EXISTENCE OF ATTRACTORS, HOMOCLINIC TANGENCIES AND SINGULAR-HYPERBOLICITY FOR FLOWS

A. ARBIETO, A. ROJAS, B. SANTIAGO

Abstract

We prove that every C^{1} generic three-dimensional flow has either infinitely many sinks, or, finitely many hyperbolic or singular-hyperbolic attractors whose basins form a full Lebesgue measure set. We also prove in the orientable case that the set of accumulation points of the sinks of a C^{1} generic three-dimensional flow has no dominated splitting with respect to the linear Poincaré flow. As a corollary we obtain that every three-dimensional flow can be C^{1} approximated by flows with homoclinic tangencies or by singular-Axiom A flows. These results extend [3, 6, 20 and solve a conjecture in 17].

1. Introduction

Araujo's Theorem [3] asserts that a C^{1} generic surface diffeomorphism has either infinitely many sinks (i.e. attracting periodic orbits), or, finitely many hyperbolic attractors whose basins form a full Lebesgue measure set. In the recent paper [4] the authors were able to extend this result from surface diffeomorphisms to three-dimensional flows without singularities. More precisely, they proved that a C^{1} generic three-dimensional flow without singularities either has infinitely many sinks, or, finitely many hyperbolic attractors whose basins form a full Lebesgue measure set. The present paper goes beyond and extend 4] to the singular case. Indeed, we prove that every C^{1} generic three-dimensional flow has either infinitely many sinks, or, finitely many hyperbolic or singular-hyperbolic attractors whose basins form a full Lebesgue measure set. The arguments used in the proof will imply in the orientable case that the set of accumulation points of the sinks of a C^{1} generic three-dimensional flow has no dominated splitting with respect to the linear Poincaré flow. From this we obtain that every three-dimensional flow can be C^{1} approximated by flows with homoclinic tangencies or by singular-Axiom A flows. This last result extends [6], [20] and solves a conjecture in [17]. Let us state our results in a precise way.

By a three-dimensional flow we mean a C^{1} vector fields on compact connected boundaryless manifolds M of dimension 3 . The corresponding space equipped with the C^{1} vector field topology will be denoted by $\mathfrak{X}^{1}(\mathrm{M})$. The flow of $X \in \mathfrak{X}^{1}(\mathrm{M})$ is denoted by $X_{t}, t \in \mathbb{R}$. A subset of $\mathfrak{X}^{1}(\mathrm{M})$ is residual if it is a countable intersection of open and dense subsets. We say that a C^{1} generic three-dimensional flow satisfies a certain property P if there is a residual subset \mathcal{R} of $\mathfrak{X}^{1}(\mathrm{M})$ such that P holds for every element of \mathcal{R}. The closure operation is denoted by $\mathrm{Cl}(\cdot)$.

[^0]By a critical point of X we mean a point x which is either periodic (i.e. there is a minimal $t_{x, X}>0$ satisfying $\left.X_{t_{x, X}}(x)=x\right)$ or singular (i.e. $X(x)=0$). The eigenvalues of a critical point x are defined respectively as those of the linear automorphism $D X_{t_{x, X}}(x): T_{x} M \rightarrow T_{x} M$ not corresponding to $X(x)$, or, those of $D X(x)$. A critical point is a sink if its eigenvalues are less than 1 in modulus (periodic case) or with negative real part (singular case). A source will be a sink for the time reversed flow $-X$. Denote by $\operatorname{Sink}(X)$ and $\operatorname{Source}(X)$ the set of sinks and sources of X respectively.

Given a point x we define the omega-limit set,

$$
\omega(x)=\left\{y \in M: y=\lim _{t_{k} \rightarrow \infty} X_{t_{k}}(x) \text { for some integer sequence } t_{k} \rightarrow \infty\right\}
$$

(when necessary we shall write $\omega_{X}(x)$ to indicate the dependence on X.) We call a subset $\Lambda \subset M$ invariant if $X_{t}(\Lambda)=\Lambda$ for all $t \in \mathbb{R}$; and transitive if there is $x \in \Lambda$ such that $\Lambda=\omega(x)$. The basin of any subset $\Lambda \subset M$ is defined by

$$
W^{s}(\Lambda)=\{y \in M: \omega(y) \subset \Lambda\}
$$

(Sometimes we write $W_{X}^{s}(\Lambda)$ to indicate dependence on X). An attractor is a transitive set A exhibiting a neighborhood U such that

$$
A=\bigcap_{t \geq 0} X_{t}(U)
$$

A compact invariant set Λ is hyperbolic if there are a continuous $D X_{t}$-invariant tangent bundle decomposition $T_{\Lambda} M=E_{\Lambda}^{s} \oplus E_{\Lambda}^{X} \oplus E_{\Lambda}^{u}$ over Λ and positive numbers K, λ such that E_{x}^{X} is generated by $X(x)$,
$\left\|D X_{t}(x) / E_{x}^{s}\right\| \leq K e^{-\lambda t} \quad$ and $\quad\left\|D X_{-t}(x) / E_{X_{t}(x)}^{u}\right\| \leq K^{-1} e^{\lambda t}, \quad \forall(x, t) \in \Lambda \times \mathbb{R}^{+}$.
On the other hand, a dominated splitting $E \oplus F$ for X over an invariant set I is a continuous tangent bundle $D X_{t}$-invariant splitting $T_{I} M=E_{I} \oplus F_{I}$ for which there are positive constants K, λ satisfying

$$
\left\|D X_{t}(x) / E_{x}\right\| \cdot\left\|D X_{-t}\left(X_{t}(x)\right) / F_{X_{t}(x)}\right\| \leq K e^{-\lambda t}, \quad \forall(x, t) \in I \times \mathbb{R}^{+}
$$

In this case we say that the dominating subbundle E_{I} is contracting if

$$
\left\|D X_{t}(x) / E_{x}\right\| \leq K e^{-\lambda t}, \quad \forall(x, t) \in I \times \mathbb{R}^{+}
$$

The central subbundle F_{I} is said to be volume expanding if

$$
\left|\operatorname{det} D X_{t}(x) / F_{x}\right|^{-1} \leq K e^{-\lambda t}, \quad \forall(x, t) \in I \times \mathbb{R}^{+}
$$

A compact invariat set is partially hyperbolic if it has a dominated splitting with contracting dominating direction. We say that a partially hyperbolic set is singularhyperbolic for X if its singularities are all hyperbolic and its central subbundle is volume expanding. A hyperbolic (resp. singular-hyperbolic) attractor for X is an attractor which is simultaneously a hyperbolic (resp. singular-hyperbolic) set for X.

With these definitions we can state our first result.
Theorem A. A C^{1} generic three-dimensional flow has either infinitely many sinks, or, finitely many hyperbolic or singular-hyperbolic attractors whose basins form a full Lebesgue measure set.

The method of the proof of the above result (based on [18) will imply the following result for three-dimensional flows on orientable manifolds. Denote by $\operatorname{Sing}(X)$ the set of singularities of X. Given $\Lambda \subset M$ we denote $\Lambda^{*}=\Lambda \backslash \operatorname{Sing}(X)$.

We define the vector bundle N^{X} over M^{*} whose fiber at $x \in M^{*}$ is the the orthogonal complement of $X(x)$ in $T_{x} M$. Denoting the projection $\pi_{x}: T_{x} M \rightarrow N_{x}^{X}$ we define the Linear Poincaré flow (LPF) $P_{t}^{X}: N^{X} \rightarrow N^{X}$ by $P_{t}^{X}(x)=\pi_{X_{t}(x)} \circ$ $D X_{t}(x), t \in \mathbb{R}$. An invariant set Λ of X has a LPF-dominated splitting if $\Lambda^{*} \neq \emptyset$ and there exist a continuous tangent bundle decomposition $N_{\Lambda^{*}}^{X}=N_{\Lambda^{*}}^{s, X} \oplus N_{\Lambda^{*}}^{u, X}$ with $\operatorname{dim} N_{x}^{s, X}=\operatorname{dim} N_{x}^{u, X}=1\left(\forall x \in \Lambda^{*}\right)$ and $T>0$ such that

$$
\left\|P_{T}^{X}(x) / N_{x}^{s, X}\right\|\left\|P_{-T}^{X}\left(X_{T}(x)\right) / N_{X_{T}(x)}^{u, X}\right\| \leq \frac{1}{2}, \quad \forall x \in \Lambda^{*} .
$$

Theorem B. If X is a C^{1} generic three-dimensional flow of a orientable manifold, then neither $\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)$ nor $\mathrm{Cl}(\operatorname{Source}(X)) \backslash \operatorname{Source}(X)$ have LPFdominated splitting.

As an application we obtain a solution for Conjecture 1.3 in 17. A periodic point x of X is a saddle if it has eigenvalues of modulus less and bigger than 1 simultaneously. Denote by PSaddle (X) the set of periodic saddles of X. As is well known [13], through any $x \in \operatorname{PSaddle}(X)$ it passes a pair of invariant manifolds, the so-called strong stable and unstable manifolds $W^{s s}(x)$ and $W^{u u}(x)$, tangent at x to the eigenspaces corresponding to the eigenvalue of modulus less and bigger than 1 respectively. Saturating these manifolds with the flow we obtain the stable and unstable manifolds $W^{s}(x)$ and $W^{u}(x)$ respectively. A homoclinic point associated to x is a point q where these last manifolds meet. We say that q is a transverse homoclinic point if $T_{q} W^{s}(x) \cap T_{q} W^{u}(x)$ is the one-dimensional subspace generated by $X(q)$ and a homoclinic tangency otherwise.

We define the nonwandering set $\Omega(X)$ as the set of points p such that for every $T>0$ and every neighborhood U of p there is $t>T$ satisfying $X_{t}(U) \cap U \neq \emptyset$.

Following [17], we say that X is singular-Axiom A if there is a finite disjoint union

$$
\Omega(X)=\Lambda_{1} \cup \cdots \cup \Lambda_{r},
$$

where each Λ_{i} for $1 \leq i \leq r$ is a transitive hyperbolic set (if $\Lambda_{i} \cap \operatorname{Sing}(X)=\emptyset$) or a singular-hyperbolic attractor for either X or $-X$ (otherwise).

With these definitions we can state the following corollary.
Corollary 1.1. Every three-dimensional flow can be C^{1} approximated by a flow exhibiting a homoclinic tangency or by a singular-Axiom A flow.

Proof. Passing to a finite covering if necessary we can assume that M is orientable. Let $R(M)$ denote the set of three-dimensional flows which cannot be C^{1} approximated by ones with homoclinic tangencies. As is well-known [6], $\mathrm{Cl}(\operatorname{PSaddle}(X))$ has a LPF-dominated splitting for every C^{1} generic $X \in R(M)$. Furthermore,

$$
(\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)) \cup(\mathrm{Cl}(\operatorname{Source}(X)) \backslash \operatorname{Source}(X)) \subset \mathrm{Cl}(\operatorname{PSaddle}(X))
$$

Combining this inclusion with Theorem B we obtain $\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)=$ $\mathrm{Cl}(\operatorname{Source}(X)) \backslash \operatorname{Source}(X)=\emptyset$, and $\operatorname{so}, \operatorname{Sink}(X) \cup \operatorname{Source}(X)$ consists of finitely many orbits, for every C^{1}-generic $X \in R(M)$. Now we obtain that X is singularAxiom A by Theorem A in 18.

2. Proof of theorems A and B

Let X be a three-dimensional flow. Denote by $\operatorname{Crit}(X)$ the set of critical points.
Recall that a periodic point saddle if it has eigenvalues of modulus less and bigger than 1 simultaneously. Analogously for singularities by just replace 1 by 0 and the eigenvalues by their corresponding real parts. Denote by $\operatorname{Sink}(X)$ and $\operatorname{Saddle}(X)$ the set of sinks and saddles of X respectively.

A critical point x is dissipative if the product of its eigenvalues (in the periodic case) or the divergence div $X(x)$ (in the singular case) is less than 1 (resp. 0). Denote by $\operatorname{Crit}_{d}(X)$ the set of dissipative critical points. We define the dissipative region by $\operatorname{Dis}(X)=\mathrm{Cl}\left(\operatorname{Crit}_{d}(X)\right)$.

For every subset $\Lambda \subset M$ we define the weak basin by

$$
W_{w}^{s}(\Lambda)=\{x \in M: \omega(x) \cap \Lambda \neq \emptyset\} .
$$

(This is often called weak region of attraction [7.) With these notations we obtain the following result. Its proof is similar to the corresponding one in [4]:

Theorem 2.1. There is a residual subset \mathcal{R}_{6} of three-dimensional flows X for which $W_{w}^{s}(\operatorname{Dis}(X))$ has full Lebesgue measure.

The homoclinic class associated to $x \in \operatorname{PSaddle}(X)$ is the closure of the set of transverse homoclinic points q associated to x. A homoclinic class of X is the homoclinic class associated to some saddle of X.

Given a homoclinic class $H=H_{X}(p)$ of a three-dimensional flow X we denote by $H_{Y}=H_{Y}\left(p_{Y}\right)$ the continuation of H, where p_{Y} is the analytic continuation of p for Y close to X (c.f. [19]).

The following lemma was also proved in (4). In its statement Leb denotes the normalized Lebesgue measure of M.

Lemma 2.2. There is a residual subset \mathcal{R}_{12} of three-dimensional flows X such that for every hyperbolic homoclinic class H there are an open neighborhood $\mathcal{O}_{X, H}$ of f and a residual subset $\mathcal{R}_{X, H}$ of $\mathcal{O}_{X, H}$ such that the following properties are equivalent:
(1) $\operatorname{Leb}\left(W_{Y}^{s}\left(H_{Y}\right)\right)=0$ for every $Y \in \mathcal{R}_{X, H}$.
(2) H is not an attractor.

We say that a compact invariant set Λ of a three-dimensionmal flow X has a spectral decomposition if there is a disjoint decomposition

$$
\Lambda=\bigcup_{i=1}^{r} H_{i}
$$

into finitely many disjoint homoclinic classes $H_{i}, 1 \leq i \leq r$, each one being either hyperbolic (if $H_{i} \cap \operatorname{Sing}(X)=\emptyset$) or a singular-hyperbolic attractor for either X or - X (otherwise).

Now we prove the following result which is similar to one in 4] (we include its proof for the sake of completeness). In its statement $\operatorname{PSaddle}_{d}(X)$ denotes the set of periodic dissipative saddles of a three-dimensional flow X.
Theorem 2.3. There is a residual subset \mathcal{R}_{11} of three-dimensional flows Y such that if $\mathrm{Cl}\left(\mathrm{PSaddl}_{d}(Y)\right)$ has a spectral decomposition, then the following properties are equivalent for every homoclinic H associated to a dissipative periodic saddle:
(a) $\operatorname{Leb}\left(W_{Y}^{s}(H)\right)>0$.
(b) H is either hyperbolic attractor or a singular-hyperbolic attractor for Y.

Proof. Let \mathcal{R}_{12} be as in Lemma 2.2. Define the map $S: \mathfrak{X}^{1}(\mathrm{M}) \rightarrow 2_{c}^{M}$ by $S(X)=\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$. This map is clearly lower-semicontinuous, and so, upper semicontinuous in a residual subset \mathcal{N} (for the corresponding definitions see [14], (15).

By Lemma 2.4 there is a residual subset \mathcal{L} of three-dimensional flows X for which every singular-hyperbolic attractor with singularities of either X or $-X$ has zero Lebesgue measure.

By the flow-version of the main result in [1], there is a residual subset \mathcal{R}_{7} of three-dimensional flows X such that for every singular-hyperbolic attractor C for X (resp. $-X$) there are neighborhoods $U_{X, C}$ of $C, \mathcal{U}_{X, C}$ of X and a residual subset $\mathcal{R}_{X, C}^{0}$ of $\mathcal{U}_{X, C}$ such that for all $Y \in \mathcal{R}_{X, C}^{0}$ if $Z=Y$ (resp. $Z=-Y$) then

$$
\begin{equation*}
C_{Y}=\bigcap_{t \geq 0} Z_{t}\left(U_{X, C}\right) \text { is a singular-hyperbolic attractor for } Z \tag{1}
\end{equation*}
$$

Define $\mathcal{R}=\mathcal{R}_{12} \cap \mathcal{N} \cap \mathcal{L} \cap \mathcal{R}_{7}$. Clearly \mathcal{R} is a residual subset of three-dimensional flows. Define

$$
\mathcal{A}=\left\{f \in \mathcal{R}: \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \text { has no spectral decomposition }\right\}
$$

Fix $X \in \mathcal{R} \backslash \mathcal{A}$. Then, $X \in \mathcal{R}$ and $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ has a spectral decomposition

$$
\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)=\left(\bigcup_{i=1}^{r_{X}} H^{i}\right) \cup\left(\bigcup_{j=1}^{a_{X}} A^{j}\right) \cup\left(\bigcup_{k=1}^{b_{X}} R^{k}\right)
$$

into hyperbolic homoclinic classes $H_{i}\left(1 \leq i \leq r_{X}\right)$, singular-hyperbolic attractors A^{j} for $X\left(1 \leq j \leq a_{X}\right)$, and singular-hyperbolic attractors R^{k} for $-X\left(1 \leq k \leq b_{X}\right)$.

As $X \in \mathcal{R}_{12} \cap \mathcal{R}_{7}$, we can consider for each $1 \leq i \leq r_{X}, 1 \leq j \leq a_{X}$ and $1 \leq k \leq b_{X}$ the neighborhoods $\mathcal{O}_{X, H^{i}}, \mathcal{U}_{X, A^{j}}$ and $\mathcal{U}_{X, R^{k}}$ of X as well as their residual subsets $\mathcal{R}_{X, H^{i}}, \mathcal{R}_{X, A^{j}}^{0}$ and $\mathcal{R}_{X, R^{k}}^{0}$ given by Lemma2.2 and (1) respectively.

Define

$$
\mathcal{O}_{X}=\left(\bigcap_{i=1}^{r_{X}} \mathcal{O}_{X, H^{i}}\right) \cap\left(\bigcap_{j=1}^{a_{X}} \mathcal{U}_{X, A^{j}}\right) \cap\left(\bigcap_{k=1}^{b_{X}} \mathcal{U}_{X, R^{k}}\right)
$$

and

$$
\mathcal{R}_{X}=\left(\bigcap_{i=1}^{r_{X}} \mathcal{R}_{X, H^{i}}\right) \cap\left(\bigcap_{j=1}^{a_{X}} \mathcal{R}_{X, A^{j}}^{0}\right) \cap\left(\bigcap_{k=1}^{b_{X}} \mathcal{R}_{X, R^{k}}^{0}\right)
$$

Clearly \mathcal{R}_{X} is residual in \mathcal{O}_{X}.
From the proof of Lemma 2.2 in (4) we obtain for each $1 \leq i \leq r_{X}$ a compact neighborhood $U_{X, i}$ of H^{i} such that

$$
\begin{equation*}
H_{Y}^{i}=\bigcap_{t \in \mathcal{R}} Y_{t}\left(U_{X, i}\right) \quad \text { is hyperbolic and equivalent to } H^{i}, \quad \forall Y \in \mathcal{O}_{Y, H^{i}} \tag{2}
\end{equation*}
$$

As $X \in \mathcal{N}, S$ is upper semicontinuous at X so we can further assume that

$$
\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(Y)\right) \subset\left(\bigcup_{i=1}^{r_{X}} U_{X, i}\right) \cup\left(\bigcup_{j=1}^{a_{X}} U_{X, A^{j}}\right) \cup\left(\bigcup_{k=1}^{b_{X}} U_{X, R^{k}}\right), \quad \forall Y \in \mathcal{O}_{X}
$$

It follows that

$$
\begin{equation*}
\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(Y)\right)=\left(\bigcup_{i=1}^{r_{X}} H_{Y}^{i}\right) \cup\left(\bigcup_{j=1}^{a_{X}} A_{Y}^{j}\right) \cup\left(\bigcup_{k=1}^{b_{X}} R_{Y}^{k}\right), \quad \forall Y \in \mathcal{R}_{X} \tag{3}
\end{equation*}
$$

Next we take a sequence $X^{i} \in \mathcal{R} \backslash \mathcal{A}$ which is dense in $\mathcal{R} \backslash \mathcal{A}$.
Replacing $\mathcal{O}_{X^{i}}$ by $\mathcal{O}_{X^{i}}^{\prime}$ where

$$
\mathcal{O}_{X^{0}}^{\prime}=\mathcal{O}_{X^{0}} \text { and } \mathcal{O}_{X^{i}}^{\prime}=\mathcal{O}_{X^{i}} \backslash\left(\bigcup_{j=0}^{i-1} \mathcal{O}_{X^{j}}\right), \text { for } i \geq 1
$$

we can assume that the collection $\left\{\mathcal{O}_{X^{i}}: i \in \mathbb{N}\right\}$ is pairwise disjoint.
Define

$$
\mathcal{O}_{12}=\bigcup_{i \in \mathbb{N}} \mathcal{O}_{X^{i}} \quad \text { and } \quad \mathcal{R}_{12}^{\prime}=\bigcup_{i \in \mathbb{N}} \mathcal{R}_{X^{i}}
$$

We claim that $\mathcal{R}_{12}^{\prime}$ is residual in \mathcal{O}_{12}.
Indeed, for all $i \in \mathbb{N}$ write $\mathcal{R}_{X^{i}}=\bigcap_{n \in \mathbb{N}} \mathcal{O}_{i}^{n}$, where \mathcal{O}_{i}^{n} is open-dense in $\mathcal{O}_{X^{i}}$ for every $n \in \mathbb{N}$. Since $\left\{\mathcal{O}_{X^{i}}: i \in \mathbb{N}\right\}$ is pairwise disjoint, we obtain

$$
\bigcap_{n \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} \mathcal{O}_{i}^{n} \subset \bigcup_{i \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \mathcal{O}_{i}^{n}=\bigcup_{i \in \mathbb{N}} \mathcal{R}_{X^{i}}=\mathcal{R}_{12}^{\prime}
$$

As $\bigcup_{i \in \mathbb{N}} \mathcal{O}_{X^{i}}^{n}$ is open-dense in $\mathcal{O}_{12}, \forall n \in \mathbb{N}$, we obtain the claim.
Finally we define

$$
\mathcal{R}_{11}=\mathcal{A} \cup \mathcal{R}_{12}^{\prime}
$$

Since \mathcal{R} is a residual subset of three-dimensional flows, we conclude as in Proposition 2.6 of [16] that \mathcal{R}_{11} is also a residual subset of three-dimensional flows.

Take $Y \in \mathcal{R}_{11}$ such that $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(Y)\right)$ has a spectral decomposition and let H be a homoclinic class associated to a dissipative saddle of Y. Then, $H \subset$ $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(Y)\right)$ by Birkhoff-Smale's Theorem [12]. Since $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(Y)\right)$ has spectral decomposition, we have $Y \notin \mathcal{A}$ so $Y \in \mathcal{R}_{12}^{\prime}$ thus $Y \in \mathcal{R}_{X}$ for some $X \in \mathcal{R} \backslash \mathcal{A}$. As $Y \in \mathcal{R}_{X}$, (3) implies $H=H_{Y}^{i}$ for some $1 \leq i \leq r_{X}$ or $H=A_{Y}^{j}$ for some $1 \leq j \leq a_{X}$ or $H=R_{Y}^{k}$ for some $1 \leq k \leq b_{X}$.

Now, suppose that $\operatorname{Leb}\left(W_{Y}^{s}(H)\right)>0$. Since $Y \in \mathcal{R}_{X}$, we have $Y \in \mathcal{R}_{X, R^{k}}^{0}$ for all $1 \leq k \leq b_{X}$. As $X \in \mathcal{L}$, and $W_{Y}^{s}\left(R_{Y}^{k}\right) \subset R_{Y}^{k}$ for every $1 \leq k \leq b_{X}$, we conclude by Lemma 2.4 that $H \neq R_{Y}^{k}$ for every $1 \leq k \leq b_{X}$.

If $H=A_{Y}^{j}$ for some $1 \leq j \leq a_{X}$ then H is an attractor and we are done. Otherwise, $H=H_{Y}^{i}$ for some $1 \leq i \leq r_{X}$. As $Y \in \mathcal{R}_{X}$, we have $Y \in \mathcal{R}_{X, H^{i}}$ and, since $f \in \mathcal{R}_{12}$, we conclude from Lemma 2.2 that H^{i} is an attractor. But by (22) we have that H_{Y}^{i} and H^{i} are equivalent, so, H_{Y}^{i} is an attractor too and we are done.

We shall need the following lemma which was essentially proved in [5].
Lemma 2.4. There is a residual subset \mathcal{L} of three-dimensional flows X for which every singular-hyperbolic attractor with singularities of either X or $-X$ has zero Lebesgue measure.

Proof. As in [5], for any open set U and any three-dimensional vector field Y, let $\Lambda_{Y}(U)=\bigcap_{t \in \mathbb{R}} Y_{t}(U)$ be the maximal invariant set of Y in U. Define $\mathcal{U}(U)$ as the set of flows Y such that $\Lambda_{Y}(U)$ is a singular-hyperbolic set with singularities of Y. It follows that $\mathcal{U}(U)$ is open in $\mathfrak{X}^{1}(\mathrm{M})$.

Now define $\mathcal{U}(U)_{n}$ as the set of $Y \in \mathcal{U}(U)$ such that $\operatorname{Leb}\left(\Lambda_{Y}(U)\right)<1 / n$. It was proved in [5] that $\mathcal{U}(U)_{n}$ is open and dense in $\mathcal{U}(U)$.

Define $\mathcal{R}(U)_{n}=\mathcal{U}(U)_{n} \cup\left(\mathfrak{X}^{1}(M) \backslash \mathrm{Cl}(\mathcal{U}(U))\right.$ which is open and dense set in $\mathfrak{X}^{1}(M)$. Let $\left\{U_{m}\right\}$ be a countable basis of the topology, and $\left\{O_{m}\right\}$ be the set of finite unions of such U_{m} 's. Define

$$
\mathcal{L}=\bigcap_{m} \bigcap_{n} \mathcal{R}\left(O_{m}\right)_{n} .
$$

This is clearly a residual subset of three-dimensional flows. We can assume without loss of generality that \mathcal{L} is symmetric, i.e., $X \in \mathcal{L}$ if and only if $-X \in \mathcal{L}$. Take $X \in \mathcal{L}$. Let Λ be a singular-hyperbolic attractor for X. Then, there exists m such that $\Lambda=\Lambda_{X}\left(O_{m}\right)$. Then $X \in \mathcal{U}\left(O_{m}\right)$ and so $X \in \mathcal{U}\left(O_{m}\right)_{n}$ for every n thus $\operatorname{Leb}(\Lambda)=0$. Analogously, since \mathcal{L} is symmetric, we obtain that $\operatorname{Leb}(\Lambda)=0$ for every singular-hyperbolic attractor with singularities of $-X$.

In the sequel we obtain the following key result representing the new ingredient with respect to [4]. Its proof will use the methods in 18. In its statement $\operatorname{card}(\operatorname{Sink}(X))$ denotes the cardinality of the set of different orbits of a threedimensional flow X contained in $\operatorname{Sink}(X)$.

Theorem 2.5. There is a residual subset \mathcal{Q} of three-dimensional flows X such that if $\operatorname{card}(\operatorname{Sink}(X))<\infty$, then $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ has a spectral decomposition.

Proof. First we state some useful notiations.
Given a three-dimensional flow Y and a point p we denote by $O_{Y}(p)=\left\{Y_{t}(p)\right.$: $t \in \mathbb{R}\}$ the Y-orbit of p. If $p \in \operatorname{PSaddle}_{d}(Y)$ we denote by $E_{p}^{s, Y}$ and $E_{p}^{u, Y}$ the eigenspaces corresponding to the eigenvalues of modulus less and bigger than 1 respectively.

Denote by $\lambda(p, Y)$ and $\mu(p, Y)$ the eigenvalues of p satisfying

$$
|\lambda(p, Y)|<1<|\mu(p, Y)|
$$

Define the index of a singularity σ as the number $\operatorname{Ind}(\sigma)$ of eigenvalues with negative real part.

We say that a singularity σ of Y is Lorenz-like for Y if its eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are real and satisfy $\lambda_{2}<\lambda_{3}<0<-\lambda_{3}<\lambda_{1}$ (up to some order). It follows in particular that σ is hyperbolic (i.e. without eigenvalues of zero real part) of index 2. Furthermore, the invariant manifold theory 13 implies the existence of stable and unstable manifolds $W^{s, Y}(\sigma), W^{u, Y}(\sigma)$ tangent at σ to the eigenvalues $\left\{\lambda_{2}, \lambda_{3}\right\}$ and λ_{1} respectively. There is an additional invariant manifold $W^{s s, Y}(\sigma)$, the strong stable manifold, contained in $W^{s, Y}(\sigma)$ and tangent at σ to the eigenspace corresponding to λ_{1}. We shall denote by $E_{\sigma}^{s s, Y}$ and $E_{\sigma}^{c u, Y}$ the eigenspaces associated to the set of eigenvalues λ_{2} and $\left\{\lambda_{3}, \lambda_{1}\right\}$ respectively.

Let $S(M)$ be the set of three-dimensional flows X with $\operatorname{card}(\operatorname{Sink}(X))<\infty$ such that

$$
\operatorname{card}(\operatorname{Sink}(Y))=\operatorname{card}(\operatorname{Sink}(X)), \quad \text { for every } Y \text { close to } X
$$

Every $X \in S(M)$ satisfies the following properties:

- There is a LPF-dominated splitting over $\operatorname{PSaddle}_{d}^{*}(X) \backslash \operatorname{Sing}(X)$, where PSaddle $_{d}^{*}(X)$ denotes the set of points x for which there are sequences $Y_{k} \rightarrow X$ and $x_{k} \in \operatorname{PSaddle}_{d}\left(X_{k}\right)$ such that $x_{k} \rightarrow x$ (c.f. [21]).
- There are a neighborhood $\mathcal{U}_{X}, 0<\lambda<1$ and $\alpha>0$ such that if $(p, Y) \in$ $\operatorname{PSaddle}_{d}(Y) \times \mathcal{U}_{X}$, then
(a) 1. $|\lambda(p, Y)|<\lambda^{t_{p, Y}}$, 2. $|\mu(p, Y)|>\lambda^{-t_{p, Y}}$.
(b) $\operatorname{angle}\left(E_{p}^{s, Y}, E_{p}^{u, Y}\right)>\alpha$.

Indeed, the first property follows from the proof of Proposition 5.3 in [4] and the second from the proof of Theorem 3.6 in [18] (see also the proof of lemmas 7.2 and 7.3 in (4).

In addition to this we also have the existence of a residual subset of threedimensional flows \mathcal{R}_{7} such that every $X \in S(M) \cap \mathcal{R}_{7}$ satisfies that:

- Every $\sigma \in \operatorname{Sing}(X) \cap \operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ with $\operatorname{Ind}(\sigma)=2$ is Lorenz-like for X and satisfies $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right) \cap W^{s s, X}(\sigma)=\{\sigma\}$.
- Every $\sigma \in \operatorname{Sing}(X) \cap \operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ with $\operatorname{Ind}(\sigma)=1$ is Lorenz-like for $-X$ and satisfies $\operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \cap W^{u u, X}(\sigma)=\{\sigma\}$, where $W^{u u, X}(\sigma)=$ $W^{s s,-X}(\sigma)$.
Indeed, as in the remark after Lemma 2.13 in [8], there is a residual subset \mathcal{R}_{7} of three-dimensional flows X such that every $\sigma \in \operatorname{Sing}(X)$ accumulated by periodic orbits is Lorenz-like for either X or $-X$ depending on whether σ has three real eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ satisfying either $\lambda_{2}<\lambda_{3}<0<\lambda_{1}$ or $\lambda_{2}<0<\lambda_{3}<\lambda_{1}$ (up to some order).

Now, take $X \in S(M) \cap \mathcal{R}_{7}$. Since $X \in S(M)$, we have that PSaddle $_{d}^{*}(X) \backslash$ $\operatorname{Sing}(X)$ has a LPF-dominated splitting and then $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \backslash \operatorname{Sing}(X)$ also does because $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right) \subset \operatorname{PSaddle}_{d}^{*}(X)$. Therefore, if $\sigma \in \operatorname{Sing}_{2}(X) \cap$ $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$, Proposition 2.4 in [10] implies that σ has three different real eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ satisfing $\lambda_{2}<\lambda_{3}<0<\lambda_{1}$ (up to some order). Since $X \in \mathcal{R}_{7}$, we conclude that σ is Lorenz-like for X. To prove $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \cap W^{s s, X}(\sigma)=$ $\{\sigma\}$ we assume by contradiction that this is not the case. Then, there is $x \in$ $\left(\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \cap W^{s s, X}(\sigma)\right) \backslash\{\sigma\}$. Choose sequences $x_{n} \in \operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ and $t_{n} \rightarrow \infty$ such that $x_{n} \rightarrow x$ and $X_{t_{n}}\left(x_{n}\right) \rightarrow y$ for some $y \in W^{u, X}(\sigma) \backslash\{\sigma\}$. Let $N^{s, X} \oplus N^{u, X}$ denote the LPF-dominated splitting of $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \backslash \operatorname{Sing}(X)$. We have $N_{x}^{s, X}=N_{x} \cap W^{s, X}(\sigma)$ by Proposition 2.2 in [10] and so $N_{x_{n}}$ tends to be tangent to $W^{s, X}(\sigma)$ as $n \rightarrow \infty$. On the other hand, Proposition 2.4 in 10 says that $N_{y}^{s, X}$ is almost parallel to $E_{\sigma}^{s s, X}$. Therefore, the directions $N_{X_{t_{n}}\left(x_{n}\right)}^{s, X}$ tends to have positive angle with $E_{\sigma}^{s s, X}$. But using that $\lambda_{2}<\lambda_{3}$ we can see that $N_{x_{n}}^{s, X}=P_{-t_{n}}\left(X_{t_{n}}\left(x_{n}\right)\right) N_{X_{t_{n}}\left(x_{n}\right)}^{s, X}$ tends to be transversal to $W^{s, X}(\sigma)$ nearby x. As this is a contradiction, we obtain the result. The second property can be proved analogously.

On the other hand, there is another residual subset \mathcal{Q}_{1} of three-dimensional flows for which every compact invariant set without singularities but with a LPFdominated splitting is hyperbolic.

Indeed, by Lemma 3.1 in [8] we have that there is a residual subset \mathcal{Q}_{1} of threedimensional flows for which every transitive set without singularities but with a LPF-dominated splitting is hyperbolic. Fix $X \in \mathcal{Q}_{1}$ and a compact invariant set
Λ without singularities but with a LPF-dominated splitting $N_{\Lambda}^{X}=N_{\Lambda}^{s, X} \oplus N_{\Lambda}^{u, X}$. Suppose by contradiction that Λ is not hyperbolic. Then, by Zorn's Lemma, there is a minimally nonhyperbolic set $\Lambda_{0} \subset \Lambda$ (c.f. p. 983 in [20]). Assume for a while that Λ_{0} is not transitive. Then, $\omega(x)$ and $\alpha(x)=\omega_{-X}(x)$ are proper subsets of Λ_{0}, $\forall x \in \Lambda_{0}$. Therefore, both sets are hyperbolic and then we have

$$
\lim _{t \rightarrow \infty}\left\|P_{t}^{X}(x) / N_{x}^{s, X}\right\|=\lim _{t \rightarrow \infty}\left\|P_{-t}^{X}(x) / N_{x}^{u, X}\right\|=0, \quad \forall x \in \Lambda_{0}
$$

which easily implies that Λ_{0} is hyperbolic. Since this is a contradiction, we conclude that Λ_{0} is transitive. As $X \in \mathcal{Q}_{1}$ and Λ_{0} has a LPF-dominated splitting (by restriction), we conclude that Λ_{0} is hyperbolic, a contradiction once more proving the result.

Next we recall that a compact invariant set Λ of a flow X is Lyapunov stable for X if for every neighborhood U of Λ there is a neighborhood $V \subset U$ of Λ such that $X_{t}(V) \subset U$, for all $t \geq 0$.

It follows from [9], [17] that there is a residual subset \mathcal{D} of three-dimensional flows X such that if $\sigma \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ and $\operatorname{Ind}(\sigma)=2$, then $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ is a Lyapunov stable set for X with dense singular unstable branches contained in $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$. Analogously, if $\operatorname{Ind}(\sigma)=1$, then $\mathrm{Cl}\left(W^{s}(\sigma)\right)$ is a Lyapunov stable set for $-X$ with dense singular stable branches contained in $\mathrm{Cl}\left(\operatorname{PSaddl}_{d}(X)\right)$.

From these properties we derive easily that every $X \in S(M) \cap \mathcal{R}_{7} \cap \mathcal{D}$ and every $\sigma \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ satisfies one of the following alternatives:
(c) If $\operatorname{Ind}(\sigma)=2$, then every $\sigma^{\prime} \in \operatorname{Sing}(X) \cap \operatorname{Cl}\left(W^{u}(\sigma)\right)$ is Lorenz-like for X.
(d) If $\operatorname{Ind}(\sigma)=1$, then every $\sigma^{\prime} \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(W^{s}(\sigma)\right)$ is Lorenz-like for $-X$.

Given a three-dimensional flow Y we define

$$
E_{p}^{c u, Y}=E_{p}^{u, Y} \oplus E_{p}^{Y}, \quad \forall p \in \operatorname{PSaddle}_{d}(Y)
$$

We claim that there is a residual subset of three-dimensional flows \mathcal{R}_{15} such that for every $X \in S(M) \cap \mathcal{R}_{15}$ and every $\sigma \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ there are neighborhoods \mathcal{V}_{X} of X, U_{σ} of σ and $\beta_{\sigma}>0$ such that if $Y \in \mathcal{V}_{X}$ and $x \in$ PSaddle $_{d}(Y)$ satisfies $O_{Y}(x) \cap U_{\sigma} \neq \emptyset$, then

$$
\begin{equation*}
\operatorname{angle}\left(E_{x}^{s, Y}, E_{x}^{c u, Y}\right)>\beta_{\sigma}, \quad \text { if } \operatorname{Ind}(\sigma)=2 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{angle}\left(E_{x}^{s,-Y}, E_{x}^{c u,-Y}\right)>\beta_{\sigma}, \quad \text { if } \operatorname{Ind}(\sigma)=1 \tag{5}
\end{equation*}
$$

(This step corresponds to Theorem 3.7 in [18.)
Indeed, we just take $\mathcal{R}_{15}=\mathcal{Q}_{1} \cap \mathcal{D} \cap \mathcal{R}_{7} \cap \mathcal{I}$ where \mathcal{I} is the set of upper semicontinuity points of the the map $\varphi: X \mapsto \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$.

To prove (4) it suffices to show the following assertions, correponding to propositions 4.1 and 4.2 of [18] respectively, for any $X \in S(M) \cap \mathcal{R}_{15}$ and $\sigma \in \operatorname{Sing}(X) \cap$ $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right)$ with $\operatorname{Ind}(\sigma)=2\left(B_{\delta}(\cdot)\right.$ denotes the δ-ball operation):

A1. Given $\epsilon>0$ there are a neighborhood $\mathcal{V}_{X, \sigma}$ of X and $\delta>0$ such that for all $Y \in \mathcal{V}_{X, \sigma}$ if $p \in \operatorname{PSaddle}_{d}(Y) \cap B_{\delta}\left(\sigma_{Y}\right)$ then
(a) $\operatorname{angle}\left(E_{p}^{s, Y}, E_{\sigma_{Y}}^{s, Y}\right)<\epsilon$;
(b) angle $\left(E_{p}^{c u, Y}, E_{\sigma_{Y}}^{c u, Y}\right)<\epsilon$.

A2. Given $\delta>0$ there are a neighborhoof \mathcal{O} of X and $C>0$ such that if $Y \in \mathcal{O}$ and $p \in \operatorname{PSaddle}_{d}(Y)$ with $\operatorname{dist}\left(p, \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)\right)>\delta$, then

$$
\operatorname{angle}\left(E_{p}^{s, Y}, E_{p}^{c u, Y}\right)>C
$$

To prove A1-(a) we proceed as in p. 417 of [9]. By contradiction suppose that it is not true. Then, there are $\gamma>0$ and sequences $Y^{n} \rightarrow X, p_{n} \in \operatorname{PSaddle}_{d}\left(Y^{n}\right) \rightarrow \sigma$ such that

$$
\operatorname{angle}\left(E_{p_{n}}^{s, Y^{n}}, E_{\sigma_{Y}}^{s s, Y^{n}}\right)>\gamma, \quad \forall n \in \mathbb{N}
$$

As in 18 we take small cross sections $\Sigma_{\delta, \delta^{\prime}}^{s}$ and Σ_{δ}^{u} located close to the singularities in $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ all of which are Lorenz-like (by (c) above). It turns out that since $p_{n} \rightarrow \sigma$, there are times $t_{n} \rightarrow \infty$ satisfying $q_{n}=Y_{t_{n}}^{n}\left(p_{n}\right) \in \Sigma_{\delta}^{u}$. Using the above inequality we obtain

$$
\operatorname{angle}\left(E_{q_{n}}^{s, Y^{n}}, E_{q_{n}}^{Y^{n}}\right) \rightarrow 0
$$

Next consider the first $s_{n}>0$ such that

$$
\tilde{q}_{n}=Y_{s_{n}}^{n}\left(q_{n}\right) \in \Sigma_{\delta, \delta^{\prime}}^{s}
$$

We obtain

$$
\begin{equation*}
\operatorname{angle}\left(E_{\tilde{q}_{n}}^{s, Y^{n}}, E_{\tilde{q}_{n}}^{Y^{n}}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

To see why, we assume two cases: either s_{n} is bounded or not. If it does, then the above limit follows from the corresponding one for q_{n}. If not, we consider a limit point q of the sequence $Y_{\frac{s_{n}}{2}}^{n}\left(q_{n}\right)$ with $s_{n} \rightarrow \infty$. After observing that the X-orbit of q cannot accumulate any index 1 singularity we obtain easily that $q \in \Gamma$, where

$$
\Gamma=\bigcap_{t \in \mathbb{R}} X_{t}\left(\operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \backslash B_{\delta^{*}}\left(\operatorname{Sing}(X) \cap \operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)\right)\right)
$$

for some $\delta^{*}>0$ small. Clearly Γ is a compact invariant subset of X contained in $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right) \backslash \operatorname{Sing}(X)$. Since $X \in S(M)$, we have that Γ has a LPFdominated splitting, and so, it is hyperbolic because $X \in \mathcal{Q}_{1}$. This allows us to repeat the proof in p. 419 to obtain (6) which, together with (b) above, implies that $\operatorname{angle}\left(E_{q_{n}}^{u, Y^{n}}, E_{q_{n}}^{Y^{n}}\right)$ is bounded away from zero. But now we consider the first positive time r_{n} satisfying $\tilde{\tilde{q}}_{n}=Y_{r_{n}}^{n}\left(\tilde{q}_{n}\right) \in \Sigma_{\delta}^{u}$. We get as in p. 419 in [18] that $\operatorname{angle}\left(E_{\tilde{q}_{n}}^{s, Y^{n}}, E_{\tilde{q}_{n}}^{Y_{n}^{n}}\right) \rightarrow 0$ and, since angle $\left(E_{\tilde{q}_{n}^{\prime}}^{u, Y^{n}}, E_{\tilde{q}_{n}}^{Y^{n}}\right)$ is bounded away from 0 , we also obtain $\operatorname{angle}\left(E_{\tilde{q}_{n}}^{u, Y^{n}}, E_{\tilde{\tilde{q}}_{n}}^{Y^{n}}\right) \rightarrow 0$. All this together yield $\operatorname{angle}\left(E_{\tilde{q}_{n}}^{s, Y^{n}}, E_{\tilde{q}_{n}}^{u, Y^{n}}\right) \rightarrow$ 0 which contradicts (b). This contradiction completes the proof of A1-(a). The bound in A1-(b) follows easily from the methods in [10]. This completes the proof of A1. A2 follows exactly as in p. 421 of [18. Now A1 and A2 imply (4) as in [18. To prove (5) we only need to repeat the above proof with $-Y$ instead of Y taking into account the symmetric relations below:

$$
\lambda(p,-Y)=\mu^{-1}(p, Y), \mu(p,-Y)=\lambda^{-1}(p, Y), E_{p}^{s,-Y}=E_{p}^{u, Y} \text { and } E_{p}^{u,-Y}=E_{p}^{s, Y}
$$

Once we prove (4) and (5) we use them together with (a) and (b), as in the proof of Theorem F in [9], to obtain that for every $X \in \mathcal{R}_{15} \cap S(M)$ there is a neighborhood $\mathcal{K}_{X}, 0<\rho<1, c>0, \delta>0$ and $T_{0}>0$ satisfying the following properties for every $Y \in \mathcal{K}_{X}$ and every $x \in \operatorname{PSaddle}_{d}(Y)$ satisfying $t_{x, Y}>T_{0}$ and $O_{Y}(x) \cap B_{\delta}(\sigma) \neq \emptyset:$

- If $\operatorname{Ind}(\sigma)=2$, then

$$
\left\|D Y_{T}(p) / E_{p}^{s, Y}\right\| \cdot\left\|D Y_{-T}(p) / E_{Y_{-T}(p)}^{c u, Y}\right\| \leq c \rho^{T}, \quad \forall T>0
$$

- If $\operatorname{Ind}(\sigma)=1$, then

$$
\left\|D(-Y)_{T}(p) / E_{p}^{s,-Y}\right\| \cdot\left\|D(-Y)_{-T}(p) / E_{(-Y)_{-T}(p)}^{c u,-Y}\right\| \leq c \rho^{T}, \quad \forall T>0
$$

Since we can assume that X is Kupka-Smale (by the Kupka-Smale Theorem [12]), the set of periodic orbits with period $\leq T_{0}$ of X in $\operatorname{PSaddle}_{d}(X)$ is finite. If one of these orbits (say O) do not belong to $\mathrm{Cl}\left(\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right) \backslash\left\{x \in \operatorname{PSaddle}_{d}(X): t_{x}<\right.\right.$ $\left.\left.T_{0}\right\}\right)$ then it must happen that O is isolated in the sense that $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \backslash O$ is a closed subset. Therefore, up to a finite number of isolated periodic orbits, we can assume that the set $\operatorname{PSaddle}_{d}^{T_{0}}(X)=\left\{p \in \operatorname{PSaddle}_{d}(X): t_{p, X} \geq T_{0}\right\}$ is dense in $\mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right)$. Then, as in p. 400 of [18] we obtain the following properties:

- If $\operatorname{Ind}(\sigma)=2$, then the splitting $E^{s, X} \oplus E^{c u, X}$ extends to a dominated splitting $E \oplus F$ for X over $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ with $\operatorname{dim}(E)=1$ and $E^{X} \subset F$.
- If $\operatorname{Ind}(\sigma)=1$ the splitting $E^{s,-X} \oplus E^{c u,-X}$ extends to a dominated splitting $E \oplus F$ for $-X$ over $\mathrm{Cl}\left(W^{s}(\sigma)\right)$ with $\operatorname{dim}(E)=1$ and $E^{-X} \subset F$.
Therefore, we conclude from (c) and (d) above, lemmas 3.2 and 3.4 in 8 and Theorem D in [17] that if $X \in \mathcal{R}_{15} \cap S(M)$ and $\sigma \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$, then:
- If $\operatorname{Ind}(\sigma)=2$, then $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ is a singular-hyperbolic attractor for X.
- If $\operatorname{Ind}(\sigma)=1$, then $\mathrm{Cl}\left(W^{s}(\sigma)\right)$ is a singular-hyperbolic attractor for $-X$.

Next, we define $\phi: \mathfrak{X}^{1}(\mathrm{M}) \rightarrow 2_{c}^{M}$ by $\phi(X)=\operatorname{Cl}(\operatorname{Sink}(X))$. This map is clearly lower semicontinuous, and so, upper semicontinuous in a residual subset \mathcal{C} of $\mathfrak{X}^{1}(\mathrm{M})$ ([15], [14]). If $X \in \mathcal{C}$ satisfies $\operatorname{card}(\operatorname{Sink}(X))<\infty$, then the upper semicontinuity of ϕ at X do imply $X \in S(M)$.

Finally we define

$$
\mathcal{Q}=\mathcal{R}_{15} \cap \mathcal{C}
$$

Clearly \mathcal{Q} is a residual subset of three-dimensional flows.
Take $X \in \mathcal{Q}$ with $\operatorname{card}(\operatorname{Sink}(X))<\infty$. Since $X \in \mathcal{C}$, we obtain $X \in S(M)$ thus $X \in \mathcal{R}_{15} \cap S(M)$. Then, if $\sigma \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(\mathrm{PSaddle}_{d}(X)\right), \mathrm{Cl}\left(W^{u}(\sigma)\right)$ is singularhyperbolic for X (if $\operatorname{Ind}(\sigma)=2$) and that $\mathrm{Cl}\left(W^{s}(\sigma)\right.$) is a singular-hyperbolic attractor for $-X$ (if $\operatorname{Ind}(\sigma)=1)$.

Now we observe that if $p \in \operatorname{PSaddle}_{d}(X)$ then $H(p) \subset \mathrm{Cl}\left(\operatorname{Saddle}_{d}(X)\right)$ by the Birkhoff-Smale Theorem. From this we obtain

$$
\begin{equation*}
\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)=\mathrm{Cl}\left(\bigcup\left\{H(p): p \in \operatorname{PSaddle}_{d}(X)\right\}\right) \tag{7}
\end{equation*}
$$

We claim that the family $\left\{H(p): p \in \operatorname{PSaddle}_{d}(X)\right\}$ is finite. Otherwise, there is an infinite sequence $p_{k} \in \operatorname{PSaddle}_{d}(X)$ yielding infinitely many distinct homoclinic classes $H\left(p_{k}\right)$. Consider the closure $\mathrm{Cl}\left(\bigcup_{k} H\left(p_{k}\right)\right)$, which is a compact invariant set contained in $\mathrm{Cl}\left(\mathrm{PSaddl}_{d}(X)\right)$. If this closure does not contain any singularity, then it would be a hyperbolic set (this follows because $\mathcal{R}_{15} \subset \mathcal{Q}_{1}$). Since there are infinitely many distinct homoclinic classses in this closure, we obtain a contradiction proving that $\mathrm{Cl}\left(\bigcup_{k} H\left(p_{k}\right)\right)$ contains a singularity $\sigma \in \mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$. If $\operatorname{Ind}(\sigma)=2$ then σ lies in $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ which is an attractor, and so, we can assume that $H\left(p_{k}\right) \subset \mathrm{Cl}\left(W^{u}(\sigma)\right)$ for every k thus $H\left(p_{k}\right)=\mathrm{Cl}\left(W^{u}(\sigma)\right)$ for every k which is absurd. Analogously for $\operatorname{Ind}(\sigma)=1$ and the claim is proved. Combining with (7) we obtain the desired spectral decomposition.

Proof of Theorem A. Define $\mathcal{R}=\mathcal{R}_{6} \cap \mathcal{R}_{11} \cap \mathcal{Q}$, where $\mathcal{R}_{6}, \mathcal{R}_{11}$ and \mathcal{Q} are the residual subsets given by theorems [2.1, 2.3 and 2.5 respectively. Suppose that $X \in \mathcal{R}$ has no infinitely many sinks. Then, $\operatorname{card}(\operatorname{Sink}(X))<\infty$. Since $X \in \mathcal{Q}$, we conclude by Theorem 2.5 that $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$ has a spectral decomposition. Since $X \in \mathcal{R}_{11}$, Theorem 2.3 implies that every homoclinic H associated to a dissipative periodic saddle of X with $\operatorname{Leb}\left(W_{Y}^{s}(H)\right)>0$ is an attractor of X. Since $X \in \mathcal{R}_{6}$, we have that $\operatorname{Leb}\left(W_{w}^{s}(\operatorname{Dis}(X))\right)=1$ by Theorem 2.1.

Now, we consider the following decomposition:

$$
\operatorname{Dis}(X)=\operatorname{Cl}\left(\operatorname{Saddle}_{d}(X) \cap \operatorname{Sing}(X)\right) \cup \operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right) \cup \operatorname{Sink}(X)
$$

valid in the Kupka-Smale case (which is generic). From this we obtain the union

$$
\begin{gathered}
W_{w}^{s}(\operatorname{Dis}(X))=\left(\bigcup\left\{W^{s}(\sigma): \sigma \in \operatorname{Saddle}_{d}(X) \cap \operatorname{Sing}(X) \text { and } W_{w}^{s}(\sigma)=W^{s}(\sigma)\right\}\right) \cup \\
\left(\bigcup\left\{W_{w}^{s}(\sigma): \sigma \in \operatorname{Saddle}_{d}(X) \cap \operatorname{Sing}(X) \text { and } W_{w}^{s}(\sigma) \neq W^{s}(\sigma)\right\}\right) \cup \\
W_{w}^{s}\left(\operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)\right) \cup W^{s}(\operatorname{Sink}(X))
\end{gathered}
$$

But it is easy to check that the first element in the right-hand union above has zero Lebesgue measure and, by the Hayashi's connecting lemma [11], we can assume without loss of generality that every $\sigma \in \operatorname{Saddle}_{d}(X) \cap \operatorname{Sing}(X)$ satisfying $W_{w}^{s}(\sigma) \neq$ $W^{s}(\sigma)$ lies in $\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)$. Since $W_{w}^{s}(\operatorname{Dis}(X))$ has full Lebesgue measure, we conclude that

$$
\operatorname{Leb}\left(W_{w}^{s}\left(\operatorname{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)\right) \cup W^{s}(\operatorname{Sink}(X))\right)=1
$$

Now, we use the spectral decomposition

$$
\mathrm{Cl}\left(\operatorname{PSaddle}_{d}(X)\right)=\bigcup_{i=1}^{r} H_{i}
$$

into finitely many disjoint homoclinic classes $H_{i}, 1 \leq i \leq r$, each one being either hyperbolic (if $H_{i} \cap \operatorname{Sing}(X)=\emptyset$) or a singular-hyperbolic attractor for either X or $-X$ (otherwise), yielding

$$
\operatorname{Leb}\left(\left(\bigcup_{i=1}^{r} W_{w}^{s}\left(H_{i}\right)\right) \cup W^{s}(\operatorname{Sink}(X))\right)=1
$$

But the results in Section 3 of [9] imply that each H_{i} can be written as $H_{i}=\Lambda^{+} \cap \Lambda^{-}$, where $\Lambda^{ \pm}$is a Lyapunov stable set for $\pm X$. We conclude from Lemma 2.2 in [9] that $W_{w}^{s}\left(H_{i}\right)=W^{s}\left(H_{i}\right)$ thus

$$
\operatorname{Leb}\left(\left(\bigcup_{i=1}^{r} W^{s}\left(H_{i}\right)\right) \cup W^{s}(\operatorname{Sink}(X))\right)=1
$$

Let $1 \leq i_{1} \leq \cdots \leq i_{d} \leq r$ be such that $\operatorname{Leb}\left(W^{s}\left(H_{i_{k}}\right)\right)>0$ for every $1 \leq k \leq d$. As the basin of the remainder homoclinic classes in the collection H_{1}, \cdots, H_{r} are negligible, we can remove them from the above union yielding

$$
\operatorname{Leb}\left(\left(\bigcup_{k=1}^{d} W^{s}\left(H_{i_{k}}\right)\right) \cup\left(\bigcup_{j=1}^{l} W^{s}\left(s_{j}\right)\right)\right)=1
$$

where the s_{j} 's above correspond to the finitely many orbits of X in $\operatorname{Sink}(X)$. Since $f \in \mathcal{R}_{11}$, we have from Theorem 2.3 that $H_{i_{k}}$ is an attractor which is either hyperbolic or singular-hyperbolic for $X, \forall 1 \leq k \leq d$. From this we obtain the result.

Proof of Theorem B. Suppose by contradiction that there is a C^{1} generic threedimensional flow of an orientable manifold such that $\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)$ has a LPF-dominated splitting. Then, $\operatorname{card}(\operatorname{Sink}(X))=\infty$ and X has finitely many periodic sinks with nonreal eigenvalues. Since X is C^{1} generic, we obtain that the number of orbits of sinks with nonreal eigenvalues is locally constant at X. From this we can assume without loss of generality that every sink of a nearby flow is periodic with real eigenvalues. Furthermore, we obtain the following alternatives: If $\operatorname{Ind}(\sigma)=2$, then σ is Lorenz-like for X and satisfies

$$
(\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)) \cap W^{s s, X}(\sigma)=\{\sigma\}
$$

and, if $\operatorname{Ind}(\sigma)=1$, then σ is Lorenz-like for $-X$ and satisfies

$$
(\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)) \cap W^{u u, X}(\sigma)=\{\sigma\}
$$

As before, these alternatives imply the following ones:
(1) If $\operatorname{Ind}(\sigma)=2$, then every $\sigma^{\prime} \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(W^{u}(\sigma)\right)$ is Lorenz-like for X.
(2) If $\operatorname{Ind}(\sigma)=1$, then every $\sigma^{\prime} \in \operatorname{Sing}(X) \cap \mathrm{Cl}\left(W^{s}(\sigma)\right)$ is Lorenz-like for $-X$.

For any $p \in \operatorname{Per}(X)$ we denote by $\lambda(p, X)$ and $\mu(p, X)$ the two eigenvalues of p so that

$$
|\lambda(p, X)| \leq|\mu(p, X)|
$$

The corresponding eigenspaces will be denoted by $E_{p}^{-, X}$ and $E_{p}^{+, X}$. We have the symmetric relations

$$
\lambda(p,-X)=\mu^{-1}(p, X), \mu(p,-X)=\lambda^{-1}(p, X), E_{p}^{-,-X}=E_{p}^{+, X}, E_{p}^{+,-X}=E_{p}^{-, X}
$$

We obtain from the fact that the number of sinks with nonreal eigenvalues is locally constant at X that there is a fixed number $0<\lambda<1$ and a neighborhood \mathcal{U}_{X} of X satisfying:
(a) $\frac{|\lambda(p, Y)|}{\mu(p, Y) \mid} \leq \lambda^{t_{p, Y}}$ and
(b) $\operatorname{angle}\left(E_{p}^{-, X}, E_{p}^{+, Y}\right)>\alpha$, for every $(p, Y) \in \operatorname{Sink}(Y) \times \mathcal{U}_{X}$.

Using these properties we obtain as in the proof of Theorem 2.5 that there are neighborhoods \mathcal{V}_{X} of X, U_{σ} of σ and $\beta_{\sigma}>0$ such that if $Y \in \mathcal{V}_{X}$ and $x \in \operatorname{Sink}(Y)$ satisfies $O_{Y}(x) \cap U_{\sigma} \neq \emptyset$, then

$$
\operatorname{angle}\left(E_{x}^{-, Y}, E_{x}^{c u, Y}\right)>\beta_{\sigma}, \quad \text { if } \operatorname{Ind}(\sigma)=2
$$

and

$$
\operatorname{angle}\left(E_{x}^{-,-Y}, E_{x}^{c u,-Y}\right)>\beta_{\sigma}, \quad \text { if } \operatorname{Ind}(\sigma)=1
$$

Consequently there are a neighborhood \mathcal{K}_{X} of $X, 0<\rho<1, c>0, \delta>0$ and $T_{0}>0$ satisfying the following properties for every $Y \in \mathcal{K}_{X}$ and every $x \in$ $\mathrm{Cl}(\operatorname{Sink}(Y)) \backslash \operatorname{Sink}(Y)$ satisfying $t_{x, Y}>T_{0}$ and $O_{Y}(x) \cap B_{\delta}(\sigma) \neq \emptyset:$

- If $\operatorname{Ind}(\sigma)=2$, then

$$
\left\|D Y_{T}(p) / E_{p}^{-, Y}\right\| \cdot\left\|D Y_{-T}(p) / E_{Y_{-T}(p)}^{c u, Y}\right\| \leq c \rho^{T}, \quad \forall T>0
$$

- If $\operatorname{Ind}(\sigma)=1$, then

$$
\left\|D(-Y)_{T}(p) / E_{p}^{-,-Y}\right\| \cdot\left\|D(-Y)_{-T}(p) / E_{(-Y)_{-T}(p)}^{c u,-Y}\right\| \leq c \rho^{T}, \quad \forall T>0
$$

Using these dominations as before we obtain the following:

- If $\operatorname{Ind}(\sigma)=2$, then $\mathrm{Cl}\left(W^{u}(\sigma)\right)$ is a singular-hyperbolic attractor for X.
- If $\operatorname{Ind}(\sigma)=1$, then $\mathrm{Cl}\left(W^{s}(\sigma)\right)$ is a singular-hyperbolic attractor for $-X$.

Since a singular-hyperbolic attractor for either X or $-X$ cannot be accumulated by sinks we conclude that

$$
\operatorname{Sing}(X) \cap(\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X))=\emptyset
$$

Since there is a LPF-dominated splitting, we conclude that $\mathrm{Cl}(\operatorname{Sink}(X)) \backslash \operatorname{Sink}(X)$ is a hyperbolic set. Since there are only a finite number of orbits of sinks in a neighborhood of a hyperbolic set, we conclude that $\operatorname{card}(\operatorname{Sink}(X))<\infty$ which is absurd. This concludes the proof.

References

[1] Abdenur, F., Attractors of generic diffeomorphisms are persistent, Nonlinearity 16 (2003), no. 1, 301-311.
[2] Alves, J.F., Araújo, V., Pacifico, M.J., Pinheiro, V., On the volume of singular-hyperbolic sets, Dyn. Syst. 22 (2007), no. 3, 249267.
[3] Araujo, A., Existência de atratores hiperbólicos para difeomorfismos de superficies (Portuguese), Preprint IMPA Série F, No 23/88, 1988.
[4] Arbieto, A., Morales, C.A., Santiago, B., On Araujo's Theorem for flows, Preprint (2013) arXiv:1307.5796v1 [math.DS] 22 Jul 2013.
[5] Arbieto, A., Obata, D.J., On attractors and their basins, Preprint 2012.
[6] Arroyo, A, Rodriguez Hertz, F., Homoclinic bifurcations and uniform hyperbolicity for threedimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 5, 805-841.
[7] Bhatia, N.P., Szegö, G.P., Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161 Springer-Verlag, New York-Berlin 1970.
[8] Bonatti, C., Gan, S., Yang, D., Dominated chain recurrent class with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (To appear).
[9] Carballo, C.M., Morales, C.A., Pacifico, M.J., Homoclinic classes for generic C^{1} vector fields, Ergodic Theory Dynam. Systems 23 (2003), no. 2, 403-415.
[10] Doering, C.I., Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), 5989, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.
[11] Hayashi, S., Connecting invariant manifolds and the solution of the C1 stability and -stability conjectures for flows, Ann. of Math. (2) 145 (1997), no. 1, 81-137.
[12] Hasselblatt, B., Katok, A., Introduction to the modern theory of dynamical systems (with a supplementary chapter by Katok and Leonardo Mendoza), Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
[13] Hirsch, M., Pugh, C., Shub, M., Invariant manifolds, Lec. Not. in Math. 583 (1977), SpringerVerlag.
[14] Kuratowski, K., Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw 1968.
[15] Kuratowski, K., Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw 1966.
[16] Morales, C.A., Another dichotomy for surface diffeomorphisms, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2639-2644.
[17] Morales, C.A., Pacifico, M.J., A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003), no. 5, 1575-1600.
[18] Morales, C.A., Pacifico, M.J., Pujals, E.R., Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375-432.
[19] Palis, J., Takens, F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors. Cambridge Studies in Advanced Mathematics, 35. Cambridge University Press, Cambridge, 1993.
[20] Pujals, E.R., Sambarino, M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2) 151 (2000), 961-1023.
[21] Wen, L., On the preperiodic set, Discrete Contin. Dynam. Systems 6 (2000), no. 1, 237-241.

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil.

E-mail address: arbieto@im.ufrj.br, bruno_santiago@im.ufrj.br

[^0]: 2010 Mathematics Subject Classification. Primary: 37D20; Secondary: 37C70.
 Key words and phrases. singular-hyperbolic Attractor, Sink, Three-dimensional flow.
 Partially supported by CNPq, FAPERJ and PRONEX/DS from Brazil.

