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Introduction

Iterated function systems were introduced in [H] as a unified way of generate a broad class of
fractals. Nowadays, such systems occurs in many places in mathematics and other scientific
areas. In [H], Hutchinson introduced and first studied hyperbolic Iterated function systems, i.e.
a finite collection of contractions over a complete metric space. He was interested in construct
attractors, both in the topological and measure-theoretic viewpoint.

After that, many authors proposed several generalizations of his result. One direction was to
weaker the hyperbolic assumption, allowing some weak forms of contraction. For instance, we
have the so called average contraction, studied by [BDEG]. Also, we have the φ-contractions
studied by [JL] and [M]. In both cases, the existence of the attractors was proved.

In [E], Edalat defined the notion of weakly hyperbolic Iterated function systems (precise definition
below) as a finite collection of maps on a compact metric space such that the diameter of the
space by any combination of the maps goes to zero. In theory, this definition could allow some
non-contractions, which was ruled out in the previous settings to obtain a topological attractor.

Another way to extend the results of Hutchinson is related with the parameter space. In Hutchin-
son’s paper the parameter space is a finite set, since he deals with finitely many contractions. In
[Ha], this theory was extended to the case when the parameter space is a infinite countable set.
In [L] and [Me] the authors consider compact metric spaces as the parameter spaces. However, in
this context, only uniform contractions and average contractions are studied.

One of the purposes of this work is to study these questions in the setting of weakly hyperbolic iter-
ated function systems with compact parameter space, thus unifying some of the previous results.

Definitions

Let Λ and X be complete metric spaces and w : Λ × X → X a continuous map. Such a map is
called an Iterated Function System (IFS for short). The space Λ is called the parameter space and
X is called the phase space. The space ΛN of infinite words with alphabet in Λ will be denoted
by Ω := ΛN. Given a fixed parameter λ ∈ Λ, we will denote by wλ : X → X the partial map
generated by this parameter, which is defined by wλ(x) := w(λ, x). In this work we shall investigate
Iterated Functions Systems with compact parameter and phase spaces. Let us denote the map
wλ1...λn

:= wλ1
◦ ... ◦ wλn

, where (λ1, ..., λn) is a word on Λ. Following [E] we have the
0.1 Definition. If X is a compact metric space and Λ = {1, ...,N} then we say that an IFS w :
Λ × X→ X is Weakly Hyperbolic if for every σ ∈ Ω we have:

limn→∞Diam(wσ1...σnX) = 0

The topological attractor

Let us denote by K (X) the family of all compact subsets of X endowed with the Hausdorff metric.
The Hutchinson-Barnsley operator F : K (X) −→ K (X) is given by:

F (A) :=
⋃
λ∈Λ

wλ(A) = w(Λ × A) for A ∈ K (X).

0.2 Definition. An IFS w has an attractor A ∈ K (X), if F n(B) → A in the Hausdorff topology for
every B ∈ K (X). If A ∈ K (X) is a fixed point of F then we say that A is an invariant set by w.
Theorem 1. Let w be a weakly hyperbolic IFS on the compact metric space X and with a compact
parameter space Λ. Then F has an attractor K that is also a compact invariant set. Furthermore,
we have that wσ1 ◦ ... ◦ wσn has a unique contractive fixed point ∀σ ∈ Ω∀n ≥ 1 and K is the closure
of these fixed points.

The measure-theoretical attractor

First, we recall the topologies on the measure space. Let (X, d) be a complete and separable metric
space and consider the space

Lip1(X;R) = { f : X→ R : | f (x) − f (y)| ≤ d(x, y) para todo x, y ∈ X}.

Let M(X) be the set of the borel probability measures µ such that µ( f ) :=
∫
X f dµ < +∞ for each

f ∈ Lip1(X;R). Then we define the Hutchinson metric inM(X) by:

H(ν, µ) = sup
{∣∣∣∣∣∫

X
f dν −

∫
X

f dµ
∣∣∣∣∣ ; f ∈ Lip1(X;R)

}
.

Under the measure-theoretical point of view we also have a notion of attractor, but before we need
to define the transfer operator:
0.3 Definition. Fix a probability p ∈ M(Λ). The Transfer Operator Tp : M(X) → M(X) is defined
by the formula

Tp(µ)(B) :=
∫

Λ
µ(w−1

λ (B))dp(λ),

for every Borel set B and for each measure µ ∈ M(X). If a measure µ ∈ M(X) is a fixed point of
the transfer operator we say that µ is an invariant measure for w.
0.4 Definition. Let X be a complete metric space andM(X) as before. We say that a probability
ν ∈ M(X) is a measure-theoretical attractor for w if Tn

p(µ) n
−→ ν in the Hutchinson metric for all

µ ∈ M(X).
0.5 Definition. Fix p ∈ M(Λ) and P the product measure induced by p in Ω. We say that an
invariant measure for w is ergodic if for all continuous function f : X→ R, for all x ∈ X and σ P-a.e.
we have:

lim
n→∞

1
n

n∑
j=0

f (wσ j ◦ · · · ◦ wσ1(x)) =

∫
X

f dµ.

Theorem 2. If X is a compact metric space and w is a weakly hyperbolic IFS then w has a measure-
theoretical attractor ν ∈ M(X). Furthermore, ν is the unique fixed point of the transfer operator and
is ergodic. If p(U) > 0 for every open set U ⊂ Λ then we have that supp(ν) = K, where K is the
attractor given by theorem 1.

Drawing the attractor

Here we take inspiration from [BV1] to give a result about ways visualizing the attractor through
orbits of the IFS instead of computing the full Hutchinson-Barnsley operator.

Before stating the result, we give some definitions
0.6 Definition. An orbit of the IFS starting at some point x is a sequence {xk}

∞

k=0 such that x0 = x,
xk+1 = wλk

(xk), for some sequence {λk}
∞

k=1 ∈ Ω in the parameter space.

0.7 Definition. Given an IFS w : Λ × X → X with attractor A, we say that an orbit starting at x
draws the attractor if A = limk→∞{xn}∞n=k, in the Hausdorff metric.

In order to study orbits that draws the atractor, we shall consider the following class of probability
measures p ∈ P(Λ) in the parameter sapace:
0.8 Definition. We say that a probability p ∈ P(Λ) is fair if there exists a positive function f :
(0,+∞) → (0, 1] such that p (B(λ, δ)) ≥ f (δ), for every λ ∈ Λ. In other words, we shall consider
measures with a uniform lower bound for the measure of balls with a fixed radius.

We will consider the product measure induced by p in the product space Ω, and will denote it by P.
Theorem 3. Let (X, d) be a compact metric space. Let w be a weakly hyperbolic IFS. Consider
p ∈ M(Λ) a fair probability measure, and P ∈ M(Ω) the associetade product measure. Then,
given x ∈ X, a P-total probability set of orbits of x draws the attractor K of w.

Sketch of some proofs

Sketch of proof of Theorem 1. The first main step is to prove that Diam(wσ1...σnX) goes to 0 uni-
formly in σ ∈ Ω. We prove this by contradiction. Indeed, if this is not the case, then for some ε0 > 0
we can find a sequence of finite words such that

Diam(wik1...i
k
nk

(X)) ≥ ε0 for any k ∈N. (1)

Using compactness and a diagonal argument, we can assume that ikl
k
−→ σk ∈ Λ. Then, by

continuity of the IFS, one can prove that Diam(wσ1,...,σnX) ≥ ε0, and thus σ = (σn) do not satisfies
the definition of weak hyperbolicity, a contradiction. Having proved this, one can show that the limit

Γ(σ) := lim
n→∞

Γ(σ,n, x) := lim
n→∞

wσ1...σn(x) (2)

exists for every σ ∈ Ω and x ∈ X, does not depend on x and is uniform on σ. Moreover, the function
Γ : Ω→ X, defined by the above equation is continuous. Thus Γ(Ω) is a compact set. It reamains
to show that K := Γ(Ω) is an attractor. This can be done, following [M], where this was proved in
the case Λ is a finite set. �

Sketch of proof of Theorem 3. Fix a point x ∈ X. We first remark that it is enough to prove the
following: for every ε > 0 there exists an integer Kε > 0 and a set Bε ⊂ Ω, with P(Bε) = 1
such that every x-orbit {xk+1 = wσk(xk)}, generated by some sequence σ = (σk) ∈ Bε satisfies
dH(A, {xk}k≥L) < ε, for every L ≥ Kε.

To see this, take εn = 1
n and define B = ∩nBεn. Obvioiusly, P(B) = 1. Moreover, it is easy to see

that B ⊂ A(x). Indeed, take σ ∈ B and consider {xk} the x-orbit generated by σ. For any ε > 0 we
can take a large n with εn < ε. Since σ ∈ Bεn, we have that L ≥ Kεn implies dH(A, {xk}k≥L) < εn < ε.
Thus, A = limL→∞{xk}k≥L, wich proves that B ⊂ A(x).

Thus, we are are left to prove the above remark. We shall do this by showing that for each ε > 0,
we can find Kε > 0 such that for every L ≥ Kε there exists BL ⊂ Ω with P(BL) = 1, and such that if
σ ∈ BL then the correspondent x-orbit satisfies dH(A, {xk}k≥L) < ε. If this is true, then Bε = ∩LBL is
the desired set.

So, let us fix ε > 0 and exhibit the integer Kε. By definition of an attractor, there exists Kε such that
k ≥ Kε implies that

dH(F k({x}),A) < ε, (3)

in particular, given any sequence {λk}
∞

j=1 ∈ Ω, the correspondent orbit satisfies xk ∈ F
k({x}) ⊂

B(A, ε), for every k ≥ Kε. Take L ≥ Kε and let us construct the set BL.

Since the sole obstruction for an orbit do not draw the attractor is it get stuck in some part, the
key observation is that, by virtue of (3), for any point a in B(A, ε), we can find a finite sequence
of parameters that “corrects” the orbit of a, making it visit every portion of A. By continuity, this
correcting sequence is robust. Since p is a fair probability measure, it can be shown that we have
a uniform lower bound for the measure of every set of finite words that are corrected in some
moment. This uniform lower bound is shown then to imply that with zero P-measure an infinite
word will never be corrected, again using that p is a fair measure. But once an orbit is corrected, it
satisfies the desired. �
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