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Abstract. Tranlation of Arnaud’s paper.

1. Introduction

The aim of this note is to expose the work [1], where the following result is
proved.

1.1. Theorem (Arnaud). There exists a residual subset of Diff1(M) such that for every
x ∈M, ω(x) is accumulated in the Haudorff topology by periodic orbits.

The proof is solely based on the connecting lemma of Wen-Xia plus some beatiful,
and yet simple, ideias. It gives a nice example of a good use this amazing tool that
is the connecting lemma.

2. Proof

We shall use the Semicontinuity Lemma to produce the residual set that will
give Theorem 1.1. For definitions and proofs, see [2]. Consider K (X) the space of
compact subsets of X, endowed with the Hausdorff topology, where X is a compact
metric space. Consider the function

P : KS1(M)→ K (K (M)),

that assignes to each C1 Kupka-Smale diffeomorphism f the closure of its periodic
periodic orbits. By the analitic continuation of hyperbolic periodic orbits, this
function is semicontinuos. By the semicontinuity lemma, there exists a residual

RP ⊂ Diff1(M),

where each f ∈ RP is a continuity point of P.
Take a generic f ∈ KS1(M) ∩ RP, and let us suppose by absurd that Theorem 1.1

is not true for f . This implies that ω(x, f ) is disjoint of P( f ). Since K (K (M)) is
compact, we can take open sets U and V in this space, with disjoint closures, and
such that P( f ) ∈ V and ω(x, f ) ∈ U. since f is a continuity point of P, for every g
close enough to f , P(g) ∈ V.
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Now, we apply the following perturbative result.

2.1. Lemma. Given a generic f , x ∈ M, neighborhods U of ω(x, f ) in the Hausdorff
topology and U of f in the C1 topology, there exists g ∈ U, p ∈ Per(g) such that
O(p) ∈ U.

This enables us to blow the continuity of P at f , leading to a contradiction.
Thus, we are left to prove the above perturbative lemma, wich is the main part of
Arnaud’s proof.

2.1. A Technical Lemma. For the proof of Lemma 2.1 we shall need to stablish the
denseness of non-periodic points for a non-trivial ω(x, f ), where non trivial means
more than one single periodic orbit.

For this, we first remark that every ω(x, f ) cannot be decomposed as the union
of two non-void invariant compact subsets. Indeed, suppose this is the case, say

ω(x, f ) = A ∪ B.

Separate A and B by disjoint open sets U and V with f (U) ∩ V = ∅. Let N > 0 be
integer. Take a hit of x in U, and a hit in V, both of them larger than N. Take the
minimum n > N such that f n(x) < U. By minimality, f n(x) ∈ f (U), and thus we
have found n > N such that

f n(x) < U ∪ V.
But this contradicts ω(x, f ) = A ∪ B.

This shows that for each periodic point y ∈ ω(x, f ), with ω(x, f ) beeing non-
trivial, we cannot have a disjoint decomposition

ω(x, f ) = O(y) ∪ (ω(x, f ) −O(y)).

This shows that for every periodic point y ∈ ω(x, f ), ω(x, f )−{y} is open and dense
in ω(x, f ). Since f is generic, there are only countably many periodic orbits, and
thus ω(x, f ) − Per |ω(x, f )( f ) is a dense Gδ.

This stablishes the denseness of non-periodic points, as desired.

2.2. Proof of the Perturbative Result. Take a neighborhood W of ω(x, f ) and
using compactness, consider a finite set {p1, ..., pn} ⊂ ω(x, f ) with the following
property: there exists neighborhoods V1, ...,Vn, of p1, .., pn, respectively, all of them
contained in W and such that any compact subset of M that intersect everey Vk
and is contained in W belongs to U. Moreover, by the technical lemma we can
assume that none of the points pk are periodic.

Now, applying the connecting lemma of Wen-Xia we get integers m1, ...,mn, one
for each p1, ..., pn, that gives the lengh of the orbit-tube inside wich we can connect
orbits. Denote by m the maiximum of m1, ...,mn, and remove from the list {pi} those
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points that belongs to a same string of lenght m. In the end of this, we obtain that
the strings { f k(pi)}m−1

k=0 are pairwise disjoint for every i ∈ {1, ...,N}, for some N ≤ n.
Then, we sharply shrink the neighborhoods V1, ...,VN to obtain the following

properties:

(1) The open sets f k(Vi) are pairwise disjoint, for every k = 1, ...,m−1 and every
i = 1, ...,N, and all of them lies inside W.

(2) The integer m verifies the conclusion of the connecting lemma; moreover,
we associate to each Vi a smaller neghborhood V′i ⊂ Vi, given by the
connecting lemma.

(3) Every compact inside W that intersect every f k(Vi) belongs to U.

Let us assume that N ≥ 2, and prove the result in this case.
Choose n0 > 0 such that n ≥ n0 implies f n(x) ∈ W. Also choose integers n j ≥ n0,

j = 1, ...,N, such that f n j(x) ∈ V′j, and consider n∗ > max n j.
This first step is designed to garantee a hit in the past in the tube that will be

used for create the periodic orbit. Our goal now is to produce a hit in the future,
but making sure that such a future hit will happen after all the neighborhoods V j
has been visited.

To achieve this, Arnaud’s ideia is to consider an interval [l, i], for some l ≥ n∗,
with two properties

• All neighborhoods V j are visited by some f r(x), with r ∈ [l, i].
• The interval [l, i] has the minimal possible length between all the interval

satsfying the above item.

The minimality of the interval [l, i] forces that f l(x) ∈ V j0 , for some j0 (wich can
be assumed to be 1). Moreover, and this is the core of the proof, the minimality
gives the following beautifull property:

para todo r ∈ [l + 1, i], f r(x) < V1.

Now, by definition of ω(x, f ), there exists r1 > i such that f r1(x) ∈ V′1. Thus, if we
consider the point p = f r2(x), where r2 ∈ [l + 1, i] is such that f r2(x) ∈ V2, we have
that the past orbit of p contains the point f n1(x) ∈ V′1, while its future orbit, after
visit V2, ...,VN (wich is guaranteed by the choise of [l, i] with the minimal property
described above) hits again V′1 in the point f r1(x).

By virtue of the connecting lemma of Wen-Xia, we can turn p in a periodic point
for some g ∈ U, and such that g = f outside the tube ∪m

j=0 f j(V j). Thus, the string

{ f r2(x), ..., f i(x)},

wich has empty intersection with V1, is containded in the g-orbit of p. This makes
sure that the g-orbit of p visit every V2, ...,VN. Since the connection is made in the
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tube ∪m
j=0 f j(V j), we have that the g-orbit of p also visits this tube, wich shows that

Og(p) ∈ U, as desired.
Now, we deal with the case N = 1.
We first shrink V1 until we obtain a point p2 ∈ ω(x, f ) − ∪k=m

k=−m f k(V j). In this
stage, we choose n∗ as in the previous case, and a minimal interval [l, i] exactly
as above. If j0 = 1, the same argument works. If j0 = 2, we just observe that the
above argument argument has a simmetry, and we can use p2 with the role of p1
and apply the same argument.

We are done.
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