 1

∫
∂ (∂′B+

r )
K f−τup+1dσ̄r .

10



Then

P(u, r) = −

∫
B+

r

(
za∂au +

n − 2
2

u
)

Ag(u)dz +
n − 2

2

∫
∂′B+

r

(
z̄k∂ku +

n − 2
2

u
)

hgudz̄

−
τ

p + 1

∫
∂′B+

r

K(z̄k∂k f ) f−τ−1up+1dz̄ +

(
n − 1
p + 1

−
n − 2

2

) ∫
∂′B+

r

K f−τup+1dz̄ ,

where Ag = ∆g − ∆ − n−2
4(n−1) Rg. Here, ∆ stands for the Euclidean Laplacian and ∇ for

the Euclidean gradient.

Proof. Observe that, for each a = 1, ...,n fixed, integrating by parts we have∫
B+

r

(zb∂bu)∂a∂audz +

∫
B+

r

δab(∂bu)(∂au)dz +
1
2

∫
B+

r

zb∂b(∂au)2dz

=
1
r

∫
∂+B+

r

(zb∂bu)(za∂au)dσr −

∫
∂′B+

r

(z̄k∂ku)(∂au)δa
ndz̄ .

Summing in a = 1, ...,n we obtain∫
B+

r

(zb∂bu)∆udz +

∫
B+

r

|∇u|2dz +
1
2

∑
a

∫
B+

r

zb∂b(∂au)2dz

= r
∫
∂+B+

r

∣∣∣∣∣∂u
∂r

∣∣∣∣∣2 dσr −

∫
∂′B+

r

(z̄k∂ku)(∂nu)dz̄ . (3.1)

On the other hand, integrating by parts, we have

1
2

∑
a

∫
B+

r

zb∂b(∂au)2dz = −
n
2

∑
a

∫
B+

r

(∂au)2dz +
r
2

∑
a

∫
∂+B+

r

(∂au)2dσr

−
1
2

∑
a

∫
∂′B+

r

zbδn
b (∂au)2dz̄

= −
n
2

∫
B+

r

|∇u|2dz +
r
2

∫
∂+B+

r

|∇u|2dσr (3.2)
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and∫
∂′B+

r

(z̄k∂ku)(∂nu)dz̄ = −

∫
∂′B+

r

(z̄k∂ku)(K f−τup
−

n − 2
2

hgu)dz̄

= −
1

p + 1

∫
∂′B+

r

Kz̄k∂k(up+1) f−τdz̄

+
n − 2

2

∫
∂′B+

r

(z̄k∂ku)hgudz̄

=
n − 1
p + 1

∫
∂′B+

r

K f−τup+1dz̄ +
1

p + 1

∫
∂′B+

r

K(z̄k∂k f−τ)up+1dz̄

−
r

p + 1

∫
∂(∂′B+

r )
K f−τup+1dσ̄r

+
n − 2

2

∫
∂′B+

r

(z̄k∂ku)hgudz̄ . (3.3)

Substituting equalities (3.2) and (3.3) in (3.1) we obtain∫
B+

r

(zb∂bu)∆udz −
n − 2

2

∫
B+

r

|∇u|2dz +
r
2

∫
∂+B+

r

|∇u|2dσr

= r
∫
∂+B+

r

∣∣∣∣∣∂u
∂r

∣∣∣∣∣2 dσr −
n − 1
p + 1

∫
∂′B+

r

K f−τup+1dz̄

−
1

p + 1

∫
∂′B+

r

K(z̄k∂k f−τ)up+1dz̄ +
r

p + 1

∫
∂(∂′B+

r )
K f−τup+1dσ̄r

−
n − 2

2

∫
∂′B+

r

(z̄k∂ku)hgudz̄ . (3.4)

Using∫
B+

r

|∇u|2dz = −

∫
B+

r

u∆udz +

∫
∂+B+

r

u
∂u
∂r

dσr +

∫
∂′B+

r

(K f−τup+1
−

n − 2
2

hgu2)dz̄

and ∆u = −Ag(u) in equality (3.4) we get the result. �

4 Isolated and isolated simple blow-up points

In this section we will discuss the notions of isolated and isolated simple blow-
up points and prove some of their properties. These notions are slight modifi-
cations of the ones used by Felli and Ould Ahmedou in [23] and [24] and are
inspired by similar definitions in the case of manifolds without boundary.

Definition 4.1. Let Ω ⊂ M be a domain in a Riemannian manifold (M, g). We
say that x0 ∈ Ω ∩ ∂M is a blow-up point for the sequence {ui ∈ Mi}

∞

i=1, if there is
a sequence {xi} ⊂ Ω ∩ ∂M such that

12



(1) xi → x0;
(2) ui(xi)→∞;
(3) xi is a local maximum of ui|∂M.

Briefly we say that xi → x0 is a blow-up point for {ui}. The sequence {ui} is
called a blow-up sequence.

Convention If xi → x0 is a blow-up point, we use gi-Fermi coordinates

ψi : B+
δ (0)→M

centered at xi (see Section 2.3) and work in B+
δ (0) ⊂ Rn

+, for some small δ > 0.

Notation If xi → x0 is a blow-up point we set Mi = ui(xi), εi = M−(pi−1)
i .

4.1 Isolated blow-up points

We define the notion of an isolated blow-up point as follows:

Definition 4.2. We say that a blow-up point xi → x0 is an isolated blow-up point
for {ui} if there exist δ,C > 0 such that

ui(x) ≤ Cdḡi (x, xi)
−

1
pi−1 , for all x ∈ ∂M\{xi} , dḡi (x, xi) < δ .

(We recall that ḡi denotes the induced metric on the boundary.)

Remark 4.1. Since Fermi coordinates are normal on the boundary, the above
definition is equivalent to

ui(ψi(z)) ≤ C|z|−
1

pi−1 , for all z ∈ ∂′B+
δ (0)\{0} . (4.1)

Remark 4.2. Note that the definition of an isolated blow-up point is invariant
under renormalization, which was descrided in Section 2.4. This follows from
the fact that if vi(y) = s

1
pi−1 ui(ψi(sy)), then

ui(ψi(z)) ≤ C|z|−
1

pi−1 ⇐⇒ vi(y) ≤ C|y|−
1

pi−1 ,

where z = sy.

The first result concerning isolated blow-up points states that the inequality
(4.1) also holds for points z ∈ B+

δ (0)\{0}.

Lemma 4.1. Let xi → x0 be an isolated blow-up point. Then {ui} satisfies

ui(ψi(z)) ≤ C|z|−
1

pi−1 , for all z ∈ B+
δ (0)\{0} .

Proof. Let 0 < s < δ
3 and set vi(y) = s

1
pi−1 ui(ψi(sy)) for |y| < 3. Then vi satisfiesLĝi vi = 0, in B+

3 (0),
(Bĝi + (n − 2) f̂−τi

i vpi−1
i )vi = 0, on ∂′B+

3 (0) ,
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where (ĝi)kl(y) = (gi)kl(ψi(sy)) and f̂i(y) = fi(ψi(sy)). By the scaling invariance
(Remark 4.2) vi is uniformly bounded in compact subsets of ∂′B+

3 (0)\{0}. Hence,
Lemma 9.3 and interior Harnack estimates give

max
B+

2 (0)\B+
1/2(0)

vi ≤ C min
B+

2 (0)\B+
1/2(0)

vi . (4.2)

The result now follows from the inequality (4.2). �

A corollary of the proof of Lemma 4.1 is the following Harnack-type in-
equality:

Lemma 4.2. Let xi → x0 be an isolated blow-up point and δ as in Definition 4.2. Then
there exists C > 0 such that for any 0 < s < δ

3 we have

max
B+

2s(0)\B+
s/2(0)

(ui ◦ ψi) ≤ C min
B+

2s(0)\B+
s/2(0)

(ui ◦ ψi) .

The next proposition says that, in the case of an isolated blow-up point,
the sequence {ui}, when renormalized, converges to the standard Euclidean
solution U (see Section 2.2).

Proposition 4.1. Let xi → x0 be an isolated blow-up point. We set

vi(y) = M−1
i (ui ◦ ψi)(M

−(pi−1)
i y) , for y ∈ B+

δMpi−1
i

(0) .

Then given Ri →∞ and βi → 0, after choosing subsequences, we have

(a) |vi −U|C2(B+
Ri

(0)) < βi;

(b) limi→∞
Ri

log Mi
= 0;

(c) limi→∞ pi = n
n−2 .

The proof of Proposition 4.1 is analogous to Lemma 2.6 of [23] or Proposition
4.3 of [35]. It uses the fact that, by the Liouville-type theorems of [28] and [33],
every non-negative solution to∆v = 0, inRn

+,

∂nv + (n − 2)vp0 = 0, on ∂Rn
+,

(4.3)

for 1 < p0 ≤
n

n−2 , is either identically zero or is of the form (2.2), in which case
p0 = n

n−2 .

Remark 4.3. Let xi → x0 and consider a conformal change ζ
4

n−2
i gi of the metrics

gi (see the last paragraph of Section 2.4). Suppose that the conformal factors
ζi > 0 are uniformly bounded (above and below) with ζi(xi) = 1 and ∂ζi

∂zk
(xi) = 0

for k = 1, ...,n − 1. Then, once we have proved Proposition 4.1, it is not difficult
to see that xi → x0 is an isolated blow-up point for {ui} if and only it is for {ζ−1

i ui}.
This is the case when we use conformal Fermi coordinates (see Proposition 2.2)
centered at xi.
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The following lemma will be used later when we consider the set of blow-up
points.

Lemma 4.3. Given R, β > 0, there exists C0 = C0(R, β) > 0 such that if u ∈ Mp and
S ⊂ ∂M is a compact set, we have the following:

If maxx∈∂M\S

(
u(x)dḡ(x,S)

1
p−1

)
≥ C0, then n

n−2 − p < β and there exists x0 ∈ ∂M\S,
local maximum of u, such that∣∣∣u(x0)−1u(ψ(z)) −U(u(x0)p−1z)

∣∣∣
C2(B+

2r0
(0))
< β , (4.4)

where r0 = Ru(x0)−(p−1). Here, we are using Fermi coordinates ψ : B+
2r0

(0) → M
centered at x0 ∈ ∂M. If ∅ is the empty set, we define dḡ(x, ∅) = 1.

Proof. Suppose by contradiction there exist R, β > 0 satisfying the following:
for all C0 > 0, there exist p ∈

(
1, n

n−2

]
, u ∈ Mp and a compact set S ⊂ ∂M such

that
max

x∈∂M\S

(
u(x)dḡ(x,S)

1
p−1

)
≥ C0

holds and either p ≤ n
n−2 − β or no such point x0 exists. Hence, we can suppose

that there are sequences pi ∈
(
1, n

n−2

]
, ui ∈ Mpi and

wi(x′i ) = max
x∈∂M\ Si

wi(x)→∞ , where wi(x) = ui(x)dḡ(x,Si)
1

pi−1 .

Here, x′i ∈ ∂M and Si is a compact subset of ∂M. We assume that pi → p0, for
some p0 ∈

(
1, n

n−2

]
, and x′i → x′0 for some x′0 ∈ ∂M. We set Ni = ui(x′i ). Observe

that Ni →∞.
We use Fermi coordinates ψi : B+

δ (0)→M centered at x′i and set

vi(y) = N−1
i (ui ◦ ψi)(N

−(pi−1)
i y) , for y ∈ B+

δNpi−1
i

(0) .

It follows from the discussion in Section 2.4 that vi satisfies
Lĝi vi = 0 , in B+

δNpi−1
i

(0) ,

Bĝi vi + (n − 2) f̂−τi
i vpi

i = 0 , on ∂′B+

δNpi−1
i

(0) ,

where f̂i(y) = f (ψi(N
−(pi−1)
i y)) and ĝi stands for the metric with coefficients

(ĝi)kl(y) = gkl(ψi(N
−(pi−1)
i y)).

Claim vi ≤ C in compact subsets of Rn
+.

Let z ∈ ∂′B+
δ (0). Since wi(ψi(z)) ≤ wi(x′i ), we have

dḡ(Si, x′i ) − dḡ(x′i , ψi(z))

dḡ(Si, x′i )
≤

dḡ(Si, ψi(z))
dḡ(Si, x′i )

≤

(
Niui(ψi(z))−1

)pi−1
.
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On the other hand,

dḡ(Si, x′i ) − dḡ(x′i , ψi(z))

dḡ(Si, x′i )
= 1 −

N−(pi−1)
i |y|

dḡ(Si, x′i )
= 1 − wi(x′i )

−(pi−1)
|y| = 1 − oi(1)|y|,

where we have set y = Npi−1
i z. This proves that vi ≤ C in compact subsets of

∂Rn
+. Now the Claim follows from Lemma 9.3.
Hence, we can suppose that vi → v in C2

loc(R
n
+) for some v > 0 satisfying∆v = 0, inRn

+,

∂nv + (n − 2) f (x′0)p0−
n

n−2 vp0 = 0, on ∂Rn
+

and v(0) = 1. It follows from the Liouville-type theorem of [28] that p0 = n
n−2 .

Hence, v satisfies the equations (4.3) and, by the results in [33], it is of the
form (2.2). Hence, we can find y(i) ∈ ∂′B+

δNpi−1
i

(0) local maxima of vi, such that

y(i) → (z1, ..., zn−1, 0) ∈ ∂Rn
+. Then ui satisfies the estimate (4.4), for i large, with

x0 = ψi(N
−(pi−1)
i y(i)). Since Npi−1

i dḡi (x′i ,Si) = wi(x′i )
pi−1
→ ∞, we see that x0 < Si

for i large. This is a contradiction. �

Once we have proved Lemma 4.3, the proof of the following proposition is
analogous to Proposition 5.1 of [34] (see also Lemma 3.1 of [42] or Proposition
1.1 of [26]):

Proposition 4.2. Given small β > 0 and large R > 0 there exist constants C0,C1 > 0,
depending only on β, R and (Mn, g), such that if u ∈ Mp and max∂M u ≥ C0, then

n
n−2−p < β and there exist x1, ..., xN ∈ ∂M, N = N(u) ≥ 1, local maxima of u, such that:

(1) If r j = Ru(x j)−(p−1) for j = 1, ...,N, then {Dr j (x j) ⊂ ∂M}Nj=1 is a disjoint col-
lection. (We recall that Dr j (x j) is the boundary metric ball (see Section 2.1).)

(2) For each j = 1, ...,N,
∣∣∣u(x j)−1u(ψ̄ j(z)) −U(u(x j)p−1z)

∣∣∣
C2(B+

2rj
(0))
< β,

where we are using Fermi coordinates ψ̄ j : B+
2r j

(0)→M centered at x j.

(3) We have
u(x) dḡ(x, {x1, ..., xN})

1
p−1 ≤ C1 , for all x ∈ ∂M ,

u(x j) dḡ(x j, xk)
1

p−1 ≥ C0 , for any j , k , j, k = 1, ...,N .

4.2 Isolated simple blow-up points

Let us introduce the notion of an isolated simple blow-up point. Let xi → x0 be
an isolated blow-up point for {ui}. Recall that we are using Fermi coordinates
ψi : B+

δ (0)→M centered at xi. We set

ūi(r) =
2

σn−1rn−1

∫
∂+B+

r (0)
(ui ◦ ψi)dσr
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and wi(r) = r
1

pi−1 ūi(r), for 0 < r < δ.
Note that the definition of wi is invariant under renormalization, which was

descrided in Section 2.4. More precisely, if vi(y) = s
1

pi−1 ui(ψi(sy)), then

r
1

pi−1 v̄i(r) = (sr)
1

pi−1 ūi(sr) .

Definition 4.3. An isolated blow-up point xi → x0 for {ui} is simple if there exists
δ > 0 such that wi has exactly one critical point in the interval (0, δ).

Remark 4.4. Let xi → x0 be an isolated blow-up point and Ri →∞. Using Propo-

sition 4.1 it is not difficult to see that, choosing a subsequence, r 7→ r
1

pi−1 ūi(r) has
exactly one critical point in the interval (0, ri), where ri = RiM

−(pi−1)
i → 0. More-

over, its derivative is negative right after the critical point. Hence, if xi → x0 is
isolated simple then there exists δ > 0 such that w′i (r) < 0 for all r ∈ [ri, δ).

Notation In this section we define

vi(y) = M−1
i (ui ◦ ψi)(M

−(pi−1)
i y) , for y ∈ B+

Mpi−1
i δ

(0) .

The next proposition is an important property of isolated simple blow-up
points.

Proposition 4.3. Let xi → x0 be an isolated simple blow-up point for {ui}. Then there
exist C, δ > 0 such that

(a) Miui(ψi(z)) ≤ C|z|2−n for all z ∈ B+
δ (0)\{0};

(b) Miui(ψi(z)) ≥ C−1Gi(z) for all z ∈ B+
δ (0)\B+

ri
(0), where Gi is the Green’s function

so that: 
Lgi Gi = 0, in B+

δ (0)\{0},
Gi = 0, on ∂+B+

δ (0),
Bgi Gi = 0, on ∂′B+

δ (0)\{0}

and |z|n−2Gi(z)→ 1, as |z| → 0. Here, ri is defined as in Remark 4.4.

For the proof of Proposition 4.3 we will use the following lemma:

Lemma 4.4. Let xi → x0 be an isolated simple blow-up point for {ui} and let ρ be
small. Then there exist C, δ > 0 such that

Mλi
i |∇

kui|(ψi(z)) ≤ C|z|2−k−n+ρ,

for z ∈ B+
δ (0)\{0} and k = 0, 1, 2. Here, λi = (pi − 1)(n − 2 − ρ) − 1.

The proof of Lemma 4.4 is analogous to Lemma 2.7 of [23]. It uses the
following maximum principle, which is Lemma A.2 of [26]:
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Lemma 4.5. Let (N, g) be a Riemannian manifold and Ω ⊂ N be a connected open set
with piecewise smooth boundary ∂Ω = Γ∪Σ. Let h ∈ L∞(Ω) and σ ∈ L∞(Σ). Suppose
that u ∈ C2(Ω) ∩ C1(Ω̄) , u > 0 in Ω̄, satisfies∆gu + hu ≤ 0 , in Ω ,

∂u
∂ν + σu ≤ 0 , on Σ

and v ∈ C2(Ω) ∩ C1(Ω̄) satisfies
∆gv + hv ≤ 0 , in Ω ,
∂v
∂ν + σv ≤ 0 , on Σ ,

v ≥ 0 , on Γ ,

where ν denotes inward unit normal to Σ. Then v ≥ 0 in Ω̄.

Remark 4.5. Suppose that xi → x0 is an isolated simple blow-up point for {ui}.
Then, as a consequence of the estimates of Lemma 4.4 and Proposition 4.1, we
see that there exists C > 0 such that

|∇
kvi|(y) ≤ CMρ(pi−1)

i (1 + |y|)2−k−n

for any y ∈ B+

δMpi−1
i

(0) and k = 0, 1, 2.

Now we are going to estimate τi = n
n−2 − pi.

Proposition 4.4. Let xi → x0 be an isolated simple blow-up point for {ui} and let
ρ > 0 be small. Then there exists C > 0 such that

τi ≤

Cε1−2ρ+oi(1)
i , for n ≥ 4,

Cε1−2ρ+oi(1)
i log(ε−1

i ), for n = 3.
(4.5)

(Recall that we have set εi = M−(pi−1)
i in the beginning of Section 4.)

Proof. Let xi → x0 be an isolated simple blow-up point for the sequence {ui}. In
order to simplify our notations, we will omit the simbol ψi in the rest of this
proof. Hence, points ψi(z) ∈ M, for z ∈ B+

δε−1
i

= B+
δε−1

i
(0), will be denoted simply

by z. In particular, xi = ψi(0) will be denoted by 0 and ui ◦ ψi by ui.
We write the Pohozaev identity of Proposition 3.1 as

P(ui, r) = Fi(ui, r) + F̄i(ui, r) +
τi

pi + 1
Qi(ui, r), (4.6)

for r < δ, where
Fi(u, r) = −

∫
B+

r
(zb∂bu + n−2

2 u)(Lgi − ∆)u dz,

F̄i(u, r) = n−2
2

∫
∂′B+

r
(z̄b∂bu + n−2

2 u)hgi u dz̄,

Qi(u, r) =
(n−2)2

2

∫
∂′B+

r
f−τi
i upi+1dz̄ − (n − 2)

∫
∂′B+

r
(z̄k∂k fi) f−τi−1

i upi+1dz̄ .
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It follows from Proposition 4.1 that we can choose a subsequence such that∫
∂′B+

ri

upi+1
i ≥ c > 0,

where ri = Riεi → 0 and Ri →∞. Hence, for r > 0 small, Qi(ui, r) ≥ c > 0.
Using the estimate of Lemma 4.4 we obtain

Pi(ui, r) ≤ Cε
2λi

pi−1

i = Cεn−2−2ρ+oi(1)
i . (4.7)

Changing variables,

F̄i(ui, r) =
n − 2

2
ε
−

2
pi−1 +n−1

i

∫
∂′B+

rε−1
i

(
ȳb∂bvi +

n − 2
2

vi

)
hgi (εi ȳ)vi(ȳ)dȳ.

Observe that − 2
pi−1 + n − 2 = −(n − 2) τi

pi−1 = oi(1). By Remark 4.5,

F̄i(ui, r) = ε
1−2ρ+oi(1)
i

∫
∂′B+

rε−1
i

O((1 + |ȳ|)2−n)O((1 + |ȳ|)2−n)dȳ

≥ −Cε1−2ρ+oi(1)
i ·

1, for n ≥ 4,
log(ε−1

i ), for n = 3.
(4.8)

Similarly,

Fi(ui, r) = −ε
−

2
pi−1 +n−2

i

∫
B+

rε−1
i

(yb∂bvi +
n − 2

2
vi)(Lĝi − ∆)vidy

= ε
−2ρ+oi(1)
i

∫
B+

rε−1
i

O((1 + |y|)2−n)O(εi|y|)O((1 + |y|)−n)dy

≥ −Cε1−2ρ+oi(1)
i ·

1, for n ≥ 4,
log(ε−1

i ), for n = 3 ,

where (ĝi)kl(y) = (gi)kl(εiy). This, together with the identities (4.6), (4.7), (4.8)
and the fact that Qi(ui, r) ≥ c > 0, gives the result. �

Now, we are able to prove Proposition 4.3.

Proposition 4.3. We will first need the following two claims.

Claim 1 Given a small σ > 0, there exists C > 0 such that∫
∂′B+

σ

ui(ψi(z̄))pi dz̄ ≤ CM−1
i .
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If follows from Proposition 4.1 that we can choose a subsequence such that∫
∂′B+

ri

upi

i (ψi(z̄))dz̄ = M−(pi−1)(n−1)+pi

i

∫
∂′B+

Ri

vi(ȳ)pi dȳ ≤ CM−1
i .

Here, ri = RiM
−(pi−1)
i → 0, Ri → ∞ and we used Proposition 4.4 in the last

inequality. On the other hand, by Lemma 4.4,∫
∂′B+

σ \∂′B+
ri

upi

i (ψi(z̄))dz̄ ≤ CM−λipi

i

∫
∂′B+

σ \∂′B+
ri

|z̄|(2−n+ρ)pi dz̄

≤ CM−λipi

i (RiM
−(pi−1)
i )(2−n−ρ)pi+n−1

≤ oi(1)M−1
i .

This proves Claim 1.

Claim 2 There exists σ1 > 0 such that for all 0 < σ < σ1 there exists C = C(σ) such
that

ui(ψi(z))ui(xi) ≤ C

for any z ∈ ∂+B+
σ (0).

It is not difficult to see that if σ1 > 0 is small we can find a conformal metric,
still denoted by gi, such that Rgi ≡ 0 in B+

σ1
(0) and hgi ≡ 0 on ∂′B+

σ1
(0).

We fix σ ∈ (0, σ1) and choose any xσ ∈ ψi(∂+B+
σ (0)).

If we set wi = ui(xσ)−1ui ◦ ψi, then wi satisfies∆gi wi = 0, in B+
σ (0) ,

∂nwi + (n − 2)ui(xσ)pi−1 f−τi
i wpi

i = 0, on ∂′B+
σ (0) .

(4.9)

By the Harnack inequality of Lemma 9.3, for each β > 0 there exists Cβ > 0 such
that

C−1
β ≤ wi(z) ≤ Cβ

if |z| > β. Observe that Lemma 4.4 implies that ui(xσ)pi−1
→ 0 as i→ ∞. Hence,

we can suppose that wi → w in C2
loc(B

+
σ (0)\{0}) for some w > 0 satisfying∆g0 w = 0, in B+

σ (0)\{0},
∂nw = 0, on ∂′B+

σ (0)\{0}.
(4.10)

Here, g0 = limi→∞ gi. It follows from elliptic linear theory that

w(z) = aG(z) + b(z) for z ∈ B+
σ (0)\{0} ,

where a ≥ 0. Here, G is the Green’s function so that
∆g0 G = 0, in B+

σ (0)\{0},
G = 0, on ∂+B+

σ (0),
∂nG = 0, on ∂′B+

σ (0)\{0},
lim|z|→0 |z|n−2G(z) = 1 ,
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and b satisfies ∆g0 b = 0, in B+
σ (0),

∂nb = 0, on ∂′B+
σ (0) .

We will prove that a > 0. We set r = |z|. Since the blow-up is isolated

simple, r 7→ r
1

pi−1 ūi(r) is decreasing in (ri, σ) (see Remark 4.4). Taking the limit
as i→ ∞, we conclude that r 7→ r

n−2
2 w̄(r) is decreasing in (0, σ). Hence, w has a

non-removable singularity at the origin. Therefore a > 0.
Observe that there exists c1 > 0 such that

−

∫
∂+B+

σ

∂w
∂r

dσσ > c1. (4.11)

Integrating by parts the first equation of (4.9) we obtain

0 =

∫
B+
σ

∆g0 widz =

∫
∂+B+

σ

∂wi

∂r
dσσ −

∫
∂′B+

σ

∂nwidz̄

=

∫
∂+B+

σ

(
∂w
∂r

+ oi(1)
)

dσσ + (n − 2)ui(xσ)−1
∫
∂′B+

σ

f−τi
i (ui ◦ ψi)pi dz̄

≤ −
c1

2
+ Cui(xσ)−1ui(xi)−1, (4.12)

where we used the estimate (4.11) and Claim 1 in the last inequality. This proves
Claim 2.

Now we are going to prove the item (a). Suppose by contradiction it does
not hold. Then passing to a subsequence we can choose {x′i } ⊂ M such that
dgi (x′i , xi)→ 0 and

ui(xi)ui(x′i )|z
′

i |
n−2
→∞, (4.13)

where z′i = ψ−1
i (x′i ).

By Proposition 4.1 we can assume that Riui(xi)−(pi−1)
≤ |z′i | ≤ δ/2 where

Ri → ∞. We set vi(y) = |z′i |
1

pi−1 ui(ψi(|z′i | y)) for y ∈ B+
δ|z′i |

−1 (0). Hence, the origin is
an isolated simple blow-up point for {vi}. Thus, by Claim 2, there exists C > 0
such that

|z′i |
2

pi−1 ui(xi)ui(x′i ) = vi(0)vi(y′i ) ≤ C

where y′i = |z′i |
−1z′i . This contradicts the hypothesis (4.13).

Item (b) is just an application of Lemma 4.5. �

Remark 4.6. Suppose that xi → x0 is an isolated simple blow-up point for {ui}.
Then, as a consequence of Propositions 4.1 and 4.3, we see that vi ≤ CU in
B+

δMp1−1
i

(0).
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5 The linearized equation

In this section we will be interested in solutions of a certain type of linear
problem. These solutions will be used in the blow-up estimates of the next
section.

Convention In this section, we will always use the conformal equivalence
between Rn

+ ∪ {∞} and Bn realized by the inversion F (see Section 2.2).

Let r 7→ 0 ≤ χ(r) ≤ 1 be a smooth cut-off function such that χ(r) ≡ 1 for
0 ≤ r ≤ δ and χ(r) ≡ 0 for r > 2δ. We set χε(r) = χ(εr). Thus, χε(r) ≡ 1 for
0 ≤ r ≤ δε−1 and χε(r) ≡ 0 for r > 2δε−1.

Proposition 5.1. Let {h(i)
kl }
∞

i=1, k, l = 1, ...,n− 1, and {εi}
∞

i=1 be sequences. Suppose that
tr(h(i)

kl ) = 0, for each i, and 0 < εi → 0, as i→ ∞. Then, for each i, there is a solution
φi to ∆φi(y) = −2χεi (|y|)εih

(i)
kl yn(∂k∂lU)(y) , for y ∈ Rn

+ ,

∂nφi(ȳ) + nU
2

n−2φi(ȳ) = 0 , for ȳ ∈ ∂Rn
+ ,

(5.1)

where ∆ stands for the Euclidean Laplacian, satisfying

|∇
rφi|(y) ≤ Cεi|h

(i)
kl |(1 + |y|)3−r−n , for y ∈ Rn

+ , r = 0, 1 or 2 , (5.2)

φi(0) =
∂φi

∂y1
(0) = ... =

∂φi

∂yn−1
(0) = 0 (5.3)

and ∫
∂Rn

+

U
n

n−2 (ȳ)φi(ȳ) dȳ = 0 . (5.4)

Proof. We set

fi(F(y)) = −2χεi (|y|)εih
(i)
kl yn(∂k∂lU)(y)U−

n+2
n−2 (y) for y ∈ Rn

+ .

Observe that fi can be extended as a smooth function to Bn. According to
Lemma 2.2, the coordinate functions z1, ..., zn, taken with center (0, ..., 0,−1/2),
satisfy the equations (2.5) with λ = 2 and we also have z j ◦ F = −1

n−2 U−1 J j, for
j = 1, ...,n − 1, and zn ◦ F = 1

n−2 U−1 Jn. Hence,∫
Bn

fi z jdz =
2

n − 2

∫
Rn

+

χεi (|y|)εih
(i)
kl yn(∂k∂lU)(∂ jU)dy = 0 , j = 1, ...,n − 1 ,

and ∫
Bn

fi zndz =
−2

n − 2

∫
Rn

+

χεi (|y|)εih
(i)
kl yn(∂k∂lU)

(n − 2
2

U + yb∂bU
)

dy = 0 .
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Here, we used the fact that∫
Sn−2

r

pk =
r2

k(k + n − 3)

∫
Sn−2

r

∆pk (5.5)

for every homogeneous polynomial pk of degree k. Thus, by elliptic linear
theory, it is possible to find a smooth solution φ̄εi to∆φ̄εi = fi , in Bn ,

∂φ̄εi
∂η + 2φ̄εi = 0 , on ∂Bn ,

(5.6)

L2(Bn)-ortogonal to the coordinate functions z1, ..., zn. We recall that η is the
inward unit normal vector to ∂Bn.

Let G be the Green’s function on Bn so that

∆G(z,w) = αn

n∑
a=1

zawa , for z , w ,

subject to the boundary condition
(
∂
∂η + 2

)
G = 0 on ∂Bn. Here, αn = |za|

−2
L2(Bn), for

any a = 1, ...,n, is a constant. By the Green’s formula, G satisfies

ϕ(z) =

n∑
a=1

∫
Bn
αnzawa ϕ(w) dw −

∫
Bn

G(z,w)∆ϕ(w) dw

−

∫
∂Bn

G(z,w)
(
∂ϕ

∂η
+ 2ϕ

)
(w) dσ(w)

for any ϕ ∈ C2(Bn). In particular, φ̄εi satisfies

φ̄εi (z) = −

∫
Bn

G(z,w) fi(w)dw .

Therefore,

|φ̄εi (z)| ≤ Cεi|h
(i)
kl |

∫
Bn
|z − w|2−n

|w + (0, ..., 0, 1)|−3dw .

It follows from the result in [25], p.150 (see also [5], p.108) that

φ̄εi (z) ≤ Cεi|h
(i)
kl ||z + (0, ..., 0, 1)|−1

≤ Cεi|h
(i)
kl |(|F(z)| + 1) .

Hence, φεi = U(φ̄εi ◦ F) satisfies the estimate (5.2). By the properties (2.6) and
(2.7) of the operators Lg and Bg, φεi is a solution to the equations (5.1).

Now, we choose coefficients c j,i = 1
n−2

∂φεi
∂y j

(0), j = 1, ...,n − 1, and cn,i =

−
2

n−2φεi (0) and define

φi = φεi +

n∑
a=1

ca,i Ja .
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Then φi is also a solution to the equations (5.1) and satisfies the identity (5.3).
Since φεi satisfies the estimate (5.2), we see that |ca,i| ≤ C|h(i)

kl |εi for a = 1, ...,n.
Hence, φi also satisfies the estimate (5.2).

Let us prove the identity (5.4). Observe that φ̄i = (U−1φi) ◦ F−1 also satisfies
the equations (5.6) and fi is L2(Bn)-ortogonal to the constant function 1. Hence,
integrating by parts the equations (5.6) we see that φ̄i is L2(∂Bn)-ortogonal to
the funcion 1. This is the identity (5.4). �

The following result is an important estimate that will be used in the subse-
quent local blow-up analysis.

Proposition 5.2. Let φi, h(i)
kl and εi be as in Proposition 5.1 and suppose that n ≥ 5.

Then φi satisfies

−

∫
B+

δε−1
i

(0)

(
yb∂bφi +

n − 2
2

φi

)
εih

(i)
kl yn∂k∂lU dy

−

∫
B+

δε−1
i

(0)

(
yb∂bU +

n − 2
2

U
)
εih

(i)
kl yn∂k∂lφi dy ≥ −C(n)|h(i)

kl |
2εn−2

i δ2−n .

Proof. We first recall that we have denoted B+
δε−1

i
= B+

δε−1
i

(0) ⊂ Rn
+ for short (see

Section 2.1). Integrating by parts,

−

∫
B+

δε−1
i

(
yb∂bφi +

n − 2
2

φi

)
(εih

(i)
kl yn∂k∂lU)dy

≥

∫
B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy +

∫
B+

δε−1
i

εih
(i)
kl ynyb∂b∂kφi∂lUdy

+
n − 2

2

∫
B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy − C|h(i)

kl |
2εn−2

i δ2−n (5.7)

and

−

∫
B+

δε−1
i

(
yb∂bU +

n − 2
2

U
)

(εih
(i)
kl yn∂k∂lφi)dy

≥

∫
B+

δε−1
i

εih
(i)
kl yn∂kU∂lφidy +

∫
B+

δε−1
i

εih
(i)
kl ynyb∂b∂kU∂lφidy

+
n − 2

2

∫
B+

δε−1
i

εih
(i)
kl yn∂kU∂lφidy − C|h(i)

kl |
2εn−2

i δ2−n . (5.8)

Here, the terms C|h(i)
kl |

2εn−2
i δ2−n come from estimating the integrals over ∂+B+

δε−1
i
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using the estimate (5.2). Another integration by parts gives∫
B+

δε−1
i

εih
(i)
kl ynyb(∂b∂kφi)∂lUdy +

∫
B+

δε−1
i

εih
(i)
kl ynyb(∂b∂kU)∂lφidy

≥ −(n + 1)
∫

B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy − C|h(i)

kl |
2εn−2

i δ2−n .

This, together with the inequalities (5.7) and (5.8), gives

−

∫
B+

δε−1
i

(
yb∂bφi +

n − 2
2

φi

)
(εih

(i)
kl yn∂k∂lU)dy

−

∫
B+

δε−1
i

(
yb∂bU +

n − 2
2

U
)

(εih
(i)
kl yn∂k∂lφi)dy

≥ −

∫
B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy − C|h(i)

kl |
2εn−2

i δ2−n .

The result now follows from the following Claim:

Claim −

∫
B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy ≥ −C|h(i)

kl |
2εn−2

i δ2−n

Integrating by parts and using the first equation of (5.1),

−

∫
B+

δε−1
i

εih
(i)
kl yn∂kφi∂lUdy ≥

∫
B+

δε−1
i

φiεih
(i)
kl yn∂k∂lUdy − C|h(i)

kl |
2εn−2

i δ2−n

= −
1
2

∫
B+

δε−1
i

(∆φi)φidy − C|h(i)
kl |

2εn−2
i δ2−n .

It follows from the estimate (5.2) and the assumption over the dimension that

−

∫
B+

δε−1
i

(∆φi)φidy ≥ −
∫
Rn

+

(∆φi)φidy − C|h(i)
kl |

2εn−2
i δ2−n .

Hence, in order to prove the Claim, we will show that

−

∫
Rn

+

(∆φi)φidy ≥ 0 (5.9)

We set φ̄i = (U−1φi) ◦ F−1. Observe that, by the properties (2.6) and (2.7), φ̄i
satisfies the equations (5.6) and we have

−

∫
Rn

+

(∆φi)φidy = −

∫
Bn

(∆Bn φ̄i)φ̄idz . (5.10)
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Now, integrating by parts in Bn, we obtain

−

∫
Bn

(∆Bn φ̄i)φ̄idz =

∫
Bn
|∇φ̄i|

2
Bn dz − 2

∫
∂Bn
φ̄2

i dσ , (5.11)

Using Lemma 2.2 we see that

inf
φ̄∈C1

∫
Bn |∇φ̄|

2dz∫
∂Bn φ̄2dσ

= 2 ,

where C1 = {φ̄ ∈ H1(Bn);
∫
∂Bn φ̄dσ = 0}. On the other hand, the identity (5.4) is

equivalent to
∫
∂Bn φ̄idσ = 0. Hence,∫

Bn
|∇φ̄i|

2
Bn dz − 2

∫
∂Bn
φ̄2

i dσ ≥ 0 . (5.12)

Now the inequality (5.9) follows from the equalities (5.10) and (5.11) and the
inequality (5.12). This proves the Claim. �

6 Blow-up estimates

In this section we will give a pointwise estimate for a blow-up sequence {ui} in a
neighborhood of an isolated simple blow-up point. The arguments given here
are modifications of the ones given in [29] and [35] for the case of manifolds
without boundary.

In what follows, we will make use of the notations εi = M−(pi−1)
i , introduced

in Section 4, τi = n
n−2 − pi and ui ∈ Mi, introduced in Section 2.4.

Assumption In this section we assume that n ≥ 5.

Let xi → x0 be an isolated simple blow-up point for the sequence {ui ∈

Mi}. We use conformal Fermi coordinates centered at xi. Thus we will work
with conformal metrics g̃i = ζ

4
n−2
i gi and sequences {ũi = ζ−1

i ui} and {ε̃i}, where
ε̃i = ũi(xi)−(pi−1) = εi, since ζi(xi) = 1. As observed in the Remark 4.3, xi → x0
is still an isolated blow-up point for the sequence {ũi} and satisfies the same
estimates of Proposition 4.3 (since we have uniform control on the conformal
factors ζi > 0, these estimates are preserved). Let ψi : B+

δ′ (0) → M denote the
g̃i-Fermi coordinates centered at xi.

In order to simplify our notations, we will omit the simbols ˜ and ψi in
the rest of this section. Thus, the metrics g̃i will be denoted by gi and points
ψi(z) ∈ M, for z ∈ B+

δ′ (0), will be denoted simply by z. In particular, xi = ψi(0)
will be denoted by 0 and ui ◦ ψi by ui.
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We set vi(y) = ε
1

pi−1

i ui(εiy) for y ∈ B+
δ′ε−1

i
= B+

δ′ε−1
i

(0). We know that vi satisfiesLĝi vi = 0, in B+
δ′ε−1

i
,

Bĝi vi + (n − 2) f̂−τi
i vpi

i = 0, on ∂′B+
δ′ε−1

i
,

(6.1)

where f̂i(y) = fi(εiy) and ĝi is the metric with coefficients (ĝi)kl(y) = (gi)kl(εiy).
Let φi be the solution to the linearized equation obtained in Proposition 5.1

with h(i)
kl = hkl(0), observing that the hypothesis tr(h(i)

kl ) = 0 is satisfied due to
Proposition 2.2(iii). The main result of this section is the following:

Proposition 6.1. There exist C, δ > 0 such that

|vi − (U + φi)|(y) ≤ C(|∂2gi| + |∂gi|
2)ε2

i (1 + |y|)4−n + Cεn−3
i (1 + |y|)−1 ,

|∇vi − ∇(U + φi)|(y) ≤ C(|∂2gi| + |∂gi|
2)ε2

i (1 + |y|)3−n + Cεn−3
i (1 + |y|)−2 ,

|∇
2vi − ∇

2(U + φi)|(y) ≤ C(|∂2gi| + |∂gi|
2)ε2

i (1 + |y|)2−n + Cεn−3
i (1 + |y|)−3 ,

for |y| ≤ δε−1
i . (See Section 2.3 for the notation |∂kgi|.)

In order to prove Proposition 6.1 we will first prove some auxiliary results.

Lemma 6.1. There exist δ,C > 0 such that

|vi −U − φi|(y) ≤ C max{(|∂2gi| + |∂gi|
2)ε2

i , ε
n−3
i , τi} ,

for |y| ≤ δε−1
i .

Proof. We consider δ < δ′ to be chosen later and set

Λi = max
|y|≤δε−1

i

|vi −U − φi|(y) = |vi −U − φi|(yi) ,

for some |yi| ≤ δε−1
i . From Remark 4.6 we know that vi(y) ≤ CU(y) for |y| ≤ δε−1

i .
Hence, if there exists c > 0 such that |yi| ≥ cε−1

i , then

Λi = |vi −U − φi|(yi) ≤ C |yi|
2−n
≤ C εn−2

i

where we used the estimate (5.2) in the first inequality. This implies the stronger
inequality |vi − U − φi|(y) ≤ C εn−2

i , for |y| ≤ δε−1
i . Hence, we can suppose that

|yi| ≤ δε−1
i /2.

Suppose, by contradiction, the result is false. Then, choosing a subsequence
if necessary, we can suppose that

Λ−1
i (|∂2gi| + |∂gi|

2)ε2
i → 0, Λ−1

i ε
n−3
i and Λ−1

i τi → 0 . (6.2)

We define
wi(y) = Λ−1

i (vi −U − φi)(y) , for |y| ≤ δε−1
i .
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By the equations (2.1) and (6.1), wi satisfiesLĝi wi = Qi , in B+
δε−1

i
,

Bĝi wi + biwi = Qi , on ∂′B+
δε−1

i
,

(6.3)

where

bi = (n − 2) f̂−τi
i

vpi
i −(U+φi)pi

vi−(U+φi)
,

Qi = −Λ−1
i

{
(Lĝi − ∆)(U + φi) + ∆φi

}
,

Qi = −Λ−1
i

{
(n − 2) f̂−τi

i (U + φi)pi − (n − 2)U
n

n−2 − nU
2

n−2φi −
n−2

2 hĝi (U + φi)
}
.

Observe that, for any funcion u,

(Lĝi − ∆)u(y) = (ĝkl
i − δ

kl)(y)∂k∂lu(y) + (∂k ĝkl
i )(y)∂lu(y)

−
n − 2

4(n − 1)
Rĝi (y)u(y) +

∂k
√

det ĝi√
det ĝi

ĝkl
i (y)∂lu(y)

= (gkl
i − δ

kl)(εiy)∂k∂lu(y) + εi(∂kgkl
i )(εiy)∂lu(y)

−
n − 2

4(n − 1)
ε2

i Rgi (εiy)u(y) + O(εN
i |y|

N−1)∂lu(y) ,

where N can be taken arbitrarily large since we are using conformal Fermi
coordinates. Hence, setting N = n − 3,

Qi(y) = −Λ−1
i (gkl

i − δ
kl)(εiy)∂k∂l(U + φi)(y) −Λ−1

i εi(∂kgkl
i )(εiy)∂l(U + φi)(y)

+
n − 2

4(n − 1)
Λ−1

i ε
2
i Rgi (εiy)(U + φi)(y) −Λ−1

i ∆φi(y) + O(Λ−1
i ε

n−3
i |y|

n−4(1 + |y|)1−n)

= O
(
Λ−1

i (|∂2gi| + |∂gi|
2)ε2

i (1 + |y|)2−n
)

+ O(Λ−1
i ε

n−3
i (1 + |y|)−3) , (6.4)

where we have used the identities (5.1) and (5.2) and Proposition 2.1.
Observe that

(n − 2) f̂−τi
i (U + φi)pi − (n − 2)U

n
n−2 − nU

2
n−2φi

= (n − 2)
(

f̂−τi
i (U + φi)pi − (U + φi)

n
n−2

)
+ O(U

4−n
n−2φ2

i )

= (n − 2) f̂−τi
i

(
(U + φi)pi − (U + φi)

n
n−2

)
+ (n − 2)( f̂−τi

i − 1)(U + φi)
n

n−2 + O(U
4−n
n−2φ2

i ) .

Using

U
4−n
n−2φ2

i = O(ε2
i |hkl(0)|2(1 + |y|)2−n),

hĝi (U + φi) = O(ε2
i |∂

2gi|(1 + |y|)3−n),
f̂−τi
i

(
(U + φi)pi − (U + φi)

n
n−2

)
= O(τi(U + φi)

n
n−2 log(U + φi)) = O(τi(1 + |y|)1−n),

( f̂−τi
i − 1)(U + φi)

n
n−2 = O(τi log( fi)(U + φi)

n
n−2 ) = O(τi(1 + |y|)−n),
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where in the second line we used Proposition 2.2(iii), we obtain

Q̄i(ȳ) = O
(
Λ−1

i ε
2
i (|∂2gi| + |∂gi|

2)(1 + |ȳ|)3−n
)

+ O
(
Λ−1

i τi(1 + |ȳ|)1−n
)
. (6.5)

Moreover,
bi(y)→ nU

2
n−2 , in C2

loc(R
n
+) , (6.6)

and
bi(y) ≤ C(1 + |y|)−2 , for |y| ≤ δε−1

i . (6.7)

Since |wi| ≤ |wi(yi)| = 1, we can use standard elliptic estimates to conclude
that wi → w, in C2

loc(R
n
+), for some function w, choosing a subsequence if

necessary. From the identities (6.2), (6.4), (6.5) and (6.6), we see that w satisfies∆w = 0 , inRn
+ ,

∂nw + nU
2

n−2 w = 0 , on ∂Rn
+ .

(6.8)

Claim w(y) = O((1 + |y|)−1), for y ∈ Rn
+.

Choosing δ > 0 sufficiently small, we can consider the Green’s function
Gi for the conformal Laplacian Lĝi in B+

δε−1
i

subject to the boundary conditions

Bĝi Gi = 0 on ∂′B+
δε−1

i
and Gi = 0 on ∂+B+

δε−1
i

. Let ηi be the inward unit normal

vector to ∂+B+
δε−1

i
. Then the Green’s formula gives

wi(y) = −

∫
B+

δε−1
i

Gi(ξ, y)Qi(ξ) dvĝi (ξ) +

∫
∂+B+

δε−1
i

∂Gi

∂ηi
(ξ, y)wi(ξ) dσĝi (ξ)

+

∫
∂′B+

δε−1
i

Gi(ξ, y)
(
bi(ξ)wi(ξ) −Qi(ξ)

)
dσĝi (ξ) . (6.9)

Using the estimates (6.4), (6.5) and (6.7) in the equation (6.9), we obtain

|wi(y)| ≤ CΛ−1
i (|∂2gi| + |∂gi|

2)ε2
i

∫
B+

δε−1
i

|ξ − y|2−n(1 + |ξ|)2−ndξ

+ CΛ−1
i ε

n−3
i

∫
B+

δε−1
i

|ξ − y|2−n(1 + |ξ|)−3dξ + C
∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)−2dξ̄

+ CΛ−1
i (|∂2gi| + |∂gi|

2)ε2
i

∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)3−ndξ̄

+ CΛ−1
i τi

∫
∂′B+

δε−1
i

|ξ̄ − y|2−n(1 + |ξ̄|)1−ndξ̄ + CΛ−1
i ε

n−2
i

∫
∂+B+

δε−1
i

|ξ − y|1−ndσ(ξ) ,
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for |y| ≤ δε−1
i /2. Here, we have used the fact that |Gi(x, y)| ≤ C |x − y|2−n for

|y| ≤ δε−1
i /2 and, since vi(y) ≤ CU(y), |wi(y)| ≤ CΛ−1

i ε
n−2
i for |y| = δε−1

i . Hence,
using Lemma 9.2 and the assumption over the dimension,

|wi(y)| ≤ C
(
(1 + |y|)−1 + Λ−1

i (|∂2gi| + |∂gi|
2)ε2

i + Λ−1
i ε

n−3
i + Λ−1

i τi

)
(6.10)

for |y| ≤ δε−1
i /2. The Claim now follows from the hypothesis (6.2).

Now, we can use the claim above and Lemma 2.1 to see that

w(y) =

n−1∑
j=1

c j∂ jU(y) + cn

(n − 2
2

U(y) + yb∂bU(y)
)
,

for some constants c1, ..., cn. It follows from the identity (5.3) that wi(0) = ∂wi
∂y j

(0) =

0 for j = 1, ...,n − 1. Thus we conclude that c1 = ... = cn = 0. Hence, w ≡ 0.
Since wi(yi) = 1, we have |yi| → ∞. This, together with the hypothesis (6.2),
contradicts the estimate (6.10), since |yi| ≤ δε−1

i /2, and concludes the proof of
Lemma 6.1. �

Lemma 6.2. There exists C > 0 such that

τi ≤ C max{(|∂2gi| + |∂gi|
2)ε2

i , ε
n−3
i } .

Proof. Suppose, by contradiction, the result is false. Then we can suppose that

τ−1
i (|∂2gi| + |∂gi|

2)ε2
i , τ

−1
i ε

n−3
i → 0 (6.11)

and, by Lemma 6.1, there exists C > 0 such that

|vi − (U + φi)|(y) ≤ Cτi , for |y| ≤ δε−1
i .

We define
wi(y) = τ−1

i (vi − (U + φi))(y) , for |y| ≤ δε−1
i .

Then wi satisfies the equations (6.3) with

bi = (n − 2) f̂−τi
i

vpi
i −(U+φi)pi

vi−(U+φi)
,

Qi = −τ−1
i

{
(Lĝi − ∆)(U + φi) + ∆φi

}
,

Qi = −τ−1
i

{
(n − 2) f̂−τi

i (U + φi)pi − (n − 2)U
n

n−2 − nU
2

n−2φi −
n−2

2 hĝi (U + φi)
}
.

Similarly to the estimates (6.4) and (6.5) we have

|Qi(y)| ≤ Cτ−1
i (|∂2gi| + |∂gi|

2)ε2
i (1 + |y|)2−n + Cτ−1

i ε
n−3
i (1 + |y|)−3 , (6.12)

|Qi(y)| ≤ Cτ−1
i (|∂2gi| + |∂gi|

2)ε2
i (1 + |y|)3−n + C(1 + |y|)1−n (6.13)

and bi satisfies the estimate (6.7).
By definition, wi ≤ C and, by elliptic standard estimates, we can suppose

that wi → w in C2
loc(R

n
+) for some function w. By the identity (6.6) and the
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estimates (6.12) and (6.13) we see that w satisfies the equations (6.8). Recall that
Jn(y) = n−2

2 U(y) + yb∂bU(y) also satisfies the equations (6.8) (see Section 2.2).
Let ηi be the inward unit normal vector to ∂+B+

δε−1
i

. Using the Green’s

formula, we have∫
∂′B+

δε−1
i

Jn · (Bĝi wi + biwi) dσĝi =

∫
∂′B+

δε−1
i

(Bĝi (Jn) + bi Jn) · wi dσĝi (6.14)

+

∫
∂+B+

δε−1
i

(
∂Jn

∂ηi
wi − Jn

∂wi

∂ηi

)
dσĝi

+

∫
B+

δε−1
i

(
wiLĝi (Jn) − JnLĝi (wi)

)
dvĝi .

It follows from the estimate (5.2) and the hypothesis (6.11) that

lim
i→∞

∫
∂+B+

δε−1
i

(
∂Jn

∂ηi
wi − Jn

∂wi

∂ηi

)
dσĝi = 0 . (6.15)

Using the first equation of (6.3), the estimate (6.12) and again the hypothesis
(6.11), we have

lim
i→∞

∫
B+

δε−1
i

JnLĝi (wi) dvĝi = lim
i→∞

∫
B+

δε−1
i

JnQi dvĝi = 0 . (6.16)

We will now derive a contradiction using the identity (6.14). First observe
that

Jn(y) =
n − 2

2
1 − r2

(1 + r2)
n
2
, if yn = 0 . (6.17)

Here, r2 = y2
1 + ... + y2

n−1. Then∫
∂Rn

+

JnU
n

n−2 dȳ =
n − 2

2
σn−2

∫
∞

0

1 − r2

(1 + r2)n rn−2dr

=
n − 2

2
σn−2

(∫ 1

0

1 − r2

(1 + r2)n rn−2dr +

∫
∞

1

1 − r2

(1 + r2)n rn−2dr
)

= 0 ,

where in the last equality we change variables s = r−1. Now, observe that

lim
i→∞

τ−1
i

(
f̂−τi
i (y)(U + φi)pi (y) − (U + φi)

n
n−2 (y)

)
= −

(
log f (x0) + log U(y)

)
U

n
n−2 (y) ,

where f = limi→∞ fi. Similarly to the estimate (6.13), we have∣∣∣∣Qi(y) + (n − 2)τ−1
i

(
f̂−τi
i (y)(U + φi)pi (y) − (U + φi)

n
n−2 (y)

)∣∣∣∣
≤ Cτ−1

i (|∂2gi| + |∂gi|
2)ε2

i (1 + |y|)3−n .
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Therefore, since
∫
∂Rn

+
JnU

n
n−2 dȳ = 0,

lim
i→∞

∫
∂′B+

δε−1
i

JnQ̄i dσĝi = (n − 2)
∫
∂Rn

+

Jn log(U)U
n

n−2 dȳ , (6.18)

where we have used the hypothesis (6.11).

Claim
∫
∂Rn

+
Jn log(U)U

n
n−2 dȳ > 0.

By the identity (6.17),∫
∂Rn

+

Jn(log U)U
n

n−2 dȳ = −
(n − 2)2

4
σn−2

∫
∞

0

1 − r2

(1 + r2)n log(1 + r2)rn−2dr .

Changing variables s = r−1, we obtain∫
∞

0

1 − r2

(1 + r2)n log(1 + r2)rn−2dr = 2
∫
∞

1

1 − r2

(1 + r2)n log(r)rn−2dr < 0 ,

which concludes the proof of the Claim.
On the other hand, the equation (6.14) together with the equations (6.3),

(6.6), (6.8), (6.15) and (6.16) gives

lim
i→∞

∫
∂′B+

δε−1
i

JnQ̄i dσĝi = lim
i→∞

∫
∂′B+

δε−1
i

wi · (Bĝi (Jn) + bi Jn) dσĝi + lim
i→∞

∫
B+

δε−1
i

wiLĝi (Jn) dvĝi

=

∫
∂Rn

+

w ·
(
∂Jn

∂yn
+ nU

2
n−2 Jn

)
dȳ +

∫
Rn

+

w∆Jn dy = 0 . (6.19)

Here, we have used the fact that, by the identity (6.18), this limit should be
independent of δ > 0 arbitrarily small. By the previous claim, this contradicts
the identity (6.18). �

Proposition 6.2. There exist C, δ > 0 such that

|vi − (U + φi)|(y) ≤ C max{(|∂2gi| + |∂gi|
2)ε2

i , ε
n−3
i } ,

for |y| ≤ δε−1
i .

Proof. This result follows from Lemmas 6.1 and 6.2. �

Now, we are able to prove Proposition 6.1.

Proposition 6.1. We define

wi(y) = (vi − (U + φi))(y) , for |y| ≤ δε−1
i .

Then wi satisfies the equations (6.3) with
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bi = (n − 2) f̂−τi
i

vpi
i −(U+φi)pi

vi−(U+φi)
,

Qi = −
{
(Lĝi − ∆)(U + φi) + ∆φi

}
,

Qi = −
{
(n − 2) f̂−τi

i (U + φi)pi − (n − 2)U
n

n−2 − nU
2

n−2φi −
n−2

2 hĝi (U + φi)
}
.

Observe that bi satisfies the estimate (6.7). Similarly to the estimates (6.4), (6.5)
we have

|Qi(y)| ≤ Cε2
i (|∂2gi| + |∂gi|

2)(1 + |y|)2−n + Cεn−3
i (1 + |y|)−3 , (6.20)

|Qi(y)| ≤ Cε2
i (|∂2gi| + |∂gi|

2)(1 + |y|)3−n + Cτi(1 + |y|)1−n

≤ Cε2
i (|∂2gi| + |∂gi|

2)(1 + |y|)3−n + Cεn−3
i (1 + |y|)1−n , (6.21)

where in the last inequality we used Lemma 6.2.
The Green’s formula gives

wi(y) = −

∫
B+

δε−1
i

Gi(ξ, y)Qi(ξ) dvĝi (ξ) +

∫
∂+B+

δε−1
i

∂Gi

∂ηi
(ξ, y)wi(ξ) dσĝi (ξ)

+

∫
∂′B+

δε−1
i

Gi(ξ, y)
(
bi(ξ)wi(ξ) −Qi(ξ)

)
dσĝi (ξ) . (6.22)

where ηi is the inward unit normal vector to ∂+B+
δε−1

i
and Gi is the Green’s

function Gi for the conformal Laplacian Lĝi in B+
δε−1

i
subject to the boundary

conditions Bĝi Gi = 0 on ∂′B+
δε−1

i
and Gi = 0 on ∂+B+

δε−1
i

. Using the estimates (6.7),

(6.20), (6.21) and Proposition 6.2 in equation (6.22), as in the proof of Lemma
6.1 we obtain

|wi(y)| ≤ Cε2
i (|∂2gi| + |∂gi|

2)(1 + |y|)−1 + Cεn−3
i (1 + |y|)−1 , (6.23)

for |y| ≤ δε−1
i /2. If n = 5, we have the result. If n ≥ 6, we plug the inequality

(6.23) in the Green’s formula (6.22) until we reach

|wi(y)| ≤ Cε2
i (|∂2gi| + |∂gi|

2)(1 + |y|)4−n + Cεn−3
i (1 + |y|)−1 .

The derivative estimates follow from elliptic theory, finishing the proof. �

7 Local blow-up analysis

In this section we will prove the vanishing of the trace-free second fundamental
form in an isolated simple blow-up point if n ≥ 7. We will also prove a Pohozaev
sign condition that will be used later in the study of the blow-up set. The basic
tool here will be the Pohozaev-type the identity of Section 3 and the blow-up
estimates of Section 6.
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7.1 Vanishing of the trace-free 2nd fundamental form

The vanishing of πkl, the trace-free 2nd fundamental form of the boundary, in
an isolated simple blow-up point is stated as follows:

Theorem 7.1. Suppose that n ≥ 7. Let xi → x0 be an isolated simple blow-up point
for the sequence {ui ∈ Mi}. Then

|πkl(xi)|2 ≤ Cεi .

In particular, πkl(x0) = 0.

Proof. Let xi → x0 be an isolated simple blow-up point for the sequence {ui}.
We use conformal Fermi coordinates centered at xi. Thus we will work with
conformal metrics g̃i = ζ

4
n−2
i gi and sequences {ũi = ζ−1

i ui} and {ε̃i}, where ε̃i =

ũi(xi)−(pi−1) = εi, since ζi(xi) = 1. As observed in the Remark 4.3, xi → x0 is still
an isolated blow-up point for the sequence {ũi} and satisfy the same estimates
of Proposition 4.3 (since we have uniform control on the conformal factors
ζi > 0, these estimates are preserved). Let ψi : B+

δ (0) → M denote the g̃i-Fermi
coordinates centered at xi.

In order to simplify our notations, we will omit the simbols ˜ and ψi in
the rest of this section. Thus, the metrics g̃i will be denoted by gi and points
ψi(z) ∈ M, for z ∈ B+

δ (0), will be denoted simply by z. In particular, xi = ψi(0)
will be denoted by 0 and ui ◦ ψi by ui.

We set vi(y) = ε
1

pi−1

i ui(εiy) for y ∈ B+
δε−1

i
= B+

δε−1
i

(0). We know that vi satisfiesLĝi vi = 0, in B+
δε−1

i
,

Bĝi vi + (n − 2) f̂−τi
i vpi

i = 0, on ∂′B+
δε−1

i
,

where f̂i(y) = fi(εiy) and ĝi is the metric with coefficients (ĝi)kl(y) = (gi)kl(εiy).
Observe that, from Remark 4.6, we know that vi ≤ CU in B+

δε−1
i

.

By Proposition 2.2 (iii), we can suppose that h(0) = h, k(0) = 0. In particular,
πkl(0) = hkl(0). Recall that we use indices 1 ≤ k, l ≤ n − 1 and 1 ≤ a, b ≤ n when
working with coordinates. In many parts of the proof we will use the identity
(5.5).

We write the Pohozaev identity of Proposition 3.1 as

P(ui, r) = Fi(ui, r) + F̄i(ui, r) +
τi

pi + 1
Qi(ui, r) , (7.1)

where
Fi(u, r) = −

∫
B+

r
(zb∂bu + n−2

2 u)(Lgi − ∆)u dz,

F̄i(u, r) = n−2
2

∫
∂′B+

r
(z̄b∂bu + n−2

2 u)hgi u dz̄,

Qi(u, r) =
(n−2)2

2

∫
∂′B+

r
f−τi
i upi+1dz̄ − (n − 2)

∫
∂′B+

r
(z̄k∂k f ) f−τi−1

i upi+1dz̄.
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We choose r > 0 small enough such that Qi(ui, r) ≥ 0. For the term F̄i we
have,

F̄i(ui, r) =
n − 2

2
ε
−

2
(pi−1) +n−2

i

∫
∂′B+

rε−1
i

(
ȳb∂bvi +

n − 2
2

vi

)
εihgi (εi ȳ)vi(ȳ)dȳ ,

Since h(0) = h, k(0) = 0 and the fact that, according to Proposition 4.4,

limi→∞ ε
−

2
pi−1 +n−2

i = limi→∞ ε
−(n−2)

τi
pi−1

i = 1, we have

F̄i(ui, r) = (1 + oi(1))
∫
∂′B+

rε−1
i

O((1 + |ȳ|)2−n)O(ε3
i |∂

3gi||ȳ|2)O((1 + |ȳ|)2−n)dȳ

≥ −Cε3
i |∂

3gi|

∫
∂′B+

rε−1
i

(1 + |ȳ|)6−2ndȳ . (7.2)

We set Ǔi(z) = ε
−

1
pi−1

i (U +φi)(ε−1
i z), where φi is as in Section 6. Using the facts

that gnn
i ≡ 1 and gkn

i ≡ 0 in Fermi coordinates, we have

Fi(ui, r) = −

∫
B+

r

(zb∂bui +
n − 2

2
ui)(Lgi − ∆)uidz

= −ε
−

2
(pi−1) +n−2

i

∫
B+

rε−1
i

(yb∂bvi +
n − 2

2
vi)(Lĝi − ∆)vidy ,

Fi(Ǔi, r) = −

∫
B+

r

(zb∂bǓi +
n − 2

2
Ǔi)(Lgi − ∆)Ǔidz

= −ε
−

2
(pi−1) +n−2

i

∫
B+

rε−1
i

(
yb∂b(U + φi) +

n − 2
2

(U + φi)
)

(Lĝi − ∆)(U + φi)dy .

It follows from Proposition 6.1 that

|Fi(ui, r) − Fi(Ǔi, r)| ≤ Cε3
i (|∂gi| + |∂

2gi|)(|∂2gi| + |∂gi|
2)

∫
B+

rε−1
i

(1 + |y|)5−2ndy

+ Cεn−2
i (|∂gi| + |∂

2gi|)
∫

B+

rε−1
i

(1 + |y|)−ndy . (7.3)

We write

Fi(Ǔi, r) = (1 + oi(1))
{
Ri(U,U) + Ri(U, φi) + Ri(φi,U) + Ri(φi, φi)

}
, (7.4)

where we have defined

Ri(w1,w2) = −

∫
B+

rε−1
i

(yb∂bw1 +
n − 2

2
w1)(Lĝi − ∆)w2dy .
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Using the identities (7.2), (7.3) and (7.4) and the fact that Qi(ui, r) ≥ 0 in the
equality (7.1), we have

P(ui, r) ≥ (1 + oi(1))
{
Ri(U,U) + Ri(U, φi) + Ri(φi,U) + Ri(φi, φi)

}
− C(|∂gi||∂

2gi| + |∂gi|
3 + |∂2gi|

2 + |∂3gi|) ε3
i

− C(|∂gi| + |∂
2gi|) εn−2

i log(ε−1
i ) log r . (7.5)

By Proposition 2.1 and the estimate (5.2),

Ri(U, φi) + Ri(φi,U) = −

∫
B+

rε−1
i

(
yb∂bφi +

n − 2
2

φi

)
(Lĝi − ∆)Udy

−

∫
B+

rε−1
i

(
yb∂bU +

n − 2
2

U
)

(Lĝi − ∆)φidy

≥ −

∫
B+

rε−1
i

(
yb∂bφi +

n − 2
2

φi

)
(2εihkl(0)yn∂k∂lU)dy

−

∫
B+

rε−1
i

(
yb∂bU +

n − 2
2

U
)

(2εihkl(0)yn∂k∂lφi)dy

− Cε3
i |hkl(0)|(|∂2gi| + |∂gi|

2)
∫

B+

rε−1
i

(1 + |y|)5−2ndy .

Now we apply Proposition 5.2 to this inequality to ensure that

Ri(U, φi) + Ri(φi,U) ≥ −C
(
ε3

i |hkl(0)|(|∂2gi| + |∂gi|
2) + |hkl(0)|2εn−2

i r2−n
)
. (7.6)

On the other hand, it follows from the estimate (5.2) that

Ri(φi, φi) = ε3
i |hkl(0)|2|∂gi|

∫
B+

rε−1
i

O((1 + |y|)5−2n)dy . (7.7)

We will now handle the term Ri(U,U). Observe that

∂lU(y) = −(n − 2)
(
(1 + yn)2 + |ȳ|2

)− n
2 yl ,

∂k∂lU(y) = (n − 2)
(
(1 + yn)2 + |ȳ|2

)− n+2
2

(
nykyl − ((1 + yn)2 + |ȳ|2)δkl

)
,

yb∂bU +
n − 2

2
U = −

n − 2
2

(
(1 + yn)2 + |ȳ|2

)− n
2 (|y|2 − 1) .
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Using this we obtain

Ri(U,U) =
(n − 2)2

2

∫
B+

rε−1
i

|y|2 − 1
((1 + yn)2 + |y|2)n+1

· (gkl
i − δ

kl)(εiy)
(
nykyl − ((1 + yn)2 + |ȳ|2)δkl

)
dy

−
(n − 2)2

2

∫
B+

rε−1
i

|y|2 − 1
((1 + yn)2 + |y|2)n · εi(∂kgkl

i )(εiy)yldy

−
(n − 2)2

8(n − 1)

∫
B+

rε−1
i

|y|2 − 1
((1 + yn)2 + |y|2)n−1 · ε

2
i Rgi (εiy)dy .

Using Proposition 2.1, we have

Ri(U,U) ≥
(n − 2)2

2
(A1 + A2 + A3 + A4) − C(|∂2gi| + |∂gi|

2)εn−2
i r2−n ,

where

A1 = n
∫
∞

yn=0

∫
∞

s=0
s2+y2

n−1
(s2+(yn+1)2)n+1

{∫
Sn−2

s
(gkl

i − δ
kl)(εiy)ykyl dσs(y)

}
dsdyn,

A2 = −
∫
∞

yn=0

∫
∞

s=0
s2+y2

n−1
(s2+(yn+1)2)n

{∫
Sn−2

s
(gkl

i − δ
kl)(εiy)δkl dσs(y)

}
dsdyn,

A3 = −
∫
∞

yn=0

∫
∞

s=0
s2+y2

n−1
(s2+(yn+1)2)n

{
εi

∫
Sn−2

s
(∂kgkl

i )(εiy)yl dσs(y)
}

dsdyn,

A4 = −1
4(n−1)

∫
∞

yn=0

∫
∞

s=0
s2+y2

n−1
(s2+(yn+1)2)n−1

{
ε2

i

∫
Sn−2

s
Rgi (εiy) dσs(y)

}
dsdyn.

Using Propositions 2.1 and 2.2 we see that∫
Sn−2

s

(gkl
i − δ

kl
i )(εiy)ykyl dσs = σn−2ε

2
i

y2
nsn

n − 1
· 2|hkl(0)|2 + ε3

i |∂
3gi|O(|(s, yn)|n+3) ,∫

Sn−2
s

(gkl
i − δ

kl
i )(εiy)δkl dσs = σn−2ε

2
i · y

2
nsn−2

· 2|hkl(0)|2

+ ε3
i |∂

3gi|O(|(s, yn)|n+1) ,

εi ·

∫
Sn−2

s

(∂kgkl
i )(εiy)yl dσs = ε3

i |∂
3gi|O(|(s, yn)|n+1) ,

ε2
i ·

∫
Sn−2

s

Rgi (εiy) dσs = −σn−2ε
2
i · s

n−2
· |hkl(0)|2

+ ε3
i (|∂3gi| + |∂

2gi||∂gi|)O(|(s, yn)|n−1) ,

where in the last equality we used the fact that, by the Gauss equation, R(0) +

|hkl(0)|2 = 0. We set I =
∫
∞

0
sn

(s2+1)n ds . Using Corollary 9.1 and the four equalities
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above, we obtain

A1 = σn−2ε
2
i ·

2n
n − 1

|hkl(0)|2
∫
∞

yn=0
y2

n

{∫
∞

s=0

s2 + y2
n − 1

(s2 + (yn + 1)2)n+1 snds
}

dyn

+ ε3
i |∂

3gi|

∫
Rn

+

O((1 + |y|)5−2n)dy

= σn−2ε
2
i I ·

n + 1
n − 1

|hkl(0)|2
∫
∞

yn=0
y2

n(yn + 1)1−ndyn

+ σn−2ε
2
i I · |hkl(0)|2

∫
∞

yn=0
y2

n(y2
n − 1)(yn + 1)−1−ndyn

+ ε3
i |∂

3gi|

∫
Rn

+

O((1 + |y|)5−2n)dy ,

A2 = −σn−2ε
2
i · 2|hkl(0)|2

∫
∞

yn=0
y2

n

{∫
∞

s=0

s2 + y2
n − 1

(s2 + (yn + 1)2)n sn−2ds
}

dyn

+ ε3
i |∂

3gi|

∫
Rn

+

O((1 + |y|)5−2n)dy

= −σn−2ε
2
i I · 2|hkl(0)|2

∫
∞

yn=0
y2

n(yn + 1)1−ndyn

− σn−2ε
2
i I · 2|hkl(0)|2

∫
∞

yn=0
y2

n(y2
n − 1)(yn + 1)−1−ndyn

+ ε3
i |∂

3gi|

∫
Rn

+

O((1 + |y|)5−2n)dy ,

A3 = ε3
i |∂

3gi|

∫
Rn

+

O((1 + |y|)5−2n)dy

and

A4 = σn−2ε
2
i ·

1
4(n − 1)

|hkl(0)|2
∫
∞

yn=0

{∫
∞

s=0

s2 + y2
n − 1

(s2 + (yn + 1)2)n−1 sn−2ds
}

dyn

+ ε3
i (|∂3gi| + |∂

2gi||∂gi|)
∫
Rn

+

O((1 + |y|)5−2n)dy

= σn−2ε
2
i I ·

1
2(n − 3)

|hkl(0)|2
∫
∞

yn=0
(yn + 1)3−ndyn

+ σn−2ε
2
i I ·

1
2(n − 1)

|hkl(0)|2
∫
∞

yn=0
(y2

n − 1)(yn + 1)1−ndyn

+ ε3
i (|∂3gi| + |∂

2gi||∂gi|)
∫
Rn

+

O((1 + |y|)5−2n)dy .

38



We set Ik =
∫
∞

0
yk

n
(1+yn)n dyn. It follows from the above computations that

Ri(U,U) ≥ −Cε3
i (|∂3gi| + |∂

2gi||∂gi|) − Cεn−2
i r2−n(|∂2gi| + |∂gi|

2)

+σn−2ε
2
i I ·

{n + 1
n − 1

(I3 + I2) + (I3 − I2) − 2(I3 + I2) − 2(I3 − I2)
}
|hkl(0)|2

+σn−2ε
2
i I ·

{
1

2(n − 3)
(I3 + 3I2 + 3I1 + I0) +

1
2(n − 1)

(I3 + I2 − I1 − I0)
}
|hkl(0)|2

= σn−2ε
2
i I · (α3I3 + α2I2 + α1I1 + α0I0) · |hkl(0)|2

− Cε3
i (|∂3gi| + |∂

2gi||∂gi|) − Cεn−2
i r2−n(|∂2gi| + |∂gi|

2) , (7.8)

where α3 = −2 + 1
2(n−3) + 5

2(n−1) , α2 = 3
2(n−3) + 5

2(n−1) , α1 = 3
2(n−3) −

1
2(n−1) and

α0 = 1
2(n−3) −

1
2(n−1) .

By Lemma 9.5, I2 = n−4
3 I3, I1 =

(n−4)(n−3)
6 I3 and I0 =

(n−4)(n−3)(n−2)
6 I3. Then a

directy computation shows that

α0I0 + α1I1 + α2I2 + α3I3 =
n − 6

3
I3 .

This, together with the inequality (7.8), implies that

Ri(U,U) ≥ σn−2ε
2
i

n − 6
3

I · I3|hkl(0)|2 − Cεn−2
i r2−n(|∂2gi| + |∂gi|

2)

− Cε3
i (|∂3gi| + |∂

2gi||∂gi|) . (7.9)

Hence, by the estimates (7.5), (7.6), (7.7) and (7.9),

P(ui, r) ≥ (1 + oi(1))σn−2ε
2
i

n − 6
3

I · I3|hkl(0)|2 − Cεn−2
i log(ε−1

i )r2−n(|∂gi| + |∂
2gi|)

− Cε3
i (|∂3gi| + |∂gi||∂

2gi| + |∂
2gi|

2 + |∂gi|
3) . (7.10)

On the other hand, by Proposition 4.3 we can assume that ε
−

1
pi−1

i ui converges

in C2
loc(Bδ(0)\{0}) for δ > 0 small. Hence, for r > 0 small fixed, ε

−
2

pi−1

i P(ui, r)
converges as i→∞ and

P(ui, r) ≤ Cεn−2
i . (7.11)

Then the estimate (7.10) together with the estimate (7.11) and our dimension
assumption gives |hkl(0)|2 ≤ Cεi. This proves Theorem 7.1, since under our
assumptions πkl(xi) = hkl(0). �

7.2 Pohozaev sign condition

Now we will state and prove the Pohozaev sign condition.
We set

P′(u, r) =

∫
∂+B+

r (0)

(
n − 2

2
u
∂u
∂r
−

r
2
|∇u|2 + r

∣∣∣∣∣∂u
∂r

∣∣∣∣∣2) dσr ,

where ∇ stands for the Euclidean gradient.
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Theorem 7.2. Let xi → x0 be a blow-up point for the sequence {ui ∈ Mi}. Assume
that πkl(x0) , 0 and n ≥ 7. We use Fermi coordinates ψi : B+

δ (0)→ M centered at xi.
For 0 < τi → 0, we set

wi(y) = τ
1

pi−1

i ui(ψi(τiy)) , for y ∈ B+
δτ−1

i
(0) .

Suppose that the origin 0 is an isolated simple blow-up point for the sequence {wi} and
that wi(0)wi → G away from the origin, for some function G. Then

lim inf
r→0

P′(G, r) ≥ 0 . (7.12)

Proof. We will use conformal Fermi coordinates centered at xi. Hence, we

actually work with a sequence {ũi = ζ−1
i ui} and metrics g̃i = ζ

4
n−2
i gi and we have

uniform control on the conformal factors ζi > 0. Since τi → 0 and ζi(xi) = 1,

we see that w̃i(0)w̃i(y)→ G(y), where w̃i(y) = τ
1

pi−1

i ũi(ψi(τiy)). Thus, we will use
the same notations and conventions of the proof of Theorem 7.1, omiting the
symbols ˜ and ψi.

Observe that |πkl(xi)| ≥ 1
2 |πkl(x0)| for i large. We will restringe our analysis

to B+
δ̌

(0) ⊂ B+
δτ−1

i
(0), for some δ̌ > 0 fixed. We set ε̌i = wi(0)−(pi−1)

→ 0. Hence,

ε̌ = εiτ−1
i . Let ǧi be the metric on B+

δ̌
(0) with coefficients (ǧi)kl(y) = (gi)kl(τiy) and

denote by ȟkl the corresponding 2nd fundamental form.
Similarly to the estimate (7.10), we have

P(wi, r) ≥ (1 + oi(1))σn−2ε̌
2
i

n − 6
3

I · I3|ȟkl(0)|2 − Cε̌n−2
i log(ε̌−1

i )r2−n(|∂ǧi| + |∂
2 ǧi|)

− Cε̌3
i (|∂3 ǧi| + |∂ǧi||∂

2 ǧi| + |∂
2 ǧi|

2 + |∂ǧi|
3) . (7.13)

By the Young’s inequality,

ε̌n−2
i log(ε̌−1

i )r2−n
|∂ǧi| ≤ |∂ǧi|

2ε̌n−2
i log(ε̌−1

i )2r2−2n + ε̌n−2
i r2 .

Hence, writing the inequality (7.13) in terms of the metric gi we have

P(wi, r) ≥ (1 + oi(1))σn−2ε
2
i

n − 6
3

I · I3|hkl(0)|2 − Cε2
i (|∂gi|

2 + |∂2gi|)ε̌n−4
i log(ε̌−1

i )2r2−2n

− Cε3
i (|∂3gi| + |∂gi||∂

2gi| + τi|∂
2gi|

2 + |∂gi|
3) − Cε̌n−2

i r2

≥ −Cε̌n−2
i r2 ,

for large i and r > 0 small fixed. Here, we used our dimension assumption and
the fact that |hkl(0)| = |πkl(xi)| ≥ 1

2 |πkl(x0)| > 0 in the last inequality. Hence,

P′(G, r) = lim
i→∞

ε̌
−

2
pi−1

i P(wi, r) ≥ −Cr2 ,

where we also used Proposition 4.4. This proves Theorem 7.2. �
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8 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.
The first proposition of this section states that every isolated blow-up point

xi → x0 is also simple, as long as πkl, the boundary trace-free 2nd fundamental
form, does not vanish at x0.

Proposition 8.1. Let xi → x0 be a blow-up point for the sequence {ui ∈ Mi}. Assume
that πkl(x0) , 0 and n ≥ 7. We use Fermi coordinates ψi : B+

δ (0)→ M centered at xi.
If 0 < τi → 0 or τi = 1, we set

wi(y) = τ
1

pi−1

i ui(ψi(τiy)) , for y ∈ B+
δτ−1

i
(0) .

Suppose that the origin 0 is an isolated blow-up point for the sequence {wi}. Then it is
also isolated simple.

Proof. Suppose that the origin is an isolated blow-up point for {wi} but is not
simple. By definition, passing to a subsequence, there are at least two critical

points of r 7→ r
1

pi−1 w̄i(r) in an interval (0, ρ̄i), ρ̄i → 0. Let ri = Riwi(0)−(pi−1)
→ 0

and Ri →∞ be as in Proposition 4.1. By Remark 4.4, there is exactly one critical
point in the interval (0, ri). Let ρi be the second critical point. Then ρ̄i > ρi ≥ ri.

We set vi(z) = ρ
1

pi−1

i wi(ρiz), for z ∈ B+
δρ−1

i τ
−1
i

(0). Observe that, since ρi ≥ ri,

vi(0)pi−1 = ρiwi(0)pi−1
≥ Ri →∞ .

Hence, vi(0)→∞.
By the scaling invariance (see Remark 4.2), the origin is an isolated blow-up

point for {vi}. By the definitions, r 7→ r
1

pi−1 v̄i(r) has exactly one critical point in
the interval (0, 1) and

d
dr

(r
1

pi−1 v̄i(r))|r=1 = 0 . (8.1)

Hence, the origin is an isolated simple blow-up point for {vi}. It follows from
Proposition 4.3(a) that vi(0)vi is uniformly bounded in compact subsets of
Rn

+\{0}. Using the equations (2.9), we can suppose that vi(0)vi converges in
C2

loc(R
n
+\{0}) for some function G satisfying∆G = 0 , inRn

+\{0} ,
∂nG = 0 , on ∂Rn

+\{0} .

From elliptic linear theory we know that G(z) = a|z|2−n+b(z), where b is harmonic
onRn

+ with Neumann boundary condition on ∂Rn
+. It follows from Proposition

4.3(b) that a > 0. Since G > 0, lim inf|z|→∞ b(z) ≥ 0. By the Liouville’s theorem, b
is constant. By the equality (8.1),

d
dr

(r
n−2

2 h(r))|r=1 = 0 ,
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which implies that b = a > 0. This contradicts the sign condition of Theorem
7.2. �

The next proposition ensures that the set {x1, ..., xN} ⊂ ∂M of points obtained
in Proposition 4.2 can only contain isolated blow-up points for any blow-up
sequence {ui} as long as πkl does not vanish at the blow-up point. Recall that
we denote by Dδ(x0) the metric ball of ∂M with radius δ centered at x0 ∈ ∂M
and by ḡ the boundary metric.

Proposition 8.2. Assume that n ≥ 7. Let β > 0 be small, R > 0 be large and consider
C0 = C0(β,R) and C1 = C1(β,R) as in Proposition 4.2. Let x0 ∈ ∂M be a point such
that πkl(x0) , 0. Then there exists δ > 0 such that, for any u ∈ Mp satisfying
max∂M u ≥ C0, the set Dδ(x0) ∩ {x1(u), ..., xN(u)} consists of at most one point. Here,
x1(u), ..., xN(u) ∈ ∂M, with N = N(u), are the points obtained in Proposition 4.2.

Proof. Suppose the result is not true. Then there exist sequences pi ∈
(

n
n−2 − β,

n
n−2

]
and ui ∈ Mpi with max∂M ui ≥ C0, such that after relabeling the indices we have
x(i)

1 , x
(i)
2 → x0, as i → ∞. Here, we have set x(i)

1 = x1(ui), ..., x
(i)
Ni

= xNi (ui) and
Ni = N(ui).

We define
si = dḡ(x(i)

1 , x
(i)
2 )−

1
2 →∞.

Claim 1 There exist 1 ≤ ji , ki ≤ Ni such that x(i)
ji
, x(i)

ki
∈ D2s−1

i
(x(i)

1 ),

σi = dḡ(x(i)
ji
, x(i)

ki
) ≤ dḡ(x(i)

1 , x
(i)
2 ),

dḡ(x(i)
l , x

(i)
m ) ≥

1
2
σi , for all x(i)

l , x
(i)
m ∈ Dsiσi (x

(i)
ji

), l , m .

Suppose that Claim 1 is false. Then there exist x(i)
l1
, x(i)

m1
∈ Ds−1

i
(x(i)

1 ), l1 , m1,
with

σ1,i = dḡ(x(i)
l1
, x(i)

m1
) <

1
2
σ0,i =

1
2

s−2
i .

If we repeat this procedure, we obtain sequences x(i)
lr
, x(i)

mr
∈ Dsiσr−1,i (x

(i)
lr−1

), lr , mr,
with

σr,i = dḡ(x(i)
lr
, x(i)

mr
) <

1
2
σr−1,i.

Since Ni < ∞, this procedure has to stop and we reach a contradiction. This
proves Claim 1.

Using Claim 1 and a relabeling of indices, we find x(i)
1 , x

(i)
2 → x0 and si → ∞

so that, if σi = dḡ(x(i)
1 , x

(i)
2 ), we have siσi → 0 and

dḡ(x(i)
l , x

(i)
m ) ≥

1
2
σi , for all x(i)

l , x
(i)
m ∈ Dsiσi (x

(i)
1 ) , l , m .
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By the item (3) of Proposition 4.2 we have ui(x
(i)
1 ),ui(x

(i)
2 )→∞.

Now we use Fermi coordinates ψi : B+
δ (0)→M centered at x(i)

1 and set

vi(y) = σ
1

pi−1

i ui(ψi(σiy)) , for y ∈ B+
si

(0) .

If x(i)
l ∈ Dsiσi (x

(i)
1 ), we set y(i)

l = σ−1
i ψ

−1
i (x(i)

l ) ∈ ∂′B+
si

(0). In particular, y(i)
1 = 0.

Then each y(i)
l is a local maximum of vi and by the item (3) of Proposition 4.2,

min
l
{|y − y(i)

l |
1

pi−1 }vi(y) ≤ C , for y ∈ ∂′B+
1
2 si

(0) .

Furthermore, |y(i)
2 | = |y

(i)
1 − y(i)

2 | = 1 and minl,m |y
(i)
l − y(i)

m | ≥
1
2 + oi(1).

Claim 2 vi(y(i)
1 ), vi(y(i)

2 )→∞.

If vi(y(i)
2 ) stays bounded but vi(y(i)

1 )→∞, then y(i)
1 = 0 is an isolated blow-up

point for {vi} and hence is isolated simple. Since vi remains uniformly bounded
near y(i)

2 , it follows from Lemma 9.3 and Proposition 4.3 that vi(y(i)
2 ) → 0. This

is a contradiction since the item (1) of Proposition 4.2 implies that

σi ≥ max{Rui(x
(i)
1 )−(pi−1),Rui(x

(i)
2 )−(pi−1)

},

thus
vi(y(i)

1 ), vi(y(i)
2 ) ≥ R

1
pi−1 . (8.2)

Of course the same argument holds if we exchange the roles of vi(y(i)
1 ) and

vi(y(i)
2 ).
On the other hand, if both vi(y(i)

1 ) and vi(y(i)
2 ) remain bounded, we can sup-

pose that any other vi(y(i)
l ) also does, using the same argument above. Then,

after passing to a subsequence, vi → v in C2
loc(R

n
+) for some v > 0 satisfying∆v = 0 , inRn

+ ,

∂nv + f (x0)p0−
n

n−2 vp0 = 0 , on ∂Rn
+ ,

and ∂kv(0) = ∂kv(y2) = 0 for k = 1, ...,n − 1. Here p0 = limi→∞ pi ∈ [ n
n−2 − β,

n
n−2 ]

and y2 = limi→∞ y(i)
2 . Note that |y2| = 1. Then the Liouville-type theorems of

[28] and [33] yield that v ≡ 0, which contradicts the inequalities (8.2). This
proves Claim 2.

It follows from Claim 2 that 0 = y(i)
1 and y(i)

2 are isolated blow-up points for
{vi}. Thus Proposition 8.1 implies that they are isolated simple.

Then, similarly to the proof of Proposition 8.1,

vi(y(i)
1 )vi(y)→ G(y) = a1|y|2−n + a2|y − y2|

2−n + b(y)
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in C2
loc(R

n
+\S). Here, S denotes the set of blow-up points for {vi}, b(y) is a

harmonic function on Rn
+\(S\{0, y2}) with Neumann boundary condition and

a1, a2 > 0. By the maximum principle, b(y) ≥ 0. Hence, for |y| near 0,

G(y) = a1|y|2−n + b + O(|y|)

for some constant b > 0. This contradicts the sign condition of Theorem 7.2 and
proves Proposition 8.2. �

Now we are able to prove Theorem 1.1.

Theorem 1.1. Suppose by contradiction that xi → x0 is a blow-up point for
a sequence {ui ∈ Mpi } and πkl(x0) , 0. Let x1(ui), ..., xN(ui)(ui) be the points
obtained in Proposition 4.2. By the item (3) of this Proposition, we must have
dg(xi, xki (ui)) → 0 for some 1 ≤ ki ≤ N(ui). If xki = xki (ui), it is not difficult
to see that ui(xki ) → ∞. Thus xki → x0 is a blow-up point for {ui}. It follows
from Propositions 8.1 and 8.2 that xki → x0 is isolated simple. This contradicts
Theorem 7.1. �

9 Appendix

In this section we will state some technical results that were used in the previous
computations.

Our first result is a modification of Proposition 2.7 in [30]. The proof is
similar.

Lemma 9.1. Let (M, g) be a Riemannian manifold with boundary ∂M. Let x ∈ ∂M
andU ⊂M be an open set containing x. Let u be a weak solution to∆u = 0 , inU\{x}

( ∂∂η + ψ)u = 0 , onU ∩ ∂M\{x} ,

where η is the inward unit normal vector to ∂M. Suppose that u ∈ Lq(U) for some
q > n

n−2 and u, ψu ∈ L1(U ∩ ∂M). Then u is a weak solution to∆u = 0 , inU ,

( ∂∂η + ψ)u = 0 , onU ∩ ∂M .

The proof of the following lemma is similar to the result in [25], p.150 (see
also [5], p.108).

Lemma 9.2. Let ρ > 0 be small and suppose that ρ ≤ β ≤ β + ρ ≤ α ≤ n − ρ. Then
there exists C = C(n, ρ) > 0 such that∫

Rn
|y − x|β−n(1 + |x|)−αdx ≤ C(1 + |y|)β−α

for any y ∈ Rn+k
⊃ Rn.
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For the proof we decompose Rn in three regions
A := {x ∈ Rn; |x − y| ≤ 1

2 |y| +
1
2 },

B := {x ∈ Rn; |x − y| ≥ 1
2 |y| +

1
2 , |x| ≤ 2|y| + 1},

C := {x ∈ Rn; |x| ≥ 2|y| + 1},
and perform the estimates in each one separately.

The following Harnack-type inequality is Lemma A.1 of [26]:

Lemma 9.3. Let L be an operator of the form

Lu = ∂a

(
αab(x)∂bu + βa(x)u

)
+ γa(x)∂au + ζ(x)u , a, b = 1, ...,n

and assume that for some constant Λ > 1 the coefficient functions satisfy

Λ−1
|ξ|2 ≤ αab(x)ξaξb ≤ Λ|ξ|2,

|βa(x)| + |γa(x)| + |ζ(x)| ≤ Λ,

for all x ∈ B+
3 = B+

3 (0) and all ξ ∈ Rn. If |q(x)| ≤ Λ, for any x ∈ ∂′B+
3 , and

u ∈ C2(B+
3 \∂

′B+
3 ) ∩ C1(B+

3 ) satisfiesLu = 0, u > 0, in B+
3 \∂

′B+
3 ,

αnb(x)∂bu = q(x)u, on ∂′B+
3 ,

then there exists C = C(n,Λ) > 1 such that

max
B+

1

u ≤ C min
B+

1

u .

Next we will perform some computations.

Lemma 9.4. We have:

(a)
∫
∞

0
sαds

(1+s2)m = 2m
α+1

∫
∞

0
sα+2ds

(1+s2)m+1 , for α + 1 < 2m;

(b)
∫
∞

0
sαds

(1+s2)m = 2m
2m−α−1

∫
∞

0
sαds

(1+s2)m+1 , for α + 1 < 2m;

(c)
∫
∞

0
sαds

(1+s2)m = 2m−α−3
α+1

∫
∞

0
sα+2ds

(1+s2)m , for α + 3 < 2m.

Proof. Integrating by parts,∫
∞

0

sα+2ds
(1 + s2)m+1 =

∫
∞

0
sα+1 s ds

(1 + s2)m+1 =
α + 1
2m

∫
∞

0

sαds
(1 + s2)m ,

for α + 1 < 2m, which proves the item (a).
The item (b) follows from the item (a) and from∫

∞

0

sαds
(1 + s2)m =

∫
∞

0

sα(1 + s2)
(1 + s2)m+1 ds =

∫
∞

0

sαds
(1 + s2)m+1 +

∫
∞

0

sα+2ds
(1 + s2)m+1 .
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To prove the item (c), observe that, by the item (a),∫
∞

0

sαds
(1 + s2)m−1 =

2(m − 1)
α + 1

∫
∞

0

sα+2ds
(1 + s2)m ,

for α + 3 < 2m. But, by the item (b), we have∫
∞

0

sαds
(1 + s2)m−1 =

2(m − 1)
2(m − 1) − α − 1

∫
∞

0

sαds
(1 + s2)m .

�

Corollary 9.1. We set I =
∫
∞

0
sn

(s2+1)n ds . Then

(i)
∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n+1 snds = I

{
n+1
2n (t + 1)1−n + n−1

2n (t2
− 1)(t + 1)−1−n

}
;

(ii)
∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n sn−2ds = I

{
(t + 1)1−n + (t2

− 1)(t + 1)−1−n
}
;

(iii)
∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n−1 sn−2ds = I

{
2 n−1

n−3 (t + 1)3−n + 2(t2
− 1)(t + 1)1−n

}
.

Proof. By a change of variables we obtain∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n+1 snds = (t + 1)1−n

∫
∞

0
sn+2

(s2+1)n+1 ds + (t2
− 1)(t + 1)−1−n

∫
∞

0
sn

(s2+1)n+1 ds,∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n sn−2ds = (t + 1)1−n

∫
∞

0
sn

(s2+1)n ds + (t2
− 1)(t + 1)−1−n

∫
∞

0
sn−2

(s2+1)n ds,∫
∞

0
s2+(t2

−1)
(s2+(t+1)2)n−1 sn−2ds = (t + 1)3−n

∫
∞

0
sn

(s2+1)n−1 ds + (t2
− 1)(t + 1)1−n

∫
∞

0
sn−2

(s2+1)n−1 ds.

Then we use Lemma 9.4 to see that
∫
∞

0
sn+2

(s2+1)n+1 = n+1
2n I,

∫
∞

0
sn

(s2+1)n+1 = n−1
2n I,∫

∞

0
sn−2

(s2+1)n = I,
∫
∞

0
sn

(s2+1)n−1 = 2 n−1
n−3 I and

∫
∞

0
sn−2

(s2+1)n−1 = 2I. �

Lemma 9.5. For m > k + 1,∫
∞

0

tk

(1 + t)m dt =
k!

(m − 1)(m − 2)...(m − 1 − k)
.

Proof. Integrating by parts,∫
∞

0
tk−1(1 + t)1−mdt =

m − 1
k

∫
∞

0
tk(1 + t)−mdt .

On the other hand,∫
∞

0
tk−1(1 + t)1−mdt =

∫
∞

0

tk−1(1 + t)
(1 + t)m dt =

∫
∞

0

tk

(1 + t)m dt +

∫
∞

0

tk−1

(1 + t)m dt .

Hence, ∫
∞

0

tk

(1 + t)m dt =
k

m − 1 − k

∫
∞

0

tk−1

(1 + t)m dt .

Now the result follows observing that
∫
∞

0
1

(1+t)m dt = 1
m−1 . �
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