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1. Introduction

One of the paradigms of dynamical systems in the last decades has been the
Palis program [16], which aims to describe the behaviour of every element in a
large subset (open and dense, residual etc...) of the space dynamical systems,
mainly diffeomorphisms and vector fields endowed with the Cr topology, r ≥ 0.

Within the approaches to understand a dynamical system the statistical descrip-
tion of its orbits, that is the accumulation set of the sequence of measures

1

n

n−1∑
l=0

δf l(x),

where δy stands for the the Dirac mass concentrated in y, plays a major role. For
instance, it is a conjecture of Palis [16] that densely in the space of Cr diffeomor-
phisms of a closed manifold M , every element displays a finite number invariant
probability measures which capture the statistics of Lebesgue almost every orbit.

Moreover, this statistical description, through the works of Sinai, Ruelle and
Bowen, was one of the most important achievements in the theory of Axiom A
diffeomorphisms. They established, for every C2 hyperbolic attractor, the existence
of a probability measure fully supported in the attractor which disintegrates in an
absolutely continuous manner with respect to the volume along unstable manifolds.
This property, together with the hyperbolicity, implies that the measure captures
the statistics of almost every orbit in the basin of attraction. This type of measure
is nowadays called SRB. See for instance [6] and [22].

In contrast to the SRB measures, which are characterized by a strong and rich
geometrical property, that requires the existence of unstable manifolds, we have the
Dirac mass concentrated at attractive fixed (or periodic) points. The paradigmatic
example being the north-south dynamics in the sphere, in which the sink captures
all the future dynamics, from both the topological and the statistical points of
views. Moreover, this dynamics is structurally stable and thus it persists by small
perturbations.
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However, there are several examples of non-attractive fixed points which captures
almost all the statistical behaviour. In the paper [11] Hu and Young construct a dif-
feomorphism of T2 having a physical measure, with full statistical basin, supported
in a fixed point which is not a sink (it has one contracting direction and a parabolic
“almost unstable” direction). The example is even topologically conjugated to a
linear Anosov map. A more simple construction presenting the same phenomenon
is the figure-eight attractor of Bowen (see the introduction of [12]), where the fixed
point is a saddle whose stable and unstable manifolds form a double connection.

Another construction was given by Saghin, Sun and Vargas [19] and Saghin
and Vargas [20]. They built several types of transitive flows with Dirac physical
measures, which in particular are not attractive fixed points. It is worth to remark
that all their examples present some type of saddle connection. An even more
surprising example comes from interval dynamics. Hofbauer and Keller showed the
existence of quadratic maps with a Dirac physical measure at an unstable fixed
point. Again, it is worth to remark that within quadratic maps this phenomenon
has zero Lebesgue measure. We mention also the work Colli and Vargas [8]. Using
a Newhouse toy model they build a hyperbolic saddle type fixed point which is a
statistical attractor whose basin has non-empty interior. Although in this case the
basin is not full, it captures the statistics of every point in some wondering domain.

All these examples share an interesting feature: they may be complicated from
the topological point of view, but from the statistical point of view they are com-
pletely trivial. The asymptotic statistical behaviour of Lebesgue almost every orbit
is captured by a fixed point, which in fact is the sole statistical attractor of the
dynamics.

Nonetheless, each one of them present some clearly non-generic mechanism. It
is then natural to ask: is it possible to find a locally residual set of diffeomorphisms
presenting a statistical attractor which is a hyperbolic saddle type fixed point?

In this note, we give a partial negative answer which includes the case where the
basin is full.

Theorem A. Let f be a C1 generic diffeomorphism. Assume that there exists
σ ∈ Fix(f) such that δσ is a physical measure with dense statistical basin. Then σ
is a sink.

As an immediate corollary, we obtain that, apart from sinks, there is no locally
generic example of a fixed point which is a statistical attractor with full basin.

Corollary 1.1. Let f be a C1 generic diffeomorphism. Assume that there exists
σ ∈ Fix(f) such that δσ is a physical measure with full statistical basin. Then σ is
a sink.

Let us briefly comment on why we obtain only a partial answer. Our method
of proof involves the existence of a Lyapunov stable set containing the saddle,
inside which we can perform an entropy estimation. For this we use the theorems
[14] and [4], which require obtaining a residual set of points in the manifold which
accumulates in the saddle. For obtaining this set, we use our denseness assumption.
It goes without saying that it would be very nice to obtain a full answer. However,
this would require strong improvements of our techniques.

This note is structured in the following way. In Section 2 we fix notations and
give precise definitions of the objects appearing in this work. In Section 3 we
derive some consequences of the existence of a statistical attractor which is a fixed
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point (this uses an interesting, although elementary, result contained in [1]). In
Section 4 we collect some C1 generic theorems and in Section 5 we give the proof
of Theorem A.
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2. Notations and definitions

Let M be a closed manifold of dimension d. We denote by Diff1(M) the space
of diffeomorphisms over M , endowed with the C1 topology. Given f ∈ Diff1(M)
and x ∈M , the orbit of x is the set O(x) = {fn(x);n ∈ Z}.

We denote by Fix(f) the set of fixed points of f . Recall that a periodic point is
an element p ∈ Fix(fn), for some integer n > 0. The smallest of such n is called
the period of p, and is denoted by π(p).

We denote by m the normalised Lebesgue measure of M .

2.1. The weak star topology. P(M) denotes the set of probability measures, en-
dowed with the weak-star topology. Recall that, by compactness of M , we can give
a metric generating this topology in the following manner. Fix {ϕn}n∈N a count-
able dense subset of C0

1 (M), the space of continuous functions over M bounded by
1. Then, given µ, ν ∈ P(M), putting

d(µ, ν) :=

∞∑
n=1

2−n
∣∣∣∣∫ ϕndµ−

∫
ϕndν

∣∣∣∣
defines a metric which gives the weak star topology. We denote by Pf (M) the subset

of P(M) formed by measures which are invariant under the element f ∈ Diff1(M).

2.2. Asymptotic measures. In this paper any convergence of probability mea-
sures will be with respect to the weak star topology.

Given x ∈ M , consider the probability measures µk(x) := 1
n

∑k−1
l=0 δf l(x), where

δy is the Dirac mass concentrated in the point y. An asymptotic measure of x
is an accumulation point of the sequence µk(x). We denote by M(x) the set of
asymptotic measures of x.

Consider now an invariant probability measure µ ∈ Pf (M). The statistical basin
of µ is the set

B(µ) = {x ∈M ;M(x) = {µ}} .
We say that µ is a physical measure if m(B(µ)) > 0.

2.3. Lyapunov exponents. For x ∈ M and v ∈ TxM \ {0}, the Lyapunov expo-
nent of f ∈ Diff1(M) at x in the direction of v is

λ(x, v) := lim
n→∞

1

n
log ‖Dfn(x)v‖,

whenever the limit exists. By Oseledets’ theorem, given µ ∈ Pf (M) there exists
a full measure set, called the set of regular points, and measurable functions χ1 ≤
... ≤ χd : M → R, such that given a regular point x ∈M , for every v ∈ TxM \ {0}
there exists i such that

χi(x) = λ(x, v).
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In the particular case µ = δσ, for some σ ∈ Fix(f), the Lyapunov exponents are
given by the logarithms of the modulus of the eigenvalues of Df(σ). For details,
see [13]

2.4. Homoclinic classes and dominated splittings. Given a compact Λ ⊂M ,
invariant under f ∈ Diff1(M), we say that Λ admits a dominated splitting if there
exists a decomposition of the tangent bundle TΛM = E ⊕ F , which is invariant
under the derivative Df , and numbers C > 0, 0 < λ < 1 such that for every x ∈ Λ
and n > 0 one has

‖Dfn(x)|E‖‖Df−n(fn(x))|F ‖ ≤ Cλn.

In particular, given a hyperbolic periodic point p (i.e no eigenvalue of Dfπ(p)(p)
have modulus 1) its orbit admits a dominated splitting Es⊕Eu. The stable manifold
theorem [17] gives submanifolds W s(p) and Wu(p), which are tangent to Es and

Eu, respectively, at p. We denote W a(O(p)) = ∪π(p)−1
l=0 W a(f l(p)), a = s, u.

Given two hyperbolic periodic points p and q we say that they are homoclinically
related if W s(O(p)) t Wu(O(q)) 6= ∅ and Wu(O(p)) t W s(O(q)) 6= ∅. The
homoclinic class of a periodic point p, denoted by H(p), is the closure of the set of
periodic points q, homoclinically related with p.

We say that a hyperbolic saddle type periodic p is dissipative if |detDfπ(p)(p)| <
1.

2.5. Lyapunov stable sets. A compact Λ ⊂M , invariant under f ∈ Diff1(M), is
said to be Lyapunov stable if for every neighbourhood U of Λ it is possible to find
a neighbourhood V of Λ such that if x ∈ V ∩ U then fn(x) ∈ U , for every n > 1.

3. Dirac physical measures

In this section we give two consequences of the existence of a Dirac physical
measure.

Proposition 3.1. For every f ∈ Diff1(M) and every σ ∈ Fix(f), if δσ is a physical
measure then |det(Df(σ))| ≤ 1.

The proof of this proposition needs a result contained in Araújo’s thesis [1]. We
state and prove this result here for the sake of completeness. Take a real number
δ > 0 and consider the set Λ(δ, f) of points x ∈M for which there exists a positive
integer N such that n ≥ N implies |detDfn(x)| < (1 + δ)n. The result of Araújo’s
thesis is the following (see also Lemma 2 in [2] for a flow version):

Lemma 3.2. For every δ > 0 one has

(1) m (Λ(δ, f)) = 1.
(2) if x ∈ Λ(δ, f) and µ ∈M(x) then

∫
log |detDf |dµ ≤ δ

Proof. For each positive integer n consider the set

Γn = {x ∈M ; |detDfn(x)| ≥ (1 + δ)n} .

Since fn is a diffeomorphism, one can apply the change of variable formula to the
unity constant function and obtain

1 =

∫
M

dm =

∫
M

|detDfn|dm ≥
∫

Γn

|detDfn(x)|dm ≥ (1 + δ)nm (Γn) ,
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thus

m (Γn) ≤ 1

(1 + δ)n
.

Since, by definition, Λ(δ, f) = ∪N∈N∩n≥N (M\Γn), Borel-Cantelli’s theorem implies
that m (Λ(δ, f)) = 1.

Now, pick a point x ∈ Λ(δ, f) and a measure µ ∈ M(x). This means that there

exists a sequence of positive integers ni → +∞ such that µ = limi→∞
1
ni

∑ni−1
l=0 δf l(x).

As x ∈ Λ(δ, f), for i sufficiently large we have that

1

ni

ni−1∑
l=0

log |detDf(f l(x))| = 1

ni
log |detDfni(x)| < log(1 + δ),

and therefore ∫
log |detDf |dµ ≤ log(1 + δ) ≤ δ.

�

Proof of Proposition 3.1. Consider Λ(f) := ∩n∈NΛ(1/n, f). By Lemma 3.2 one has
that m(Λ(f)) = 1 and if x ∈ Λ(f) and µ ∈ M(x) then

∫
log |detDf |dµ ≤ 1/n, for

every n ∈ N.
Now, since B(δσ) has positive measure, there exists a point x ∈ B(δσ) ∩ Λ(f).

This implies that

log |detDf(σ)| =
∫

log |detDf |dδσ ≤ 0,

which concludes the proof. �

Below, we use our denseness assumption to construct a residual set of points
which accumulates in the fixed point. The key is the following general statement.

Lemma 3.3. Let f : M → M be a continuous map. Assume that there exists
µ ∈ Pf (M) such that B(µ) is dense. Then, {x ∈M ;µ ∈M(x)} is a residual subset
of M .

Proof. Notice that {x ∈M ;µ ∈M(x)} can be written as the countable intersection⋂
n∈N

⋂
m∈N

⋃
k≥m

B(n, k),

where B(n, k) =
{
x ∈M ; d(µk(x), µ) < 1

n

}
. Moreover, one easily sees that each

B(n, k) is an open subset of M . Since, by assumption, the set {x ∈M ;µ ∈M(x)}
already contains a dense subset of M , the result follows. �

As an immediate consequence we get.

Corollary 3.4. For every f ∈ Diff1(M) and every σ ∈ Fix(f), if B(δσ) is dense
then there exists a residual set Lf ⊂M such that if x ∈ Lf then σ ∈ ω(x).

4. C1 generic results

In this section we collect some C1-generic results that we shall combine together
to obtain our main theorem.
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4.1. Dominated splitting far from sinks. The lemma below is a consequence
of arguments of R. Potrie [18], applied here in a simpler situation.

Lemma 4.1. There exists a residual subset R1 ⊂ Diff1(M) such that if f ∈ R1

has no sinks then for every dissipative σ ∈ Fix(f) its homoclinic class H(σ) admits
a dominated splitting E ⊕ F such that det(Df(σ)|F ) > 1.

4.1.1. Tools. The lemma below says that one can change, by a small perturbation,
one of the eigenvalues of the derivative at a periodic point while keeping the others
fixed. It will be used several times in the sequel. Since it is an easy application of
Frank’s lemma [9], we omit the proof.

Lemma 4.2. Let p be a periodic point of f ∈ Diff1(M). Take U a neighbourhood
of f and U a neighbourhood of O(p). Consider

0 < λ1 < ... < λk

the set of modulus of eigenvalues of Dfπ(p)(p). Then, there exists ε > 0 such
that for every i = 1, ..., k and every λ∗ ∈ (λi − ε, λi + ε) there exists g ∈ U , which
coincides with f over (M \U)∪O(p) and such that the set of modulus of eigenvalues
of Dgπ(p)(p) is

λ1 < ... < λi−1 < λ∗ < λi+1 < ... < λk.

The second tool we shall use enables us to obtain the dominated splitting when
we are far from sinks. It is Theorem 2 in [3].

Theorem 4.3 (Bochi-Bonatti). Let f be a diffeomorphism of a d-dimensional
compact manifold, and γn = O(pn) be a sequence of periodic orbits whose periods
π(pn) tends to infinity and that converges in the Hausdorff topology to a compact
set Λ. Let

E1 ⊕ ...⊕ Em
be the finest dominated splitting over Λ. Then, given ε > 0 there is N such that
for every n ≥ N there exists a ε-C1-perturbation g of f with support in an arbi-
trarily small neighbourhood of γn, preserving the orbit γn, and such that, for every
i = 1, ...,m, all the eigenvalues of Dgπ(pn)(pn) in the subspace Ei are equal to
dim(Ei)

√
det(Dfπ(pn)(pn)|Ei).

4.1.2. Proof of Lemma 4.1. By a classical Baire argument1, since the map f 7→
Sink(f) is lower semicontinuous, there exists a residual subset R1 ⊂ Diff1(M) such
that if f ∈ R1 has no sinks then there exists a neighbourhood U of f in Diff1(M)
such that no diffeomorphism g ∈ U has sinks.

We fix f ∈ R1 and let σ ∈ Fix(f) be a dissipative saddle. Then det(Df(σ)) < 1.
If H(σ) = {σ} the existence of a dominated splitting is automatic, therefore we can
assume that H(σ) 6= {σ}.

Assume by contradiction that H(σ) has no dominated splitting. We shall apply
Theorem 4.3 to find a contradiction.

Claim 1. There exists a sequence γn = O(pn) of periodic orbits of f having the
following properties

• each pn is homoclinically related with σ
• γn converges in the Hausdorff topology to H(σ)

1See for instance [21].
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• π(pn)→∞
• det(Dfπ(pn)(pn)) < 1.

Proof. This result is contained in Lemma 1.10 of [5]. We give a brief sketch of the
proof for the comfort of the reader. Using the classical Birkhoff-Smale theorem
[15] and the definition of H(p) we create a hyperbolic set (a horseshoe) inside
H(p) and ε-dense in it. By the shadowing lemma and by hyperbolicity we can
create a periodic orbit ε-dense in this horseshoe, and homoclinically related with
σ. Moreover, these periodic orbits can be chosen so that they shadow σ during
an arbitrarily large proportion of their orbit, implying that they are dissipative.
Letting ε tend to zero, one creates the desired sequence. It remains to notice that,
as H(σ) 6= {σ}, the periods of these orbits are unbounded. �

Since H(σ) has no dominated splitting, a direct application of Theorem 4.3
implies that there is g ∈ U with a sink, a contradiction. Thus, there exists a
non-trivial finest dominated splitting E1 ⊕ ...⊕ Em ⊕ F over H(σ).

Claim 2. det(Df(σ)|F ) > 1.

Proof. Assume once more by contradiction that det(Df(σ)|F ) ≤ 1. As before, we
get a sequence of periodic orbits γn = O(pn), converging to H(σ) and such that
det(Dfπ(pn)(pn)|F ) < 1 + ε, with ε > 0 as small as we please. Applying Theorem
4.3 once more, we obtain g close to f , such that γn, with n large, is a periodic orbit
for g, and all the eigenvalues of Dgπ(pn)(pn) in the subspace F are bounded by 1+ε.
Since E1 ⊕ ... ⊕ Em ⊕ F is a dominated splitting, all the remaining eigenvalues of
Dgπ(pn)(pn) are bounded by 1 + ε. Thus, applying Lemma 4.2, by another small
perturbation we can create a sink, for some g ∈ U , a contradiction. �

The proof is now complete. �

4.2. Existence of Lyapunov stable sets. The result below is our source of Lya-
punov stability. See [14] and Corollaire 1.8 in [4].

Theorem 4.4. There exists a residual set R2 ⊂ Diff1(M) such that for every
f ∈ R2, for a residual set Rf ⊂M , if x ∈ Rf then ω(x) is a Lyapunov stable set.
Moreover, if a homoclinic class intersects ω(x), then they must coincide

4.3. C1 generic Dirac physical measures. Finally, we state a C1-generic con-
sequence of Proposition 3.1

Lemma 4.5. There exists an open and dense set A ⊂ Diff1(M) such that for every
f ∈ A and every σ ∈ Fix(f), if δσ is a physical measure then |det(Df(σ))| < 1.

Proof. Notice that the set

{f ∈ Diff1(M); for every hyperbolic fixed point p, |det(Df(p))| 6= 1}

is open. Using Lemma 4.2 one easily gets that it is dense. The conclusion follows
now from Proposition 3.1. �

5. Entropy estimation and Proof of Theorem A

When we have a Lyapunov stable set with a dominated splitting, we can perform
an entropy estimation using the result below. See [7].
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Theorem 5.1 (Catsigeras-Cerminara-Enrich). Let Λ be a Lyapunov stable set for
f ∈ Diff1(M). Suppose that there exists a dominated splitting TΛM = E ⊕ F .
Then, for every fisical measure µ supported in Λ one has

hµ(f) ≥
∫ dimF∑

l=1

χl(x)dµ.

Proof of Theorem A. Recall Kupka-Smale’s theorem [17] which asserts that there
exists a residual RKS ⊂ Diff1(M) such that for every f ∈ RKS , every periodic
orbit is hyperbolic. Pick f ∈ RKS ∩ R1 ∩ R2 ∩ A, let σ ∈ Fix(f) be such that

B(δσ) = M and m(B(δσ)) > 0.
Assume by contradiction that σ is not a sink. Then it is a hyperbolic saddle

since it obviously cannot be a source and f ∈ RKS .
Moreover, f has no sinks, since otherwise B(δσ) would intersect the basin of such

a sink, which is impossible.
By Lemma 4.5, |detDf(σ)| < 1, and thus Lemma 4.1 implies that the homoclinic

class H(σ) admits a dominated splitting E ⊕ F such that det(Df(σ)|F ) > 1.
Also, by Corollary 3.4 and Theorem 4.4 we obtain a point y ∈ M such that

ω(y) is a Lyapunov stable set and σ ∈ ω(y). As a consequence H(σ) ∩ ω(y) 6= ∅.
Applying the second part of Theorem 4.4, we conclude that the homoclinic class
H(σ) is a Lyapunov stable set.

Finally, since δσ is a physical measure supported in H(σ), we can apply Theorem
5.1 and conclude that

hδσ (f) ≥
dimF∑
i=1

log λi,

where the numbers λi are the modulus of the eigenvalues of Df(σ) in the subspace
F . Since det(Df(σ)|F ) > 1, one obtains that hδσ (f) > 0, which is absurd. This
completes the proof. �
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