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Abstract. In this note we announce a result for vector fields on three-dimensional manifolds: those
who are singular hyperbolic or exhibit a homoclinic tangency form a dense subset of the
space ofC1-vector fields. This answers a conjecture by Palis. The argument uses an ex-
tension for local fibered flows of Mañé and Pujals-Sambarino’s theorems about the uniform
contraction of one-dimensional dominated bundles.

Sur la densit́e de l’hyperbolicit́e singulìere pour les champs de vecteurs en di-
mension trois : une conjecture de Palis

Résum é. Dans cette note, nous annonçons un résultat portant sur les champs de vecteurs des variétés
de dimension3 : ceux qui vérifient l’hyperbolicité singulière ou qui possèdent une tangence
homocline forment un sous-ensemble dense de l’espace des champs de vecteursC1. Ceci
répond à une conjecture de Palis. La démonstration utilise une généralisation pour les
flots fibrés locaux des théorèmes de Mañé et Pujals-Sambarino traitant de la contraction
uniforme de fibrés unidimensionnels dominés.

1. Introduction

We are concerned with dynamics which are typical in the spaceof dynamical systems. Hyperbolic
systems are natural candidates since they form an open set. However there are obstructions for hyperbolicity,
such as homoclinic tangencies which produces rich behavioras Newhouse phenomena [13]. Palis [14, 15]
conjectured that on surfaces, every diffeomorphism can be accumulated either by hyperbolic ones or by
diffeomorphisms with a homoclinic tangency. Pujals and Sambarino [17] managed to prove the conjecture
in theC1 topology. For higher dimensions, other homoclinic bifurcations have to be included in Palis
conjecture, such as heterodimensional cycles. For the caseof vector fields, new kinds of bifurcations,
associated to singularities, and called singular cycles, have to be introduced. A version of Palis conjecture
for vector fields can be formulated as:

CONJECTURE1. – (Palis [16]) – Every vector field can be accumulated either by hyperbolic vector
fields or by ones with a homoclinic bifurcation or with a singular cycle.
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Vector fields admit robustly non-hyperbolic transitive attractors with singularities [1, 6]. Morales, Paci-
fico and Pujals [12] defined thesingular hyperbolicityto characterize robust attractors with singularities in
dimension3. Palis gave a stronger version of his conjecture in dimension 3 (see also [2, 11]):

CONJECTURE2. – (Palis [16]) –Every vector field on a three dimensional manifold can be accumulated
either by singular hyperbolic vector fields or by ones with a homoclinic tangency (associated to a non-
singular periodic orbit).

Arroyo and Rodriguez-Hertz [2] proved the first conjecture for three-dimensional manifolds in theC1

topology. The goal of this work is to get a positive answer of the second one in theC1 topology. General-
izations of singular hyperbolicity in higher dimension have been proposed [10, 18], but it is not clear for us
what should be the generalization of Conjecture 2. Since Newhouse phenomenon requiresC2-smoothness,
an even stronger result could be imagined, specific to theC1-topology: singular hyperbolicy may beC1-
dense in the space of three dimensional vector fields.

2. Precise statements

LetM be a three-dimensional compact Riemannian manifold without boundary. A smooth vector field
X onM generates a flowϕt. A point x is regular if X(x) 6= 0; otherwise,x is singular. The set of
singularities plays a particular role and is denoted bySing(X). The derivativeDϕt of ϕt w.r.t. the space
variable is called thetangent flow.

The dynamics of the flow is usually split in the following way.For anyε > 0, anε-pseudo orbit fromx
to y is a sequence{xi}ni=0 such thatx0 = x, xn = y, n > 1 and such thatd(ϕti(xi), xi+1) < ε for any
i ∈ {0, . . . , n − 1} and for some{ti}

n−1
i=0 in [1, 2]. Any two pointsx, y ∈ M are said to bechain related

if for any ε > 0, there areε-pseudo orbits fromx to y and fromy to x. If x is chain related to itself, then
x is called achain recurrent point. The (compact invariant) set of chain recurrent points is called thechain
recurrent setofX . To be chain related is an equivalence relation on the chain recurrent set; the equivalence
classes are calledchain recurrence classesof X . They are compact, invariant (and pairewise disjoint).

Let Λ be an invariant compact set. An invariant continuous splitting TΛM = E ⊕ F (whereE,F are
non-trivial vector bundles) isdominatedif there exist constantsC, λ > 0 such that for anyt > 0, anyx ∈ Λ
and for any unit vectorsu ∈ E(x) andv ∈ F (x), we have‖Dϕt(u)‖ 6 Ce−λt‖Dϕt(v)‖.

The setΛ is hyperbolic, if there exist a continuous invariant splittingTΛM = Es ⊕ 〈X〉 ⊕ Eu w.r.t.
Dϕt and constantsC, λ > 0 such that for anyx ∈ Λ andt > 0, one has‖Dϕt|Es(x)‖ 6 Ce−λt and
‖Dϕ−t|Eu(x)‖ 6 Ce−λt.

An attractorΛ is singular hyperbolicif there is a dominated splittingTΛM = Ess ⊕Ecu w.r.t. Dϕt and
constantsC > 0 andλ > 0 such that:

– Contraction: for anyt > 0 and anyx ∈ Λ, ‖Dϕt|Ess(x)‖ 6 Ce−λt.
– Area-expansion: for anyt > 0 and anyx ∈ Λ, |Detϕ−t|Ecu(x)| 6 Ce−λt.

A transitive repeller issingular hyperbolicif it is a singular hyperbolic attractor for−X .

We say thatX is singular hyperbolicif the chain recurrent set ofX is the union of finitely pairewise
disjoint invariant compact sets{Λi} such that eachΛi is a hyperbolic set, a singular hyperbolic attractor, or
a singular hyperbolic repeller.X is robustlysingular hyperbolic if any vector fieldC1-close toX is singular
hyperbolic.

We say thatX has ahomoclinic tangencyif X has a (non-singular) hyperbolic periodic orbitγ such that
the stable manifold ofγ and the unstable manifold ofγ have some non-transverse intersection.

We announce an answer to the above Palis conjecture 2 is:

MAIN THEOREM . – In theC1 topology, every three dimensional vector field can be accumulated by
robustly singular hyperbolic vector fields, or by vector fields with homoclinic tangencies.
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For proving this theorem, we only need to prove the following(which was already obtained by Arroyo
and Rodriguez-Hertz [2] for non-singular chain-recurrence classes).

MAIN THEOREM RESTATED . – For C1 generic vector fieldX on a three-dimensional manifold which
is far from homoclinic tangencies, any chain-recurrence class is hyperbolic or is a singular hyperbolic
attractor or repeller.

3. Dominated splittings for tangentvs linear Poincaré flows

The dynamics induces another linear flow above the set of regular points. At any pointx ∈M \Sing(X)
we introduce the planeNx = X(x)⊥ and define the normal bundleN =

∐
x∈M\Sing(X)Nx. By orthogonal

projection of the tangent flowDϕt, one gets thelinear Poincaŕe flowψt onN .

Let C be any chain-recurrence class (which is not an isolated singularity) of aC1-generic vector fields
far from homoclinic tangencies. Using technics developed in the different works on robustly transitive
sets [12, 7, 11] and Liao’s estimation [8], Gan and Yang [5] have proved the following properties (up to
replaceX by−X):

1. Any non-isolated singularityσ ∈ C is Lorenz-like: it has three real eigenvalues satisfyingλ1 < λ2 <

0 < −λ2 < λ3.
Moreover the (one-dimensional) strong stable manifold satisfiesW ss(σ) ∩ C = {σ}.

2. The linear Poincaré flow onC \ Sing(X) has a dominated splitting.

3. [5, Theorem C]. If the tangent flowDϕt onΛ has a dominated splitting and ifC contains a singularity,
thenC is a singular hyperbolic attractor.

Thus our main theorem essentially reduces to compare the dominated splitting of the linear Poincaré flow
and of the tangent flow. (Note that the following result goes beyondC1-generic vector fields.)

THEOREM 1. – Dominated splitting for the tangent flow. –Consider anyC3 three-dimensional vector
fieldX and any compact invariant setΛ with the following properties:

– Every periodic orbit inΛ is a hyperbolic saddle.
– Every singularityσ ∈ Λ is Lorenz-like andW ss(σ) ∩ Λ = {σ}.
– Λ does not contain a minimal repeller whose dynamics is the suspension of an irrational rotation of

the circle.
Then the tangent flowDϕt on Λ has a dominated splitting if and only if the linear Poincaré flow onΛ \
Sing(X) has a dominated splitting.

4. Uniform contraction for dominated fibered dynamics

The existence of singularities introduces several difficulties: the regular orbits may separate when pass-
ing the singularities, which causes a lack of compactness and of uniformity. These problems have been
overcome in previous works in two ways:

– by blowing up the singular set and extending the flow (introduced by Li-Gan-Wen [7]),
– by rescaling the flow near the singular set (in Liao’s work [8] and in [5]).

These ideas may be applied to several flows associated to the initial flow ϕt: the flow itself, the sectional
Poincaré flow, their tangent flows,...

In this work we get a compactification of the rescaled sectional Poincaré flow that we define now. For
any regular pointsx and timet0 ∈ R, the flowϕt induces a local holonomy map from a neighborhood of
x in expx(Nx) to a neighborhood ofϕt(x) in expϕt(x)(Nϕt(x)). This induces a local mapPt0 fromNx to
Nϕt(x) which preserves0 and gives a local flowPt on the bundleN in a neighborhood of the0-section. It
is called thesectional Poincaŕe flow. Its linearization at the0-section is the linear Poincaré flowψt.
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For these flows, we define the rescaled sectional Poincaré flow and the rescaled linear Poincaré flow as:

P ∗
t (vx) = ‖X(ϕt(x))‖

−1 · Pt

(
‖X(x)‖ · vx

)
andψ∗

t (vx) =
‖X(x)‖

‖X(ϕt(x))‖
· ψt(vx).

Still ψ∗
t can be seen as the linearization ofP ∗

t .

THEOREM2. – Compactification of the sectional Poincaré flow. –Assume that the flowϕt isCr, r > 2,
and letK be an invariant compact set whose singularitiesSing(X) ∩K are hyperbolic. Then, there exists
a flowϕ̂t on a compact metric spacêK and a local flowP̂ ∗

t on a linear bundleN̂ over the dynamics of̂ϕt

on K̂, which preserves the0-section, such that:
– There exists an injective continuous fiber-preserving mapp : N → N̂ which conjugates the local flows
P ∗
t andP̂ ∗

t .
– P̂ ∗

t is Cr−1-along fibers: it induces localCr−1-diffeomorphisms(N̂x, 0) → (N̂ϕ̂t(x), 0) depending
continuously onx for theCr−1-topology.

Theorem 1 can be translated for the floŵP ∗
t with the following remarks:

– If the linear Poincaré flowψt has a dominated splitting, then the0-section inN̂ has a dominated
splittingT N̂ = Ê ⊕ F̂ for the compactified rescaled floŵP ∗

t .
– If moreoverÊ is uniformly contracted by the linearization of̂P ∗

t , thenK has a dominated splitting
TKM = E ⊕ F for the tangent flowDϕt, with dim(E) = 1 andR.X ⊂ F .

Theorem 1 is thus a consequence of the theorem below for dominated local fibered floŵP ∗
t on a bundle

N̂ with 2-dimensional fibers. It requires an importantcompatibility assumptionwhich reflects the fact that
P̂ ∗
t has been obtained from the sectional Poincaré flow on a manifold:

1. There exists an open setU ⊂ K̂ and for close pointsx, y ∈ U an identification mapπx,y : N̂x → N̂y

which is “compatible” with the local floŵP ∗
t .

2. Along pieces of orbit in̂K \ U , the bundleÊ is uniformly contracted.

THEOREM 3. – Uniform contraction of one-dimensional bundle for dominated local fibered flow. –Let
P̂ ∗
t be a local fibered flow which isC2-along fibers, on a bundlêN with 2-dimensional fibers satisfying:
– the0-section is invariant and has a dominated splittingT N̂ = Ê ⊕ F̂ ;
– the compatibility assumption holds;
– E is contracted along each periodic orbit of the base spaceK̂ of N̂ ;
– the base spacêK of N̂ does not contain any invariant compact set which is a repeller and whose

dynamics is conjugated to the suspension of an irrational circle rotation.
ThenÊ is uniformly contracted by the linearization of the floŵP ∗

t .

This theorem is a continuation of a sequence of works initiated by Mañé [9] and Pujals-Sambarino [17]:
the later proves the hyperbolicity of dominated invariant compact set for surface diffeomorphisms. Com-
pared with the usual Pujals-Sambarino arguments, we meet the following difficulties:

– We work with continuous time dynamics. It is not enough to consider the time-one map since the
flow shears along the orbits. Bounded time evolution produces small shear, but we need to consider
long-term behaviors. This difficulty already appears in Arroyo and Rodriguez-Hertz’ result [2].

– There is no extension of Pujals-Sambarino result to general dominated fibered dynamics (as one can
see considering a product of a minimal base dynamics with theidentity along fibers). Our proof uses
strongly the identification mapsπx,y.

– Since the identificationsπx,y are only defined onU , we have to handle with the induced dynamics in
U . This makes us to consider “induced hyperbolic returns” (asin [3]).
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– The flowP̂ ∗
t is locally defined and the global arguments of [17] have to be replaced by local ones.

– We need to construct some Markovian boxes in a non-symmetric setting: the bundleŝE, F̂ play dif-
ferent roles. We borrow some ideas from a recent work of Crovisier, Pujals and Sambarino [4].
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Contin. Dyn. Syst., 13 (2005), 239–269.
[8] S. Liao, On(η, d)-contractible orbits of vector fields,Systems Science and Mathematical Sciences, 2 (1989),

193–227.
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