NON-EXPLOSION OF HOMOCLINIC CLASSES

BRUNO SANTIAGO

ABSTRACT. In this note we shall present a proof that robustly in a neighborhood of a hyperbolic set, the number of homoclinic classes is finite and uniformly bounded.

1. INTRODUCTION

The argument of this note arose from a discussion at IMPA with Alexander Arbieto, Andrés Lopez and Carlos Morales. I should thank them for that nice day of work. The idea was to prove that inside a neighborhood of a hyperbolic set the number of attractors is finite. For a single dyamical system this quite easy, due to the stable manifold theorem. Moreover, this can be generalized (with the same proof) for homoclinic classes. Since a hyperbolic set persists, this shows that robustly the number of homoclinic classes in a neighborhood is also finite. The problem is then to show that this number can not explode. The answer is yes, and the result is

1.1. **Lemma.** Let Λ be a hyperbolic set. Then, there exists a neighborhood U of Λ and a neighborhood \mathcal{U} of f with the following property: there exists $n \in \mathbb{N}$ such that for every $g \in \mathcal{U}$, the number of homoclinic classes of g which are contained in U is bounded by n.

It turns out that the proof is quite the same, with an elegant adapatation which uses the pigeonhle principle.

2. proof

The starting point is an elementary lemma.

2.1. **Lemma.** Let K be a compact metric space and take $\delta > 0$. Assume that there exists a sequence of finite sets $K_n = \{x_1, ..., x_{l_n}\} \subset K$, and that $l_n \to \infty$. Then, there exists $m \in \mathbb{N}$ and $x_i, x_j \in K_m$ with $d(x_i, x_j) < \delta$.

Proof. Cover K with a finite number, say N, of balls with diameter δ . Let $m \in \mathbb{N}$ be such that $l_m > N$. We claim that the conclusion holds for K_m . Indeed, if this is not the case, then each ball in the cover has at most one point of K_m , which implies that $l_m \leq N$, a contradiction. This proves the lemma.

Date: July 10, 2014.

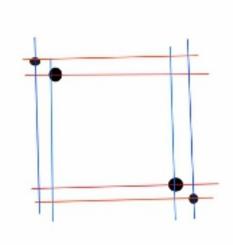


FIGURE 1. Heteroclinic intersection.

Proof of Lemma 1.1. By the hyperbolic theory, there exists $\varepsilon > 0$, \mathcal{U} a neighborhood of f and U a neighborhood of Λ such that $\bigcap_{n \in \mathbb{Z}} g^n(U)$ is a hyperbolic set for every $g \in \mathcal{U}$ and the local invariant manifolds $W^s_{\varepsilon}(x,g)$ and $W^u_{\varepsilon}(x,g)$ have uniform size, ε . Moreover, there exists $\delta > 0$ such that any two points δ -close, the intersections

$$W^s_{\varepsilon}(x,g) \cap W^u_{\varepsilon}(y,g), \quad W^u_{\varepsilon}(x,g) \cap W^s_{\varepsilon}(y,g)$$

are non-empty. Let $m \in \mathbb{N}$ be given by lemma 2.1 with δ and \overline{U} . Assume that lemma 1.1 is not true if this n, U. Then, there exists $f_n \to f$, with the number l_n of homoclinic classes inside U going to infinity. For each n choose a unique point x_i in each homoclinic class of f_n inside U, and let $K_n = \{x_1, ..., x_{l_n}\}$. By lemma 2.1 we can find $x_i, x_j \in K_m \delta$ -close.

But this implies that x_i and x_j are accumulated by periodic points heteroclinically related, and thus x_i and x_j are in the same homoclinic class, violating the definition of K_m . This contradiction completes the proof.

INSTITUTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO E-mail address: bruno_santiago@im.ufrj.br