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MIXING-LIKE PROPERTIES FOR SOME GENERIC AND

ROBUST DYNAMICS

ALEXANDER ARBIETO, THIAGO CATALAN, AND BRUNO SANTIAGO

Abstract. We show that the set of Bernoulli measures of an isolated topolog-
ically mixing homoclinic class of a generic diffeomorphism is a dense subset of
the set of invariant measures supported on the class. For this, we introduce the
large periods property and show that this is a robust property for these classes.
We also show that the whole manifold is a homoclinic class for an open and
dense subset of the set of robustly transitive diffeomorphisms far away from ho-
moclinic tangencies. In particular, using results from Abdenur and Crovisier, we
obtain that every diffeomorphism in this subset is robustly topologically mixing.

1. introduction

The study of chain-recurrence classes began once that Conley’s Fundamental
Theorem of Dynamical Systems appeared. It says that up to quotient these classes
on points any dynamical system looks like a gradient dynamics.

However, some of these classes, called homoclinic classes, gained interest with
the advent of Smale’s Spectral Decomposition Theorem. Indeed, this theorem
says that for Axiom A (hyperbolic) dynamics the non-wandering set splits into
finitely many homoclinic classes. Moreover, each of these classes is isolated: it is
the maximal invariant set of a neighbourhood of itself. Thus, these homoclinic
classes are the sole chain recurrence classes of such dynamics. We recall that a
homoclinic class of a periodic point p is the closure of the transversal intersections
of the invariant manifolds of the orbit of p. It is well known that such classes are
transitive, i.e. they contain a point whose orbit is dense in the class.

Hence, the study of homoclinic classes, in non-hyperbolic situations, attracted
the attention of many mathematicians, see [BDV] for a survey on the subject. The
purpose of this article is to contribute to this study both in the measure theoretical
viewpoint and the topological viewpoint. The dynamical systems we shall consider
here are diffeomorphisms and the topology used in the space of diffeomorphisms
will be the C1-topology.

In ergodic theory, an important problem is to describe the set of invariant mea-
sures of a dynamical system, since the theory says that the invariant measures help
to describe the dynamics. In [S2], Sigmund studied this problem in the hyperbolic
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case. More precisely he proved that for any homoclinic class of an Axiom A diffeo-
morphism, the set of periodic measures, i.e. Dirac measures evenly distributed on
a periodic orbit, is dense in the set of invariant measures. On the other hand, there
is a refinement of the Spectral Decomposition Theorem, due to Bowen, which says
that any such class of an Axiom A system splits into finitely many compact sets
which are cyclically permuted by the dynamics and the dynamics of each piece, at
the return, is topologically mixing, i.e. given two open sets U and V then the n-th
iterate of U meets V for every n large enough. Using this, Sigmund in [S1] was able
to prove that the set of Bernoulli measures is dense among the invariant measures.
He also proved that weakly mixing measures contains a residual subset of invariant
measures. Indeed, the set of weakly mixing measures is a countable intersection
of open sets. We recall that a measure is Bernoulli if the system endowed with it
is measure theoretically isomorphic to a Bernoulli shift.

In the non-hyperbolic case, [ABC] proved that for a generic diffeomorphism
any isolated homoclinic class has periodic measures dense in the set of invariant
measures, thus extending the first result of Sigmund mentioned above to the generic
setting. We recall that a property holds generically if it holds in a countable
intersection of open and dense sets of diffeomorphisms. Our first result extends
the second result of Sigmund mentioned above.

Theorem A. For any generic diffeomorphism f , if the dynamics restricted to an
isolated homoclinic class is topologically mixing then the Bernoulli measures are
dense in space of invariant measures supported on the class. In particular, the set
of weakly mixing measures contain a residual subset.

The main tools employed here to prove Theorem A are the results from [ABC],
mentioned above, the main theorem in [AC], and the large periods property which
is a tool that we devised in order to detect mixing behavior. For instance, a dy-
namical system has large periods property if there are periodic points with any large
enough period which are arbitrarily dense. The presence of this property implies
that the system is topologically mixing. In the differentiable setting, we also de-
fine the homoclinic large periods property which only considers the homoclinically
related periodic points. We prove that this property is robust, see Proposition
4.8. We recall that a property is robust if it holds in a neighbourhood of the
diffeomorphism.

In [AC], the authors use their main result to prove that any homoclinic class of
a generic diffeomorphism has a spectral decomposition in the sense of Bowen, like
discussed before. One of the motivations is that all known examples of robustly
transitive diffeomorphisms are robustly topologically mixing.

So, in the same article the authors ask the following questions:

(1) Is every robustly transitive diffeomorphism topologically mixing?
(2) Failing that, is topological mixing at least a C1 open and dense condition

within the space of all robustly transitive diffeomorphisms?
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Now, we point out that the results of section 2 of [AC] gives immediately the
following result1 (see also Remark 3.7).

1.1. Theorem. Let f be a generic diffeomorphism. If an isolated homoclinic class
of f is topologically mixing then it is robustly topologically mixing.

Actually, since the large periods property implies topological mixing, the ro-
bustness of this property could lead to another proof of the previous result, see
Section 4.

We want now attack problem (2) above. To this purpose it is natural to look for
the global dynamics of the previous theorem instead of the semi-local dynamics.
This leads us to a question posed in [BDV] (Problem 7.25, page 144): “For an
open and dense subset of robustly transitive partially hyperbolic diffeomorphism:
Is the whole manifold robustly a homoclinic class?”. Recall by a result of [BC],
for generic transitive diffeomorphisms, the whole manifold is a homoclinic class.

Our next result gives a positive answer to Problem 7.25 of [BDV] (quoted above)
far from homoclinic tangencies. A homoclinic tangency is a non-transversal inter-
section between the invariant manifolds of a hyperbolic periodic point. The result
is the following:

Theorem B. There exists an open and dense subset among robustly transitive
diffeomorphisms far from homoclinic tangencies formed by diffeomorphisms such
that the whole manifold is a homoclinic class.

This result together with Theorem 1.1 give us a partial answer to question (2)
above, posed in [AC].

Theorem C. There is an open and dense subset among robustly transitive diffeo-
morphisms far from homoclinic tangencies formed by robustly topologically mixing
diffeomorphisms.

These two results were previously obtained by [BDU] for strongly partially hy-
perbolic diffeomorphisms with one dimensional center bundle, see also [HHU]. By
strong partial hyperbolicity we mean partial hyperbolicity with both non-trivial
extremal bundles such that the center bundle splits in one-dimensional subbundles
in a dominated way. Actually, they obtain this proving that one of the strong foli-
ations given by the partial hyperbolicity is minimal, which is a stronger property
than topological mixing. In order to obtain this minimality they used arguments
involving the accessibility property. We notice however that our results hold for
diffeomorphisms with higher dimensional center directions. In section two, we
present a way to produce such examples.

This paper is organized as follows. In Section 2 we give the precise definitions
of the main objects we shall deal with. In Section 3 we state the known results
that will be our main tools. In Section 4 we introduce the large periods property.

1We would like to thank Prof. Sylvain Crovisier for pointing out this result to us.
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In Section 5 we use the large periods property to prove Theorem A. Finally, in
Section 6 we prove Theorem B.

Acknowledgements: A.A. and B.S. want to thank FAMAT-UFU, and T.C.
wants to thank IM-UFRJ for the kind hospitality of these institutions during the
preparation of this work. This work was partially supported by CNPq, CAPES,
FAPERJ and FAPEMIG.

2. Precise Definitions

In this section, we give the precise definitions of the objects used in the state-
ments of the results. In this paper M will be a closed and connected Riemaniann
manifold of dimension d. Also, cl(.) will denote the closure operator.

2.1. Topological dynamics. Let f : M → M be a homeomorphism. Given
x ∈ M , we define the orbit of x as the set O(x) := {fn(x);n ∈ Z}. The forward
orbit of x is the set O+(x) := {fn(x);n ∈ N}. In a similar way we define the
backward orbit O−(x). If necessary, to emphasize the dependence of f , we may
write Of(x).

Given Λ ⊂ M we say that it is an invariant set if f(Λ) = Λ.
We recall the notions of transitivity and mixing. We say that f is transitive

if there exists a point in M whose forward orbit is dense. This is equivalent
to the existence of a dense backward orbit and is also equivalent to the following
condition: for every pair U, V of open sets, there exists n > 0 such that fn(U)∩V 6=
∅.

More specially, we say that f is topologically mixing if for every par U, V of
open sets there exists N0 > 0 such that n ≥ N0 implies fn(U) ∩ V 6= ∅.

2.2. Hyperbolic Periodic Points. We say that p is a periodic point if fn(p) = p
for some n ≥ 1. The minimum of such n is called the period of p and it is denoted
by τ(p).

The periodic point is hyperbolic if the eigenvalues of Df τ(p)(p) do not belong to
S1. As usual, Es(p) (resp. Eu(p)) denotes the eigenspace of the eigenvalues with
norm smaller (resp. bigger) than one. This gives a Df τ(p) invariant splitting of
the tangent bundle over the orbit O(p) of p. The index of a hyperbolic periodic
point p is the dimension of the stable direction, denoted by I(p).

If p is a hyperbolic periodic point for f then every diffeomorphism g, C1−close
to f have also a hyperbolic periodic point close to p with same period and index,
which is called the continuation of p for g, and it is denoted by p(g).

The local stable and unstable manifolds of a hyperbolic periodic point p are
defined as follows: given ε > 0 small enough, we set

W s
loc(p) = {x ∈ M ; d(fn(x), fn(p)) ≤ ε, for every n ≥ 0} and

W u
loc(p) = {x ∈ M ; (.f

−n(x), f−n(p)) ≤ ε, for every n ≥ 0}.
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They are differentiable manifolds tangent at p to Es(p) and Eu(p). The stable and
unstable manifolds are given by the saturations of the local manifolds. indeed,

W s(p) =
⋃

n≥0

f−nτ(p)(W s
loc(p)) and W u(p) =

⋃

n≥0

fnτ(p)(W u
loc(p)).

The stable and unstable set of a hyperbolic periodic orbit, O(p) are given by:

W s(O(p)) =

τ(p)−1
⋃

j=0

W s(f j(p)) and W u(O(p)) =

τ(p)−1
⋃

j=0

W u(f j(p)).

2.3. Homoclinic Intersections. If p is a hyperbolic periodic point of f , then its
homoclinic class H(p) is the closure of the transversal intersections of the stable
manifold and unstable manifold of the orbit of p:

H(p) = cl
(

W s(O(p)) ⋔ W u(O(p))
)

.

We say that a hyperbolic periodic point q is homoclinically related to p if
W s(O(p)) ⋔ W u(O(q)) 6= ∅ and W u(O(p)) ⋔ W s(O(q)) 6= ∅. It is well known
that a homoclinic class coincides with the closure of the hyperbolic periodic points
homoclinically related to p. Moreover, it is a transitive invariant set. We say that
a homoclinic class H(p) has a robust property if H(p(g)) has also this property
for any diffeomorphism g sufficiently close to f .

We define the period of a homoclinic class H(p) as the greatest common divisor
of the periods of the hyperbolic periodic points homoclinically related to p and we
denote by l(O(p)).

We say that the homoclinic class H(p) is isolated if there exists a neighbourhood
U of H(p) such that H(p) =

⋂

n∈Z f
n(U).

On the other hand, we say that a non-transversal intersection between W s(O(p))
and W u(O(p)) is a homoclinic tangency. We denote by HT (M) the set of diffeo-
morphisms exhibiting a homoclinic tangency. We will say that a diffeomorphism
f is far from homoclinic tangencies if f /∈ cl(HT (M)).

Given p and q hyperbolic periodic points with I(p) < I(q) we say that they
form a heterodimensional cycle if there exists x ∈ W s(O(p)) ∩ W u(O(q)), with
dim (TxW

s(O(p)) ∩ TxW
u(O(q))) = 0 and W u(O(p)) ⋔ W u(O(q)) 6= ∅.

2.4. Invariant Measures. A probability measure µ is f -invariant if µ(f−1(B)) =
µ(B) for every measurable set B. An invariant measure is ergodic if the measure
of any invariant set is zero or one. Let M(f) be the space of f -invariant probability
measures on M , and let Me(f) denote the ergodic elements of M(f).

For a periodic point p of f with period τ(p), we let µp denote the periodic
measure associated to p, given by

µp =
1

τ(p)

∑

x∈O(p)

δx
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where δx is the Dirac measure at x.
Given an invariant measure µ, Oseledets’ Theorem says that for almost every

x ∈ M and all v ∈ TxM the limits

λ(x, v) := lim
n→+

−

∞

1

n
log ‖Dfn(x)v‖

exists and are equal. Moreover, one has a measurably varying splitting of the
tangent bundle TM = E1⊕...⊕Ek and measurable invariant functions λj : M → R,
j = 1, ..., k such that if v ∈ Ej then λ(x, v) = λj(x). The number λj(x) is called
the Lyapunov exponent of f at x.

Now, let us define the notion of Bernoulli measure. We first recall the so-called
Bernoulli shift. It is the homeomorphism σ : {1, ..., n}Z → {1, ..., n}Z defined by
σ({xn}) = {xn+1}. In {1, ..., n}Z consider mB the product measure with respect
to the uniform probability in {1, ..., n}. It is easy to see that mB is invariant under
σ.

We say that µ ∈ M(f) is a Bernoulli measure if (f, µ) is measure theoretically
isomorphic to (σ,mB).

2.5. Partial hyperbolicity. Let Λ ⊂ M to be invariant under a diffeomorphism
f . Let E, F to be subbundles of TΛM of the tangent bundle over Λ with trivial
intersection at every x ∈ Λ. We say that E dominates F if there exists N ∈ N

such that

‖DfN(x)|E‖‖Df−N(fN(x))|F‖ ≤
1

2
,

for every x ∈ Λ. We say that Λ admits a dominated splitting if there exists a
decomposition of the tangent bundle TΛM =

⊕k

l=1El such that El dominates
El+1.

We say that a f -invariant subset Λ is partially hyperbolic if it admits a dominated
splitting TΛM = Es⊕Ec

1⊕ . . .⊕Ec
k⊕Eu, with at least one of the extremal bundles

being non-trivial, such that the extremal bundles have uniform contraction and
expansion: there exist a constants m ∈ N such that for every x ∈ M :

• ‖Dfm(x)v‖ ≤ 1/2 for each unitary v ∈ Es,

• ‖Df−m(x)v‖ ≤ 1/2 for each unitary v ∈ Eu

and the other bundles, which are called center bundles, do not contracts neither
expands.

If all center bundles are trivial, then Λ is called a hyperbolic set. Now, we say
Λ is strongly partially hyperbolic if both extremal bundles and center bundle are
non-trivial and moreover such that all of its center bundles are one-dimensional.
In particular a strongly partially hyperbolic set is not hyperbolic.
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We say that a diffeomorphism f : M → M is partially hyperbolic (resp. strong
partially hyperbolic ) if M is a partially hyperbolic (resp. strongly partially hyper-
bolic) set of f . When M is a hyperbolic set we say that f is Anosov.

We remark now that strongly partially hyperbolic diffeomorphisms are by defi-
nition far from homoclinic tangencies, since all central sub bundles have dimension
one.

Examples of partially hyperbolic diffeomorphisms with higher dimensional cen-
tral directions can be given by deforming some linear Anosov diffeomorphisms as in
Mañé’s example. For instance, let A be a linear Anosov diffeomorphism with eigen-
values λ1 < λ2 < λ3 < 1 < λ4 but, such that λ2 and λ3 are close to 1. Then we can
create a pitchfork bifurcation, producing two fixed points p and q with eigenvalues
µ1(p) < 1 < µ2(p) < µ3(p) < µ4(p) and µ1(q) < µ2(q) < 1 < µ3(q) < µ4(q), such
that µ3(q) is still close to 1. Moreover, as in Mañé’s argument [M] we can guar-
antee that this diffeomorphism is transitive. Now we can perform another pitch-
fork bifurcation on q producing two other fixed points q1 and q2 with eigenvalues
µ1(q1) < µ2(q1) < 1 < µ3(q1) < µ4(q1) and µ1(q2) < µ2(q2) < µ3(q2) < 1 < µ4(q2).
Once again, this diffeomorphism is transitive. Now, since the bifurcations pre-
servers the center unstable leaves, we can guarantee that there exists a dominated
splitting Es ⊕Ec

1 ⊕Ec
2 ⊕Eu, where Ec

1 is related to µ2 and Ec
2 is related to µ3. As

in Mañé’s example, the unstable foliation will be minimal. In particular, it will be
topologically mixing also.

2.1. Remark. If f is partially hyperbolic, by Theorem 6.1 of [HPS] there exist
strong stable and strong unstable foliations that integrate Es and Eu. More, pre-
cisely, for any point x ∈ M there is a unique invariant local strong stable manifold
W ss

loc(x) which is a smooth graph of a function φx : Es → Ec ⊕ Eu (in local coor-
dinates), and varies continuously with x. In particular, W ss

loc(x) has uniform size
for every x ∈ M . The same holds for W uu

loc (x), integrating Eu.
Saturating these local manifolds, we obtain two foliations, that we denote by F s

and Fu respectively. Indeed, F s(x) =
⋃

n≥0 f
−n(W ss

loc(f
n(x)). Analogous definition

holds for Fu.

2.6. Robustness and Genericity. As mentioned before, we deal with the space
Diff1(M) of C1 diffeomorphisms over M endowed with the C1-topology. This is
a Baire space. Thus any residual subset, i.e. a countable intersection of open
and dense sets, is dense. When a property P holds for any diffeomorphism in a
fixed residual subset, we will say that P holds generically. Or even, that a generic
diffeomorphisms exhibits the property P .

On the other hand, we say that a property holds robustly for a diffeomorphism
f if there exists a neighbourhood U of f such that the property holds for any
diffeomorphism in U .

In this way, we say that a diffeomorphism f ∈ Diff1(M) is robustly transitive if
it admits a neighborhood entirely formed by transitive diffeomorphisms.
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In this paper we let T (M) denote the open set of Diff1(M) formed by robustly
transitive diffeomorphisms which are far from tangencies. Notice that being far
from tangencies is, by definition, an open condition. Also we define by TNH(M) as
the interior of robustly transitive strongly partially hyperbolic diffeomorphisms,
which is a subset of T (M).

When dealing with properties which involves objects defined by the diffeomor-
phism itself we need to deal with the continuations of these objects.

For instance, when we say that a homoclinic class of f is robustly topologically
mixing, we are fixing a hyperbolic periodic point p of f and a neighbourhood
U of f such that for any g ∈ U the continuation p(g) of p is defined and the
homoclinic class H(p(g), g) is topologically mixing, i.e. for any U and V open sets
of H(p(g), g) there exists N > 0 such that for any n ≥ N we have gn(U) ∩ V 6= ∅.

Another example of a robust property is given by the following well known result
which says that partial hyperbolicity is a robust property.

2.2. Proposition (p. 289 of [BDV]). Let Λ be a (strongly) partially hyperbolic set
for f . Then, there exists a neighborhood U of Λ and a C1 neighborhood U of f
such that every g-invariant set Γ ⊂ U , is (strongly) partially hyperbolic, for every
g ∈ U .

3. Some Tools

In this section, we collect some results that will be used in the proofs of the
main results.

3.1. Perturbative Tools. We start with Franks’ lemma [F]. This lemma enable
us to deal with some non-linear problems using linear arguments.

3.1. Theorem (Franks lemma). Let f ∈ Diff1(M) and U be a C1-neighborhood of
f in Diff1(M). Then, there exist a neighborhood U0 ⊂ U of f and δ > 0 such that if
g ∈ U0(f), S = {p1, . . . , pm} ⊂ M and {Li : TpiM → Tg(pi)M}mi=1 are linear maps
satisfying ‖Li −Dg(pi)‖ ≤ δ for i = 1, . . .m then there exists h ∈ U(f) coinciding
with g outside any prescribed neighborhood of S and such that h(pi) = g(pi) and
Dh(pi) = Li.

One of the main applications of Franks lemma is to change the index of a periodic
orbit, after a perturbation, if the Lyapunov exponents of the orbit is weak enough.
More precisely, we can prove the following:

3.2. Lemma. Let f ∈ Diff1(M) having a sequence of hyperbolic periodic points
pn with some index s+ 1, having negative Lyapunov exponents arbitrarily close to
zero. Then, there exists g arbitrarily close to f having hyperbolic periodic points
of indices s and s+ 1.

Proof: Given a neighborhood U of f let us consider δ > 0 given for this neighbor-
hood and U0 another small enough neighborhood of f . We will suppose that the
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sequence of periodic points pn is such that the smallest eigenvalue λpn of Df τ(pn)

with absolute value smaller than 1, has multiplicity one. The argument is similar
in the other cases.

Our hypothesis says that

1

τ(pn)
log ‖Df τ(pn)|Es(pn)‖ =

1

τ(pn)
log |λpn|

approaches zero as n grows. Now, let us consider En as the eigenspace of the
eigenvalues λpn, and {El} the other eigenspaces. We can define linear maps
Li : Tf i(p)M → Tf i+1(p)M , equal to Df(f i(p)) in all subspaces Df i(p)El, but
in Df i(p)En we choose Li satisfying ‖Li| Df iEn‖ = (1 + α)‖Df(f i(p))|Df iEn‖,
where α > 0 depends on δ > 0. Then, Li is δ−close to Df(f i(p)), and also
preserves the eigenspace Df i(p)En.

Hence, using Franks lemma we can find g ∈ U such that pn still is a hyperbolic
periodic point and moreoverDg(f i(p)) = Li, where g depends on the periodic point
pn. In particular, En is a invariant subspace of TpnM for Dgτ(pn) and moreover:

‖Dgτ(p)(pn)|En‖ = (1 + α)τ(pn)λn.

Hence, by hypothesis, we can choose p equal some pn, in order to have, after the
above perturbation:

1

τ(p)
log ‖Dgτ(p)|En(p)‖ > 0.

Since Li can be chosen such that the other Lyapunov exponents of p keep un-
changed, we have that p has index s. To finish the proof, we just observe that,
Franks lemma changes the initial diffeomorphism only in a arbitrary neighborhood
of the orbit of p, therefore the neighborhood U could be chosen such that the hy-
perbolic periodic point p1 of f has a continuation, which implies that p1(g) is also
a hyperbolic periodic point of g with index s+ 1. �

Another result that we shall use is Hayashi’s connecting lemma [H]. This will
be helpful to create some heterodimensional cycles.

3.3. Theorem (C1-connecting lemma). Let f ∈ Diff1(M) and p1, p2 hyperbolic
periodic points of f , such that there exist sequences yn ∈ M and positive integers
kn such that:

• yn → y ∈ W u
loc(p1, f)), y 6= p1; and

• fkn(yn) → x ∈ W s
loc(p2, f)), x 6= p2.

Then, there exists a C1 diffeomorphism g C1−close to f such that W u(p1, g) and
W s(p2, g) have a non empty intersection close to y.

As it is well known, this result implies that if f is a generic diffeomorphism
having a non-hyperbolic homoclinic class which contains two periodic points p
and q with different indices then there exist arbitrarily small perturbations of f
such that p and q belongs to a heterodimensional cycle.
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3.2. Generic Results. We start this subsection with one of the main generic
result used in this paper, which is a result of Abdenur and Crovisier, Theorem
3 in [AC]. They prove the existence of a decomposition of any generic isolated
chain-transitive set. Since we solely are interested here in the study of isolated
homoclinic classes, we quote their result only for homoclinic classes.

3.4. Theorem (Theorem 3 in [AC]). There exists a residual subset R ⊂ Diff1(M)
such that for every f ∈ R, any isolated homoclinic class H(p, f) of a hyperbolic
periodic point p of f , decomposes uniquely as the finite union H(p) = Λ1∪ . . .∪Λl,
of disjoint compact sets on each of which f l is topologically mixing. Moreover, l
is the smallest positive integer such that W u(f l(p)) has a non empty transversal
intersection with W s(p).

As an application, they obtain that generically any transitive diffeomorphism is
topologically mixing.

The positive integer l in the previous theorem is, in fact, the period of the homo-
clinic class, l(O(p)). This number gives a nice information about the intersections
between stable and unstable manifolds of hyperbolic periodic points homoclinically
related to p. More precisely:

Since for any two periodic points p1 and p2 which are homoclinically related
their homoclinic classes H(p1) and H(p2) are equal we can recast the following
result of [AC] as:

3.5. Proposition (Proposition 2.1 in [AC]). Consider hyperbolic periodic points p1
and p2 which are homoclinically related to p, and such that W u(p1) ⋔ W s(p2) 6= ∅.
Then W u(fn(p1)) ⋔ W s(p2) 6= ∅ if, and only if, n belongs to the group l(O(p))Z.

3.6. Remark. In particular, if p̃ is homoclinically related to p, then W u(fn(p̃)) ⋔
W s(p̃) 6= ∅ if, and only if, n ∈ l(O(p))Z.

Here, we also investigate properties of topologically mixing homoclinic classes
which may not be the whole manifold. In this sense we remark the following:

3.7. Remark. Also as a direct consequence of the Theorem 3.4 we have that gener-
ically, if an isolated homoclinic class H(p) is topologically mixing then W u(f(p))
has a non empty transversal intersection with W s(p). Now, since this intersection
is robust we point out that Theorem 1.1 is a consequence of this and Proposition
2.3 in [AC].

The result below, of Bonatti and Crovisier [BC], proves that a large class of
transitive diffeomorphism have the property that the whole manifold coincides
with a homoclinic class.

3.8.Theorem (Bonatti and Crovisier). There exists a residual subsetR of Diff1(M)
such that for every transitive diffeomorphism f ∈ R if p is a hyperbolic periodic
point of f then M = H(p, f).
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Another generic result is the following

3.9. Theorem (Theorem A, item (1), [CMP]). There exists a residual subset R
of Diff1(M) such that for every f ∈ R if two homoclinic classes H(p1, f) and
H(p2, f) are either equal or disjoint.

The next result, from [ABCDW], says that generically, homoclinic classes are
index complete.

3.10.Theorem (Theorem 1 in [ABCDW]). There is a residual subsetR ∈ Diff1(M)
of diffeomorphisms f such that, every f ∈ R and any homoclinic class contain-
ing hyperbolic periodic points of indices i and j, also contains hyperbolic periodic
points of index k for every i ≤ k ≤ j.

The next tool we shall use is due to Abdenur, Bonatti and Crovisier in [ABC]
which extends Sigmund’s result [S2] to the non-hyperbolic setting.

3.11. Theorem (Theorem 3.5, item (a), in [ABC]). Let Λ be an isolated non-
hyperbolic transitive set of a C1−generic diffeomorphism f , then the set of periodic
measures supported in Λ is a dense subset of the set Mf(Λ) of invariant measures
supported in Λ.

Crovisier, Sambarino and Yang in [CSY] showed that for any diffeomorphism
f in an open and dense subset far from homoclinic tangencies, every homoclinic
class of f has a kind of strong partial hyperbolicity. More precisely, the difference
is that the “partially hyperbolic splitting” found by them could have either one or
both trivial extremal bundles. In this last scenario, by our definition the diffeo-
morphism would not be partially hyperbolic. However, by an abuse of notation, we
will continue calling it partially hyperbolic as in [CSY]. Their result gives other
important properties. Like, information of the minimal and maximal indices of
periodic points inside the homoclinic class. More precisely:

3.12. Theorem (Theorem 1.1(2) in [CSY]). There is an open and dense subset
A ⊂ Diff1(M) − {cl(HT )} such that for every f ∈ A, any homoclinic class H(p)
is a partially hyperbolic set of f

TH(p)M = Es ⊕ Ec
1 ⊕ . . . Ec

k ⊕Eu,

with dim Ec
i = 1, i = 1, . . . , k, and moreover the minimal stable dimension of the

periodic points of H(p) is dim(Es) or dim(Es) + 1. Similarly the maximal stable
dimension of the periodic orbits of H(p) is dim(Es) + k or dim(Es) + k − 1. For
every i, 1 ≤ i ≤ k there exists periodic points in H(p) whose Lyapunov exponent
along Ec

i , is arbitrary close to 0.

4. Large Periods Property

In this section we introduce the large periods property, our main tool to detect
mixing properties.
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4.1. Definition. Let f : X → X be a homeomorphism of a metric space. We say
that f has the large periods property if for any ε > 0 there exists N0 ∈ N such that
for every n ≥ N0 there exists pn ∈ Fix(fn), whose orbit under f is ε dense in X.

A simple remark is that if X has an isolated point and f has the large period
property then X is a singleton.

The large periods property can be used as a criterion to assure mixing, as the
next result shows.

4.2. Lemma. Every homeomorphism of a metric space with the large periods prop-
erty is topologically mixing

Proof. Let f : X → X be a homeomorphism with the large periods property.
Notice that f is transitive. Indeed, given U and V non-empty and disjoint open
sets take ε < min{diam(U), diam(V )}. By the large periods property, there exists
a point p ∈ Per(f) whose orbit is ε dense in X . This implies that there exists a
point y ∈ V and n > 0 such that fn(y) ∈ U . Thus f is transitive.

We now prove that f is topologically mixing. Let U and V be non-void and
disjoint open sets. By the transitivity of f there exists a first iterate n1 such that
fn1(U) ∩ V 6= ∅. In particular, f j(U) ∩ V = ∅ for every j = 1, ..., n1 − 1. Take an
open ball B ⊂ U , satisfying

fn1(B) ⊂ fn1(U) ∩ V,

and ε = diam(B)/2. Let N0 = N0(ε) be given by the large periods property.
We claim that fn(V ) ∩ U 6= ∅, for every n ≥ N0. Indeed, we know that there

exists p ∈ Fix(f τ ), with τ = n+ n1, whose orbit under f is ε dense in X . By the
choice of ε, there is an iterate of p in B. Since p is periodic we shall assume for
simplicity that p itself is in B. This implies that fn1(p) ∈ V , and therefore

fn(fn1(p)) = fn+n1(p) = f τ (p) = p ∈ U.

This proves our claim, and establishes the lemma. �

It is a natural question if the converse of this result is true. However, Carvalho
and Kwietniak [CK] gave an example of a homeomorphism of a compact metric
space with the two-sided limit shadowing property, but without periodic points.
Theorem B in [CK] establishes that the two-sided limit shadowing property implies
topological mixing. Therefore, the converse of Lemma 4.2 is not true in general.

We now turn our attention to the differentiable setting and the semi-local dy-
namics of homoclinic classes.

4.3.Definition. Let f : M → M be a diffeomorphism and let H(p) be a homoclinic
class of f . We say that an invariant subset Λ ⊂ H(p) has the homoclinic large
periods property if for any ε > 0 there exists N0 ∈ N such that for every n ≥ N0

it is possible to find a point pn ∈ Fix(fn) in Λ, and homoclinically related with p,
whose orbit under f is ε dense in Λ.
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In the sequel, we shall establish a result which produces hyperbolic horseshoes
having the homoclinic large periods property when there exists a special type of
homoclinic intersection.

For its proof we shall need the classical shadowing lemma.

4.4. Definition. Let f : X → X be a homeomorphism of a metric space X. Given
δ > 0 we say that a sequence {xn} is a ε-pseudo orbit if d(f(xn), xn+1) < ε, for
every n. We say that the pseudo orbit is ε shadowed by a point x ∈ X, for ε > 0,
if d(fn(x), xn) < ε, for every n. The pseudo orbit is said to be periodic if there
exists a minimum number τ such that xn+τ = xn, for every n. The number τ is
called the period of the pseudo orbit.

4.5. Theorem (Shadowing Lemma [Rob]). Let Λ be a locally maximal hyperbolic
set. For every ε > 0 there exists a δ > 0 such that every periodic δ-pseudo orbit
can be ε-shadowed by a periodic orbit. Moreover, if τ is the period of the pseudo
orbit, then the periodic point is a fixed point for f τ .

4.6. Lemma. Let f be a diffeomorphisms with a hyperbolic periodic point p such
that there exists a point of transverse intersection q ∈ W s(p) ⋔ W u(f(p)). Then,
for any small enough neighborhood U of O(p) ∪ O(q), the restriction of f to the
maximal invariant set ΛU = ∩n∈Zf

n(U) has the homoclinic large periods property.

Proof. For this proof, we denote τ := τ(p) the period of p.
It is a well known result (see for instance, Theorem 4.5, pg. 260 in [Rob]) that

for any small enough neighborhood U of O(p) ∪ O(q) the maximal invariant set
ΛU = ∩n∈Zf

n(U) is a hyperbolic set.
Take an arbitrary ε > 0 and δ > 0 given by Theorem 4.5. We claim that

there exists a number N0 such that for every n ≥ N0 it is possible to construct
a periodic δ-pseudo orbit inside U , with period exactly equal to n, and whose
Hausdorff distance to O(p) ∪O(q) is smaller than ε.

Once we have settled this, the shadowing lemma will produce periodic orbits,
which are fixed points for fn, and whose Hausdorff distance to O(p) ∪ O(q) is
2ε. In particular, these orbits must be 3ε dense in ΛU , with respect to the Haus-
dorff distance. Moreover, if ε is small enough, all of these periodic orbits will be
homoclinically related by the hyperbolicity of ΛU .

Thus, we are left to show our claim. With such goal in mind, we take a large
iterate x = fNτ (q) such that

f−rτ (x) ∈ B(p, δ/2),

for every r = 0, ..., τ − 1. Observe that f−1(x) ∈ W u(p), since q ∈ W u(f(p)). This
implies that there exists a smallest positive integer l ∈ N such that

f−lτ−1(x) ∈ B(p, δ/2).
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Now, we can give the number N0. For each r = 1, ..., τ − 1, let kr = rl and take
L =

∏τ−1
r=1 kr. We define N0 := Lτ . Observe that if n ≥ N0 we can write

n = (a+ L)τ + r = (a + L− kr)τ + krτ + r,

for some r ∈ {1, ..., τ − 1} and a ∈ N.
To complete the proof, we shall give the pseudo orbit. It will be given by several

strings of orbit, with jumps at specific points. For this reason, and for the sake of
clarity, we divide the construction in several steps between each jump.

• The first string: Define x0 = f−(l+r)τ−1(x), xj = f j(x0), for every j =
1, ..., lτ .

• The second string: Notice that f(xlτ ) = f−rτ(x) ∈ B(p, δ/2). Put xlτ+1 =
f−(l+r−1)τ−1(x) ∈ B(p, δ/2), and xlτ+1+j = f j(xlτ+1), for every j = 1, ..., lτ .

• The procedure continues inductively: Notice again that f(x2lτ+1) = f−(r−1)τ (x)
∈ B(p, δ/2), and put x2lτ+2 = f−(l+r−2)τ−1(x). We proceed with the con-
struction in an analogous way, defining xjlτ+j := f−(l+r−j)τ−1(x) and the
next lτ terms of the sequence as simply the iterates of this point, for every
j < r. In this manner we construct a sequence with rlτ + r − 1 terms.

• The last string: Observe that f(xrlτ+r−1) = f−τ (x) ∈ B(p, δ/2). Hence, we
can choose xrlτ+r = x and the next (a+L−kr)τ −1 terms of the sequence
as simply the iterates of this point, all of which belongs to B(p, δ/2).

• The last jump: Finally, we close the pseudo orbit by putting x(a+L−kr)τ+krτ+r =
x0.

This gives a periodic δ-pseudo orbit with period n, as required. �

As an application, from Lemmas 4.2 and 4.6 we obtain the following result.

4.7. Proposition. Let f be a diffeomorphisms with a hyperbolic periodic point p
having a non empty transversal intersection between its stable manifold and the
unstable manifold of f(p), i.e. there exists q ∈ W s(p, f) ⋔ W u(f(p), f). Then, for
any small enough neighborhood U of O(p) ∪ O(q), the maximal invariant set ΛU

in U is topologically mixing hyperbolic set.

As a by product of these arguments, we prove that if a homoclinic class have
the homoclinic large periods property then this holds robustly.

4.8. Proposition. Let f be a diffeomorphisms with a hyperbolic periodic point p
such that the homoclinic class of p, H(p), has the homoclinic large periods property.
Then, H(p(g)) has the homoclinic large periods property for any diffeomorphism g
close enough to f .

Proof of Proposition 4.8. Since H(p) has the homoclinic large periods property
the period of this homoclinic class has to be one, l(O(p)) = 1. Indeed, unless the
class reduce itself to a fixed point, there will be two periodic points homoclinically
related to p such that their periods are two distinct prime numbers. Hence, by
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Proposition 3.5 we have that W s(p) ⋔ W u(f(p)) 6= ∅. Therefore, since this inter-
section is robust, we can conclude also by Proposition 3.5 and Remark 3.6 that
W s(p̃) ⋔ W u(g(p̃)) 6= ∅ for every hyperbolic period point p̃ homoclinically related
to p(g), for every diffeomorphism g close enough to f .

So, take an arbitrary ε > 0. There exists a periodic point p̃ ∈ H(p(g)), homo-
clinically related with p(g) and whose orbit is ε/2 dense in H(p(g)). Now, Lemma
4.6 implies that there exists N0 such that for every n ≥ N0 we can find a periodic
orbit γ = O(b) homoclinically related to p̃, b ∈ Fix(gn), which contains a subset
ε/2 close to O(p̃) in the Hausdorff distance. In particular, γ is an ε dense orbit
inside H(p(g)). This establishes that H(p(g)) has the homoclinic large periods
property, and completes the proof. �

Observe that the above proof establishes indeed that if a homoclinic class H(p)
of a diffemorphism f is such that W s(p) ⋔ W u(f(p)) 6= ∅ then H(p) has the
homoclinic large periods property. Thus, combining these facts and Theorem 3.4
we have the following corollary.

4.9. Corollary. Let f be a generic diffeomorphism. An isolated homoclinic class
of f is topologically mixing if, and only if, it has homoclinic large periods property
robustly.

5. Topologically mixing homoclinic classes

5.1. Denseness of Bernoulli measures: Proof of Theorem A. We recall the
following result of Bowen.

5.1. Theorem ([Bow2], Theorem 34). Let Λ be a topologically mixing isolated
hyperbolic set. Then, there exists a Bernoulli measure supported in Λ.

5.2. Remark. Actually Bowen constructs a measure such that (f |Λ, µB) is a K-
automorphism. But, in this case, (fΛ, µB) is measure theoretically isomorphic to
a mixing Markov chain and by [FO] it is isomorphic to a Bernoulli shift.

Now, we give the proof of Theorem A.

Proof of Theorem A. LetH(p) be an isolated topologically mixing homoclinic class
of a C1 generic diffeomorphism f . Let µ be an invariant measure supported in
H(p) and let ε > 0 be arbitrarily chosen. By Theorem 3.11 there exists a measure
µp̃, supported on a hyperbolic periodic orbit O(p̃), with p̃ ∈ H(p), which is ε/2
close to µ.

Since f is C1 generic, Theorem 3.9 implies that H(p̃) = H(p). In particular, we
have that H(p̃) is topologically mixing.

From Remark 3.7 we know that there exists a point q ∈ W s(p̃) ⋔ W u(f(p̃)).
For every small neighborhood U of O(p̃) ∪ O(q), Proposition 4.7 tells us that the
maximal invariant set ΛU = ∩n∈Zf

n(U) is a topologically mixing hyperbolic set.
Moreover, since q is a homoclinic point of p̃, by choosing U sufficiently small we
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have that the points in ΛU spent portions of their orbit as large as we please
shadowing the orbit of p̃.

Now, take ν the Bernoulli measure supported in ΛU which is given by Theorem
5.1. Since a typical point in the support of ν spent large portions of its orbit
shadowing the orbit of p̃, we can choose U such that ν is ε/2 close to µp̃.

Thus, ν is ε close to µ and we are done. �

5.3. Remark. The techniques employed above can be used to give a new proof of
Sigmund’s result on the denseness of Bernoulli measures for hyperbolic topologi-
cally mixing basic sets [S1]. Indeed, our use of the large periods property gives a
geometric alternative to the symbolic approach of Sigmund and a proof of his result
using our techniques would proceed by the same argument as above, in the proof of
Theorem A, after we modified the following key results: first, Sigmund’s result on
denseness of periodic measures in a hyperbolic basic set, [S2], can be used instead of
Theorem 3.11, and second Bowen’s proof of Smale’s Spectral Decomposition Theo-
rem (see pag. 47 of [Bow1]) can be used instead of Theorem 3.4 and Remark 3.7 to
show the existence of nice intersections between the stable and unstable manifolds
of hyperbolic periodic points. Therefore, with these modifications, the same proof
as above can be applied.

6. Robustly large Homoclinic class

In this section we shall prove Theorem B as a consequence of the following result:

6.1.Theorem. Let f ∈ Diff1(M) be a robustly transitive strong partially hyperbolic
diffeomorphism, with TM = Es ⊕ Ec

1 ⊕ . . . Ec
k ⊕ Eu, having hyperbolic periodic

points ps and pu with index s and d − u, respectively, where s = dim Es and
u = dim Eu. Then, there exists an open subset Vf whose closure contains f , such
that M = H(ps(g)) = H(pu(g)) for every g ∈ Vf .

Before we prove Theorem 6.1, let us see how it implies Theorem B.

Proof of Theorem B. First we observe that it suffices to deal with the interior
of non-hyperbolic robustly transitive diffeomorphisms, since in the Anosov case
the whole manifold is robustly a homoclinic class, which is a consequence of the
shadowing lemma.

Recall that TNH(M) ⊂ T (M) denotes the interior of non-hyperbolic robustly
transitive diffeomorphisms far from homoclinic tangencies. Hence, by Theorem 3.8
and Theorem 3.12 there exists a residual subset R in TNH(M) such that if f ∈ R
then:

a) M coincides with a homoclinic class;
b) f is partially hyperbolic, with the central bundle admitting a splitting in

one dimension sub bundles. I.e., TM = Es ⊕ Ec
1 ⊕ . . .⊕ Ec

k ⊕Eu;
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c) either there exist a hyperbolic periodic point with index s, or there exists
hyperbolic periodic points with index s + 1 whose the (s + 1)−Lyapunov
exponent is arbitrarilly close to zero. Where s = dim Es.

d) either there exist a hyperbolic periodic point with index d − u, or there
exists hyperbolic periodic points with index d − u− 1 whose the (d− u−
1)−Lyapunov exponent is arbitrary close to zero. Where u = dim Eu.

According to Theorem 3.12, Es and/or Eu could be trivial. However, this cannot
happen in our situation. Indeed, we claim that both Es and Eu are non-trivial. In
particular, f is strongly partially hyperbolic. To see this, suppose by contradiction
the existence of f ∈ R with Es trivial. Hence, by item c) above, f should have
either a source or hyperbolic periodic points with index one, with the only one
Lyapunov negative exponent being arbitrary close to zero. In the last case, we
can use Lemma 3.2 to perturb f in order to find also a source. Therefore, if Es

is trivial, then we can find a diffeomorphism g close to f , having a source, which
is a contradiction with the transitivity of g. Similarly we conclude that Eu is also
non-trivial. Henceforth, item b) above can be replaced by:

b’) every f ∈ R is strongly partially hyperbolic.

Moreover, by the same argument above using Lemma 3.2, after a perturbation
we can assume that f has hyperbolic periodic points of indices s and d−u. Thus,
we can find a dense subset R1 inside TNH(M) formed by robustly transitive strong
partially hyperbolic diffeomorphisms f satisfying the hypothesis of Theorem 6.1.
Then, considering Vf given by Theorem 6.1 for every f ∈ R1 we have that

A =
⋃

f∈R1

Vf ,

is an open and dense subset of TNH(M) ⊂ T (M). By Theorem 6.1, for every
diffeomorphism in A the whole manifold M coincides with a homoclinic class.
This ends the proof �

In the sequence we prove some technical results which are key steps in the proof
of Theorem 6.1.

The following result allows to find open sets of diffeomorphisms for which the
topological dimension of stable (and unstable manifold) of hyperbolic periodic
points is larger than the differentiable dimension.

6.2. Lemma. Let f ∈ Diff1(M) be a robustly transitive strong partially hyperbolic
diffeomorphism. Suppose there are hyperbolic periodic points pj, j = i, i+1, . . . , k,
with indices I(pj) = j for f . Hence, given any small enough neighborhood U of f ,
where is defined the continuation of the hyperbolic periodic points pj, there exists
an open set V ⊂ U such that for every g ∈ V:

W s(pk(g)) ⊂ cl(W s(pk−1(g))) ⊂ . . . ⊂ cl(W s(pi+1(g))) ⊂ cl(W s(pi(g))), and

W u(pi(g)) ⊂ cl(W u(pi+1(g))) ⊂ . . . ⊂ cl(W u(pk−1(g))) ⊂ cl(W u(pk(g))).
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To prove the above lemma we will use the following result which is a consequence
of Proposition 6.14 and Lemma 6.12 in [BDV], which are results of Diaz and Rocha
[DR]. It is worth to point out that this result is a consequence of the well known
blender technique, which appears by means of unfolding a heterodimensional co-
dimensional one cycle far from homoclinic tangencies.

6.3. Proposition. Let f be a C1 diffeomorphism with a heterodimensional cycle
associated to saddles p and p̃ with indices i and i + 1, respectively. Suppose that
the cycle is C1−far from homoclinic tangencies. Then there exists an open set
V ⊂ Diff1(M) whose closure contains f such that for every g ∈ V

W s(p̃(g)) ⊂ cl(W s(p(g))) and W u(p(g)) ⊂ cl(W u(p̃(g))).

Proof of Lemma 6.2. Since f is a robustly transitive strong partially hyperbolic
diffeomorphism, we can assume that every diffeomorphism g ∈ U is transitive
and is strong partially hyperbolic, reducing U if necessary. In particular, U is far
from homoclinic tangencies, U ⊂ (cl(HT (M)))c. Now, using the transitivity of
f , there are points xn converging to the stable manifold of pi+1 whose a sequence
of iterates fmn(xn) is converging to the unstable manifold of pi. Hence, we can

use Hayashi’s connecting lemma, to perturb the diffeomorphism f to f̃ such that
W u(pi(f̃)) intersects W

s(pi+1(f̃)), which one we could assume be transversal after

a perturbation, if necessary, since dim W u(pi(f̃)) + dim W s(pi+1(f̃)) > d. Hence,

we can use once more the connecting lemma to find f1 ∈ U close to f̃ exhibiting
a heterodimensional cycle between pi(f1) and pi+1(f1), since f̃ is also transitive.
Moreover, and in fact this is needed to apply Proposition 6.3, the intersection
between W s(pi(f1)) and W u(pi+1(f1)) could be assumed quasi-transversal in the
sense that TqW

s(pi(f1)) ∩ TqW
u(pi+1(f1)) = {0}. If this is not true, we can do a

perturbation of the diffeomorphism using Franks lemma, to get such property.
Thus, since f1 is far from homoclinic tangencies, we can use Proposition 6.3 to

find an open set V1 ⊂ U such that

W s(pi+1(g)) ⊂ cl(W s(pi(g))) and W u(pi(g)) ⊂ cl(W u(pi+1(g))),

for every g ∈ V1.
Now, since f1 is also robustly transitive we can repeat the above argument to

find f2 ∈ V1 exhibiting a heterodimensional cycle between pi+1 and pi+2. Thus, by
Proposition 6.3 there exists an open set V2 ⊂ V1, such that

W s(pi+2(g)) ⊂ cl(W s(pi+1(g))) and W u(pi+1(g)) ⊂ cl(W u(pi+2(g))),

for every g ∈ V2.
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Repeating this argument finitely many times we will find open sets Vk−i ⊂
Vk−i−1 ⊂ . . . ⊂ V1 such that

W s(pi+j(g)) ⊂ cl(W s(pi+j−1(g))) and W u(pi+j−1(g)) ⊂ cl(W u(pi+j(g))),

for every g ∈ Vj, and j = 1, . . . k − i.
Taking V = Vk−i the result follows. �

The next result use properties of a partially hyperbolic splitting to guarantee
that some special kind of dense sub-manifolds in M should intersect each other
transversally and densely in the whole manifold.

6.4. Lemma. Let f be a partially hyperbolic diffeomorphism on M with non trivial
stable bundle Es, and having a hyperbolic periodic point p with index s = dim Es.
If W s(O(p)) and W u(O(p)) are dense in M , then M = H(p).

Proof. Let Es ⊕ Ec ⊕ Eu be the partially hyperbolic splitting. Using Remark 2.1
we know that the local strong stable manifolds have uniform size.

For any x ∈ M , since W u(O(p)) is dense, there exists q ∈ W u(O(p)) arbitrarily
close to x. Also, by hypothesis of the index of p, and the partially hyperbolic
structure, it should be true that TqW

u(O(p)) = Ec⊕Eu. Hence, by the continuity
of the local strong stable manifold, W ss

loc(y) should intersect transversallyW u(O(p))
in a point close to q, for any point y close enough to q. In particular, sinceW s(O(p))
is also dense, there exists q̃ ∈ W s(O(p)) such that W ss

loc(q̃) intersects transversally
W u(O(p)). However, W ss

loc(q̃) is contained in W s(O(p)), which implies there is a
transversal intersection between W s(O(p)) and W u(O(p)) close to q, in particular,
close to x. �

Finally, using the above lemmas we give a proof of Theorem 6.1.

Proof Theorem 6.1. Since ps and pu are hyperbolic periodic points, we take U small
enough such that every diffeomorphism g ∈ U has defined the continuations ps(g)
and pu(g). Reducing U if necessary, we could also assume that every g ∈ U is a
strong partially hyperbolic diffeomorphism with same extremal bundles dimension
as in the partially hyperbolic decomposition of TM as f , which follows by the
continuity of the partially hyperbolicity and the existence of ps and pu robustly.

Now, using Theorem 3.8 together with Theorem 3.10 we can find a residual
subset R in U such that M coincides with a homoclinic class for every g ∈ R, and
moreover g has hyperbolic periodic points of any index in [s, d− u] ∩ N.

We fix g ∈ R, and let ps = ps(g), ps+1, . . ., pd−u = pu(g) be hyperbolic periodic
points of g with indices s, s + 1, . . ., d − u, respectively. Also, for all n ∈ N, let
Vn ⊂ U small neighborhoods of g, such that if gn ∈ Vn, then gn converges to g in
the C1−topology, when n goes to infinity.

Now, since g is still a robustly transitive strong partially hyperbolic diffeo-
morphism having hyperbolic periodic points of all possible indices, we denote by
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Ṽn ⊂ Vn the open sets given for g and Vn by Lemma 6.2. Hence, using the invari-
ance of the stable manifold of hyperbolic periodic points, by Lemma 6.2 we have
the following:

(1) cl(W s(O(pd−u(r)))) ⊂ cl(W s(O(pd−u−1(r)))) ⊂ . . . ⊂ cl(W s(O(ps(r)))),

for every r ∈ Ṽn.

Claim: W u(O(ps(r))) and W s(O(pd−u(r))) are dense in M , for every r ∈ Ṽn.

Since r is transitive, there exist x ∈ M such that the forward orbit of x is dense
in M . Now, since r is partially hyperbolic, for Remark 2.1 there exists the strong
stable foliation that integrates the direction Es. Moreover, these leafs have local
uniform length. Hence, as done in the proof of Lemma 6.4, we can take rj(x) close
enough to ps(r) such that W ss(x), the strong stable leaf containing x, intersects
the local unstable manifold of ps(r), W

u
loc(ps(r)). Therefore, since points in the

same strong stable leaf have the same omega limit set, we have that W u(O(ps(r)))
is dense in the whole manifold M . We can repeat this argument using also the
existence of a point y having a dense backward orbit, and the existence of the
strong unstable foliation to conclude that W s(O(pd−u(r))) is also dense in M .

Thus, by equation (1) and the Claim, we have that W s(O(ps(r)))) is dense in
M . Similarly, we can show that W u(O(pd−u(r)))) is also dense in M .

Provided that r is strong partially hyperbolic, and that W s(O(pi(r)))) and
W u(O(pi(r)))) are dense in M , for i = s and d − u, we can apply Lemma 6.4 for
f and f−1 to conclude that

M = H(ps(r)) = H(pd−u(r)),

for every r ∈ Ṽn.
Hence, the proof is finished defining Ṽg = ∪Ṽn, and

Vf =
⋃

g∈R

Ṽg,

which is an open and dense subset of U , and hence contains f in its closure. �
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