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Abstract

We study weakly hyperbolic iterated function systems on

compact metric spaces, as defined by Edalat in [12], but in

the more general setting of compact parameter space. We

prove the existence of attractors, both in the topological and

measure theoretical viewpoint and the ergodicity of invariant

measure. We also define weakly hyperbolic iterated function

systems for complete metric spaces and compact parameter

space, extending the above mentioned definition. Further-

more, we study the question of existence of attractors in this

setting. Finally, we prove a version of the results in [4], about

drawing the attractor (the so-called the chaos game), for com-

pact parameter space.
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1 Introduction

Iterated function systems (IFS) were introduced in [15] (although

some results appeared earlier in [23]), as a unified way of generate

a broad class of fractals. Nowadays, such systems occurs in many

places in mathematics and other scientific areas, like image process-

ing [2]. IFS can also be considered as skew-products over the shift

map. Therefore, they can also be considered as random dynamical

systems, like in [10].

In [15], Hutchinson introduced the theory of hyperbolic IFS. He

considered a finite collection of contractions over a complete metric

space. He was interested in constructing attractors, both in the

topological and measure-theoretical viewpoint. Thus, he built some

operators from the IFS, which nowadays are called the Hutchinson-

Barnsley and transfer operators. This theory and the fractal theory

was largely disseminated by the book [1].

After this seminal work of Hutchinson, many authors proposed

several generalizations of his results. One direction was to weaken

the hyperbolicity assumption, allowing some weak forms of contrac-

tion. For instance, we have the so-called average contraction with

respect to a probability measure, studied in [3] and [10]. Also, we

have the φ-contractions studied by [17] and [20].

Following this line of research Edalat [12] defined the notion of

weakly hyperbolic IFS (see the definition 1.1) as a finite collection of

maps on a compact metric space such that the diameter of the space

by any combination of the maps goes to zero. This definition allow

some non-contractions which were ruled out in the previous settings

to obtain a topological attractor.

Another way to extend the results of Hutchinson is to enlarge

the parameter space. In Hutchinson’s paper the parameter space is

always finite. In [13], this theory was extended to the case when

the parameter space is an infinite countable set. In [19] and [21]

the authors consider compact metric spaces as the parameter space.
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However, in those contexts, only uniform contractions and average

contractions were studied.

One of the purposes of this article is to study these questions

in the setting of weakly hyperbolic IFS with compact parameter

space, thus unifying and extending some of the previous results.

In particular, we obtain the existence of topological and measure-

theoretical attractors. Moreover, we extend the notion of weakly

hyperbolic IFS for complete metric spaces and we discuss and give

partial results about the existence of such attractors.

Let us make some comments about our proofs. In the compact

case, the idea is to show that our definition satisfies a well known

property called point fibered property as mentioned in [5] by Barns-

ley and Vince. This property, in a stronger form, was also studied

by Maté, in [20], with the name of property (P∗). So, one step is

to prove that weak hyperbolicity implies this property. We stress

that in the complete case, we still obtain the existence of topolog-

ical attractors using weak hyperbolicity. However, we still cannot

prove the existence of measure-theoretical attractor using only weak

hyperbolicity. Nevertheless, we also have some partial results about

this.

Moreover, in the compact case we prove ergodicity of the measure-

theoretical attractor for the systems involved. Also, inspired by the

work of Barnsley-Vince in [4], we also prove that most orbits can

draw the attractor (see the precise definition below) with respect to

some special measures in the parameter space. We remark that this

property is called “chaos game” in Barnsley-Vince’s work.

The rest of this introduction is devoted to give precise definitions

and statements of our results.

1.1 Definitions

Let Λ be a compact metric space and X be a complete metric space.

A continuous map w : Λ × X → X is called an Iterated Function
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System (IFS for short). The space Λ is called the parameter space

and X is called the phase space. The space ΛN of infinite words with

alphabet in Λ, endowed with the product topology will be denoted

by Ω := ΛN. Given a fixed parameter λ ∈ Λ, we will denote by

wλ : X → X the partial map generated by this parameter, which is

defined by wλ(x) := w(λ, x).

In this paper we shall investigate IFS with compact parameter

space.

Let us denote the map wλ1...λn := wλ1◦...◦wλn , where (λ1, ..., λn) ∈
Λn. For each n ∈ N we denote by wn the IFS from Λn × X to X,

given by

wn(λ1, ..., λn, x) := wλ1,...,λn(x).

Let us recall the definition of weakly hyperbolic IFS, as intro-

duced by Edalat in [12].

Definition 1.1. IfX is a compact metric space and Λ is any compact

metric space then we say that an IFS w : Λ × X → X is weakly

hyperbolic if for every σ ∈ Ω we have:

lim
n→∞

Diam(wσ1...σn(X)) = 0

In [12] Edalat considered weakly hyperbolic IFS with finite pa-

rameter space. One of the goals of this paper is to extend his results

to the more general setting of arbitrary compact metric spaces as a

parameter space

1.2 The Topological Attractor

First, we recall the Hausdorff topology. Let us denote by K(X) the

family of all compact subsets of X. We endow it with the Hausdorff

metric as follows. Let d(x, F ) = inf{d(x, y); y ∈ F}. The Hausdorff

metric is given by

dH(A,B) = sup{d(a,B), d(b, A) : a ∈ A, b ∈ B} for A,B ∈ K(X)
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If X is a complete (resp. compact) metric space, it can be proved

(see [1]) that (K(X), dH) is also a complete (resp. compact) metric

space. The Hutchinson-Barnsley operator F : K(X) −→ K(X) is

given by:

F(A) :=
⋃
λ∈Λ

wλ(A) = w(Λ× A), for A ∈ K(X).

Definition 1.2. An IFS w has an attractor A ∈ K(X), if there

exists an open neighborhood U of A (the basin of attraction) such

that Fn(B) → A in the Hausdorff topology for every B ∈ K(X),

with B ⊂ U . If A ∈ K(X) is a fixed point of F then we say that

A is an invariant set by w. If U = X then the IFS has a global

attractor.

We shall deal with attractors which might not be global attrac-

tors only in Section 6. Thus, to simplify the notation, we make the

following convention: when we say that an IFS has an attractor, but

we do not make any comment about the basin, we shall be talking

about global attractors.

Our first result gives the existence of global attractors for weakly

hyperbolic IFS.

Theorem 1. Let w be a weakly hyperbolic IFS on a compact metric

space X and with a compact parameter space Λ. Then F has an

attractor K that is also a compact invariant set. Furthermore, we

have that wσ1◦...◦wσn has a unique fixed point for all σ ∈ Ω and n ≥
1 and also K is the closure of these fixed points.

1.3 The Measure-Theoretical Attractor

First, we recall the topologies on the measure space. Let (X, d) be

a complete and separable metric space and consider the space

Lip1(X;R) = {f : X → R : |f(x)−f(y)| ≤ d(x, y) for all x, y ∈ X}.
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Let M(X) be the set of the Borel probability measures µ such that

µ(f) :=
∫
X
fdµ < +∞ for each f ∈ Lip1(X;R). We define the

Hutchinson metric in M(X) by:

H(ν, µ) = sup

{∣∣∣∣∫
X

fdν −
∫
X

fdµ

∣∣∣∣ ; f ∈ Lip1(X;R)

}
.

In [18], Kravchenco characterized the completeness of M(X) with

the Hutchinson metric:

Theorem 1.3. Let X be a separable metric space. Then the space

(M(X), H) is complete if and only if X is complete.

Remark 1.4. We remark that Hutchinson used a different measure

space in his paper and proved his result on the existence of a measure-

theoretical attractor for a contractive IFS using Banach’s fixed point

theorem. Nevertheless, in [18], Kravchenco proved that the space

considered by Hutchinson is not complete. Kravchenco defined the

space M(X) as above and proved the completeness of this space.

Then, he proved that Hutchinson’s arguments work with this space.

Remark 1.5. The above result also works in complete but non sep-

arable spaces, provided that we restrict ourselves to measures with

separable support. See [18] for more details.

Now, let us recall the weak∗ topology:

Let us denote by Cb(X) the set of bounded and continuous func-

tions f : X → R. Given ε > 0, ν ∈M(X) and f1, ..., fk ∈ Cb(X) we

define:

V (ν, ε, k) := {µ ∈M(X) : |µ(fj)− ν(fj)| < ε, j = 1, ..., k}.

The weak∗ topology is the topology generated by the basis V (ν, ε, k)

for each ε, k, ν. Furthermore, we have that µn converges for µ in

the weak∗ topology if and only if µk(f) −→ µ(f) for every f ∈
Cb(X). The relation between the weak∗ topology and the Hutchinson

topology is given by next theorem. A proof can be found in [18].
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Theorem 1.6. The Hutchinson topology and the weak∗ topology

are equivalent if and only if Diam(X) < +∞. Furthermore, if

Diam(X) = ∞ then the Hutchinson topology is finer than weak∗

topology.

When (X, d) is a compact metric space, we have the following

result on the metrizability ofM(X). The proof can be found in [22].

Theorem 1.7. If X is a compact metric space and {fn}n∈N is a

dense set in the unit sphere of C(X) with the uniform metric, then

the function:

D(ν, µ) :=
∞∑
n=1

1

2n
|
∫
X

fndν −
∫
X

fndµ|

is a metric in M(X) generating the weak∗ topology.

Under the measure-theoretical point of view we also have a notion

of attractor. To explain this notion, we shall define the transfer

operator :

Definition 1.8. Let p be a probability measure in Λ. We define the

Transfer Operator Tp :M(X)→M(X) by the formula:

Tp(µ)(B) :=

∫
Λ

µ(w−1
λ (B))dp(λ),

for every Borel set B and for each measure µ ∈M(X). If a measure

µ ∈M(X) is a fixed point of the transfer operator we say that µ is

an invariant measure for w.

Remark 1.9. Sometimes we will omit the set B in the definition and

write:

Tp(µ) :=

∫
Λ

w∗λ(µ)dp(λ).

where ∗ is the push-forward operator.
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Definition 1.10. We say that a probability ν ∈M(X) is a measure-

theoretical attractor for w if T np (µ)
n→∞−→ ν in the Hutchinson metric

for all µ ∈M(X).

Our result giving the existence of a unique measure-theoretical

attractor in the is the following.

Theorem 2. If X is a compact metric space and w is a weakly hy-

perbolic IFS, then w has a measure-theoretical attractor ν ∈ M(X)

which is the unique fixed point of the transfer operator. Furthermore,

p(U) > 0 for every open set U ⊂ Λ then we have that supp(ν) = K,

where K is the topological attractor given by Theorem 1.

If ν is an invariant measure for an IFS w, then we can define the

ergodicity of ν. This notion is related with the ergodic theorem for

an IFS. See [10] for details.

Definition 1.11. Fix p ∈ M(Λ) and P = pN the product measure.

We say that an invariant measure µ for w is ergodic if for every

continuous function f : X → R, every x ∈ X and P-almost every

σ ∈ Ω we have:

lim
n→∞

1

n

n∑
j=0

f(wσj ◦ · · · ◦ wσ1(x)) =

∫
X

fdµ.1

Our next result is about the ergodicity of the measure-theoretical

attractor.

Theorem 3. If X is a compact metric space and w is a weakly hy-

perbolic IFS, then its unique measure-theoretical attractor is ergodic.

1.4 The complete case

We propose the following definition as an extension of the concept

of weakly hyperbolic IFS.

1We shall use the convention that wσj ◦ · · · ◦ wσ1(x) = x, if j = 0.
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Definition 1.12. Let w : Λ ×X → X be a continuous IFS, where

(X, d) is a complete metric space. We say that w is weakly∗ hyperbolic

if for all x, y ∈ X and σ ∈ Ω we have:

lim
n→+∞

d(wσ1...σn(x), wσ1...σn(y)) =, 0

where the convergence is assumed to be uniform in Ω and locally

uniform in X. In other words, there exists η > 0 such that for all

ε > 0 there exists n0 = n0(ε) such that if n ≥ n0 then

d(wσ1...σn(x), wσ1...σn(y)) < ε,

for all σ ∈ Ω and x, y such that d(x, y) < η.

In Section 5 we will prove that if X is compact, then an IFS w is

weakly∗ hyperbolic if and only if w is weakly hyperbolic. We state

here results in the complete case.

Our result concerning the existence of a topological global at-

tractor in the complete case is the following.

Theorem 4. Let w be a weakly hyperbolic IFS on a complete met-

ric space X and with a compact parameter space Λ. Assume that

(K(X), dH) is ε-chainable for every ε > 0. Then F has an attractor

K that is also a compact invariant set.

For the definition of an ε-chainable metric space, we refer the

reader to Section 5. However, we remark that this theorem can

be applied when X is a Banach space or a complete Riemannian

manifold.

Regarding the existence of attractors from the measure-theoretical

viewpoint, we have the following result:

Theorem 5. Let (X, d) be a complete metric space, uniformly ε-

chainable on balls and with (K(X), dH) ε-chainable, for every ε > 0.

If w is a weakly hyperbolic IFS, then there exists a unique invariant

measure ν ∈ M(X) such that supp(ν) ⊂ K and in fact we get
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that supp(ν) = K if p(U) > 0 for each U ⊂ Λ open, where K is

the attractor given by Theorem 4. Furthermore, if µ ∈ M(X) has

compact support then T np (µ)
n−→ ν in the Hutchinson metric.

1.5 Drawing the attractor

An orbit of the IFS starting at some point x is a sequence {xk}∞k=0

such that x0 = x, xk+1 = wσk(xk), for some σ = {σk}∞k=1 ∈ Ω. If

an IFS w : Λ × X → X has an attractor A, we say that an orbit

starting at x draws the attractor if the tails of this orbit are getting

close, in the Hausdorff metric, to the attractor, i.e. if

A = lim
k→∞
{xn}∞n=k, in the Hausdorff metric.

This concept is inspired by the so-called chaos game, studied in [4]

in the case of finite parameter space. Our last result says something

about orbits of the IFS that draws the attractor. As in [4], it is not

necessary to make any assumption of hyperbolicity for the IFS, only

the existence of a local attractor suffices. Nevertheless, in order to

be able to prove a result for the case of arbitrary compact parameter

space we needed to consider probability measures in the parameter

space that possesses a uniform lower bound for the size of balls. We

called such measures fair. See Section 6 for details.

Theorem 6. Let X be a proper complete metric space, Λ be a com-

pact metric space. Consider p ∈ M(Λ) a fair probability measure,

and P := pN ∈M(Ω). Assume that w : Λ×X → X is a continuous

IFS. Then given x ∈ X, a P-total probability set of orbits of x draws

the attractor K of w.

2 Proof of Theorem 1

In [12] Edalat proved the existence attractors for weakly hyperbolic

IFS in the context of finite parameter space. His argumentes use
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concepts of graph theory and are not available in our setting. Our

strategy, instead, is to take advantage of the compactness of the

phase space to show that Diam(wσ1...σn(X)) goes to zero uniformly

in Ω. We then use this fact combined with the more axiomatic

approach of Maté in [20] to show the existence of the attractor. To

prove that this attractor is the closure of the fixed points of the

partial maps wσ1...σn we apply a fixed point theorem of Jachymski

[16].

Lemma 2.1. For each n ∈ N, the function (λ1, ..., λn) ∈ Λn 7→
Diam(wλ1...λn(X)) ∈ R is uniformly continuous with respect to the

maximum metric.

Proof. Fix ε > 0. Let us denote by ρ the metric of Λ and d the

metric of X. Let us define for A ⊂ X and t > 0:

B(A, t) := {y ∈ X : d(y, A) ≤ t}

Since wn is uniformly continuous, there exists δ > 0 such that if

max{ρ(λ1, λ
∗
1), ..., ρ(λn, λ

∗
n), d(x, y)} < δ

then

d((wλ1...λn)(x), (wλ∗1...λ∗n)(y)) < ε.

Take (λ1, ..., λn) and (λ∗1, ..., λ
∗
n) in Λn such that

max{ρ(λ1, λ
∗
1), ..., ρ(λn, λ

∗
n))} < δ.

We claim that:

1. wλ1...λn(X) ⊂ B
(
wλ∗1...λ∗n(X), ε

)
.

2. wλ∗1...λ∗n(X) ⊂ B (wλ1...λn(X), ε) .

Indeed, if y ∈ wλ1...λn(X) then we can write y = wλ1...λn(x) where

x ∈ X. Hence, if we define y∗ := wλ∗1...λ∗n(x), we have

d(y, y∗) = d(wλ1...λn(x), wλ∗1...λ∗n(x)) < ε.

This shows that y ∈ B
(
wλ∗1...λ∗n(X), ε

)
. The proof of (2) is similar.

This finishes the lemma.
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The following is the key lemma of this section. We shall prove

that Diam(wσ1...σn(X)) goes to zero uniformly with respect σ ∈ Ω.

Lemma 2.2. Let w be an IFS on a compact metric space X with a

compact parameter space. Then the following are equivalent.

1. w is weakly hyperbolic

2. Given ε > 0, there exists n0 = n0(ε) ∈ N such that for all

n ≥ n0 and σ ∈ Ω we have

Diam(wσ1...σn(X)) < ε

Proof. If w satisfies (2), then it is obvious that w satisfies (1). So,

it is enough to prove that (1) implies (2). Let us suppose that (2)

is false. Then there exists ε0 > 0, a sequence (nk) −→ +∞ and a

sequence of words (with alphabet in Λ):

(σ1
1, σ

1
2, ..., σ

1
n1

), (σ2
1, σ

2
2, ..., σ

2
n2

), ...

such that:

Diam(wσk
1 ...σ

k
nk

(X)) ≥ ε0 for any k ∈ N. (1)

Thus we have the following matrix builded with these words:

σ1
1σ

1
2 ... σ1

n1

σ2
1σ

2
2 ... σ2

n1
...σ2

n2

...

σk1σ
k
2 ... σkn1

...σkn2
...σknk

...

Now, using the compactness of Λ and a diagonal argument we can

obtain that each column of the matrix is convergent in Λ. Indeed,

the first column is a sequence in Λ and then there exists a set N1 ⊂ N
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such that {σk1}k∈N1 is convergent in Λ. Analogously, there exists a

set N2 ⊂ N1 ⊂ N such that {σk2}k∈N2 is convergent in Λ and so on.

In this way, we obtain a nested sequence of sets

N ⊃ N1 ⊃ N2 ⊃ ...

and if we define a set N∗ such that its first element is the first element

of N1, its second element is the second element of N2 and so on, we

obtain that the matrix {σkj }k∈N∗,j≤nk
has all columns convergent in Λ.

Therefore, for simplicity, we can suppose that the initial matrix has

all columns convergent and we can define σ = (σ1, σ2, ...) ∈ Ω where

each element of this sequence is the limit of the associated column.

So, to finish the proof it is enough to prove that this sequence does

not satisfy the definition of weak hyperbolicity. Indeed, fix m ∈ N
and consider the word (σ1, ..., σm). Using that (nk) → ∞ we have

m < nk, for every k sufficiently large. Then it follows from (1) that

Diam(wσk
1 ...σ

k
m

(X)) ≥ ε0,

for k sufficiently large. Since (σk1 , ..., σ
k
m)

k−→ (σ1, ..., σm) in the maxi-

mum metric, it follows from Lemma 2.1 that Diam(wσ1...σm(X)) ≥ ε0.

Since m is arbitrary, this contradicts the definition of weak hyper-

bolicity and completes the proof.

Let us recall a property defined by Maté in [20], in his axiomatic

approach to the existence of attractors for IFS.

Definition 2.3. Let w : Λ × X → X be an IFS. For each σ ∈ Ω,

n ∈ N, and x ∈ X, define Γ(σ, n, x) := wσ1...σn(x). We say that w

satisfies Property P∗ if

Γ(σ) := lim
n→∞

Γ(σ, n, x) (2)

exists for every σ ∈ Ω and x ∈ X, does not depend on x and is

uniform on σ and x ∈ X.
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Remark 2.4. In [4] (for instance) there is the notion of point fibered

IFS, which is a weaker version of property P∗, since it do not require

the limit to be uniform on σ ∈ Ω and x ∈ X.

Corollary 2.5. Every weakly hyperbolic IFS w : Λ×X → X, with

X and Λ compact metric spaces, satisfies property P∗.

Proof. Take x ∈ X and ε > 0. By Lemma 2.2 we have that there

exists n0 = n0(ε) such that:

Diam(wσ1...σn(X)) < ε,

for every σ ∈ Ω and every n ≥ n0. Observe that

Γ(σ, n, x) ∈ wσ1...σn(X)

and

Γ(σ, n+ p, x) ∈ wσ1...σn+p(X) ⊂ wσ1...σn(X),

and therefore we have that d(Γ(σ, n+p, x),Γ(σ, n, x)) < ε for all n ≥
n0 and p ∈ N. Then, the sequence Γ(σ, n, x) is Cauchy and thus

convergent for all x ∈ X and σ ∈ Ω. Since n0 does not depend on

σ we obtain the uniformity on σ. Now, take σ ∈ Ω and x, y ∈ X.

Then we have:

Γ(σ, n, x),Γ(σ, n, y) ∈ wσ1 ◦ ... ◦ wσn(X),

and so

lim
n→∞

d(Γ(σ, n, x),Γ(σ, n, y)) = 0,

which shows that the limit does not depend on x. This completes

the proof.

Property P∗, in the case Λ = {1, ..., N}, was proved by [20] to be

a sufficient condition for the existence of an attractor. Here, we will

prove this in the more general case of Λ being an arbitrary compact

space. For adapting his arguments we need some preparatory lem-

mas. The first one proves that the Hutchinson-Barnsley operator is
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continuous. The proof we give here also works in the case where X

is complete but not necessarily compact and will be used later in

this paper.

Lemma 2.6. Let X be a complete metric space and Λ a compact

metric space. If w : Λ ×X → X is continuous, then the associated

Hutchinson-Barnsley operator F is also continuous.

Proof. Fix a compact set K ⊂ X. Take an ε > 0. Since w is

continuous and Λ is compact, there exists β > 0 such that if x ∈ K
and y ∈ X with d(x, y) < β, then

d(wλ(x), wλ(y)) < ε, for every λ ∈ Λ.

Assume that A ∈ K(X) is such that dH(A,K) < β. Let x be a

point in K and take a ∈ A with

d(a, x) = d(x,A) < β.

Then

d(wλ(x), wλ(A)) ≤ d(wλ(x), wλ(a)) < ε, for every λ ∈ Λ.

In a similar manner we show that for every a ∈ A,

d(wλ(a), wλ(K)) < ε, for every λ ∈ Λ.

This proves that

dH(wλ(A), wλ(K)) ≤ ε, for every λ ∈ Λ,

and thus

dH(F(A),F(K)) ≤ ε,

which establishes the result.

Observe that Corollary 2.5 defines a function Γ : Ω → X, given

by

Γ(σ) = lim
n→∞

Γ(σ, n, x), for any x ∈ X.

As in [20] we have the following.
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Lemma 2.7. The map Γ : Ω → X is continuous in the product

topology on Ω.

Proof. Let us denote by ρ the metric of Λ. Fix σ ∈ Ω and ε > 0. By

Corollary 2.5 we have that there exists m = m(ε) ∈ N such that

d(wσ1 ◦ ... ◦ wσm(x),Γ(σ)) < ε for all σ and x.

Now, using that wm is continuous we get a > 0 such that if

ρ(σ∗1, σ1) < a, ..., ρ(σ∗m, σm) < a,

then

d(wσ1...σm(x), wσ∗
1 ...σ

∗
m

(x)) < ε for all x.

Let U be the neighborhood of σ in the product topology given by:

U = Bρ(σ1, a)× ...×Bρ(σm, a)× Λ× ...

Therefore, if σ∗ ∈ U , then:

d(Γ(σ∗),Γ(σ))

≤ d(Γ(σ), wσ1...σm(x))

+ d(wσ1...σm(x), wσ∗
1 ...σ

∗
m

(x)) + d(Γ(σ∗), wσ∗
1 ...σ

∗
m

(x))

< 3ε.

This shows that Γ is continuous.

Finally, we shall use the fixed point theorem of Jachymski [16].

This theorem is a generalization of Banach’s fixed point theorem.

Before state it we need a definition.

Definition 2.8. Let (X, d) be a metric space. We say that a map

T : X → X is an asymptotic contraction if d(T n(x), T n(y))
n→+∞−→ 0

for all x, y ∈ X and there exists η > 0 such that this convergence is

uniform if d(x, y) ≤ η.

16



Theorem 2.9 (Jachymski). Suppose that (X, d) is a complete metric

space and T : X → X is a continuous asymptotic contraction. Then

there exists x ∈ X such that:

d(T n(y), x)
n→+∞−→ 0 for all y ∈ X.

For a proof, se [16].

Proof of Theorem 1. Notice that if A ∈ K(X) then we can write

Fn(A) =
⋃
σ∈Ω

wσ1...σn(A).

Define

K := Γ(Ω) = { lim
n→∞

Γ(σ, n, x) : σ ∈ Ω}

and notice that, by Lemma 2.7, K is a compact set. So, it remains

to prove that K is an attractor. In fact, given B ⊂ X a compact

set and ε > 0 we have by Corollary 2.5 that there exists n0 = n0(ε)

such that:

d(Γ(σ, n, x),Γ(σ)) < ε for all n ≥ n0, σ ∈ Ω, and x ∈ B.

Fix n ≥ n0. Then, for all y ∈ Fn(B) there exists z ∈ K such that

d(y, z) < ε and analogously given z ∈ K there exists y ∈ Fn(B)

such that d(y, z) < ε. This shows that dH(Fn(B), K) < ε if n ≥ n0.

Therefore, limn→+∞ dH(Fn(B), K) = 0. Using that F is continuous

we have that K is the unique compact invariant set of w.

To prove the statement on the fixed points, take g = wσ1 ◦...◦wσn
with σ ∈ Ω and n ≥ 1. Then we have that:

gm(x) = wσ1 ◦ ... ◦ wσn ◦ ... ◦ wσ1 ◦ ... ◦ wσn(x)

where the first block appears m times. Then,

d(gm(x), gm(y)) ≤ Diam(wσ1 ◦ ... ◦ wσn ◦ ... ◦ wσ1 ◦ ... ◦ wσn(X))
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and by weak hyperbolicity we get that d(gm(x), gm(y)) −→ 0 for

every x, y ∈ X and this convergence is uniform in X. By Theo-

rem 2.9, g has a unique contractive fixed point which we denote by

qσ1...σn . To finish the proof, let us prove the density of the fixed

points using the same arguments of Hutchinson in [15]. Consider

Aσ1...σp := wσ1...σp(A). Using the invariance of K one obtains that

K =
⋃

σ1...σp

wσ1...σp(K)

and

Kσ1...σp =
⋃
σp+1

Kσ1...σpσp+1 .

It follows that

K ⊃ Kσ1 ⊃ ... ⊃ Kσ1...σp ⊃ ...

By compactness of K and by weak hyperbolicity one obtains that

this nested intersection is a singleton, which we shall denote by kσ,

for some σ = (σ1, ..., σp, ...) ∈ Ω. Now, kσ ∈ Kσ1...σp and qσ1...σp ∈
Kσ1...σp . By weak hyperbolicity we get

kσ = lim
p→∞

qσ1...σp ,

which ends the proof.

3 Proof of Theorem 2

We want to show that every weakly hyperbolic IFS has a measure-

theoretical attractor. Since the iterates of the transfer operator de-

pend on the behavior of the sequences Γ(σ, n, x), Corollary 2.5 will

be a key tool. Indeed, in [20] Maté also proved that for an IFS

with finite parameter space, Property P ∗ implies the existence of

a measure theoretical attractor. Here we extend his arguments for

arbitrary compact parameter spaces.
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The proof consists in showing that the iterates of a Dirac mea-

sure under the transfer operator converge to a probability mea-

sure, which is invariant by the IFS. Then, we proceed to show that

d(T np µ, T
n
p δa) → 0, for any probability measure µ. A key technical

point is to establish the continuity of the transfer operator, which in

fact is our first lemma.

Lemma 3.1. If w : Λ × X → X is continuous and X is compact,

then for all p ∈ P(Λ), the transfer operator Tp is continuous in the

weak∗ topology.

Proof. Suppose that µn → µ in the weak∗ topology of P(X). We

will show that Tpµn → Tpµ.

Indeed, take f ∈ C(X) and observe that∫
fdTpµn =

∫
Λ

∫
X

f ◦ wλdµndp =

∫
X

∫
Λ

f ◦ wλdpdµn.

Note that the function Φ : X → R, defined by x 7→
∫

Λ
f ◦ wλ(x)dp

is continuous.

Since µn → µ in the weak∗ topology, it follows that:∫
X

Φdµn →
∫
X

Φdµ.

So, ∫
X

∫
Λ

f ◦ wλdpdµn →
∫
X

∫
Λ

f ◦ wλdpdµ.

This completes the proof.

Now, we can prove the existence of an invariant measure.

Lemma 3.2. For every a ∈ X, the sequence of measures {T np (δa)}
is convergent on the weak∗ topology in M(X). As a consequence,

ν = lim {T np (δa)} is an invariant measure for the IFS w.
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Proof. We have to prove that {T np (δa)} is a Cauchy sequence in

M(X). By Theorem 1.7 it is enough to prove that
∫
X
fdT np (δa) is a

Cauchy sequence of numbers, for every f ∈ C0(X) with ||f ||0 = 1.

By definition of the transfer operator we have that:∫
fdT n(δa) =

∫
Λn

f ◦ Γ(σ, n, a)dpn.

Take n > m. Then, using that p is a probability, we get∫
Λn−m

∫
Λm

f ◦ Γ(σ,m, a)dpmdpn−m =

∫
Λn

f ◦ Γ(σ,m, a)dpn.

Hence, ∣∣∣∣∫ fdT n(δa)−
∫
fdTm(δa)

∣∣∣∣
=

∣∣∣∣∫
Λn

f ◦ Γ(σ, n, a)dpn

−
∫

Λm

f ◦ Γ(σ,m, a)dpm
∣∣∣∣

≤
∫

Λn

|f ◦ Γ(σ, n, a)− f ◦ Γ(σ,m, a)|dpn.

Since f is uniformly continuous, there exists δ > 0 such that if

d(x, y) < δ, then |f(x) − f(y)| < ε. By Corollary 2.5, there exists

n0 = n0(ε) > 0 such that if m,n ≥ n0, then

d(Γ(σ, n, a),Γ(σ,m, a)) < δ.

Therefore, {T np (δa)} is a Cauchy sequence. SinceM(X) is complete,

there exists ν = lim {T np (δa)}. By Lemma 3.1 it follows that ν is an

invariant measure.

The next step is to prove that ν is in fact a measure-theoretical

attractor for the IFS.
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Lemma 3.3. For all µ ∈ P(X) and a ∈ X the sequences {T n(δa)}
and {T n(µ)} have the same limit in the weak∗ topology. As a conse-

quence, T np (µ)
n−→ ν in the weak∗ topology if µ ∈M(X).

Proof. As before, it is enough to show that if ||f ||0 = 1, then∣∣∫ fdT n(µ)−
∫
fdT n(δa)

∣∣ goes to zero. Take ε > 0. Notice that∫
fdT n(µ) =

∫
Λn

∫
X

f ◦ Γ(σ, n, x)dµdpn.

Since µ is a probability we have that

f ◦ Γ(σ, n, a) =

∫
X

f ◦ Γ(σ, n, a)dµ.

Hence, we get ∣∣∣∣∫ fdT n(µ)−
∫
fdT n(δa)

∣∣∣∣
≤

∫
Λn

∫
X

|f ◦ Γ(σ, n, x)− f ◦ Γ(σ, n, x)|dµdpn.

From the uniform continuity of f and from Corollary 2.5 we have

that the right-hand side of (3) is less than ε for every large n. This

finishes the proof.

Now, to conclude the proof of Theorem 2, it only remains to

prove that the support of ν is the attractor K.

Define for each λ ∈ Λ the map ηλ : Ω → Ω by ηλ(σ1, σ2, ...) :=

(λ, σ1, σ2, ...). Notice that Γ ◦ ηλ = wλ ◦ Γ.

Lemma 3.4. If P is the product measure in Ω induced by p ∈M(Λ),

then we have that Γ∗(P) = ν.

Proof. We will prove that Γ∗(P) is a fixed point of the transfer oper-

ator for w, since we already know that Tp has a unique fixed point.
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For that, we begin observing that P is a fixed point of transfer op-

erator to the IFS η : Λ × Ω → Ω. Since Γ ◦ ηλ = wλ ◦ Γ, we can

write

Tp(Γ
∗(P)) =

∫
Λ

w∗λ(Γ
∗(P))dp(λ) =

∫
Λ

Γ∗(η∗λP)dp(λ)

= Γ∗
(∫

Λ

(η∗λP)dp(λ)

)
= Γ∗(P).

This establishes the lemma.

By Lemma 3.4 and opening of the measure p, we get:

supp(ν) = Γ(supp(P)) = K.

and this finishes the proof of Theorem 2.

4 Proof of Theorem 3

To prove Theorem 3 we use the ergodicity of the shift map β : Ω→
Ω, which is given by

β(σ1, σ2, ...) = (σ2, σ3, ...).

Recall that the product measure P in Ω is an ergodic invariant mea-

sure for the shift map. The key tool for relate the shift map with the

IFS is the skew product map τ : Ω×X → Ω×X, which is defined

by

τ(σ, x) := (β(σ), wσ1(x)).

Indeed, let us show how to relate ergodic averages for the IFS

with ergodic averages for the skew product. Fix f : X → R continu-

ous function. Let us extend f to Ω×X by f ′ : Ω×X → R, constant

in the first variable. In other words, f ′(σ, x) = f(x). This implies

that ∫
Ω×X

f ′d(P× ν) =

∫
X

fdν. (3)
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Now, observe that

f ′ (τn(σ, x)) = f ′ (βn(σ), wσn ◦ ... ◦ wσ1(x))

= f(wσn ◦ ... ◦ wσ1(x)).

So,

1

n

n−1∑
j=0

f ′
(
τ j(σ, x)

)
=

1

n

n−1∑
j=0

f(wσj ◦ ... ◦ wσ1(x)). (4)

We have the following general result, which allows us to obtain

an invariant measure for the skew product from an invariant measure

for the IFS.

Lemma 4.1. Let X and Λ be compact metric spaces. If µ ∈M(X)

is an invariant measure for an IFS w : Λ×X → X, then the measure

P× µ is invariant by τ .

Proof. We want to show that for every integrable function f : Ω ×
X → R one has∫

Ω×X
f ◦ τd(P× µ) =

∫
Ω×X

fd(P× µ). (5)

For this we shall interchange the order of integration and use a suit-

able split of Ω. To be precise, observe that the product measure in Ω

coincides in cylinders with the product measure in Λ×Ω. Since the

σ-algebra of both spaces is generated by cylinders, it follows that the

two measure spaces coincide. Therefore, we can split any integration

in Ω as an integration in Λ× Ω. Using this, one can write∫
Ω×X

f (β(σ), wσ1(x)) d(P× µ)

=

∫
Ω

∫
X

f (β(σ), wσ1(x)) dµdP

=

∫
Ω

∫
Λ

∫
X

f (β(σ), wσ1(x)) dµdpdP.
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By invariance of µ and integrability of x 7→ f (β(σ), x) for all σ, we

have ∫
Λ

∫
X

f (β(σ), wσ1(x)) dµdp =

∫
X

f (β(σ), x) dµ,

for all σ ∈ Ω. On the other hand, by invariance of P with respect to

β in Ω, and integrability of σ 7→ f(σ, x) for all x ∈ X, we get∫
Ω

f (β(σ), x) dP =

∫
Ω

f (σ, x) dP.

Using these two facts and interchanging the order of integration we

have that∫
Ω

∫
Λ

∫
X

f (β(σ), wσ1(x)) dµdpdP =

∫
Ω

∫
X

f (σ, x) dµdP.

This finishes the lemma.

Proof of Theorem 3. Let K ⊂ X be the unique attractor of w and

ν the unique invariant measure.

We want to show that for all x ∈ X, P-q.t.p. σ ∈ Ω, and for any

continuous function f : X → R we have:

lim
n→∞

1

n

n−1∑
j=0

f
(
wσj ◦ ... ◦ wσ1(x)

)
=

∫
X

fdν. (6)

The initial step is to show that the limit on the left side of (6) exists

for P-a.e. σ ∈ Ω.

By Lemma 4.1 and the Ergodic Theorem on τ , we obtain that

for P× ν-a.e. (σ, x)

f ∗(σ, x) = lim
n→∞

1

n

n−1∑
j=0

f ′
(
τ j(σ, x)

)
(7)

exists.

Consider the set

Ω∗ = {σ ∈ Ω; there exists x ∈ X such that f ∗(σ, x) is defined} .
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We claim that P(Ω∗) = 1. In fact, let us suppose that for some

A ⊂ Ω, with P(A) > 0, if σ ∈ A, then f ∗(σ, x) do not exist for all

x ∈ X. By Fubini’s Theorem, this implies the existence of a set of

positive P×ν-measure in Ω×X such that f ∗(σ, x) do not exist, and

this is an absurd with (7).

Now, let us see that Corollary 2.5 implies that if f ∗(σ, x) exists for

some x ∈ X then f ∗(σ, y) also exists, for all y ∈ X, and f ∗(σ, x) =

f ∗(σ, y).

To prove this, fix (σ, x) such that f ∗(σ, x) exists, and y ∈ X. By

triangle inequality we only have to prove that

1

n

n−1∑
j=0

∣∣f ′ (τ j(σ, x)
)
− f ′

(
τ j(σ, y)

)∣∣→ 0, (8)

when n→∞. Let us prove this. By Corollary 2.5 we have that that

for all δ > 0, there exists n0 = n0(δ) such that if n ≥ n0, then

sup
α∈Ω

d (wα1 ◦ ... ◦ wαn(a), wα1 ◦ ... ◦ wαn(b)) ≤ δ for all a, b ∈ X.

In particular, given a, b ∈ X, σ ∈ Ω, and n ≥ n0 we have

d (wσn ◦ ... ◦ wσ1(a), wσn ◦ ... ◦ wσ1(b)) ≤ δ. (9)

Now, take ε > 0. By uniform continuity and the above remark,

there exists n1 > 0 such that if n ≥ n1, then

|f(wσn ◦ ... ◦ wσ1(a))− f(wσn ◦ ... ◦ wσ1(b))| < ε,

for all a, b ∈ X.

Take n2 > n1 such that 2n1C
n2

< ε, where

C = max
0≤j≤n1

{
|f(wσj ◦ ... ◦ wσ1(x)|, |f(wσj ◦ ... ◦ wσ1(y)|

}
.
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Therefore, if n ≥ n2, then

1

n

n−1∑
j=0

∣∣f ′ (τ j(σ, x)
)
− f ′

(
τ j(σ, y)

)∣∣
=

1

n

n1−1∑
j=0

∣∣f ′ (τ j(σ, x)
)
− f ′

(
τ j(σ, y)

)∣∣
+

n−1∑
j=n1

∣∣f ′ (τ j(σ, x)
)
− f ′

(
τ j(σ, y)

)∣∣
<

2n1C

n
+

(n− n1)ε

n
< 2ε.

This shows the desired. Thus, f ∗(σ, x), for σ ∈ Ω∗, is constant in

x. Since the ergodic theorem applied to the skew product τ implies

that ∫
Ω×X

f ∗d(P× ν) =

∫
Ω×X

f ′d(P× ν),

by equalities (3) and (4) it only remains to prove that f ∗(σ, x) is

constant for P-a.e. σ ∈ Ω. For this, we use the ergodicity of (β,P).

Indeed, if we prove that

f ∗(β(σ), x) = f ∗(σ, x), (10)

then from the ergodicity of (β,P) it will follow that f ∗(σ, x) is con-

stant for P-a.e. σ ∈ Ω.

We are left to show (10). Let us denote by
∑n−

j=0 aj the sum

when a1 is omitted and let y = wσ1(x). Then we have the following
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estimation∣∣∣∣∣ 1n
n−∑
j=0

f
(
wσj ◦ ... ◦ wσ2(x)

)
− 1

n

n∑
j=0

f
(
wσj ◦ ... ◦ wσ1(x)

)∣∣∣∣∣
≤ |f(x)|

n
+

1

n

n−∑
j=0

∣∣f (wσj ◦ ... ◦ wσ2(x)
)
− f

(
wσj ◦ ... ◦ wσ2(y)

)∣∣
=
|f(x)|
n

+
1

n

n−1∑
j=0

∣∣f (wβ(σ)j ◦ ... ◦ wβ(σ)1(x)
)
− f

(
wβ(σ)j ◦ ... ◦ wβ(σ)1(y)

)∣∣ ,
Using the same argument applied to estimate (8), only using β(σ)

in place of σ, we see that the right side of the above inequality

converges to zero when n→∞. This establishes (10), and completes

the proof.

5 The Complete Case

In this Section we will study the more general case of complete phase

space.

Definition 5.1. Let w : Λ × X → X be a continuous IFS, where

(X, d) is a metric space. We say that w is weakly∗ hyperbolic if for

all x, y ∈ X and σ ∈ Ω we have

lim
n→+∞

d(wσ1...σn(x), wσ1...σn(y)) = 0

and this convergence is uniform in Ω and locally uniform in X. This

means that there exists η > 0 such that for all ε > 0 there exists

n0 = n0(ε) such that if n ≥ n0, then

d(wσ1...σn(x), wσ1...σn(y)) < ε,

for every σ ∈ Ω and every x, y such that d(x, y) < η.
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Our next result says that in the case of compact phase space the

two definitions (weak and weak∗ hyperbolicity) are the same.

Theorem 5.2. Let us suppose that Λ and X are compact metric

spaces. Then an IFS w : Λ × X → X is weakly∗ hyperbolic if and

only if it is weakly hyperbolic.

Proof. Suppose that w is weakly hyperbolic. If σ ∈ Ω and x, y ∈ X
then

d(wσ1...σn(x), wσ1...σn(y)) ≤ Diam(wσ1...σn(X)).

Since w is weakly hyperbolic, we obtain that

lim
n→∞

d(wσ1...σn(x), wσ1...σn(y)) = 0.

By Lemma 2.2 this convergence is uniform in Ω and X, which implies

that w is weakly∗ hyperbolic.

Reciprocally, assume that w is weakly∗ hyperbolic, and take σ ∈
Ω. By compactness of X we get sequences (xn) and (yn) on X such

that

Diam(wσ1...σn(X)) = d(wσ1...σn(xn), wσ1...σn(yn)), for all n ∈ N.

Since {wσ1...σn(X)} is a nested sequence, it is enough to show that

d(wσ1...σnk
(xnk

), wσ1...σnk
(ynk

))→ 0, for some sequence nk →∞.
(11)

For this, we can use the compactness of X and get subsequences

xnk
→ x and ynk

→ y on X. We will show that nk is the desired

sequence. Indeed, take ε > 0 and consider η > 0 given by the

definition of weak∗ hyperbolicity. There exists k1 ∈ N such that if

k ≥ k1 then

d(xnk
, x) < η and d(ynk

, y) < η. (12)

Since we are assuming that w is a weakly∗ hyperbolic IFS, we obtain

k2 ∈ N such that if k ≥ k2 then

d(wσ1...σnk
(x), wσ1...σnk

(y)) < ε (13)
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Finally, consider k0 = max{k1, k2}. If k ≥ k0 by using (12), (13) and

the local uniformity of definition 5.1 we get

d(wσ1...σnk
(xnk

), wσ1...σnk
(ynk

)) ≤ d(wσ1...σnk
(xnk

), wσ1...σnk
(x))

+ d(wσ1...σnk
(x), wσ1...σnk

(y))

+ d(wσ1...σnk
(y), wσ1...σnk

(ynk
))

≤ 3ε.

This shows that (11) holds and completes the proof.

5.1 Proof of Theorem 4

We shall prove the existence of an attractor in the complete case.

Our arguments require a mild technical assumption on the phase

space, which we now define.

Definition 5.3. Let (M,d) be a metric space. Given ε > 0 and

x, y ∈M an ε-chain joining x and y is a sequence x0 = x, x1, ..., xn =

y of points in M and such that d(xi, xi+1) < ε, for every i = 0, ..., n−
1. The number n + 1 is the number of elements of the chain. We

say that M is ε-chainable, if for any x, y ∈M there exists an ε-chain

joining x and y.

Later we shall provide examples of ε-chainable metric spaces.

Proof of Theorem 4. We will prove that the Hutchinson-Barnsley

operator is an asymptotic contraction on (K(X), dH). Take ε > 0.

Consider η > 0 and n0 = n0(ε), given by definition 5.1. Let us

suppose that dH(A,B) < η, for some A,B ∈ K(X). We have that

Fn(A) =
⋃

σ∈Ω,x∈A

wσ1...σn(x) and Fn(B) =
⋃

σ∈Ω,y∈B

wσ1...σn(y).

If z = wσ1...σn(a), with a ∈ A then, using that dH(A,B) < η, it

follows that there exists b ∈ B such that d(a, b) < η. Then, we
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obtain

d(wσ1...σn(a), wσ1...σn(b)) < ε if n ≥ n0.

Analogously, if c = wσ1...σn(b), with b ∈ B, then, there exists a ∈ A
such that d(a, b) < η and we have

d(wσ1...σn(a), wσ1...σn(b)) < ε if n ≥ n0.

Therefore,

dH(Fn(A),Fn(B)) < ε for all n ≥ n0.

It remains to show that

dH(Fn(A),Fn(B))
n−→ 0

for any A,B ∈ K(X). Since K(X) is η-chainable, there exists com-

pact sets {K1, ..., Kn} with K1 = A,Kn = B and dH(Ki, Ki+1) <

η if 1 ≤ i ≤ n− 1. So

dH(Fn(A),Fn(B)) < dH(Fn(A),Fn(K2))

+ ...+ dH(Fn(Kn−1),Fn(B)),

and then we have that dH(Fn(A),Fn(B)) −→ 0 when n → ∞.

By Theorem 2.9 we have an atractor K ∈ K(X) that is also an

invariant set, since F is continuous by Lemma 2.6. The proof is now

complete.

As application we have two settings where our result applies.

Corollary 5.4. Let (X, ||.||) be a Banach space and d its induced

metric. If w is a weakly hyperbolic IFS on (X, d) then F has an

attractor K that is also a compact invariant set.

Proof. Let us prove that (K(X), dH) is ε-chainable for every ε > 0

and apply the last theorem. First we claim that if B ∈ K(X), and

x ∈ X, then, there exists a continuous map ψB : [0, 1]→ K(X) such

that ψB(0) = B and ψB(1) = {x}.
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To prove this claim, let us define the map φ : [0, 1] × X → X

given by φ(t, y) = tx+(1−t)y and the partial map φt : X → X given

by φt(x) = φ(t, x). Consider the map ψ : [0, 1]→ K(X), defined by

ψ(t) = φt(B).

Clearly φ is continuous and so ψ(t) is compact for all t ∈ [0, 1]. Also,

ψ(0) = B and ψ(1) = {x}. It remains to prove that ψ is continuous.

In fact, given ε > 0 there exists δ > 0 such that if |t1 − t2| < δ then

d(φt1(b), φt2(b)) < ε, for every b ∈ B. Hence, if |t1 − t2| < δ then

dH(ψ(t1), ψ(t2)) < ε which proves the continuity of ψ and finishes

the claim.

Given A,B ∈ K(X), we can define a continuous map ξ : [0, 1]→
K(X) such that ξ(0) = A and ξ(1) = B as follows: fix an arbitrary

point x ∈ X and put

ξ(t) = ψB(2t), for t ∈ [0,
1

2
]

and

ξ(t) = ψA(2− 2t), for t ∈ [
1

2
, 1].

Once we have defined this continuous map, it can be easily seen that

there is an ε-chain joining A and B, for every ε > 0.

Corollary 5.5. Let (X, g) be a complete Riemannian manifold. Let

d be the metric induced on X. Suppose that w is a weakly hyperbolic

IFS on (X, d). Then F has an attractor K that is also a compact

invariant set.

Proof. Fix a point x ∈ X. Take B ∈ K(X). For any b ∈ B, consider

a geodesic γb : [0, 1] → X joining b and x. By a reparametrization,

we can assume that the domain of every γb is the unity interval.

Since geodesics vary smoothly, the set ψ(t) = {γb(t); b ∈ B} is a

compact set and we have a continuous map ψ : [0, 1] → K(X) with

ψ(0) = B and ψ(1) = {x}. The rest of the proof is analogous to

that of the preceding corollary.
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5.2 Proof of Theorem 5

Here we give a result about invariant measures on the complete set-

ting. Our arguments for this require a stronger form the ε-chainable

property, which nevertheless is satisfied by our previous examples.

Definition 5.6. Given a number ε > 0, we say that a metric spaceX

is uniformly ε-chainable on balls if for every ball B(a, r) ⊂ X there

exists an integer k = k(a, r, ε) such that for every x, y ∈ B(a, r)

there exists an ε-chain, with at most k elements, joinning x and y.

Remark 5.7. From the proofs of Corollary5.4 and 5.5 one sees that

every normed vector space and every complete manifold are examples

of uniformly ε-chainable metric spaces on balls, for every ε > 0.

Proof of Theorem 5. To prove that there exists a unique invariant

measure ν ∈ M(X) such that supp(ν) ⊂ K, the arguments are the

same used in the proof of Theorem 2 and then we only recall the main

steps. In fact, since K is a compact invariant set then wλ(K) ⊂ K

for each λ ∈ Λ and then we can work with w|K : Λ ×K −→ K. If

µ ∈ M(X) is such that supp(µ) ⊂ K then it is obvious from the

invariance of K that supp(Tp(µ)) ⊂ K and then the map Tp|K :

M(K) −→M(K) is well defined.

1. The first step: For each a ∈ K, the sequence of measures

{T np (δa)} is convergent on the weak∗ topology (or Hutchinson

metric) in M(K).

2. The second step: For each µ ∈ M(K) and a ∈ K, the se-

quences {T np (δa)} and {T np (µ)} has the same limit on the weak∗

topology (or Hutchinson metric).

3. The third step: The transfer operator Tp is continuous on the

weak∗ topology(or Hutchinson metric) in K.

4. The last step: If ν denotes the measure given by first step then

supp(ν) = K.
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It follows from the steps above that the measure ν is the only

invariant measure for w such that supp(ν) ⊂ K and in fact supp(ν) =

K.

To prove the last statement we proceed as follows.

Let µ ∈ M(X) be a probability measure with compact support.

We want to show that

H(T np (µ), T np (ν))→ 0, when n→∞.

Since for any point a ∈ K, T np (δa) → ν, when n → ∞, in the

Hutchinson topology, it suffices to prove that

H(T np (µ), T np (δa))→ 0, when n→∞.

Indeed, given f ∈ Lip1(X;R), since∫
X

fdT np (µ) =

∫
X

∫
Λn

f ◦ Γ(σ, n, x)dpndµ

and∫
X

fdT np (δa) =

∫
Λn

f ◦ Γ(σ, n, a)dpn =

∫
X

∫
Λn

f ◦ Γ(σ, n, a)dpndµ,

we have that ∣∣∣∣∫
X

fdT np (µ)−
∫
X

fdT np (δa)

∣∣∣∣
≤

∫
X

∫
Λn

|f ◦ Γ(σ, n, x)− f ◦ Γ(σ, n, a)dpndµ

≤
∫
X

∫
Λn

d(Γ(σ, n, x),Γ(σ, n, a))dpndµ,

and thus

H(T np (µ), T np (δa)) ≤
∫
X

ξndµ, (14)

where ξn(x) =
∫

Λn d(Γ(σ, n, x),Γ(σ, n, a))dpn.

33



Now, take r > 0 such that supp(µ) ⊂ B(a, r). Then,
∫
X
ξndµ =∫

B(a,r)
ξndµ. We claim that ξn → 0 uniformly in B(a, r). Indeed,

take δ > 0. Since X is uniformly η-chainable on B(a, r), there exists

an integer k = k(a, r, η) > 0 such that for every x ∈ B(a, r) there

exists an η-chain x0 = x, ..., xn = a, with at most k elements. By

weak hyperbolicity, there exists n0 = n0( δ
k
) > 0 such that n ≥ n0

implies that

d(Γ(σ, n, x),Γ(σ, n, y)) ≤ δ

k
,

for every σ ∈ Ω and for every pair x, y ∈ X with d(x, y) < η.

Therefore, if n ≥ n0 we have that

d(Γ(σ, n, x),Γ(σ, n, a))

≤
n∑
j=0

d(Γ(σ, n, xj),Γ(σ, n, xj+1))

≤
n∑
j=0

δ

k
< δ,

for every σ ∈ Ω, and it follows that∫
Λn

d(Γ(σ, n, x),Γ(σ, n, a))dpn < δ,

for every x ∈ B(a, r). This proves our claim.

By claim and inequality (14) we conclude that

H(T np (µ), T np (δa))→ 0,

finishing the proof.

6 Drawing the Attractor

Here we take inspiration from [4] to give a result about how to vi-

sualize the attractor through orbits of the IFS instead of computing
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the full Hutchinson-Barnsley operator. The result we shall prove is

closely related with the so-called chaos game, which is studied in [4]

for IFS with finite parameter space.

For the convenience of the reader, let us recall some definitions

given in the introduction.

Definition 6.1. An orbit of the IFS starting at a point x ∈ X is a

sequence {xk}∞k=0 ⊂ X such that x0 = x, xk+1 = wλk(xk), for some

sequence {λk}∞k=1 ∈ Ω in the parameter space.

Definition 6.2. Given an IFS w : Λ×X → X with attractor A, we

say that an orbit starting at x draws the attractor if

A = lim
k→∞
{xn}∞n=k, in the Hausdorff metric.

Given an IFS w : Λ ×X → X with attractor A (with basin U)

and a point x ∈ X we shall denote by A(x) ⊂ Ω the set formed

by the sequences {λk}∞k=1 such that the correspondent orbit x0 = x,

xk = wλk(xk−1) draws the attractor.

Our goal is to prove that there exists a “large” set of orbits which

draws the attractor of the IFS. More precisely, consider a probability

measure m in the space Ω. We would like to say that for every

x ∈ X, the set A(x) has full measure. In [4] the authors consider,

for a parameter space Λ = {1, ..., N}, a probability measure m over

Ω such that there exists a ∈ (0, 1/N ] such that the set

{σ ∈ Ω;∀ n, j there exists a probability at least a that σn = j}

has total probability. For instance, the Bernoulli measures in Ω are

an example of such measures. In our case, we consider measures in

the parameter space with a uniform lower bound for the size of balls.

Definition 6.3. We say that a probability p ∈ P(Λ) is fair if there

exists a positive function f : (0,+∞)→ (0, 1] such that

p (B(λ, δ)) ≥ f(δ), for every λ ∈ Λ.
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There are plenty of examples of fair measures, such as the Lebesgue

measure in Rn and the Haar measure of a Lie group. We will use

P = pN, as before.

Recall that a metric space is said to be proper if every closed ball

is compact. With these notations, Theorem 6 restates as follows.

Theorem 6.4. Let X be a proper complete metric space, and w :

Λ × X → X a continuous IFS. Suppose that w has an attractor

A with local basin of attraction U . Then, for every point x ∈ U ,

P (A(x)) = 1.

We remark that the class of probabilities used in [4] seems to

be more general than those we consider here, but we don’t have

any definitive assertion about this. Before proving Theorem 6.4 we

prepare some lemmas. The first one is quite elementary and we left

its proof to the reader.

Lemma 6.5. Let X be a complete metric space and C ⊂ X compact.

Then X is proper if and only if B(C, r) is compact for every r > 0

From now on, we assume that we are under the assumptions of

Theorem 6.4. Note that, since F is continuous (see Lemma 2.6),

we have that A = F(A). The next lemma provides some (uniform)

control for the speed of convergence of the iterates Fk({x}) to the

attractor, but for points x close to the attractor. This control will be

one of the key points to prove Theorem 6.4. This lemma was proved

in [4] for Λ := {1, ..., N}. The proof is the same, and we give it here

just for the sake of completeness.

Lemma 6.6. Let w : Λ ×X → X be a continuous IFS of a proper

complete metric space X and compact parameter space Λ. Suppose

that w has a local attractor A with local basin U . Then for any ε > 0

there exists an integer N = N(ε) such that for any x ∈ (B(A, ε))∩U
there is an integer m = m(x, ε) < N such that

dH (A,Fm({x})) < ε

4
.
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Proof. Without loss of generality we assume that B(A, ε) ⊂ U . If

x ∈ B(A, ε) then, there exists an integer m = m(x, ε) ≥ 0 such that

dH (A,Fm({x})) < ε

8
,

by definition of an atractor. Since F is continuous, there exists

rx > 0 such that for every y ∈ B(x, rx) we have

dH (Fm({x},Fm({y})) < ε

8
,

and thus dH (A,Fm({y})) < ε
4
, for every y ∈ B(x, rx). Since X is

proper, B(A, ε) is compact and so there is a finite set {x1, ..., xn}
such that

B(A, ε) ⊂
n⋃
i=1

B(xi, rxi).

Let N = max{m(xi, ε); i = 1, ..., n}+1. Then, for every x ∈ B(A, ε),

there is i ∈ {1, ..., n} such that x ∈ B(xi, rxi) and therefore

dH (A,Fm({x})) < ε

4
,

with m = m(xi, ε) < N . This proves the lemma.

Now, we will use continuity of the IFS w to control orbits of

nearby points. The main issue here is that this can be done uniformly

in B(A, ε) due to compactness.

Lemma 6.7. Let w : Λ ×X → X be a continuous IFS of a proper

complete metric space X and compact parameter space Λ. Suppose

that w has an attractor A with local basin U . For every ε > 0, and

every integer N > 0, there exists δ = δ(ε,N) such that for every

m < N , if x ∈ B(A, ε) and d(σi, λi) < δ in Λ, i = 1, ...,m then

d (wλm ◦ ... ◦ wλ1(x), wσm(x) ◦ ... ◦ wσ1(x)) <
ε

4
.

37



Proof. Fix ε > 0. The proof goes by induction on N . Since B(A, ε)

is compact, the case N = 1 follows by uniform continuity. Suppose

that the the lemma holds for N , and let us prove that it also holds

for N + 1. Again, since Y = ∪Nn=0Fn(B(A, ε)) is a compact metric

space, w restricted to this set is uniformly continuous. Hence, there

exists δ1 = δ1(ε,N) > 0 such that if λN , σN ∈ Λ and a, b ∈ Y with

d(λN , σN) < δ1 in Λ and d (a, b) < δ1 in Y , then

d(wσN (a), wλN (b)) < ε.

By the induction hypothesis, there exists δ2 = δ2(N, ε) such that if

d(λi, σi) < δ2 for every i = 1, ..., N − 1, then

d
(
wλN−1

◦ ... ◦ wλ1(x), wσN−1
◦ ... ◦ wσ1(x)

)
< δ1.

Therefore, if δ = min{δ1, δ2} and d(λi, σi) < δ for every i = 1, ..., N ,

it follows that

d (wλN ◦ ... ◦ wλ1(x), wσN ◦ ... ◦ wσ1(x)) < ε,

and thus the case N + 1 is true. This completes the proof.

The next lemma reduces the proof of Theorem 6.4 to a proof of

a simpler statement.

Lemma 6.8. Fix a point x ∈ X. Suppose that the following property

holds

• for each ε > 0 there exists Kε > 0 such that for every L ≥
Kε one has a set BL ⊂ Ω with P(BL) = 1, and such that

if σ ∈ BL and if xk = wσk(xk−1) is the σ-orbit of x then

dH(A, {xk}k≥L) < ε.

Then, there exists B ⊂ Ω ∩ A(x) with P(B) = 1.

Proof. Let Bε = ∩L≥KεBL. Clearly we have Bε ⊂ Ω, with P(Bε) = 1.

Moreover, for every x-orbit {xk+1 = wσk(xk)}, generated by some
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sequence σ = (σk) ∈ Bε satisfies dH(A, {xk}k≥L) < ε, for every

L ≥ Kε. Now, we take εn = 1
n

and define B = ∩nBεn . Obviously,

P(B) = 1. Moreover, it is easy to see that B ⊂ A(x). Indeed,

take σ ∈ B and consider {xk} the orbit of x generated by σ. For

any ε > 0 we can take a large n with εn < ε. Since σ ∈ Bεn ,

we have that L ≥ Kεn implies dH(A, {xk}k≥L) < εn < ε. Thus,

A = limL→∞{xk}k≥L, wich proves that B ⊂ A(x). This establishes

the lemma.

Now, we give the proof of Theorem 6.4.

Proof of Theorem 6.4. We shall apply Lemma 6.8. So, let us fix

ε > 0 and exhibit the integer Kε. By definition of an attractor,

there exists Kε such that k ≥ Kε implies that

dH(Fk({x}), A) < ε,

in particular, given any sequence {λk}∞k=1 ∈ Ω, the correspondent

orbit satisfies

xk ∈ Fk({x}) ⊂ B(A, ε),

for every k ≥ Kε. Take L ≥ Kε and let us construct the set BL.

The key observation is that for any point a in B(A, ε), we can

find a finite sequence of parameters that “corrects” the orbit of a,

making it visit every portion of A.

To be precise, consider a set {a1, ..., al} ⊂ A such that A ⊂
∪lj=1B(aj,

ε
4
). Observe that if a set R ⊂ B(A, ε) has non-empty

intersection with every ball B(aj,
ε
2
) then dH(A,R) < ε. In virtue of

this, we say that a finite word {σ1, ..., σn} ⊂ Λ corrects a point a if

there exists n1, . . . , nl ⊂ {1, ..., n} such that

wσnj
◦ · · · ◦ wσ1(a) ∈ B(aj,

ε

2
).

Now, observe that Lemma 6.6 implies that for each a ∈ B(A, ε) there

is a finite word λ1, ..., λm, such that

wλm ◦ · · · ◦ wλ1(a) ∈ B(a1,
ε

4
),
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and the length m of this word is bounded by some constant N =

N(ε). Applying the same reasoning with wλm ◦ · · · ◦ wλ1(a) in the

place of a, we find a second finite word, with the same bound on

its length, so that the orbit of a under this two blocks of words

now visits both balls B(a1,
ε
4
) and B(a2,

ε
4
). Continuing in this way

we can find a finite correcting word with length at most lN , which

means that the orbit of a under this word visits every ball B(aj,
ε
4
).

Also, by Lemma 6.7 there exists δ = δ(ε,N) such that for every

finite word with the same length of this correcting word and δ-close

to it, the correspondent orbit of a visits every ball B(aj,
ε
2
).

Since p is a fair measure, we have that the P-measure of the set

C0 = {σ ∈ Ω; σL+1, ..., σL+lN corrects xL}

is at least f(δ)lN . By the same reason, the measure of each set

Cj =
{
σ ∈ Ω; σL+jlN+1, ..., σL+(j+1)lN corrects xL+jlN

}
is at least f(δ)lN . Moreover, since this sets are independent events,

it follows that

p(
∞⋂
j=0

(Ω− Cj)) ≤ p(
t−1⋂
j=0

(Ω− Cj)) ≤ (1− f(δ)lN)t.

Therefore, p(∪jCj) = 1.

By construction of the sets Cj, for every σ ∈ ∪jCj the correspon-

dent orbit satisfies

A ⊂ B ({xk}k≥L, ε) ,

and since L ≥ Kε we also have that {xk}k≥L ⊂ B(A, ε). Thus

dH(A, {xk}k≥L) < ε.

Therefore, putting BL = ∪jCj the result is proved.
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