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Abstract. In this note we announce a result for vector fields on thregedsional manifolds: those
who are singular hyperbolic or exhibit a homoclinic tangefarm a dense subset of the
space ofC*-vector fields. This answers a conjecture by Palis. The aegumses an ex-
tension for local fibered flows of Mafé and Pujals-Samiwgsitheorems about the uniform
contraction of one-dimensional dominated bundles.

Sur la densié de I'hyperbolicié singuliere pour les champs de vecteurs en di-
mension trois : une conjecture de Palis

Résumé. Dans cette note, nous annongons un résultat portant sueHamps de vecteurs des variétés
de dimensiors : ceux qui vérifient I'hyperbolicité singuliére ou qui ggedent une tangence
homocline forment un sous-ensemble dense de I'espace aempsite vecteurs'. Ceci
repond a une conjecture de Palis. La démonstration sgiline généralisation pour les
flots fibrés locaux des théoremes de Mahé et Pujals-Santbtraitant de la contraction
uniforme de fibrés unidimensionnels dominés.

1. Introduction
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We are concerned with dynamics which are typical in the spdagynamical systems. Hyperbolic
systems are natural candidates since they form an open@seudr there are obstructions for hyperbolicity,
such as homoclinic tangencies which produces rich behagidtewhouse phenomeinal13]. Pélis [14, 15]
conjectured that on surfaces, every diffeomorphism cancbaraulated either by hyperbolic ones or by
diffeomorphisms with a homoclinic tangency. Pujals and Baimo [17] managed to prove the conjecture
in the C! topology. For higher dimensions, other homoclinic bifdimas have to be included in Palis
conjecture, such as heterodimensional cycles. For the afagector fields, new kinds of bifurcations,
associated to singularities, and called singular cyclage o be introduced. A version of Palis conjecture
for vector fields can be formulated as:

CoNJECTUREL. — (Palis[[16]) — Every vector field can be accumulated either by hyperbolatore
fields or by ones with a homaoclinic bifurcation or with a siteyicycle.
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Vector fields admit robustly non-hyperbolic transitiverattors with singularities [1,/6]. Morales, Paci-
fico and Pujals[12] defined thengular hyperbolicityto characterize robust attractors with singularities in
dimension3. Palis gave a stronger version of his conjecture in dimersisee also [2, 11]):

CONJECTUREZ2. — (Palis[16]) -Every vector field on a three dimensional manifold can be axdated
either by singular hyperbolic vector fields or by ones witharoclinic tangency (associated to a non-
singular periodic orbit).

Arroyo and Rodriguez-Hertz[2] proved the first conjectuse three-dimensional manifolds in thg!
topology. The goal of this work is to get a positive answerhef second one in thé! topology. General-
izations of singular hyperbolicity in higher dimension bdeen proposed [10,/18], but it is not clear for us
what should be the generalization of Conjecidre 2. Sincelese phenomenon requir@$-smoothness,
an even stronger result could be imagined, specific taCthéopology: singular hyperbolicy may @' -
dense in the space of three dimensional vector fields.

2. Precise statements

Let M be a three-dimensional compact Riemannian manifold witboundary. A smooth vector field
X on M generates a flow,. A pointx is regularif X (z) # 0; otherwise,z is singular. The set of
singularities plays a particular role and is denotedshys(X). The derivativeDy, of ¢; w.r.t. the space
variable is called théangent flow

The dynamics of the flow is usually split in the following wayor anys > 0, ane-pseudo orbit frome
to y is a sequencéz; }?, such thatey = =, z,, = y, n > 1 and such thatl (¢, (z;), z;41) < e for any
i € {0,...,n — 1} and for some(t;}7=;" in [1,2]. Any two pointsz,y € M are said to behain related
if for any ¢ > 0, there are-pseudo orbits fromx to y and fromy to x. If z is chain related to itself, then
x is called achain recurrent point The (compact invariant) set of chain recurrent points iiedahechain
recurrent sebf X. To be chain related is an equivalence relation on the cleairrent set; the equivalence
classes are callezhain recurrence classad X. They are compact, invariant (and pairewise disjoint).

Let A be an invariant compact set. An invariant continuous $piitianM = E & F (whereE, I are
non-trivial vector bundles) idominatedf there exist constants, A > 0 such that for any > 0, anyx € A
and for any unit vectors € E(x) andv € F(z), we have| Dy, (u)|| < Ce™||Dypy (v)]].

The setA is hyperbolic if there exist a continuous invariant splittifg, M/ = E* @ (X) & E* w.r.t.
Dy, and constant§’, A > 0 such that for any: € A and¢ > 0, one has|Dyy|p: (.|| < Ce™* and
[1Dg—t|pu(ay | < Ce™.

An attractorA is singular hyperbolidf there is a dominated splitting, M = E*° @ E°* w.r.t. Dy, and
constants” > 0 and\ > 0 such that:

— Contraction: for any > 0 and anyz € A, ||Dep¢|pes () || < Ce™ .

— Area-expansion: for any> 0 and anyz € A, [Dety_|peu(y)| < Ce .

A transitive repeller isingular hyperbolidf it is a singular hyperbolic attractor for X .

We say thatX is singular hyperbolidf the chain recurrent set oX is the union of finitely pairewise
disjoint invariant compact sefs\; } such that eacl; is a hyperbolic set, a singular hyperbolic attractor, or
a singular hyperbolic repelleX is robustlysingular hyperbolic if any vector field! -close toX is singular
hyperbolic.

We say thatX has ahomoclinic tangencif X has a (non-singular) hyperbolic periodic orbisuch that
the stable manifold of and the unstable manifold efhave some non-transverse intersection.

We announce an answer to the above Palis conjelcture 2 is:

MAIN THEOREM. — In theC" topology, every three dimensional vector field can be actated by
robustly singular hyperbolic vector fields, or by vectord®ivith homoclinic tangencies.

2



Singular hyperbolic three-dimensional vector fields

For proving this theorem, we only need to prove the followimpich was already obtained by Arroyo
and Rodriguez-Hertz [2] for non-singular chain-recureso@sses).

MAIN THEOREMRESTATED. — For C' generic vector field{ on a three-dimensional manifold which
is far from homoclinic tangencies, any chain-recurrencasslis hyperbolic or is a singular hyperbolic
attractor or repeller.

3. Dominated splittings for tangentvslinear Poincaré flows

The dynamics induces another linear flow above the set ofaegaints. Atany point: € M \ Sing(X)
we introduce the plan&’, = X (z)* and define the normal bundlé = [, s\ ing(x) e+ By orthogonal
projection of the tangent floW;, one gets théinear Poincag flow; on A/,

Let C be any chain-recurrence class (which is not an isolatedikirity) of aC*-generic vector fields
far from homoclinic tangencies. Using technics developethe different works on robustly transitive
sets [12[ 7/ 11] and Liao’s estimatidn [8], Gan and Y&rg [5}ehproved the following properties (up to
replaceX by —X):

1. Any non-isolated singularity € C is Lorenz-like it has three real eigenvalues satisfyihg< Ay <
0< =X < As.
Moreover the (one-dimensional) strong stable manifolgBasW** (o) N C = {o}.

2. The linear Poincaré flow ofi \ Sing(X) has a dominated splitting.

3. [5, Theorem C]. If the tangent floldy; on A has a dominated splitting and(f contains a singularity,
thenC is a singular hyperbolic attractor.

Thus our main theorem essentially reduces to compare thendted splitting of the linear Poincaré flow
and of the tangent flow. (Note that the following result goegdndC* -generic vector fields.)

THEOREM 1. — Dominated splitting for the tangent flow.Gensider anyC? three-dimensional vector
field X and any compact invariant sét with the following properties:

— Every periodic orbit inA is a hyperbolic saddle.

— Every singularityy € A is Lorenz-like andV**(c) N A = {c}.

— A does not contain a minimal repeller whose dynamics is thpenusion of an irrational rotation of

the circle.

Then the tangent floW; on A has a dominated splitting if and only if the linear Poinédtow onA \
Sing(X) has a dominated splitting.

4. Uniform contraction for dominated fibered dynamics

The existence of singularities introduces several diffiesi the regular orbits may separate when pass-
ing the singularities, which causes a lack of compactnedsoaminiformity. These problems have been
overcome in previous works in two ways:

— by blowing up the singular set and extending the flow (intict by Li-Gan-Wen [7]),

— by rescaling the flow near the singular set (in Liao’s wotkdgd in [5]).

These ideas may be applied to several flows associated toittad flow ¢;: the flow itself, the sectional
Poincaré flow, their tangent flows,...

In this work we get a compactification of the rescaled seali®incaré flow that we define now. For
any regular points: and timet, € R, the flowy, induces a local holonomy map from a neighborhood of
x in exp, (N;) to a neighborhood ap; (z) in exp,, ;) (N, (2))- This induces a local map;, from NV, to
N, () Which preserves and gives a local flow?; on the bundleV' in a neighborhood of the-section. It
is called thesectional Poincak flow Its linearization at th@-section is the linear Poincaré flayy.
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For these flows, we define the rescaled sectional Poincav&afid the rescaled linear Poincaré flow as:

_X@I

By (va) = X (@)™ - B(1X (@)1 - va) andd (o) = 5oy

wt (Uw)
Still ¢»f can be seen as the linearizationff.

THEOREMZ2. — Compactification of the sectional Poincaré flowhAssume that the flow; isC", r > 2,
and letK be an invariant compact set whose singularittésg(X) N K are hyperbolic. Then, there exists
a flow®; on a compact metric spad% and a local flowﬁt* on a linear bundleV over the dynamics ab;
on K, which preserves th@section, such that: ~

— There exists an injective continuous fiber-preserving mafy” — N which conjugates the local flows

P andP;.

— Py is C"'-along fibers: it induces local” ~!-diffeomorphismg\/,, 0) — (J\Af@(m),o) depending

continuously orx for the C"~*-topology.

Theoreni L can be translated for the flﬁﬁ with the following remarks:

— If the linear Poincaré flow); has a dominated splitting, then tiesection inA” has a dominated
splitting TN = E & F forthe compactified rescaled floﬂg‘

— If moreoverE is uniformly contracted by the linearization 6{*, then K has a dominated splitting
Tk M = E @ F for the tangent flovDy;, with dim(E) = 1 andR.X C F.

Theorentl is thus a consequence of the theorem below for @veditocal fibered rovsISt* on a bundle
jl/ with 2-dimensional fibers. It requires an importaoimpatibility assumptiowhich reflects the fact that
P} has been obtained from the sectional Poincaré flow on a oidnif

~

1. There exists an open détC K and for close points, y € U an identification mag, ,: N — /\A/y
which is “compatible” with the local flowP;.

2. Along pieces of orbit 1574 \ U, the bundleF is uniformly contracted.

__THEOREM3. — Uniform contraction of one-dimensional bundle for doated local fibered flow. ket
Py be alocal fibered flow which i62-along fibers, on a bundl&/ with 2-dimensional fibers satisfying:
— the0-section is invariant and has a dominated splittlﬁgf/ =E@F;
— the compatibility assumption holds; L
- Eis contracted along each periodic orbit of the base spacef \;
— the base spac& of A/ does not contain any invariant compact set which is a repeltel whose
dxnamms is conjugated to the suspension of an irrationalerotation.
ThenF is uniformly contracted by the linearization of the fIaRgv

This theorem is a continuation of a sequence of works ieitidty Mafné[[9] and Pujals-Sambarino[[17]:
the later proves the hyperbolicity of dominated invariaminpact set for surface diffeomorphisms. Com-
pared with the usual Pujals-Sambarino arguments, we meéblibwing difficulties:

— We work with continuous time dynamics. It is not enough tasider the time-one map since the
flow shears along the orbits. Bounded time evolution prodisceall shear, but we need to consider
long-term behaviors. This difficulty already appears indd and Rodriguez-Hertz' result|[2].

— There is no extension of Pujals-Sambarino result to géderainated fibered dynamics (as one can
see considering a product of a minimal base dynamics witldéity along fibers). Our proof uses
strongly the identification maps, ,,.

— Since the identifications, , are only defined ol/, we have to handle with the induced dynamics in
U. This makes us to consider “induced hyperbolic returnsif43]).
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— The flowﬁt* is locally defined and the global arguments|ofi[17] have todpdaced by local ones.

— We need to construct some Markovian boxes in a non-symaorsatiing: the bundIeE, F play dif-
ferent roles. We borrow some ideas from a recent work of GieriPujals and Sambariric [4].
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