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c Departamento de Matemática Aplicada y Estad́ıstica, Universidad Politécnica de
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Abstract

We present a correspondence for isometric immersions that are graphs in Rie-
mannian or semi-Riemannian warped product spaces. We use this correspondence
to give several existence and non-existence theorems for hypersurfaces in Rieman-
nian or Lorentzian spaces. In the case of surfaces, we obtain further applications
regarding height estimates, harmonic representation of surfaces or existence of
holomorphic quadratic differentials in homogeneous and non-homogeneous spaces.

1 Introduction

In this paper we present a correspondence for isometric immersions into product
spaces endowed with warped product metrics, and we explore its applications in topics
such as non-immersion theorems, existence and rigidity problems, height or area esti-
mates, representation formulas for surfaces in terms of harmonic maps, or existence of
holomorphic quadratic differentials.
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This basic correspondence works, roughly, as follows. Assume that there exists an
isometric immersion ψ of a semi-Riemannian manifold (Mn, gM) into a product space
Nn × P r endowed with a semi-Riemannian warped product metric

g = gN ⊗F gP := (F2gN)⊗ gP , F ∈ C∞(P ), F > 0.

Assume also that ψ is a graph, i.e. we can write ψ = (π, h ◦ π), where π is a diffeo-
morphism of Mn into some open domain Ω ⊂ Nn, and h : Ω → P is smooth. Then
ψ̂ = (π−1, h) describes an isometric immersion of Ω ⊂ Nn as a graph into the product
space Mn × P r endowed with the semi-Riemannian metric

g′ =
1

F2
(gM ⊗ (−gP )) .

For example, in the most simple case of surfaces in R3, the basic correspondence implies
that if ψ : (M2, gM) → R3 is a local isometric immersion as a graph in R3, then there is
an associated isometric immersion of a planar Euclidean domain Ω ⊂ R2 as a graph into
the Lorentzian product space M2 × L ≡ (M2 × R, g := gM − dt2). This particular case
is one of the classical key tools in the study of the local isometric embedding problem
in R3 (see the books [8, 15, 27] and references therein), and our basic correspondence
can be seen as a wide generalization of this fact.

We shall see that this extended correspondence has as well interesting geometric
consequences for hypersurfaces in Lorentzian product manifolds. In this sense, it should
be observed that the theory of (hyper)surfaces in Riemannian product spaces is currently
experiencing a great activity, and that its Lorentzian counterpart is also starting to
develop accordingly. In this sense, our basic correspondence will give very simple proofs
of previously known results, but it will also yield new theorems that, in some cases,
seem quite hard to obtain directly, i.e. without using in some way this correspondence.

Some of the main results that we will obtain are:

Theorem. Let (Mn, gM), n ≥ 2, be a complete Riemannian manifold with negative
Ricci curvature, and whose scalar curvature Sg satisfies Sg ≤ c < 0. Then the Euclidean
space Rn cannot be isometrically immersed into the Lorentzian product space Mn × L.

Theorem. Let (M2, gM) be a complete surface with constant Gauss curvature KM < 0.
Then no complete Riemannian surface (Σ, 〈, 〉Σ) of constant curvature c > KM can be
isometrically immersed into M2 × L.

Theorem. Let (M2, gM) be a topological sphere endowed with a Riemannian metric gM

of positive curvature. Then there is a smooth 3-parameter family of isometric embeddings
of the unit sphere S2 into the steady state type spacetime M2 ×et L.

Theorem. Let (M2, gM) be a Riemannian surface of constant curvature KM > 0, and
let ψ : Ω ⊂ R2 → M2 × L be an isometric immersion of a planar domain Ω as a graph
into M2×L, whose boundary lies on the slice M2×{0}. Then the maximum height that
ψ can rise over M2 × {0} is 1/

√
KM , with equality holding at some point if and only if

the projection of ψ over M2 × {0} is isometric to a hemisphere of S2(KM).
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Theorem. Any spacelike graph of constant curvature K = 1 in the steady state type
spacetime S2(c)×et L has an associated holomorphic quadratic differential. The same is
true for spacelike surfaces of constant curvature KM < c in the homogeneous Lorentzian
product space S2(c)× L.

Theorem. There exists a correspondence between the space of harmonic diffeomor-
phisms from Σ = D or C onto H2 and the space of entire flat graphs in H2 × R.

Specifically, any such harmonic diffeomorphism can be realized as the projection onto
H2 of a 2-parameter family of (generically non-congruent) entire flat graphs, for the
conformal structure of the second fundamental form.

As a general (but somehow inexact) rule of thought, the basic correspondence we
expose here indicates that any result on (semi)-Riemannian submanifold theory which
only has intrinsic hypotheses, and for which the ambient space admits a warped product
structure, admits a dual result of the same nature in a different ambient manifold. In
the simplest case of surfaces in product 3-manifolds, this duality produces results for
surfaces in Lorentzian spaces from results in Riemannian spaces (and viceversa).

The paper is outlined as follows. In Section 2 we shall explain the correspondence in
detail, and we will analyze how it changes the second fundamental form for the case of
surfaces in product 3-manifolds. This will be useful for proving existence of holomorphic
quadratic differentials later on.

In Section 3 we will describe how the correspondence works in the most simple
cases, i.e. those associated with surfaces in 3-dimensional space forms. Section 4 will be
devoted to obtain both existence and non-existence theorems for isometric immersions
into Lorentzian warped product spaces. In Section 5 we will derive height and area
estimates for surfaces of constant curvature in Lorentzian product 3-spaces. In Section
6 we will construct a holomorphic quadratic differential for constant curvature surfaces
in Lorentzian product spaces M2 × L, where M2 also has constant curvature. Finally,
also in Section 6, we will analyze the structure of the space of entire flat graphs in the
Riemannian space H2 × R in terms of harmonic maps into the hyperbolic space H2.

2 The basic correspondence

All along this paper (Mn, gM), (Nn, gN) and (P r, gP ) will denote semi-Riemannian
manifolds of dimensions n, n and r, respectively. These manifolds will actually be Rie-
mannian (resp. Lorentzian) if the index of their metric is 0 (resp. 1).

Let us consider now an isometric immersion

ψ : (M, gM) → (N × P, g),

where Nn × P r is endowed with a warped product metric

g = gN ⊗F gP = (F2gN)⊗ gP , (2.1)

where F is a smooth positive function on P . When F = 1 we get the usual product
metric.
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We shall assume furthermore that this isometric immersion is a graph over N , i.e.
we can write

ψ(x) = (π(x), h(π(x)), (2.2)

where π : M → π(M) ⊂ N is a diffeomorphism and h : π(M) → P is smooth. Then,
associated to ψ we can build a new immersion, namely:

ψ̂ : (π(M), gN) → M × P

ψ̂(y) = (π−1(y), h(y)), ∀y ∈ π(M). (2.3)

Observe that π−1 is well defined because π is a diffeomorphism. Hence, ψ̂ is a graph
over M . Let us endow M × P with the metric

g′ =
1

F2
(gM ⊗ (−gP )). (2.4)

Then we have

Lemma 1 The map ψ̂ : (π(M), gN) → (M × P, g′) defined in (2.3) is an isometric
immersion.

Proof: Let x ∈ M , y = π(x) ∈ N , and consider v, w ∈ TyN as well as the vectors
ṽ, w̃ ∈ TxM such that v = dπx(ṽ), w = dπx(w̃). In what follows, we will omit for clarity
the point at which we are working. Note that, as ψ is isometric, by (2.1),

gM(ṽ, w̃) = F2gN(v, w) + gP (d(h ◦ π)(ṽ), d(h ◦ π)(w̃))

= F2gN(v, w) + gP (dh(v), dh(w)).
(2.5)

So, since dπ−1(v) = ṽ and dπ−1(w) = w̃, we have using (2.4) and (2.5) that

g′(dψ̂(v), dψ̂(w)) = g′((dπ−1(v), dh(v)), (dπ−1(w), dh(w)))

=
1

F2
(gM(ṽ, w̃)− gP (dh(v), dh(w)))

= gN(v, w),

as claimed.
2

Lemma 1 provides a duality for isometric immersions into product spaces that can
be formulated as follows:

The basic correspondence: If we have an isometric immersion of a semi-Riemannian
manifold (M, gM) as a graph in a product space N ×P endowed with a warped metric g
as in (2.1), then we can obtain an associated isometric immersion of a domain π(M) ⊂ N
in the ambient space M×P endowed with the semi-Riemannian metric g′ in (2.4), which
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is a graph over M . This process can obviously be reversed. Moreover, in the case that
all M, N, P are Riemannian, then the warped metric g′ on M × P is semi-Riemannian
of index r = dim P .

Let us observe that g′ can be seen as a warped product metric

g′ = gM ⊗1/F

(−gP

F2

)
.

So, we can apply again the basic correspondence to ψ̂, from which we recover ψ, i.e. the
basic correspondence is involutive.

It is also important to understand how the basic correspondence behaves with respect
to ambient isometries. For this, let us consider the diffeomorphisms

ΦN : N → N, ΦP : P → P

of (N, gN) and (P, gP ), respectively, and assume that ΦN is an isometry. Then the
product map ΦN × ΦP : N × P → N × P will be an isometry of (N × P, g) (g as in
(2.1)) if and only if ΦP is an isometry of P and F ◦ ΦP = F . We shall call to these
isometries of a warped product space split-isometries. We have then:

Lemma 2 Let ψi : (M, gM) → (N × P, g), ψi = (πi, hi ◦ πi), i = 1, 2 be two isometric
immersions as graphs that differ by a split-isometry Φ = ΦN ×ΦP of the ambient space
(N ×P, g) (g as in (2.1)). Assume without loss of generality that π1(M) = π2(M) =: Ω.
Then, the isometric immersions

ψ̂1, ψ̂2 : (Ω ⊂ N, gN) → (M × P, g′), (g′ as in (2.4))

differ, up to a reparametrization, by the split-isometry IdM × ΦP of (M × P, g′).

Proof: By hypothesis, ψ2 = Φ ◦ ψ1, and thus ΦN ◦ π1 = π2 and ΦP ◦ h1 ◦ π1 = h2 ◦ π2,
i.e. ΦP ◦ h1 = h2 ◦ ΦN .

Consider now ψ̂i = (π−1
i , hi), i = 1, 2. From the above relations we see that

Φ̂ ◦ ψ̂1 = ψ̂2 ◦ ΦN , Φ̂ := IdM × ΦP ,

which proves the result.
2

The above Lemma tells that the basic correspondence preserves the property of
differing by a split-isometry of the ambient space. However, this is not true for general
isometries. That is, if we consider two isometric immersions

ψ1, ψ2 : (M, gM) → (N × P, g)

as graphs over N that are congruent, then their associated immersions ψ̂1, ψ̂2 will not be
congruent in (M ×P, g′) in general. This situation can be used to deform submanifolds
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in an isometric but non-congruent way in product spaces, see Example 5 or Theorem
11, for instance.

Next, let us analyze in more detail this correspondence for the special case of product
3-spaces M2×R with the usual product metric. That is, we will assume in the previous
duality that P = R, and that both M , N are 2-dimensional manifolds.

Let p ∈ M , q ∈ N and π : M → π(M) ⊂ N be a diffeomorphism. Observe that,
using that π is a diffeomorphism around p, it is possible to parametrize neighbourhoods
of p in M and q in N in a way such that π = Id. In other words, we can regard locally
M, N and π as M ≡ (Ω, gM), N ≡ (Ω, gN) and π = IdΩ, where Ω ⊂ R2 is a planar
domain.

With this, the isometric immersion (2.2) is written in these coordinates as

ψ(u, v) = (u, v, h(u, v)) : (Ω, gM) → (
Ω× R, g := gN ⊗ dt2

)
.

Hence, its associated isometric immersion is

ψ̂(u, v) = (u, v, h(u, v)) :
(
Ω, gN) → (Ω× R, g′ := gM ⊗ (−dt2)

)
.

If we write now the metric gN in these local coordinates as

gN = Edu2 + 2Fdudv + Gdv2,

then the first fundamental form of ψ is

Iψ = (E + h2
u)du2 + 2(F + huhv)dudv + (G + h2

v)dv2.

Hence, the unit normal vectors of ψ and ψ̂, denoted respectively in coordinates by
Nψ = (N1,N2,N3) and Nψ̂ = (n1, n2, n3), can be computed by solving the following
systems: 




0 = g(ψu,Nψ) = EN1 + FN2 + huN3

0 = g(ψv,Nψ) = FN1 + GN2 + hvN3

1 = g(Nψ,Nψ) = EN 2
1 + 2FN1N2 + GN 2

2 +N 2
3

(2.6)





0 = g′(ψ̂u, Nψ̂) = (E + h2
u)n1 + (F + huhv)n2 − hun3

0 = g′(ψ̂v, Nψ̂) = (F + huhv)n1 + (G + h2
v)n2 − hvn3

−1 = g′(Nψ̂, Nψ̂) = (E + h2
u)n

2
1 + 2(F + huhv)n1n2 + (G + h2

v)n
2
2 − n2

3

(2.7)

With this, a straightforward computation provides the following relations (up to a sign,
i.e. up to a change of orientation in one of the surfaces):

n1 = N1, n2 = N2, n3N3 = −1. (2.8)

Let us consider now the respective second fundamental forms of ψ and ψ̂, written
with respect to the (u, v) coordinates as

IIψ = eψdu2 + 2fψdudv + gψdv2, IIψ̂ = eψ̂ du2 + 2fψ̂ dudv + gψ̂ dv2.
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Denote by ∇, ∇′ the metric connections associated to g and g′ and by ∇M , ∇N the
connections of M and N . Also, denote by ΓkM

ij and ΓkN
ij the Christoffel symbols of M

and N in the (u, v) coordinates, respectively. Then,

eψ = g(∇ψuψu,Nψ) = gN(∇N
∂u

∂u,N1∂u +N2∂v) + huuN3

= Γ1N
11 (N1E +N2F ) + Γ2N

11 (N1F +N2G) + huuN3

fψ = g(∇ψvψu,Nψ) = gN(∇N
∂v

∂u,N1∂u +N2∂v) + huvN3

= Γ1N
12 (N1E +N2F ) + Γ2N

12 (N1F +N2G) + huvN3

gψ = g(∇ψvψv,Nψ) = gN(∇N
∂v

∂v,N1∂u +N2∂v) + hvvN3

= Γ1N
22 (N1E +N2F ) + Γ2N

22 (N1F +N2G) + hvvN3

(2.9)

eψ̂ = g′(∇′
ψ̂u

ψ̂u, nψ̂) = gM(∇M
∂u

∂u, n1∂u + n2∂v)− huun3

= Γ1M
11 (n1(E + h2

u) + n2(F + huhv))

+Γ2M
11 (n1(F + huhv) + n2(G + h2

v))− huun3

fψ̂ = g′(∇′
ψ̂v

ψ̂u, nψ̂) = gM(∇M
∂v

∂u, n1∂u + n2∂v)− huvn3

= Γ1M
12 (n1(E + h2

u) + n2(F + huhv))

+Γ2M
12 (n1(F + huhv) + n2(G + h2

v))− huvn3

gψ̂ = g′(∇′
ψ̂v

ψ̂v, nψ̂) = gM(∇M
∂v

∂v, n1∂u + n2∂v)− hvvn3

= Γ1M
22 (n1(E + h2

u) + n2(F + huhv))

+Γ2M
22 (n1(F + huhv) + n2(G + h2

v))− hvvn3

(2.10)

If we compute the Christoffel symbols and solve (2.6) and (2.7), then from (2.8), (2.9)
and (2.10), a long but direct computation ensures that

eψ = eψ̂, fψ = fψ̂, gψ = gψ̂. (2.11)

Summarizing, we have

Proposition 3 Let

ψ = (π, h ◦ π) : (M2, gM) → (N2 × R, g := gN ⊗ dt2)

be an isometric immersion as a graph, and, denoting Ω := π(M2) ⊂ N2, let

ψ̂ = (π−1, h) : (Ω, gN) → (
M2 × R, g′ := gM ⊗ (−dt2)

)

be its associated isometric immersion. Then for any p ∈ M2 and q = π(p) ∈ N2, the
second fundamental forms IIψ and IIψ̂ verify

IIψ(p)(v1, v2) = IIψ̂(q) (dπ(v1), dπ(v2)) ∀ v1, v2 ∈ TpM. (2.12)

In particular:
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1. ψ has vanishing extrinsic curvature if and only if so does ψ̂.

2. IIψ is a Riemannian metric on M2 if and only if so is IIψ̂.

Let us recall that any Riemannian surface carries an associated conformal structure.
Thus, if IIψ is positive definite, it induces a conformal structure on the surface. In
particular, from (2.12) we see that, in the conditions of Proposition 3, z is a local
conformal parameter for IIψ on M if and only if ζ = z ◦ π−1 is a local conformal
parameter for IIψ̂ on Ω.

The following corollary is an immediate consequence of Proposition 3 and the above
fact. For stating it, we introduce the following notation:

Notation: let ψ, ψ̂ denote the isometric immersions (2.2), (2.3) associated by the
basic correspondence, and let α denote a symmetric (0, 2) tensor on Mn. Then, if
Ω := π(Mn) ⊂ Nn, we will denote by α̂ the symmetric (0, 2) tensor on Ω given by
α̂ = π∗(α), i.e.

α̂q(v̂, ŵ) = αp(v, w) (2.13)

for p ∈ Mn, v, w ∈ TpM , q = π(p) and v̂ = dπp(v), ŵ = dπp(w).

Notation: let α denote a real-valued symmetric (0, 2) tensor on a Riemann sur-
face Σ. We define its associated quadratic differential α(2,0) as the (2, 0)-part of the
complexification of α, i.e.

α(2,0) := α(∂z, ∂z) dz2 =
1

4
(α(∂u, ∂u)− α(∂v, ∂v)− 2i α(∂u, ∂v)) dz2,

where z = u + iv is a complex parameter on Σ. This definition is independent of z
and produces a globally defined complex-valued quadratic differential α(2,0) on Σ, that
is holomorphic whenever (α(∂z, ∂z))z̄ = 0.

Corollary 4 Let ψ : M2 → Ω × R and ψ̂ : Ω → M2 × R be as in Proposition 3, and
assume that IIψ (and hence IIψ̂) is positive definite. Then:

1. f : M2 → C̄ is a meromorphic function with respect to the conformal structure
induced by IIψ if and only if f ◦ π−1 : Ω → C̄ is meromorphic for the conformal
structure induced by IIψ̂.

2. For any symmetric (0, 2) tensor α on M2, α(2,0) is a holomorphic quadratic dif-
ferential for the conformal structure induced by IIψ if and only if α̂(2,0) is a holo-
morphic quadratic differential on Ω for the conformal structure induced by IIψ̂.

This result will have important geometric consequences in Section 6.
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3 Examples

In this section we will explain how the correspondence described in Section 2 works
for the most elementary cases of isometric immersions. Specifically, we will analyze
the basic information provided by this correspondence for the case of surfaces in 3-
dimensional Riemannian and Lorentzian spaces of constant curvature. It is convenient
to remark that, in order to apply the correspondence, we need to express the ambient
manifold as a warped product. As this can be done for a 3-dimensional space form in
several different ways, it turns out that the correspondence of Section 2 can also be
applied in different forms.

Let us remark that some of the classes of surfaces that we are going to connect via
the basic correspondence are already connected by other (much more concrete) classical
dualities. This is the case, for instance, of flat surfaces in R3 and spacelike flat surfaces
in Minkowski 3-space, or spacelike surfaces with K = 1 in de Sitter 3-space. It is also
the case of flat surfaces in H3 and spacelike flat surfaces in de Sitter 3-space. However,
the correspondence that we introduce here is different from the previous ones.

Notation: We shall denote by Rn
s the pseudo-Euclidean space of dimension n and

index s, endowed with the metric

〈, 〉 =
n−s∑
i=1

dx2
i −

n∑
i=n−s+1

dx2
i ,

and by Ln,Sn
1 and Hn

1 , respectively, the Minkowski space

Ln = Rn
1 ≡ (Rn, 〈, 〉Ln = dx2

1 + · · ·+ dx2
n−1 − dx2

n),

the de Sitter space
Sn

1 = {x ∈ Ln+1 : 〈x, x〉 = 1},
and the anti de-Sitter space

Hn
1 = {x ∈ Rn+2

2 : 〈x, x〉 = −1}.

These will be regarded as the canonical Lorentzian spaces of constant curvature.

Notation: From now on, if (Mn, gM) is a Riemannian manifold and F : R→ (0,∞)
is a smooth positive function, we will denote by

Mn ×F L

the product space Mn × R endowed with the Lorentzian warped product metric

〈, 〉 := F(t)2gM − dt2.

In particular, M2 × L will stand for M2 × R with its associated Lorentzian product
metric.
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3.1 Surfaces in R3

This is the simplest and most known case. Let

ψ : (M2, gM) → R3 ≡ (R2 × R, dx2 + dy2 + dz2),

ψ(x) = (π(x), h(π(x))),

be an isometric immersion of a surface as a graph in the Euclidean 3-dimensional
space. Then, its associated immersion ψ̂ is a flat immersion into a Lorentzian prod-
uct 3-manifold:

ψ̂ : (π(M2), dx2 + dy2) → M2 × L.

Here, we observe that the induced metric of ψ̂ is the flat metric referred to in the
introduction that is commonly used for studying the local isometric embedding problem
in R3, see [8, 15, 27] and references therein.

Even more specifically, we get that flat graphs in R3 are associated with spacelike
flat surfaces in L3. In this sense, let us recall that any spacelike surface in a Lorentzian
warped product 3-space M2 ×F L is automatically a local graph over M2.

Consider now R3 \ {0} =: R3
∗ foliated by round spheres centered at the origin. Then

R3
∗ = S2 ×r R+, i.e. the usual Euclidean metric of R3 is expressed as the warped metric

〈, 〉R3 = r2 gS2 + dr2,

where gS2 denotes the usual metric of the unit sphere and r denotes the distance to the
origin.

Now, taking a flat graph over some domain of S2,

ψ : (R2, dx2 + dy2) → S2 ×r R+ ≡ R3
∗,

ψ(x) = (π(x), h(π(x))),

we obtain an immersion of π(R2) ⊂ S2 into the Lorentzian space

S3
1,+ ≡ (R2 × R+,

1

r2
(dx2 + dy2 − dr2)).

It is known that this space S3
1,+ is one half of the usual de Sitter 3-space S3

1. Actually,
S3

1,+ can be seen as the usual steady state space (see [7, 18, 16, 28, 2]), i.e. the open
piece of S3

1 given by
S3

1,+ = {x ∈ S3
1 ⊂ L4 : 〈x, a〉 > 0},

where a ∈ L4 satisfies 〈a, a〉 = 0 and 〈a, (0, 0, 0, 1)〉 > 0. An alternative model for S3
1,

which can be obtained by making the change of coordinates r = e−t in the previous
half-space type model, is

S3
1 ≡ R2 ×et L.

More generally, consider now an isometric immersion of (M2, gM) into R3 as a graph
over S2. Then, by the basic correspondence and making again the change r = e−t,
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we obtain the existence of an associated isometric immersion of a spherical domain
π(M2) ⊂ S2 into the Lorentzian 3-space

M2 ×et L.

These type of spaces appear in [2] as a generalization of the steady state space, and
were called there steady state type spacetimes.

3.2 Surfaces in S3

As in the Euclidean case, the usual metric in the 3-sphere can be written as a warped
product metric in several ways. For instance, by stereographic projection we can regard
S3 \ {north} as R3 endowed with the metric

4

(1 + r2)2
〈, 〉R3 , r := ||p||, p ∈ R3,

and so, by using the change of coordinates r = et, this metric can be seen as

1

cosh2 t
(gS2 ⊗ dt2). (3.1)

Then, if
ψ : (M2, gM) → S3 \ {north, south},

ψ(x) = (π(x), h(π(x))),

is an isometric immersion as a graph over a domain of S2, the basic correspondence shows
the existence of an associated isometric immersion of π(M) ⊂ S2 into the Lorentzian
space

M̄3 ≡ M2 ×F L, F(t) = cosh t. (3.2)

Let us point out that this type of Lorentzian 3-spaces include again the de Sitter space
S3

1, in the case M2 = S2 (a complete list of the Lorentzian warped product structures
with base S2, H2 or R2 that have constant curvature can be found in [5]).

3.3 Surfaces in H3

The hyperbolic 3-space admits again different warped product structures, that will
provide different geometric information.

First, let us consider the half-space model of H3, that is

H3 ≡ (R2 × R+,
1

z2
(dx2 + dy2 + dz2)).

Take now an immersed surface in H3 that is a graph over a region of a horosphere.
Then, up to an isometry of H3, we can view this surface as a vertical graph in the above
model, and apply the basic correspondence. In this way, from a graph

ψ : (M2, gM) → (R2 × R+,
1

z2
(dx2 + dy2 + dz2)),

11



ψ(p) = (π(p), h(π(p))),

we obtain the associated isometric immersion

ψ̂ : (π(M2), dx2 + dy2) → M2 ×z L+,

ψ̂(q) = (π−1(q), h(q)).

This is a flat surface in the Lorentzian 3-space M2 ×z L+, which can be seen as a
generalized Lorentzian cone. Indeed, the usual timelike cone in L4 is obtained when we
choose M2 = S2. By the usual substitution z = e−t, this generalized timelike cone can
also be seen as the Lorentzian space

M̄3 ≡ (
M2 × R, g := e−2t

(
gM ⊗ (−dt2)

))
.

In particular, we obtain a quite explicit link between the well-developed theory of flat
surfaces in H3 (see for instance [12, 14, 19, 20]) and the theory of flat surface in the
cone-type Lorentzian warped product space R2 ×z L. This seems to indicate that the
existing holomorphic representation formula for flat surfaces in H3 could possibly be
extended to the case of spacelike flat surfaces in this special Lorentzian 3-manifold.

On the other hand, let us consider the Poincaré ball model for H3, i.e. the unit ball
B3 of R3 endowed with the Poincaré metric

gP =
4

(1− ||p||2)2
〈, 〉R3 , ||p|| < 1.

If we view now R3
∗ as the warped space S2 ×r R+ as explained in Subsection 3.1, and

make the usual change r = e−t, we can regard H3
∗ := H3 \ {0} as

H3
∗ ≡

(
S2 × R+, g =

1

sinh2(t)
(gS2 ⊗ (dt2))

)
.

Therefore, by the basic correspondence, from an immersed surface in H3 that can be
viewed as a graph over some domain of a totally umbilical round sphere,

ψ : (M2, gM) → H3
∗ ≡ (S2 × R+, g),

ψ(x) = (π(x), h(π(x))),

we obtain an associated isometric immersion of a spherical domain π(M2) ⊂ S2 into the
Lorentzian ambient space

M2 ×F L+, F(t) := sinh(t). (3.3)

In particular, if we start with (M2, gM) ≡ H2, we obtain a spacelike graph of constant
curvature 1 in de Sitter 3-space S3

1, since a model for this space is exactly

S3
1 ≡ H2 ×F L+, F(t) := sinh(t).

In other words, isometric immersions of H2 into H3 as local graphs provide isometric
immersions of domains π(H2) ⊂ S2 into S3

1. Again, the Lorentzian warped product
spaces (3.3) can be seen as generalized de Sitter spaces in a natural way.

12



3.4 Surfaces in Lorentzian space forms

The above usages of the basic correspondence starting with a surface in a Riemannian
space form R3, S3, H3 work similarly when considering the Lorentzian model spaces L3,
S3

1 and H3
1. For instance:

1. Any spacelike surface (M2, gM) in L3 ≡ R2 × L produces a flat surface in the
Riemannian product space M2 × R.

2. Consider the warped product structure for de Sitter 3-space

S3
1 ≡ S2 ×F L, F(t) := cosh t.

Then, if

ψ : (M2, gM) → S3
1,

ψ(p) = (π(p), h(π(p))),

is a spacelike isometric immersion which is a graph over S2, then we obtain an
associated isometric immersion of curvature 1 of the spherical domain π(M2) ⊂ S2

into the Riemannian product space

(M2 × R, g), g :=
1

cosh2 t

(
gM ⊗ (dt2)

)
.

Let us remark that this Riemannian warped product metric is the canonical one
in S3 minus two antipodal points when M2 ≡ S2 (see (3.1)).

Several other examples can be obtained similarly if we express the Lorentzian space
L3, S3

1, H3
1 as a warped product in a different way. We omit further details, since the

process was already explained in the Riemannian case.
Let us conclude this section exposing a more specific example, that will be studied

in detail in Section 6.

Example 5 The class of isometric immersions of H2 into L3 corresponds by the basic
correspondence to the class of entire flat graphs in H2 × R. Moreover, by Lemma 2,
congruent entire flat graphs in H2×R correspond exactly to isometric immersions of H2

into L3 differing by a split-isometry of L3, since all isometries of H2 × R are actually
split-isometries.

But now, observe that in L3 there exist isometries that are not split-isometries, and
that the quotient space {isometries}/{split-isometries} is 2-dimensional. Thus, associ-
ated to a congruence class of isometric immersions of H2 into L3 we get, generically, a
2-parameter family of congruency classes of entire flat graphs in H2 × R.

13



4 Existence and non-existence theorems

In this section, some results about existence and non-existence of isometric immer-
sions into Lorentzian product manifolds are obtained. For that, we apply the basic
correspondence introduced in Section 2 to some non-immersion theorems in Rieman-
nian space forms [9, 25, 26, 10, 17] and homogeneous spaces [3], as well as to some
existence theorems regarding Weyl’s embedding problem [22]. It is remarkable that
some of these results would be extremely difficult to prove in a direct way, i.e. without
using the basic correspondence.

One of the most famous non-immersion theorems is Efimov’s theorem [9], which
states that no complete surface (M2, g) with KM ≤ c < 0 can be isometrically immersed
into R3. This result had been previously obtained by Hilbert when KM is constant, and
by Heinz [17] for the case of entire graphs. It was subsequently generalized by Smyth
and Xavier [26] to the case of hypersurfaces in Rn+1, under some additional assumptions
in the case n > 3.

Our first non-immersion theorem uses the basic correspondence together with Heinz’s
result and its recent extension to arbitrary dimension by Fontenele:

Theorem 6 Let (Mn, g), n ≥ 2, be a complete Riemannian manifold with negative
Ricci curvature, and whose scalar curvature Sg satisfies Sg ≤ c < 0.

Then the Euclidean space (Rn, 〈, 〉Rn) cannot be isometrically immersed into the
Lorentzian product space Mn × L.

Proof: Let (M̃, gM̃) denote the universal Riemannian covering of (Mn, gM), and suppose
that

ψ̂ : (Rn, 〈, 〉Rn) → M̃ × L
x 7→ (π(x), h(x))

is an isometric immersion. It is clear that the map π : Rn → M̃ is a local diffeomorphism,
since ψ̂ is spacelike. Moreover, the projection π increases distances. Then, since Rn is
complete, π is a covering map. Moreover, as M̃ is simply connected, π is actually a
diffeomorphism. Hence, by the basic correspondence, we get an isometric immersion of
M̃ as a graph in Rn+1:

ψ : (M̃, gM̃) → (Rn × R, 〈, 〉Rn ⊗ dt2) ≡ Rn+1

y 7→ (π−1(y), h(π−1(y))).

However, for n ≥ 3 this contradicts a recent theorem by Fontenele [10], which states
that any entire graph in Rn+1 with negative Ricci curvature verifies that infM‖A‖2 = 0,
where here ||A|| stands for the norm of the second fundamental form. As |Sg| ≤ δ‖A‖2

for a positive constant δ > 0, this implies the desired result. In the case n = 2, Heinz
proved in [17] that infM2|KM | = 0 for the Gauss curvature KM of any entire graph M2

in R3. Thus, in any case, we conclude that Rn cannot be isometrically immersed into
Mn × L.

2
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In particular, we obtain the following consequences:

1. The Euclidean plane R2 cannot be isometrically immersed into a Lorentzian prod-
uct space M2 × L in which (M, gM) is a complete Riemannian surface with
KM ≤ const < 0.

2. The Euclidean space Rn cannot be isometrically immersed into the Lorentzian
product space Hn(κ)× L, for any n ≥ 2.

The classical Efimov non-immersion theorem was extended by Schlenker [25] for sur-
faces in the remaining space forms S3,H3. Specifically, he proved that: (a) no complete
Riemannian surface whose curvature satisfies K ≤ −1−ε < −1 and supM |∇( 1√

K
)| < ∞

can be isometrically immersed into H3, and (b) no complete Riemannian surface with
K ≤ −ε < 0 and supM |∇( 1√

K
)| < ∞ can be isometrically immersed into S3.

Theorems 7 and 8 are a direct consequence of applying the basic correspondence of
Section 2 to these results. We can easily deduce them by using the expression of H3 and
S3 as warped product spaces given in Section 3.

Theorem 7 Let (M2, gM) be a complete surface whose Gauss curvature KM satisfies
KM ≤ −1− ε < −1 and supM |∇( 1√

K
)| < ∞. Then there is no isometric immersion of

the Euclidean plane R2 into the generalized Lorentzian cone M2 ×z L+. Neither there
are isometric immersions of the unit sphere S2 into

M2 ×F L+, F(t) := sinh(t).

Theorem 8 Let (M, gM) be a complete surface whose Gauss curvature satisfies KM ≤
−ε < 0 and supM |∇( 1√

K
)| < ∞. Then there is no isometric immersion of the unit

sphere S2 into the Lorentzian space M̄3 given by (3.2).

Next, we will present some non-immersion theorems for constant curvature surfaces
in Lorentzian product spaces M2 × L, where M2 also has constant curvature.

Theorem 9 Let (M2, gM) be a complete surface with constant Gauss curvature KM < 0.
Then no complete Riemannian surface (Σ, 〈, 〉Σ) of constant curvature c > KM can be
isometrically immersed into M2 × L.

Proof: If c > 0, the proof follows from a simple topological argument as in the proof of
Theorem 6, bearing in mind that in that case Σ would be compact while the Riemannian
universal covering M̃ would be diffeomorphic to the plane. The case c = 0 is covered by
Theorem 6.

Now, assume that c < 0, and consider an isometric immersion

ψ̂ : (Σ, 〈, 〉Σ) → M̃ × L.

Arguing as in the proof of Theorem 6, and noting that Σ̃ = H2(c), we get the existence

of an associated isometric immersion ψ : (M̃2, gM) → H2(c) × R. This is impossible if
KM < c, as follows from the Hilbert-type theorem [3, Theorem 3].

2
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The same argument together with [3, Theorem 2] and [4, Proposition 2] provide a
direct proof of the following theorem in [1]:

Theorem 10 Let (M2, gM) be a complete surface with constant curvature KM > 0.
Then, if 0 < c 6= KM , the unit sphere S2(c) cannot be isometrically immersed into the
Lorentzian product space M2 × L.

Specifically, the result follows from the basic correspondence and [3], [4], since there are
no complete surfaces with KM < c in S2(c) × R, and the only complete surfaces with
KM > c in S2(c)× R are the rotational ones, which are not graphs over S2.

Besides all these non-existence results, we can also use the basic correspondence to
prove existence results, as the following one:

Theorem 11 Let (M2, gM) be a topological sphere endowed with a Riemannian met-
ric gM of positive curvature KM > 0. Then there exists an isometric embedding ψ :
(S2, gS2) → M2×et L of the unit sphere S2 into the steady state type spacetime M2×et L.

Moreover this embedding is unique in the following sense: if ψ1, ψ2 are two isometric
immersions of S2 into M2×etL, then their associated isometric immersions via the basic
correspondence ψ̂1, ψ̂2 : M2 → R3

∗ differ at most by an isometry of R3.

Proof: By Pogorelov’s solution to the classical Weyl embedding problem (see [22, 21]),

there exists an isometric embedding ψ̂ : (M2, gM) → R3, which is unique up to isometries
in R3.

Hence, we can assume that the origin lies in the interior of the domain of R3 bounded
by the ovaloid ψ̂(M), and thus ψ̂ is a global graph over the unit sphere S2. In this way,
by applying the basic correspondence with respect to the warped product R3

∗ ≡ S2×rR+,
as explained in Section 2, we obtain an isometric immersion ψ : (S2, gS2) → M2 ×et L,
as wished.

Conversely, if ψ1, ψ2 : (S2, gS2) → M2 ×et L are two isometric immersions, then ψ1

and ψ2 are entire graphs over M2. In this way, using again the basic correspondence
we obtain that the isometric immersions ψ̂1, ψ̂2 : (M2, gM) → R3 must agree up to
isometries, by the uniqueness of the solution to Weyl’s problem.

2

Let us observe that, under the hypothesis of Theorem 11, if ψ1, ψ2 : (S2, gS2) →
M2×et L are two isometric immersions, then ψ̂2 = ϕ ◦ ψ̂1, where ϕ is an isometry of R3.
If ϕ is an isometry of R3 that leaves S2 invariant, then by Lemma 2 we see that ψ1, ψ2

are congruent immersions in M2 ×et L.
Now, as the isometry group of R3 is 6-dimensional, and the isometry subgroup leaving

S2 invariant is 3-dimensional, it is easy to observe that, generically, the family of non-
congruent isometric immersions of S2 into M2 ×et L is 3-dimensional.

Remark 12 Pogorelov’s solution to Weyl’s embedding problem also holds in the 3-
sphere S3 and the hyperbolic space H3 for surfaces with positive extrinsic curvature.
So, using the basic correspondence, the previous theorem also occurs when the ambient
space M×et L is replaced by the Lorentzian 3-spaces given by (3.2) and (3.3).

16



A similar argument to the previous one, using this time the existence and uniqueness
theorem in [25] for isometric immersions of topological spheres with curvature smaller
than one into the de Sitter space S3

1, yields the following result via the basic correspon-
dence:

Theorem 13 Let M2 be a topological sphere endowed with a Riemannian metric gM of
curvature KM < 1. Assume that every closed geodesic of M2 has length greater than or
equal to 2π. Then there exists an isometric embedding ψ : (S2, gS2) → (M2 × R, g) with
g = 1

cosh2 t
(gM ⊗ dt2).

Moreover, this isometric embedding is unique in the following sense: if ψ1, ψ2 are
two isometric immersions of S2 into M2×R, then the associated isometric immersions
via the basic correspondence ψ̂1, ψ̂2 : M2 → S3

1 differ at most by an isometry of S3
1.

As in the case of Theorem 11, it is easy to observe that the family of non-congruent
isometric immersions of S2 into the previous warped product space (M2 × R, g) is,
generically, 3-dimensional.

5 Height and area estimates

Our aim in this section is to obtain optimal height and area estimates for constant
curvature surfaces in 3-dimensional Lorentzian product spaces, using our construction
of associated immersions.

Notation: From now on, Q2(c), will denote the 2-dimensional Riemannian space
form of constant curvature c. That is, Q2(0) = R2, Q2(c) = H2(c) if c < 0, and
Q2(c) = S2(c) if c > 0. We will also let ε ∈ {−1, 0, 1}.

Theorem 14 Let (M2, gM) be a Riemannian surface of constant Gauss curvature KM >
0, and let Ω ⊂ Q2(ε) be a compact domain of Q2(ε). Assume moreover that KM > 1 if
ε = 1. Consider

ψ̂ : Ω ⊂M2(ε) → M2 × L,

ψ̂(p) = (π(p), h(π(p)))

an isometric immersion of Ω as a graph in M2 × L, whose boundary lies on the slice
M2 × {0} (i.e. h ◦ π(∂Ω) = 0).

Then, the height estimate
h(π(p)) ≤ C(KM) (5.1)
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holds for every p ∈ Ω, where

C(KM) :=





1√
KM

if ε = 0,

√
KM + 1

KM

arctan

(
1√
KM

)
if ε = −1,

√
KM − 1

KM

ln

(√
KM + 1√
KM − 1

)
if ε = 1.

(5.2)

Moreover, equality in (5.1) holds for some p ∈ Ω if and only if π(Ω) ⊂ M2 is
isometric to a hemisphere of the 2-dimensional sphere S2(KM).

Proof: The associated isometric immersion to ψ̂ via the basic correspondence is

ψ : (π(Ω) ⊂ M2, gM) →M2(ε)× R,

ψ(q) = (π−1(q), h(q)).

Thus, ψ is a graph of constant curvature KM > 0 (KM > 1 if ε = 1), and whose
boundary is contained in the slice M2(ε) × {0}. In these conditions, we can apply the
height estimates of constant curvature graphs obtained in [23] if ε = 0, and in [4] if
ε = ±1, to conclude the inequalities (5.2),(5.1). Moreover, the claimed uniqueness when
equality is attained follows from the corresponding property of the Riemannian case,
proved in [11, 4].

2

By using the area estimates in [11] and [6] for constant Gauss curvature surfaces in
R3, we can obtain the following result, whose proof is omitted since it is very similar to
the one of Theorem 14.

Theorem 15 Let (M2, gM) be a Riemannian surface of constant curvature KM > 0,
and let Ω ⊂ R2 be a compact simply connected planar domain. Assume that

ψ̂ : Ω ⊂ R2 → M2 × L

ψ̂(p) = (Π(p), h(Π(p)))

is an isometric immersion of Ω as a graph in M2 × L, whose boundary lies on a slice
M2 × {h0} (i.e. h(Π(∂Ω)) = h0 ∈ R).

Then if we denote by AΩ the area of Ω, and by A the area of Π(Ω) ⊂ M , it holds
that

2π − 2
√

π2 − πKMAΩ

KM

≤ A ≤ 2π + 2
√

π2 − πKMAΩ

KM

.
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Besides, if the length L of Γ := ∂Ω ⊂ R2 satisfies 4π2 −KML2 ≥ 0, then

2π − 2
√

π2 − πKMAΩ

KM

≤ A ≤ 2π −√4π2 −KML2

KM

,

or
2π +

√
4π2 −KML2

KM

≤ A ≤ 2π + 2
√

π2 − πKMAΩ

KM

.

Moreover, the equality holds if and only if Π(Ω) ⊂ M is isometric to a hemisphere of
the 2-dimensional sphere S2(KM).

6 Holomorphic differentials and harmonic maps

A classical result of surface theory establishes that if ψ : Σ → R3, S3 or H3 is a surface
of positive constant curvature K (with K > 1 in S3), and if z is a conformal parame-
ter for the second fundamental form IIψ, then 〈ψz, ψz〉dz2 is a holomorphic quadratic
differential. In other words, if I denotes the first fundamental form of ψ, then I(2,0) is
holomorphic for the conformal structure induced by IIψ.

This classical result was extended by Aledo, Espinar and Gálvez in [3] to the case
where the ambient space is one of the homogeneous product spaces H2 × R or S2 × R.
Next, we extend this result to the Lorentzian product space S2(c)× L by means of the
basic correspondence and Corollary 4. Remarkably, we will obtain this result for all
values KM < c of the curvature, thus including negative values.

Corollary 16 Let ψ : (M2, gM) → S2(c)× L, ψ = (π, h ◦ π), be an immersed spacelike
surface of constant curvature KM < c as a graph in the Lorentzian product space S2(c)×
L. Let us consider on M2 the quadratic form

α := (c−KM)π∗(gS2(c)) + KM d(h ◦ π)2.

Then, α(2,0) is a holomorphic quadratic differential on the surface for the conformal
structure of the second fundamental form IIψ.

Proof: Let ψ̂ : Ω ⊂ S2(c) → M2 × R, Ω := π(M2), denote the isometric immersion

ψ̂ = (π−1, h) associated to ψ by the basic correspondence, and let α̂ be given in terms
of α by (2.13). Thus,

α̂ = (c−KM)gS2(c) + KM(dh)2.

The condition KM < c implies that the second fundamental forms IIψ and IIψ̂ are

definite, and so they induce conformal structures on M2 and Ω. Moreover, ψ̂ can be
seen locally as an isometric immersion into Q2(KM)×R, as (M2, gM) is locally isometric
to Q2(KM). In this conditions, and by applying an appropriate dilation to the surface,
by [3, Corollary 1] we see that α̂(2,0) (and hence α(2,0), by Corollary 4) is a holomorphic
quadratic differential, as wished.

2
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In the limit case c = 0 it is well-known that, for spacelike surfaces of negative constant
curvature in L3, the quantity I(2,0) is a holomorphic quadratic differential with respect
to the second fundamental form. A similar result is also true for all spacelike locally
convex surfaces of constant curvature in S3

1 and H3
1.

It is remarkable that the same construction actually provides the existence of holo-
morphic quadratic differentials for surfaces of constant curvature in non-homogeneous
(Riemannian or Lorentzian) warped product spaces. For instance, we have

Theorem 17 Let ψ : (M2, gM) → S2(c)×et L, ψ = (π, h ◦ π), be an immersed spacelike
surface of constant curvature KM = 1 as a graph in the steady state spacetime S2(c)×etL.
Let α denote the pullback metric α := π∗(gS2(c)). Similarly, let us consider the conformal
structure on M2 induced by the Riemannian metric π∗(IIψ̂), where here IIψ̂ stands

for the second fundamental form of the associated immersion ψ̂ : Ω ⊂ S2(c) → R3
∗,

ψ̂ = (π−1, h).
Then α(2,0) is a holomorphic quadratic differential for this conformal structure.

Proof: The argument is basically the one used in Corollary 16. This time, we simply have
to write R3

∗ ≡ S2×r R, and use the basic correspondence as explained in Subsection 3.1,
along with the existence of a holomorphic quadratic differential for surfaces of positive
constant curvature in R3 explained above.

It must be remarked that, as we are using a non-trivial warping function, this time
Proposition 3 does not apply, i.e. IIψ 6= π∗(IIψ̂) at first. However, α and π∗(IIψ̂) are

independent in general, since so are Iψ̂ and IIψ̂ in R3 (observe that α = π∗(Iψ̂)). This
tells that we are indeed constructing a non-trivial holomorphic quadratic differential.

2

Similar results can be proved for graphs of constant curvature in some Riemannian
warped product 3-spaces, by applying the basic correspondence as above to the exist-
ing holomorphic quadratic differential for spacelike surfaces of constant curvature in
Lorentzian space forms. In this line, let us consider one specific example in which more
information can be obtained.

It is known (see [13]) that the Gauss map of a spacelike surface of constant negative
curvature in L3 is a harmonic map into H2 for the conformal structure of the second
fundamental form, and that the surface can be recovered in terms of the Gauss map.
The next result shows that a similar situation holds for flat graphs in H2 × R.

Recall that a smooth map G : Σ → H2 ⊂ L3 from a Riemann surface Σ is harmonic
if and only if QG := 〈Gz, Gz〉dz2 is holomorphic, and that two harmonic maps G,G∗ :
Σ → H2 ⊂ L3 are conjugate if QG = −QG∗ and 〈Gz, Gz̄〉 = 〈G∗

z, G
∗
z̄〉. The harmonic

conjugate of a given harmonic map G : Σ → H2 is defined up to isometries of H2, and
always exists if Σ is simply connected.

Theorem 18 Let S ≡ (x, y, h(x, y)) denote a complete spacelike graph in L3 of constant
curvature K = −1, and let N(x, y) : R2 → H2 denote its Gauss map. If N∗(x, y) :
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R2 → H2 is a conjugate harmonic map of N (for the conformal structure of the second
fundamental form), then the map

φ(x, y) = (N∗(x, y), h(x, y)) : R2 → H2 × R

is an isometric immersion of the Euclidean plane (R2, dx2 + dy2) into the homogeneous
product space H2 × R. This isometric immersion is moreover an entire graph over H2.

Proof: We shall use (x, y) as global coordinates for S in the obvious way. Let Φ : S → H2

be an isometry, and N : S → H2 be the Gauss map of S. Let also z : S → U ⊂ C be
a global conformal parameter on S for the second fundamental form. Then it follows
from [13] that Φ ◦ z−1 : U → H2 and N ◦ z−1 : U → H2 are harmonic maps into H2 that
are conjugate. Now, by the basic correspondence we can associate to S the isometric
immersion

ψ̂(x, y) = (x, y, h(x, y)) : (R2, dx2 + dy2) → S × R.

Finally, φ(x, y) = (Φ(x, y), h(x, y)) : R2 → H2 × R gives an isometric immersion of R2

into H2 × R as an entire graph, which has the desired form.
2

In particular, we see that the vertical projection on H2 of a flat graph in H2 × R is
harmonic for the conformal structure of the second fundamental form (see also [4]).

It is clear that Theorem 18 can also be applied locally, and implies that any flat
graph in H2×R can be recovered by means of two conjugate harmonic maps G,G∗ into
H2. Specifically, let π : H2 → D denote the stereographic projection, let g := π ◦ G,
g∗ = π ◦ G∗, and assume that G∗ : Σ → G∗(Σ) ⊂ H2 is a diffeomorphism. Then, by
means of the Weierstrass representation formula in [13] and the proof of Theorem 18 we
see that

ψ : Σ → H2 × R, ψ =

(
g∗, Re

∫
4
−ḡgz + gḡz

(1− |g|2)2
dz

)
, (6.1)

is a flat graph in H2 × R, conformally parametrized with respect to the second funda-
mental form. And conversely, it is also clear by the basic correspondence that any flat
graph in H2 ×R can be expressed in this way for a suitable pair of conjugate harmonic
maps G,G∗ into H2.

As a direct consequence of this, it seems possible to develop an integrable systems
theory for flat graphs in H2 × R, and to derive a Sym-type formula using loop groups.

Theorem 18 has the following global consequence:

Corollary 19 There exists a correspondence between the space of harmonic diffeomor-
phism from Σ = D or C onto H2 and the space of entire flat graphs in H2 × R.

Specifically, for each harmonic diffeomorphism G : Σ → H2 there is exactly a 2-
parameter family of (generically non-congruent) entire flat graphs in H2 × R, whose
vertical projection onto H2 coincides with G, for the conformal structure of the second
fundamental form.
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Proof: The above development shows that any harmonic diffeomorphism G of Σ = C
or D into H2 is the vertical projection of an entire flat graph in H2 × R, where the
conformal structure is the one induced by the second fundamental form of the graph
(by Proposition 3). And clearly, if we substitute G by Ψ ◦G, where Ψ is an isometry of
H2, then the entire flat graph ψ = (π, h ◦ π) transforms into φ = (Ψ ◦ π, h ◦ π), which is
congruent to ψ in H2 × R.

Finally, the fact that the class of surfaces with the same vertical projection is 2-
dimensional follows from Example 5. It could be also deduced from (6.1), taking into
account that the harmonic conjugate of a harmonic map is defined up to isometries of
H2 (thus, a 3-parameter family), and that rotations of this harmonic conjugate do not
change the height function in (6.1). So, we are left again with a 2-parameter family of
entire graphs.

2

This Corollary indicates that the class of entire flat graphs in H2 × R is extremely
large, as so is the class of harmonic diffeomorphisms onto H2. Apart from these entire
graphs, there also exist isometric immersions of R2 into H2×R in the form of a vertical
cylinder γ×R ⊂ H2×R, where γ is a regular curve in H2. Related to this, we would like
to mention the following open problem: are all isometric immersions of R2 into H2×R
either vertical cylinders or entire flat graphs?
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