MEASURABLE PARTITIONS, DISINTEGRATION AND
CONDITIONAL MEASURES

BRUNO SANTIAGO

ABSTRACT. In this short note we review Rokhlin Desintegration Theorem and
give some applications.

1. INTRODUCTION

Consider a measure space (M, A, 1). Suppose that we partition X in an arbitrary
way. Is it possible to recover the measure p from its restriction to the elements of
the partition?

In this note, we shall address this question, giving some affirmative answer and
applying this idea to obtain interesting results.

Let us start with a simple (positive) example.

Example 1.1. Consider the two torus T2 = S' x S', endowed with the Lebesgue
measure m. The torus can be easily partitioned by the sets {y} x S.
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FIGURE 1.

Denote by m,, the Lebesgue measure over the circle {y} xS', and 1 the Lebesgue
measure over S'.
If E C T? is a measurable set we know from basic measure theory that

(L.1) m(E) = [ my(E)din(y)
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We would like to have a disintegration like this of a measure with respect to a
partition in more general situations. One would naively ask: does it always exist a
disintegration for a given partition?

As we shall see later, for some simple, dynamically defined, partitions no disin-
tegration exists at all. In the next sections we shall define formally the notion of a
disintegration and try to explore a little bit this concept.

2. DISINTEGRATION AND CONDITIONAL MEASURES

Notice that if we remove from S' all y € QNS', for some measurable set @ C S!
with m(Q) = 0, equality (1.1) is not affected. Thus, it is natural to think of
negligible “amounts of sets” in a partition.

More formally, let (M, B, 1) be a probability space. Let P be a partition of M
into measurable sets. Let m : M — P be the natural projection:

m(x) is the unique element of P such that x € mw(x).
We can turn P into a measure space (P, [;’, i), by saying

QeB «— 7 YQ)eB,

and
Q) = u(x Q).

Definition 2.1. A disintegration of p with respect to P is a family of probabilities
{pp; P € P} C M;(M) such that for every FE € B one has

(1) pp(P) =1 for i almost every P € P.

(2) PP+ pp(E) €R is B-measurable.

E) = [ up(E)d(P).

Each measure pp is called a conditional measure.
Example 2.2. Let P = {Py,...,, P,} be a finite partition of M. Assume that no
element of this partition has zero measure. In this case, the conditional measures

are given by

‘ w(E N P;)
walE) = p(P;)

Indeed, we have i({P;}) = pu(F;) and

Zu E“P = DA B ()

In the same way, we can show that every countable partition admits a disinte-
gration.

, for every E € B.

In the lemma below, we sate an important and useful property of a disintegration.
The proof is left as an exercise.

Lemma 2.3. Assume that B admits a countable generator. If {up; P € P} and
{Wp; P € P} are disintegrations then pup = uh for ji almost every P € P.

There are very natural examples of partitions for which no disintegration exist
at all.
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FIGURE 2. Circle rotations

Example 2.4. Let § € R\Q be an irrational number, m be the normalised Lebesgue
measure of the unit circle St. We consider Ry : S — S! the circle rotation by an
angle 6.

Let P = {{R}(2)}necz;x € S'} be the partition into orbits of the irrational circle
rotation. We claim that this partition admits no disintegration. Indeed, assume
that there exists {up; P € P} a disintegration of Lebesgue measure with respect to
this partition.

We look at the push-forward measures {(Rg)«up; P € P}. Then, as each set
P € P is invariant under the rotation Ry we have:

(1) (Ro)sup(P) = pp(Ry ' (P)) = pp(P) =1.
(2) For each Lebesgue measurable set E the map

PePw (Ry)pr(E) = pp(Ry ' (E))

is m measurable.
(3) m(E) =m(Ry ' (E)) = [ np(Ry (E))din(P) = [(Rg)spp(E)din(P).
This shows that the family of push-forward measures {(Rg)«up; P € P} is a
disintegration for m with respect to P. By Lemma 2.3

(Rg)«ptp = pp, for 7 almost every P € P.

Since irrational circle rotations are uniquely ergodic, i.e. the only measure left
invariant under the map Ry is Lebesgue measure, we conclude that up = m for
m~almost every P € P.

However, this implies that m(P) = m({ Ry (z)}nez) = 1, which is absurd.

3. MEASURABLE PARTITIONS

In this section we shall define a class of partitions for which we always can find
a disintegration. Recall that a partition P is finer than a partition Q, which we
denote by Q < P, if every P € P is contained in some @) € Q.

Definition 3.1. Let (M, B, i) be a probability space A partition P is measurable if
there exists My C M with u(Mp) = 1 and a nested sequence of countable partitions
Py < Py < ... < Py < ...such that P|y, = VS, P,. In other words, for every
P € P there exists a sequence P, with P,, € P, such that PNMy = NS, (P,NMy).
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Thus a measurable partition can be described as the joining of a nested sequence
of countable partitions. Notice that, as in example 2.2, countable partitions always
admit a disintegration.

From this fact and from a suitable martingale argument, one can prove the
following fundamental theorem.

Theorem 3.2 (Rokhlin Disisntegration Theorem). If (M,d) is a complete and
separable metric space and P is a measurable partition. Then, there exists {up;p €
P} a disintegration of p.

Let us see some examples of partitions which are, and which are not, measurable.
Example 3.3. In the two torus T? = S' x S!, consider for each pair i,n, with n

a positive integer and ¢ € {1,2,3,...,2"} the interval J(i,n) = [12_—1, QL] Then, the

J(in)

FIGURE 3. A measurable partition of T?2.

partition P,, = {S! x J(i,n)} is a measurable partition.
Example 3.4. Let f4 : S' — S' be the map induced by the integer matrix
2 1
a1
Then, f4 is an Anosov diffeomorphism. Let P = {W*(z);z € T?} be the partition
into unstable manifolds. We claim that P is not measurable. Indeed, if P were
measurable, as it is the partition into orbits of an irrational flow, P = V52, would

imply that for each n there exists P, € P,,, with m(P,) = 1. Thus, P =N, P, €
P, and m(P) = 1, which is absurd.

4. ERGODIC DECOMPOSITION OF INVARIANT MEASURES

We proceed to give an important application of the disintegration theorem,
namely the decomposition of invariant measures into ergodic measures.

Let (M, B, 1) be a probability space and f : M — M be a measurable map such
that f.p = p. We say that the measure preserving system (f, M, B, 1) is ergodic if
every measurable invariant set under f has either zero or full measure.

The goal of this section is to prove the following military principle: divide the
space to conquer the ergodic decomposition.

Theorem 4.1 (Ergodic Decomposition). Let (M,d) be a complete and separable
metric space and (f, M,B,u) a measure preserving system. Then there exists a
measurable partition P whose disintegration {up; P € P} satisfies [i almost every
up is ergodic.
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The idea is that an ergodic system is dynamically indecomposable, since its orbits
spread more or less uniformly over the configuration space, and thus it is possible
split the M into the indecomposable components of the dynamics. Let us see this
more closely by recalling a fundamental result in ergodic theory.

4.1. The ergodic theorem. Consider the following statistical question: given a
point p € M and a certain positive measure set A C M, how often does the future
orbit of p under f visit A?

From a more formal point of view this means to study the behaviour of the
sequence

IS
7=0

So, its natural to ask: does this sequence converges? If so, to what limit? From an
heuristic point of view, it is reasonable to conjecture that a system if no positive
measure invariant set (ergodic) is forced to visit every region of the configuration
space uniformly, since otherwise some invariant with positive weight would be pro-
duced.

The ergodic theorem clarifies this clumsy reasoning.

Theorem 4.2. Let (f, M,B,u) be a measure preserving system. Then for every
measurable set A C M the limit

LS o)
7=0

exists for p-almost every p € M.

It is not hard to show (though we will not do this here) that the ergodic theorem
implies the following.

Corollary 4.3. A measure preserving system (f, M, B, u) is ergodic if and only if

n—oo N 4

lim © 3" a(F7(0) = (A
7=0

for p-almost every p € M, and every measurable set A.

4.2. Proof of Theorem 4.1. As we said before, we need to dive the space to
conquer the ergodic decomposition. So, our first task is to choose a suitable parti-
tion of M. Let U be a countable basis for the topology of M, and A the algebra
generated by U. Notice that A is countable and generates B.

Then the ergodic theorem implies that for each A € A there exists M4 C M
with u(Ma) = 1 and such that

' 1 n—1 .
7(Ax) = lim ~ ; xa(f (z))

exists. Take My = NacaMy. Then p(My) = 1.
We insert the following equivalence relation in My: x ~ y if, and only if,
T(A,z) =7(A,y), for every A € A.

Lemma 4.4. The partition P = {[z];x € My} of My into equivalence classes is
measurable.
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We shall finish the proof assuming Lemma 4.4.

Proof of Theorem 4.1. Let {up;p € P} be the associated disintegration. We only
have to prove that each up is ergodic. Fix P € P and consider

C={F € B;7(E,z) is defined and constant for every z € My N P}.
Notice that A C C, by definition of P. Moreover, if F5 C F; then
T(E1 \ Ea,x) = 7(E1, ) — 7(Fa, x)

exists and is constant over My N P. If {E;} are two by two disjoint then

o
T(U2 By ) = Z 7(E;, x)

1=1

exists and is constant over My N P. We conclude that C is a monotone class (it
is stable under increasing unions and decreasing intersections). By the monotone
class theorem we conclude that C = B. By Corollary 4.3 we deduce that up is
ergodic. O

Proof of Lemma 4.4. Let A = {A} be an enumeration of A and {gz} = Q be an
enumeration of the rational numbers. Fix n € N. We define a partition P,, in the
following way: we mark in the line the points ¢, ..., ¢, and consider the partition
of the line induced by these points.

a I 0 a dn

T(A;, ) i=1,..,n
FIGURE 4. The partition P,.

We declare x ~,, y if and only if 7(A4;, z) and 7(A;, y) belong to the same interval
of this partition for every i = 1,...,n (see figure 4). Clearly, 7(4;,x) = 7(A;,y) for
every ¢ if and only if z,y € N2, P,,, with P, € P,,, and thus P = VoL, P,. O

5. MEASURABLE UNSTABLE PARTITIONS

We close this note by stating a deep generalization of Example 3.4, which is due
to Leddrapier-Young.

Theorem 5.1. Let f : M — M be a C? diffeomorphism, A C M a hyperbolic set.
Notice that the unstable W and the stable manifolds W*# form a partition of some
invariant set which contains A. Then for every invariant and ergodic measure p
the following are equivalent:

(1) hu(f)=0

(2) W* is measurable;

(3) W* is measurable.
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Let us give a very rough idea of 2 = 1. One first proves that if W* comprises a
measurable partition then the disintegration are Dirac. Indeed, take a compact set
K C WHu(f"(x)), with almost full measure (say 1—¢). As f is C?, using distortion
arguments we show that almost all the mass of uy(,), say 1 — ¢, is concentrated
in a tiny neighbourhood of z inside W*(x). As e is arbitrary, this shows that
Hwu(z) = 0z. From this, one deduces that the entropy vanishes.
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