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Abstract. In this note we present a proof of the well-know semicontinuity lemma
in the separable case.

1. Introduction

There exists two basic topological results, elsewhere know as The Semiconti-
nuity Lemmas, that have been widely used especially in the theory of Dynamical
Systems. These results loosely says that semicontinuous maps defined on a com-
plete metric (or topological) space and taking values in R or in the Hausdorff
topology of some metric space (see the definitions bellow) is continuous in most
points of the domain, from the topological viewpoint.

As we said, this result has been used in a variety of works of the theory of
Dynamical Systems, and nowdays there exists an intire branch of this theory,
called generic dynamics, dedicated to study properties of “most” systems, from
the topological viewpoint. For instance, see [1], [5], [7], [3] and [2], just to cite a
few. For some nice account of generic dynamics see [6].

While the main topological property of R used the proof of the semicontinu-
ity lemma in its first case is separability, in the literature, see for instance [4],
pages 70-71, the statement for maps taking values in the Hausdorff space requires
campactness.

In this note we shall remark that compactness in the second case is not necessary,
only separability as in the real case. For the sake of completeness we shall also
present the proof in the real case.

Let us give the precise definitions and statements.

For simplicity we shall only deal with domains that are metric spaces. The
reader is invited to provide the modifications required when the domain is only
topological.

Date: February 16, 2012.

1



2 BRUNO SANTIAGO

1.1. Definition. Given a metric space X, a function Γ : X → R is said to be lower
semicontinuous in a point x ∈ X if given ε > 0 there exists δ > 0 such that for
every y ∈ X with d(x, y) < δ then Γ(y) > Γ(x) − ε. Similarly, we say that Γ is upper
semicontinuous in x if given ε there exists δ > 0 such that Γ(y) < Γ(x) + ε, whenever
d(x, y) < δ.

When a function Γ : X → R is lower/upper semicontinuous in every point we
just say that Γ is lower/upper semicontinuous.

It is obvious that a function that is both, lower and upper semi continuous, is
continuous. Recall that a set in a metric space X is called residual if it contains a
countable intersection of open and dense subsets.

1.2. Theorem (The Semicontinuity Lemma-Real Case). Let X be a metric space and
consider Γ : X → R a lower-semicontinuous function. Then, there is a residual set of
points in X where Γ is continuous.

If M is a metric space, we denote by CM the space of compact subsets of M
endowed with the Hausdorff metric. Given A,B compact subsets of M, the Haus-
dorff distance between them, wich we denote by dH(A,B) is the maximum of the
numbers dA(B) and dB(A), where

dA(B) = sup {d(b,A); b ∈ B} ,

and
dB(A) = sup {d(a,B); a ∈ A} .

Is an easy matter to show that (CM, dH) is a metric space.

1.3. Definition. We say that a map Γ : X → CM is lower semicontinuous in a point
x ∈ X if for every open set U that intersects Γ(x) there exists a neighborhoodU of x in X
such that if y ∈ U then Γ(y) ∩ U , ∅. We say that Γ is upper semicontinuous in x if
for every neighborhood U of Γ(x) there exists a neighborhoodU of x in X such that y ∈ U
implies Γ(y) ⊂ U.

Note that Γ : X → CM is lower semicontinuous in a point x if and only if for
every ε > 0 there exists δ > 0, such that for every y ∈ X with d(y, x) < δ we have
dΓ(y)(Γ(x)) < ε. In a similar way, Γ is upper semicontinuous in x, if for every ε > 0
there exists δ > 0 such that d(y, x) < δ implies dΓ(x)(Γ(y)) < ε. Thus, again Γ is
continuous if, and only if, it is both, lower and upper semicontinuous.

1.4. Theorem (The Semicontinuity Lemma-The Hausdorff Case). Let X be a metric
space and M a separable metric space and consider Γ : X → CM a lower-semicontinuous
map. Then, there is a residual set of points in X where Γ is continuous.

If X is complete the Baire Category Theorem implies that the set of points in
wich Γ is continuous is dense.
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2. Proofs

We start with a short proof of the real case. It is enough to prove that the set of
points in wich Γ is not continuous is a subset of a meager set, i.e. a countable union
of closed sets with empty interior. Take a point x ∈ X in wich Γ is not continuous.
By the hypoteseis, we have that Γ is not upper semicontinuous in x, so there exists
an ε > 0 and a sequence xn → x such that Γ(xn) ≥ Γ(x) + ε. We can take a rational
number q such that Γ(x) < q < Γ(x) + ε. Define the set

Bq = {a ∈ X; Γ(a) ≤ q}.

Since Γ is lower semicontinuous the comlement of Bq is open, and so Bq is closed.
Note that x ∈ Fq := Bq − Int(Bq). Since Fq is a closed set with empty interior, and
the set of rational numbers is countable, we are done.

A carefull look for this proof shows that it has two main insights. The first one is
to note that given a point of discontinuity for the function, the lower semicontinuity
together with the absense of upper semicontinuity naturally allows us to construct
closed sets with empty interior that contains this point, namelly the set Fq, wich
can be constructed with any number Γ(x) < q < Γ(x) + ε. The second insight is that
the separability of R allows us choose contably many such numbers q.

Now, trying to implement the same ideia, we turn to the more envolved proof
of the Hausdorff case.

Proof of the Hausdorff case. Since M separable, there is a countable dense subset
A ⊂ X.

Again, it suffices to prove that the set

D = {x ∈ X; Γ is not continuous in x}

is contained in a meager set.
Take a point x ∈ D. Then, by the hypothesis on Γ, x is not an upper-semicontinuity

point of Γ. Thus, there exists ε > 0 such that there is a sequence xn → x with

Γ(xn) ∩ (M −Uε(Γ(x))) , ∅, for every n > 0,

where Uε(Γ(x)) stands for the ε-neighborhood of Γ(x).
Since Γ(x) is compact and disjoint from the boundary ∂Uε(Γ(x)) of Uε(Γ(x)), wich

is a closed set, there is a number β > 0 such that

d(Γ(x), ∂Uε(Γ(x))) ≥ β.

Take δ =
β
10 and, by compactness, consider a finite cover of Γ(x) by balls B(yi, δ),

with yi ∈ Γ(x), i = 1, ..., l = l(x). In each such ball there is a point ai ∈ A, and we
have that Γ(x) ⊂ ∪l

i=1B(ai, 2δ). We can choose a rational number 2δ < r < 3δ in such
a way that

B(ai, 2δ) ⊂ B(ai, r) ⊂ B(ai, 3δ),
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for every i = 1, ..., l. Then, since 3δ < β, the set Cl,{ai},r :=
⋃l

i=1 B(ai, r) satisfies

Γ(x) ⊂ Cl,{ai},r ⊂ Uε(Γ(x)).

Now, we consider the set

Bl,{ai},r =
{
y ∈ X; Γ(y) ∩ (M − Cl,{ai},r) = ∅

}
.

Note that, by the lower semi-continuity of Γ, this set is closed. Indeed, the lower
semi-continuity of Γ says precisely that the complement of Bl,{ai},r is an open set.
Since Γ(x) ⊂ Cl,{ai},r, x ∈ Bl,{ai},r, but, since xn → x and Γ(xn) ∩ (M −Uε(Γ(x))) , ∅, for
every n, we have that x < int Bl,{ai},r.

This shows that x belongs to the closed set with empty interior

Fl,{ai},r = Bl,{ai},r − int Bl,{ai},r.

Moreover, the colection of sets Bl,{ai},r is countable, and thus the colectin of sets
Fl,{ai},r is also countable. Indeed, for each fixed pair l ∈ N and r ∈ Q+ one can find
a surjection between the colection of sets Bl,{ai},r and the product A × ... × A, with l
factors, wich is a countable set. So, the whole colection of sets Bl,{ai},l can be seen as
a countable union of countable sets, and therefore is countable, as claimed.

Thus, we have proved that

D ⊂

⋃
l,{ai},r

Fl,{ai},r,

and the later is a meager set. This completes the proof. �
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