
Wave train defocusing in the presence of highly disordered topography

Ana Maria Luz1,∗ in collaboration with A. Nachbin, IMPA.
1. Departamento de Análise, Instituto de Matemática e Estatística, Universidade Federal Fluminese

∗Contato: anamaria_luz@vm.uff.br
Introduction

Equation for the wave train envelope in a fi-
nite and constant depth were derived by Benney
and Roskes (1969), Hashimoto and Ono (1972) and
Davey and Stewartson (1974). In this work we de-
rive a nonlinear Schrödinger equation for the enve-
lope for slowly modulated waves over a highly disor-
dered topography at intermediate depth using ass-
intotic analysis following Mei and Hancock (JFM,
2003) but generalizing their results. The topography
has an impact on the stability of Stokes waves.
Evolution equations of the wave envelope over a

disordered bottom
We consider the two-dimensional irrotational

flow of an incompressible and inviscid fluid gov-
erned according to the theory of nonlinear potential
in (x, z)-plane, where x is the direction of propaga-
tion of surface waves in this flow and z is the vertical
coordinate. The region of interest is bounded be-
low by an impermeable and stationary topography
defined by a random function z = −h(x) with zero
mean and the free surface displacement given by
z = η(x, t).

The governing equations and nonlinear bound-
ary conditions for the velocity potential Φ(x, z, t) and
the frre surface displacement z = η(x, t) are

Φxx + Φzz = 0, −h(x) < z < η,

gη + Φt +
1

2
|∇Φ|2 = 0, z = η(x, t)

ηt + Φxηx = Φz, z = η(x, t)

hxΦx + Φz = 0, z = −h(x).

Hypotheses: η = O(A) and kA ¿ 1, ie we are con-
sidering the typical slope of the free surface height
be small (small amplitude variation with respect to
the wavelength). Also let us assume k h = O(1) (a
regime of intermediate depth).

Following Hamilton (1977) we define a confor-
mal mapping:

z(ξ + iζ) = x + iz. (1)

Below we have a schematic figure showing the
conformal mapping and its inverse.

The nonlinear potential theory equations in
curvilinear (ξ, ζ) coordinates are

Φξξ + Φζζ = 0, −1 < ζ < N(ξ, t),

|J |Nt + Φξ Nξ − Φζ = 0, ζ = N(ξ, t)

|J | (gη + Φt) +
1

2
|∇ξζΦ|2 = 0, ζ = N(ξ, t)

Φζ = 0, ζ = −1.

Here N(ξ, t) is the function that describes the free
surface profile in the new coordinate system and
|J | = |J |(ξ, ζ) is the Jacobian of the transformation
(1). Following Hamilton (1977), Nachbin (2003) e
Artiles Roqueta (2004) the known results are

|J |(ξ, ζ) = z2
ξ + z2

ζ .

|J |(ξ, ζ) = M(ξ)2 + RJ(ξ, ζ).

where M(ξ) ≡ zζ(ξ, 0) (a variable free surface coeffi-
cient). Solving a boundary value problem for z(ξ, ζ)
we obtain that:

M(ξ) ≡ zζ(ξ, 0) =
π

4

∫ ∞

−∞
h (x(ξ′,−1))

coshπ
2 (ξ − ξ′)

dξ′. (2)

Suppose that the function describing the topography
of the seabed is given by

h(x) =

{
1 + n(x), −L < x < L

1, x < −L e x > L.
(3)

The topography can be of large amplitude and we
do not need to assume that the fluctuations n(x) are
small, nor continuous, nor slowly varying.

When h(x) is written this way, the free surface
coefficient (also known as metric coefficient) has the
form:
M(ξ) = 1+m(ξ) where m(ξ) =

π

4

∫ ∞

−∞
n (x(ξ′,−1))

coshπ
2 (ξ − ξ′)

dξ′.

We can adopt the following expansion to M(ξ),
M(ξ) = a + εm′(ξ). (4)

where a represents the effective depth (“felt"at the
free surface) while m′(ξ) represents the fluctuation
which has zero mean (〈m′〉 = 0) and ε = O(kA). Ac-
tually a = 1 − δ, where δ = −〈m(ξ)〉 with 0 < δ < 1,
ie a < 1.

Replace M(ξ) = a + εm′(ξ) in the Taylor expan-
sion of the free surface conditions. We introduce
multiple scales

ξ, ξ1 = εξ, ξ2 = ε2ξ . . . ,

t, t1 = εt, t2 = ε2t . . . ,

where ε = ka ¿ 1. Suppose Φ and η as power series
in ε: Φ =

∑

n=1

εnφn, η =
∑

n=1

εnηn,

where
φn = φn (ξ, ξ1, ξ2, . . . ; . . . ; ζ ; t, t1, t2, . . .) ,

ηn = ηn (ξ, ξ1, ξ2, . . . ; t, t1, t2, . . .) ,

Equating like powers of ε yields(
∂2

∂ξ2
+

∂2

∂ζ2

)
φn = Fn, −1 < ζ < 0,

Laφn ≡
(

∂2

∂t2
+

g

a

∂

∂ζ

)
φn = Gn, ζ = 0,

∂φn

∂ζ
= 0, ζ = −1.

We get ηn from −gηn = Hn, ζ = 0. For boundary
value problems above, from n = 2, the forcing terms
will carry topography information through the a and
m′(ξ).

Let 〈. . .〉 be the stochastic average and (. . .)′ the
random component. At all the orders, we express
the solution as

φn = 〈φn〉 + φ′n, ηn = 〈ηn〉 + η′n, n = 1, 2, 3, . . .

We also write
Fn = 〈Fn〉+ F ′

n, Gn = 〈Gn〉+ G′
n, Hn = 〈Hn〉+ H ′

n.

If at all orders seek solutions (both for the determin-
istic part, as for random), as a series involving the
Fourier modes as

{φn, Fn, Gn} =
n∑

m=−n

eimψ {φnm, Fnm, Gnm} . (5)

We obtain the following family of subproblems(
∂2

∂z2
−m2k2

)
φnm = Fnm, −h < z < 0, (6)

(
g

a

∂

∂z
−m2ω2

)
φnm = Gnm, z = 0, (7)

∂

∂z
φnm = 0, z = −h. (8)

The Schrödinger equation arises from the condition
of compatibility of boundary value problems in third
order for the deterministic part.

−i
∂B

∂τ
+ α1

∂2B

∂χ2
+ α2|B|2B − iΘB = 0,

where Θ =
β̂ai

ω

(
σ0

A0

)2

, σ0 is the root-mean-square of

the free surface coeficient and β̂ai depends of m′(ξ)
correlation.
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−i
∂B

∂τ
+ α1

∂2B

∂χ2
+ α2|B|2B = 0, (9)

with α1 and α2 given by

α1 =− k2

2ω

∂2ω

∂k2
, onde ω2 =

gk

a
tanh q

α2 =
ω k2

16 sinh4 q

{
(6a2+2)cosh4 q+(37−45a2) cosh2 q + 1+(36a2−28)−

−2 tanh2 q
}
−

(
a C̃g/cp+2 cosh2 q

)
2

2 a sinh2 2q
(

q
tanh q− C̃g

2

cp

)−
(
a C̃g/cp+2 cosh2 q

)
(Υ)

2 a2 sinh2 2q
(

q
tanh q− C̃g

2

cp

).

Consider a solution of the form of a perturbed
Stokes wave

B = B0 (1 + ∆b) ei(−Ωτ+∆θ), (10)

where b = b(χ, τ ), θ(χ, τ ) (both are real functions)
and whose dispersion relation is given by Ω =
α2|B0|2. Replacing this solution in equation (9) we
obtain

−(bτ + iθτ − ibΩ) + α1(bχχ + iθχχ) + 3α2|B0|2b = 0.

Since b and θ are real functions and using the dis-
persion relation above to eliminate Ω, we have:

θτ + α1bχχ + 2α2|B0|2b = 0; (11)
−bτ + α1θχχ = 0. (12)

As the equations (11) - (12) are linear with constant
coefficients we look for a solution of the form:(

b
θ

)
=

(
bo

θo

)
ei(κχ−µτ ) + ∗, (13)

where bo, θo, κ (> 0) and µ are constant. This solu-
tion exists since∣∣∣∣∣

iµ −κ2α1

−α1κ
2 + 2|B0|2α2 −iµ

∣∣∣∣∣ = 0 ⇔ µ2 = (α1κ)2(κ2−2
α2

α1
|B0|2).

This equation define the following stability criteria:
α2

α1
< 0 (µ is real) stable defocusing

α2

α1
> 0 (µ is a imaginary) unstable focusing (NLS+)

The graphs below show the behavior of α1 and α2

as a function of k.
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The coefficient α1 is positive for all k > 0 in-
dependent of a. However, for a value of a fixed,
α2 changes sign for a given value of k. We calcu-
late that this critical value k0 where the coefficient α2

changes sign when a = 1 is ≈ 1.363 (the classical
value to flat bottom); when a is decreasing we have
k0 increasing.

We can conclude that decreasing the value of
the parameter a, ie increasing the amplitude of the
fluctuations in topography, we regularize the solu-
tion: wave numbers that were unstable become sta-
ble. In other words, as the topography floats, the
equation becomes defocusing in regions where it
was focusing.
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