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Abstract

We give the solutions to the Liouville equation in an annulus A of R2

that satisfy a certain Neumann condition on each component of ∂A. As a
consequence, we classify all the metrics of constant curvature in A that have
constant geodesic curvature on ∂A.

1 Introduction
In this paper we study the following elliptic Neumann problem in R2 ≡ C:

∆u+ 2Keu = 0, in A = {z ∈ C : e−rπ < |z| < 1},

∂u

∂ν1

= c1e
u
2 + 2, on C1 = {z ∈ C : |z| = 1},

∂u

∂ν2

= c2e
u
2 − 2erπ, on C2 = {z ∈ C : |z| = e−rπ}.

(P )

Here νi denotes the interior unit normal to Ci, i = 1, 2 respectively, and r > 0 is a
constant. Moreover, we suppose up to dilation that K = {−1, 0, 1}.

The solutions to (P ) provide conformal metrics eu|dz|2 onA such that (A, eu|dz|2)
has constant curvature K on A, and constant geodesic curvature −ci/2 on Ci ⊂ ∂A
for i = 1, 2. And conversely, if Σ is a compact surface diffeomorphic to a closed an-
nulus, and dσ2 is a Riemannian surface of constant curvature K on Σ and constant
geodesic curvature on each boundary component of ∂Σ, then (Σ, dσ2) is isometric
to (A, eu|dz|2) for some solution u to (P ) with adequate constants c1, c2 and r.

The equation ∆u + 2Keu = 0 is called the Liouville equation. An important
property of the Liouville equation is that it is conformally invariant. Actually, since

1The author is partially supported by MEC-FEDER, Grant No. MTM2010-19821.
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different values of r provide annuli that are not conformally equivalent, we are
considering a family of problems that are also non-conformally equivalent.

The problem of finding what are the conformal Riemannian metrics on a domain
Ω having constant curvature K, and constant geodesic curvature along each bound-
ary component of ∂Ω has been widely studied when Ω = R2

+. In the case that the
metric extends smoothly to the whole R, it was fully solved by Zhang [Zha] (in the
finite energy case) and Gálvez-Mira [GaMi] (in general), as an extension of previous
results in [LiZha, Ou] (see also [ChLi, ChWa, HaWa]). More recently this problem
has been generalized to the case when the metric has a singularity at the origin and
possibly different values of the geodesic curvature on R− and R+. This is a work of
Jost, Wang and Zhou in [JWZ] and Gálvez, Mira and the author in [GJM]. The case
of the metrics of constant curvature over non simply connected domains is studied
in the works of Chou and Wan [ChWa] (in the case of the punctured disk) and Brito,
Hounie and Leite [BHL] (in the general case). Finally, in [GaMi] the authors use the
results in R2

+ and a lifting to the universal cover to give a complete classification of
the metrics in the punctured unit disk D∗ that have constant curvature and constant
geodesic curvature on the boundary.

Our goal in this paper is to classify all the solutions of (P ) and deduce for what
values of K, c1 and c2 such solutions do exist. This classification is given as our
main result in Theorem 1 which is stated and proved in Section 2. The consequences
concerning the possible values of the constants c1 and c2 and the existence result
will be given in the Lemma 2 and Corollary 1 in Section 3. Finally, we recall that
discs of constant curvature with constant geodesic curvature on the boundary were
classified geometrically (see for example [HaWa]). They are isometric to spherical
caps, planar or hyperbolic discs, respectively if K = 1, 0,−1. In Section 4 we give
the analogous result in the case of an annulus A with constant geodesic curvature
on the boundary. We show that all the solutions in Theorem 1 correspond to one of
the canonical geometric situations described in Section 4.

This article is part of the Ph.D. Thesis of the author, and we would like to thank
professor H. Rosenberg for suggesting this problem during the congress Algebraic,
Geometric and Analytical Aspects of Surface Theory in Búzios, Brasil in 2010, and
professors J. A. Gálvez and P. Mira for their helpful comments.

2 Analytic description of the solutions to (P )

Theorem 1. Any solution to (P ) is given by one of the following expressions, where
z = Rei arg z.
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1.

eu =
4γ2λ2R2(γ−1)

(Kλ2 + |Rγeiγ arg z − z0|2)2
(1)

with γ > 0, λ > 0 and z0 ∈ C such that (i) if K = 0 and z0 6= 0 then |z0| /∈
[e−rγπ, 1] and γ ∈ N; (ii) if K = −1 and z0 6= 0, then |z0| /∈ [e−rπγ − λ, 1 + λ]
and γ ∈ N and (iii) if K = −1 and z0 = 0, then λ /∈ [e−rγπ, 1].

2. If K = 0
eu = 4λ2R2(γ−1), (2)

for some λ > 0, γ ≥ 0.

3. If K = −1

eu =
4

R2(λ+ 2 logR)2
, (3)

where λ /∈ [0, 2πr], or

eu =
γ2

R2(cos(θ − γ logR))2
(4)

where 0 < γ < 1/r and θ ∈ R is such that π/2 + kπ /∈ [θ, θ+ γrπ] ∀k ∈ Z and
cos(θ) > 0, or

eu =
4γ2R2(γ−1)

(λ+ 2Rγ cos(θ + γ arg z))2
(5)

with γ ∈ N and λ /∈ [−2, 2].

In order to prove Theorem 1 we need to introduce some preliminaries. For
that, we will identify from now on R2 and C, and write w = s + it ≡ (s, t) or
z = x+ iy ≡ (x, y) for points in the domain of a solution to the Liouville equation.
We will also denote as Q(K) the 2-dimensional space form of constant curvature
K ∈ {−1, 0, 1}, which will be viewed as (ΣK , ds

2
K) where

ΣK =


C if K = 1,

C if K = 0,

D ⊂ C if K = −1,

and ds2
K is the Riemannian metric on ΣK given by

ds2
K =

4|dζ|2

(1 +K|ζ|2)2
. (6)

The following classical result, mainly due to Liouville [Li] (see also [Bry, ChWa]),
shows the relationship between the Liouville equation and complex analysis.
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Theorem 2. Let u : Ω ⊂ R2 ≡ C → R denote a solution to ∆u + 2Keu = 0 in
a simply connected domain Ω. Then there exists a locally univalent meromorphic
function g (holomorphic with 1 +K|g|2 > 0 if K ≤ 0) in Ω such that

u = log
4|g′|2

(1 +K|g|2)2
. (7)

Conversely, if g is a locally univalent meromorphic function (holomorphic with 1 +
K|g|2 > 0 if K ≤ 0) in Ω, then (7) is a solution to ∆u+ 2Keu = 0 in Ω.

Observe that the function g in the above theorem, which is called the developing
map of the solution, is unique up to a Möbius transformation of the form

g 7→ αg − β̄
εβg + ᾱ

, |α|2 − ε|β|2 = 1. (8)

These transformations are isometries of Q(ε).

Remark 1. From a geometric point of view, if u ∈ C2(Ω) is a solution to ∆u +
2Keu = 0, then its developing map g : Ω ⊆ C → ΣK ⊆ C provides a local isometry
from (Ω, eu|dz|2) to Q(K) ≡ (ΣK , ds

2
K), where ds2

K is given by (6).

Although Theorem 2 is only valid for simply connected domains, we will be able
to apply formula (7) by passing to the universal cover of A, in order to obtain the
solutions of (P ). The way to do this will be shown in Lemma 1. The same method
is used for solving the Liouville equation in other non simply connected domains
(see [BHL] and [GaMi]).

There is another holomorphic function attached to any solution u of the Liouville
equation that will be important in our study. We will denote it by Q, and it is given
by the formulas below, where g is the developing map of u:

Q := uzz −
1

2
u2
z = {g, z} :=

(
gzz
gz

)
z

− 1

2

(
gzz
gz

)2

. (9)

Here, by definition uz = (ux − iuy)/2 (and gz = g′), and {g, z} is the Schwarzian
derivative of the meromorphic function g with respect to z. Observe that Q is
holomorphic, i.e. it does not have poles, and it does not depend on the choice of the
developing map g. We will call it the Schwarzian map associated to the solution u.

Lemma 1. Solving problem (P ) is equivalent to obtaining the solutions of

∆v + 2Kev = 0 in Γ = {w = s+ it ∈ C : 0 < Imw < π},

∂v

∂t
= c1e

v/2 on R,

∂v

∂t
= −c2ev/2 on R + πi,

(P̃ )
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that are (2π/r)-periodic. Specifically, the solutions of (P ) are given by the formula
(7) where g = g̃ ◦ Φ−1, with Φ : Γ→ A given by Φ(w) = eirw, and g̃ the developing
map associated to (P̃ ).

Proof. It is clear that Φ defines a conformal diffeomorphism between A and the
quotient Γ/ ∼, where w ∼ w′ ⇔ w′ = w + 2π

r
Z.

On the other hand, it is well known (see [BHL]), that if Φ : Ω2 → Ω1 is a
conformal map between two domains, the solutions of the Liouville equation in Ω2

are given by
v = u ◦ Φ + 2 log |Φ′| (10)

where u is a solution in Ω1. Moreover, the developing map associated to u can be
written as g(z) = g̃(Φ−1(z)). In general, if Φ is a covering map, g is multivalued
unless Ω1 is simply connected.

Then, to prove the Lemma, we only must check that if u is a solution of (P )
then

v(s, t) = u(Φ(s, t)) + 2 log r − 2rt (11)

is a solution of (P̃ ) which is (2π/r)-periodic. Conversely, if v is a (2π/r)-periodic
solution of (P̃ ), then

u(x, y) = v(Φ−1(x, y))− 2 log r − log(x2 + y2) (12)

is a solution of (P ). But this a simple computation, taking into account the following
facts.

(i) Formula (11) comes from (10), and (12) is just its inverse.

(ii) Φ is (2π/r)-periodic and Φ−1 is multivalued in the following way: Φ−1(x, y) =
Φ−1(x, y) + 2π/r.

(iii) It holds

∂u

∂ν1

= −xux − yuy on C1 and
∂u

∂ν2

= eπr(xux + yuy) on C2.

Proof of Theorem 1. Let v ∈ C2(Γ) be a (2π/r)-periodic solution of (P̃ ). Then,
its associated Schwarzian derivative Q̃ = vww − 1

2
v2
w will be also (2π/r)-periodic.

Moreover, because of the boundary conditions in (P̃ ) we have that

Im Q̃(s, 0) = −1
2

(
c1
2
vs(s, 0)ev(s,0)/2 − c1

2
vs(s, 0)ev(s,0)/2

)
= 0,

Im Q̃(s, π) = −1
2

(
− c2

2
vs(s, π)ev(s,π)/2 + c2

2
vs(s, π)ev(s,π)/2

)
= 0.

(13)
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So, by the Schwarz reflection principle for harmonic functions, we can extend Im Q̃
from Γ to C as a (2πi)-periodic function. As Im Q̃ is also (2π/r)-periodic, we deduce
from (13) that Im Q̃ = 0.

Consequently, Q̃ = c = constant for a certain c ∈ R. It is well known that the
solutions of the Schwarzian equation {g̃, w} = c are of the form g̃(w) = ψ(w), if
c = 0, or g̃(w) = ψ(e

√
−2cw) if c 6= 0, where ψ is a Möbius transformation.

Thus, by Lemma 1 the developing map g : A −→ C associated to the solutions
of (P ) can be written as

g(z) =
Az−i

√
−2c
r +B

Cz−i
√
−2c
r +D

, if c 6= 0, (14)

or
g(z) =

−Ai log z/r +B

−Ci log z/r +D
, if c = 0, (15)

for some A,B,C,D ∈ C with AD −BC = 1. Here ψ(ξ) = Aξ+B
Cξ+D

.
We will denote γ =

√
−2c/r if c < 0 or iγ =

√
−2c/r if c > 0. So, from (14) and

(15) we obtain the following expressions.
If c > 0

eu =
4γ2|zγ−1|2

(K|B|2 + |D|2 + (KAB + CD)zγ + (KAB + CD)z̄γ + (K|A|2 + |C|2)|z|2γ)2
,

(16)
if c < 0

eu =
4γ2|z−iγ−1|2

(K|B|2 + |D|2 + (KAB + CD)z−iγ + (KAB + CD)z̄iγ + (K|A|2 + |C|2)|z−iγ|2)2
,

(17)
and if c = 0

eu = 4/(r2|z|2(K|B|2 + |D|2 − i(KAB + CD) log z/r + i(KAB + CD) log z̄/r
+(K|A|2 + |C|2)| log z|2/r2)2).

(18)
We determine now which of them are valid solutions in term of the constants
A,B,C,D.

Assume first of all K|A|2 + |C|2 6= 0. Then, we can take

λ =
1

|K|A|2 + |C|2 |
, z0 = −KAB + CD

K|A|2 + |C|2
, (19)

so that (16), (17) and (18) yield respectively as

eu =
4γ2λ2|zγ−1|2

(Kλ2 + |zγ − z0|2)2
, (20)
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eu =
4γ2λ2|z−iγ−1|2

(Kλ2 + |z−iγ − z0|2)2
, (21)

eu =
4λ2

r2|z|2(Kλ2 + | − i
r

log z − z0|2)2
. (22)

Observe that due to the behaviour of the function arg(z) in A, z−iγ = z−iγe2πγ.
Thus, in (21), the multivaluation of the numerator cannot be compensated with the
multivaluation of the denominator and so this metric is excluded. In the same way,
it is easy to see that (22) is never well defined in A. Hence we also exclude it. On
the other hand, (20) is well defined only when we are in one of the following cases.

• If z0 = 0 and Kλ2 + |zγ|2 6= 0. The last condition is always satisfied in A if
K = 1, 0. In the case K = −1 it is equivalent to the condition λ /∈ [e−πrγ, 1].
Such solutions are always radially symmetric.

• If z0 6= 0, γ ∈ N and Kλ2 + |zγ−z0|2 6= 0. The last condition is always satisfied
if K = 1. However, if K = 0 it is equivalent to the condition |z0| /∈ [e−rγπ, 1],
and if K = −1, it reduces to |z0| /∈ [e−rγπ − λ, 1 + λ]. This solutions are not
radially symmetric.

Hence, we have obtained all the solutions of the first type as stated in Theorem 1.
Let us consider now the case K|A|2 + |C|2 = 0, and so it must hold K = 0,−1.
Then, writing

KAB + CD = d, (23)

(16) can be simplified as

eu =
4γ2|z|2(γ−1)

(K|B|2 + |D|2 + 2|d||z|γ cos(arg d+ γ arg z))2
.

Because of the condition K|A|2 + |C|2 = 0 we have that d = 0 if K = 0 and |d| = 1
if K = −1. Thus, if K = 0, eu is well defined if and only if D 6= 0. We obtain then
the solutions (2) (for γ > 0). When K = −1 we have to impose that γ ∈ N and
|D|2 − |B|2 /∈ [−2, 2] for eu to be well defined. This solution correspond to the not
radially symmetric solution (5).

Now, if d is as in (23) then (17) can be written as

eu =
4γ2e2(γ arg z−log |z|)

(K|B|2 + |D|2 + 2|d|eγ arg(z) cos(arg(d)− γ log |z|))2
.

Then it is easy to see that if K = 0, and so d = 0, the function eu is not well
defined. If K = −1 we need that |B|2 = |D|2 and π/2 + kπ /∈ [arg(d), arg(d) + γrπ]
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∀k ∈ Z (in particular γ < 1/r) in order that eu is well defined in A. As the condition
g(1) = ψ(1) ∈ D is necessary, we have that cos(arg(d)) > 0. We obtain then the
radially symmetric solutions in (4).

Finally, from (23), the expression of (18) reduces to

eu =
4

|z|2(r(K|B|2 + |D|2) + 2|d|(sin(arg d) log |z|+ arg z cos(arg d)))2
.

If K = 0, as d = 0, this conformal factor is well defined provided that D 6= 0. Thus,
calling λ2 = 1/(r|D|)2 we obtain the solutions in (2) (for γ = 0). If K = −1 we
need to impose that arg d = π/2 + kπ for some k ∈ Z, that is, d = (−1)ki, and that
(−1)k(|D|2−|B|2) /∈ [0, 2π]. Calling r(|D|2−|B|2)(−1)k = λ we obtain the solutions
in (3). This concludes the proof of Theorem 1.

3 Necessary and sufficient conditions for existence

The following Lemma follows from a simple computation that we omit.

Lemma 2. Let u ∈ C2(A) be a solution to (P ) given by one of the expressions
(1)-(5) in Theorem 1. Then, its associated constants c1, c2 ∈ R are given as follows.

• For u as in (1),

c1 = S
−Kλ2 − |z0|2 + 1

λ
, c2 = S

erπγ(Kλ2 + |z0|2)− e−rπγ

λ
,

where

S =

{
sign(1− λ) if K = −1, z0 = 0
1 otherwise

• For u as in (2), c1 = −γ
λ
and c2 = eπrγγ

λ
.

• For u as in (3), c1 = 2sign(λ), and c2 = −2sign(λ).

• For u as in (4), c1 = 2 sin(θ), and c2 = −2 sin(θ + rπγ).

• For u as in (5), c1 = −|λ|, and c2 = |λ|eπrγ.

Now, we use Lemma 2 to deduce for which values of K, c1 and c2 a solution of
(P ) exists.

Corollary 1. Given c1, c2 ∈ R there exists a solution to problem (P ) if and only if
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• K = 1 and c1 + c2 > 0.

• K = 0 and (i) c1 + c2 > 0 with ci < 0 for some i = {1, 2} , or (ii) c1 = 0 = c2.

• K = −1 and (i) c1 + c2 > 0 with c1 < −2 and c2 > 2 (or with c1 > 2 and
c2 < −2), or (ii) c1 = ±2 and c2 = ∓2, or (iii) c1 + c2 < 0 with 0 ≤ |ci| < 2
for both i = {1, 2}.

Proof. In the case K = 1 all the solutions are given by (1). Then, since

c1 =
−λ2 − |z0|2 + 1

λ
, c2 =

erπγ(λ2 + |z0|2)− e−rπγ

λ
, (24)

a simple computation shows that c1 + c2 > 0. Conversely, if we consider c1 and c2
such that c1 + c2 > 0, taking z0 = 0 it is easy to obtain two constants λ, γ > 0 such
that formula (24) is satisfied. Thus, for K = 1, the condition c1 + c2 > 0 is also
sufficient for the existence of a solution. Moreover, these constants are completely
determined by the conformal structure of A (given by r). Observe that, if the
solution is given by (1), for all the values K = 1, 0,−1 we had the restriction γ ∈ N
if z0 6= 0. Therefore, in such cases the choice of c1 and c2 will have another technical
restriction in terms of the conformal structure, in order to obtain a solution.

In the case K = 0 we have more possibilities, since the solutions to (P ) are given
by either (1) or (2). If the solution is given by (1), then

c1 =
−|z0|2 + 1

λ
, c2 =

erπγ|z0|2 − e−rπγ

λ
, (25)

and because of the restrictions in Theorem 1 we deduce that c1 + c2 > 0 and that
(i) if |z0| > 1, then c1 < 0 and c2 > 0 and (ii) if |z0| < e−rπγ then c1 > 0 and c2 < 0.
Conversely, if we have c1 and c2 such that c1 + c2 > 0, c1 < 0 and c2 > 0, then
we can chose z0 = 0 and find λ, γ > 0 (unique for each fixed r > 0) such that (25)
holds.

On the other hand, if the solution is given by (2) and γ = 0, as c1 = 0 = c2,
the metric always exists, given any parameter λ > 0, for any conformal structure.
If γ 6= 0 in (2), then

c1 =
−γ
λ
, c2 =

erπγγ

λ
, (26)

and so c1+c2 > 0, c1 < 0 and c2 > 0. Hence, given c1 and c2 under these assumptions,
we trivially find λ, γ > 0 such that (26) is satisfied. Looking at the solution (2) and
the solution (1) when z0 = 0 we see they differ by an inversion, that is, the role of
c1 and c2 in (26) and (25) is interchanged.
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If K = −1, the solution u to (P ) can be given by formulas (1) or (3)-(5). If u is
given by (1), then from Lemma 2 we know that

c1 = S
λ2 − |z0|2 + 1

λ
, c2 = S

erπγ(−λ2 + |z0|2)− e−rπγ

λ
, (27)

and a simple computation shows that c1 + c2 > 0. Moreover, from the restrictions
in Theorem 1, we have that:

(i) if z0 6= 0, then |z0| > 1 + λ, and so c1 < −2 and c2 > 2, or |z0| < e−rπγ − λ
and therefore c1 > 2 and c2 < −2,

(ii) if z0 = 0, then either λ > 1 and so c1 < −2 and c2 > 2, or λ < e−rπγ and then
c1 > 2 and c2 < −2.

Conversely, consider c1 and c2 such that c1 + c2 > 0 and c1 < −2 (resp. c1 > 2) and
c2 > 2 (resp. c2 < −2). Then, at least for the case z0 = 0, we can always find (just
by solving a second order equation) parameters γ > 0 and λ > 1 (resp. λ < e−rπγ)
such that (27) holds.

By means of Lemma 2, if c1 = ±2 and c2 = ∓2, we can always obtain a solution
of type (3) for a convenient choice of λ /∈ [0, 2πr] provided that the equalities
c1 = 2sign(λ) and c2 = −2sign(λ) are satisfied.

If the solution u is given by (4), we have

c1 = 2 sin(θ), c2 = −2 sin(θ + rπγ), (28)

for a certain θ ∈ R and γ > 0 under the restrictions

π/2 + kπ /∈ [θ, θ + γrπ], ∀k ∈ Z, cos(θ) > 0. (29)

Thus it is easy to deduce that c1 + c2 < 0 and that 0 ≤ |ci| < 2 for both i = {1, 2}.
Conversely, because of the behaviour of the sin and cos functions, given c1 and c2
under these assumptions we can always find θ ∈ R and γ > 0 such that (29) and
(28) are satisfied.

Finally, if the solution is given by (5), as

c1 = −|λ|, c2 = |λ|eπrγ, (30)

we are led again to the relation c1 + c2 > 0; and since in this case λ /∈ [−2, 2], then
c1 < −2 and c2 > 2. But it is easy to see from (30) that we have a restriction
involving the conformal structure. Only when c1/c2 = −eπrγ for a certain γ ∈ N
we will obtain solutions of type (5). Therefore, not all the conformal structures are
admissible for the existence of such solutions.
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4 Classification of constant curvature annuli
As explained in the introduction, the solutions to (P ) provide Riemannian annuli of
constant curvature with constant geodesic curvature on each boundary component,
and viceversa. Next, we use this connection to give the geometric counterpart to
Theorem 1.

From a geometric point of view, there are several ways to produce constant
curvature annuli with constant geodesic curvature on each boundary component, as
we explain next.

(1) First of all, one has the induced metric of any annulus A′ in Q(K) whose
boundary consists of two disjoint circles. Observe that by composing with a
finite-folded covering map of this annulus A′ we also obtain conformal metrics
in the same conditions. The conformal structure of such metrics depend on
the covering number.

(2) Second, assume that A′ is a radially symmetric annulus in Q(K). That is, its
boundary consists of two circles C ′1, C ′2, and A′ is foliated by geodesic arcs in
Q(K) that meet both C ′1 and C ′2 orthogonally. Then, we may consider the
sector of A′ bounded by two of these radial geodesics, which make some angle
γ, possibly greater than 2π. After identifying those geodesics, the quotient
space is a topological annulus and the metric ds2

K restricted to A′ projects
to a well-defined metric of constant curvature K on this quotient. Hence, we
obtain a conformal metric satisfying the desired conditions.
One can make similar constructions in the following cases:

(3) when K = 0, by considering a strip in R2 instead of a radially symmetric an-
nulus, and identifying two different line segments orthogonal to the boundary
of the strip.

(4) when K = −1 by considering the region of Q(−1) ≡ D bounded by two
horocycles with the same ideal point p ∈ S1, together with two geodesic arcs
in Q(−1) starting at p, and identifying these arcs.

(5) when K = −1 by considering the region of Q(−1) ≡ D bounded by two arcs
of circle with common ideal endpoints p1, p2 ∈ S1, together with two geodesic
arcs in Q(−1) which meet the previous two circles orthogonally and that we
identify.

With this, let us prove as a consequence of Theorem 1 that these five types of
Riemannian annuli provide all possible conformal metrics of constant curvature K
on an annulus A, with constant geodesic curvature on ∂A.
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Theorem 3. Let (Σ, dσ2) be a Riemannian surface diffeomorphic to a closed an-
nulus. Assume dσ2 has constant curvature on Σ, and constant geodesic curvature
along each boundary component of ∂Σ. Then, (Σ, dσ2) is isometric to one of the
five examples of Riemannian annuli described above.

Proof. Up to a conformal change of coordinates, we may view (Σ, dσ2) as (A, eu|dz|2)
where A = {z ∈ C : e−rπ < |z| < 1} for some r > 0, and u is a solution to (P ) for
some adequate constants K, c1, c2. We now analyze from a geometric point of view
the possible expressions for u, as given by Theorem 1.

We consider first the solutions given by (1). In this case we know by the proof
of Theorem 1 that the associated developing map is g(z) = ψ(zγ) with γ > 0 and
ψ(ξ) = Aξ+B

Cξ+D
a certain Möbius transformation.

If z0 6= 0, we had the restriction γ ∈ N. Thus, g is univalued on A. Moreover,
g(A) is a topological annulus A′ in Q(K) whose boundary consists in two circles,
and the map g defines a γ-folded covering map from A into A′. Thus, by Remark
1, we see that (A, eu|dz|2) is isometric to the annulus A′ endowed with the metric
ds2

K , covered a number γ ∈ N of times. That is, (A, eu|dz|2) is isometric to the first
type of canonical annuli of constant curvature defined before.

Now suppose we are in the case z0 = 0, and so γ is not necessarily an integer.
The multivalued function zγ maps A into a piece of the annulus B = {ξ ∈ C :
e−rπγ < |ξ| < 1} bounded by the segment [e−rπγ, 1] and R2πγ([e

−rπγ, 1]), where Rt

denotes from now on the rotation of angle t. These two segments correspond to the
splitting by zγ of the segment [e−rπ, 1]. Because of the condition z0 = 0 we have
from (19) that KAB + CD = 0. Then it is easy to prove that for each θ ∈ R,
ψ ◦ Rθ ◦ ψ−1 = φ where φ is an isometry of Q(K) described in (8). That is, for
each θ ∈ R, g(eiθz) = φθ(g(z)) for a certain isometry of Q(K), φθ. On the other
hand, observe that this kind of metrics coincide with one of the canonical solutions
that solve the Newmann problem in R2

+, given by formula (5) in [GJM]. Thus, we
have from Lemma 1 in [GJM] that since [e−rπ, 1] ⊂ R+ then g([e−rπ, 1]) is a geodesic
arc in Q(K). Hence, g(A) is a piece of an annulus A′ which is radially symmetric,
that is, foliated by geodesic arcs meeting ∂A′ orthogonally. These geodesic arcs are
the image of the segments orthogonal to ∂A that foliate A. Such a piece, g(A), is
bounded by two of those geodesic arcs that make an angle 2πγ > 0, where γ can
be greater than 1. As we explained before, they correspond to the splitting of the
segment [e−rπ, 1]. We see then that (A, eu|dz|2) is isometric to the domain g(A),
where the the extremal geodesic arcs are identified, endowed with the projection of
ds2

K . Thus, these solutions correspond to the canonical annuli of type (2) mentioned
before.

Consider now the case K = 0 when the solution is given by (2) with γ 6= 0. We
have again, by the proof of Theorem 1, that g(z) = ψ(zγ) where now the Möbius
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transformation ψ(ξ) = Aξ+B
Cξ+D

satisfies that C = 0, that is, it is the composition of a
dilation with an isometry of Q(0) ≡ R2. Thus, g(A) lies in an annulus A′, which is
radially symmetric in Q(0), and the image of the segments orthogonal to ∂A that
foliate A are segments (and so geodesic arcs) in A′ which are orthogonal to ∂A′.
As in the case of the solutions of type (1), g(A) is a portion of such an annulus A′
delimited by two of those segments which correspond to the split of the segment
[e−rπ, 1] and that make an angle 2πγ, possibly greater than 2π. Hence, we are lead
again in the case of annulus of type (2).

If γ = 0 in the formula (2) we know that g(z) = ψ(− i
r

log z) where, as before,
ψ is the composition of a dilation with an isometry of Q(0). The multivalued
function − i

r
log z maps A into the strip Γ = {w ∈ C : 0 < Imw < π} where the

segment [e−πr, 1] splits into the vertical segments S1 = {ξ ∈ Γ : Reξ = 0} and
S2 = {ξ ∈ Γ : Reξ = 2π/r}. So, g(A) is a piece of the strip ψ(Γ) bounded by
the segments ψ(S1) and ψ(S2). This solution makes (A, eu|dz|2) isometric to the
domain g(A), where ψ(S1) and ψ(S1) are identified, endowed with the projection of
ds2

0. Thus, it corresponds to the annulus of type (3) described before.
Assume next that K = −1 and the solution is given by formula (3). Then the

developing map associated to it is g(z) = ψ(− i
r

log z) where ψ(ξ) = Aξ+B
Cξ+D

is a Möbius
transformation satisfying |A| = |C|, i.e. it maps the point of infinity into a point
p = A

C
∈ ∂D. Thus, we deduce that g(A) lies in ψ(Γ), which is the region limited by

two horocycles C1 and C2 that are tangent at p. Observe also that the image by ψ of
the vertical segments foliating Γ will be arcs of curves that start at p and which are
orthogonal to both C1 and C2. Hence they are geodesic arcs that foliate the region
between C1 and C2. Two of those geodesic arcs, corresponding to the splitting of
the segment [e−rπ, 1], are identified to obtain the quotient which, with the projected
metric ds2

−1, is isometric to (A, eu|dz|2). These solutions correspond with the annuli
of type (4) mentioned before.

If K = −1 and the solution is given by the formula (4), then the associated
developing map is g(z) = ψ(z−iγ) where γ < 1/r and the Möbius transformation
ψ(ξ) = Aξ+B

Cξ+D
is such that |A| = |C| and |B| = |D|. Note that the multivalued

function z−iγ maps C1 into the segment S1 = [1, e2πγ] and C2 into its rotated S2 =
Rπγr([1, e

2πγ]). And the two arcs of circle centered at the origin with radii 1 and
e2πγ respectively that join the endpoints of S1 and S2, correspond to the splitting
by the function z−iγ of the segment [e−rπ, 1]. Thus A is mapped by z−iγ into the
region delimited by S1, S2 and this two arcs of circle. On the other hand, it is
easy to check that ψ maps the line passing trough the origin corresponding to the
arguments π/2 − θ and −π/2 − θ (where θ is the parameter appearing in (4))
into ∂D. As a consequence, all the circles centered at the origin (since they are
orthogonal to such a line) will be mapped by ψ into geodesics of Q(−1) ≡ D that
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will foliate g(A). By all the reasoning before, we deduce that g maps A into the
region bounded by (i) two arcs of circles (the image of C1 and C2) that meet at
two points p1 = A/C, p2 = B/D ∈ ∂D with angle πγr and, (ii) two geodesic arcs
orthogonal to them. These geodesic arcs that we identify correspond to the splitting
by g of the segment [e−rπ, 1]. Hence, (A, eu|dz|2) is isometric to this quotient of g(A)
endowed with the projection of the metric ds2

−1. It is then a Riemannian annulus of
type (5).

Finally, if K = −1 and the solution is given by formula (5), we have again
g(z) = ψ(zγ). Now γ ∈ N and ψ(ξ) = Aξ+B

Cξ+D
is such that |A| = |C|. Thus we

can deduce as before that g is a γ-folded covering map from A into an annulus
A′ ⊂ Q(−1). In this case, the boundary of A′ is intersected orthogonally by two
curves with common ideal point p = A

C
∈ ∂D. These curves are the image by g of

the real and the imaginary axis. Thus, we are lead again in the case of annulus of
type (1).
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