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necessários à obtenção do t́ıtulo de Doutor

em Matemática.

Orientador: Alexander Eduardo Arbieto Mendoza

Co-orientador: Christian Bonatti

Rio de Janeiro

Agosto de 2015



Commuting vector fields and generic
dynamics

Bruno Rodrigues Santiago

Orientador: Alexander Eduardo Arbieto Mendoza

Co-orientador: Christian Bonatti

Tese de Doutorado submetida ao Programa de Pós-graduação do Instituto de Matemática,
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Profa. Katrin Gelfert - IM/UFRJ

Prof. Lorenzo Diaz - PUC

Prof. Alejandro Kocsard - IME/UFF

Rio de Janeiro

Agosto de 2015



Acknowledgments

This work is a step in a journey which started long ago, when I was a teenager and

decided to take an undergraduate course in mathematics. As in any human endeavour, I’ve

never been alone and nothing would happen if I was. In fact, I’ve been extremely blessed by

meeting an incredible number of amazing people. I owe many thanks to them, and I hope

this space can fit at least a part of what I owe to them.
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1. Ações de gupos. 2. Pontos Fixos

3. Mistura topológica 4. Estabilidade de Lyapunov

5. Existência de atratores.

I.Mendoza, Alexander Eduardo Arbieto, orient.

II. Bonatti, Christian, coorient.

III. T́ıtulo.

vii
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Bruno Rodrigues Santiago

Advisor: Alexander Eduardo Arbieto Mendoza

Co-advisor: Christian Bonatti

This thesis deals with dynamical properties of vector fields and diffeomorphisms, in

two different poins of view. The first is the point of view of group actions. We study actions

of R2 on 3-manifolds, given by a pair of commuting vector fields. We are interested in

the singularities of the foliation by orbits. We prove an existence result for 0-dimensional

singularities (which correspond to a common zero for the pair of vector fields), under two

assumptions: (1) there exists a compact region U such that X does not vanishes at the

boundary of U and has a non zero Poincaré-Hopf index Ind(X,U); (2) all the singularities

of the foliation (the 1-dimensional and 0-dimensional orbits) in U are contained in some

embeded closed suface. This is a strong indication that the results in [Bo1] should hold for

C1 vector fields.

The second point of view is that of Baire genecity in the C1 topology, for closed manifolds.

For vector fields, we establish two generic results. We prove that every C1 generic, non-

singular, three dimensional vector field either has infinitely many periodic attractors or is

essentialy hyperbolic i. e. has a finite number of hyperbolic attractors, whose basins cover

a full Lebesgue measure subset of the ambient manifold. We also derive similar conclusions

for a special class of star vector fields. Indeed, we prove that every C1 generic vector field
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X on a d-dimensional closed manifold M without points accumulated by periodic orbits of

different indices has a finite number of transitive sectional-hyperbolic Lyapunov stable sets,

whose basins form a residual subset of M .

Finally, we study mixing properties of C1 generic diffeomorphisms on closed manifolds,

giving necessary and suficient conditions in some cases. We first study ergodic implications

of topological mixing for isolated homoclinic classes. We establish that for any generic

diffeomorphism f , if the dynamics restricted to an isolated homoclinic class is topologically

mixing then the Bernoulli measures are dense in space of invariant measures supported on

the class. In particular, the set of weakly mixing measures contain a residual subset. Then,

we turn to the problem of deciding whether a robustly transitive diffeomorphism must be

topologically mixing. In this direction, we first prove that here exists an open and dense

subset among robustly transitive diffeomorphisms far from homoclinic tangencies formed

by diffeomorphisms such that the whole manifold is a homoclinic class. Then, we show

that there is an open and dense subset among robustly transitive diffeomorphisms far from

homoclinic tangencies formed by robustly topologically mixing diffeomorphisms.

ix



Campos de vetores que comutam e dinâmica genérica

Bruno Rodrigues Santiago

Orientador: Alexander Eduardo Arbieto Mendoza

Co-orientador: Christian Bonatti

Esta tese lida com propriedades dinâmicas de campos de vetores e difeomorfismos,

sob dois pontos de vista diferentes. O primeiro é o ponto de vista das ações de gupos.

Estudamos ações de R2 em 3-variedades, dadas por um par de campos de vetores X e Y

que comutam. Estamos interessados nas singularidades da folheação por órbitas. Provamos

um resutado de existência para singularidades de dimensão 0 (as quais correspondem a zeros

comuns dos campos X e Y ), sob duas hipóteses: (1) existe uma região compacta U , sobre o

bordo da qual X não se anula, e tal que o ı́ndice de Poincaé-Hopf Ind(X,U) de X em U é não

nulo; (2) todas as singularidades da folheação (aquelas de dimensão 1 e aquelas de dimensão

0) estão contidas numa superf́ıcie fechada mergulhada na variedade. Este resultado é uma

indicação forte de que os teoremas em [Bo1] para campos anaĺıticos na verdade devem valer

para campos C1.

O segundo ponto de vista é o dos conjuntos genéricos (segunda categoria) de Baire na

topologia C1. Para campos de vetores, nós estabelecemos dois resultados dentro dessa linha.

Provamos que todo campo de vetores C1 genérico, sem singularidades, em dimensão três, ou

possui initos poços (atratores periódicos) ou é essencialmente hiperbólico, isto é, possui um

número finito de atratores hiperbólicos cuja união das bacias cobre um conjunto com medida
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Lebesgue total da variedade ambiente. Também derivamos conclusões similares para uma

classe especial de campos estrela. De fato, nosso resultado é que todo campo de vetores C1

genérico X numa variedade d-dimensional fechada M que não possui pontos acumulados por

órbitas periódicas com ı́ndices diferentes possui um número finito de conjuntos Lyapunov

estáveis transitivos seccionalmente hiperbólicos, cuja união das bacias forma um conjunto

residual de M .

Finalmente, estudamos propriedade misturadoras de difeomorfismos C1 genéricos em

variedades fechadas, fornecendo condições necessárias e suficientes em alguns casos. Nosso

primeiro objetivo é estudar implicações ergódicas da mistura topológica em classes ho-

mocĺınicas isoladas. Estabelecemos que para todo difeomorfismo C1 genérico f se a dinânica

restrita a uma classe homocĺınica isolada é topologicamente misturadora então as medidas

de Bernoulli formam um subconjunto denso do espaç das medidas invariantes suportadas na

classe. Em particular, as medidas fracamente misturadoras formam um residual do mesmo

espaço. Depois disso, nos voltamos para o problema de decidir se um difeomorfismo robusta-

mente transitivo deve ser topologicamente misturador. Nesta direção provamos que dentro

dos difeomorfismos robustamente transitivos longe de tangências existe um conjunto aberto e

denso formado por difeomorfismos para os quais a variedade toda é uma classe homocĺınica.

Então, mostramos que aberta e densamente difeomorfismos robustamente transitivos longe

de tangências são topologicamente misturadores.
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Chapter 1

Introduction

This thesis deals with dynamical properties of vector fields and diffeomorphisms, in two

different points of view. The first is the point of view of group actions. The second is the

point of view of Baire genericity in the C1 topology.

In the first part we consider two commuting vector fields X and Y on a 3-manifold. This

means that X is invariant under the flow of Y , and vice-versa. We explore the dynamical

consequences of this simmetry and use them to derive conclusions about the topological

behaviour of the vector fields.

In the second part we use perturbation tools, for C1 vector fields and diffeomorphisms,

and the wide variety of its consequences to study ergodic (Bernoulli measures, weakly mixing

measures) and assymptotical topological properties (attractors, Lyapunov stability, robust

transitivity, topological mixing).

Even though the problems atacked in these two parts are quite different in its goals, there

is a common flavour in the approachs since the objects under consideration are the same.

Nevertheless, for the sake of clarity, we shall introduce each part separately.
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1.1 Commuting vector fields

Suppose we are given an action of Rn on a compact manifold M . This is equivalent to

give n pairwise commuting vector fields X1, ..., Xn. An interesting problem is to determine

topological conditions on the manifold M which may ensure the existence of orbits with low

dimensions.

For instance, in the case of actions of R, this dates back to the classical Poincaré-Hopf

theory which ensures existence of zeros for vector fields on closed manifolds with non zero

Euler characteristic. There exists also a parallel theory of Lefschets index for Z actions.

The work of E. Lima, in the sixties [Li2],[Li1], solves the case of actions of Rn on closed

surfaces, with non zero Euler characteristic, proving the existence of common zeros for the

vector fields generating the action. Since then, much work has been done on the existence

of fixed points for (even more general) actions on surfaces.

In the late eighties, [Bo2] proved that commuting diffeomorphisms of the sphere S2 which

are C1-close to the identity have a common fixed point. Later [Bo3] extended this result

to any surface with non-zero Euler characteristic (see other generalizations in [DFF][Fi]).

Then, Handel [Ha] provided a topological invariant in Z/2Z for a pair of commuting diffeo-

morphisms of the sphere S2 whose vanishing guarantees a common fixed point. This was

further generalized by Franks, Handel and Parwani [FHP] for any number of commuting

diffeomorphisms on the sphere (see [Hi] and [FHP2] for generalizations on other surfaces).

For actions of continuous groups, we mention the work of Plante [Pl], who showed that

if G is a connected finite-dimensional nilpotent Lie group and M is a compact surface with

non-vanishing Euler characteristic, then every continuous action of G into M has a fixed

point. It is worth to mention that the result do not hold for solvable groups, in general.

Examples were constructed by Lima [Li2], Plante [Pl] and Hirsch and Weinstein [HW] even

gave analytic actions of solvable groups without fixed points.

An amusing fact, which is worth mention, is that two commuting continuous interval

maps may fail to have a common fixed point: an example is constructed in [Boy] of two

continuous commuting, non-injective, maps of the interval which do not have a common

2



fixed point.1

For actions on higher dimensional manifolds, much less is known about the existence of

orbits of low dimensions. Molino and Turiel [MT1] proved that if M is a compact, connected

manifold without boundary, of dimension 2d, with Euler characteristic not zero, then any

action of Rn on M has orbits of dimension les or equal than d − 1. This statement gives

Lima’s theorem as a corollary. Later, they extended this by establishing an estimate for the

minimum possible dimension for the orbits of an action of Rn, in terms of the rank and the

dimension of the manifold. Recall that the rank of M is maximal number of commuting

vector fields X1, ..., Xk ∈ X1(M) such that X1(x), ..., Xk(x) are linearly independent at any

point x ∈M . The result of [MT2] is that for a closed d-dimensional manifold M , with rank

k, given a C∞ action Φ : Rn×M →M , the minimum possible dimension of its orbits is less

than (d+ k)/2, with equality only if M = Td.

Concerning the existence of zero dimensional orbits for actions of Rn on manifolds of

dimensions greater than two, the scenario is completely open. There are some special cases

where one can prove existence of common zeros, as in the case of a pair of commuting vector

fields X and Y , where Y is the suspension of a diffeomorphism of a closed surface (see

Chapter 6 and Theorem 6.4.1 for details). Another (too) simple configuration would be the

case where X and Y are everywhere collinear. This case has been treated in Lemme 1.c.1

of [Bo1] and the same proof holds at least in the Cd setting where d is the dimension of the

ambient manifold. The only known general results comes from the work of Bonatti [Bo1].

Before stating the main result of [Bo1], we briefly recall the notion of the Poincaré-Hopf

index Ind(X,U) of a vector field X on a compact region U whose boundary ∂U is disjoint

from the set Zero(X). If U is a small compact neighborhood of an isolated zero p of the

vector field X, then Ind(X,U) is just the classical Poincaré-Hopf index Ind(X, p) of X at p.

For a general compact region U with ∂U ∩ Zero(X) = ∅, one considers a small perturbation

Y of X with only finitely many isolated zeros in U . Then, we define the index Ind(X,U)

as the sum of the Poincaré-Hopf indices Ind(Y, p), p ∈ Zero(Y ) ∩ U . We refer the reader

to Chapter 2 for details (in particular for the fact that Ind(X,U) does not depend on the

1Even though every pair of commuting diffeomorphisms of the interval must have a common fixed point,

as it is easy to see.
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perturbation Y of X).

The result of [Bo1] on 3-manifolds can be restated as follows:

Theorem. Let M be a real analytic manifold of dimension d ≤ 4. Let X and Y be two

analytic commuting vector fields over M . Let U be a compact subset of M such that Zero(X)∩

∂U = ∅. If Ind(X,U) 6= 0 then Zero(X) ∩ Zero(Y ) ∩ U 6= ∅

As a corollary of this result, one obtains the following2

Corollary. Let M be a real analytic closed 4-manifold, with non vanishing Euler character-

istic. Then, any analytic action of R2 over M has a fixed point.

The result of Bonatti when M has dimension 2 is true in much more generality. For

instance we shall see a proof of it when the vector fields are just C1 (see Chapter 6 and

Corollary 6.3.2). This motivates the following.

Conjecture. Let X and Y be two C1 commuting vector fields on a 3-manifold M . Let U

be a compact subset of M such that Zero(X) ∩ ∂U = ∅. If Ind(X,U) 6= 0 then Zero(X) ∩

Zero(Y ) ∩ U 6= ∅

This conjecture was stated as a problem in [Bo1].

In our paper [BS] jointly with Christian Bonatti, we tackled, in the C1-setting, what was

the main difficulty to solve this conjecture in the analytic case in [Bo1]. We explain now

what was this difficulty in [Bo1]. A crucial role is played by the collinearity locus : set of

points of M in which X and Y are collinear:

Col(X, Y ) := {p ∈M ; dim (〈X(p), Y (p)〉) ≤ 1}.

Let us denote, for simplicity, Col(X, Y, U) = Col(X, Y ) ∩ U . In [Bo1] the assumption

that the commuting vector fields are analytic is used to say that Col(X, Y, U) is either equals

to U or is an analytic set of dimension 2. The case where Col(X, Y, U) = U admits a direct

proof. In the other case, a simple argument allows to assume that Col(X, Y, U) is a surface.

2We shall see a proof of this implication in Chapter 6.
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The main difficulty in [Bo1] consists in proving that, if Col(X, Y, U) is a smooth surface and

X and Y are analytic, then Zero(X) ∩ Zero(Y ) ∩ U 6= ∅, provided that the index of X does

not vanish on U .

Our result is the following

Theorem (Bonatti,S.). Let M be a 3-manifold and X and Y be two C1 commuting vector

fields over M . Let U be a compact subset of M such that Zero(Y )∩U = Zero(X)∩ ∂U = ∅.

Assume that the collinearity locus Col(X, Y, U) is contained in a C1-surface which is a closed

submanifold of M . If Ind(X,U) 6= 0 then Zero(X) ∩ Zero(Y ) ∩ U 6= ∅.

The hypothesis “ Col(X, Y, U) is contained in a C1-surface” consists in considering the

simplest geometric configuration of Col(X, Y, U) for which the conjecture is not trivial: if

(X, Y, U) satisfies all the hypothesis of the conjecture, but not its conclusion then Col(X, Y )

cannot be “smaller” than a surface. More precisely, if Ind(X,U) 6= 0, the sets Zero(X −

tY ) for small t are not empty compact subsets of Col(X, Y, U), invariant by the flow of

Y and therefore consist in orbits of Y . If X and Y are assumed without common zeros,

every set Zero(X − tY ) consists on regular orbits of Y , thus is a 1-dimensional lamination.

Furthermore, these laminations are pairwise disjoint and vary semi-continously with t.

Let us say a few words about our proof. It is a proof by contradiction, so we begin with

a vector field X which has non zero Poincaré-Hopf index Ind(X,U), in some compact region

U , and commutes with a vector field Y , which has no zeros in U . The intuitive idea which

guides the argument is that, at one hand, the vector field X needs to turn in all directions in

a non-trivial way in order to have a non-zero index. On the other hand, X commutes with

Y and therefore is invariant under the tangent flow of a non-zero vector field. We shall use

this invariance of X under the flow of Y , together with the knowledge that X turns in all

directions to achieve a contradiction.

Indeed, the main novelty of our work [BS] is the use of a normal component of X in

the direction of Y and its relation with the first return time function and the holonomies

of Y (see Lemma 6.1.11). We show that the Poincaré-Hopf index of X is determined by

the rotation of the normal component. A non trivial rotation of the normal component

implies that either the first return time is constant when restricted to the colinearity locus
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or that the Poincaré map of Y is close to the identity. In the former case one easily reachs

a contradiction with the assumption that Ind(X,U) 6= 0. In the latter case we analyse the

dynamics of the first return map and conclude that the normal component cannot rotate,

reaching a contradiction once more.

We believe that our approach will be useful to prove the conjecture, at least for C2 vector

fields. This is being carried out in a ongoing project with Christian Bonatti and Sébastien

Alvarez.

Finally, let us put a general comment on this line of research. The accumulation of

results proving the existence of common fixed points for commuting dynamical systems seems

to indicate the possibility of a general phenomenon. However, our approach in Poincaré-

Bendixson spirit has a difficulty which increases drastically with the ambient dimension. We

hope that this results will motivate other attempts to study this phenomenon.

1.2 Generic dynamics

In the second part of the thesis we turn to properties of the spaces X1(M) of C1 vector fields

and Diff1(M) of C1 diffeomorphisms of some closed manifold M , which holds in some Baire

generic set i.e. a countable intersection of dense open sets.

This study dates back to the work of Pugh [Pu1], where he used the C1-closing lemma

[Pu2] to show that for a Baire generic subset of Diff1(M) every non-wandering point is

accumulated by periodic orbits. Since Hayashi’s monumental improvement of the closing

lemma, the C1-connecting lemma [H1], much work has been done and a panorama of the

space of Diff1(M) is emerging. A program of conjectures by Palis [Pa], latter extended

by Bonatti [Bo4], tries to unify these results by dividing Diff1(M) into open regions, whose

union is dense, and such that the dynamics inside each region may (hopefully) be understood.

Moreover, the advent of the connecting lemma made possible to settle many problems which

were untouchable before.

The general goal in these problems is to describe the assimptotical behaviour of a generic

f ∈ Diff1(M), in the topological sense (structure of the non-wandering set, existence of
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attractors etc) and in the ergodic sense (existence of physical measures, structure of the

space of invariant measures etc). We worked on some problems inserted within this general

goal in our papers [AMS1],[AMS2] and [ACS]. Let us describe them and state our results

below.

Existence of attractors

An attractor for a vector field or a diffeomorphism is an invariant set Λ which admits a

neighborhood, called its basin of attraction, such that for any point in this neighborhood

the ω-limit is contained in Λ. In particular, attractors carry the knowledge of the future

dynamics of open sets and for this reason they are important objects in dynamics. Thus,

a natural question is whether they are frequent or not among dynamical systems. It was

conjectured by Thom that a generic f ∈ Diff1(M) possess an attractor (see Problem 26 in

[PaPu]).

The first progress on this conjecture of Thom was made by Araújo [A] in the late eighties.

He proved that a C1 generic surface diffeomorphism f , either has an infinity number of sinks

(attractors which are periodic orbits of f) or is essentially hyperbolic: has a finite number

of hyperbolic attractors whose basin of attraction cover a full Lebesgue measure subset of

the surface. Thus, apart from the wild case of f having infinitely many sinks, the future of

almost every point of the ambient surface is well understood.

This remarkable result was inspired by a previuous one, due to Mañé [Ma2]. He proved

that a C1 generic f ∈ Diff1(M) either has an infinity number of sinks or sources, or it is

hyperbolic: it satisfies Axiom A and the no cycles condition. Mañé’s proof is based on the fact

that if a C1 generic f ∈ Diff1(M) has finitely many sinks and sources then it satisfies the star

property: every sufficiently small perturbation has only hyperbolic periodic orbits. Then,

combining a very technical linear algebraic study, which showed that the periodic orbits of a

star diffeomorphism have the domination property and uniform rates on the stable/unstable

eigenspaces, together with his powerful ergodic closing lemma, Mañé concludes that every

star diffeomorphism on surfaces is Axiom A with no cycles.
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The proof of Araújo has two main ideas. First, the techniques employed by Mañé can

be adapted to study the dissipative periodic orbits. If f is far from sinks then f looks like

a star diffeomorphism close to the disspative periodic orbits. Indeed, any perturbation of f

along a dissipative periodic orbit which creates another dissipative periodic orbit for some

g close to f cannot create sinks nor sources. In this way Araújo adpted the arguments of

Mañé to conclude domination and uniform rates over the dissipative periodic orbits.

However this was not enough to conclude hyperbolicity of the attractors. He had to

develop a new result, which was the second main idea in his thesis. In this result, Araújo tries

to obtain hyperbolicity directly from domination, for C2 diffeomorphisms using distortion

techniques.

This second part of Araújo’s proof was pushed much further ten years later by Pujals and

Sambarino (see Theorem B in [PS]). In fact, Pujals and Sambarino remark in their paper that

there was a gap in Araújo’s proof, which they managed to fix. Many years later, using Pujals

and Sambarino’s work, Potrie [Po1] in his PhD thesis presented a proof of a slightly weaker

version of Araújo’s result (with the full Lebesgue measure condition replaced by open and

denseness) using new material from C1 generic dynamics. In my master dissertation [San] I

presented the original proof of Araújo, correcting the aforementioned gap with Theorem B

of [PS].

Since surface diffeomorphisms have much similarity with flows of 3-dimensional vector

fields, the works of Mañé and Araújo brought the natural question of the validity of analogous

statements for vector fields on three manifolds, in particular if Thom’s conjecture also holds

within this context. However, the geometric Lorenz attractor [GuW] furnishes an example

where the natural extensions of both results (Mañé’s and Araújo’s) fails at the same time:

it is a system robustly non hyperbolic, and robustly with no sinks nor sources. Despite the

similarities, the key point, which makes everything fail, is that the vector field has a zero

accumulated by recurrent orbits. As is always the case when one finds some counter example,

a question arises: is the presence of singularities the sole obstruction?

In 2006, Gan and Wen answered this affirmatively for vector fields with the star prop-

erty. They proved that if X ∈ X1(M) has the star property and Zero(X) = ∅ then X
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stisfies Axiom A and the no cycles condition. Previously, Hayashi [H2] (before having the

connecting lemma) extended to any dimensions Mañé’s work on surfaces proving that every

f ∈ Diff1(M) with the star property is Axiom A with no cycles.

Very recently, Bonatti, Li and Yang [BLY] and Bonatti and Shinohara [BSh] provided

counter examples to Thom’s conjecture in higher dimensions. In [BLY] it is given a local

residual subset of Diff1(M) where every diffeomorphism in it has no attractors. If M has

dimension bigger than four then [BLY] gives no attractor nor repeller, but in dimension

three they only constructed generic diffeomorphisms without attractors but with (infinitely

many) repellers. In [BSh] the authors settled the problem in dimension three 3, by giving

locally residual subsets of Diff1(M) without attractors or repellers. As a corollary of these

works, one obtains that the property of having an attractor is not generic in X1(M), if M

has dimension greater than or equal to 4.

Therefore, it remained open the question if a generic vector field on a three manifold

has an attractor. In [AMS1] we answered affirmatively part of this question and extended

Araújo’s result to non singular vector fields. Our result is the following.

Theorem (Arbieto,Morales,S.). Let M be a 3-manifold. Then, for a generic X ∈ X1(M)

such that Zero(X) = ∅, either X has infinitely many sinks or X has a finite number of

hyperbolic attractors whose basins of attraction cover a full Lebesgue measure subset of M .

This result implies Araújo’s theorem by the the well-known method of suspensions. The

proof we shall give here has some advantages if compared with the aforementioned works

[Po1] (which is based in [Po2]) and [San]. Indeed, [Po2] is based on recent C1 generic

dynamical tools as [MP1] and [BC] (given genericity of diffeomorphisms with residual subsets

of points with quasi-attracting ω-limit set), Pujals and Sambarino’s Theorem B (or its variant

in [AH]) Proposition 1.4 in [C] and the existence of suitable ergodic measures supported on

quasi-attractors (closely related to Lemma 8.1.7). It does not use the C2-connecting lemma

of Mañé [Ma4] but produce a weaker output, namely, open-denseness instead of full Lebesgue

3It is worth to mention, however, that the result in [BLY], for dimensions bigger than 4 give non existence

of attractors nor repellers Cr generically, for every r ≥ 1. The result of [BSh] we mentioned gives only a C1

residual, in dimension three. In particular, it is still an open question whether on a 3-manifold M there exist

Cr locally generic diffeomorphisms on M without attractors or repellers, if r ≥ 2. See Question 2 in [BSh].

9



measure. On the other hand, [San] follows the same arguments of the original one but making

use of Pujals-Sambarino’s Theorem B to rule out certain intricate arguments and still using

Mañé’s C2-connecting lemma to obtain the full Lebesgue measure condition. Our proof

instead fits nice in the flow context (this is interesting because some of the aforementioned

tools may be difficult to extend for flows even in the nonsingular case) is suitable to extend

to the singular case and avoid the use of Mañé’s C2-connecting lemma.

Further develoments

After submission of our paper [AMS1], Crovisier and Yang [CY] announced a result which is

a version of Theorem of B of [PS] to vector fields with singularities. Soon after, Morales [M1]

announced that with the result in [CY] it is possible to completely settle Thom’s conjecture

for vector fields on 3-manifolds. The statement in [M1] is that a C1 generic X ∈ X1(M)

either has an infinity number of sinks, or a finite number of attractors with a weaker form of

hyperbolicity, adapted to the singularities in this case, namely sectional-hyperbolicity (also

called singular-hyperbolicity in this three dimensional context). The proof of [M1] follows

the same structure of the proof we shall present in Chapter 8, but basically invoking [CY]

instead of [AH].

Star flows

The Lorenz attractor is a paradigmatic example of a robustly non-hyperbolic flow, when there

are singularities approached by recurrent orbits. It is a a star flow i.e. every sufficiently

small C1 perturbation of it has only hyperbolic zeros and periodic orbits, and thus Hayashi’s

result [H2] does not hold for vector fields with singularities approached by periodic orbits.

For a long time, it was completely unknown what should be the type of hyperbolicity of

the Lorenz attractor, that would be responsible for its robust properties. This problem was

settled by Morales, Paćıfico and Pujals [MPP2], [MPP1]. They not only indentified the

type of hyperbolicity but also showed that every robustly transitive set for a vector field in

3-dimensions should have the same type hyperbolicity of the Lorenz attractor.
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This was the starting point in the study of the sectional-hyperbolic vector fields. The

definition is that the tangent flow has a dominated splitting E ⊕ F such that E contracts

and F expands area of every two dimensional subspaces, with uniform and constant rates.

Later, Morales and Paćıfico [MP2] showed that, even though a star flow may fail of being

sectional-hyperbolic, a C1 generic star flow on three dimensions is sectionally-hyperbolic.

Moreover, it admits a spectral decomposition into finitely many hyperbolic non-singular

homoclinic classes and sectional hyperbolic attractors and repellers with singularities.

This result brought the hope that one could find the type of hyperbolicity that a C1

generic star flow should have. The combined efforts of the chinese school with Gan, Wen, Li

and Zhu [GaLiW],[GaWZ] and the latin american school with Metzger and Morales [MeM]

extended [MPP2], showing that any robustly transitive, strongly homogeneous set with only

hyperbolic zeros is sectionally hyperbolic thus improving our understanding of this beautiful

phenomenon of hyperbolic singularities accumulated by regular orbits. Based on this new

tools, Arbieto and Morales [AM] were able to prove that a C1 generic vector field without

points accumulated by periodic orbits with different indeces4 and whose singularities have

codimension one is sectional Axiom A i.e. its non-wandering set admits a spectral decomposi-

tion into hyperbolic non-singular pieces and singular pieces which are sectionally-hyperbolic.

In our paper jointly with Arbieto and Morales [AMS2], we studied further C1 generic

vector field without points accumulated by periodic orbits with different indeces, considering

the case of arbitrary codimension but obtaining a weaker conclusion.

Theorem (Arbieto,Morales,S.). Let X ∈ X1(M) be a C1-generic vector field without points

accumulated by hyperbolic periodic orbits of different indices. Then, X has finitely many sinks

and sectional-hyperbolic transitive Lyapunov stable sets for which the union of the basins is

residual in M .

The proof uses some recent results like [GaLiW], [GaWZ], [M2], [MP1]. It would be nice

to obtain attractors instead of transitive Lyapunov stable sets in this theorem. Unfortunately,

as asked in [CM], it is unkown whether a sectional-hyperbolic transitive Lyapunov stable set

is an attractor (even generically).

4This condition implies the star property, and for this reason this class of vector fields is, sometimes,

called by the unofficial term superstar flow.
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Further developments

After the submission of our paper [AMS2], some recent striking new results about star flows

apeared. First, Gan, Shi and Wen [GaSW] indentified the presence of singularities with

different stable indices in a same chain recurrent class as the sole obstruction for the sectional

hyperbolicity of a C1-generic star flow. Using this, they obtained strong generalizations of

parts of our result. They proved, for instance, that for a C1 generic star flow every Lyapunov

stable chain recurrent class is sectional hyperbolic, thus droping the stronger assumption that

the vector field has no points accumulated by hyperbolic periodic orbits of different Morse

indices.

More recently Adriana da Luz and Bonatti announced an unexpected example of a star

flow which has, robustly, the precise obstruction to sectional hyperbolicity found in [GaSW]!

Namely, they found an example of star flow which has two singularities p and q, with different

stable indices, which are robustly in the same chain recurrent class. This surprising result

re-opens the question: what is the type of hyperbolicity of a C1 generic star flow?

Mixing-like properties

We now turn our attention to the following problem within the aforementioned framework

of problems in generic dynamics: given a C1 generic f ∈ Diff1(M), describe its space of

invariant measures. This problem is important because invariant measures help to describe

the dynamics. To put it in a more concrete setting, we shall restrict f to some chain

recurrence class.

Let us quote some key developments in the study of chain recurrence classes. This began

once that Conley’s Fundamental Theorem of Dynamical Systems appeared. It says that up

to quotient these classes on points any dynamical system looks like a gradient dynamics.

However, some of these classes, called homoclinic classes, gained interest with the advent

of Smale’s Spectral Decomposition Theorem. Indeed, this theorem says that for Axiom

A (hyperbolic) dynamics the non-wandering set splits into finitely many homoclinic classes.

Moreover, each of these classes is isolated: it is the maximal invariant set of a neighbourhood
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of itself. Thus, these homoclinic classes are the sole chain recurrence classes of such dynamics.

Hence, the study of homoclinic classes, in non-hyperbolic situations, attracted the atten-

tion of many mathematicians, see [BDV] for a survey on the subject. In [S2], Sigmund made

progress in the hyperbolic case. More precisely he proved that for any homoclinic class of an

Axiom A diffeomorphism, the set of periodic measures, i.e. Dirac measures evenly distributed

on a periodic orbit, is dense in the set of invariant measures. On the other hand, there is

a refinement of the Spectral Decomposition Theorem, due to Bowen, which says that any

such class of an Axiom A system splits into finitely many compact sets which are cyclically

permuted by the dynamics and the dynamics of each piece, at the return, is topologically

mixing, i.e. given two open sets U and V then the n-th iterate of U meets V for every n

large enough. Using this, Sigmund in [S1] was able to prove that the set of Bernoulli mea-

sures is dense among the invariant measures. He also proved that weakly mixing measures

contains a residual subset of invariant measures. Indeed, the set of weakly mixing measures

is a countable intersection of open sets. We recall that a measure is Bernoulli if the system

endowed with it is measure theoretically isomorphic to a Bernoulli shift.

In the non-hyperbolic case, [ABC] proved that for a generic diffeomorphism any isolated

homoclinic class has periodic measures dense in the set of invariant measures, thus extending

the first result of Sigmund mentioned above to the generic setting. In our paper with Arbieto

and Catalan [ACS] we extended the second result of Sigmund mentioned above.

Theorem (Arbieto,Catalan,S.). For any generic diffeomorphism f , if the dynamics re-

stricted to an isolated homoclinic class is topologically mixing then the Bernoulli measures

are dense in space of invariant measures supported on the class. In particular, the set of

weakly mixing measures contain a residual subset.

The main tools employed here to prove this are the results from [ABC], mentioned above,

the main theorem in [AC], and the large periods property which is a very elementary concept

that we devised in order to detect mixing behavior. For instance, a dynamical system has

large periods property if there are periodic points with any large enough period which are

arbitrarily dense. The presence of this property implies that the system is topologically

mixing. In the differentiable setting, we also define the homoclinic large periods property
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which only considers the homoclinically related periodic points. We prove that this property

is robust, see Proposition 3.3.1.

In [AC], the authors use their main result to prove that any homoclinic class of a generic

diffeomorphism has a spectral decomposition in the sense of Bowen, like discussed before.

One of the motivations is that all known examples of robustly transitive diffeomorphisms

are robustly topologically mixing.

So, in the same article the authors ask the following questions:

1. Is every robustly transitive diffeomorphism topologically mixing?

2. Failing that, is topological mixing at least a C1 open and dense condition within the

space of all robustly transitive diffeomorphisms?

Now, we point out that the results of section 2 of [AC] gives immediately the following

result5 (see also Remark ??).

Theorem. Let f be a generic diffeomorphism. If an isolated homoclinic class of f is topo-

logically mixing then it is robustly topologically mixing.

Actually, since the large periods property implies topological mixing, the robustness of

this property could lead to another proof of the previous result, see Section 4.

We also attacked problem (2) above in [ACS]. It is natural to look for the global dynamics

of the previous theorem instead of the semi-local dynamics. This leads us to a question posed

in [BDV] (Problem 7.25, page 144): “For an open and dense subset of robustly transitive

partially hyperbolic diffeomorphism: Is the whole manifold robustly a homoclinic class?”.

Recall by a result of [BC], for generic transitive diffeomorphisms, the whole manifold is a

homoclinic class.

The next result gives a positive answer to Problem 7.25 of [BDV] (quoted above) far from

homoclinic tangencies. A homoclinic tangency is a non-transversal intersection between the

invariant manifolds of a hyperbolic periodic point. The result is the following:

5We would like to thank Prof. Sylvain Crovisier for pointing out this result to us.
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Theorem (Arbieto,Catalan,S.). There exists an open and dense subset among robustly tran-

sitive diffeomorphisms far from homoclinic tangencies formed by diffeomorphisms such that

the whole manifold is a homoclinic class.

This result together with the above result quoted from [AC] give us a partial answer to

question (2) above, posed in [AC].

Theorem (Arbieto,Catalan,S.). There is an open and dense subset among robustly transi-

tive diffeomorphisms far from homoclinic tangencies formed by robustly topologically mixing

diffeomorphisms.

These two results were previously obtained by [BDU] for strongly partially hyperbolic

diffeomorphisms with one dimensional center bundle, see also [HHU]. By strong partial

hyperbolicity we mean partial hyperbolicity with both non-trivial extremal bundles such

that the center bundle splits in one-dimensional subbundles in a dominated way. Actually,

they obtain this proving that one of the strong foliations given by the partial hyperbolicity

is minimal, which is a stronger property than topological mixing. In order to obtain this

minimality they used arguments involving the accessibility property. We notice however that

our results hold for diffeomorphisms with higher dimensional center directions. In Chpter 2,

we present a way to produce such examples.

1.3 Orgnization of the thesis

The formal goal of the thesis is to report the research conducted during my PhD, so the

proofs contained in the aforementioned papers [BS], [AMS1], [AMS2] and [ACS] are repro-

duced here, with some minor modifications which, hopefully, will improve their presentation.

Nevertheless, I would like the text to readable by other mathematicians than just the jury

of the thesis, with this goal in mind I prepared many sections intended as a preparation for

the main arguments. In this way, the reader may choose to go directly to the proofs of the

main results, checking some of the preliminary lemmas if he (or she) believes it is necessary,

or even to read just the preliminary parts.
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In Chapter 2 we collect all the necessary definitions and as usual fix the notations used in

the sequel. In Chapter 3 we introduce homoclinic classes an we discuss mixin-like properties.

In particular, we introduce a new definition, the large periods property and give some appli-

cations of it. We discuss the (elementary) part of the paper [AC] of Abdenur and Crovisier

which is very important for our result [ACS] about denseness of Bernoulli for isolated generic

homoclinic classes. In Chapter 4 continue the presentation of our paper [ACS] and prove

mixing for an open and dense set robustly transitive systems far from tangencies.

We devote Chapter 5 to a detailed discussion of the index of a vector in a compact region.

In the final section we prove an elementary result vey useful for degree calculations.

In Chapter 6 we make a pedestrian introduction to commuting vector fields, giving equiv-

alent definitions and proving basic properties, which will be important in the sequel. We

also present proofs of Lima’s Theorem [Li1],[Li2]. A key part of this chapter is Lemma 6.3.3

(which is taken from [BS]), that we use to give another proof Lima’s Theorem and will

be usefull in our result with Bonatti too. The main source of difficulties in our proof of

Lemma 6.3.3 is that Sard’s theorem for real valued functions on a surface requires at least

C2. Even though it is still elementary, I believe that this proof of Lima’s Theorem is knew.

Chapter 7 is devoted to the proof of existence of common zeros for commuting vector

fields, under the assumption of non-vanishing index and that the colinearity locus is enclosed

in a compact surface. In Chapter 8 we prove existece of attractors for non singular three

dimensional vector fields. The presentation in this chapter is very different from the original

article [AMS1], but the structure and the main arguments are the same.

In Chapter 9 we present the proof that a C1-generic vector field without points accu-

mulated by hyperbolic periodic orbits of different Morse indices has finitely many sinks and

sectional-hyperbolic transitive Lyapunov stable sets for which the union of the basins is

residual in M .
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Chapter 2

The stage and the actors: manifolds,

vector fields and diffeomorphisms

In this chapter we fix the notations used in this thesis and collect some preliminary materail

that we shall use.

In all this work Md denotes a d-dimensional Riemanninan manifold. We fix, once and for

all, a Riemannnian metric in M , and denote by m the normalized Lebesgue measure induced

by the volume form. We denote the space of diffeomorphisms of M by Diff1(M), endowed

with the C1 topology. The space of vector fields over M , endowed with the C1 topology, is

denoted by X1(M).

2.1 Basic dynamical definitions

Whenever X is a vector field over M , we shall denote its flow by Xt. Given x ∈M , the orbit

of x, denoted by OX(p), is the set {Xt(x); t ∈ Dom(x)}, where Dom(x) ⊂ R is the maximal

interval of definition of the integral curves of X, which start at x. A compact set Λ ⊂ M

is invariant under the flow of X if Xt(Λ) = Λ for every t ∈ R. Denote Zero(X) = {x ∈

M ;X(x) = 0} and Zero(X,U) = Zero(X) ∩ U , for any subset U ⊂M .

A point p ∈ M is said to be periodic for X if there exists T > 0 such that XT (p) = p.
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The set of all periodic points for X is denoted by Per(X). The minimum such T is called

the period of p, and is denoted by τ(p).

Let f : M →M be a homeomorphism. Given x ∈M , we define the orbit of x as the set

O(x) := {fn(x);n ∈ Z}. The forward orbit of x is the set O+(x) := {fn(x);n ∈ N}. In a

similar way we define the backward orbit O−(x). If necessary, to emphasize the dependence

of f , we may write Of (x). We say that p ∈ M is a periodic point if fn(p) = p for some

n ≥ 1. The minimum of such n is called the period of p and it is denoted by τ(p).

Given Λ ⊂M we say that it is an invariant set if f(Λ) = Λ.

We recall the notions of transitivity and mixing. We say that f is transitive if there exists

a point in M whose forward orbit is dense. This is equivalent to the existence of a dense

backward orbit and is also equivalent to the following condition: for every pair U, V of open

sets, there exists n > 0 such that fn(U) ∩ V 6= ∅. We say that f is topologically mixing if

for every par U, V of open sets there exists N0 > 0 such that n ≥ N0 implies fn(U)∩V 6= ∅.

2.1.1 Hyperbolic Periodic Points

Diffeomorphisms

Let f ∈ Diff1(M) be fixed.

A periodic point of f is hyperbolic if the eigenvalues of Df τ(p)(p) do not belong to S1.

As usual, Es(p) (resp. Eu(p)) denotes the eigenspace of the eigenvalues with norm smaller

(resp. bigger) than one. This gives a Df τ(p) invariant splitting of the tangent bundle over

the orbit O(p) of p. The index of a hyperbolic periodic point p is the dimension of the stable

direction.

If p is a hyperbolic periodic point for f then every diffeomorphism g, C1−close to f have

also a hyperbolic periodic point close to p with same period and index, which is called the

continuation of p for g, and it is denoted by p(g).

The local stable and unstable manifolds of a hyperbolic periodic point p are defined as
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follows: given ε > 0 small enough, we set

W s
loc(p) = {x ∈M ; d(fn(x), fn(p)) ≤ ε, for every n ≥ 0} and

W u
loc(p) = {x ∈M ; (.f

−n(x), f−n(p)) ≤ ε, for every n ≥ 0}.

They are embedded differentiable (as smooth as f) manifolds tangent at p to Es(p) and

Eu(p). This is the content of the so-calledstable manifold theorem, see [dMP].

The stable and unstable manifolds are given by the saturations of the local manifolds.

indeed,

W s(p) =
⋃
n≥0

f−nτ(p)(W s
loc(p)) and W u(p) =

⋃
n≥0

fnτ(p)(W u
loc(p)).

The stable and unstable set of a hyperbolic periodic orbit, O(p) are given by:

W s(O(p)) =

τ(p)−1⋃
j=0

W s(f j(p)) and W u(O(p)) =

τ(p)−1⋃
j=0

W u(f j(p)).

Flows

We shall recall briefly how to define hyperbolicity of critical elements for flows. For further

details, we invite the reader to consult [dMP]. Take σ ∈ Zero(X). We say that σ is hyperbolic

if the map DX(σ) : TσM → TσM does not have 0 as an eigenvalue. In this case, the tangent

space TσM splits as direct sum Es⊕Eu, where Es is spanned by the eigenspaces associated

with negative eigenvalues while Eu is spanned by the eigenspaces associated with positive

eigenvalues.

The local stable/unstable manifolds

W s
loc(σ) = {x ∈M ; d(Xt(x), σ) ≤ ε, for every t ≥ 0} and

W u
loc(p) = {x ∈M ; (.X−t(x), σ) ≤ ε, for every t ≥ 0}

are embedded embedded differentiable (as smooth as X) manifolds tangent at σ to Es and

Eu. The stable and unstable manifolds are given by the saturations of the local stable

unstable manifolds.
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Consider now p ∈ Per(X). Since X(Xt(p)) 6= 0, for every t ∈ R, there exists consider

a subbundle N , transverse to X at every point in a neighborhood of OX(p). We define the

liner Poincaré map P : Np → Np in the following way:

Pv = π ◦DXτ(p)(p)v,

for every v ∈ Np, where π : TpM → Np is the projection parallel to X. The linear Poincaré

flow will be an important tool in Chapter 8

We say that p is hyperbolic if P has no eigenvalues of modulus 1. The stable manifold

theorem also applies: the sets W s(O(p)) = {x ∈ M ; d(Xt(x), Xt(p)) → 0, as t → +∞} and

W u(O(p)) = {x ∈ M ; d(Xt(x)Xt(p)) → 0, as t → −∞} are immersed submanifolds of M

which intersect transversely along O(p).

2.1.2 Invariant Measures

A probability measure µ is f -invariant if µ(f−1(B)) = µ(B) for every measurable set B. An

invariant measure is ergodic if the measure of any invariant set is zero or one. Let M(f)
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be the space of f -invariant probability measures on M , and let Me(f) denote the ergodic

elements of M(f).

For a periodic point p of f with period τ(p), we let µp denote the periodic measure

associated to p, given by

µp =
1

τ(p)

∑
x∈O(p)

δx

where δx is the Dirac measure at x.

Given an invariant measure µ, Oseledets’ Theorem says that for almost every x ∈M one

has a measurably varying splitting of the tangent bundle TM = E1 ⊕ ... ⊕ Ek such that if

v ∈ Ej then

λ(x, v) := lim
n→+
−∞

1

n
log ‖Dfn(x)v‖

is well defined and does not depend on v ∈ Ej. In particular, one has measurable invariant

functions λj : M → R, j = 1, ..., k such that if v ∈ Ej then λ(x, v) = λj(x).

The number λj(x) is called the Lyapunov exponent of f at x.

Now, let us define the notion of Bernoulli measure. We first recall the so-called Bernoulli

shift. It is the homeomorphism σ : {1, ..., n}Z → {1, ..., n}Z defined by σ({xn}) = {xn+1}.

In {1, ..., n}Z consider mB the product measure with respect to the uniform probability in

{1, ..., n}. It is easy to see that mB is invariant under σ.

We say that µ ∈M(f) is a Bernoulli measure if (f, µ) is measure theoretically isomorphic

to (σ,mB).

2.1.3 Domination, hyperbolicity and beyond

Let Λ ⊂M to be invariant under a diffeomorphism f . Let E,F to be subbundles of TΛM of

the tangent bundle over Λ, invariant under Df and with trivial intersection at every x ∈ Λ.

We say that E dominates F if there exists N ∈ N such that

‖DfN(x)|E‖‖Df−N(fN(x))|F‖ ≤
1

2
,

for every x ∈ Λ. We say that Λ admits a dominated splitting if there exists a decomposition

of the tangent bundle TΛM =
⊕k

l=1El such that El dominates El+1.
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We say that a f -invariant subset Λ is partially hyperbolic if it admits a dominated splitting

TΛM = Es ⊕ Ec
1 ⊕ . . . ⊕ Ec

k ⊕ Eu, with at least one of the extremal bundles being non-

trivial, such that the extremal bundles have uniform contraction and expansion: there exist

a constants m ∈ N such that for every x ∈M :

• ‖Dfm(x)v‖ ≤ 1/2 for each unitary v ∈ Es,

• ‖Df−m(x)v‖ ≤ 1/2 for each unitary v ∈ Eu

and the other bundles, which are called center bundles, do not contracts neither expands.

If all center bundles are trivial, then Λ is called a hyperbolic set. Now, we say Λ is strongly

partially hyperbolic if both extremal bundles and center bundle are non-trivial and moreover

such that all of its center bundles are one-dimensional. In particular a strongly partially

hyperbolic set is not hyperbolic.

We say that a diffeomorphism f : M → M is partially hyperbolic (resp. strong partially

hyperbolic ) if M is a partially hyperbolic (resp. strongly partially hyperbolic) set of f .

When M is a hyperbolic set we say that f is Anosov.

We remark now that strongly partially hyperbolic diffeomorphisms are by definition far

from homoclinic tangencies, since all central sub bundles have dimension one.

Examples of partially hyperbolic diffeomorphisms with higher dimensional central direc-

tions can be given by deforming some linear Anosov diffeomorphisms as in Mañé’s example.

For instance, let A be a linear Anosov diffeomorphism with eigenvalues λ1 < λ2 < λ3 <

1 < λ4 but, such that λ2 and λ3 are close to 1. Then we can create a pitchfork bifurcation,

producing two fixed points p and q with eigenvalues µ1(p) < 1 < µ2(p) < µ3(p) < µ4(p) and

µ1(q) < µ2(q) < 1 < µ3(q) < µ4(q), such that µ3(q) is still close to 1. Moreover, as in Mañé’s

argument [Ma3] we can guarantee that this diffeomorphism is transitive. Now we can perform

another pitchfork bifurcation on q producing two other fixed points q1 and q2 with eigenval-

ues µ1(q1) < µ2(q1) < 1 < µ3(q1) < µ4(q1) and µ1(q2) < µ2(q2) < µ3(q2) < 1 < µ4(q2). Once

again, this diffeomorphism is transitive. Now, since the bifurcations preservers the center

unstable leaves, we can guarantee that there exists a dominated splitting Es⊕Ec
1⊕Ec

2⊕Eu,

where Ec
1 is related to µ2 and Ec

2 is related to µ3. As in Mañé’s example, the unstable
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foliation will be minimal. In particular, it will be topologically mixing also.

Remark 2.1.1. If f is partially hyperbolic, by Theorem 6.1 of [HPS] there exist strong stable

and strong unstable foliations that integrate Es and Eu. More, precisely, for any point

x ∈ M there is a unique invariant local strong stable manifold W ss
loc(x) which is a smooth

graph of a function φx : Es → Ec ⊕ Eu (in local coordinates), and varies continuously with

x. In particular, W ss
loc(x) has uniform size for every x ∈ M . The same holds for W uu

loc (x),

integrating Eu.

Saturating these local manifolds, we obtain two foliations, that we denote by F s and Fu

respectively. Indeed, F s(x) =
⋃
n≥0 f

−n(W ss
loc(f

n(x)). Analogous definition holds for Fu.

Sectional hyperbolicity

Consider now a vector field X ∈ X1(M)

Denote by ‖ · ‖ and m(·) the norm and the minimal norm induced by the Riemannian

metric and by det(·) the jacobian operation. We say that Λ is hyperbolic if there are a

continuous invariant tangent bundle decomposition

TΛM = Ês
Λ ⊕ ÊX

Λ ⊕ Êu
Λ

and positive constants K,λ such that ÊX
Λ is the subbundle generated by X,

‖DXt(x)/Ês
x‖ ≤ Ke−λt and m(DXt(x)/Êu

x) ≥ K−1eλt,

for all x ∈ Λ and t ≥ 0. A closed orbit is hyperbolic if it does as a compact invariant set.

We define the Morse index I(O) of a hyperbolic closed orbit O by I(O) = dim(Es
x) for some

(and hence for all) x ∈ O. In case O is a singularity σ we write I(σ) instead of I({σ}). A

sink will be a hyperbolic closed orbit of maximal Morse index and a source is a sink for the

time reverser vector field.

Given an invariant splitting TΛM = EΛ ⊕ FΛ over an invariant set Λ of a vector field X

we say that the subbundle EΛ dominates FΛ if there are positive constants K,λ such that

‖DXt(x)/Ex‖
m(DXt(x)/Fx)

≤ Ke−λt, ∀x ∈ Λ and t ≥ 0.
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(In such a case we say that TΛM = EΛ ⊕ FΛ is a dominated splitting).

We say that Λ is partially hyperbolic if it has a dominated splitting TΛM = Es
Λ ⊕ Ec

Λ

whose dominating subbundle Es
Λ is contracting, namely,

‖DXt(x)/Es
x‖ ≤ Ke−λt, ∀x ∈ Λ and t ≥ 0.

Moreover, we call the central subbundle Ec
Λ sectionally expanding if

dim(Ec
x) ≥ 2 and | det(DXt(x)/Lx)| ≥ K−1eλt, ∀x ∈ Λ and t ≥ 0

and all two-dimensional subspace Lx of Ec
x.

We call sectional-hyperbolic any partially hyperbolic set whose singularities (if any) are

hyperbolic and whose central subbundle is sectionally expanding [MeM].

2.1.4 Robustness and Genericity

As mentioned before, we deal with the space Diff1(M) of C1 diffeomorphisms over M en-

dowed with the C1-topology. This is a Baire space. Thus any residual subset, i.e. a countable

intersection of open and dense sets, is dense. When a property P holds for any diffeomor-

phism in a fixed residual subset, we will say that P holds generically. Or even, that a generic

diffeomorphisms exhibits the property P .

On the other hand, we say that a property holds robustly for a diffeomorphism f if there

exists a neighborhood U of f such that the property holds for any diffeomorphism in U .

In this way, we say that a diffeomorphism f ∈ Diff1(M) is robustly transitive if it admits

a neighborhood entirely formed by transitive diffeomorphisms.

In this thesis we let T (M) denote the open set of Diff1(M) formed by robustly transitive

diffeomorphisms which are far from tangencies. Notice that being far from tangencies is, by

definition, an open condition. Also we define by TNH(M) as the interior of robustly transitive

strongly partially hyperbolic diffeomorphisms, which is a subset of T (M).

When dealing with properties which involves objects defined by the diffeomorphism itself

we need to deal with the continuations of these objects.
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For instance, when we say that a homoclinic class of f is robustly topologically mixing,

we are fixing a hyperbolic periodic point p of f and a neighborhood U of f such that for any

g ∈ U the continuation p(g) of p is defined and the homoclinic class H(p(g), g) is topologically

mixing, i.e. for any U and V open sets of H(p(g), g) there exists N > 0 such that for any

n ≥ N we have gn(U) ∩ V 6= ∅.

Another example of a robust property is given by the following well known result which

says that partial hyperbolicity is a robust property.

Proposition 2.1.2 (p. 289 of [BDV]). Let Λ be a (strongly) partially hyperbolic set for f .

Then, there exists a neighborhood U of Λ and a C1 neighborhood U of f such that every

g-invariant set Γ ⊂ U , is (strongly) partially hyperbolic, for every g ∈ U .

Since the space X1(M) is also a Baire space, we can speak of generecity and robustness in

X1(M) in the same way as above. In particular, we shall denote by X1
NS(M) the open subset

of X1(M) formed by vector fields X such that Zero(X) = ∅. In Chapter 8 we shall see a

generic property of X1
NS(M) (i.e a property which holds in every element of the intersection

between X1
NS(M) and some residual subset of X1(M)).

2.2 Lyapunov stable sets

In this section we fix M , a d-dimension manifold and X ∈ X1(M). We shall define the

invariant sets which describe the asymptotic topological

Given p ∈M we define the ω-limit set

ω(p) =
{
x ∈M : x = lim

n→∞
Xtn(p) for some sequence tn →∞

}
.

An invariant set Λ ⊂M is nontrivial if it does not reduces to a single closed orbit. We also

define the basin of attraction of Λ by

W s(Λ) = {x ∈M : ω(x) ⊂ Λ}.

A transitive set Λ will be called attractor if it exhibits a neighborhood U with the following

properties: there exists T > 0 such that XT (U) ⊂ U and Λ =
⋂
t≥0Xt(U). In particular,

W s(Λ) is an open set, since U ⊂ W s(Λ).
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Assume that the flow of X is complete. Given an open set U we denote by ΛX(U) the

maximal invariant set inside U , i.e ΛX(U) =
⋂
t∈RXt(U).

Notice that for every attractor ΛX(W s(Λ)) = Λ.

Let Λ be a compact invariant set for the flow of X. We say that Λ is Lyapunov stable for

X if for every neighborhood U of Λ there exists a smaller neighborhood V of Λ such that

ω(x) ⊂ U , for every x ∈ V . We say that Λ is Lyapunov unstable if it is Lyapunov stable for

−X.

Lemma 2.2.1. Let Λ be an invariant set for X ∈ X1(M). Assume that there exists x ∈ M

such that ω(x) ∩ Λ 6= ∅.

1. If Λ is Lyapunov stable, then ω(x) ⊂ Λ.

2. If Λ is Lyapunov unstable, then x ∈ Λ.

Proof of (1). Take U a neighborhood of Λ, and let V be the smaller neighborhood of Λ such

that if y ∈ V then ω(y) ⊂ U . Since ω(x) ∩ Λ 6= ∅, there exist T > 0 such that XT (x) ∈ V .

As a consequence,

ω(x) = ω(XT (x)) ⊂ U.

Thus, ω(x) is a subset of any neighborhood U of Λ, concluding.

Proof of (2). The argument is similar, only one has to iterate backwards in order to use the

Lyapunov instability. The details are left to the reader.

2.3 Sard’s Theorem

In Chapter 6 we shall use Sard’s Theorem. The version of this result, usually taught in

graduate courses, holds for C∞ maps on manifolds. However, we shall need to apply this

result in low regularity, and for this reason we state here the original (sharper) version, see

[Sa].

Theorem 2.3.1 (Sard). Let ϕ : Md → Nn be a map of class Ck, let S ⊂M be the singular

set of ϕ. Assume further that
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1. d ≤ n

2. d > n and k ≥ d− n+ 1.

Then, ϕ(S) has Lebesgue measure zero

In the appendix we shall describe an example, due to H. Whitney, of a C1 function

ϕ : R2 → R such that ϕ(S) = [0, 1], and thus the hypothesis d > n and k ≥ d−n+ 1 cannot

be weakened.

2.4 Holonomies

Let Y ∈ X1(M) be a non-vanishing vector field in some compact region U of M . A codi-

mension one submanifold Σ ⊂ U of M is said to be a transverse section if Σ is everywhere

transverse to Y .

Let Σ0 and Σ1 be two transverse sections, either disjoint or with Σ1 ⊂ Σ0. Assume

that there exists a function τ : Σ0 → (0,+∞), as regular as Y , such that Yt(x) ∈ Σ1 with

t ∈ [0, τ(x)] if and only if t = τ(x), for every x ∈ Σ0. A function with this property is called

a transition time. With the transition time we define a map P : Σ0 → Σ1, called holonomy,

by

P(x) = Yτ(x)(x).

In the case Σ1 ⊂ Σ0 the holonomy is called the first return map or the Poincaré map and τ

is called the first return time function.

Now we shall state a very general and certainly classical lemma that gives the relation

between the derivative of the holonomy map and the derivative of the flow. We insert the

proof here for the comfort of the reader.

Lemma 2.4.1. For every x ∈ Σ0 and every v ∈ TxΣ0,

DP(x)v −DYτ(x)(x)v = Dτ(x)v.Y (P(x)).

Proof. Since this is a local problem we shall use folw box coordinates around P(x). Let us

denote by B the flow box around P(x). Take a curve γ : (−ε, ε) → Σ0 such that γ(0) = x
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Figure 2.1: Flow box around P(x) ∈ Σ1 and the formula Yτ(γ(t))−τ(x) ◦ Yτ(x)(γ(t)) =

Yτ(x)(γ(t)) + (τ(γ(t))− τ(x))Y (P(x)).

and γ̇(0) = v, with ε small enough so that P(γ(t)) ∈ B, for every t ∈ (−ε, ε). Therefore, in

the flow box coordinates, we have that

Yτ(γ(t))−τ(x) ◦ Yτ(x)(γ(t)) = Yτ(x)(γ(t)) + (τ(γ(t))− τ(x))Y (P(x)).

On the other hand, since P and Yτ(x) are C1 maps, we have for ε small enough that

P(γ(t)) = P(x) + tDP(x)v +R(t)

Yτ(x)(γ(t)) = Yτ(x)(x) + tDYτ(x)(x)v +R(t),

Where the remainder maps have the property that

R(t)

t
,
R(t)

t
→ 0,

when t→ 0. Since, by definition, we can write

P(γ(t)) = Yτ(γ(t))−τ(x) ◦ Yτ(x)(γ(t)),

it follows then

P(x) + tDP(x)v +R(t) = Yτ(x)(p) + tDYτ(x)(x)v +R(t)

+ (τ(γ(t))− τ(x))Y (P(x)),

and thus

DP(x)v −DYτ(x)(x)v =
τ(γ(t))− τ(x)

t
Y (P(x)) +

R(t) +R(t)

t
, (2.1)
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because Yτ(x)(x) = P(x). Taking the limit as t→ 0 in the right-hand side of equation (2.1)

the proof is complete.
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Chapter 3

Topologically mixing homoclinic

classes

Let f : Md →Md be a diffeomorphism of a closed manifold M . If p is a hyperbolic periodic

point of f , then its homoclinic class H(p) is the closure of the transversal intersections

between the stable manifold and unstable manifold of the orbit of p:

H(p) = W s(O(p)) t W u(O(p)).

A homoclinic class H(p) is said to be trival if it reduces to O(p). We say that the

homoclinic class H(p) is isolated if there exists a neighborhood U of H(p) such that H(p) =⋂
n∈Z f

n(U).

It is possible to give another definition (which justifies the word “class”) by introducing an

equivalence relation among periodic orbits. Indeed, we say that a hyperbolic periodic point q

is homoclinically related to p if W s(O(p)) t W u(O(q)) 6= ∅ and W u(O(p)) t W s(O(q)) 6= ∅.

For it is well known that a homoclinic class coincides with the closure of the hyperbolic

periodic points homoclinically related to p.1

Moreover, the dynamics of f |H(p) is always transitive and in the case of an Axiom A

diffeomorphism2 f , homoclinic classes form the basic dynamical pieces. Furthermore, Bowen

1For a proof, see for instance the book of Newhouse [N], or Lema 3.3.3 in [San].
2A diffeomorphism f is said to be Axiom A if the non-wandering set Ω(f) is hyperbolic. Recall that
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showed that a hyperbolic homoclinic class H(p) admits a cyclic decomposition H1, ..., Hl i.e

f(Hj) = Hj+1, with the convention that l + 1 = 1, and such that f l|Hj is topologically

mixing.

Starting from this result of Bowen, Sigmund proved in the seventies [S2] the denseness

of periodic points for a hyperbolic homoclinic class H(p) at the ergodic level. His result can

be summarized in the following equality

{µq; q ∈ Per(f) ∩H(p)} =Mf (H(p)),

whereMf (H(p)) denotes the set of invariant measures supported in H(p). Latter, in [S1], he

treated the case where H(p) is topologically mixing and proved that the Bernoulli measures

are dense Mf (H(p)).

These types of result rely on the shadowing lemma. One might wonder, following some

ideas present the 1983 ICM addres of Mañé [Ma5], whether the perturbative tools available

in C1 topology, such as the ergodic closing lemma [Ma2] or the connecting lemma [H1] can

play the same role to prove similar results for C1-generic diffeomorphisms.

This line of research was initiated in the pioneer work of Abdenur, Bonatti and Crovisier.

Let us state their result in precise terms.

Theorem 3.0.2 (Theorem 3.5, item (a), in [ABC]). Let Λ be an isolated non-hyperbolic

transitive set of a C1−generic diffeomorphism f , then the set of periodic measures supported

in Λ is a dense subset of the set Mf (Λ) of invariant measures supported in Λ.

In view of Theorem 3.0.2 it becomes natural to ask whether the denseness of Bernoulli

measures would also be true in the C1-generic scenario. In this chapter we shall answer

affirmatively this question by proving the theorem below which is the first main result of

this thesis.

Theorem A (Arbieto, Catalan, S-). For any generic diffeomorphism f , if the dynamics

restricted to an isolated homoclinic class H(p) is topologically mixing then the Bernoulli

Ω(f) = {x ∈ M ;∀ε > 0,∃ n > 0; fn(B(x, ε) ∩ B(x, ε) 6= ∅}. See the monograph [Bow1] of Bowen for a

complete account on the properties of Axiom A diffeomorphism.
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measures are dense in Mf (H(p)). In particular, the set of weakly mixing measures contain

a residual subset of M(H(p)).

The chapter is organized in the following way. In Section 3.1 we introduce a property

which implies mixing and we study conditions on a homoclinic class to ensure this property.

In Section 3.2 we will discuss the period of a homoclinic class and the work of Abdenur and

Crovisier [AC]. Then, we shall combine the results of [AC] with the large property to build

topologically mixing horseshoes in Section 3.3. These horseshoes always support Bernoulli

measures. Theorem A will be proved in Section 3.4.

3.1 Large Periods Property

The most common exapmples of topologically mixing transformations come from the uni-

formly hyperbolic world, and thus they have very very rich dynamical properties, such as

denseness of periodic orbits. In this section we shall investigate a special class of topologically

mixing transformations wich have dense periodic orbits.

Let f : X → X be a homeomorphism of a metric space. We say that f has the large

periods property if for any ε > 0 there exists N0 ∈ N such that for every n ≥ N0 there exists

pn ∈ Fix(fn), whose orbit under f is ε dense in X.

In words: f has the large periods property if, given any cover of the ambient space by

small balls, f has periodic orbits, with any possible large enough period which visit every

ball of the cover. Notice that the definition do not require existence of periodic orbits with

all possible minimal periods.

A simple remark is that if X has an isolated point and f has the large period property

then X is a singleton.

The large periods property can be used as a criterion to ensure mixing, as the next result

shows.

Lemma 3.1.1. Every homeomorphism of a metric space with the large periods property is

topologically mixing
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Proof. Let f : X → X be a homeomorphism with the large periods property. Notice that f

is transitive. Indeed, given U and V non-empty and disjoint open sets take ε > 0 and balls

B(u, ε) ⊂ U and B(v, ε) ⊂ V . By the large periods property, there exists a point p ∈ Per(f)

whose orbit is ε dense in X. This implies that there exists a point y ∈ B(v, ε) and n > 0

such that fn(y) ∈ B(u, ε). Thus f is transitive.

We now prove that f is topologically mixing. Let U and V be non-void and disjoint open

sets. By the transitivity of f there exists a first iterate n1 such that fn1(U) ∩ V 6= ∅. In

particular, f j(U) ∩ V = ∅ for every j = 1, ..., n1 − 1. Take an open ball B ⊂ U , satisfying

fn1(B) ⊂ fn1(U) ∩ V,

and ε = diam(B)/2. Let N0 = N0(ε) be given by the large periods property.

We claim that fn(V ) ∩ U 6= ∅, for every n ≥ N0. Indeed, we know that there exists

p ∈ Fix(f τ ), with τ = n+n1, whose orbit under f is ε dense in X. By the choice of ε, there

is an iterate of p in B. Since p is periodic we shall assume for simplicity that p itself is in

B. This implies that fn1(p) ∈ V , and therefore

fn(fn1(p)) = fn+n1(p) = f τ (p) = p ∈ U.

This proves our claim, and establishes the lemma.

The converse of this result is not true. There exists examples of topologically mixing

diffeomorphisms which do not have dense periodic orbits. We may cite some research papers

with interesting examples. Fayad [Fa] give an analalytic minimal (and thus without periodic

orbits) and topologically mixing diffeomorphism of the five dimensional torus. Carvalho and

Kwietniak [CK] give an example of a homeomorphism of a compact metric space with the

two-sided limit shadowing property, but without periodic points. Theorem B in [CK] estab-

lishes that the two-sided limit shadowing property implies topological mixing. Nevertheless,

it is possible to give an elementary example.

Example 3.1.2. We shall give an informal description of how to construct a topologically

mixing flow on the two torus with one singularity and no periodic orbits. 3 Let X̃ be a

3I thank Prof. Alejandro Kocsard who made me aware of this example.
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constant vector field of R2 with integer coordinates and irrational slope. Let Xt : T2 → T2

be the corresponding irrational flow, whose vector field is X, the projection of X̃. Take

p ∈ T2 and a smooth bump function ψ : T2 → [0, 1] such that ψ(x) = 0 if and only if

x = p. Let Y (x) = ψ(x)X(x) and take Yt the flow of Y . We claim that it has the following

properties

1. Yt is topologically mixing

2. Zero(Y ) = {p} and Per(Y ) = ∅

By taking f := Y1, the time one map, we obtain a topologically mixing diffeomorphism of

T2 wich do not satisfy the large periods property.

Let us prove (1) and (2). By construction of Y it is easy to see that Zero(Y ) = {p}. Let

F denote the foliation by orbits of X. Since Y is a repatrization of X, wich is zero only at

p, we have that the foliation by orbits of Y is equal to F . However, there exists one especial

leaf, namely the one containing p. The points in the leaf Fp converge to p, in the past or in

the future. Morevoer, if a point in Fp converge to p in the future, its backward orbit is dense

in T2, and similarly, the points in Fp which converge to p in the past have a dense positive

orbit. All leaves are dense, and all points in the other leaves have dense orbits, both positive

and negative. As consequence, Per(Y ) = ∅.

It remains to see why Yt is mixing. Take B(x, ε) and B(y, r) two small open balls in T2.

By iterating (positively or negatively) we see that B(x, ε) will intersect Fp. For simplicity,

let us assume that B(x, ε) ∩ Fp 6= ∅. Let I be a segment contained in B(x, ε) ∩ Fp. Either

Yt(I) → {p} as t → +∞ or as t → −∞. We shall assume the former case, the latter being

treated with a similar argument. Since all points in B(x, ε) \ I have a dense forward orbit

but I converge to p in the future, we see that Yt(B(x, ε)) will get streched and will become

more and more dense in T2, as t grows. See figure 3.1. As a consequence, once Yt(B(x, ε))

becomes dense enough to intersect B(y, δ), it will continue to intersect for every T ≥ t. Thus

Yt is mixing.

Example 3.1.2 sugests a question. Does every topologically mixing homeomorphism with

infinetely many periodic orbits have the large periods property?.
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Figure 3.1: Pictorial proof that Yt is mixing.

Morevoer, as we have commented in the begining of this section, it is easy to see that

a topologically mixing uniformly hyperbolic transformation (such as Smale’s horseshoe, a

transitive Anosov map and mixing subshifts) has the large periods properties. Below we

shall give a general lemma which will prove this. A natural question is then to investigate

the relation between mixing and large periods outside the hyperbolic world. For instance,

Question 1. Let f be a topologically mixing C1-generic diffeomorphism of a closed manifold.

Does f have the large periods property?

In Section 3.1.8 we shall solve this question by constrcting large horseshoes with the large

periods property. The first step in this construction will be given in this section. We will

introduce below a version of the large periods property adapted to homoclinic classes.

Definition 3.1.3. Let f : M → M be a diffeomorphism and let H(p) be a homoclinic class

of f . We say that an invariant subset Λ ⊂ H(p) has the homoclinic large periods property if

for any ε > 0 there exists N0 ∈ N such that for every n ≥ N0 it is possible to find a point

pn ∈ Fix(fn) in Λ, and homoclinically related with p, whose orbit under f is ε dense in Λ.

In the sequel, we shall establish a result which produces hyperbolic horseshoes having the

homoclinic large periods property when there exists a special type of homoclinic intersection.

For its proof we shall need the classical shadowing lemma.

Definition 3.1.4. Let f : X → X be a homeomorphism of a metric space X. Given δ > 0 we

say that a sequence {xn} is a ε-pseudo orbit if d(f(xn), xn+1) < ε, for every n. We say that

the pseudo orbit is ε shadowed by a point x ∈ X, for ε > 0, if d(fn(x), xn) < ε, for every
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n. The pseudo orbit is said to be periodic if there exists a minimum number τ such that

xn+τ = xn, for every n. The number τ is called the period of the pseudo orbit.

Theorem 3.1.5 (Shadowing Lemma [Rob]). Let Λ be a locally maximal hyperbolic set. For

every ε > 0 there exists a δ > 0 such that every periodic δ-pseudo orbit can be ε-shadowed

by a periodic orbit. Moreover, if τ is the period of the pseudo orbit, then the periodic point

is a fixed point for f τ .

To apply the shadowing lemma we need to find a hyperbolic set. Our main source of

hyperbolic sets will be the classical Birkhoff-Smale’s Theorem.

Theorem 3.1.6 (Birkhoff-Smale). Let f be a diffeomorphisms with a hyperbolic periodic

point p such that there exists a point of transverse intersection q ∈ W s(O(p)) t W u(O(p)).

Then, for any small enough neighborhood U of O(p)∪O(q) the maximal invariant set ΛU =

∩n∈Zfn(U) is a hyperbolic set.

For a proof, see Theorem 4.5, pg. 260 in [Rob]. In the sequel, we shall assume a special

type of homoclinic intersection and will prove that, in this case, the horseshoe given by

Theorem 3.1.6 will be topologically mixing.

The result below was taken from the paper [ACS] and is possibly a classical result.

Nonetheless, since we could not find the proof in the literature we include it here for the

sake of completeness.

Lemma 3.1.7. Let f be a diffeomorphisms with a hyperbolic periodic point p such that

there exists a point of transverse intersection q ∈ W s(p) t W u(f(p)). Then, for any small

enough neighborhood U of O(p) ∪ O(q), the restriction of f to the maximal invariant set

ΛU = ∩n∈Zfn(U) has the homoclinic large periods property.

Proof. For this proof, we denote τ := τ(p) the period of p.

Let U be a small enough neighborhood U of O(p)∪O(q) such that the maximal invariant

set ΛU = ∩n∈Zfn(U) is a hyperbolic set.

Take an arbitrary ε > 0 and δ > 0 given by Theorem 3.1.5. We claim that there exists a

number N0 such that for every n ≥ N0 it is possible to construct a periodic δ-pseudo orbit
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inside U , with period exactly equal to n, and whose Hausdorff distance to O(p) ∪ O(q) is

smaller than ε.

Once we have established this, the shadowing lemma will produce periodic orbits which

are fixed points for fn and whose Hausdorff distance to O(p) ∪ O(q) is 2ε. In particular,

these orbits must be 3ε dense in ΛU , with respect to the Hausdorff distance. Moreover, if ε is

small enough, all of these periodic orbits will be homoclinically related by the hyperbolicity

of ΛU .

Thus, we are left to show our claim. With such goal in mind, we take a large iterate

x = fNτ (q) such that

f−rτ (x) ∈ B(p, δ/2),

for every r = 0, ..., τ − 1. Observe that f−1(x) ∈ W u(p), since q ∈ W u(f(p)). This implies

that there exists a smallest positive integer l ∈ N such that

f−lτ−1(x) ∈ B(p, δ/2).

Now, we can give the number N0. For each r = 1, ..., τ − 1, let kr = rl and take

L =
∏τ−1

r=1 kr. We define N0 := Lτ . Observe that if n ≥ N0 we can write

n = (a+ L)τ + r = (a+ L− kr)τ + krτ + r,

for some r ∈ {1, ..., τ − 1} and a ∈ N.

To complete the proof, we shall give the pseudo orbit. It will be given by several strings

of orbit, with jumps at specific points. For this reason, and for the sake of clarity, we divide

the construction in several steps between each jump.

• The first string: Define x0 = f−(l+r)τ−1(x), xj = f j(x0), for every j = 1, ..., lτ .

• The second string: Notice that f(xlτ ) = f−rτ (x) ∈ B(p, δ/2). Put xlτ+1 = f−(l+r−1)τ−1(x) ∈

B(p, δ/2), and xlτ+1+j = f j(xlτ+1), for every j = 1, ..., lτ .

• The procedure continues inductively: Notice again that f(x2lτ+1) = f−(r−1)τ (x) ∈

B(p, δ/2), and put x2lτ+2 = f−(l+r−2)τ−1(x). We proceed with the construction in
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an analogous way, defining xjlτ+j := f−(l+r−j)τ−1(x) and the next lτ terms of the se-

quence as simply the iterates of this point, for every j < r. In this manner we construct

a sequence with rlτ + r − 1 terms.

• The last string: Observe that f(xrlτ+r−1) = f−τ (x) ∈ B(p, δ/2). Hence, we can choose

xrlτ+r = x and the next (a+L− kr)τ − 1 terms of the sequence as simply the iterates

of this point, all of which belongs to B(p, δ/2).

• The last jump: Finally, we close the pseudo orbit by putting x(a+L−kr)τ+krτ+r = x0.

This gives a periodic δ-pseudo orbit with period n, as required.

As an application, from Lemmas 3.1.1 and 3.1.7 we obtain the following result.

Proposition 3.1.8. Let f be a diffeomorphisms with a hyperbolic periodic point p having a

non empty transversal intersection between its stable manifold and the unstable manifold of

f(p), i.e. there exists q ∈ W s(p, f) t W u(f(p), f). Then, for any small enough neighborhood

U of O(p) ∪O(q), the maximal invariant set ΛU in U is topologically mixing hyperbolic set.

We notice that a mixing horseshoe such as Proposition 3.1.8 always carry a Bernoulli

measure. Indeed, there exists the following result

Theorem 3.1.9 ([Bow2], Theorem 34). Let Λ be a topologically mixing isolated hyperbolic

set. Then, there exists a Bernoulli measure supported in Λ.

Remark 3.1.10. Actually Bowen constructs a measure such that (f |Λ, µB) is aK-automorphism.

But, in this case, (fΛ, µB) is measure theoretically isomorphic to a mixing Markov chain and

by [FO] it is isomorphic to a Bernoulli shift.

Thus, our strategy to prove denseness of Bernoulli measures can be summarized in the

following way: by Theorem 3.0.2 it is enough to prove that a periodic measure µq can be

approached by Bernoulli measures. For this we try to combine Proposition 3.1.8 and Theo-

rem 3.1.9, noticing that if U is small enough then any measure supported in the horseshoe

will be close to µq. To be able to apply Proposition 3.1.8 we need to ensure that the good

intersection W s(q) ∩W u(f(q)) 6= ∅ will occur. However, this fact is a Corollary of the work

of Abdenur and Crovisier [AC], as the next section shows.
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3.2 The period of a homoclinic class

In this section we will describe a way of decomposing each homoclinic class H(p) into a

finite number of compact pieces, which are cyclically permuted and are topologically mixing

in the returns. The key point in the proof is a number which describes all possible integers

for which one has W u(fn(p)) t W s(p) 6= ∅. The results are due to Abdenur and Crovisier,

in their work [AC]. Let us begin by defining this number.

Definition 3.2.1. Let f : Md → Md be a diffeomorphism of a closed manifold. Let H(p)

be a homoclinic class of f . The period of the class, denoted by l = l(H(p)), is the greatest

common divisor of the periods of the periodic points q homoclinically related to p.

Concerning our strategy to find Bernoulli measures, the proposition below justifies our

interest in the period of a homoclinic class.

Proposition 3.2.2. If p̃ is homoclinically related to p, then W u(fn(p̃)) t W s(p̃) 6= ∅ if, and

only if, n ∈ l(H(p))Z.

Since our goal is to find the good type of intersection W s(q)∩W u(f(q)) 6= ∅, we have to

ensure that l(H(p)) = 1. For this, we shall see below that l(H(p)) = 1 if and only if H(p) is

mixing. Thus, for topologically mixing homoclinic classes, the good intersections will always

occur. Let us proceed with the formal exposition.

Proposition 3.2.2 is a particular case of the following.

Theorem 3.2.3 (Proposition 1 in [AC]). Let q ∈ Per(f) be a hyperbolic periodic point

homoclinically related with p and satisfying also W u(p) t W s(q) 6= 0. Then, W u(fn(q)) t

W s(p) 6= ∅ if, and only if, n ∈ l(H(p))Z. In particular, W u(q) t W s(p) 6= ∅.

Notice that if p̃ is homoclinically related with p, then H(p) = H(p̃). Thus, Proposi-

tion 3.2.2 follows from Theorem 3.2.3 with q = p = p̃. We will divide the proof of Theo-

rem 3.2.3 into a series of lemmas.

In the sequel we fix l = l(H(p)) the period of H(p) and fix q denoting a periodic point

homoclinically related with p satisfying alsoW u(p) t W s(q) 6= 0.Observe that Theorem 3.2.3

39



implies that the set

Gq,p := {n ∈ Z;W u(fn(q) t W s(p) 6= ∅}

is an additive subgroup of Z, whose generator is l. So the argument has essentially three

steps: we first use Birkhoff-Smale’s Theorem to prove that Gp,q ⊂ lZ. In the second step

we prove that Gp,q is an additive group. The end of the argument will be to show that Gp,q
contains lZ.

The lemma below starts the first step.

Lemma 3.2.4. Gp,p ⊂ lZ.

Proof. Take n ∈ Gp,p and let x ∈ W u(fn(p)) t W s(p). By Birkhoff-Smale’s Theorem there

exists a neighborhood U of O(p)∪O(x) such that the maximal invariant set ΛU = ∩n∈Zfn(U)

is a hyperbolic set. We use the orbit of x to create a periodic pseudo orbit. Indeed, take a

point xu = f−n−kuτ(p)(x) ∈ W u(p), with ku a large integer. Similarly, take xs = fksτ(p)(x) ∈

W s(p), with ks another large integer. We build a periodic pseudo orbit in the following way:

starts at xu, follows its positive orbit until the point f−1(xs) and jumps back to xu. If ks+ku

is large enough then xs and xu are close and we can apply the shadowing lemma to find a

periodic point q, homoclinically related with p. By construction, the period of q is of the

form τ(q) = n+ kτ(p). Since, by definition τ(p) = li and τ(q) = lj, with i, j ∈ N this proves

that n = l(j − ki) ∈ lZ and establishes the lemma.

For the rest of the argument, the inclination lemma (see [dMP], Theorem 7.1, Chapter

2, pg. 82) will play a major role.

Lemma 3.2.5. 1. Gp,q ⊂ Gp,p

2. if m,n ∈ Gp,q then m+ n ∈ Gp,q.

Proof. Let n ∈ Gp,q. By definition one has W u(fn(q)) t W s(p) 6= ∅. Then, the inclination

lemma implies that W s(p) accumulates on W s(fn(q)). On the other hand, since W u(p) t

W s(q) 6= 0, iterating by fn, one concludes that W u(fn(p)) t W s(fn(q)) 6= ∅. Thus, we

obtain that W s(p) t W u(fn(p)) 6= ∅, and so n ∈ Gp,p. This proves the first part of the lemma.

Now, take also m ∈ Gp,q. Iterating by fn this implies that W u(fm+n(q)) t W s(fn(p)) 6= ∅.
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Moreover, since W s(p) t W u(fn(p)) 6= ∅, applying the inclination once more we obtain

that W s(p) accumulates on W s(fn(p)) and thus it transversaly intersects W u(fm+n(q)).

Therefore, m+ n ∈ Gp,q. The lemma is proved.

Figure 3.2: The inclination lemma applied twice: proof of Lemma 3.2.5.

With Lemma 3.2.5 we complete the first two steps of the proof.

Corollary 3.2.6. 1. Gp,q ⊂ lZ

2. Gp,q is an additive subgroup of Z.

3. W u(q) t W s(p) 6= ∅.

4. Gp,q = Gq,p

Proof. Combining Lemmas 3.2.4 and 3.2.5 one concludes Gp,q ⊂ Gp,p ⊂ lZ, which proves

1. To prove 2 notice that if m ∈ Gp,q and k ∈ Z then m − τ(p)k ∈ Gp,q, simply because

f−τ(p)k(p) = p. Therefore, if n ∈ Gp,q then −n = (τ(p) − 1)n − τ(p)n ∈ Gp,q. Together

with Lemma 3.2.5, this establishes that Gp,q is a group. In particular, 0 ∈ Gp,q and thus

W u(q) t W s(p) 6= ∅.

To prove the last item, we use the inclination lemma. Take n ∈ Gp,q. By Lemma 3.2.5, n ∈

Gp,p and thus W u(fn(p)) t W s(p) 6= ∅. By the inclination lemma, W u(fn(p)) accumulates on

W u(p). Since W u(p) transversaly intersects W s(q), we conclude that W u(fn(p)) t W s(q) 6=
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∅. Therefore, n ∈ Gq,p. By reversing the roles of q and p in this argument we obtain the

opposite inclusion Gq,p ⊂ Gp,q, concluding.

We are left to prove the inclusion lZ ⊂ Gp,q. For this, we will appeal to a little algebraic

lemma.

Lemma 3.2.7. Let K = {kn}+∞
n=1 ⊂ N be an increasing sequence of positive integers. Let

G ⊂ Z be an additive subgroup and let k be the greatest common divisor of the numbers kn.

If K ⊂ G then kZ ⊂ G.

Proof. Since G is a group, it is enough to prove that k ∈ G. For that, we first claim that

it is possible to find two numbers a = ki and b = kj such that k is the greatest common

divisor of a and b. Indeed, let {d1 < d2 < ... < dr} denote the divisors of k1 which are bigger

than k. If this set is empty, the claim is proved. Moreover, if kn ∈ K is not divisible by

any di, i = 1, ..., r then we may take a = k1 < kn = b. Thus, we may assume that every

kn is divisible by some di. Let Ki denote the elements of K which are divisible by di. Then

K = ∪ri=1Ki. Notice that there exists i such that Ki \∪m6=iKm 6= ∅. In fact, if this is not true

then K1 ⊂ ∪rm=2Km. Since K2 ⊂ ∪rm 6=2Km, this implies that K2 ⊂ ∪rm=3Km. By induction,

we would obtain that K = Kr, which would imply that the greatest common divisor of the

numbers in K is dr > k, a contradiction. Take ki ∈ Ki \ ∪m6=iKm. Now, we also have that

∪m 6=iKm \Ki 6= ∅ because if not then K = Ki, which would imply that the greatest common

divisor of the numbers in K is di > k a contradiction again. Thus, there exists an element kj

in K which is not divisible by di. Let a = ki and b = kj. Then, since a is divisible by di and

not by any dm, with m 6= i, while b is not divisible by di and since k is the greatest common

divisor of K = ∪rm=1Km we conclude that k is the greatest common divisor of a and b. The

claim is proved. It follows that there exists integers m,n such that k = ma+ nb. Since G is

a group and since a, b ∈ G this implies that k ∈ G, concluding.

Recall that, for q ∈ Per(f), τ(q) denotes its period.

Proof of Theorem 3.2.3. Let K = {τ(q); q is homoclinically related with p}. By definition, l

is the greatest common divisor of the numbers in K. Since Gp,q is a group, by Lemma 3.2.7

it suffices to show that for every periodic orbit γ, homoclinically related with p, one has

42



τ(γ) ∈ Gp,q. For this, we notice that by Corollary 3.2.6, W u(q) t W s(p) 6= ∅. Thus, since

f τ(q)(q) = q, we conclude that τ(q) ∈ Gp,q. Now, we claim that given γ, homoclinically

related with p, there exists q′ ∈ γ such that Gp,q = Gp,q′ . If such a claim is true, then we are

done, since τ(q′) ∈ Gp,q′ .

Let us prove our claim. We may take q′ ∈ γ such that W u(q′) t W s(p) 6= ∅. By the

inclination lemma, W u(q′) accumulates on W u(p). As W u(p) transversely intersects W s(q)

we have that W u(q′) transvesely intersects W s(q). Thus, W u(q′) accumulates on W u(q). As

a concequence, if W u(fn(q)) t W s(p) is not empty then W u(fn(q′) t W s(p) also is. Thus,

Gp,q ⊂ Gp,q′

Moreover, since Gp,q′ = Gq′,p one obtains that W u(p) t W s(q′) 6= ∅. Since W u(q) trans-

versely intersects W s(p), by the inclination lemma it follows that W u(q) accumulates on

W u(q′). As before, this proves that Gp,q′ ⊂ Gp,q. This completes the proof.

The decomposition of H(p) involves its pointwise homoclinic class.

Definition 3.2.8. Let p ∈ Per(f) be a hyperbolic periodic point. The pointwise homoclinic

class of p is the set h(p) = W s(p) t W u(p).

The pointwise homoclinic class is, in general, not invariant under f , excepet when h(p) =

H(p). This is the content of the next result.

Proposition 3.2.9 (Proposition 2 in [AC]). Let f : Md → Md be a diffeomorphism of a

closed manifold, let p ∈ Per(f) be hyperbolic and consider H(p) its homoclinic class. Let

l = l(H(p)) be its period. Then,

1. H(p) is the union of the iterates fk(h(p))

2. f l(h(p)) = h(p) and f l|h(p) is topologically mixing

It should be strongly emphasized that the iterates fk(h(p)) may not be disjoint. Never-

theless, as a consequence of Proposition 3.2.9 we obtain the following.

Corollary 3.2.10. H(p) is topologically mixing if and only if l(H(p)) = 1.
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Proof. If l(H(p)) = 1 then f(h(p)) = h(p) and thus H(p) = h(p) and H(p) is mixing.

Conversely, assume by contraposition l(H(p)) ≥ 2. Then, there exists a small ball B ⊂

h(p)\f(h(p)). Then, for every n > 1, if y ∈ B is such that fn(y) ∈ B then fn+1(y) ∈ f(h(p),

and therefore fn+1(y) /∈ B. Thus f is not mixing.

To prove Proposition 3.2.9 we begin establishing the following lemma.

Lemma 3.2.11. If q ∈ Per(f) is hyperbolic and homoclinically related with p so that W u(p)

and W s(q) have a point of transverse intersection then

h(p) = W u(p) t W s(q).

In particular, h(p) = h(q).

Proof. By Theorem 3.2.3 W u(q) t W s(p) 6= ∅. Therefore p and q are homoclinically related

fixed points of f τ(p)τ(q). Moreover, for f τ(p)τ(q), their homoclinic classes are h(p) and h(q),

resp. Thus h(p) = h(q). The inclination lemma implies the equality h(p) = W u(p) t W s(q),

concluding.

Proof of Proposition 3.2.9. Let k,m, n be three integers.

Claim 1. W u(fk(p)) t W s(fm(p)) is either empty or concides with fm+nl(h(p)).

Proof. Notice that

W u(fk(p)) t W s(fm(p)) = fm+nl(W u(fk−m−nl(p)) t W s(f−nl(p))).

If W u(fk−m−nl(p)) t W s(f−nl(p)) 6= ∅ then, iterating by fnl one deduces that k −m ∈ Gp,p,

and by Theorem 3.2.3 we get that k−m− nl ∈ lZ. Hence, again by Theorem 3.2.3 and the

inclination lemma, we obtain that W u(fk−m−nl(p)) and W u(p) accumulates on each other.

Similarly, W s(f−nl(p)) and W s(p) accumulate on each other. Thus,

W u(fk−m−nl(p)) t W s(f−nl(p)) = h(p),

proving the claim.
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The claim immediately implies that h(p) = f l(h(p) and H(p) coincides with the union

of the iterates fk(h(p)). Let us prove that f l|h(p) is mixing. Take U and V open sets which

interset h(p). Pick a point x ∈ U ∩ W u(p) t W s(p). Let D ⊂ W u(p) be a small disk,

containing x and contained in U . Take D′ ⊂ W s(p) a small disk containing y and contained

in V .

Since, by Theorem 3.2.3, fnl(W u(p)) are the sole iterates of W u(p) which transversely

intersects W s(p) the inclination lemma implies that fnl(D) accumulates on W u(p), for every

large n. Thus, fnl(D) intersects D′ for every n large enough, proving the result.

Abdenur and Crovisier [AC] developed a closing lemma with time control to show that

it is possible to perturb the period of the class if the iterates fk(h(p)) have non-empty

intersection. Together with C1-generic techniques they obtained the following result

Theorem 3.2.12 (Abdenur-Crovisier). Let f be a C1-generic transitive diffeomorphism.

Then, f is topologically mixing.

Combining their result with the connecting lemma [H1], one obtain that the whole man-

ifold is a topologically mixing homoclinic class.

3.3 Mixing and large periods

Let us give some applications of the results of Section 3.1.

Proposition 3.3.1. Let f be a diffeomorphisms with a hyperbolic periodic point p such that

the homoclinic class of p, H(p), has the homoclinic large periods property. Then, H(p(g))

has the homoclinic large periods property for any diffeomorphism g close enough to f .

Proof. Since H(p) has the homoclinic large periods property the period of this homoclinic

class has to be one, l(O(p)) = 1. Indeed, unless the class reduce itself to a fixed point,

there will be two periodic points homoclinically related to p such that their periods are two

distinct prime numbers. Hence, by Proposition 3.2.2 we have that W s(p) t W u(f(p)) 6= ∅.

Therefore, since this intersection is robust, we can conclude also by Proposition 3.2.2 that
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W s(p̃) t W u(g(p̃)) 6= ∅ for every hyperbolic period point p̃ homoclinically related to p(g),

for every diffeomorphism g close enough to f .

So, take an arbitrary ε > 0. There exists a periodic point p̃ ∈ H(p(g)), homoclinically

related with p(g) and whose orbit is ε/2 dense in H(p(g)). Now, Lemma 3.1.7 implies

that there exists N0 such that for every n ≥ N0 we can find a periodic orbit γ = O(b)

homoclinically related to p̃, b ∈ Fix(gn), which contains a subset ε/2 close to O(p̃) in the

Hausdorff distance. In particular, γ is an ε dense orbit inside H(p(g)). This establishes that

H(p(g)) has the homoclinic large periods property, and completes the proof.

Observe that the above proof establishes indeed that if a homoclinic class H(p) of a

diffemorphism f is such that W s(p) t W u(f(p)) 6= ∅ then H(p) has the homoclinic large

periods property. Thus, combining these facts and Corollary 3.2.10 we have the following

corollary.

Corollary 3.3.2. Let f be a generic diffeomorphism. An isolated homoclinic class of f is

topologically mixing if, and only if, it has homoclinic large periods property robustly.

With the aid of Corollary 3.3.2 we can answer Question 1. Indeed, we have the following

Corollary 3.3.3. Let f be a C1-generic transitive diffeomorphism. Then, f has the large

periods property

Proof. By the result of Abdenur-Crovisier, f is mixing and M is a homoclinic class. In

particular, M is an isolated homoclinic class. The conclusion follows from Corollary 3.3.2

3.4 Proof of Theorem A

In this section we put together the results we have seen so far in order to establish Theorem A.

Let us briefly recall our strategy. By Theorem 3.0.2 it suffices to approach a periodic measure

µq, for q ∈ H(p) by a Bernoulli measure. By genericity H(p) = H(q) and thus we have a

good transverse intersection between W u(f(q)) and W s(q). We will apply Proposition 3.1.7
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together with Theorem 3.1.9, to find a Bernoulli measure supported in a horseshoe “close”

to O(p).

Therefore, one thing we need to prove is that the Bernoulli measure we will find is indeed

close to the periodic measure µp. This is implied by the lemma below, which says that the

points in the horseshoe spent arbitrarily large portions of their orbit shadowing the orbit of

p. Its proof is completely elementary but is a worthwile exercise.

Lemma 3.4.1. Let p be a hyperbolic periodic point and let x ∈ W u(O(p)) t W s(O(p)).

Then, for each ε > 0 there exists U a neighborhood of O(p) ∪ O(x) such that for every

ergodic measure µ supported in the maximal invariant set ΛU one has d(µ, µp) < ε.

Proof. By definition of the weak star topology in the spae of Borel measures, we know that

there exists a finite set of continuous functions {ϕ1, ..., ϕr} and a positive number β such that

if
∣∣∫ ϕjdµ− ∫ ϕjdµp∣∣ ≤ β, for every j = 1, ..., r then d(µ, µp) < ε. By uniform continuity

there exists α > 0 such that if d(a, b) < α then |ϕj(a)− ϕj(b)| < β, for every j = 1, ..., r.

Fix B = B(O(p), α) and take integers n0, n1 > 0 with the following property:

• fn(x) ∈ B if, and only if n ≤ −n0 or n ≥ n1.

In other words, f−n0(x), f−n0+1(x), ..., fn1(x) are the only points in the orbit of x which lies

outside B. Denote m = n0 + n1. For every N large, take δ > 0 small enough such that if

Bi = B(f−n0+i(x), δ), for i = 0, ...,m, then y ∈ Bi for some i implies that f l(y) ∈ B, for every

l ∈ [m,N + m]. Given N large, such δ exists by continuity of f . Let c = max{‖ϕj‖C0 ; j =

1, ..., r}. Take N large enoug so that
m

N
<

β

8c
.

Let V = ∪mi=0Bi and take U = B ∪ V .

Let µ be an ergodic measure supported in ΛU . Then, there exists y ∈ ΛU such that if

µn = 1
n

∑n−1
l=0 δf l(y) then ∫

ϕjdµn →
∫
ϕjdµ, for every j = 1, ..., r.

Take n large enough so that
∣∣∫ ϕjdµ− ∫ ϕjdµn∣∣ < β

2
. Since O(y) ⊂ U , for every n large

enough, the string of orbit {y, ..., fn(y)} can be divided in two parts, the points inside B
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and the ones outside. Namely, consider the sets

J = {l ∈ [0, n]; f l(y) ∈ B}

and I = [0, n] \ J . By our choice of U we have that for each m elements of I there are at

least N elements in J . Thus, card(J) ≥ (N/m) card(I). This enables us to estimate, for

each j,∣∣∣∣∫ ϕjdµ−
∫
ϕjdµp

∣∣∣∣ ≤ ∣∣∣∣∫ ϕjdµ−
∫
ϕjdµn

∣∣∣∣+

∫
|ϕj − ϕj(p)|dµn

≤ β

2
+

1

n

∑
l∈J

|ϕj(f l(y))− ϕj(p)|+
1

n

∑
l∈I

|ϕj(f l(y))− ϕj(p)|

≤ ε

2
+

card(J)β

4n
+

2c card(I)

n
.

Since n = card(J) + card(I), we have that card(J)/n < 1 and

card(I)

n
≤

m
N

card(I)
card(J)

+ 1
<
m

N
<

β

8c
.

Thus, for each j, ∣∣∣∣∫ ϕjdµ−
∫
ϕjdµp

∣∣∣∣ ≤ β

2
+
β

4
+
β

4
≤ β.

This proves that d(µ, µp) < ε and establishes the result.

Now, we give the proof of Theorem A.

Proof of Theorem A. Let H(p) be an isolated topologically mixing homoclinic class of a C1

generic diffeomorphism f . Let µ be an invariant measure supported in H(p) and let ε > 0 be

arbitrarily chosen. By Theorem 3.0.2 there exists a measure µp̃, supported on a hyperbolic

periodic orbit O(p̃), with p̃ ∈ H(p), which is ε/2 close to µ.

Since f is C1 generic, Theorem 4.2.5 implies that H(p̃) = H(p). In particular, we have

that H(p̃) is topologically mixing.

From Corollary 3.2.10 we know that there exists a point q ∈ W s(p̃) t W u(f(p̃)). For every

small neighborhood U of O(p̃) ∪O(q), Proposition 3.1.8 tells us that the maximal invariant

set ΛU = ∩n∈Zfn(U) is a topologically mixing hyperbolic set. Moreover, by Lemma 3.4.1 we

may choose U small so that every ergodic measure ν supported in ΛU is ε/2 close to µp̃.
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Thus, if we take ν the Bernoulli measure supported in ΛU , whose existence is ensured by

Theorem 3.1.9, then ν is ε close to µ. This establishes the result.

Remark 3.4.2. The techniques employed above can be used to give a more geometric approach

to Sigmund’s result on the denseness of Bernoulli measures for hyperbolic topologically

mixing basic sets [S1]. Indeed, our use of the large periods property gives an alternative

to the symbolic approach of Sigmund and a proof of his result using our techniques would

proceed by the same argument as above, in the proof of Theorem A. The only difference

is to use Sigmund’s result on denseness of periodic measures in a hyperbolic basic set, [S2]

instead of Theorem 3.0.2.
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Chapter 4

Robust transitivity far from

tangencies

4.1 Statements

We say that a non-transversal intersection between W s(O(p)) and W u(O(p)) is a homo-

clinic tangency. We denote by HT (M) the set of diffeomorphisms exhibiting a homo-

clinic tangency. We will say that a diffeomorphism f is far from homoclinic tangencies

if f /∈ cl(HT (M)).

Given p and q hyperbolic periodic points with I(p) < I(q) we say that they form a

heterodimensional cycle if there exists x ∈ W s(O(p)) ∩W u(O(q)), with

dim (TxW
s(O(p)) ∩ TxW u(O(q))) = .0

and W u(O(p)) t W u(O(q)) 6= ∅.

We recall the statements of the results in [ACS], concerning robustly transitive diffeo-

morphisms.

Theorem B. There exists an open and dense subset among robustly transitive diffeomor-

phisms far from homoclinic tangencies formed by diffeomorphisms such that the whole man-

ifold is a homoclinic class.
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Theorem C. There is an open and dense subset among robustly transitive diffeomorphisms

far from homoclinic tangencies formed by robustly topologically mixing diffeomorphisms.

4.2 Some Tools

In this section, we collect some results that will be used in the proofs of the main results.

4.2.1 Perturbative Tools

We start with Franks’ lemma [F]. This lemma enable us to deal with some non-linear

problems using linear arguments.

Theorem 4.2.1 (Franks lemma). Let f ∈ Diff1(M) and U be a C1-neighborhood of f

in Diff1(M). Then, there exist a neighborhood U0 ⊂ U of f and δ > 0 such that if g ∈

U0(f), S = {p1, . . . , pm} ⊂ M and {Li : TpiM → Tg(pi)M}mi=1 are linear maps satisfying

‖Li −Dg(pi)‖ ≤ δ for i = 1, . . .m then there exists h ∈ U(f) coinciding with g outside any

prescribed neighborhood of S and such that h(pi) = g(pi) and Dh(pi) = Li.

One of the main applications of Franks lemma is to change the index of a periodic orbit,

after a perturbation, if the Lyapunov exponents of the orbit is weak enough. More precisely,

we can prove the following:

Lemma 4.2.2. Let f ∈ Diff1(M) having a sequence of hyperbolic periodic points pn with

some index s+ 1, having negative Lyapunov exponents arbitrarily close to zero. Then, there

exists g arbitrarily close to f having hyperbolic periodic points of indices s and s+ 1.

Proof: Given a neighborhood U of f let us consider δ > 0 given for this neighborhood and

U0 another small enough neighborhood of f . We will suppose that the sequence of periodic

points pn is such that the smallest eigenvalue λpn of Df τ(pn) with absolute value smaller than

1, has multiplicity one. The argument is similar in the other cases.

Our hypothesis says that

1

τ(pn)
log ‖Df τ(pn)|Es(pn)‖ =

1

τ(pn)
log |λpn|
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approaches zero as n grows. Now, let us consider En as the eigenspace of the eigenvalues

λpn , and {El} the other eigenspaces. We can define linear maps Li : Tf i(p)M → Tf i+1(p)M ,

equal to Df(f i(p)) in all subspaces Df i(p)El, but in Df i(p)En we choose Li satisfying

‖Li| Df iEn‖ = (1 + α)‖Df(f i(p))|Df iEn‖, where α > 0 depends on δ > 0. Then, Li is

δ−close to Df(f i(p)), and also preserves the eigenspace Df i(p)En.

Hence, using Franks lemma we can find g ∈ U such that pn still is a hyperbolic periodic

point and moreover Dg(f i(p)) = Li, where g depends on the periodic point pn. In particular,

En is a invariant subspace of TpnM for Dgτ(pn) and moreover:

‖Dgτ(p)(pn)|En‖ = (1 + α)τ(pn)λn.

Hence, by hypothesis, we can choose p equal some pn, in order to have, after the above

perturbation:
1

τ(p)
log ‖Dgτ(p)|En(p)‖ > 0.

Since Li can be chosen such that the other Lyapunov exponents of p keep unchanged, we

have that p has index s. To finish the proof, we just observe that, Franks lemma changes

the initial diffeomorphism only in a arbitrary neighborhood of the orbit of p, therefore the

neighborhood U could be chosen such that the hyperbolic periodic point p1 of f has a

continuation, which implies that p1(g) is also a hyperbolic periodic point of g with index

s+ 1. �

Another result that we shall use is Hayashi’s connecting lemma [H1]. This will be helpful

to create some heterodimensional cycles.

Theorem 4.2.3 (C1-connecting lemma). Let f ∈ Diff1(M) and p1, p2 hyperbolic periodic

points of f , such that there exist sequences yn ∈M and positive integers kn such that:

• yn → y ∈ W u
loc(p1, f)), y 6= p1; and

• fkn(yn)→ x ∈ W s
loc(p2, f)), x 6= p2.

Then, there exists a C1 diffeomorphism g C1−close to f such that W u(p1, g) and W s(p2, g)

have a non empty intersection close to y.
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As it is well known, this result implies that if f is a generic diffeomorphism having a

non-hyperbolic homoclinic class which contains two periodic points p and q with different

indices then there exist arbitrarily small perturbations of f such that p and q belongs to a

heterodimensional cycle.

4.2.2 Generic Results

The result below, of Bonatti and Crovisier [BC], proves that a large class of transitive

diffeomorphism have the property that the whole manifold coincides with a homoclinic class.

Theorem 4.2.4 (Bonatti and Crovisier). There exists a residual subset R of Diff1(M) such

that for every transitive diffeomorphism f ∈ R if p is a hyperbolic periodic point of f then

M = H(p, f).

Another generic result is the following

Theorem 4.2.5 (Theorem A, item (1), [CMP]). There exists a residual subset R of

Diff1(M) such that for every f ∈ R if two homoclinic classes H(p1, f) and H(p2, f) are

either equal or disjoint.

The next result, from [ABCDW], says that generically, homoclinic classes are index

complete.

Theorem 4.2.6 (Theorem 1 in [ABCDW]). There is a residual subset R ∈ Diff1(M) of

diffeomorphisms f such that, every f ∈ R and any homoclinic class containing hyperbolic

periodic points of indices i and j, also contains hyperbolic periodic points of index k for every

i ≤ k ≤ j.

Crovisier, Sambarino and Yang in [CSY] showed that for any diffeomorphism f in an

open and dense subset far from homoclinic tangencies, every homoclinic class of f has a

kind of strong partial hyperbolicity. More precisely, the difference is that the “partially

hyperbolic splitting” found by them could have either one or both trivial extremal bundles.

In this last scenario, by our definition the diffeomorphism would not be partially hyperbolic.

However, by an abuse of notation, we will continue calling it partially hyperbolic as in [CSY].
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Their result gives other important properties. Like, information of the minimal and maximal

indices of periodic points inside the homoclinic class. More precisely:

Theorem 4.2.7 (Theorem 1.1(2) in [CSY]). There is an open and dense subset A ⊂

Diff1(M) − {cl(HT )} such that for every f ∈ A, any homoclinic class H(p) is a partially

hyperbolic set of f

TH(p)M = Es ⊕ Ec
1 ⊕ . . . Ec

k ⊕ Eu,

with dim Ec
i = 1, i = 1, . . . , k, and moreover the minimal stable dimension of the periodic

points of H(p) is dim(Es) or dim(Es) + 1. Similarly the maximal stable dimension of the

periodic orbits of H(p) is dim(Es) + k or dim(Es) + k − 1. For every i, 1 ≤ i ≤ k there

exists periodic points in H(p) whose Lyapunov exponent along Ec
i , is arbitrary close to 0.

4.3 Robustly large Homoclinic class

In this section we shall prove Theorem B as a consequence of the following result:

Theorem 4.3.1. Let f ∈ Diff1(M) be a robustly transitive strong partially hyperbolic dif-

feomorphism, with TM = Es⊕Ec
1⊕ . . . Ec

k⊕Eu, having hyperbolic periodic points ps and pu

with index s and d− u, respectively, where s = dim Es and u = dim Eu. Then, there exists

an open subset Vf whose closure contains f , such that M = H(ps(g)) = H(pu(g)) for every

g ∈ Vf .

Before we prove Theorem 4.3.1, let us see how it implies Theorem B.

Proof of Theorem B. First we observe that it suffices to deal with the interior of non-

hyperbolic robustly transitive diffeomorphisms, since in the Anosov case the whole manifold

is robustly a homoclinic class, which is a consequence of the shadowing lemma.

Recall that TNH(M) ⊂ T (M) denotes the interior of non-hyperbolic robustly transitive

diffeomorphisms far from homoclinic tangencies. Hence, by Theorem 4.2.4 and Theorem

4.2.7 there exists a residual subset R in TNH(M) such that if f ∈ R then:

a) M coincides with a homoclinic class;
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b) f is partially hyperbolic, with the central bundle admitting a splitting in one dimension

sub bundles. I.e., TM = Es ⊕ Ec
1 ⊕ . . .⊕ Ec

k ⊕ Eu;

c) either there exist a hyperbolic periodic point with index s, or there exists hyperbolic

periodic points with index s+ 1 whose the (s+ 1)−Lyapunov exponent is arbitrarilly

close to zero. Where s = dim Es.

d) either there exist a hyperbolic periodic point with index d−u, or there exists hyperbolic

periodic points with index d − u − 1 whose the (d − u − 1)−Lyapunov exponent is

arbitrary close to zero. Where u = dim Eu.

According to Theorem 4.2.7, Es and/or Eu could be trivial. However, this cannot happen

in our situation. Indeed, we claim that both Es and Eu are non-trivial. In particular, f is

strongly partially hyperbolic. To see this, suppose by contradiction the existence of f ∈ R

with Es trivial. Hence, by item c) above, f should have either a source or hyperbolic periodic

points with index one, with the only one Lyapunov negative exponent being arbitrary close

to zero. In the last case, we can use Lemma 4.2.2 to perturb f in order to find also a source.

Therefore, if Es is trivial, then we can find a diffeomorphism g close to f , having a source,

which is a contradiction with the transitivity of g. Similarly we conclude that Eu is also

non-trivial. Henceforth, item b) above can be replaced by:

b’) every f ∈ R is strongly partially hyperbolic.

Moreover, by the same argument above using Lemma 4.2.2, after a perturbation we can

assume that f has hyperbolic periodic points of indices s and d − u. Thus, we can find a

dense subset R1 inside TNH(M) formed by robustly transitive strong partially hyperbolic

diffeomorphisms f satisfying the hypothesis of Theorem 4.3.1. Then, considering Vf given

by Theorem 4.3.1 for every f ∈ R1 we have that

A =
⋃
f∈R1

Vf ,

is an open and dense subset of TNH(M) ⊂ T (M). By Theorem 4.3.1, for every diffeo-

morphism in A the whole manifold M coincides with a homoclinic class. This ends the

proof
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In the sequence we prove some technical results which are key steps in the proof of

Theorem 4.3.1.

The following result allows to find open sets of diffeomorphisms for which the topological

dimension of stable (and unstable manifold) of hyperbolic periodic points is larger than the

differentiable dimension.

Lemma 4.3.2. Let f ∈ Diff1(M) be a robustly transitive strong partially hyperbolic diffeo-

morphism. Suppose there are hyperbolic periodic points pj, j = i, i + 1, . . . , k, with indices

I(pj) = j for f . Hence, given any small enough neighborhood U of f , where is defined the

continuation of the hyperbolic periodic points pj, there exists an open set V ⊂ U such that

for every g ∈ V:

W s(pk(g)) ⊂ cl(W s(pk−1(g))) ⊂ . . . ⊂ cl(W s(pi+1(g))) ⊂ cl(W s(pi(g))), and

W u(pi(g)) ⊂ cl(W u(pi+1(g))) ⊂ . . . ⊂ cl(W u(pk−1(g))) ⊂ cl(W u(pk(g))).

To prove the above lemma we will use the following result which is a consequence of

Proposition 6.14 and Lemma 6.12 in [BDV], which are results of Diaz and Rocha [DR]. It

is worth to point out that this result is a consequence of the well known blender technique,

which appears by means of unfolding a heterodimensional co-dimensional one cycle far from

homoclinic tangencies.

Proposition 4.3.3. Let f be a C1 diffeomorphism with a heterodimensional cycle associated

to saddles p and p̃ with indices i and i+1, respectively. Suppose that the cycle is C1−far from

homoclinic tangencies. Then there exists an open set V ⊂ Diff1(M) whose closure contains

f such that for every g ∈ V

W s(p̃(g)) ⊂ cl(W s(p(g))) and W u(p(g)) ⊂ cl(W u(p̃(g))).

Proof of Lemma 4.3.2. Since f is a robustly transitive strong partially hyperbolic diffeomor-

phism, we can assume that every diffeomorphism g ∈ U is transitive and is strong partially
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hyperbolic, reducing U if necessary. In particular, U is far from homoclinic tangencies, U ⊂

(cl(HT (M)))c. Now, using the transitivity of f , there are points xn converging to the stable

manifold of pi+1 whose a sequence of iterates fmn(xn) is converging to the unstable manifold

of pi. Hence, we can use Hayashi’s connecting lemma, to perturb the diffeomorphism f to f̃

such that W u(pi(f̃)) intersects W s(pi+1(f̃)), which one we could assume be transversal after

a perturbation, if necessary, since dim W u(pi(f̃)) + dim W s(pi+1(f̃)) > d. Hence, we can

use once more the connecting lemma to find f1 ∈ U close to f̃ exhibiting a heterodimensional

cycle between pi(f1) and pi+1(f1), since f̃ is also transitive. Moreover, and in fact this is

needed to apply Proposition 4.3.3, the intersection between W s(pi(f1)) and W u(pi+1(f1))

could be assumed quasi-transversal in the sense that TqW
s(pi(f1)) ∩ TqW u(pi+1(f1)) = {0}.

If this is not true, we can do a perturbation of the diffeomorphism using Franks lemma, to

get such property.

Thus, since f1 is far from homoclinic tangencies, we can use Proposition 4.3.3 to find an

open set V1 ⊂ U such that

W s(pi+1(g)) ⊂ cl(W s(pi(g))) and W u(pi(g)) ⊂ cl(W u(pi+1(g))),

for every g ∈ V1.

Now, since f1 is also robustly transitive we can repeat the above argument to find f2 ∈ V1

exhibiting a heterodimensional cycle between pi+1 and pi+2. Thus, by Proposition 4.3.3 there

exists an open set V2 ⊂ V1, such that

W s(pi+2(g)) ⊂ cl(W s(pi+1(g))) and W u(pi+1(g)) ⊂ cl(W u(pi+2(g))),

for every g ∈ V2.

Repeating this argument finitely many times we will find open sets Vk−i ⊂ Vk−i−1 ⊂

. . . ⊂ V1 such that

W s(pi+j(g)) ⊂ cl(W s(pi+j−1(g))) and W u(pi+j−1(g)) ⊂ cl(W u(pi+j(g))),

for every g ∈ Vj, and j = 1, . . . k − i.

Taking V = Vk−i the result follows.
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The next result use properties of a partially hyperbolic splitting to guarantee that some

special kind of dense sub-manifolds inM should intersect each other transversally and densely

in the whole manifold.

Lemma 4.3.4. Let f be a partially hyperbolic diffeomorphism on M with non trivial stable

bundle Es, and having a hyperbolic periodic point p with index s = dim Es. If W s(O(p))

and W u(O(p)) are dense in M , then M = H(p).

Proof. Let Es⊕Ec⊕Eu be the partially hyperbolic splitting. Using Remark 2.1.1 we know

that the local strong stable manifolds have uniform size.

For any x ∈M , since W u(O(p)) is dense, there exists q ∈ W u(O(p)) arbitrarily close to x.

Also, by hypothesis of the index of p, and the partially hyperbolic structure, it should be true

that TqW
u(O(p)) = Ec ⊕ Eu. Hence, by the continuity of the local strong stable manifold,

W ss
loc(y) should intersect transversally W u(O(p)) in a point close to q, for any point y close

enough to q. In particular, since W s(O(p)) is also dense, there exists q̃ ∈ W s(O(p)) such

that W ss
loc(q̃) intersects transversally W u(O(p)). However, W ss

loc(q̃) is contained in W s(O(p)),

which implies there is a transversal intersection between W s(O(p)) and W u(O(p)) close to

q, in particular, close to x.

Finally, using the above lemmas we give a proof of Theorem 4.3.1.

Proof Theorem 4.3.1. Since ps and pu are hyperbolic periodic points, we take U small enough

such that every diffeomorphism g ∈ U has defined the continuations ps(g) and pu(g). Re-

ducing U if necessary, we could also assume that every g ∈ U is a strong partially hyperbolic

diffeomorphism with same extremal bundles dimension as in the partially hyperbolic decom-

position of TM as f , which follows by the continuity of the partially hyperbolicity and the

existence of ps and pu robustly.

Now, using Theorem 4.2.4 together with Theorem 4.2.6 we can find a residual subset R

in U such that M coincides with a homoclinic class for every g ∈ R, and moreover g has

hyperbolic periodic points of any index in [s, d− u] ∩ N.

We fix g ∈ R, and let ps = ps(g), ps+1, . . ., pd−u = pu(g) be hyperbolic periodic points

of g with indices s, s + 1, . . ., d − u, respectively. Also, for all n ∈ N, let Vn ⊂ U small
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neighborhoods of g, such that if gn ∈ Vn, then gn converges to g in the C1−topology, when

n goes to infinity.

Now, since g is still a robustly transitive strong partially hyperbolic diffeomorphism

having hyperbolic periodic points of all possible indices, we denote by Ṽn ⊂ Vn the open sets

given for g and Vn by Lemma 4.3.2. Hence, using the invariance of the stable manifold of

hyperbolic periodic points, by Lemma 4.3.2 we have the following:

cl(W s(O(pd−u(r)))) ⊂ cl(W s(O(pd−u−1(r)))) ⊂ . . . ⊂ cl(W s(O(ps(r)))), (4.1)

for every r ∈ Ṽn.

Claim: W u(O(ps(r))) and W s(O(pd−u(r))) are dense in M , for every r ∈ Ṽn.

Since r is transitive, there exist x ∈ M such that the forward orbit of x is dense in M .

Now, since r is partially hyperbolic, for Remark 2.1.1 there exists the strong stable foliation

that integrates the direction Es. Moreover, these leafs have local uniform length. Hence,

as done in the proof of Lemma 4.3.4, we can take rj(x) close enough to ps(r) such that

W ss(x), the strong stable leaf containing x, intersects the local unstable manifold of ps(r),

W u
loc(ps(r)). Therefore, since points in the same strong stable leaf have the same omega

limit set, we have that W u(O(ps(r))) is dense in the whole manifold M . We can repeat

this argument using also the existence of a point y having a dense backward orbit, and the

existence of the strong unstable foliation to conclude that W s(O(pd−u(r))) is also dense in

M .

Thus, by equation (4.1) and the Claim, we have that W s(O(ps(r)))) is dense in M .

Similarly, we can show that W u(O(pd−u(r)))) is also dense in M .

Provided that r is strong partially hyperbolic, and that W s(O(pi(r)))) and

W u(O(pi(r)))) are dense in M , for i = s and d − u, we can apply Lemma 4.3.4 for f and

f−1 to conclude that

M = H(ps(r)) = H(pd−u(r)),

for every r ∈ Ṽn.
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Hence, the proof is finished defining Ṽg = ∪Ṽn, and

Vf =
⋃
g∈R

Ṽg,

which is an open and dense subset of U , and hence contains f in its closure.
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Chapter 5

The Poincaré-Hopf index

In this chapter we introduce the index of a vector field in a compact region which will play,

in Chapters 6 and 7 a role similar to the Euler characteristic for existence of fixed points.

5.1 The index of an isolated zero

In all this section we fix Md a d-dimension Riemannnian manifold, and X a C1 vector field

over M .

The Long Tubular Flow Theorem (Proposition 1.1, pag 93 in [dMP]) asserts that near a

regular orbit wich is not periodic the topological behaviour of the vector field is very simple:

it is conjugated to a translation. The complicated topological behaviour occurs in periodic

orbits and zeros.

In this section, we shall describe an invariant which measures in some, this complicated

topological behaviour near the zeros.

Let x ∈ M be an isolated zero of X. The Poincaré-Hopf index Ind(X, x) is defined

as follows: consider local coordinates ϕ : U → Rd defined in a neighborhood U of x. Up

to shrink U one may assume that x is the unique zero of X in U . Thus for y ∈ U \ {x},

X(y) expressed in that coordinates is a non vanishing vector of Rd, and 1
‖X(y)‖X(y) is a unit

vector hence belongs to the sphere Sd−1. Consider a small ball B centered at x. The map

61



y 7→ 1
‖X(y)‖X(y) induces a continuous map from the boundary ∂B to Sd−1. The Poincaré-

Hopf index Ind(X, x) is the topological degree of this map.

An intuitive description of the index goes as follows: at every point of ∂B the vector

field X is pointing at some direction, which can be intified as a point in Sd−1. The index

measures how many turns X is given over ∂B.

It turns out, however, that studing the local topological behaviour of a vector field at an

isolated zer can lead to deep consequences. Indeed, we have the following result.

Theorem 5.1.1 (Poincaré-Hopf). Let M be a closed manifold, and let X ∈ X1(M) be a

vector fields with only finitely many zeros. Then,∑
x∈Zero(X)

Ind(X, x) = χ(M),

where χ(M) is the Euler characteristic

Poincaré-Hopf Theorem is a remarkable result: at one hand, one has a dynamical object,

the flow of a vector field. On the other hand, one has an important topological invariant

of the manifold, the Euler characteristic. The theorem relates these two objects through an

elegant and simple formula, in which the key concept is the Poincaé-hopf index. Through this

formula, topological informations of the manifold can lead to dynamical consequences and

dynamical properties can establish topological results. A simple ilustration is the following

Corollary 5.1.2. Let M be a closed manifold with χ(M) 6= 0. If X ∈ X1(M) then

Zero(X) 6= ∅.

For a proof of Theorem 5.1.1, we recommend [Mi], Chapter 6. Looking at this proof one

notice that the properties of the index are actually related with the behaviour of X in a

neighborhood of some set of zeros, and not just a single isolated zero. In the sequel we shall

describe how to perform this generalization.
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5.2 The index of a vector field in a compact region

So we fix Md a manifold and X ∈ X1(M). Assume that U ⊂ M is a compact region and

that X does not vanish on the boundary ∂U . The Poincaré-Hopf index Ind(X,U) is defined

as follows: consider a small perturbation Y of X so that the set of zeros of Y in U is finite.

Poincaré-Hopf index Ind(X,U) is the sum of the indices of the zeros of Y in U .

Clearly, one has to check that this sum does not depend on the perturbation Y of X.

This is one of the goals of this section.

Proposition 5.2.1. If {X t}t∈[0,1] is a continuous family of C1 vector fields so that Zero(X t)∩

∂U = ∅, then Ind(X t, U) does not depend on t ∈ [0, 1].

This proposition will be proved in the next section, where we shall give a very useful tool

for index calculations.

5.3 Trivializations of the tangent bundle and the index

Let U ⊂M be a compact region such that Zero(X) ∩ ∂U = ∅.

We shall assume in this section that ∂U is a codimension one submanifold and U is en-

dowed with d continous vector fieldsX1 . . . Xd so that, at every point z ∈ U , (X1(z), . . . , Xd(z))

is a basis of the tangent space TzM . When one has such a basis the index can be calculated

in terms of the topological behaviour of X|∂U relative to this basis.

More precisely, the basis (X1, ..., Xd) endows U with an orientation. One can express the

vector field X in this basis so that the vector X(y), for y ∈ U , can be considered as a vector

of Rd. One defines in such a way a map X : ∂U → Sd−1 by y 7→ X (y) = 1
‖X(y)‖X(y).

As ∂U has dimension d − 1, and is oriented as the boundary of U , this map has a

topological degree. We have the following

Lemma 5.3.1. With the notations above the topological degre of X is Ind(X,U), i.e. for
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every vector field Y close to X and with finitely many zeros inside U , we have∑
y∈Zero(Y )

Ind(Y, y) = deg(X )

Proof. Let Y be a vector field with with finitely many zeros inside U and denote by {σ1, ..., σn}

the set of zeros of Y inside U . Consider B1, ..., Bn small closed balls centered at each σj such

that the balls are disjoint and contained in int(U). If x ∈ U Write Y (x) =
∑d

l=1 αl(x)X l(x).

If x /∈ {σ1, ..., σn}, we can define

Y(x) =
1√∑d

l=1 αl(x)2

(α1(x), ..., αd(x)) ∈ Sd−1.

Consider the manifold with boundary N = U \ ∪nj=1Bj. Then, the map restriction Y|∂N has

Figure 5.1: N = U \ ∪nj=1Bj

zero topological degree (see Lemma 1, pg. 28 in [Mi]) and thus

n∑
j=1

deg(Y|∂Bj) = deg(Y|∂U).

Notice that we can choose the balls Bj small enough such that, by definition, deg(Y|∂Bj) =

Ind(Y, σj). One concludes that

n∑
j=1

Ind(Y, σj) = deg(Y|∂U).

It remains to prove that if Y is close enough to X then deg(Y|∂U) = deg(X|∂U). For this,

let 0 < ε < min{‖X(x)‖;x ∈ ∂U}. Such number ε exists due to the compactness of U , and

the assummption that X is non vanishing at the boundary of U .

Assume that ‖Y (x) − X(x)‖ < ε, for every x ∈ U . Consider the family of vector fields

Zt = X + t(Y −X), for t ∈ [0, 1]. Notice that Zero(Zt) ∩ ∂U = ∅, since if Zt(x) = 0 then

‖X(x)‖ = t‖Y (x)−X(x)‖ ≤ ε, and thus x /∈ ∂U , due to our choice of ε.
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Write Zt(x) =
∑d

l=1 α
t
l(x)X l(x), and consider the family of maps Z t : ∂U → Sd−1,

defined by Z t(x) = 1√∑d
l=1 α

t
l(x)2

(αt1(x), ..., αtd(x)). Since the family of vector fields Zt is

continuous with t, the family Z t is a homotopy between X|∂U and Y|∂U . This proves that

deg(Y|∂U) = deg(X|∂U) and establishes the result.

Using Lemma 5.3.1 we shall give a proof of Proposition 5.2.1

Proof of Proposition 5.2.1. We begin proving the result in the special case where Zero(X t)

is finite for every t. For this we prove the

Claim 2. Let Y be a vector field with Zero(Y ) ∩ U finite and disjoint from ∂U . Then, for

every vector field Z which is C1 close enough to Y with Zero(Z) finite,

Ind(Y, U) = Ind(Z,U).

Proof. Fix σ ∈ Zero(Y ) ∩ U Consider a small ball B centered at σ. Shrinking B, we may

assume that there exists a trivialization for the tngent bundle TB. With this trivializa-

tion, since Ind(Y,B) = Ind(Y, σ), we apply Lemma 5.3.1 and conclude that Ind(Y, σ) =∑
z∈Zero(Z)∩B Ind(Z, z), for every Z close enough to Y . Summimng-up over all the zeros of

Y inside U , one obtains the result.

Now, let X t be a continuous family of C1 vector fields such that Zero(X t) is finite for

every t ∈ [0, 1]. Fix c ∈ N. By Claim 2 we have that {t ∈ [0, 1]; Ind(X t, U) = c} is open and

closed in [0, 1]. Indeed, openess is direct from Claim 2. For closedness, take tn → t such that

Ind(X tn , U) = c. By Claim 2, since the family is continuous, Ind(X tn , U) = Ind(X t, U), for

every n large, and so Ind(X t, U) = c. This proves that Ind(X t, U) = Ind(Xo, U), for every

t ∈ [0, 1].

Claim 3. For every t there exists εt such that if Y and Z have only finitely many zeros inside

U and are εt close to X in the C1 topology then
∑

y∈Zero(Y ) Ind(Y, y) =
∑

z∈Zero(Z) Ind(Z, z).

Proof. Since the space of vector fields is locally convex, there exists, if Y and Z are close

enough to X and since the set of vector fields with only finitely many zeros is open and

dense there exists a continuous path of vector fields, each one of them with only finitely

65



many zeros, joinning Y to Z. Since the index sum is constant along the path, by the above,

the claim is proved.

To complete the proof one has to notice that, since the set of vector fields with finitely

many zeros in U is open and dense in the C1 topology, given a continuous family X t it is

possible to find a family Y t, arbitrarilly C1 close of the original family, such that Y t has

finitely many zeros for every t. To complete the proof, one has to notice that by choosing the

family Y t close enough, one may require that Ind(Y t, U) = Ind(X t, U), for every t. Indeed,

by Claim 3 we can cover the path X t with finitely many balls such that the index sum does

not chang on each ball. Then, one just has to choose Y t close enough so that it is contained

in the union of these balls.

Let us also give a simple application of Lemma 5.3.1.

Proposition 5.3.2. Let D be a topological disk (homeomorphic to D2), and let X be a vector

field, with no zeros in the boundary. If Ind(X,D) 6= 0 then X has a zero in the interior of

D.

Proof. Assume on the contrary that X has no zeros in D. Take a small flow box [−ε, ε] ×

[−ε, ε]. Take a smooth function ϕ : R → [0, 1] such that ϕ(x) = 0 if and only if x = 0

and ϕ ≡ 1 outside (− ε
2
, ε

2
). Then, one may reparametrize Y (x, y) = ϕ(x)X(x, y), for every

(x, y) ∈ [−ε, ε]× [−ε, ε]. Then, the new vector field is everywhere collinear with X, vanishes

only at the origin and equals to X outside [−ε, ε] × [−ε, ε]. By Lemma 5.3.1, Ind(X,D) =

Ind(Y, (0, 0)). However, since Y (in the flow box) is collinear with the coordinate field ∂x,

one conludes that Ind(Y, (0.0)) = 0.

5.4 The index of an isolated compact set of zeros

We say that a compact subset K ⊂ Zero(X) is isolated if there is a compact neighborhood

U of K so that K = Zero(X) ∩ U ; the neighborhood U is called an isolating neighborhood

of K. The index Ind(X,U) does not depend of the isolating neighborhood V of K. Thus

Ind(X,U) is called the index of K and denoted Ind(X,K).
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Example 5.4.1. Let M be a closed manifold and K = Zero(X). Then, Poincaré-Hopf Theo-

rem gives Ind(X,K) = χ(M).

5.5 Topological degree of a map from T2 to S2

In this section we prove a lemma which will be used in Chapter 7 as a tool for index

calculations.

We consider the sphere S2 (unit sphere of R3) endowed with the north and south poles

denoted N = (0, 0, 1) and S = (0, 0,−1) respectively.

We denote by S1 ⊂ S2 the equator, oriented as the unit circle of R2 × {0}. For

p = (x, y, z) ∈ S2 \ {N,S} we call projection of p on S1 along the meridians the point

1√
x2+y2

(x, y, 0), which is intersection of S1 with the unique half meridian containing p.

We consider the torus T2 = R/Z×R/Z. The result of this section if the following, which

corresponds to Corollary 2.5 in [BS].

Figure 5.2: Proposition 5.5.1

Proposition 5.5.1. Let Φ: T2 → S2 be a continuous map so that Φ−1(N) = {0}×R/Z and

Φ−1(S) = {1
2
} × R/Z.

Let ϕ+ : {1
4
} × R/Z → S1 (resp. ϕ− : {3

4
} × R/Z → S1) be defined as follows: the point

ϕ+(p) (resp. ϕ−(p)) is the projection of Φ(p) ∈ S2 \ {N,S} on S1 along the meridians of S2.

Then

| deg(Φ)| = | deg(ϕ+)− deg(ϕ−)|

where deg() denotes the topological degree, and {1
4
}×R/Z and {3

4
}×R/Z are endowed with
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the positive orientation of R/Z.

Proof. Denote d+ = deg(ϕ+) and similarly d− = deg(ϕ−). Consider polar coordinates (θ, φ)

on S2. For each φ ∈ [0, π] consider the map F φ
t : S2 \ {S,N} → S2 \ {N,S} given by

F φ
t (cos θ sinα, sin θ sinα, cosα) = (cos θ sin((1−t)α+tφ), sin θ sin((1−t)α+tφ), cos((1−t)α+tφ)).

Then, F φ
t is a homotopy between Id and the projection onto the φ-equator. Take ψ : [0, 1]→

Figure 5.3: The projection onto the φ-equator of S2 \ {N,S}.

[0, π] given by ψ(r) = 4πr(1− r) and consider the continuous map f : [0, 1]×T2 → S2 given

by

ft(r, s) =

F
ψ(r)
t (Φ(r, s)) if r 6= 0, 1

2

Φ(r, s) if r = 0, 1
2
.

.

Then ft is a homotopy between Φ an the map f := f1 which send each circle {r} ×R/Z

onto the ψ(r)-equator, for r 6= 0, 1/2, by projecting down Φ(r, s). Notice that for r ∈

(0, 1/2), f |{r}×R/Z is a degree d+ covering of the circle, while for r ∈ (1/2, 1) f |{r}×R/Z is a

degree d− covering of the circle. Thus, we are left to prove that | deg(f)| = |d+ − d−|.

For this, take a regular value of f in a ψ(r)-equator, for r ∈ (0, 1/2). Then, this point

has exactly d+ pre-images in the circle {r} ×R/Z. Similarly, a regular value of f in a ψ(r)-

equator, for r ∈ (1/2, 1), has exactly d− preimages in the circle {r} ×R/Z. Fix s, and let v

be a vector tangent to the arc of circle (0, 1/2)×{s} in T2. Let u be a vector tangent to the

arc (1/2, 1) × {s}. Assume that the base points of v and u lies in the same level f−1(p) of

f . Then, on has that f∗u = λv, for some λ < 0. With these facts it is easy to conlude that

the Brower degree of f is ±(d+ − d−).
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Chapter 6

Commuting Vector Fields

In this chapter we introduce a very rich dynamical object: commuting vector fields. As we

shall see below, two commuting vector fields over a manifold M are the same as an action

of R2, and n-commuting vector fields are the same as an action of Rn. The main problem

about this object which shall concern this part of the thesis is the existence of fixed points.

Let us formally introduce commuting vector fields. Let M be a (not necessarily compact)

manifold and X, Y be C1-vector fields on M . Picard’s Theorem asserts that the flow of X

and Y are locally defined but they may not be complete.

Definition 6.0.2 (Commuting Vector Fields). We say that X and Y commute if for every

point x there is t(x) > 0 such that for every s, t ∈ [−t(x), t(x)] the compositions Xt ◦ Ys(x)

and Ys ◦Xt(x) are defined and coincide.

The existence of two commuting vector fields over a closed manifold M is equivalent to

the existence of an action of R2 over M . Indeed, let X and Y be two commuting vector

fields. Define a map ϕ : R2 ×M → M by ϕ(s,t)(p) = Xs ◦ Yt(p). We claim that ϕ is an

action. Indeed, the group property follows from the commutation as follows:

ϕ(s,t)+(r,l)(p) = ϕ(s+r,t+l)(p) = Xs+r ◦ Yt+l(p)

= Xs ◦Xr ◦ Yt ◦ Yl(p) = Xs ◦ Yt ◦Xr ◦ Yl(p)

= ϕ(s,t) ◦ ϕ(r,l)(p)

Conversely, given an action ϕ : R2 × M → M , we have flows Xt(p) = ϕ(t,0)(p) and
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Yt(p) = ϕ(0,t), which commute, since R2 is abelian. By taking the velocity of these flows one

obtains two commuting vector fields. Thus, in the same way that the flow of a single vector

field is a R-action over M , the combined flow of two commuting vector fields is a R2-action

over M . For more detailed informations, see [CN].

We have seen in Corollary 5.1.2 that the Euler charateristic is a good topological invariant

to indicate the existence of zeros for actions of R. It is natural to look for actions of R2

is and ask if the same assumption about non-vanishing of the Euler characteristic can lead

to the same conclusions about existence of singularities. Notice that for actions of R2, for

instance, there are two types of singularities: those which generate one-dimensional orbits

and the fixed points, which correspond to common zeros for the vector fields generating the

action.

Concerning the existence of fixed points, there exists a satisfactory solution on surfaces.

It is a result of Elon Lima [Li2] in the sixties.

In this Chapter, we shall relate existence of common zeros for commuting vector fields

with the Poincaré-Hopf index, defined in Chapter 2, and see applications of this connection.

In particular, we will present a proof of Lima’s Theorem.

In Chapter 7 we shall give our contribution to this question in dimension three.

This Chapter is organized in the following way. In Section 6.1 we study further commut-

ing vector fields and prove some basic relations. In Section 6.2 we show Lima’s beautiful

proof [Li1] in S2, based on Poincaré-Bendixon’s Theorem. Section 6.3 is devoted to the re-

lation between the Poincaré-Hopf index and common zeros for commuting vector fields. In

particular, we use this relation to obtain Lima’s Theorem on any closed surface with non-

vanishing Euler characteristic. In Sections 6.4 and 6.5 we discuss some results in dimension

three that motivates the approach we shall use in the next chapter.

6.1 Commuting vector fields: basic properties

In all this section, unless otherwise stated, X, Y ∈ X1(M) are two commuting vector fields.

We shall prove here some very basic relations. They reflect the heuristic idea that the flow
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of X is a symmetry of the flow of Y , and vice-versa. This heuristic idea can be formulated

in more precise terms by saying that the flow of Y is invariant under conjugation by the

diffeomorphism Xt, for every t for which the flow of X is defined. Nevertheless, we shall give

an elementary presentation of these basic relations.

6.1.1 Equivalent definitions

The first property we shall present is the invariance of X under the tangent flow of Y .

This can be seen as an infinitesimal version of the commutation relation and in fact this

infinetesimal version implies the commutation.

Lemma 6.1.1. For every x ∈M , and any t ∈ R for which Yt is defined, one has

DYt(x)X(x) = X(Yt(x)).

Conversely, given X, Y ∈ X1(M) (not necessarily commuting) if DYt(x)X(x) = X(Yt(x)),

for every x ∈M , and any t ∈ R for which Yt is defined, then X and Y commute.

Proof. Assume that X and Y commute. Let t ∈ R be such that the flow of Y at x is

defined until time t. We shall prove that DYt(x)X(x) = X(Yt(x)). The only thing one has

to take care is that the commutation is defined only for small times. Nonetheless, this can

be overcomed by a standard connectedness argument.

Indeed, notice that there is a small neighborhood V of x in which the local diffeomorphism

Yt is defined. In particular, for every point y ∈ V , the integral curve Y[0,t](y) is defined.

Consider now a small X-integral curve X[−s0,s0](x), for some s0 > 0, contained in V . We

require that s0 is so small that the integral curve X[−s0,s0](Yt(x)) is defined, which is ensured

by the Picard’s Theorem. We claim that Yt ◦ Xs(x) = Xs ◦ Yt(x), for every s ∈ [−s0, s0].

Indeed, consider the set T = {r ∈ [0, t];Yr ◦ Xs(x) = Xs ◦ Yr(x), for every s ∈ [−s0, s0]}.

Then, T is obviously closed and since X and Y commute T is open. Thus T = [0, t], which

proves our claim.

Now, Xs(x) is tangent to X(x) at s = 0 and the integral curve Xs(Yt(x)) is tangent to

X(Yt(x)) at s = 0. The above claim proves that, for s small, the local diffeomorphism Yt
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carries the integral curve Xs(x) into the integral curve Xs(Yt(x)), and thus DYt(x)X(x) =

X(Yt(x)).

Conversely, assume that DYt(x)X(x) = X(Yt(x)), for every x ∈ M , and any t ∈ R for

which Yt is defined. Take ε > 0 and U a neighborhood of x, both of them small enough

such that the flows Xs and Yt are defined on U , for every s, t ∈ [−ε, ε]. Fix t ∈ [−ε, ε] and

consider the curve γ : s 7→ Yt ◦Xs(x). By our assumption, for every s ∈ [−ε, ε] the velocity

of this curve at s is

DYt(Xs(x))X(Xs(x)) = X(Yt ◦Xs(x)).

Thus, γ is the integral curve of X through Yt(x). This proves that Yt ◦Xs(x) = Xs ◦ Yt(x),

for every s, t ∈ [−ε, ε] and establishes the lemma.

Remark 6.1.2. The connectedness argument that we employed in the proof of Lemma 6.1.1, if

pushed a little further, gives the following: for every x ∈M , for every (s, t) ∈ R2 such that the

compositions Xs◦Yt(x) and Yt◦Xs(x) are defined, we have the equality Xs◦Yt(x) = Yt◦Xs(x).

The infinitesimal version given by Lemma 6.1.1 can be used to prove a more popular

definition of commutation: the vanishing of the Lie bracket.

Lemma 6.1.3. X, Y ∈ X1(M) commute if, and only if, [X, Y ] = 0.

Before giving the proof, we quote a formula for the Lie bracket.

Lemma 6.1.4. Let X, Y ∈ X1(M) be two vector fields and x ∈M . Then,

[X, Y ](x) = lim
t→0

1

t
{Y (Xt(p))−DXt(p)Y (p)} .

For a proof see for instance Proposition 5.4, Chapter 0, in [dC].

Proof of Lemma 6.1.3. Assume that X, Y ∈ X1(M) commute, fix x ∈ M . By Lemma 6.1.1

we have that

[X, Y ](x) = lim
t→0

1

t
{Y (Xt(p))−DXt(p)Y (p)}

= lim
t→0

1

t
{Y (Xt(p))− Y (Xt(p))} = 0.
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Conversely, assume that [X, Y ] = 0. We shall apply Lemma 6.1.1 to prove that X and Y

commute. Take x ∈ M and s ∈ R so that the flow Xs is defined on a neighborhood U of x.

Assume by contradiction that

DXs(x)Y (x) 6= Y (Xs(x)).

By reducing U , we may assume that Xs(U) is the domain of some local trivialization for

the tangent bundle and we may use the norm ‖.‖ induced by this local trivialization. Notice

that the topology induced in the tangent bundle of Xs(U) by this norm is equivalent to the

restriction of the topology of TM to Xs(U)

Take V and W compact subsets of the tangent bundle, whose projection over M lies

within Xs(U), and r > 0 satisfying the following properties:

• int(V ) is a neighborhood of (Xs(x), DXs(x)Y (x)) in the tangent bundle,

• int(W ) is a neighborhood of (Xs(x), Y (Xs(x))) in the tangent bundle

• and d(V,W ) ≥ r

By continuity and Lemma 6.1.4 there exists ε > 0 such that for every |t| < ε we have

DXs+t(x)Y (x) ∈ int(V ) and Y (Xs+t(x)) ∈ int(W ),

and ∥∥∥∥1

t
{Y (Xt+s(p))−DXt+s(p)Y (p)}

∥∥∥∥ < r.

However, this last inequality implies that ‖Y (Xt+s(p))−DXt+s(p)Y (p)‖ < |t|r < εr, showing

that r ≤ d(V,W ) < r, which is absurd. Thus DXs(x)Y (x) = Y (Xs(x)), for every x ∈ M

and every s ∈ R such that the flow Xs is defined at x. By Lemma 6.1.1 this completes the

proof.

6.1.2 Invariant sets

As an immediate consequence of Lemma 6.1.1, if X(x) = 0 then X(Yt(x)) = 0, for every

t ∈ R such that the flow Yt is defined. More generally, if X(x) = λY (x) for some λ ∈ R then
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X(Yt(x)) = λY (Yt(x)), for every t ∈ R for which the flow Yt is defined. Though very easy

to prove, these facts are important since they impose a strong rigidity on the dynamics of

X and Y . We put them as a corollary below for further reference.

Corollary 6.1.5. If X(x) = λY (x) for some λ ∈ R then X(Yt(x)) = λY (Yt(x)), for every

t ∈ R for which the flow Yt is defined. In particular,

• Zero(X) is invariant under the flow of Y : if x ∈ Zero(X), then Yt(x) ∈ Zero(X) for

any t ∈ R for which Yt is defined.

• Col(X, Y ) is invariant under the flow of Y : if x ∈ Col(X, Y ) and if Yt(x) is defined,

then Yt(x) ∈ Col(X, Y ).

Corollary 6.1.5 is one of the reasons because the commutation relation in general do not

survive under perturbation of the vector fields: if you perturb X to X̃ and Y to Ỹ then

the perturbed colinearity locus Col(X̃, Ỹ ) has to be invariant under the flows of X̃ and Ỹ .

However, there exists one special type of perturbation which gives rise to new comuting

vector fields: those giving by linear combinations between the vector fields.

Lemma 6.1.6. For every a, b, c, d ∈ R, aX + bY commutes with cX + dY

Proof. Just notice that [aX + bY, cX + dY ] = 0 due to the R-linearity of the Lie bracket,

and then apply Lemma 6.1.3.

Combining Corollary 6.1.5 with Lemma 6.1.6 one obtains

Corollary 6.1.7. Col(X, Y ) is invariant under the flow of aX + bY for any a, b ∈ R.

6.1.3 Periodic orbits

Now, we assume that γ is a periodic orbit of Y , with period τ . Take t ∈ R such that the

flow Xt is defined on a neighborhood of γ. Such t exists by the compactness of γ. We know

that Xt(γ) is an integral curve of Y . Morevover, if x ∈ γ then

Yτ (Xt(x)) = Xt(Yτ (x)) = Xt(x),

and thus Xt(γ) is a periodic orbit of Y , of period τ . This discussion proves the following
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Lemma 6.1.8. If γ is isolated among the periodic orbits of X of the same period τ , then γ

is invariant under the flow of Y ; as a consequence, γ ⊂ Col(X, Y ).

Since, as we mentioned before, the flow of Y is invariant under conjugation by the dif-

feomorphism Xt it is natural that the stable set W s(γ) of a periodic orbit will be invariant

under the flow of X. We shall prove this by an elementary topological argument.

Lemma 6.1.9. Let X and Y be two commuting vector fields over M . Let γ be a periodic

orbit of Y . Assume that γ is invariant by the flow of X. Then, W s(γ) is invariant by the

flow of X.

Proof. We have to show that for any point p ∈ W s(γ) and any t ∈ R such that Xt(p) is

defined one has ωY (Xt(p)) = γ. To do so, take σ ∈ γ. Since γ is invariant under t flow of X

there exists a sequence tk → +∞ such that

Ytk(p)→ X−t(σ).

Since X and Y commute,

Ytk(Xt(p)) = Xt(Ytk(p))→ Xt(X−t(σ)) = σ,

therefore σ ∈ ωY (Xt(p)), and we conclude that γ ⊂ ωY (Xt(p)).

On the other hand, assume by contradiction that we can find some q ∈ ωY (Xt(p)) such

that q /∈ γ. Then, we can choose ε > 0 satisfying d(q, γ) > 4ε. Take tk → +∞ with

Ytk(Xt(p))→ q. Since p ∈ W s(γ), up to pass to a subsequence, we have that Ytk(p)→ σ ∈ γ.

This ensures that we can find tk large enough so that

d(Ytk(Xt(p)), q) < ε and d(Xt(Ytk(p)), Xt(σ)) < ε,

which, due to the commutation of X and Y , implies that

d(q,Xt(q)) < 3ε.

But this contradicts our choice of ε. This establishes that ωY (Xt(p)) ⊂ γ and completes the

proof.

In particular, if γ is a hyperbolic periodic orbit of Y , Lemma 6.1.9 says that the flow

Xt(x) of a point x ∈ W s(γ) remains in the stable manifold. Therefore, X has to be tangent

to the stable manifold.
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6.1.4 Normal component and ratio function

In this subsection we consider X and Y such that Y has no zeros in some compact region.

More precisely, let U ⊂M be a compact region of M where Y is non-vanishing, i.e Zero(Y )∩

U = ∅. We shall use the notations of Section 2.4

Consider a hyperplane field P everywhere transverse to Y over U . Let N be a vector field

defined as the projection of X onto P , parallel to Y . In particular, there exists a function

µ : U → R, with the same regularity as X and Y , such that

X(x) = N(x) + µ(x)Y (x). (6.1)

Definition 6.1.10 (Normal component and ratio function). In the notations above, the vec-

tor field N is called a normal component of X in the direction of Y , or simply a normal

component when there is no risk of confusion. The function µ is called a ratio function of

X with respect to Y .

Notice that the ratio function and the normal componment are not uniquely defined.

Nonetheless, Zero(N) = Col(X, Y ) and x ∈ Col(X, Y ) if and only if X(x) = µ(x)Y (x) and

these properties are determined by X and Y .

Assume now that there exists two transverse sections Σ0 ⊂ U and Σ1 ⊂ U , tangent to P ,

with a transition time τ : Σ0 → (0,+∞) and a holonomy P : Σ0 → Σ1 well defined. Recall

that the existence of Σ0 and Σ1 with these properties can always be obtained locally.

The following lemma gives two formulas relating holonomies, normal components and

the ratio functions.

Lemma 6.1.11. 1. Any normal component is invariant under the holonomy:

DP(x)N(x) = N(P(x)).

2. −Dτ(x)N(x) = µ(P(x))− µ(x).

Proof. Recall that DYτ(x)(x)Y (x) = Y (P(x)) by definition of the flow, and DYτ(x)(x)X(x) =

X(P(x)) by Lemma 6.1.1. With this in mind, apply the linear map DYτ(x)(x) on both sides
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of Equation 6.1 to obtain

X(P(x)) = DYτ(x)(x)N(x) + µ(x)Y (P(x)).

Using Lemma 2.4.1 we may replace DYτ(x)(x)N(x) by DP(x)N(x)− (Dτ(x)N(x))Y (P(x)).

Since X(P(x)) = N(P(x)) + µ(P(x))Y (P(x)), we get that

N(P(x)) + µ(P(x))Y (P(x)) = DP(x)N(x) + (µ(x)−Dτ(x)N(x))Y (P(x)).

Since N(P(x))−DP(x)N(x) ∈ P (P(x)) and P is transverse to Y , and Y is non-vanishing

in U , we conclude that N(P(x))−DP(x)N(x) = 0 and µ(P(x))− µ(x) + Dτ(x)N(x) = 0.

This establishes the result.

Corollary 6.1.12. The restriction of any ratio function to Col(X, Y ) is invariant under the

flow of Y : if x ∈ Col(X, Y ) belongs to the domain of Yt for some t ∈ R then µ(Yt(x)) = µ(x).

Proof. If x ∈ Col(X, Y ) then N(x) = 0. The result follows now from the second item of

Lemma 6.1.11.

6.2 Lima’s Theorem

In this section we shall study the existence of fixed points for actions of R2 on surfaces. First,

it is clear that there exist two commuting and everywhere non-vanishing vector fields on the

two torus: the coordinate fields ∂x and ∂y are never zero and their bracket vanishes. So, on

the torus there are R2 actions with no fixed points.

In 1962, Elon Lima proved in [Li1] that an action of R2 on the sphere S2 always have

a fixed point. Later, he proved in [Li2] that the Euler characteristic is a good topological

invariant to indicate the existence of fixed points for actions of R2 on closed surfaces.

Theorem 6.2.1 (Lima). Let S be a closed surface with χ(S) 6= 0. Let X, Y ∈ X1(M) be

two commuting vector fields. Then,

Zero(X) ∩ Zero(Y ) 6= ∅.
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One nice feature about the proof of Lima is that it is a dynamical proof: it is a proof by

contradiction that uses the Poincaré-Bendixon Theorem to create a nested sequence {Dn}

of disks, whose boundaries are contained in Zero(X), for n odd, and in Zero(Y ) for n even.

The assumption that Zero(X) ∩ Zero(Y ) = ∅ leads then to a contradiction. In particular,

the spirit of the proof is to use dynamics to show that the non-existence of common zeros

leads to a contradiction.

For the reader to appretiate better this approach, we give below the proof for S = S2

in full detail. Latter we shall use the relation between existence of common zeros and the

Poincaré-Hopf index to prove the full statement.

6.2.1 Proof of Lima’s Theorem on S2

Let X, Y ∈ X1(S2) be two commuting vector fields. Assume by contradiction that

Zero(X) ∩ Zero(Y ) = ∅.

Take r := d(Zero(X),Zero(Y )) > 0. By Corollary 5.1.2, there exists σX1 ∈ Zero(X). By

Lemma 6.1.5, OY (σX1 ) ⊂ Zero(X). In particular, ωY (σX1 ) ⊂ Zero(X). Poincaré-Bendixon’s

Theorem [PdM] implies that ωY (σX1 ) is a periodic orbit for Y . Thus, there exists a topological

disk DX
1 whose boundary is precisely ωY (σX1 ).

Now, since Y has no zeros in the boundary of DX
1 , we may apply Proposition 5.3.2 and

find σY1 ∈ Zero(Y ) in the interior of DX
1 . By Poincaré-Bendixon again ωX(σY1 ) is a periodic

orbit for X. Since OX(σY1 ) ⊂ Zero(Y ) we have that this orbit cannot get too close to the

boundary of DX
1 . In particular, it never leaves DX

1 . As a consequence ωX(σY1 ) bounds a

smaller disk DY
1 ⊂ DX

1 such that d(∂DX
1 , ∂D

Y
1 ) ≥ r.

Corollary 5.1.2 gives a zero σX2 of X contained in int(DY
1 ), whose ω-limit under Y is a

periodic orbit which bounds a smaller disk DX
2 contained in DY

1 , and the distance between

the boundaries is bigger than r. Proceeding by induction, we find a nested sequence of disks

DX
n and DY

n satisfying

• ∂D∗n ⊂ Zero(∗), ∗ = X, Y

78



• DY
n ⊂ DX

n

• d(∂DX
n , ∂D

Y
n ) ≥ r.

These properties imply that each set DX
n −DY

n contains a disk with diameter at least r
2
, and

therefore

Area(DX
n −DY

n ) ≥ πr2

4
,

from which one concludes that Area(S2) = ∞. This contradiction proves that Zero(X) ∩

Zero(Y ) 6= ∅.

6.3 The Poincaré-Hopf index and common zeros

There exists an immediate difficulty to generalize Lima’s Theorem to higher dimensions:

every closed 2n+ 1-manifold has zero Euler characteristic. To bypass this difficulty, we may

replace the Euler characteristic by the Poincaré-Hopf index. In [Bo1] C. Bonatti proposed

the following local problem

Problem 1. Let Md be a manifold, and U be a compact set. Let X, Y ∈ X1(M) be two

commuting vector fields. Assume that Zero(X) ⊂ int(U) so that Ind(X,U) 6= 0. Is it true

that Zero(X) ∩ Zero(Y ) ∩ U 6= ∅?

Problem 1 is the first main theme of this thesis. The answer is known to be yes in

dimension two. Indeed, there exists the following result.

Proposition 6.3.1. Let M be a surface and U ⊂M be a compact set. Assume that X, Y ∈

X1(M) are two commuting vector fields, and that the following two properties are satisfied

• Zero(X) ∩ ∂U = ∅,

• Zero(Y ) ∩ U = ∅

Then, Ind(X,U) = 0.

Let us see how this proposition answers affirmatively Problem 1 on surfaces
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Corollary 6.3.2. Let M be a surface, and U be a compact set. Let X, Y ∈ X1(M) be two

commuting vector fields. Assume that Zero(X) ⊂ int(U) so that Ind(X,U) 6= 0. Then,

Zero(X) ∩ Zero(Y ) ∩ U 6= ∅

Proof. Assume on the contrary that Zero(X) ∩ Zero(Y ) ∩ U = ∅. Then, there is a smaller

compact set V ⊂ U such that Zero(X) ⊂ int(V ) and Zero(Y ) ∩ V = ∅.

Since Ind(X, V ) = Ind(X,U), we can apply Proposition 6.3.1 to (X, Y, V ) and conclude

that Ind(X,U) = 0.

Proposition 6.3.1 also implies Lima’s Theorem.

Proof of Theorem 6.2.1. Assume by contradiction that Zero(X)∩Zero(Y ) = ∅. Then, there

exists a compact neighborhood U of Zero(X) which is disjoint from Zero(Y ). Thus, (X, Y, U)

satisfies all the hypothesis of Proposition 6.3.1 and therefore Ind(X,U) = 0. However, as in

Example 5.4.1, we have by Poincaré-Hopf Theorem that Ind(X,U) = χ(M), proving that

χ(M) = 0. This proves the result.

It is worth to note that none of the above proofs have nothing special of dimension two:

they show indeed that Problem 1 generalizes Lima’s result, and it gives a relation between

the index and existence of common zeros.

6.3.1 Dynamics of first return maps and Lima’s Theorem

As we have seen, Proposition 6.3.1 implies Theorem 6.2.1. For this reason, we shall now

explain how to prove Proposition 6.3.1. As in the proof of Lima’s Theorem on S2, the

main point is to study the dynamical properties of X and Y to reach a contradiction if the

conclusion does not hold. Our goal in this section is to make an informal presentation of

this study, focusing on the ideas and in the structure of the argument.

To have a more clear picture and to avoid clumsy technical details in a first presentation

we shall assume that X and Y are C2 vector fields. Later we explain how to remove this

extra assumption.
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Let X and Y be C2 commuting vector fields on a surface M . Let U be a compact set

satisfying Zero(X) ∩ ∂U = Zero(Y ) ∩ U = ∅. Assume by contradiction that Ind(X,U) 6= 0.

Consider the function g : U → R, defined by g(x) = ‖X(x)‖2
‖Y (x)‖2 . By Sard’s Theorem, since

g is C2, there exists ε > 0 as small as we please such that ε2 is a regular value of g. In

particular, g−1(ε2) is a finite union of circles and segments.

Notice that Zero(X − εY ) ⊂ g−1(ε2). Since Zero(X − εY ) is invariant under the flow

of Y , the connected components of g−1(ε2) which contains Zero(X − εY ) are circles and in

fact are periodic orbits of Y . Thus, Zero(X − εY ) = γ1 ∪ ...∪ γn, where each γi is a periodic

orbit of Y . Since

0 6= Ind(X − εY, U) =
n∑
i=1

Ind(X − εY, γi),

there exists γi such that Ind(X − εY, γi) 6= 0. Therefore, up to replace X by X − εY , we

may assume (and we do it) that Zero(X) is a periodic orbit γ of Y , with Ind(X, γ) 6= 0.

Thus there exists an annulusA containing γ in its interior and such that Zero(X)∩A = γ.

Let ∂A+ and ∂A− be the two circles which are the connected components of ∂A. We can

take a basis for the tangent bundle TA formed by Y and some vector field Y ⊥ everywhere

transverse to Y . With this basis we can write X(x) = α(x)Y (x) + β(x)Y ⊥(x). If x /∈ γ we

can define

X (x) =
1√

α(x)2 + β(x)2
(α(x), β(x)) ∈ S1.

Take any circle C+ (resp. C−) homotopic in A \ γ to ∂A+ (resp. ∂A−).

Then, Lemma 5.3.1 implies that

Ind(X, γ) = deg(X|C+) + deg(X|C−).

Since Ind(X, γ) 6= 0 we may assume without lost of generality that deg(X|C+) 6= 0, the other

case being treated simmilarly.

Let Σ be a small transverse section to the flow of Y (for instance, a small integral curve

of Y ⊥). Denote by P the first return map to Σ. Let Σ+ be the component of Σ \ γ which

intersect ∂A+. Take p ∈ Σ+ and let [P(p), p] be a segment in Σ+.

We claim the there exists q ∈ [P(p), p] such that X(q) = λY (q), for some real number

λ 6= 0. Indeed, the closed curve C+ formed by the concatenation between the Y -orbit
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segment joinning p to P(p) with the segment [P(p), p] is homotopic in A \ γ to ∂A+. Thus,

deg(X|C+) 6= 0 and so X|C+ is surjective. In particular, there must exists a point q ∈ C+

such that X (q) = (1, 0), which implies that X(q) = λY (q), for some λ > 0. Either, q belongs

to the orbit segment, which imples that p ∈ Col(X, Y ), or q ∈ (P(p), p), and so the claim is

proved.

Figure 6.1: X has to turn in all directions, with respect to the basis {Y, Y ⊥}. In particular,

it most be collinear with Y in somewhere.

By Poincaré-Bendixon’s Theorem, the orbit of q accumulates on a periodic orbit γ′. If

γ′ = γ, we have a contradiction because then 0 = X|γ = λY |γ. Thus, γ′ is homotopic in

A \ γ to ∂A+, and so deg(X|γ′) 6= 0. However, since X|γ′ = λY |γ′ we have that X|γ′ ≡ λ
|λ|

and thus deg(X|γ′) = 0. Therefore, we have reached a contradiction.

The above argument suggests the following structure:

1. Replace X by X + εY to simplify Zero(X), making it become a periodic orbit γ of Y .

This step uses Sard’s Theorem to choose ε

2. To put a basis on the tangent bundle of a neighborhood of Zero(X), with Y the first

vector of the basis, and use Lemma 5.3.1 to show that X has to turn in all directions,

in a non-trivial way, at the boundary of a neighborhood of γ. In particular, it has to

be be collinear with Y at a some point q in a transverse section to γ.
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3. Use the dynamics of the first return map around γ to show that (2) leads to a contra-

diction. Since Y is non-vanishing and X is invariant under the tangent flow of Y , it

cannot be that X turns in all directions: it does not turn at all!

This structure, in turn, suggests an approach to Problem 1 in dimension three. As it is

always the case in mathematics, before trying to push further an approach one has to look

very carefuly to the simple cases that it can solve. In our case, notice that the C2 regularity

was used only to apply Sard’s Theorem. In fact, we shall see below that this not only can

be done in C1 regularity but is actually enough to fully prove Proposition 6.3.1.

The point of giving the above simpler proof, with two more steps, was to ilustrate how the

dynamics of the first return map and the colinearity locus play a role in the problem. In di-

mension three, as we shall see in the next chapter, the simplification given by Sard’s Theorem

is not enough and the dynamical properties of the first return map became fundamental.

6.3.2 Another proof of Lima’s Theorem

In the sequel, we shall present the complete argument for proving Proposition 6.3.1, which

in particular, as we saw above, will prove Theorem 6.2.1.

The key step is the lemma below, which is a more intricate application of Sard’s Theorem,

whose aim is to replace the triple (X, Y, U) by a new one (X̃, Ỹ , Ũ) where Ũ is an annulus

foliated by periodic orbits of Y , and each periodic orbit coincides with Zero(X̃ − tỸ ). In

particular, the boundary of a neighborhood of Zero(X̃) consists in two circles at which X is

every where collinear with Y . In the argument we gave before, we obtained this using the

dynamics of the first return map, and then showed that X cannot turn.

The technical difficulty of the lemma is due to the fact that Sard’s Theorem may fail for

a C1 function from a surface to R (see Section 2.3 and the Appendix)

In order to apply Sard’s Theorem in C1 regularity we replace the map g of the argument of

Section 6.3.1 by a ratio function and use that ratio functions are invariant when restricted to

the colinearity locus. Since Y is non-vanishing this will enable us to consider the restriction

of this ratio function to a transverse section of Y , of dimension one. Then, we apply Sard
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to this restriction. The lemma below is taken from [BS].

Figure 6.2: Col(X, Y, U) can be turned into an annulus foliated by periodic orbits of Y

Lemma 6.3.3. Let S be a surface. Let X and Y two commuting vector fields over S and

U a compact region of S such that Zero(Y ) ∩ U = Zero(X) ∩ ∂U = ∅ and Ind(X,U) 6= 0.

Then, there exists X̃ and Ỹ two commuting vector fields over S, Ũ a compact region of S

and µ0 > 0 with the following property:

• Zero(Ỹ ) ∩ Ũ = Zero(X̃) ∩ ∂Ũ = ∅ and Ind(X̃, Ũ) 6= 0

• for any t ∈ [−µ0, µ0], the set of zeros of X̃ − tỸ in Ũ consists precisely in 1 periodic

orbit γt of Ỹ ;

• for any t /∈ [−µ0, µ0], the set of zeros of X̃ − tỸ in Ũ is empty;

• Col(X̃, Ỹ , Ũ) is a C1 annulus;

• there is a C1-diffeomorphism ϕ : R/Z × [−µ0, µ0] → Col(X̃, Ỹ , Ũ) so that, for every

t ∈ [−µ0, µ0], one has

ϕ(R/Z× {t}) = γt.

Proof. Notice that there is µ1 > 0 so that for any t ∈ [−µ1, µ1] one has Zero(X−tY )∩∂U = ∅

and Ind(X − tY, U) 6= 0.
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As X−tY and Y commute, Zero(X−tY, U) is invariant under the flow of Y . Futhermore,

as Zero(X − tY ) does not intersect ∂U the Y -orbit of a point x ∈ Zero(X − tY, U) remains

in the compact set U hence is complete.

Consider now a ratio function µ : S → R and recall that the restriction µ|Col(X,Y ) is

invariant under the flows of X and Y (see Corollary 6.1.12).

Let L =
⋃
t∈[−µ1,µ1] Zero(X − tY ) ∩ U . Then L is a compact set, contained in S disjoint

from the boundary of U and invariant under Y : it is a compact lamination of S.

Let σ ⊂ S be a union of finitely many compact segments with end points out of L and

so that the interior of σ cuts transversely every orbit of Y contained in L.

Claim 4. Lebesgue almost every t ∈ [−µ1, µ1] is a regular value of the restriction of µ to σ.

Proof. Recall that Sard’s theorem requires a regularity n−m+ 1 if one consider maps from

an m-manifold to an n-manifold. As µ is C1 and dimσ = 1 we can apply Sard’s theorem to

the restriction of µ to σ, concluding.

Consider now a regular value t ∈ (−µ1, µ1) of the restriction of µ to σ. Then µ−1(t) ∩ σ

consists in finitely many points. Furthermore, µ−1(t) ∩ σ contains Zero(X − tY ) ∩ σ.

Claim 5. For t ∈ [−µ1, µ1], regular value of the restriction of µ to σ, the compact set

Zero(X − tY ) ∩ U consists in finitely many periodic orbits γi, i ∈ {1, . . . , n} of Y .

Proof. Zero(X− tY )∩U is a compact sub lamination of L ⊂ S consisting of orbits of Y , and

contained in µ−1(t). Now, σ cuts transversely each orbit of this lamination and σ ∩ µ−1(t)

is finite. One deduces that Zero(X − tY ) ∩ U consists in finitely many compact leaves,

concluding.

Notice that Ind(X − tY, U) =
∑n

i=1 Ind(X − tY, γi). Thus there is i so that

Ind(X − tY, γi) 6= 0.

Claim 6. There is a neighborhood Γi of γi in S which is contained in Col(X, Y, U) and which

consists of periodic orbits of Y .
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Proof. Let p be a point in σ ∩ γi. As p is a regular point of the restriction of µ to σ there is

a segment I ⊂ σ centered at p so that the restriction of µ to I is injective and the derivative

of µ does not vanish.

As γi has non-zero index for any s close enough to t, Zero(X − sY ) contains an iso-

lated compact subset Ks contained in a small neigborhood of γi, and hence in U , thus in

Col(X, Y, U) and thus in a small neighborhood of γi in L ⊂ S. This implies that each orbit

of Y contained in Ks cuts I. However, µ is constant equal to s on Ks and thus µ−1(s) ∩ I

consist in a unique point. One deduces that Ks is a compact orbit of Y .

Since this holds for any s close to t, one obtain that any point q of I close to p is the

intersection point of Kµ(q) ∩ I. In other words, a neighborhood of p in I is contained in

Col(X, Y, U) and the corresponding leaf of L is a periodic orbit of Y , concluding.

Notice that Γi is contained in Col(X, Y, U) so that the function µ is invariant under Y

on Γi. As the derivative of µ is non vanishing (by construction) on Γi ∩ I one gets that the

derivative of the restriction of µ to Γi is non-vanishing. One deduces that Γi is diffeomorphic

to an annulus: it is foliated by circles and these circles admit a transverse orientation.

For concluding the proof it remains to choose a compact neighborhood Ũ of γi inM , which

is a manifold with boundary, whose boundary is transverse to S and so that Ũ ∩S = Γi.

We are now in position to give the complete proof of Proposition 6.3.1.

Proof of Prosposition 6.3.1. Assume the a triple (X, Y, U) satisfies the assumptions of the

Proposition, but not its conclusion. Then, Lemma 6.3.3 ensures a new triple (U, X̃, Ỹ ) for

which Zero(X̃) is a periodic orbit of Ỹ and Ũ is an annulus whose boundary is the union of

two periodic orbits γ and ξ of Y . Moreover, X̃|γ = µ0Y and X̃|ξ = −µ0Y .

We can take a basis for the tangent bundle T Ũ formed by Y and some vector field Y ⊥

everywhere transverse to Y . With this basis we can write X̃(x) = α(x)Ỹ (x) + β(x)Y ⊥(x).

If x /∈ Zero(X̃) we can define

X̃ (x) =
1√

α(x)2 + β(x)2
(α(x), β(x)) ∈ S1.
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Then, Lemma 5.3.1 imples that

Ind(X̃,Zero(X̃)) = deg(X̃ |γ + deg(X̃ |ξ)).

However, since X̃|γ = µ0Y and X̃|ξ = −µ0Y , we have that X̃ |γ ≡ (1, 0) and X̃ |ξ ≡

(−1, 0). Therefore, deg(X̃ |γ = 0 and deg(X̃ |ξ) = 0, which implies that Ind(X̃,Zero(X̃)) = 0,

a contradiction.

6.4 The case of suspensions

The approach we effectively employed to solve Problem 1 in dimension two (see Proposi-

tion 6.3.1) was to replace X by X − εY , with the choice of ε giving by an appliction of

Sard’s Theorem (Lemma 6.3.3), and show that the new X cannot turn in all directions on a

neighborhood of Zero(X) because ε and U can be chosen so that X is everywhere collinear

with Y in U .

In this section we start to push further this approach to dimension three. A very simple

case to “test” Problem 1 in dimension three is the case where Y is the suspension of a

diffeomorphism f of some closed manifold, with constant roof function. In this case, the

map f is a global return map and every point returns at the same time. This permits us

to choose a normal component and a ratio function with very special properties and apply

the above approach in an annalogus way. The result below emerged in a collaboration with

Christian Bonatti and Sébasitien Alvarez which is still going on.

Theorem 6.4.1 (Alvarez-Bonatti-S.). Let S be a closed surface and f : S → S a C2

diffeomorphism. Let Mf be the suspension manifold and Y f the suspension vector field.

Assume that X is a C2 vector fields which commutes with Y f and that there exists a compact

region U ⊂Mf such that Zero(X) ∩ ∂U = ∅. Then, Ind(X,U) = 0

Proof. The manifold Mf is a fiber bundle, with fiber S, over S1. Denote the fibers by St,

for t ∈ S1. If x ∈ St we consider the projection N(x) of X(x), parallel to Y f (x), over the

fiber. In other other words, there exists a normal component N , tangent to the fibers, and
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a ration function µ : Mf → R, both of class C2. In particular, Equation 6.1 holds. The key

point in the proof is the following.

Claim 7. The levels sets µ−1(c) are invariant under the flow of Y f , for every c ∈ R.

Proof. Indeed, take x ∈ µ−1(c) and fix s ∈ R. We shall use Lemma 6.1.11 to prove that

Y f
s (x) ∈ µ−1(c). Consider the fibers St and Sr, such that x ∈ St and Y f

s (x) ∈ Sr. Since Y f

is a suspension the transition time between to fibers St and Sr is constant over the fiber, and

therefore Lemma 6.1.11 proves that µ(x) = µ(P(x)), where P is the holonomy map from St

to Sr. By noticing that Y f
s (x) = Pn(x), for some integer n, the proof is complete.

Apply Sard’s Theorem to µ|S. Then, there exists b > a > 0, with b arbitrarily small,

such that every ε ∈ [a, b] is a regular value of µ|S. Up to replace X by X − a+b
2
Y we may

assume that 0 is a regular value of µ|S. In particular, if |ε| < a+b
2

is fixed then (µ|S)−1(ε) is

a union of finitely many C2 curves, say γ1, ..., γm.

Since S is closed, these curves are circles. By Claim 7 these circles are invariant under

f and thus their saturation under the flow of Y f is a disjoint union of finitely many tori

T ε1 , ..., T
ε
n, where n is independent of ε. Now, take any point x ∈ µ−1(ε). Since Y f is a

suspension, there is an iterate Y f
t (x) ∈ S0. By Claim 7, Y f

t (x) belongs to one of the circles

γj, j = 1, ...m. Therefore,

µ−1(ε) =
n⋃
l=1

T εl .

Notice that Tl =
⋃
|ε|<a+b

2
T εl is diffeomorphic to the product [0, 1] × T2 and is a compact

region containing Zero(X) ∩ T 0
l , whose boundary is the disjoint union T

−a+b
2

l ∪ T
a+b
2

l . Since

Ind(X,U) =
∑n

l=1 Ind(X,Tl), it only remains to prove that Ind(X,Tl) = 0 for every l =

1, ...n.

For this, we shall apply Lemma 5.3.1. Indeed, there exists a basis {e1, e2, e3} for the

tangent bundle of Tl such that e3 = Y everywhere, e2 is everywhere tangent to the levels

and transverse to Y and e1 is everywhere transverse to the the foliation of Tl by tori T εl . We

can write X(x) = α(x)e1(x) + β(x)e2(x) + µ(x)e3(x). For every x ∈ Tl \ T 0
l , we can define

X (x) =
1√

α(x)2 + β(x)2 + µ(x)2
(α(x), β(x), µ(x)) ∈ S2.
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Lemma 5.3.1 shows that deg(X|∂Tl) = Ind(X,Tl). Finally, notice that X|
T
a+b
2

l

is not surjec-

tive: since µ|
T
a+b
2 l
≡ a+b

2
, we have, in particular, that X cannot be equal to λY on T

a+b
2

l ,

for λ < 0 and thus the south pole (−1, 0, 0) of S2 is not achieved by X|
T
a+b
2

l

. By the same

argument, X|
T
−a+b2
l

is not surjective either. Thus, deg(X|∂Tl) = 0, which completes the

proof.

Despite its proof being very easy, Theorem 6.4.1 reveals the main difficulties in trying

to push the approach we have being adopting to dimension three. Sard’s Theorem can

give some control on the geometry of the colinearity locus, but to go further and determine

Ind(X,U) one has invariably to control also the dynamics of Y .

Another possibility, still within this approach, is try to use improved versions of Sard’s

Theorem, if higher regularity is assumed, in order to obtain further control on the geometry

of the colinearity locus. We shall discuss a little about this in the sequel.

6.5 Analytic commuting vector fields on 3-manifolds

As we mentioned in the introudction, Bonatti [Bo1] proved existence of common zeros for

analytic commuting vector fields on manifolds of dimensions less or equal than four under

the same topological assumptions of Corollary 6.3.2. Indeed, the main result of [Bo1] is the

following

Theorem 6.5.1 (Bonatti). Let X and Y be two analytic commuting vector fields on Md,

for d = 3, 4. Let U be a compact region of M such that

1. Zero(X) ∩ ∂U = ∅;

2. Zero(Y ) ∩ U = ∅.

Then, Ind(X,U) = 0.

As in Corollary 6.3.2, this result gives the existence of common zeros. In this section

we shall comment the main ideas of the proof. We shall not enter in any detail since the
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techniques are very specific for analytic vector fields and our goal is actually try to improve

them for make them work in low regularity. Thus, what shall concern us is try to point out

the main difficulty of the paper [Bo1].

The first step of the proof is the lemma below, which does not assume that the vector

fields are analytic (but the proof we present is the same found in the paper, see Lemme 1.c.1

of [Bo1]).

Lemma 6.5.2. Let X and Y be two commuting vector fields over a d-dimensional manifold

M . Assum that X and Y are of class Cd and that X and Y are everywhere collinear. Let

U ⊂M be a compact region such that

1. Zero(X) ∩ ∂U = ∅;

2. Zero(Y ) ∩ U = ∅.

Then, Ind(X,U) = 0.

Figure 6.3: Creating a vector field close to X with no zeros

Proof. Let µ : U → R be a ratio function. Since X and Y are everywhere collinear the

levels µ−1(ε) are equal to Zero(X − εY ) and thus are preserved by the flow of Y . Applying

Sard’s Theorem, which can be done since µ is Cd, one finds b > a > 0, with b as small

as we please such that µ−1(ε) is a compact codimension one submanifold of M , for every

ε ∈ [a, b]. Moreover, since Zero(X)∩∂U = ∅, by taking b sufficiently small, the levels µ−1(ε),
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for ε ∈ [a, b], are disjoint from ∂U . Let ε0 = a+b
2

. Consider the gradient1 ∇µ vector field

and take a bump function ϕ : U → R such that ϕ is zero outside a very small neighborhood

V of µ−1(ε0) and ϕ ≡ δ in µ−1(ε0), for some δ > 0 small. Let Z = X − ε0Y + ϕ∇µ. Since

X − ε0Y is tangent to µ−1(ε0) and ∇µ is transverse to all the levels, if V is small enough

then Z has no zeros in U . Moreover, Z = X − ε0Y at the boundary of U . Thus, choosing

also δ very small, one obtains a vector field Z, close to X, with no zeros inside U , proving

that Ind(X,U) = 0.

Remark 6.5.3. We do not know how to prove Lemma 6.5.2 in C1 regularity, though this

should certainly be true.

Let us now survey the rest of the proof of Theorem 6.5.1 in dimension three. Lemma 6.5.2,

enables Bonatti to assume that the colinearity locus is an analytic set of dimension at most

two. In this case, using techniques of stratification for analytic sets, he proves that it suffices

to consider the case where the colinearity locus is an annulus [−µ0, µ0]× S1 and each circle

{t} × S1 corresponds to Zero(X − tY ) and is a periodic orbit of Y , precisely as in the

conclusion of Lemma 6.3.3.

In the final step of the proof, Bonatti uses once more techniques from complex analysis to

show that the plane field defined by X and Y , outside the colinearity locus can be extended

to a neighborhood of Zero(X), excluding at most finitely many circles {t} × S1. With this

plane field, he performs a construction of a vector field Z, close to X with no zeros on a

compact region U containing Zero(X) in its interior, and thus concluding that Ind(X,U) = 0.

The construction of Z is very similar to the construction we presented above in the proof of

Lemma 6.5.2.

In view of this, a natural attempt is try to improve Bonatti’s paper by showing that its

main difficulty can be solved in the C1 setting. This is the content of next chapter.

1with respect to the some riemannian metric of M .
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Chapter 7

Existence of common zeros for

commuting vector fields on

3-manifolds

What is the difficulty to solve Problem 1 in dimension three? As we saw in Section 6.3 what

we have to prove is a statement analogous to that of Proposition 6.3.1, that is

Conjecture 1. Let M be a 3-manifold. Let X, Y ∈ X1(M) be two commuting vector fields

and U ⊂M a compact region such that Zero(Y ) ∩ U = Zero(X) ∩ ∂U = ∅. Then,

Ind(X,U) = 0.

Let us approach Conjecture 1 by contradiction. Take X, Y ∈ X1(M) two commuting

vector fields and U ⊂M a compact region of the 3-manifold M and assume that Zero(Y ) ∩

U = Zero(X) ∩ ∂U = ∅, but Ind(X,U) 6= 0.

We would like to use the dynamics of Y , and its holonomies, to reach a contradiction

with Ind(X,U) 6= 0, inspired by the proof of Proposistion 6.3.1 that we gave in Section 6.3.1.

So, take a plane field P over U , everywhere transverse to Y and let N and µ be, respec-

tively, the associated normal component ratio function. Assume that X and Y are C3, so

that we can apply Sard’s Theorem to µ, as we did in the proof of Theorem 6.4.1. Thus, one

can find an interval [a, b] ⊂ R, with b > a > 0 and b as small as we please so that every
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ε ∈ [a, b] is a regular value of µ. Then, the level sets µ−1(ε) are smooth surfaces, embedded

in M and they comprise a foliation of some compact region V of M . Moreover, since µ is a

ratio function

Zero(X − εY ) ⊂ µ−1(ε).

In Theorem 6.4.1, the levels where tangent to Y , and this allowed us to quickly conclude

that X has index zero on V , just using that it is invariant under the tangent flow of Y .

However, in general, the levels are not invariant by Y . Therefore, one of the difficulties

to prove Conjecture 1 is to analyze the dynamics of Y near to Zero(X − εY ), when these

sets are (invariant) subsets of a non-invariant foliation by (non-invariant) surfaces, possibly

with boundary.

In the analytic case, as we saw in Section 6.5 there is a more powerful version of Sard’s

Theorem which makes it possible to assume that, though the levels are not invariant by Y ,

there exists a surface S, everywhere transverse to the levels and containing ∪ε∈[a,b] Zero(X −

εY ). To prove Conjecture 1 under this extra assumption was the main difficulty in the

analytic case [Bo1].

Thus, a good (and non trival) “test” for Conjecture 1 is to tackle the particular case

when X and Y are not analytic, but this extra assumption is satisfied. Even though to

assume that the colinearity locus is confined to a closed submanifold of M is not a realistic

assumption when X and Y are C1, it can be seen as a first step towards Conjecture 1 since

the techniques used in the analitic case are not at all available in the C1 setting.

In this chapter we shall see how we can effectively use the dynamics of Y and its

holonomies to show that X cannot, at the same time, have a non-zero index and be in-

variant under the tangent flow of Y . The result, which was a collaboration with Christian

Bonatti [BS], is the following.

Theorem D (Bonatti, S). Let M be a 3-manifold and X and Y be two C1 commuting vector

fields over M . Let U be a compact subset of M such that Zero(Y )∩U = Zero(X)∩ ∂U = ∅.

Assume that Col(X, Y, U) is contained in a C1-surface which is a closed submanifold of M .

Then,

Ind(X,U) = 0.

93



The rest of this chapter is devoted to the proof of Theorem D.

7.1 Prepared counter examples

Our proof is a long proof by contradiction. The idea is to try to push forward the approach

we presented in Section 6.3.1. The first step is to symplify the colinearity locus using Sard’s

Theorem.

This simplification involves making successive replacements of counter examples until we

find a counter example with special geometric configurations (the prepared counter examples

that we shall introduce below) and then, in this special counter examples, we analyse the

dynamics of Y and how it influences the topological behaviour of X.

For the sake of clarity, it will be convinent to formally introduce the notion of counter

examples.

Definition 7.1.1. Let M be a 3-manifold, U a compact subset of M and X, Y be C1 vector

fields on M . We say that (U,X, Y ) is a counter example to Theorem D if

• X and Y commute

• Zero(Y ) ∩ U = ∅

• Zero(X) ∩ ∂U = ∅

• Ind(X,U) 6= 0.

• the collinearity locus, Col(X, Y, U), is contained in a C1 surface which is a closed

submanifold of M .

Let us illustrate our simplifying procedure by a simple argument:

Remark 7.1.2. If M is a 3-manifold carrying a counter example (U,X, Y ) to Theorem D,

then there is an orientable manifold carrying a counter example to Theorem D. Indeed,

consider the orientation double cover M̃ →M and Ũ , X̃, Ỹ the lifts of U,X, Y on M̃ . Then

the Poincaré-Hopf index of X̃ on Ũ is twice the one of X on U , and (Ũ , X̃, Ỹ ) is a counter

example to Theorem D.
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Thus we can assume (and we do it) without loss of generality that M is orientable.

Most of our simplifying strategy will now consist in combinations of the following remarks

Remark 7.1.3. If (U,X, Y ) is a counter example to Theorem D, then there is ε > 0 so that

(U, aX + bY, cX + dY ) is also a counter example to Theorem D, for every a, b, c, d with

|a− 1| < ε, |b| < ε, |c| < ε and |d− 1| < ε.

Remark 7.1.4. If (U,X, Y ) is a counter example to Theorem D, then (V,X, Y ) is also a

counter example to Theorem D for any compact set V ⊂ U containing Zero(X,U) in its

interior.

Remark 7.1.5. Let (U,X, Y ) be a counter example to Theorem D and assume that Zero(X,U) =

K1 ∪ · · · ∪ Kn, where the Ki are pairwise disjoint compact sets. Let Ui ⊂ U be compact

neighborhood of Ki so that the Ui, i = 1, . . . , n, are pairwise disjoint.

Then there is i ∈ {1, . . . , n} so that (Ui, X, Y ) is a counter example to Theorem D.

We introduce now the counter examples with the special configuration that will permit

us to relate the topological behaviour of X with the dynamics of Y and its holonomies.

Figure 7.1: A prepared counter example to Theorem D. The red line is Zero(X) and the blue

lines are Zero(X − tY ), with t 6= 0. The left and the right side of the cube are identified.

Definition 7.1.6. We say that (U,X, Y,Σ,B) is a prepared counter example to Theorem D if

1. (U,X, Y ) is a counter example to Theorem D
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2. There is µ0 > 0 so that (U,X, Y ) satisfies the conclusion of Lemma 6.3.3:

• for any t ∈ [−µ0, µ0], the set of zeros of X−tY in U consists precisely in 1 periodic

orbit γt of Y ;

• for any t /∈ [−µ0, µ0], the set of zeros of X − tY in U is empty;

• Col(X, Y, U) is a C1 annulus;

• there is a C1-diffeomorphism ϕ : R/Z×[−µ0, µ0]→ Col(X, Y, U) so that, for every

t ∈ [−µ0, µ0], one has

ϕ(R/Z× {t}) = γt.

3. U is endowed with a foliation by discs; more precisly there is a smooth submersion

Σ: U → R/Z whose fibers Σt = Σ−1(t) are discs; furthermore, the vector field Y is

transverse to the fibers Σt.

4. Each periodic orbit γs, s ∈ [−µ0, µ0], of Y cuts every disc Σt in exactly one point. In

particular the period of γs coincides with its return time on Σ0 and is denoted τ(s),

for s ∈ [−µ0, µ0].

Thus s 7→ τ(s) is a C1-map on [−µ0, µ0]. We require that the derivative of τ does not

vanish on [−µ0, µ0].

5. B is a triple (e1, e2, e3) of C0 vector fields on U so that

• for any x ∈ U B(x) = (e1(x), e2(x), e3(x)) is a basis of TxU .

• e3 = Y everywhere

• the vectors e1, e2 are tangent to the fibers Σt, t ∈ R/Z. In other words, DΣ(e1) =

DΣ(e2) = 0

• The vector e1 is tangent to Col(X, Y ) at each point of Col(X, Y ).

Lemma 7.1.7. If there exists a counter example (U,X, Y ) to Theorem D then there is a

prepared counter example (Ũ , X̃, Ỹ ,Σ,B) to Theorem D.

Proof. The two first items of the definition of a prepared counter example to Theorem D

are given by Lemma 6.3.3. For getting the third item, it is enough to shrink U . For getting
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item (4), one replace Y by Y + bX for some b ∈ R, with |b| small enough. This does not

change the orbits γt, as X and Y are both tangent to γt, but it changes its period. Thus,

this allows us to change the derivative of the period τ at s = 0. Then one shrink again U

and µ0 so that the derivative of τ will not vanish on Col (X, Y, U).

Remark 7.1.8. If (U,X, Y,Σ,B) is a prepared counter example to Theorem D, then for every

t ∈ (−µ0, µ0), (U,X − tY, Y,Σ,B) is a prepared counter example to Theorem D.

Whenever (U,X, Y,Σ,B) is a prepared counter example to Theorem D, we shall denote

by P the first return map, defined on a neighborhood of Col(X, Y ) ∩ Σ0 in Σ0.

Remark 7.1.9. As the ambient manifold is assumed to be orientable (see Remark 7.1.2), the

vector field Y is normally oriented so that the Poincaré map P preserves the orientation.

7.1.1 Counting the index of a prepared counter example

Definition 7.1.10. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D. In par-

ticular, U is a solid torus (C1-diffeomorphic to D2 ×R/Z) and Zero(X − tY ), t ∈ (−µ0, µ0),

is an essential simple curve γt isotopic to {0} × R/Z. An essential torus T is the image of

a continuous map from the torus T2 in the interior of U , disjoint from γ0 = Zero(X) and

homotopic, in U \ γ0, to the boundary of a tubular neighborhood of γ0.

In other words, H2(U \ γ0,Z) = Z, and T is essential if it is the generator of this second

homology group.

We shall now describe how we use the basis B, which comes with a prepared counter

example, and an essential torus T to calculate the index.

Consider, for each point x ∈ U , the expression of X in the basis B:

X(x) = α(x)e1(x) + β(x)e2(x) + µ(x)e3(x). (7.1)

For x /∈ γ0 one considers the vector

X (x) =
1√

α(x)2 + β(x)2 + µ(x)2
(α(x), β(x), µ(x)) ∈ S2. (7.2)
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Figure 7.2: X(x) = α(x)e1(x) + β(x)e2(x) + µ(x)e3(x).

The map restriction X|T : T → S2 has a topological degree, which, by Lemma 5.3.1, coincides

with Ind(X,U), for some choice of an orientation on T . In particular, we have the following.

Lemma 7.1.11. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D. Let T be

an essential torus in U . Then,

deg(X|T ) 6= 0.

Our goal is to show that Lemma 7.1.11 leads to a contradiction.

The search for this contradiction is splitted in three different cases, according to the

derivative of the first return map P : Σ0 → Σ0. Indeed, notice that P has a line of fixed

points, namely xt = γt∩Σ0, for t ∈ [−µ0, µ0]. Thus 1 ∈ spec(DP(xt)), for every t ∈ (−µ0, µ0),

where spec(L) stands for the set of eigenvalues of a linear map L. We can distinguish three

cases.

1. Partially Hyperbolic Case: there exists t ∈ (−µ0, µ0) such that spec(DP(xt)) =

{1, λ}, where λ ∈ R \ {1}. We will show in Lemma 7.3.1 that this case cannot occur.

2. Shear Case: there exists t ∈ (−µ0, µ0) such that spec(DP(xt)) = {1}, but DP(xt) 6=

Id. We prove that this case is not possible in Proposistion 7.5.2
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3. Identity Case: DP(xt) = Id, for every t ∈ (−µ0, µ0). The final contradiction will be

achieved in Lemma 7.6.10.

Our main tool an all of the above three cases is a formula (see Proposistion 7.2.6) that

will reduce the calculation of deg(X|T ) to an understanding the topological behaviour of the

normal component, which is a two dimensional vector field. This dimension reduction will

be performed in the next section.

Remark 7.1.12. In a prepared counter example, the tangent planes of foliation by discs Σt,

being everywhere transverse to Y , induces a prefered normal component and a ratio function

(see Section 6.1.4 for the definitions). Since e3 = Y everywhere, the e3-coordinate µ of X is

precisely this ratio function.

7.2 Linking numbers

In the whole section, (U,X, Y,Σ,B) is a prepared counter example to Theorem D.

7.2.1 Notations

In this section we fix our notation for holonomies and transition times in a prepared counter

example.

Recall that Σt = Σ−1(t), t ∈ R/Z, is a family of cross section, each Σt is diffeomorphic

to a disc, and we identify Σ0 with the unit disc D2.

Definition 7.2.1. Consider t ∈ R. Consider x ∈ Σ0 and y ∈ Σt. We say that y is the image by

holonomy of Y over the segment [0, t], and we denote y = Pt(x), if there exists a continuous

path xr ∈ U , r ∈ [0, t], so that Σ(xr) = r, x0 = x, xt = y, and for every r ∈ [0, t] the point

xr belongs to the Y -orbit of x.

The holonomy map Pt is well defined in a neighborhood of Col(X, Y, U)∩Σ0 and is a C1

local diffeomorphism.
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If t = 1 then P1 is the first return map P (defined before Remark 7.1.9) of the flow of Y

on the cross section Σ0.

Remark 7.2.2. With the notation of Definition 7.2.1, there is a unique continuous function

τx : [0, t]→ R so that τx(0) = 0 and xr = Yτx(r)(x) for every r ∈ [0, t].

We denote τt(x) = τx(t) and we call it the transition time from Σ0 to Σt. The map

τt : Σ0 → R is a C1 map and by definition one has

Pt(x) = Yτt(x)(x) (7.3)

We denote τ = τ1 and we call it the first return time of Y on Σ0.

Remark 7.2.3. In Definition 7.1.6 item 4 we defined τ(s) as the period of γs; in the notation

above, it coincides with τ(xs) where xs = γs ∩ Σ0.

In this case, Equation 7.3 takes the special form

P(x) = Yτ(x)(x) (7.4)

7.2.2 The normal conponent

We introduce a normal component for the prepared counter example.

Definition 7.2.4. For every t and every x ∈ Σt we define the normal component of X, which

we denote by N(x), the projection of X(x) on TxΣt parallel to Y (x).

Thus x 7→ N(x) is a C1-vector field tangent to the fibers of Σ and which vanishes precisely

on Col(X, Y, U).

Moreover, in the basis B, N(x) = α(x)e1(x) + β(x)e2(x) (see Equation 7.1), and we have

the following formula

X(x) = N(x) + µ(x)Y (x),

for every x ∈ U .
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7.2.3 The normal component of X and the index of X

Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D and N be the normal

component of X.

Let us define, for x ∈ U \ Col (X, Y, U),

N (x) =
1√

α(x)2 + β(x)2
(α(x), β(x)) ∈ S1 ⊂ S2,

where S1 is the unit circle of the plane R2 × {0} ⊂ R3.

Figure 7.3: Linking numbers

Recall that U is homeomorphic to the solid torus so that its first homology group H1(U,Z)

is isomorphic to Z, by an isomorphism sending the class of γ0, oriented by Y , on 1. Let U+

and U− be the two connected components of U \ Col (X, Y, U). These are also solid tori,

and the inclusion in U induces isomorphisms of the first homology groups which allows us

to identify H1(U±,Z) with Z.

The continuous mapN : U± → S1 induces morphisms on the homology groupsH1(U±,Z)→

H1(S1,Z). As these groups are all identified with Z, these morphisms consist in the multipli-

cation by an integer `±(X, Y ). In other words, consider a closed curve γ± ⊂ U± homotopic

in U to γ0. Then `±(X, Y ) is the topological degree of the restriction of N to γ±. See

Figure 7.3.

Definition 7.2.5. The integer `+(X, Y ) is called linking number of X with respect to Y in

U+, and the integer `−(X, Y ) is the linking number of X with respect to Y in U−.

Proposition 7.2.6. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D. Then

| Ind(X,U)| = |`+(X, Y )− `−(X, Y )|
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Proof. Consider a tubular neighborhood of γ0 whose boundary is an essential torus T which

cuts Col (X, Y, U) transversely and along exactly two curves σ+ and σ−. Then the map X

on T takes the value N ∈ S2 (resp. S ∈ S2) exactly on σ+ (resp. σ−), where N and S are

the points on S2 corresponding to e3 = Y and −e3.

We identify T with T2 = R/Z × R/Z so that σ− and σ+ correspond to {1
2
} × R/Z and

{0} × R/Z respectively. It remains to apply Proposition 5.5.1 to Φ = X and ϕ = N ,

noticing that N is the projection of X on S1 along the meridians. This gives the announced

formula.

As a direct consequence of Proposition 7.2.6 one gets

Corollary 7.2.7. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D, then

(`+(X, Y ), `−(X, Y )) 6= (0, 0)

Proposistion 7.2.6 is our main thechnique to perform index calculations. In fact, it is one

of the main novelties in our work [BS]. Moreover, Corollary 7.2.7 gives information about

the topological behaviour of the normal component. Our strategy in the next section will

be to combine this information with dynamical information about the first return map P .

These dynamical data have, of course, a different nature in each one of the three cases in

which we splitted the proof.

7.3 The Partially Hyperbolic Case

In this section we deal with in the Partially Hyperbolic Case. As we shall see in the proof,

this case enables us to assume that Col(X, Y, U) is normally hyperbolic for the flow of

Y . The main idea is that X has to preserve the stable manifolds and thus the normal

component is not permited to turn, making both linking numbers `± vanish, a contradiction

with Corollary 7.2.7.

The main result of this section is the following.
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Lemma 7.3.1. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D. Then, the

first return map P : Σ0 → Σ0 of the flow of Y satisfies: for every point xt (of Col(X, Y, U)∩

Σ0) the unique eigenvalue of the derivative of P at xt is 1.

Proof. The argument is by contradiction. We assume that the derivative of P at some point

of Col(X, Y ) ∩ Σ0 has some eigenvalue of different from 1.

Recall that we denote xt = γt ∩ Σ0, t ∈ [−µ0, µ0], where γt = Zero(X − tY )). Notice

that the first return map P is the identity map in restriction to the segment {xt}t∈(−µ0,µ0) =

Col(X, Y ) ∩ Σ0. In particular, the derivative of P at xt admits 1 as an eigenvalue. Since P

preserves the orientation (see Remark 7.1.9), the other eigenvalue is positive.

Claim 8. There exists Ũ ⊂ U , X̃ = X − tY and a prepared counter example to Theorem D

(Ũ , X̃, Y,Σ,B) for which the surface Col(X̃, Y, Ũ) is normally hyperbolic.

Proof. As the property of having a eingenvalue of mudulus different from 1 is an open

condition, there exists an interval [µ1, µ2] ⊂ [−µ0, µ0] on which the condition holds. Consider

t = µ1+µ2
2

and X̃ = X − tY .

Then, one obtains a new prepared counter example to Theorem D by replacing X by

X̃; Now, by shrinking U one gets a tubular neighborhood Ũ of γt so that Col(X̃, Y, Ũ) =⋃
s∈[µ1,µ2] γs.

Moreover, the derivative of P at each point xs, s ∈ [µ1, µ2], has an eigenvalue different

from 1 in a direction tranverse to Col(X̃, Y, Ũ) ∩ Σ0. By compactness and continuity these

eigenvalues are uniformly far from 1 so that Col(X̃, Y, Ũ)∩Σ0 is normally hyperbolic for P .

Thus Col(X̃, Y, Ũ) is an invariant normally hyperbolic annulus for the flow of Y .

By virtue of the above claim (up to change X by X̃ and U by Ũ) one may assume

that Col(X, Y, U) is normally hyperbolic, and (up change Y by −Y ) one may assume that

Col(X, Y, U) is normally contracting.

This implies that every periodic orbit γt has a local stable manifold W s(γt) which is

a C1-surface depending continuously on t for the C1-topology and the collection of these
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surfaces build a C0-foliation F s tangent to a continuous plane field Es, in a neighborhood of

Col(X, Y, U). Furthermore, Es is tangent to Y , and hence is tranverse to the fibers of Σ.

Up to shrink U , one may assume that F s and Es are defined on U .

Claim 9. There is a basis B̃ = (ẽ1, ẽ2, ẽ3) so that (U,X, Y,Σ, B̃) is a prepared counter

example to Theorem D and ẽ2 is tangent to Es.

Proof. Choose ẽ2 as being a unit vector tangent to the intersection of Es with the tangent

plane of the fibers of Σ. It remains to choose ẽ1 tranverse to e2 and tangent to the fibers of

Σ and tangent to Col(X, Y ) at every point of Col(X, Y ).

Up to change B by the basis B̃ given by the claim above, we will now assume that e2 is

tangent to Es.

Claim 10. The vector field X is tangent to Es.

Proof. The flow of the vector field X leaves invariant the periodic orbit γt of Y , since X

is collinear with Y along γt, and X commutes with Y . As a consequence, it preserves the

stable manifold W s(γt) (see Lemma 6.1.9) for every t. This implies that X is tangent to the

foliation F s and therefore to Es.

Figure 7.4: X is confined within the stable manifolds of the periodic orbits, and thus cannot

turn.

To complete the argument we shall prove that both linking numbers `±(X, Y ) vanish.

Take a closed curve γ+, disjoint of γ0 and contained in U+ ∩W s(γt), for some t. Combining

Claims 10 and 9 we conclude that the e1 coordinate of X is zero along γ+. Since X is never
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collinear with e3 = Y along γ+, we conclude that the map N|γ+ is constant and thus has

zero topological degree. This proves that `+(X, Y ) = 0. A similar argument proves that

`−(X, Y ) = 0. This finishes the proof.

7.4 Angular variation of the normal component N

In this section we shall establish an important thechnical result about the angular variation

of the normal component along some straight lines segments in Σ0. We will prove that N has

to turn at least once on S1 along segemtns of form [x,P2(x)]. As we consequence, for every

prescribed direction in TΣ0 there will be a point q in [x,P2(x)] such that N(q) is pointing

in this direction.

We will combine latter this information with the local dynamics of P to reach a con-

tradiction. This will be done by different arguments in the Shear Case and in the Identity

Case.

It is important to remark that the results in this section are independent of Lemma 7.3.1.

We prefer to present them after Lemma 7.3.1 because the Partially Hyperbolic Case, being

the simplest one, also serves as an illustration of our approach.

Recall that we denote {xt} = γt ∩ Σ0. For every pair of points x, y ∈ Σ0, we denote the

segment of straight line joinning x and y and contained in Σ0 by [x, y] (for some choice of

coordinates on Σ0).

Lemma 7.4.1. For any K > 0 there is a neighborhood OK of γ0 with the following property.

Consider x ∈ OK ∩ Σ0 and u ∈ TxΣ0 a unit vector, and write u = u1e1(x) + u2e2(x).

Consider t ∈ [0, K] and v = DPt(u) ∈ TPt(x)Σt the image of u by the derivative of the

holonomy. Write v = v1e1(Pt(x)) + v2e2(Pt(x)).

Then (
u1√
u2

1 + u2
2

,
u2√
u2

1 + u2
2

)
6= −

(
v1√
v2

1 + v2
2

,
v2√
v2

1 + v2
2

)

Proof. Assuming, by contradiction, that the conclusion does not hold we get yn ∈ Σ0, unit

vectors un ∈ TxnΣ0 and tn ∈ [0, K] so that yn tends to x0 = γ0 ∩ Σ0, un tends to a unit
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vector u in Tx0Σ0, tn tends to t ∈ [0, K] and the image vn of the vector un, expressed in the

basis B, is collinear to un with the opposite direction.

Then DPt(x0)u is a vector that, expressed in the basis B, is collinear to u with the opposit

direction. In other words, u is an eigenvector of DPt(x0), with a negative eigenvalue.

However, for every t ∈ R the vector e1 is an eigenvector of DPt(x0), with a positive

eigenvalue, and DPt(x0) preserves the orientation, leading to a contradiction.

Figure 7.5: Proof of Lemma 7.4.2: the red curve is the image of [zn, yn] under PN . By the

mean value theorem there must be a tangent vector to this red curve parallel to the segment

[zn,PN(yn)]

Lemma 7.4.2. For every N ∈ N there exists a neighborhood ON ⊂ Σ0 of x0 so that if x ∈

ON \Col(X, Y, U) then the segment of straight line [x,PN(x)] is disjoint from Col(X, Y, U).

Proof. Assume that there is a sequence of points yn → x0, yn /∈ Col(X, Y, U) so that the

segment [yn,PN(yn)] intersect Col(X, Y, U)∩Σ0 at some point zn. Recall that Col(X, Y, U)∩

Σ0 consists in fixed points of the first return map P . In particular, zn is a fixed point of PN .

The image of the segment [zn, yn] is a C1 curve joining zn to PN(yn). Notice that the

segments [zn, yn] and [zn,PN(yn)] are contained in the segment [yn,PN(yn)] and oriented in
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opposite direction. One deduces that there is a point wn in [yn, zn] so that the image under

the derivative DPN of the unit vector un directing the segment [zn, yn] is of form λnun with

λn < 0. See Figure 7.5 below.

Since yn tends to x0, one deduces that DPN(x0) has a negative eigenvalue. This contra-

dicts the fact that both eigenvalues of DPN(x0) are positive and completes the proof.

Recall that U+ and U− are the connected components of U \ Col (X, Y, U).

Figure 7.6: Corollary 7.4.3.

Corollary 7.4.3. If x ∈ U±∩Σ0∩O3 let θx : R/Z→ U be the curve obtained by concatenation

of the Y -orbit segment from x to P2(x) and the straight line segment [P2(x), x], that is:

• for t ∈ [0, 1
2
], θx(t) = Y2t.τ2(x)(x) where τ2 is the transition time from x to P2(x)

• for t ∈ [1
2
, 1], θx(t) = (2− 2t)P2(x) + (2t− 1)x.

Then θx is a closed curved contained in U± and whose homology class in H1(U±,Z) = Z is

2.

Proof. The unique difficulty here is that the curve don’t cross Col (X, Y, U) and that is given

by Lemma 7.4.2.

The next corollary achieves the thechnical result we announced at the beginning of this

section. See Figure 7.7

Corollary 7.4.4. Let (U,X, Y,Σ,B) be a prepared counter example to Theorem D, and

assume that `+(X, Y ) 6= 0.
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Figure 7.7: Topological behaviour of the normal component.

Consider x ∈ U+ ∩ Σ0 ∩ O3. Then the angular variation of the vector N (y) for y ∈

[x,P2(x)] is strictly larger than 2π in absolute value. In particular,

N ([x,P2(x)]) = S1.

The same statement holds in U− if `−(X, Y ) 6= 0.

Proof. Lemma 7.4.1 implies that the angular variation of N (θx(t)) is contained in (−π, π)

for t ∈ [0, 1
2
]. However, the topological degree of the map N : θx → S1 is 2`+(X, Y ) which

has absolute value at least 2. Thus the angular variation of N on the segment [x,P2(x)] is

(in absolute value) at least 3π concluding.

As an immediate consequence one gets

Corollary 7.4.5. If `+(X, Y ) 6= 0, then P2 has no fixed points in O3 ∩ U+.

7.4.1 The return map at points where N is pointing in opposite

directions.

We have seen in the proof of Corollary 7.4.4 that the vector N has an angular variation

larger than 3π along the segment [x,P2(x)], as x ∈ Σ0 approaches x0. In this section we use

the large angular variation of N for establishing a relation between the return map P , the

return time τ , and the coordinate µ of X in the Y direction.
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Recall that, for every x ∈ U \ Col(X, Y, U), N (x) is a unit vector contained in S1, unit

circle of R2.

Lemma 7.4.6. Assume that there exists sequences qn, qn ∈ Σ0 \ Col(X, Y, U) converging to

x0, such that the following two conditions are satisfied:

1. N (qn)→ (1, 0) and N (qn)→ (−1, 0), as n→ +∞,

2. (µ(P(qn))− µ(qn))(µ(P(qn))− µ(qn)) ≥ 0, for every n.

Then, Dτ(x0)e1(x0) = 0.

Proof. Recall that N(x) = α(x)e1(x) + β(x)e2(x) and N (x) = 1√
α(x)2+β(x)2

(α(x), β(x)) for

x ∈ U \ Col(X, Y, U).

By Corollary 6.1.11, we have

−Dτ(qn)
N(qn)√

α(qn)2 + β(qn)2
=

µ(P(qn))− µ(qn)√
α(qn)2 + β(qn)2

, (7.5)

and

−Dτ(qn)
N(qn)√

α(qn)2 + β(qn)2
=

µ(P(qn))− µ(qn)√
α(qn)2 + β(qn)2

. (7.6)

Multiplying side by side Equations 7.5 and 7.6 and using the second assumption of the

lemma, we get

Dτ(qn)
N(qn)√

α(qn)2 + β(qn)2
Dτ(qn)

N(qn)√
α(qn)2 + β(qn)2

≥ 0.

Notice that the first assumption of the lemma is equivalent to N(qn)√
α(qn)2+β(qn)2

→ e1(x0)

and N(qn)√
α(qn)2+β(qn)2

→ −e1(x0). Since qn, qn → x0, from the continuity of Dτ , we conclude

that

0 ≥ − (Dτ(x0)(e1(x0)))2 ≥ 0,

which completes the proof.
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Since we assumed (Dτ(x0)(e1(x0)) 6= 0 (item (4) of the definition of a prepared counter

example to Theorem D), one gets the following corollary:

Corollary 7.4.7. Let (U,X, Y,Σ,B) is a prepared counter example to Theorem D. Assume

that there exists sequences qn, qn ∈ Σ0 \ Col(X, Y, U) converging to x0, such that N (qn) →

(1, 0) and N (q̄n)→ (−1, 0), as n tends to +∞. Then

(µ(P(qn))− µ(qn))(µ(P(qn))− µ(qn)) < 0,

for every n large enough.

7.5 The Shear Case

In this section, (U,X, Y,Σ,B) is a prepared counter example to Theorem D so that the

derivative of the first return map P at some point xt = Σt ∩ γt is not the identity map. By

Remark 7.1.8 we may assume that DP(x0) is not the identity map. Recall that DP(x0)

admits an eigenvalue equal to 1 directed by e1(x0), has no eigenvalues different from 1 by

Lemma 7.3.1, and is orientation preserving.

The main idea in this section is the following: since DP(x0) 6= Id, it has to be a Shear

Matrix i.e DP(x0)(x, y) = (x, y+ cx), where c ∈ R\{0}. Thus the local dynamics of P close

to x0 acts as a translation in the horizontal coordinate. This will contradict Corollary 7.4.7.

Recall that Col (X, Y, U) cuts the solid torus U in two components U+ and U−. Let us

denote Σ+ = Σ0 ∩ U+ and Σ− = Σ0 ∩ U−.

Lemma 7.5.1. Let (U,X, Y, θ,B) be a prepared counter example to Theorem D so that the

derivative of the first return map P at the point 0 = Σ0 ∩ γ0 is not the identity map.

Then, there is a neighborhood W of 0 in Σ0 so that the map x 7→ f(x) = µ(P(x))− µ(x)

restricted to W vanishes only on Col (X, Y, U).

More precisely,

• (µ(P(x))− µ(x))(µ(P(y))− µ(y)) > 0 if x and y ∈ W ∩Σ+ and if x and y ∈ W ∩Σ−
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• (µ(P(x)) − µ(x))(µ(P(y)) − µ(y)) < 0 if x ∈ W ∩ Σ+ and y ∈ W ∩ Σ− and if x ∈

W ∩ Σ− and y ∈ W ∩ Σ+

• (µ(P(x))− µ(x)) = 0 and x ∈ W if and only if x ∈ Col (X, Y, U).

Proof. The derivative of f is given by

Df(x)v = Dµ(P(x))DP(x)v −Dµ(x),

for every x ∈ Σ0 close to 0 and every v ∈ TxΣ0. We claim that Df(0) 6= 0. Indeed,

notice that Dµ(0)e1 6= 0 and Df(0)e1 = 0. It follows that ker(Dµ(0)) is a line transverse

to e1 and thus every vector v ∈ T0Σ0 can be uniquely written as v = λe1 + k, for some

k ∈ ker(Dµ(0)) and some scalar λ. It suffices now to show that k ∈ ker(Dµ(0)) implies

Df(0)k 6= 0. Assume on the contrary that Df(0)k = 0. Then, Dµ(0)DP(0)k = Dµ(0)k = 0

and therefore DP(0)k ∈ ker(Dµ(0)) which implies that ker(Dµ(0)) contains an eigenvector

of DP(0) transversal to e1. By Lemma 7.3.1 this implies that DP(0) = Id, contradicting

the assumption of the lemma.

Since f is C1, there is a neighborhood W of 0 such that Df(x) 6= 0 for every x ∈ W . This

neighborhood is foliated by the level sets f−1(t), t close enough to 0. To complete the proof,

one simply observe that as f vanishes on Col(X, Y, U), we have that Col(X, Y, U) ∩W =

(f |W )−1(0).

We are now ready to prove the following proposition:

Proposition 7.5.2. If (U,X, Y,Σ,B) is a prepared counter example to Theorem D then

DP(x) is the identity map for every x ∈ Col (X, Y, U) ∩ Σ0.

Proof. Up to exchange + by −, we assume that `+(X, Y ) 6= 0. Then Corollary 7.4.4 implies

that there are sequences qn, q̄n ∈ Σ+ tending to x0 and so that N (qn) = (1, 0) and N (−qn) =

(−1, 0). More precisely Corollary 7.4.4 implies that for any x ∈ Σ+ close enough to x0

the segment [x,P2(x)] contains points q, q̄ with N (q) = (1, 0) and N (q̄) = (−1, 0). Now

Lemma 7.4.2 implies that the segment is contained in Σ+, concluding.
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Now Corollary 7.4.7 implies that, for n large enough, the sign of the map (µ(P(x))−µ(x))

is different on qn and on q̄n. One concludes with Lemma 7.5.1 which says that this sign cannot

change if the derivative DP(x0) is not the identity. Thus we proved DP(x0) = Id.

Now if x ∈ Col (X, Y, U) then x is of the form x = xt = γt∩Σ0. According to Remark 7.1.8

(U,X−tY, Y,Σ,B) is also a prepared counter example to Theorem D, and the linking number

of X − tY with Y is the same as the linking number of X with Y . Therefore the argument

above establishes that DP(x) = Id.

7.6 The Identity Case

In the whole section, (U,X, Y,Σ,B) is a prepared counter example to Theorem D. According

to Corollary 7.2.7 one of the linking numbers `+(X, Y ), `−(X, Y ) does not vanish, so that,

up to exchange + with −, one may assume `+(X, Y ) 6= 0. According to Proposition 7.5.2

the derivative DP(x) is the identity map for every x ∈ Col (X, Y, U) ∩ Σ0.

This means that, in a neighborhood of Col (X, Y, U), the diffeomorphism P is C1 close

to the identity map. This case is by far the most difficulty one. Corollary 7.4.7 and Corol-

lary 7.4.4 will play a fundamental role in the argument.

Let us give a brief sketch: the first step is to give a complete dynamical description of

the first return map near Col(X, Y, U) ∩ Σ0. We will first show in Lemma 7.6.1 that, in

the neighborhood of Col (X, Y, U) the vectors P(x) − x are almost tangent to the kernel

of Dµ. As the fibers of Dµ are tranverse to Col (X, Y, U) we shall get in Lemma 7.6.4

a topological dynamics of P similar to the Partially Hyperbolic Case of Section 7.3. The

second step is to find a segment of an integral curver of N , contained in Σ0 ∩ U+ and very

close to Col(X, Y, U), which is invariant under P . To find this curve we quotient a domain

in Σ0 ∩ U+ by the dynamics of P and apply Poincaré-Bendixson. The final step is to show

that the angular variation of such an integral curve of N joining x to P2(x) is very small.

We then use this to contradict Corollary 7.4.4.
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7.6.1 Quasi invariance of the map µ by the first return map.

Recall that µ is the coordinate of X in the Y direction: X(x) = N(x) + µ(x)Y (x). The aim

of this section is to prove

Lemma 7.6.1. If xn ∈ Σ+ is a sequence of points tending to x ∈ Col (X, Y, U) and if

vn ∈ TxnΣ+ is the unit tangent vector directing the segment [xn,P(xn)] then Dµ(xn)(vn)

tends to 0.

According to Remark 7.1.8, it is enough to prove Lemma 7.6.1 in the case x = x0 = γ0∩Σ0.

Lemma 7.6.1 is now a straighforward consequence of the following lemma

Lemma 7.6.2.

lim
x→x0,x∈Σ+

µ(P(x))− µ(x)

d(P(x), x)
= 0,

where d(P(x), x) denotes the distance between x and P(x).

Figure 7.8: The equality limx→x0,x∈Σ+

µ(P(x))−µ(x)
d(P(x),x)

= 0 means that the vectors P(x) − x are

almost vertical ( tangent to the fibers of µ.

Proof. Fix ε > 0 and let us prove that |µ(P(x))−µ(x)|
d(P(x),x)

is smaller than ε for every x close to

x0 in Σ+. Recall that, according to Lemma 7.4.2, there is a neighborhood O2 of γ0 so

that if x ∈ O+
2 = O2 ∩ Σ+ then the segment of straight line [x,P2(x)] is contained in Σ+.

Furthermore, Corollary 7.4.4 says that N|[x,P2(x)] is surjective onto S1 (unit circle in R2). In

particular, there are points qx, q̄x ∈ [x,P2(x)] so that N (qx) = (1, 0) and N (q̄x) = (−1, 0).
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According to Corollary 7.4.7 one gets

(µ(P(qx))− µ(qx))(µ(P(qx))− µ(qx)) < 0, (7.7)

for every x ∈ O+
2 .

The diffeomorphism P is C1-close to the identity in a small neighborhood of x0 Now

[Bo2] (see also [Bo3]) implies that there is a neigborhood V1 of x0 in Σ0 so that if x ∈ V1

then

‖(P(x)− x)− (P(y)− y)‖ < 1

2
‖P(x)− x‖,

for every y with d(x, y) < 3‖P(x)− x‖. In particular, ‖P2(x)− P(x)‖ < 2‖P(x)− x‖, and

thus ‖P2(x)− x‖ < 3‖P(x)− x‖.

Consider the function f(x) = µ(P(x))−µ(x). SinceDP(x0) = Id, we have thatDf(x0) =

0. As a consequence, there exists a neighborhood V2 ⊂ V1 of x0 such that |Df(x)| < ε
9
, for

every x ∈ V2.

Since P(x0) = x0, we can choose a smaller neighborhood V3 such that P(x),P2(x) ∈ V2,

for every x ∈ V3. This ensures that

|f(qx)− f(x)|
d(x,P(x))

<
ε

9

d(qx, x)

d(x,P(x))
≤ ε

3
.

Similar estimates hold with qx in place of qx and in place of x, respectively.

By Inequality (7.7) we see that f(qx) and f(q̄x) have opposite signs and thus

|f(qx) + f(q̄x)|
d(x,P(x))

≤ |f(qx)− f(q̄x)|
d(x,P(x))

≤ ε

3
.

We deduce∣∣∣∣ 2f(x)

d(x,P(x))

∣∣∣∣ =
|f(x)− f(qx) + f(qx) + f(q̄x) + f(x)− f(q̄x)|

d(x,P(x))

≤ |f(x)− f(qx)|
d(x,P(x))

+
|f(q̄x) + (qx)|
d(x,P(x))

|f(x)− f(q̄x)|
d(x,P(x))

≤ ε.

This establishes that |µ(P(x))−µ(x)|
d(P(x),x)

is smaller than ε for every x ∈ V3 ∩Σ+ and completes the

proof.
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Remark 7.6.3. The Lemmas 7.6.1 and 7.6.2 depend a priori on the choice of coordinate on

Σ0 since they are formulated in terms of segments of straight line [x,P(x)], and vectors

P(x)−x. Nevertheless, the choice of coordinates on Σ0 was arbitrary (see first paragraph of

Section 7.4) so that it holds indeed for any choice of C1 coordinates on Σ0 (on a neighborhood

of x0 depending on the choice of the coordinates).

7.6.2 Local dynamics of the first return map P

In this section (U,X, Y,Σ,B) is a prepared counter example to Theorem D, and we assume

`+(X, Y ) 6= 0.

Recall that Σ0 is a disc endowed with an arbitrary (but fixed) choice of coordinates.

Also, µ : Σ0 → R is a C1-map whose derivative do not vanish along Col (X, Y, U) and

Col (X, Y, U) ∩ Σ0 is a C1-curve.

Therefore, one can choose a C1-map ν : Σ0 → R so that

• there is a neighborhood O of x0 in Σ0 so that (µ, ν) : O → R2 is C1 diffeomorphism,

• Col (X, Y, U) ∩O = ν−1({0})

• ν > 0 on Σ+

We denote by (µ(x), ν(x)) the image of x by (µ, ν).

Notice that (µ(x), ν(x)) are local coordinates on Σ0 in a neighborhood of x0. Remark 7.6.3

allows us to use Lemma 7.6.1 and Lemma 7.6.2 in the coordinates (µ, ν).

As a consequence, there exist ε > 0 so that for any point x ∈ Σ+ with (µ(x), ν(x)) ∈

[−ε, ε]× [0, ε], one has

|µ(P(x))− µ(x)| < 1

100
|ν(P(x))− ν(x)|. (7.8)

In particular, since P has no fixed point in Σ+ (Corollary 7.4.5), one gets that ν(P(x))−

ν(x) does not vanish for (µ(x), ν(x)) ∈ [−ε, ε] × (0, ε], and in particular it has a constant
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sign. Up to change P by its inverse P−1 (which is equivalent to replace Y by −Y ), one may

assume

ν(P(x))− ν(x) < 0, for (µ(x), ν(x)) ∈ [−ε, ε]× (0, ε].

Next lemma allows us to define stable sets for the points in Col (X, Y, U) and shows that

every point in Σ+ close to x0 belongs to such a stable set.

Lemma 7.6.4. Let x ∈ Σ+ be such that (µ(x), ν(x)) ∈ [− 9
10
ε, 9

10
ε] × (0, ε]. Then, for any

integer n ≥ 0, Pn(x) satisfies

(µ(Pn(x)), ν(Pn(x))) ∈ [−ε, ε]× (0, ε]

Furthermore the sequence Pn(x) converges to a point x∞ ∈ Col (X, Y, U) ∩ Σ0 and we

have

• ν(x∞) = 0

• µ(x∞)− µ(x) ≤ ν(x)
100
≤ ε

100
.

The map x 7→ x∞ is continuous.

Proof. Consider the trapezium D (in the (µ, ν) coordinates) whose vertices are (−ε, 0),

(ε, 0), (− 9ε
10
, ε), and ( 9ε

10
, ε). This trapezium D is contained in [−ε, ε] × [0, ε] and contains

[− 9
10
ε, 9

10
ε]× [0, ε]. Thus for proving the first item it is enough to check that D is invariant

under P . For that notice that, for any x with (µ(x), ν(x)) ∈ [−ε, ε] × [0, ε] one has that

(µ(P(x)), ν(P(x)) belongs to the triangle δ(x) whose vertices are (µ(x), ν(x)), (µ(x)− ν(x)
100

, 0),

(µ(x) + ν(x)
100

, 0) (according to Equation 7.8); one conclude by noticing that, if (ν(x), µ(x))

belongs to D then δ(x) ⊂ D.

Let us show that Pn(x) converges.

The sequence ν(Pn(x)) is positive and decreasing, hence converges, and∑
|ν(Pn+1(x))− ν(Pn(x))|

converges. As |µ(Pn+1(x))− µ(Pn(x))| < 1
100
|ν(Pn+1(x))− ν(Pn(x))| one deduces that the

sequence {µ(Pn(x)}n∈N is a Cauchy sequence, hence converges.
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The continuity of x 7→ x∞ follows from the inequality µ(x∞) − µ(x) ≤ ν(x)
100

applied to

Pn(x) with n large, so that ν(Pn(x)) is very small, and from the continuity of x 7→ Pn(x).

For any point y with (µ(y), ν(y)) ∈ [− 8
10
ε, 8

10
ε] × {0} the stable set of y, which we

denote by S(y), is the the union of {y} with the set of points x ∈ Σ+ with (µ(x), ν(x)) ∈

[− 9
10
ε, 9

10
ε]× (0, ε] so that x∞ = y. The continuity of the map x 7→ x∞ implies the following

remark:

Remark 7.6.5. For any point y with (µ(y), ν(y)) ∈ [− 8
10
ε, 8

10
ε] × {0}, S(y) is a compact set

which has a non-empty intersection with the horizontal lines {x, ν(x) = t} for every t ∈ (0, ε].

If E is a subset of Col (X, Y, U) ∩ Σ0 so that µ(y) ∈ [− 8
10
ε, 8

10
ε] for y ∈ E one denotes

S(E) =
⋃
y∈E

(S(y)).

Lemma 7.6.6. Let I ⊂ Col (X, Y, U) be the open interval (µ(x), ν(x)) ∈ (−1
2
ε, 1

2
ε) × {0}.

Consider the quotient space Γ of S(I)\I by the dynamics. Then Γ is a C1-connected surface

diffeomorphic to a cylinder R/Z× R.

Proof. Consider the compact triangle whose end points are (− ε
2
, 0), (0, ε

10
) and (+ ε

2
, 0). Let

∆̄ be its preimage by (µ, ν).

∆̄ is a triangle with one side on Col(X, Y, U). Let ∆ = ∆̄ \ Col(X, Y, U). We denote by

∂∆ the union of the two other sides.

As the vectors directing the two other sides have a first coordinated larger than the

second, one deduces that ∆ is a trapping region for P :

x ∈ ∆ =⇒ P(x) ∈ ∆.

Now

P(∂∆)

is a curve contained in the interior of ∆ and joining the vertex (− ε
2
, 0) to the vertex (+ ε

2
, 0).

Thus ∂∆ and P(∂∆) bound a strip diffeomorphic to [0, 1]× R in ∆.

Let Γ be the cylinder obtained from this strip by gluing ∂∆ with P(∂∆) along P .
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It remains to check that Γ is the quotient space of S(I) \ I by P . For that, one just

remark that the orbit of every point in S(I) \ I has a unique point in the strip, unless in the

case where the orbits meets ∂∆: in that case the orbits meets the strip twice, the first time

on ∂∆, the second on P(∂∆).

Let us end this section by stating important straighforward consequences of the invariance

of the vector field N under P .

Remark 7.6.7. • For every y ∈ Col(X, Y, U) with µ(y) ∈ [− 8
10
ε, 8

10
ε], the stable set S(y)

is invariant under the flow of N .

• The vector field N induces a vector field, denoted by NΓ, on the quotient space Γ. As

Γ is a C1 surface, Nγ is only C0. However, it defines a flow on Γ which is the quotient

by P of the flow of N .

• The continuous map x 7→ x∞ in invariant under P and therefore induces on Γ a

continuous map Γ → (−ε/2, ε/2), and x∞ tends to −ε/2 when x tends to one end

of the cyclinder Γ and to ε/2 when x tends to the other end. This implies that, for

every t ∈ (−ε/2, ε/2) the set of points x ∈ Γ for which x∞ = t is compact. Recall

that this set is precisely the projection on Γ of S(y) where y ∈ Col(X, Y, U) satisfies

(µ(y), ν(y)) = (t, 0).

• The vector field NΓ on Γ leaves invariant the levels of the map x 7→ x∞. As a conse-

quence, every orbit of NΓ is bounded in Γ.

One deduces

Lemma 7.6.8. For every y ∈ Col(X, Y, U) with µ(y) ∈ [− 8
10
ε, 8

10
ε], the stable set S(y) \ {y}

contains an orbit of N which is invariant under P. In particular, there exists x in ∆∩S(x0)

whose orbit by N is invariant under P.

Proof. A Poincaré Bendixson argument implies that, for every flow on the cylinder R/Z×R

without fixed points, for every bounded orbit the ω-limit set is a periodic orbit. Furthermore

this periodic orbit is not homotopic to a point (otherwise it bounds a disc containing a zero).
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Since NΓ has no zeros, one just applies this argument to the flow of it restricted to the a

level of the map x 7→ x∞. The level contains a periodic orbit which is not homotopic to 0,

hence corresponds to an orbit of N joining a point in S(y) to is image under P . This orbit

of N is invariant under P , concluding.

7.6.3 End of the proof of Theorem D: the vector field N does not

rotate along a P-invariant orbit of N

From now on, (U,X, Y,Σ,B) is a prepared counter example to Theorem D with `+(X, Y ) 6= 0.

According to Proposition 7.5.2 the derivative DP(x) is the identity map for every x ∈

Col (X, Y, U) ∩ Σ0.

According to Lemma 7.6.8, there is a point x in the stable set S(x0) whose N -orbit is

invariant under P .

Lemma 7.6.9. The angular variation of the vector N(y), for y ∈ [Pn(x),Pn+1(y)], tends to

0 when n→ +∞.

Before proving Lemma 7.6.9 let us conclude the proof of Theorem D.

Proof of Theorem D. Lemma 7.6.9 is in contradiction with Corollary 7.4.4, which asserts

that the angular variation of the vector N along any segment [z,P2(z)] for z ∈ Σ+ close

enough to x0 is larger than 2π. This contradiction ends the proof of Theorem D.

It remains to prove Lemma 7.6.9. First, notice that the angular variation of N along

a segment of curve is invariant under homotopies of the curve preserving the ends points.

Therefore Lemma 7.6.9 is a straighforward consequence of next lemma:

Lemma 7.6.10. The angular variation of the vector N(y) along the N-orbit segment joining

Pn(x) to Pn+1(x) tends to 0 when n→ +∞.

As N is (by definition) tangent to the N -orbit segment joining Pn(x) to Pn+1(x), its

angular variation is equal to the angular variation of the unit tangent vector to this orbit

segment.

119



Figure 7.9: Lemma 7.6.10: an integral curve of N along wich the angular of N is small.

7.6.4 Proof of Lemma 7.6.10: the tangent vector to a P-invariant

embedded curve do not rotate

Remark 7.6.11. For n large enough the point Pn(x) belongs to the region ∆ defined in the

previous section, and whose quotient by the dynamics P is the cyclinder Γ. Then,

• any continuous curve γ in ∆ joining Pn(x) to Pn+1(x) induces on Γ a closed curve,

homotopic to the curve induced by the N -orbit segment joining P n(x) to Pn+1(x).

• The curve induced by γ is a simple curve if and only if γ is simple and disjoint from

P i(γ) for any i > 0.

• If the curve γ is of class C1, the projection will be of class C1 if and only if the image

by P of the unit vector tangent to γ at Pn(x) is tangent to γ (at Pn+1(x)).

• on the cylinder, any two C1-embbedding σ1, σ2 of the circle, so that σ1(0) = σ2(0) are

isotopic through C1-embeddings σt with σt(0) = σi(0).

We consider I(∆,P) as being the set of C1-immersed segment I in ∆ \ ∂∆, so that:

• if y, z are the initial and end points of I then z = P(y)

• if u is a vector tangent to I at y then P∗(u) is tangent to I (and with the same

orientation.
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In other words, I ∈ I(∆,P) if the projection of I on Γ is a C1 immersion of the circle,

generating the fundamental group of the cylinder. We endow I(∆,P) with the C1-topology.

We denote by V ar(I) ∈ R the angular variation of the unit tangent vector to I along I.

In other words, for I : [0, 1]→ ∆, consider the unit vector

I̊(t) =
dI(t)/dt

‖dI(t)/dt‖
∈ S1 ' R/2πZ.

One can lift I̊ is a continuous map İ : [0, 1]→ R. Then

V ar(I) = İ(1)− İ(0),

this difference does not depend on the lift.

The map V ar : I(∆,P) → R is continuous. Let Ṽ ar(I) ∈ R/2πZ be the projection of

V ar(I). In other words, Ṽ ar(I) is the angular variation modulo 2π.

Remark 7.6.12. Let In ∈ I(∆,P) be a sequence of immersed segments such that In(0) tends

to x0 ∈ Σ. Then Ṽ ar(In) tends to 0.

Indeed, since DP(In(0)) tends to the identity map, the angle between the tangent vectors

to In at In(1) and In(0) tends to 0.

As a consequence of Remark 7.6.12, we get the following lemma:

Lemma 7.6.13. There is a neighborhood O of x0 in Σ so that to any I ∈ I(∆,P) with

I(0) ∈ O there is a (unique) integer [var](I) ∈ Z so that

V ar(I)− 2π[var](I) ∈
[
− 1

100
,

1

100

]
.

Furthermore, the map I 7→ [var](I) is locally constant in I(∆,P), hence constant under

homotopies in I(∆,P) keeping the initial point in O.

As a consequence we get

Lemma 7.6.14. If I and J are segments in I(∆,P) with the same intial point in O and

whose projections on the cyclinder Γ are simple closed curves, then

[var](I) = [var](J).
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Proof. Since the projection of I and J are simple curves which are not homotopic to a point

in the cylinder Γ, the projections of I and J are isotopic on Γ by an isotopy keeping the

initial point. One deduces that I and J are homotopic through elements It ∈ I(∆,P) with

the same initial point. Indeed, the isotopy on Γ between the projection of I and J can be

lifted to the universal cover of Γ. This universal cover is diffeomorphic to a plane R2, in

which ∆ \ ∂∆ is an half plane (bounded by two half lines). There is a diffeomorphism of

R2 to ∆ \ ∂∆ which is the indentity on I ∪ J . The image of the lifted isotopy induces the

announced isotopy through elements in I(∆,P). Now, as [var](It) is independent of t, one

concludes that [var](I) = [var](J).

Now Lemma 7.6.10 is a consequence of Lemma 7.6.14 and of the folowing lemma:

Lemma 7.6.15. For any n > 0 large enough there is a curve In ∈ I(∆,P) whose initial

point is Pn(x) and such that:

• the projection of In on Γ is a simple curve

• [var](In) = 0.

End of the proof of Lemma 7.6.10. The N -orbit segment Jn joining Pn(x) to Pn+1(x) be-

longs to I(∆,P) and its projection on Γ is a simple curve. Hence Lemma 7.6.14 asserts that,

for n large enough, [var](Jn) = [var](In) = 0 where In is given by Lemma 7.6.15.

Now, when n tends to infinity, V ar(Jn) − 2π[var](Jn) tends to 0 (according to Re-

mark 7.6.12), that is, V ar(Jn) tends to 0. This is precisely the statement of Lemma 7.6.10.

Proof of Lemma 7.6.15. As n tends to +∞ the derivative of P at Pn(x) tends to the identity

map. Thus, the segment [Pn(x),Pn+1(x)] may fail to belong to I(∆,P) only by a very

small angle between vn and DP(vn), where vn is the unit vector directing [Pn(x),Pn+1(x)].

Therefore, one easily builds a segment In joining Pn(x) to Pn+1(x), whose derivative at Pn(x)

is vn and its derivative at Pn+1(x) is DP(vn) and whose derivative at any point of In belongs

to an arbitrarily small neighborhood of vn. In particular In ∈ I(∆,P) and [var](In) = 0 for

n large. In order to complete the proof, it remains to show that
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Figure 7.10: A segment In built by interpolating vn and P∗vn along [Pn(x),Pn+1(x)].

Claim 11. For n large enough In projects on Γ as a simple curve.

Proof. We need to prove that for n large enough and for any i > 1, In ∩ P i(In) = ∅ and

In ∩ P(In) is a singleton (the endpoint of In which is the image of its intial point).

Indeed, it is enough to prove that, for any y ∈ In different from the initial point,

ν(P(y)) < inf
z∈In

ν(z).

As the action of P consists in lowing down the value of ν, the further iterates cannot cross

In.

For proving that, notice that the vectors tangent to In are very close to vn which is

uniformly (in n large) transverse to the levels of ν. As DP(y) tends to the identity map

when y tends to 0, for n large, the vectors tangent to P(In) are also transverse to the levels

of ν. Hence P(In) is a segment starting at the end point of In (which realizes the infimum

of ν on In) and ν is strictly decreasing along P(In), concluding.

This ends the proof of Lemma 7.6.15 (and so of Theorem D).
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Chapter 8

Existence of attractors for

non-singular flows on 3-manifolds

Let M be a three manifold. The goal of this chapter is to present the proof that inside the

open subset of X1(M) formed by non-singular vector fields there exists a residual set R such

that the flow of every x ∈ R possess an attractor. More precisely, the result we shall present

in this chapter is the following.

Theorem E (Arbieto, Morales, S.). There exists a residual subset R of X1
NS(M) (the space

of non-singular vector fields) such that for every X ∈ R one of the following assertions is

true

1. X has infinitely many sinks

2. X has a finite number of hyperbolic attractors, whose topological basins cover a full

Lebesgue measure subset of M .

The proof given below is the same of the paper [AMS1], though with a different presen-

tation. The first section of this chapter is dvoted to describe the adaptation of techinique

for diffeomorphisms to flows. This technique enables one to prove an ergodic property about

the divergence of a vector field, which is very useful to study existence of attractors.
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8.1 J-weak orbits

The result we shall describe now is the flow adaptation of diffeomorphism result due to

Araújo in his thesis [A]. We presented the flow version in our paper [AMS1]. Even though

the adaptation is not difficult, at the time we were thinking about Araúsjo’s result for non-

singular flows it was not clear if such an adaptation was possible and, in fact, the search for

this adaptation was my first contact with mathematical research.

8.1.1 J-weak orbits for diffeomorphisms

For the sake of completeness and for the comfort of the reader we shall give Araújo’s proof.

Let δp be the Dirac measure supported on a point p. Consider a diffeomorphism f :

Md →Md, of a d-dimensional closed manifold M .

Definition 8.1.1. The orbit O(x) of a point x ∈M is said to be J-weak if there exists N > 0

such that n ≥ N implies

| detDfn(x)| < (1 + δ)n.

We denote by Λ(δ, f) the set of all J-weak orbits. Recall that m denotes the normalized

Lebesgue measure of M .

Lemma 8.1.2 (Araújo). m (Λ(δ, f)) = 1.

Proof. Take ε > 0 and for n ∈ N, consider Λn = {x ∈ M ; | detDfn(x)| ≥ (1 + δ)n}. Notice

that N > 0,
+∞⋂
n=N

(M − Λn) ⊂ Λ(δ, f).

Thus

m (Λ(δ, f)) ≥ 1−m

(
+∞⋃
n=N

Λn

)
≥ 1−

+∞∑
n=N

m (Λn) . (8.1)

On the other hand, since fn is a diffeomorphism, by change of variables we have

1 =

∫
M

| detDfn|dm ≥
∫

Λn

| detDfn|dm ≥ (1 + δ)nm (Λn) .
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It follows that

m (Λn) ≤ 1

(1 + δ)n
.

Therefore, if N is so large that
∑∞

n=N m(Λn) < ε one obtains from 8.1 that

m (Λ(δ, f)) ≥ 1−
+∞∑
n=N

m (Λn) ≥ 1− ε.

Since ε > 0 was chosen arbitrarily, the lemma is proved.

8.1.2 J-weak orbits for flows

Let X be a vector field on a d-dimensional closed manifold M .

Definition 8.1.3. We say that a point x generates a J-weak orbit (for the flow of X) if there

exists an integer N > 0 such that if t ≥ N we have

detDXt(x) < (1 + δ)t.

The set of all points generating J-weak orbits is denoted by Λ(δ,X).

As in Lemma 8.1.2 our goal is to prove that m (Λ(δ,X)) = 1. The proof of Lemma 8.1.2

is based on a very elegant idea: a diffeomorphism cannot expand volume along large strings

of orbits in a positive measure set. However, implicity in the proof is a countability argument

which takes advantage that the time is given by integers. This is the reason why neither the

result nor the proof of Araújo can be immediately translated for flows: the time is given by

an uncountable set!

To handle this difficult we shall apply Lemma 8.1.2 to Xt, for small values of t, and try

to “propagate” the J-weakness for all times nearby nt, with n ∈ N.

More precisely, first, we notice that for any t ∈ R by applying Lemma 8.1.2 to the

diffeomorphism Xt one obtains m (Λ(δ,Xt)) = 1. Besides that, we have the following

Lemma 8.1.4. Given ε > 0 there exists q ∈ N such that if |t| < 1/q then for any y ∈M we

have

| detDXt(y)− 1| < ε.
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Proof. Let ε > 0 be given. Since X0 = Id, notice that detDX0(y) = 1, for every y ∈ M .

Since the map Φ : R×M → R, Φ(t, x) = detDXt(x) is continuous and M is compact, there

exists a δ > 0 such that |t| < δ implies | detDXt(y) − 1| < ε, for every y ∈ M . Now, just

take q large enough.

We are now in position to prove

Lemma 8.1.5. m (Λ(δ,X)) = 1.

Proof. Take δ > δ′ > 0 and ε > 0 such that

1 + ε <
1 + δ

1 + δ′
.

With this ε by Lemma 8.1.4 one obtains a large integer q ∈ N. Lemma 8.1.2 implies that

m
(
Λ(δ′, X1/q)

)
= 1. To complete the proof it suffices to establish that Λ(δ′, X1/q) ⊂ Λ(δ,X).

For this, notice that for any x ∈ Λ(δ′, X1/q) there exists N > 0 such that

detDXn/q(x) < (1 + δ′)n/q for every n ≥ N.

Take t ≥ N . There exist n ∈ N such that

n

q
≤ t ≤ n+ 1

q
.

Thus, using Lemma 8.1.4 we obtain

| detDXt(x)− detDXn/q(x)| = |(detDXt−n
q
(Xn

q
(x))− 1)| detDXn

q
(x)

< ε(1 + δ′)n/q < ε(1 + δ′)t.

Thus, for any x ∈ Λ(δ′, X1/q) there exist N such that for every t ≥ N we have

detDXt(x) < (1 + ε)(1 + δ′)t < (1 + δ)t,

due to our choice of ε and δ′. This completes the proof.

By considering accumulations of measures uniformly distributed along the orbit of a point

in Λ(δ,X), we shall obtain below a large set in M generating invariant measures with zero

average dissipation (Lemma 8.1.6).
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Indeed, given a three-dimensional flow X and t > 0 we define the Borel probability

measure

µp,t =
1

t

∫ t

0

δXs(p)ds.

(Sometimes we write µXp,t to indicate the dependence on X.)

Denote by M(p,X) as the set of Borel probability measures µ = limk→∞ µp,tk for some

sequence tk → ∞. Recall that a Borel probability measure µ on M is invariant under X if

µ ◦X−t = µ for every t ≥ 0. Notice that every measure inM(p,X) is invariant. With these

notations we have the following lemma.

Lemma 8.1.6. For every three-dimensional flow X there is a full Lebesgue measure set LX

of points x satisfying ∫
divXdµ ≤ 0, ∀µ ∈M(x,X).

Proof. Define

LX =
⋂
k∈N+

Λ(1/k,X).

By Lemma 8.1.5, m(LX) = 1.

Take x ∈ LX , µ ∈M(x,X) and ε > 0. Fix k > 0 with log
(
1 + 1

k

)
< ε.

By definition we have x ∈ Λ(1/k,X). and so there is N ∈ N such that

| detDXt(x)|
1
t < 1 +

1

k
, ∀t ≥ N.

Take a sequence µx,ti → µ with ti → ∞. Then, we can assume ti ≥ N for all i. From this

and the Liouville’s Formula [Ma1] we obtain,∫
divXdµ = lim

i→∞

∫
divXdµx,ti = lim

i→∞

1

ti

∫ ti

0

divX(Xs(x))ds =

lim
i→∞

1

ti
log | detDXti(x)| ≤ log

(
1 +

1

k

)
< ε.

Since ε > 0 is arbitrary, we obtain the result.

8.1.3 Lyapunov stable sets and J-weak orbits

Lemma 8.1.7. Let X ∈ X1(M) and let Λ be a Lyapunov stable set for X. Then, there exists

an ergodic measure µ with supp(µ) ⊂ Λ and such that
∫

div(X)dµ ≤ 0
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Proof. First note that, by definition of a Lyapunov stable set, given any neighborhood U

of Λ there exists a neighborhood Λ ⊂ V ⊂ U such that for any x ∈ V , Xt(x) ∈ U for all

t ≥ 0. In particular, for every x ∈ V and for every ν ∈ M(x,X), one has supp(ν) ⊂ U . By

Lemma 8.1.6 there exists some point x ∈ V such that for any ν ∈M(x,X) one has∫
div(X)dν ≤ 0. (8.2)

This gives a sequence of meausres νn, satisfying equation (8.2) and supported on the

open sets

Un = {x ∈M ; d(x,Λ) <
1

n
}.

Taking a subsequence, if necessary, we can suppose that νn converge in the wak topolgy for

some measure µ. Since the convergence is weak, µ also satisfies equation (8.2).

We claim that supp(µ) ⊂ Λ. To see this, we argue by contradiction. If there is some

point y ∈ supp(µ) ∩ (M − Λ), then, by compactness of Λ there exists r > 0 such that for

every sufficiently large n,

B(x, 2r) ∩ Un = ∅.

We can take a continuous function φ : M → R that is identiclly 1 in the ball B(x, r) and

that is zero outside the ball B(x, 2r). Since x ∈ supp(µ),∫
φdµ ≥ µ(B(x, r)) > 0.

However, for every large n, ∫
φdµn = 0,

and this contradicts µn → µ in the weak topology.

Therefore, µ is an invariant measure supported on Λ and satisfing equation (8.2). By

ergodic decomposition, the conclusion follows.

8.2 Structure of the proof

In this section we state some C1-generic results that we shall combine together to obtain

Theorem E. Some of these results are straightforward applications of known results. For
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those, we present a proof in this section. The other ones, which require longer proofs (known

or new), we shall proof in the remaining parts of the chapter.

Lebesgue measure of stable sets

Bowen proved [Bow1] that, for a C2 vector field, a hyperbolic set attracts a positive measure

subset of M if and only if it is a topological attractor. Since C2 vector fields form a dense

subset of X1(M) and since hyperbolic sets are stable it is natural to conjecture that the same

statement will be true for C1-generic vector fields. As we could not found a proof in the

literature, we shall present a proof of this here, for isolated hyperbolic sets.

Proposition 8.2.1. Let X be a C1 generic vector field over M , and let Γ be an isolated

hyperbolic set. If Γ is not an attractor then m (W s(Γ)) = 0.

The proof is postponed to Section 8.3

Dominated splitting over dissipative orbits

In order to benefit from the previous result, we shall study dissipative periodic orbits and

show that, when X has finitely many sinks robustly, the closure of the set of dissipative

periodic orbits admits a dominated splitting for the Linear Poincaré Flow.

The precise definition is the following.

Definition 8.2.2. A vector field X is said to have finitely many sinks robustly if it has

a neighborhood U ⊂ X1(M) such that if Y ∈ U then Y has finitely many sinks and

card(Sink(Y )) = card(Sink(X)). We denote by S(M) the set of vector fields with finitely

many sinks robustly.

The lemma below motivates our interest in the class S(M).

Lemma 8.2.3. If a C1-generic vector field X has finitely many sinks then X ∈ S(M).

Proof. By classical hyperbolic theory the map X ∈ X1(M) 7→ Sink(X) ∈ K(M), where

K(M) is the space of compact subsets of M endowed with the Hausdorff topology, is lower
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semicontinuous. By a classical topological result, there existis a residual subset of X1(M)

where this map is continuous. So, take X ∈ X1(M) which is a continuity point of the map

X ∈ X1(M) 7→ Sink(X) ∈ K(M). If X has finitely many sinks, say

Sink(X) = {γ1, ..., γn},

it follows that for every Y sufficiently close to X, Sink(Y ) = {γY1 , ..., γYn } where each γYi is

the unique continuation of γi. This proves the lemma.

Recall the definition of the so-called linear Poincaré Flow. Given a non-singular point

x ∈M , denote by Nx the subspace of TxM orthogonal to 〈X〉, we define the Linear Poincaré

Flow by

Pt(x)v := π(Xt(x))DXt(x)v,

where π(y) : TyM → Ny is the orthogonal projection in the direction of the vector field.

Notice that the Linear Poincaré Flow is the derivative of the holonomies of orthogonal

sections to the flow (see Lemma 2.4.1).

When x is a hyperbolic periodic point, the hyperbolic subspaces are projected into sub-

spaces invariant by the Linear Poincaré Flow, and we call these subspaces the hyperbolic

decomposition with respect to the Linear Poincaré Flow.

Definition 8.2.4. Given δ > 0 we say that a periodic point p, with period π(p) belongs to

the set P(δ,X) if
1

π(p)
log | detPπ(p)(p)| < δ.

The heuristic idea behind this definition is that these points have almost more contraction

than expansion. In particular, there are no sources in P(δ,X).

Definition 8.2.5. Let Λ be an invariant set. Let Λ0 := Λ−Zero(X) and consider the normal

bundle N defined in Λ0. We say that Λ admits a dominated splitting for the Linear Poincaré

Flow if there exists a decomposition Nx = Ex ⊕ Fx, for every x ∈ Λ0 and constants C > 0

and 0 < λ < 1 such that

‖Pt(x)|E‖‖P−t(Xt(x))|F‖ ≤ cλt,

for every t ≥ 0.
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Proposition 8.2.6 implies the existence of a dominated splitting Es ⊕ Eu for the Linear

Poincaré Flow over P(δ,X)− Zero(X).

Proposition 8.2.6. Given X ∈ S(M) there is a C1 neighborhood U of X, and constants

C > 0, 0 < λ < 1 and δ0 > 0 such that for every Y ∈ U and p ∈ P(δ, Y ), with 0 < δ ≤ δ0

if Es ⊕Eu is the hyperbolic decomposition for the Linear Poincaré Flow over the orbit of p,

then ∥∥P Y
t (p)|Es

∥∥∥∥P Y
−t(Yt(p))|Eu

∥∥ ≤ Cλt,

for every t ≥ 0.

The proof is a small adaptation of the original argument of Araújo. The ideas is to use

the arguments from Mañé’s paper [Ma2], making sure that the same perturbations used

there can be performed within the dissipative periodic orbits. For completeness, we shall

present a proof in Section 8.4.

Domination and hyperbolicity

In [AH] Arroyo and Hertz extended to non singular three dimensional flows a deep result

for surface diffeomorphisms due to Pujals and Sambarino [PS]. They proved that for a C2

nonsingular flow domination over a transitive invariant set implies hyperbolicity. Using a

clever trick of [BGY] we shall prove that for C1 generic three dimensional flows domination,

over any invariant compact set, implies hyperbolicity

Proposition 8.2.7. Let X be a C1 generic vector field over M . Assume that Λ is a compact

invariant, admitting a dominated splitting for the Linear Poincaré Flow and with Zero(X)∩

Λ = ∅. Then, Λ is a hyperbolic set for X.

This proposition is an improvement of Lemma 3.1 in [BGY], and will be proved in

Section 8.5.
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Neutral homoclinic classes

A result of Carballo, Morales and Paćıfico [CMP] says that, for C1-generic vector fields, ho-

moclinic classes are neutral: the intersection of a Lyapunov stable set for X with a Lyapunov

stable set for −X. Using this, one easily obtains the following

Lemma 8.2.8. Let X be a C1 generic vector field over M . Let H(p) be a homoclinic class

of X and x ∈M . If ω(x) ∩H(p) 6= ∅ then ω(x) ⊂ H(p).

Proof. Let X be a C1 generic vector field over M and let H(p) be a homoclinic class of

a periodic orbit of X. Assume that there exists x ∈ M such that ω(x) ∩ H(p) 6= ∅. By

Theorem 3.1 in [CMP] one knows that there exists a Lyapunov stable set for Λ and a

Lyapunov stable unstable Γ, such that H(p) = Λ ∩ Γ. Applying Lemma 2.2.1, one obtains

that ω(x) ⊂ Λ ∩ Γ = H(p).

Omega-limit sets of J-weak orbits

To obtain that the basin of the hyperbolic attractors cover a full Lebesgue measure subset

of M we shall prove that they contain the sets LX (see Lemma 8.1.6). The key result is the

following.

Lemma 8.2.9. For every δ > 0, for every C1 generic non-singular vector field X and for

every x ∈ LX , we have ω(x) ∩ P(δ,X) 6= ∅.

Proof. Lemma 8.1.6 implies that every µ ∈ M(x,X) satisfies
∫

div(X)dµ ≤ 0. By ergodic

decomposition one obtains an ergodic invariant measure for X, whose suport is contained

in ω(x) and such that
∫

div(X)dµ ≤ 0. By the Ergodic Closing Lemma [Ma1] (see also

Theorem 3.5 in [AS] for the C1 generic version for flows) there exists periodic points σn

(since X ∈ X1
NS(M)) such that the measures µn :=

∫
δXt(σn)dt satisfy

1. µn converge to µ in the weak topology

2. supp(µn)→ supp(µ) in the Hausdorff topology.
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In particular, σn ∈ P(δ,X) for every n large. Since supp(µ) ⊂ ω(x), the proof is complete.

Lyapunov stable sets and dissipative orbits

To profit from the previous results, we need to relate attactors with the dissipative periodic

orbits P(δ,X).

Lemma 8.2.10. Let X be a C1 generic vector non-singular vector field, let δ > 0 and Λ be

a Lyapunov stable set. Then, Λ ∩ P(δ,X) 6= ∅.

Proof. By Lemma 8.1.7, there exists an ergodic measure µ with supp(µ) ⊂ Λ and such that∫
div(X)dµ ≤ 0. The conclusion follows once more from the Ergodic Closing Lemma.

Proof of Theorem E

Let X be a C1 generic, non-singular, vector field over the 3-manifold M . Assume that X has

finitely many sinks. Then, by Lemma 8.2.3 X ∈ S(M). Take δ > 0 sufficiently small. Then,

Proposition 8.2.6 implies that P(δ,X) admits a dominated splitting. By Proposition 8.2.7,

P(δ,X) is a hyperbolic set. In particular, there exists p1, .., pn ∈ P(δ,X) such that

P(δ,X) =
n⋃
l=1

H(pl) ∪ Sink(X),

and each H(pl) is a hyperbolic isolated set.

Claim 12. All attractors of X are subsets of P(δ,X). More precesely, let Λ be an attractor

of X. Then, either Λ is a periodic sink or Λ = H(pl), for some l ∈ {1, .., n}.

Proof. Assume that there exists Λ an attractor for X, which is not a sink. In particular, Λ

is a Lyapunov stable set. By Lemma 8.2.10, Λ ∩ P(δ,X) 6= ∅. It follows from Lemma 2.2.1

that Λ = H(pl), for some l ∈ {1, .., n}.

In particular, X has finitely many attractors.

Let I ⊂ {1, .., n} be such that i ∈ I if, and only if H(pi) is not an attractor.
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Claim 13. m ({x ∈ LX ;ω(x) ∩H(pi) 6= ∅, for some i ∈ I}) = 0.

Proof. Take x ∈ LX such that ω(x) ∩ H(pi) 6= ∅, for some I ∈ I. Since X is C1 generic,

Lemma 8.2.8 proves that x ∈ W s(H(pi)). It remains to notice that

m

(⋃
i∈I

W s(H(pi))

)
= 0,

by Proposition 8.2.1.

Consider the set BX = LX \ {x ∈ LX ;ω(x) ∩ H(pi) 6= ∅, for some i ∈ I}. Claim 13

and Lemma 8.1.6 pove that m(BX) = 1. Take a point x ∈ BX . By Lemma 8.2.9, either

x ∈ W s(Sink(X)) or x ∈ W s(H(pl)), and H(pl) is a hyperbolic attractor.

This proves that X has finitely many attractors whose basins cover a full Lebesgue

measure subset of M , and establishes Theorem E.

8.3 Lebesgue measure of stable sets

Proposition 8.2.1 is possibly a folklore result. We shall present a proof here for the sake of

completeness.

Proof of Proposition 8.2.1. Let B0 be a countable base of open sets for the topology of M .

Let B the set whose elements are finite unions of elements in B0. For each U ∈ B, recall that

ΛX(U) denotes the maximal invariant for the flow of X in U . Consider the set

OU = {X ∈ X1(M); ΛX(U) is hyperbolic and is not an attractor}.

Claim 14. OU is open in X1(M).

Proof. Take X ∈ OU . By continuation of hyperbolic sets, there exists a neighborhood U

of X such that ΛY (U) is a hyperbolic set, for every Y ∈ U . Moreover, there exists a

homeomorhism h : ΛY (U) → ΛX(U), which conjugates the dynamics. We shall prove that
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U ⊂ OU . Assume that this is not true. Then, there exists Y ∈ U such that ΛY (U) is an

attractor. In particular, W u
Y (y) ⊂ ΛY (U), for every y ∈ ΛY (U). As a consequence,

W u
X(h(y)) = h (W u(y)) ⊂ ΛX(U),

for every y ∈ ΛY (U). This implies that ΛX(U) contains the unstable manifolds of all its

points, and thus must be an attractor, a contradiction. This proves the claim.

Denote by Λ−X(U) = ∩t≤0Xt(U). Consider now OU,n = {X ∈ OU ;m(Λ−X(U)) < 1/n}.

Each OU,n is open, by Lemma 17 of [AO].

Claim 15. OU,n is dense in OU

Proof. Take x ∈ Λ−X(U). Then, by definition, Xt(x) ∈ U , for every t > 0. In particular,

ω(x) ⊂ ΛX(U). Therefore, Λ−X(U) ⊂ W s(ΛX(U)) and thus, if X is C2, we have m
(
Λ−X(U)

)
=

0. Since, OU is open in X1(M) and the set of C2 vector fields is dense in X1(M), the claim

is proved.

Consider R =
⋂
U∈B,n∈NOU,n ∪ (X1(M) \ OU). Then, R is a residual subset of X1(M).

Take X ∈ R. Let Γ be an isolated hyperbolic set which is not an attractor. Since Γ is

isolated, there exists U ∈ B such that Γ = ΛX(U). Since Γ is not an attractor, X ∈ OU,n,

for every n ∈ N. Thus, m
(
Λ−X(U)

)
= 0 It reamains to notice the following

Claim 16. W s(ΛX(U)) =
⋃
n∈NX−n(Λ−X(U))

Proof. If x ∈ W s(ΛX(U)) then there exists an integer N > 0 such that XN(x) ∈ U and

Xt(XN(x)) ∈ U , for every t ≥ 0. Thus, XN(x) ∈ ∩t≤0Xt(U), and therefore x ∈ X−N(Λ−X(U)).

Conversely, if x ∈ X−n(Λ−X(U)) then Xn(x) ∈ Λ−X(U) and thus Xn+t(x) ∈ U , for every t ≥ 0,

and thus ω(x) ⊂ ΛX(U). Onde deduces that X−n(Λ−X(U)) ⊂ W s(ΛX(U)), for every n,

concluding.

This completes the proof of Proposition 8.2.1.
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8.4 Dominated splitting over dissipative orbits

To prove Proposition 8.2.6 we shall need the following lemmas.

Lemma 8.4.1. Let X ∈ S(M). There exist δ1 > 0, c > 0 and a neighborhood U of X such

that if Y ∈ U , x ∈ P(δ, Y ) with δ < δ1 is not a sink and has period T then the characteristic

multipliers λ and µ of p are real and satisfy

log |λ| < −cT < 0 < cT < log |µ|.

Proof. During this proof we shall assume that |λ| ≤ |µ|. The hypotesis p ∈ P(δ, Y ) implies

that |λµ| < eTδ. Thus, we cannot have a complex eigenvalue. Indeed, since the linear map

P Y
T : Np → Np is two dimensional, if λ is the complex eigenvalue then |λ| < eTδ. So,

performimg a linear perturbation and using Frank’s lemma, we can turn this periodic orbit

into a sink, a contradiction with X ∈ S(M). So, we have two real eigenvalues |λ| ≤ 1 ≤ |µ|.

Now, assume by contradiction that for every δ > 0 small and every c > 0 we can find

p ∈ P(δ, Y ), for some Y as close as we want to X, with

|µ| < eTc.

Then, we perform a linear perturbation of the form

A|Eu = e−TcP Y
T ,

and by virtue of Frank’s Lemma again we obtain a sink for some Z close to X, breaking

down our hypotesis. Therefore, one of the inequalities we are looking for is true.

On the other hand, if the inequality with λ is not true for some Y close to X and

p ∈ P(δ, Y ), taking a small δ and using that |λµ| < eTδ, we can violate the other inequality

that we had just proved, an absurd. This proves the lemma.

Lemma 8.4.2. Let X ∈ S(M). Then, there exists δ > 0 a C1 neighborhood U of X and a

constant α > 0 such that for every Y ∈ U and p ∈ P(δ, Y ) we have Angle(Es
p, E

u
p ) > α.

Proof. Let us suppose by contradiction that for some Y arbitrarily close toX, Angle(Es
p, E

u
p ) :=

γ is close to zero at some p ∈ P(δ, Y ). Consider a orthonormal basis of Np whose first vector

is some unitary vector s ∈ Es
p, and the second vector is s⊥ ∈ [Es

p]
⊥. In this basis
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P Y
π(p)(p) =

λ µ−λ
γ

0 µ

 .
Let me explain how one sees this. Observe that

s+ γs⊥ = u ∈ Eu
p ,

thus

λs+ γP Y
π(p)s

⊥ = µu.

Rearranging things one easily gets that

P Y
π(p)s

⊥ =
µ− λ
γ

s+ µs⊥.

Consider a matrix of the form

A(β) =

1 0

β 1

 ,
in this basis, and note that we can choose an arbitrary small number β such that B(β) =

A(β)P Y
π(p)(p) has two eigenvalues with modulus

√
|λµ|, wich is either biger then 1, or smaller

or equal to 1.

Nevertheless, using Franks’ Lemma we perturb Y to Z in such a way that p ∈ Per(Z),

and

DZπ(p)(p) = A(β)DYπ(p)(p).

Note that
1

π(p)
log | detDZπ(p)(p)| =

1

π(p)
log | detDYπ(p)(p)| < δ,

and thus p ∈ P(δ, Z). Since DZπ(p)(p) has two eigenvalues with the same modulus, we get a

contradiction with lemma 8.4.1.

With these preparatory lemmas we can conclude the proof of Proposition 8.2.6. The

argument is a simple adaptation of the argument in Araújo’s thesis [A].
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Proof of Proposition 8.2.6. It’s enough to prove the following statement: there exists a C1-

neighborhood U of X and a number T > 0 such that for every Y ∈ U and every p ∈ P(δ, Y )

there exists 0 ≤ t ≤ T such that∥∥P Y
t (p)|Es

∥∥∥∥P Y
−t(Xt(p))|Eu

∥∥ < 1

2
.

Suppose this is not true. Then, for every T > 0 there exists a vector field Y , as close as we

want to X, and a periodic point p ∈ P(δ, Y ) such that∥∥P Y
t (p)|Es

∥∥∥∥P Y
−t(Xt(p))|Eu

∥∥ ≥ 1

2
, (8.3)

for every 0 ≤ t ≤ T . We can assume that π(p)→∞ as Y → X. Indeed, by lemma 8.4.1∥∥P Y
kπ(p)(p)|Es

∥∥∥∥P Y
−kπ(p)(p)|Eu

∥∥ ≤ e−2ckπ(p)

→ 0 when k →∞,

and thus there exists k0, wich depends only upon c, such that∥∥P Y
k0π(p)(p)|Es

∥∥∥∥P Y
−k0π(p)(p)|Eu

∥∥ < 1

2
.

This implies that π(p) ≥ T
k0

, and since T is large, π(p) is also large.

Take v ∈ Es
p and u ∈ Eu

p unitary vectors. By (8.3) we have that
‖PYt (p)v‖
‖PYt (p)u‖ ≥

1
2
, for every

0 ≤ t ≤ T . Now, define L : Eu
p → Es

p by L(u) = αv, for a small α > 0 and L : Eu
p → Es

p by

L := (1 + α)π(p)P Y
π(p)(p)|Es ◦ L ◦ P Y

−π(p)(p)|Eu .

If α is small enough then

‖L‖ ≤ (1 + α)π(p)e−2cπ(p)‖L‖ ≤ α.

Consider the maps P, S : Np → Np given by

• Pu = Lu and Pv = 0

• Sv = 0 and S(u+ Lu) = −Lu.

This maps have the following four properties

P |Esp = 0, (Id+ P )Eu
p = G, S|Esp = 0 e (Id+ S)G = Eu

p ,
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where G := {u+ Lu;u ∈ Eu
p } e G := {u+ Lu;u ∈ Eu

p }. Moreover, observe that

det(Id+ S) = 1, and det(Id+ P ) ≤ 1 + α.

Using lemma 8.4.2 and Lemma II.10 of [Ma2] one can see that

||P || ≤
(

1 + γ

γ

)
α e ||S|| ≤

(
1 + γ

γ

)
α.

Finally, we define Tj : TYj(p)M → TYj+1(p)M by Tj|Es
Yj(p)

= αId and Tj|Eu
Yj(p)

= 0, for

every integer 0 ≤ j ≤ [π(p)], and Tπ(p) : TY[π(p)](p)M → TpM defined in the same way,

where [π(p)] means the integer part of π(p). It’s easy to see that for every j = 1, ...π(p),

det(Id+ Tj) = 1 + α.

Now, we are in conditions to define the perturbations. The first one is built up in order

to slightly rotate 1 Eu
p , sending it to G, and then we go along the orbit of p through P Y

1 and

in the end we make a small stretch. In formulas:

L0 = (1 + α)−1(Id+ T1) ◦ P Y
1 (p) ◦ (Id+ P ) : TpM → TPY1 (p)M.

The stretch made by the map Id + T1 is devised make G lay down (a little bit) to the

subspace Es. In order to use the absence of domination to continue this and produce a small

angle between G and Es we define the maps

Lj = (Id+ Tj+1) ◦ P Y
1 (Yj(p)) : TYj(p)M → TYj+1(p)M,

for 1 ≤ j ≤ [pi(p)] and, in the final steps, we also use the map Id+ S to send G back to Eu
p

via

Lπ(p)−[π(p)] = (Id+ S) ◦ (Id+ T0) ◦ P Y
π(p)−[π(p)](Y[π(p)]) : Tgπ(p)−1(p)M → TpM.

It can be easily seen that ‖Lj − P Y
1 (Yj(p))‖ is as small as we please, provided that α is

small enough. By Franks’ Lemma, we can find a vector field Z close to Y , and therefore

close to X, such that OY (p) is a periodic orbit for Z, moreover, PZ
1 (Yj(p)) = Lj, for every

1Even though its matrix is triangular, not a rotation!
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j. Note that

1

π(p)
log | detPZ

π(p)(p)| =
1

π(p)
log

∣∣∣∣∣∣
π(p)−1∏
j=0

detLj

∣∣∣∣∣∣
≤ 1

π(p)
log(1 + α)π(p) detP Y

π(p)(p)

= log(1 + α) +
1

π(p)
log | detP Y

π(p)(p) < δ,

if α is small enough, and thus p ∈ P(δ, Z). Also, by shrinking α once again, one obtains

that Es
p is the stable space of p. By lemma 8.4.1 p is hyperbolic and thus, since Eu

p is

invariant under PZ
π(p)(p) we have that it is the unstable space of p. But from this we can

derive a contradiction as follows. Take m big, and consider Eσ
m = PZ

m(p)Eσ
p , σ = s, u. Let

β := Angle(Es
m, E

u
m) and consider the vectors

u1 = Lm(u) = PZ
m(p)u+ δ(1 + δ)mPZ

m(p)v,

and

u2 = Lm(δv) = δ(1 + δ)mPZ
m(p)v.

Using Lemma II.10 of [Ma2] again it follows that

||PZ
m(p)u|| = ||u1 − u2|| ≥

(
β

1 + β

)
||u1||

≥ β

1 + β

(
δ(1 + δ)m||PZ

m(p)v|| − ||PZ
m(p)u||

)
.

Thus,

1 ≥ β

1 + β

(
δ(1 + δ)m

2
− 1

)
,

since
1

2
||PZ

m(p)u|| ≤ ||PZ
m(p)v||.

Hence

β ≤ 2

δ(1 + δ)m − 4
≤ γ,

provided that m is big enough to δ(1 + δ)m ≥ 4 + 2
γ
., wich can be done because π(p) → ∞

as Y → X. This contradicts Proposition 8.4.2, and completes the proof.
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8.5 Domination and hyperbolicity

We now give the proof of Proposition 8.2.7.

Proof of Proposition 8.2.7. By Lemma 3.1 in [BGY] we have that there is a residual subset

Q1 of three-dimensional flows for which every transitive set without singularities but with a

LPF-dominated splitting is hyperbolic. Fix X ∈ Q1 and a compact invariant set Λ without

singularities but with a LPF-dominated splitting NX
Λ = N s,X

Λ ⊕Nu,X
Λ . Suppose by contradic-

tion that Λ is not hyperbolic. Then, by Zorn’s Lemma, there is a minimally nonhyperbolic

set Λ0 ⊂ Λ (c.f. p.983 in [PS]). Assume for a while that Λ0 is not transitive. Then, ω(x)

and α(x) = ω−X(x) are proper subsets of Λ0, for every x ∈ Λ0. Therefore, both sets are

hyperbolic and then we have

lim
t→∞
‖PX

t (x)/N s,X
x ‖ = lim

t→∞
‖PX
−t(x)/Nu,X

x ‖ = 0, for all x ∈ Λ0,

which easily implies that Λ0 is hyperbolic (see [ASS]). Since this is a contradiction, we

conclude that Λ0 is transitive. As X ∈ Q1 and Λ0 has a LPF-dominated splitting (by

restriction), we conclude that Λ0 is hyperbolic, a contradiction once more proving the result.
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Chapter 9

Lyapunov Stability and Sectional

Hyperbolicity for Higher Dimensional

Flows

In this chapter we present proof of our result about generic vector fields without points

accumulated by periodic orbits of different indices, namely we prove the following.

Theorem F. Let X ∈ X 1 be a C1-generic vector field without points accumulated by hy-

perbolic periodic orbits of different Morse indices. Then, X has finitely many sinks and

sectional-hyperbolic transitive Lyapunov stable sets for which the union of the basins is resid-

ual in M .

The presentation has no substantial changes from the original article.

9.1 Tools

Previously we state some basic results. The first one is the main result in [MP1].

Lemma 9.1.1. For every C1-generic vector field X ∈ X 1 there is a residual subset RX of

M such that ω(x) is a Lyapunov stable set, ∀x ∈ RX .
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With the same methods as in [CMP] and [MP1] it is possible to prove the following

variation of this lemma. We shall use the standard stable and unstable manifold operations

W s(·),W u(·) (c.f. [HPS]).

Lemma 9.1.2. For every C1-generic vector field X ∈ X 1 and every hyperbolic closed orbit

O of X the set {x ∈ W u(O)\O : ω(x) is Lyapunov stable} is nonempty (it is indeed residual

in W u(O)).

An extension to higher dimensions of the three-dimensional arguments in [M2] (e.g. [Lo])

imply the following lemma.

Lemma 9.1.3. A sectional-hyperbolic set Λ of X ∈ X 1 contains only finitely many attrac-

tors, i.e., the collection {A ⊂ Λ : A is an attractor of X} is finite.

The following concept comes from [GaLiW].

Definition 9.1.4. We say that a compact invariant set Λ of X ∈ X 1 has a definite index

0 ≤ Ind(Λ) ≤ n− 1 if there are a neighborhood U of X in X 1 and a neighborhood U of Λ in

M such that I(O) = Ind(Λ) for every hyperbolic periodic orbit O ⊂ U of every vector field

Y ∈ U . In such a case we say that Λ is strongly homogeneous (of index Ind(Λ)).

The importance of the strongly homogeneous property is given by the following result

proved in [GaLiW]: If a strongly homogeneous sets Λ with singularities (all hyperbolic)

of X ∈ X 1 is C1 robustly transitive, then it is partially hyperbolic for either X or −X

depending on whether

I(σ) > Ind(Λ), ∀σ ∈ SingX(Λ) (9.1)

or

I(σ) ≤ Ind(Λ), ∀σ ∈ SingX(Λ) (9.2)

holds. This result was completed in [MeM] by proving that all such sets are in fact sectional-

hyperbolic for either X or −X depending on whether (9.1) or (9.2) holds. Another proof of

this completion can be found in [GaWZ].

On the other hand, [AM] observed that the completion in [MeM] (or [GaWZ]) is also

valid for transitive sets with singularities (all hyperbolic of Morse index 1 or n− 1) as soon
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as n ≥ 4 and 1 ≤ Ind(Λ) ≤ n − 2. The proof is the same as [GaLiW] and [MeM] but with

the preperiodic set playing the role of the natural continuation of a C1 robustly transitive

set.

Now we observe that such a completion is still valid for limit cycles or when the periodic

orbits are dense. In other words, we have the following result.

Lemma 9.1.5. If a strongly homogeneous set Λ with singularities (all hyperbolic) of X ∈ X 1

satisfying 1 ≤ Ind(Λ) ≤ n−2 is a limit cycle or has dense periodic orbits, then it is sectional-

hyperbolic for either X or −X depending on whether (9.1) or (9.2) holds.

This lemma motivates the problem whether a strongly homogeneous set with hyperbolic

singularities which is a limit cycle or has dense periodic orbits satisfies either (9.1) or (9.2).

For instance, Lemma 3.3 of [GaWZ] proved this is the case for all C1 robustly transitive

strongly homogeneous sets. Similarly for strongly homogeneous limit cycles with singularities

(all hyperbolic of Morse index 1 or n − 1) satisfying n ≥ 4 and 1 ≤ Ind(Λ) ≤ n − 2 (e.g.

Proposition 7 in [AM]). Consequently, all such sets are sectional-hyperbolic for either X or

−X. See Theorem A in [GaWZ] and Corollary 8 in [AM] respectively.

Unfortunately, (9.1) or (9.2) need not be valid for general strongly homogeneous sets with

dense periodic orbits even if 1 ≤ Ind(Λ) ≤ n − 2. A counterexample is the nonwandering

set of the vector field in S3 obtained by gluing a Lorenz attractor and a Lorenz repeller as

in p. 1576 of [MP2]. Despite, it is still possible to analyze the singularities of a strongly

homogeneous set with dense periodic orbits even if (9.1) or (9.2) does not hold. For instance,

adapting the proof of Lemma 2.2 in [GaWZ] (or the sequence of lemmas 4.1, 4.2 and 4.3 in

[GaLiW]) we obtain the following result.

Lemma 9.1.6. If Λ is a strongly homogeneous set with singularities (all hyperbolic) and

dense periodic orbits of X ∈ X 1, then every σ ∈ SingX(Λ) satisfying I(σ) ≤ Ind(Λ) exhibits

a dominated splitting Êu
σ = Euu

σ ⊕Ec
σ with dim(Euu

σ ) = n− Ind(Λ)− 1 over σ such that the

strong unstable manifold W uu(σ) tangent to Euu
σ at σ (c.f. [HPS]) satisfies Λ∩W uu(σ) = {σ}.
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9.2 Proof

Now we can prove our result.

Proof of the Theorem. Let X ∈ X 1 be a C1-generic vector field without points accumulated

by hyperbolic periodic orbits of different Morse indices. By [AM], since X is C1 generic, it

follows that if Peri(X) denotes the union of the periodic orbits with Morse index i, then the

closure Cl(Peri(X)) is strongly homogeneous of index Ind(Cl(Peri(X))) = i, ∀0 ≤ i ≤ n−1.

Moreover, X is a star flow and so it has finitely many singularities and also finitely many

sinks and sources (c.f. [Liao], [?]).

Let us prove that ω(x) is sectional-hyperbolic for all x ∈ RX where RX ⊂ M is the

residual subset in Lemma 9.1.1. We can assume that ω(x) is nontrivial and has singularities

for, otherwise, ω(x) is hyperbolic by Theorem B in [GaW] and the Pugh’s closing lemma

[Pu1] and [Pu2].

Since X is C1 generic we can further assume that ω(x) ⊂ Cl(Peri(X)) for some 0 ≤

i ≤ n − 1 by the closing lemma once more. Since X has finitely many singularities sinks

and sources we have 1 ≤ i ≤ n − 2 (otherwise ω(x) will be reduced to a singleton which

is absurd). Since Cl(Peri(X)) is strongly homogeneous of index i we have that ω(x) also

does so 1 ≤ Ind(ω(x)) ≤ n − 2. Then, since ω(x) is a limit cycle, we only need to prove

by Lemma 9.1.5 that (9.1) holds for Λ = ω(x). To prove it we proceed as in Corollary

B in [GaLiW], namely, suppose by contradiction that (9.1) does not hold. Then, there is

σ ∈ SingX(Λ) such that I(σ) ≤ Ind(ω(x)). Since ω(x) ⊂ Cl(Peri(X)) and Cl(Peri(X)) is a

strongly homogeneous set with singularities, all hyperbolic, in Ω(X) we have by Lemma 9.1.6

that there is a dominated splitting Êu
σ = Euu

σ ⊕Ec
σ for which the associated strong unstable

manifold W uu(σ) satisfies Cl(Peri(X)) ∩W uu(σ) = {σ}. However W uu(σ) ⊂ ω(x) since σ ∈

ω(x) and ω(x) is Lyapunov stable. As ω(x) ⊂ Cl(Peri(X)) we conclude that W uu(σ) = {σ}

so dim(Euu
σ ) = 0. But dim(Euu

σ ) = n− i−1 by Lemma 9.1.6 so dim(Euu
σ ) ≥ n−n+2−1 = 1

a contradiction. We conclude that (9.1) holds so ω(x) is sectional-hyperbolic for all x ∈ RX .

Next we prove that ω(x) is transitive for x ∈ RX . If ω(x) has no singularities, then it

is hyperbolic and so a hyperbolic attractor of X. Otherwise, there is σ ∈ SingX(Λ). By
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Lemma 9.1.2 we can select y ∈ W u(σ) \ {σ} with Lyapunov stable ω-limit set. On the other

hand, ω(x) is Lyapunov stable and so W u(σ) ⊂ ω(x). Then, we obtain y ∈ ω(x) satisfying

ω(x) = ω(y) thus ω(x) is transitive.

It remains to prove that X has only finitely many sectional-hyperbolic transitive Lya-

punov stable sets. Suppose by absurd that there is an infinite sequence Ak of sectional-

hyperbolic transitive Lyapunov stable sets. Clearly the members in this sequence must be

disjoint, so, since there are finitely many singularities, we can assume that none of them have

singularities. It follows that all these sets are hyperbolic and then they are all nontrivial

hyperbolic attractors of X. In particular, every Ak has dense periodic orbits by the Anosov

closing lemma. We can assume that there is 1 ≤ i ≤ n − 2 such that each Λk belong to

Cl(Peri(X)). Define

Λ = Cl

(⋃
k∈N

Ak

)
.

Notice that Λ contains infinitely many attractors (the Ak’s say). Moreover, Λ is a strongly

homogeneous set of index Ind(Λ) = i with dense periodic orbits (since each Ak does).

Figure 9.1: The blue points will converge to the strong unstable manifold of σ, a contradiction

since Λ ∩W uu(σ) = ∅.

Let us prove that Λ satisfies (9.1). Indeed, suppose by contradiction that it does not,

i.e., there is σ ∈ SingX(Λ) such that I(σ) ≤ Ind(Λ). By Lemma 9.1.6 there is a dominated

splitting Êu
σ = Euu

σ ⊕Ec
σ for which the associated strong unstable manifold W uu(σ) satisfies

Λ ∩W uu(σ) = {σ}.
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Take a sequence xk ∈ Ak converging to some point x ∈ W s(σ) \ {σ}. By Corollary

1 p. 949 in [GaWZ] there is a dominated splitting D = ∆s ⊕ ∆u for the linear Poincaré

flow ψt which, in virtue of Lemma 2.2 in [GaWZ], satisfies limt→∞ ψt(∆
u
x) = Euu

σ . Using

exponential maps we can take a codimension one submanifold Σ orthogonal to X of the

form Σ = ∆s
x(δ)×∆u

x(δ) where ∆∗x(δ) indicates the closed δ-ball around x in ∆∗x (∗ = s, u).

Since ψt(∆
u
x) → Euu

σ as t → ∞ we can assume by replacing x by Xt(x) with t > 0 large

if necessary that ∆u
x(δ) is almost parallel to Euu

σ . In particular, since Λ ∩W uu(σ) = {σ},

one has (∂∆s
x(δ)×∆u

x(δ)) ∩ Λ = ∅ where ∂(·) indicates the boundary operation. Since both

∂∆s
x(δ)×∆u

x(δ) and Λ are closed we can arrange a neighborhood U of ∂∆s
x(δ)×∆u

x(δ) in Σ

such that U ∩ Λ = ∅.

Now we consider k large in a way that xk is close to x. Replacing xk by Xt(xk) with

suitable t we can assume that xk ∈ Σ. Since xk ∈ Ak and Ak is a hyperbolic attractor we can

consider the intersection S = W u(xk)∩Σ of the unstable manifold of xk and Σ. It turns out

that S is the graph of a C1 map S : ∆u
x(ρ)→ ∆s

x(δ) for some 0 < ρ ≤ δ whose tangent space

TyS is almost parallel to ∆u
x. We assert that ρ = δ. Otherwise, it would exist some boundary

point z ∈ ∂S in the interior of Σ. Since Ak is a hyperbolic set and z ∈ Ak we could consider

as in [M3] the unstable manifold W u(z) which will overlap W u(x). Since z ∈ Int(W u(z))

and W u(z) ⊂ Ak (for Λk is an attractor) we would obtain that z is not a boundary point of

S, a contradiction which proves the assertion. It follows from the assertion that Ak (and so

Λ) would intersect U (see the esquematic picture for this argument in Figure 9.1) which is

absurd since U ∩ Λ = ∅. Thus (9.1) holds.

Then, Lemma 9.1.5 implies that Λ is sectional-hyperbolic for X and so Λ has finitely

many attractors by Lemma 9.1.3. But, as we already observed, Λ contains infinitely many

attractors so we obtain a contradiction. This contradiction proves the finiteness of sectional-

hyperbolic transitive Lyapunov stable sets for X thus ending the proof of the theorem.
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Appendix A

Appendix: Whitney’s example

In this chapter we shall describe an example where Sard’s Theorem may fail if its regularity

assumption is not satisfied. We shall construct a C1 function F : R2 → R and a continuum

(connected and compact) K such that DF (x) = 0, for every x ∈ K, but F (K) = [0, 1].

In particular, the set of singular values of F has positive measure. The example is due to

Whitney [Wi1].

The construction goes through a fractal procedure which is also behind the Cantor stair-

case function. In fact, Whitney’s function is very similar to the Cantor staircase, but its

differentiability properties improve when it is considered as function on R2. For this reason

we shall first recall, in Section A.1 the Cantor staircase and see why it is not everywhere

differentiable. In Section A.2 we shall construct a non rectifiable path, parametrized by the

unit interval, and define a modified Cantor staircase on this path with good differentiability

properties. In the final section we shall use an extension result and will obtain Whitney’s

function from this modified Cantor staircase.

Since these constructions are fairly elementary, despite the fact that Whitney’s example

is important, this chapter is aimed to be more pedagogical than the others. For this reason,

we shall adopt a less formal style in this chapter, in particular inserting informal discussions

within the proofs.
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A.1 The Devil Staircase

We shall now recall the construction of the Cantor function, elsewhere also known as the

“Devil Staircase”. The pictorial way of giving the construction is the following: on the

middle third of [0, 1] put f ≡ 1/2, on the middle thirds of the two remaining intervals, put,

respectively, f ≡ 1/4 and f ≡ 3/4. On the middle thirds of the four remaining intervals, put,

respectively, f ≡ 1/8, f ≡ 3/8, f ≡ 5/8 and f ≡ 7/8. Proceed inductively. See Figure A.1.

Figure A.1: The first three steps of construction of the Devil Staircase

The reader not familiar with the Cantor function should have this pictorial procedure in

mind while reading the formal construction.

Base p expansions

Let p ≥ 2 be an integer. Expansions in base p for numbers in [0, 1] are an important tool in

the examples of Cantor and Whitney. For this reason, we shall describe them in a geometrical

sense, which will give us an easy way of speaking about such expansions.

Pick a number x ∈ [0, 1]. Divide [0, 1] in p intervals of equal lenght, of the form

[n/p, (n+ 1)/p).
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Label them with the digits {0, 1, ..., p − 1}. Since these intervals form a partition of [0, 1],

there exists only one which contains x. Let x1 be the label of such an interval. Now, divide

[x1/p, (x1 +1)/p) into p intervals of the same lenght and of the form [x1
p

+ n
p2
, x1
p

+ n+1
p2

). Label

them with the digits {0, 1, ..., p}. Let x2 be the label of the interval in this second division

which contains x. Proceed by induction. In this way, we find a nested sequence of compact

intervals (the closure of the intervals in the partition), and a sequence of digits {xl}, all of

the intervals containing p and with lenght p−n. Their intersection must be x. Also, by the

form of these intervals, it is clear that x =
∑∞

n=1 xlp
−l.

The only possibility for x ∈ [0, 1] to have more than one expansion is x = 0.x1...xn100...

and x = 0.x1...xny1y2..., with yl = p− 1, for every l, since
∑

n∈N
p−1
pn

= 1.

Also, by this geometrical way of interpreting the base p expansion, if x and y have the

same first n digits, then their firts n labels are the same and thus they are in the same

intervals until the nth step. As a consequence, |x− y| < p−n.

The formal contruction

Theorem A.1.1. There exists a continuous surjective map f : [0, 1]→ [0, 1], with vanishing

derivative on a dense open set of full measure (the complement of the Cantor set).

Proof. Set f(0) = 0 and f(1) = 1. For x ∈ (0, 1), consider its base 3 expansion: x =∑∞
l=1 xl3

−l, where xl ∈ {0, 1, 2}. Consider the integer p(x) ∈ N ∪ {∞} with the property

that xl ∈ {0, 2}, for every l = 1, ..., p(x)− 1 and xp(x) = 1. That is, p(x) is the first position

in the base 3 expansion of x in which the digit 1 appears. Define

f(x) =

p(x)−1∑
l=1

(xl
2

)
2−l + 2−p(x). (A.1)

In the definition of f , we use the convention that 2−∞ = 0, which is to say that if p(x) =∞

then f(x) =
∑∞

l=1

(
xl
2

)
2−l. For instance, if x = (0.020221)3 then

f(x) = 0.2−1 + 1.2−2 + 0.2−3 + 1.2−4 + 1.2−5 + 2−6 = (0.010111)2.

So, in words, the rule which defines f is: take the base 3 expansion of x, let p(x) the first

position in which an odd digit appears. Truncate it and consider (0.x1...xp(x)−11). Divide
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all the first p(x) digits by 2, except the last digit (which is 1) and interpret the remaining

digits as the base 2 expansion of f(x).

Let us check the f is well defined. It is clear that this definition is compatible with

f(0) = 0. Notice that it is also compatible with f(1) = 1: since 1 =
∑

n∈N 2/3n we have

f(1) =
∑

n∈N 1/2n = 1. Finally, let {xl} and {yl} be two different base 3 expansions of x.

Assume that {xl} = (0.x1...xn1000...)3 and {yl} = (0.x1...xn022222...). Then,

f({xl}) =
n∑
l=1

(xl
2

)
2−l + 2−n−1

=
n∑
l=1

(xl
2

)
2−l + 2−n−1

∞∑
m=1

2−m

=
n∑
l=1

(xl
2

)
2−l +

∞∑
m=n+2

2−m

= f({yl}).

The other possibility of non-uniqueness is {xl} = (0.x1...xn2000...)3 and {yl} = (0.x1...xn122222...).

But in this case, by the very definition of f it is automatic that f({xl}) = f({yl}). This

proves that the non-uniqueness of base 3 expansion does not affect the definition of f .

Now observe that the integer levels of the map p : [0, 1]→ N∪ {∞} correspond precisely

to the removed intervals in the construction of the Cantor set: p−1(1) is the middle third

of [0, 1], p−1(2) are the middle thirds of [0, 1/3] and [2/3, 1] and so on. By definition, f

is constant on each of this intervals. This proves that f has vanishing derivative in the

complement of the Cantor set.

We now claim that f is continuous. To see this, take x = (0.x1...xnxn+1...)3 and fix ε > 0.

The key observation is that for each n, if y = (0.y1...ynyn+1...)3 is close enough to x then

xl = yl, for every l = 1, ..., n. If p(x) < n then f(x) = f(y). If p(x) ≥ n, then we can ensure

that f(x) and f(y) have its first n digits in the base 2 expansion equal. Thus, taking n so

large that 2−n < ε, one has that for every y close enough to x

|f(x)− f(y)| ≤ 2−n < ε.

Since f fixes 0 and 1, by the intermediate value property f is surjective. This completes the

proof.
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Let us discuss a bit on the differentiability properties of the function f of Theorem A.1.1.

Let x ∈ [0, 1] such that p(x) = ∞ and take y such that the first n digits in their base 3

expansion are equal but xn+1 6= yn+1. Since the first n digits are the same, |x − y| < 3−n.

Since xn+1 6= yn+1, |f(x)− f(y)| ≥ 2−n−1. Therefore,

|f(x)− f(y)|
|x− y|

≥ 2−n−1

3−n
=

1

2

(
3

2

)n
→∞,

as n → ∞. Since p−1(∞) is precisely the Cantor, we see that f is not differentiable at the

Cantor set.

A.2 The Devil Path

The key point which makes f non differentiable is the change of basis, since it implies that

|x − y| decreases at a rate 1/3, while |f(x) − f(y)| decreases at a rate 1/2. Notice that

there is no C1 function with the same properties of f , due to the Fundamental Theorem of

Calculus: if g is C1 and has zero derivative almost everywhere then, for every a > b,

g(a)− g(b) =

∫ b

a

g′(x)dx = 0.

Essentialy, what enable us to use the Fundamental Theorem of Calculus is the fact that every

path in R (being an interval) is rectifiable. Thus, if we want to construct a C1 Cantor-like

function in R2 the first thing we need is a non-rectifiable path.

Thus, let us construct a non-rectifiable path.

Take the unit square in R2. Choose any 0 < ε < 1. Put inside of it, 4 smaller squares

of side 1/3 such that the distance between any two of them is 1
3+ε

. See Figure A.2. Draw

5 straight line segments joining the middle point of the squares (the red segments of Fig-

ure A.2). This is the first step of the construction. Now, put inside each small saquare 4 even

smaller squares, of side 1/9 such that the distance between any two of them is 1
3(3+ε)

. In each

square of side 1/3, draw 5 straight line segments joining the middle points of the squares,

in the same way as in the first step (these segments are the blue segments in Figure A.2).

That is, scale the first step by a factor of 1/3 and put a copy of it in each little square.
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Figure A.2: The first two steps of the construction of the continuum K

Now, inside one of the 16 small squares of the second step, put 4 squares of size 1/27

and 1
32(3+ε)

far apart from each other. Inside each one of these 64 small squares, draw 5 red

segments joining the middle points, as in the first step. Proceed inductively.

Let K be the unoin of all red and blue paths, defined on each step of the construc-

tion together with their limit points, which correspond precisely to the limit of all possible

sequences of squares. It is easy to see that, K is a continuum.

Lemma A.2.1. The total lenght of K is infinity

Proof. Let r be the sum of the lenghts of the red paths in the first step of the construction

of K. On the second step, there are 4 unions of blue paths, each one them a scaled copy

by a factor of 1/3 of the first union of red paths. Thus, the total lenght of the blue paths

in the second step is 4r
3

. On the third step, there will be 16 unions of small red paths, each

union with lenght r
9
. By induction, we see that the total lenght of K is

∑
n∈N r

(
4
3

)n
, which

diverges, concluding.

154



A.3 Whitney’s Devil

We are now in position to define a function W : K → R, similar to f , but with good

differentiability properties.

We first parametrize K using base 9 expansions: divide [0, 1] into nine equal portions

and label them with {0, 1, 2, ..., 8}. With the even intervals, parametrize the red segments

of the first step in the construction of K. Divide each odd interval into nine equal portions,

labeled in the same way. Use the even intervals to parametrize the blue paths of the second

step. Proceed inductively. In this parametrization, the points which belong to some red or

blue segment of some step in the construction of K correspond to a point in [0, 1] whose base

9 expansion has an even digit. The fractal obtained as all the limits of all possible sequences

of squares corresponds to the points in [0, 1] whose base 9 expansion has only odd digits.

Consider the map P : [0, 1] → N ∪ {∞} such that P (x) is the first position in the base

9 expansion of x in which an even digit appears. Said otherwise, let {xl} be the base 9

expansion of x. Then, xl ∈ {1, 3, 5, 7}, for every l = 1, ..., P (x)− 1 and xP (x) ∈ {0, 2, 4, 6, 8},

or xl ∈ {1, 3, 5, 7} for every l ≥ 1, and P (x) =∞.

For x =
∑

n∈N xl9
−l, we define

W (x) =

P (x)−1∑
l=1

(
xl − 1

2

)
4−l +

(xP (x)

2

)
4−P (x).

To facilitate the anology between W and f , we want to interpret W (x) as sequence of digits

in base 4. Since x may have the digit 8 in the position P (x), we appeal to the standard

convention

(0.x1...xn4000...)4 7→ (0.x1...xn−1(xn + 1)000...)4. (A.2)

For instance, (0.34)4 = (1.0)4 = 1, and for this reason

W ((0.78x3x4...)4) = W ((0.8x2x3...)4) = 1.

Let us prove that the non uniquenes of the base 9 expansion does not affect the definition

of W , in the same way with f . Let {xl} and {yl} be two base 9 expansions of x. Then there

exists n such, xl = 8, for every l ≥ n+ 1, and xn < 8, while yl = xl, for l = 1, ..., n− 1, yn =
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xn + 1, and yl = 0, for l ≥ n + 1. If P ({xl}) ≤ n, it is automatic that W ({xl}) = W ({yl}).

Then, P ({xl}) = n+ 1 while P ({yl}) = n. Therefore, by definition of W we get

W ({yl}) =
n−1∑
l=1

(
xl − 1

2

)
4−l +

(
xn + 1

2

)
4−n.

On the other hand, since xn+1 = 8,

W ({xl}) = (0.

(
x1 − 1

2

)
...

(
xn − 1

2
+ 1

)
00...)4.

Since xn−1
2

+ 1 = xn+1
2

, we get the conclusion that W ({yl}) = W ({xl}).

Using the parametrization of K, we can consider W : K → R.

The key point is that, by considering W defined in K we get the following differentiability

property.

Lemma A.3.1.
|W (x)−W (y)|

d(x, y)
→ 0,

uniformly for x, y ∈ K

The idea of the proof is the following: if W is considered as a function on [0, 1], then,

while |x − y| decreases at a rate 1/9, |W (x) −W (y)| decreases at a rate 1/4. However, for

x, y ∈ K, by the way K is constructed, |x− y| decreases at a rate 1/3, thus |W (x)−W (y)|

is uniformly faster than |x− y|, for x, y ∈ K

Proof of Lemma A.3.1. Let x, y ∈ K be such that W (x) 6= W (y). This implies that there

exists n ∈ N such that at the nth step of the construction of K the points x and y must be

in different parts. Said otherwise, the first n− 1 digits of x and y in their base 9 expansion

are equal, but their nth digits are different. Geometrically, this means that either (A) they

belong to different squares in the nth step; (B) or one of them belong to a segment of nth step

and the other to a square. (C) or they belong to different red segments, See Figure A.3. The

following claim rule out the possibility of d(x, y) being much smaller than |W (x)−W (y).

Claim 17. If x and y belong to a pair of touching red and blue segments, in step n, then

W (x) = W (y).
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Figure A.3: Three possibilities (A, B and C) for x and y at step n such that W (x) 6= W (y).

Proof. To fix ideas, let us assume that the segments in step n are red, while the segments

in step n + 1 are blu. Thus, the step n is a scaled copy of Figure A.2, by a factor (1/3)n.

Assume that x and y belong to a pair of touching red and blue segments, in step n. For

simplicity we may also assume that x belongs to a red segment and y to small blue segment.

Then, denoting by {xl} and {yl} the base 9 expansions of x and y, respectively, we conclude

that xn is even and there two possibilities for yn and yn+1: either yn = xn − 1 and yn+1 = 8

or yn = xn + 1 and yn+1 = 0. In the latter case, since we are assuming that xl = yl, for

l = 1, ...n − 1 and since xn is even, it follows easily that W (x) = W (y). In the former

case, due to convention (A.2) we arrive at the same conclusion again. This establishes the

claim.

Therefore, x and y do not belong to a pair of touching red and blue segments. Moreover,

it is easy to check that in cases (A) and (B) the distance between x and y is bounded from

below by a constant times (3 + ε)−n. In case (C), since x and y do not belong to a pair of

touching red and blue segments, we can conclude that d(x, y) is bounded from below by half

of the distance between two small squares of step n+ 1. Thus,

d(x, y) ≥ 2−1(3 + ε)−n−1. (A.3)
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Since x and y separate only at the nth step of the construction, W (x) and W (y) have the

same n− 1 first digits in their base 4 expansion, which implies that |W (x)−W (y)| ≤ 4−n+1.

Thus,
|W (x)−W (y)|

d(x, y)
≤ 4−n+1

2−1(3 + ε)−n−1
≤ D

(
3 + ε

4

)n
, (A.4)

where D is a (fixed) positive number1. Let us now complete the proof. Take ξ > 0 arbitrary

and m ∈ N such that D
(

3+ε
4

)m
< ξ. Take δ = 2−1( 1

3+ε
)m. If d(x, y) < δ, then the base 9

expansions of x and y must coincide until their nth digit, for some n with n > m, due to the

estimate (A.3). Therefore, we conclude from estimate (A.4) that

|W (x)−W (y)|
d(x, y)

≤ 4−n+1

2−1(3 + ε)−n−1
≤ D

(
3 + ε

4

)m
< ξ.

This ends the proof.

The last effort in order to obtain a C1 counter example to Sard’s Theorem is to extend

the function W .

Theorem A.3.2. There exists a C1 function F : R2 → R such that DF (x) = 0, for every

x ∈ K, and F (K) = [0, 1].

Proof. Due to Lemma A.3.1, the result is now an immediate application of Whitney’s Ex-

tension Theorem [Wi2].

1In fact, D = 24
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[Ma5] R. Mañé Oseledec’s theorem from the generic viewpoint. Proceedings of the Interna-

tional Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1269-1276, PWN, Warsaw,

1984.

[MeM] R. Metzger, C. Morales Sectional-hyperbolic systems. Ergodic Theory Dynam. Sys-

tems 28 (2008), no. 5, 1587–1597.

[MT1] P. Molino, F. Turiel Une observation sur les actions de Rp sur les variétés compactes
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