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BRUNO SANTIAGO

Abstract. The aim of this note is to present to myself a light version of the ergodic
decomposition of invariant measures. In particular, in this note there will be no
mention to Rokhlin’s Desintegration Theorem. Nevertheless, the result we shall
prove here is quite usefull for most purposes.

1. Introduction

Let T : X→ X be a homeomorphism of a compact metric space. Denote byP(T)
the space of T-invariant probability measures. The main result we are seeking in
this note is the

1.1. Theorem. Given µ ∈ P(T) there exists a full measure set N ⊂ X such that if x ∈ N,
there exists a unique ergodic measure µx, with x ∈ Supp(µx), such that for every f ∈ L1(µ)
the fucntion x 7→

∫
f dµx is well defined and µ-integrable and∫

f dµ =

∫ (∫
f dµx

)
dµ.

The proof will be given through a detour of lemmas. The ideia is to prove it first
for continuous functions and then use an approximation argument in order to pass
for arbitrary integrable functions. Such procedure is possible due to the especial
topological assumptions we put on the phase space. Moreover, the continuity of
the dynamical system T will be also important.

2. The convergence of the asymptotic averages

In this section we shall prove (as an easy corolary of Birkhoff Ergodic Theorem)
that for a typical point, the time averages

fn(x) :=
1
n

n−1∑
j=0

f (T jx)

of f ∈ C0(X) converges. The main point here is the existence of a total probability
set for which the time averages converges, regardless the function. This improves
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Birkhoff (in C0(X)) since Birkhoff only gives that for each function there exists a full
measure set on which the time averages converges.

2.1. Lemma. Let Σ0(T) =
{
x ∈ X; { fn(x)} is a Cauchy sequence, for every f ∈ C0(X)

}
.

Then, for every µ ∈ P(T), µ(Σ0(T)) = 1.

Proof. Let D ⊂ C0(X) denote a countable dense subset. If f ∈ D is fixed, then, by
Birkhoff’s Theorem the set of points for wich fn converges has full measure and
therefore taking the intersection we obtain a total probility set for wich { fn(x)} is
Cauchy, for every f ∈ D. The only thing we have to prove is that if x belongs to
such a set, and g ∈ C0(X), then {gn(x)} is a Cauchy sequence. This is achieved by a
standard interpolation argument. You fix ε > 0, and take f ∈ D with ‖ f − g‖ < ε.
Then, ‖ fk − gk‖ < ε, for every k > 0. This implies that

‖ fn − fm‖ ≤ ‖ fn − gn‖ + ‖gn − gm‖ + ‖gm − fm‖ < 3ε,

for m,n large. �

If x ∈ Σ0(T) then we have defined a positive linear functional over C0(X), given
by Lx( f ) := lim fn(x). By Riesz, there exists a unique measure µx which represents
this functional, and since Lx(1) = 1 this measure is a probability. Moreover, since T
is assumed to be continuous, we have that µx is an invariant measure. This fact is
a little bit tricky, because one would invoke that the asymptotic time average is an
invariant function, which indeed is true, but cannot be applied here. The problem
is that the averages only exists inside a full measure set wich depends upon the
function. Once we replace f by f ◦ T, we no longer know if the average exists at
x, and this is exactly where the argument fails.

3. Poincaré Recurrence Revisited

Now, we shall prove that for a typical point x ∈ Supp(µx). Observe this means
that for every neighborhood U of x, µx(U) > 0 and since µx measures the average
number of times that the orbit of x visits U,1 this can be viewed as a refinement of
Poincaré Recurrence. The key point is the following tautological consequence of
the ergodic theorem.

3.1. Lemma. If f ∈ L1(µ) and f ≥ 0 then for µ-almost every x if f ′(x) := Lx( f ) = 0 then
f (x) = 0

Proof. Let A = {x ∈ X; f ′(x) = 0}. Since f ′ is measurable, A is measurable. Let
g = χA f . If x ∈ A then g = f , and since A is invariant one has g′ = f ′ in A,

1OK, with respect to continuous functions, but lets forget about it for a while
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whenever both sides are defined. If x < A then g(x) = 0. Since,
∫

gdµ =
∫

g′dµ,
this implies that ∫

A
f dµ =

∫
A

f ′dµ = 0,

which gives the lemma. �

Applying lemma 3.1 with f = χU we obtain that if the average number of times
that the orbit of x visits U is zero then x < U. This, in particular, proves Poincaré
Recurrence. But, our interest in lemma 3.1 is the following.

3.2. Proposition. Let Σ1(T) := {x ∈ Σ0(T); x ∈ Supp(µx)}. Then, Σ1(T) is a total
probability set.

Proof. Take a countable basis Un of X and take C0(X) functions φn > 0 inside Un
and zero outside, dominated by one. Then, by lemma 3.1,

An = {x ∈ Σ0(T);φ′n(x) = 0 implies φn(x) = 0}

is a total probability set. Therefore, putting Σ1(T) as the intersection of the An’s
we obtain a total probability set. Take x there. Take U a neighborhood of x. There
exists x ∈ Un ⊂ U. Since x ∈ An, and x ∈ Un we have that φn(x) > 0 which implies
that φ′n(x) > 0, thus

µx(U) ≥ µx(Un) =

∫
χUndµx ≥

∫
φndµx = φ′n(x) > 0.

�

4. The ergodicity of the asymptotic measures

This is the major section of the note, and the most beautiful one. The arguments
here where taken from [1]. We shall first give an interesting lemma, that gives
more accurate control on how the means in time k are converging to the asymptotic
mean. More precisely, we shall prove that if one consider the asymptotic average
quadratic error between the the mean of time k and the asymptotic mean, then,
first it is well defined (i.e. the limit exists) and in average with respect to µ it goes
to zero as k goes to infinity.

It is a reasonable result, and the proof is outstanding. It is an extremely simple
application of the L2 convergence of the means.

4.1. Lemma. Let f ∈ L2(µ). Then, for µ almost every x ∈ X there exists

ψk(x) = lim
n→∞

1
n

n−1∑
j=0

{
fk(T jx) − f ′(x)

}2
,
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and ∫
X
ψkdµ→ 0,

when k→∞.

Proof. Since f ∈ L2(µ), f ′ ∈ L2(µ) and thus ( fk− f ′)2
∈ L1(µ). By the Ergodic Theorem{

( fk − f ′)2
}′

is defined almost everywhere and, since f ′ ◦ T = f ′ we have that{
( fk − f ′)2

}′
= ψk(x),

whenever the left-hand side exists. Moreover,∫
X

{
( fk − f ′)2

}′
dµ =

∫
X

( fk − f ′)2dµ,

and since fk → f ′ in the L2(µ) norm, it follows that∫
X
ψkdµ→ 0,

when k→∞. �

Now comes the sunset on the beach. We shall apply the above lemma to prove
the ergodicity of the asymptotic measure, for a typical point.

4.2. Proposition. Let Σ2(T) := {x ∈ Σ1(T);µx is ergodic}. Then, Σ2(T) is a total
probability set.

Proof. Let µ be an invariant measure. We want to prove that µ (Σ2(T)) = 1. How-
ever, to prove that µx is ergodic requires to prove that f ′ is µx a.e constant for every
f ∈ L1(µx). The first observatoin is that it suffices to prove this for a dense subset
of L1(µ). Indeed, it is a general fact that a measure is ergodic if f ′ is a.e constant
for a dense subset of L1.

A sketch of proof goes as follows. Note that to prove that f ′ is a.e constant with
respect to some measure ν, one only needs to prove the following equation

(1)
∫

X

∣∣∣∣∣ f ′ − ∫
X

f dν
∣∣∣∣∣ dν = 0.

Now, assume that (1) holds for every g in some dense subset of L1(ν). Take
f ∈ L1(ν) and let g be is this dense subset, ε close to f . In equation (1), interpolate
+ − g′, observing that g′ =

∫
X

gdµ, and then using triangle inequality you get that
the integral is bounded by the sum of the L1 distance between f and g, which
is small, and the L1 distance between f ′ and g′. But, to estimate the L1 distance
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between f ′ and g′, you use Fatou’s lemma and discovers that it is bounded by the
L1 distance between f and g. This proves that (1) is less than 2ε, and gives the
desired.

The second observation is that, since X is a compact metric space, one can take
this dense subset to be a countable dense subset of C0(X). The third observation is
that by definition of µx, for a continuous function one can replace (1) by

(2)
∫

X

{
f ′ − f ′(x)

}2 dµx = 0.

If we prove that given a fixed continuous function f , (2) holds for µ a.e x ∈ X
we obtain the existence of a full measure set (which depends upon f ) for which
µx is ergodic. Then taking the intersection of these sets with f varying inside
a countable dense subset of C0(X), by the first observation above, we obtain the
result.

Therefore, we are left to prove that, fixed a continuous function f , (2) holds for
µ a.e x.

To prove this, one first note that ‖ fk‖C0 ≤ ‖ f ‖C0 and fk → f a.e. Thus, by
dominated convergence theorem,∫

X

{
f ′ − f ′(x)

}2 dµx = lim
k→∞

∫
X

{
fk − f ′

}2 dµx

= lim
k→∞

lim
n→∞

1
n

n−1∑
j=0

{
fk(T jx) − f ′(x)

}2

= lim
k→∞

ψk(x).

We have shown that for every x ∈ Σ0(T), the above limit exists and we have
defined a function x ∈ Σ0(T) 7→ ψ(x) :=

∫
X

{
f ′ − f ′(x)

}2 dµx. The equality we proved
just shows that ∫

X
ψdµ =

∫
X

lim
k→∞

ψkdµ.

Since | fk(T jx) − f ′(x)|2 ≤ (| fk(T jx)| + | f ′(x)|)2, which is dominated by 4‖ f ‖2C0 , we can
apply the dominated convergence theorem and get∫

X
ψdµ = lim

k→∞

∫
X
ψkdµ = 0,

by lemma 4.1. This completes the proof. �
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5. The ergodic decompsition

Take µ ∈ P(T). Then, for µ almost every point x, µx is an ergodic invariant
measure. Let f ∈ C0(X). Then, by the ergodic theorem f ′ is a.e defined and is
integrable. By definition of µx, for a.e x ∈ X,

f ′(x) =

∫
X

f dµx,

and since
∫

X
f ′dµ =

∫
X

f dµ, we have proved that∫
f dµ =

∫ (∫
f dµx

)
dµ.

Now, take a positive f ∈ L1(µ). We have that f is an increasing a.e limit of
continuous functions, say fn. This implies that∫

X
f dµx = lim

n→∞

∫
X

fndµx = lim
n→∞

f ′n(x).

Since fn increasing implies f ′n increasing and uniformly bounded (by f ) we can
apply again the monotone convergence theorem and obtain that x 7→

∫
X

f dµx is
integrable, and also∫

X

∫
X

f dµxdµ =

∫
X

lim
n→∞

f ′ndµ = lim
n→∞

∫
X

f ′ndµ = lim
n→∞

∫
X

fndµ =

∫
X

f dµ.

This completes the proof of Theorem 1.1. �
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