GAN 00144 Complementos de Matemática Aplicada – E1 – 2019.2

Profa. Ana Maria Luz Fassarella do Amaral

• Noção intuitiva de Limites/Limites Laterais

GAN00144 - Complementos de Matemática Aplicada - E1 - 2019.2

Complete o texto abaixo sobre Noção intuitiva de Limites:

LIMITES

Noção intuitiva de limites

Seja a função f(x) = 2x + 1. Vamos dar valores de x que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de y:

X	y = 2x + 1	X	y = 2
1,5		0,5	
1,3		0.7	
1,1		0,9	
1,05		0,95	
1,02		0,98	
1,01	0700	0,99	

Notemos que a medida que x se aproxima de 1, y se aproxima de x ou seja, quando x tende a 1 ($x \to 1$), y tende para ($x \to 1$), ou seja:

$$\lim(2x+1) =$$

Observamos que quando x tende para 1, y tende para $\,$ e o limite da função é

Esse é o estudo do comportamento de f(x) quando x tende para 1 ($x \to 1$). Nem é preciso que x assuma o valor 1. Se f(x) tende para ($f(x) \to -1$), dizemos que o limite de f(x) quando $x \to 1$ é , embora possam ocorrer casos em que para x=1 o valor de f(x) não seja .

De forma geral, escrevemos:

$$\lim f(x) = b$$

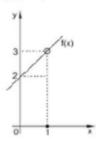
se, quando x se aproxima de a ($x \rightarrow a$), f(x) se aproxima de b ($f(x) \rightarrow b$)

Seja, agora a função
$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1}, x \neq 0 \\ 2, se x = 1 \end{cases}$$

Como $x^2 + x - 2 = (x-1)(x+2)$, temos:

$$f(x) = \begin{cases} \frac{(x-1)(x+2)}{x-1}, & x \neq 1 \\ 2, & \text{se } x = 1 \end{cases}$$

Calcule o limite de f(x) quando x tende a 1:



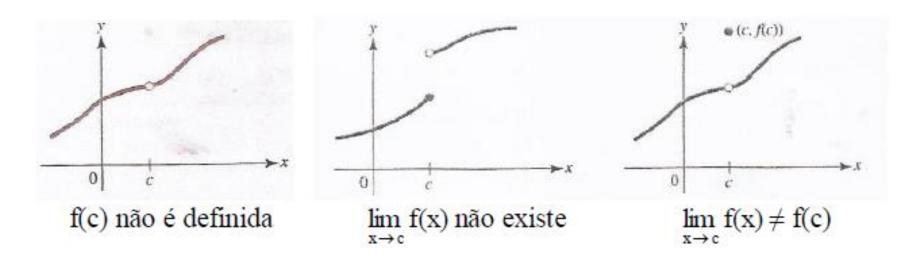
Recapitulando...

• Noções de Continuidade:

Definição: Uma função f é **contínua em um número c** se:

- a) f(c) é definida
- b) $\lim_{x \to c} f(x)$ existe
- c) $\lim_{x \to c} f(x) = f(c)$

Apresentamos abaixo os gráficos de três funções descontínuas em c.



Propriedades dos limites

 Na matemática, o limite tem o objetivo de determinar o comportamento de uma função y=f(x) à medida que ela se aproxima de alguns valores, sempre relacionando os pontos x e y. Na aula passada e hoje fizemos algumas tabelas para nos ajudar mas vamos ver algumas propriedades (teoremas) que permitam simplificar o cálculo dos limites

Teorema 1: Sejam c e k números reais.

a)
$$\lim_{x \to c} k = k$$

b)
$$\lim_{x \to c} x = c$$

Exemplos:

1)
$$\lim_{x\to 5} 7 = 7$$

2)
$$\lim_{x \to 4} x = 4$$

Teorema 2: Se L, M, c e k são números reais e $\lim_{x \to c} f(x) = L$ e $\lim_{x \to c} g(x) = M$ então:

a)
$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$$

b)
$$\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = L - M$$

c)
$$\lim_{x \to c} (f(x).g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L.M$$

d)
$$\lim_{x \to c} (k.f(x)) = k. \lim_{x \to c} f(x) = K.L$$

e)
$$\lim_{x \to c} (f(x))^n = (\lim_{x \to c} f(x))^n = L^n$$
 onde $n \in Z_+^*$

f) Se M
$$\neq$$
 0 então $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M}$

g)
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} = \sqrt[n]{L}$$
, desde que $L > 0$ se n for par.

1)
$$\lim_{x\to 2} (x^3 + 2x + 5)$$

2)
$$\lim_{x \to 0} \frac{x-2}{x+8}$$

Teorema 3: a) Seja p(x) uma função polinomial. Então $\lim_{x\to c} p(x) = p(c)$

b) Seja
$$r(x) = \frac{p(x)}{q(x)}$$
 uma função racional. Se $q(c) \neq 0$ então $\lim_{x \to c} r(x) = r(c)$

- Uma função polinomial é contínua em todos os números reais
- Uma função racional é contínua em todos os números nos quais está definida

1)
$$\lim_{x\to 2} (x^5 - 3x^2 + 5x + 7)$$

2)
$$\lim_{x \to 5} \frac{3x}{x+4}$$

Teorema 4: Se $\lim_{x\to c} h(x) = L$ e f é uma função tal que f(x) = h(x) para todos os valores de x pertencentes a algum intervalo ao redor de c, excluindo o valor x = c, então $\lim_{x\to c} f(x) = L$.

Exemplo 1: Calcular
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

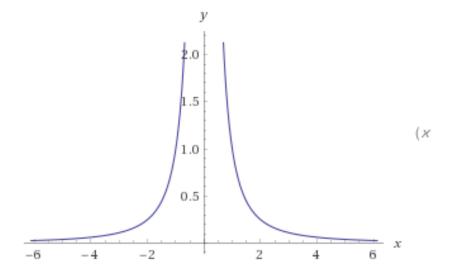
Exemplo 2: Calcular
$$\lim_{x\to 1} \frac{1-x}{1-\sqrt{x}}$$

Limites que envolvem

(infinito)

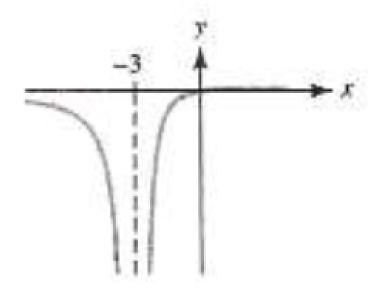
Vamos analisar, por exemplo, o comportamento da função $f(x) = \frac{1}{x^2}$ quando x se aproxima de zero

X	- 0,1	-0,01	- 0,001	0	0,001	0,01	0,1
f(x)				_			



Vamos analisar a função $g(x) = \frac{x}{(x+3)^2}$ para valores de x próximos de – 3

X	- 3,1	-3,01	- 3,001	– 3	- 2,999	- 2,99	- 2,9
g(x)				-			



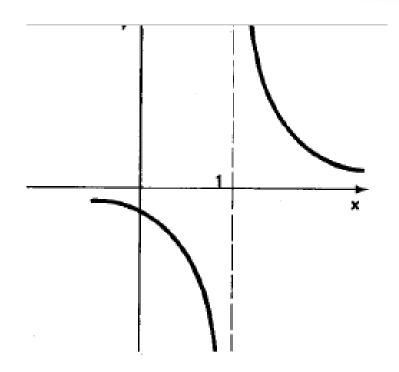
Consideremos agora a função h definida por $h(x) = \frac{1}{x-1}$ para todo x real $e \times \neq 1$.

Atribuindo a x valores próximos de 1, porém menores que 1, temos:

×	0	0,5	0,75	0,9	0,99	0,999
f(x)						

e atribuíndo a x valores próximos de 1, porém maiores que 1, temos:

x	2	1,5	1,25	1,1	1,01	1,001
f(x)						



Observação: Os símbolos ∞ e $-\infty$ não representam um número real. São apenas notações para indicar que f(x) aumenta ou diminui ilimitadamente quando x se aproxima de um número real. Assim, quando escrevemos, por exemplo, que $\lim_{x\to c} f(x) = \infty$, não estamos dizendo que f(x) está cada vez mais próximo de um número real, ou que o limite existe.