Álgebra Linear Aula Teórica 3

Bruno Santiago

28 de setembro de 2020

Aplicações da norma euclideana

 Nesta aula: aplicações dos conceitos vistos até aqui em estatística, finanças e ciência de dados (vídeo separado)

Aplicações da norma euclideana

- Nesta aula: aplicações dos conceitos vistos até aqui em estatística, finanças e ciência de dados (vídeo separado)
- Por trás de tudo isso estão os conceito da semana passada

Aplicações da norma euclideana

- Nesta aula: aplicações dos conceitos vistos até aqui em estatística, finanças e ciência de dados (vídeo separado)
- Por trás de tudo isso estão os conceito da semana passada
- Produto interno, norma e ângulo.

 $\langle, \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

$$\langle, \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

$$x=(1,3.5,-7.8,9.57)$$
 e $y=(1,2,3,45)$ em \mathbb{R}^4 então $\langle x,y\rangle=1+(3.5\times 2)-(7.8\times 3)+(9.57\times 45)=415.25$

$$\langle, \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

Exemplo

$$x=(1,3.5,-7.8,9.57)$$
 e $y=(1,2,3,45)$ em \mathbb{R}^4 então $\langle x,y\rangle=1+(3.5\times 2)-(7.8\times 3)+(9.57\times 45)=415.25$

Serve para fazer geometria; calculamos comprimento com ele: $||x|| = \sqrt{\langle x, y \rangle}$;

$$\langle, \rangle: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

$$x=(1,3.5,-7.8,9.57)$$
 e $y=(1,2,3,45)$ em \mathbb{R}^4 então $\langle x,y\rangle=1+(3.5\times 2)-(7.8\times 3)+(9.57\times 45)=415.25$

- Serve para fazer geometria; calculamos comprimento com ele: $||x|| = \sqrt{\langle x, y \rangle}$;
- ▶ calculamos ângulo $\angle(x,y) = \arccos(\frac{\langle x,y \rangle}{\|x\|\|\|y\|});$

$$\langle, \rangle: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

$$x=(1,3.5,-7.8,9.57)$$
 e $y=(1,2,3,45)$ em \mathbb{R}^4 então $\langle x,y\rangle=1+(3.5\times 2)-(7.8\times 3)+(9.57\times 45)=415.25$

- Serve para fazer geometria; calculamos comprimento com ele: $||x|| = \sqrt{\langle x, y \rangle}$;
- ▶ calculamos ângulo $\angle(x,y) = \arccos\left(\frac{\langle x,y \rangle}{\|x\|\|y\|}\right)$;
- No exemplo: $\angle(x,y) \simeq 44.4$.
- Em particular, sempre que $\langle x, y \rangle = 0$ o ângulo entre eles é de 90° ;

$$\langle, \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 definida por $(x,y) \mapsto \sum_{\ell=1}^d x_\ell y_\ell$

$$x=(1,3.5,-7.8,9.57)$$
 e $y=(1,2,3,45)$ em \mathbb{R}^4 então $\langle x,y\rangle=1+(3.5\times 2)-(7.8\times 3)+(9.57\times 45)=415.25$

- Serve para fazer geometria; calculamos comprimento com ele: $||x|| = \sqrt{\langle x, y \rangle}$;
- ► calculamos ângulo $\angle(x,y) = \arccos\left(\frac{\langle x,y \rangle}{\|x\|\|\|y\|}\right)$;
- No exemplo: $\angle(x,y) \simeq 44.4$.
- Em particular, sempre que $\langle x, y \rangle = 0$ o ângulo entre eles é de 90°;
- Os vetores canônicos $e_1=(1,0,\ldots,0),\ldots,e_d=(0,\ldots,0,1)$ têm todos norma igual a 1 e são ortogonais entre si.

 Aplicações em ciência de dados e em finanças "pedem" uma forma "estatística" de medir comprimento e ângulo;

- Aplicações em ciência de dados e em finanças "pedem" uma forma "estatística" de medir comprimento e ângulo;
- o produto interno euclideano é ruim para isso

- Aplicações em ciência de dados e em finanças "pedem" uma forma "estatística" de medir comprimento e ângulo;
- o produto interno euclideano é ruim para isso

Exemplo

Considere o vetor $\mathbb{I}=(1,1,1)\in\mathbb{R}^3$. Então $\|\mathbb{I}\|=\sqrt{1^2+1^2+1^2}=\sqrt{3}$.

- Aplicações em ciência de dados e em finanças "pedem" uma forma "estatística" de medir comprimento e ângulo;
- o produto interno euclideano é ruim para isso

Exemplo

Considere o vetor $\mathbb{I}=(1,1,1)\in\mathbb{R}^3$. Então $\|\mathbb{I}\|=\sqrt{1^2+1^2+1^2}=\sqrt{3}$. Mais geralmente, se $\mathbb{I}=(1,...,1)\in\mathbb{R}^d$ é o vetor de uns do \mathbb{R}^d então $\|\mathbb{I}\|=\sqrt{1^2+..+1^2}=\sqrt{d}$.

- Aplicações em ciência de dados e em finanças "pedem" uma forma "estatística" de medir comprimento e ângulo;
- o produto interno euclideano é ruim para isso

```
Considere o vetor \mathbb{I}=(1,1,1)\in\mathbb{R}^3. Então \|\mathbb{I}\|=\sqrt{1^2+1^2+1^2}=\sqrt{3}. Mais geralmente, se \mathbb{I}=(1,...,1)\in\mathbb{R}^d é o vetor de uns do \mathbb{R}^d então \|\mathbb{I}\|=\sqrt{1^2+..+1^2}=\sqrt{d}. No entanto, do ponto de vista estatístico (1,1,1) e (1,1,1,1,1,1) tem o mesmo comportamento!
```

Definição

O $produto\ interno\ rms\ em\ \mathbb{R}^d$ é a função

$$\begin{aligned} R: \mathbb{R}^d \times \mathbb{R}^d & \to & \mathbb{R} \\ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d & \mapsto & R(x, y) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell y_\ell, \end{aligned}$$

Definição

O $produto\ interno\ rms\ em\ \mathbb{R}^d$ é a função

$$\begin{aligned} R: \mathbb{R}^d \times \mathbb{R}^d & \to & \mathbb{R} \\ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d & \mapsto & R(x, y) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell y_\ell, \end{aligned}$$

Exercício: verifique que R é um produto interno

Definição

O $produto\ interno\ rms\ em\ \mathbb{R}^d$ é a função

$$R: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
$$(x, y) \in \mathbb{R}^d \times \mathbb{R}^d \mapsto R(x, y) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_{\ell} y_{\ell},$$

- Exercício: verifique que R é um produto interno
- ► Na verdade, *R* é um caso particular dos produtos internos euclideanos *com pesos*

Exemplos

1. Se x=(2,2,1) e y=(1,1,2) em \mathbb{R}^3 então $R(x,y)=\frac{1}{3}\langle x,y\rangle=\frac{1}{3}6$ enquanto que $\langle x,y\rangle=6$.

- 1. Se x = (2, 2, 1) e y = (1, 1, 2) em \mathbb{R}^3 então $R(x, y) = \frac{1}{3} \langle x, y \rangle = \frac{1}{3} 6$ enquanto que $\langle x, y \rangle = 6$.
- 2. Se x=(2,2,2,1) e y=(1,1,1,2) então $\langle x,y\rangle=8$ e R(x,y)=2.

- 1. Se x = (2, 2, 1) e y = (1, 1, 2) em \mathbb{R}^3 então $R(x, y) = \frac{1}{3} \langle x, y \rangle = \frac{1}{3} 6$ enquanto que $\langle x, y \rangle = 6$.
- 2. Se x=(2,2,2,1) e y=(1,1,1,2) então $\langle x,y\rangle=8$ e R(x,y)=2.
- 3. Se x=(2,2,2,1) e y=(1,1,1,1,2) em \mathbb{R}^5 então $\langle x,y\rangle=10$ e R(x,y)=2.

O valor rms de um vetor em \mathbb{R}^d

Definição

Seja $x \in \mathbb{R}^d$ o valor rms de x é a norma de x advinda do produto interno rms. Em outras palavras,

$$rms(x) \stackrel{\text{def.}}{=} \sqrt{R(x,x)}.$$

1. Seja
$$x=(1,-1,-1,1)$$
 em \mathbb{R}^4 . Então,
$$\operatorname{rms}(x)=\sqrt{\frac{1}{4}\big(1^2+(-1)^2+1^2+(-1)^2\big)}=1.$$

O valor rms de um vetor em \mathbb{R}^d

Definição

Seja $x \in \mathbb{R}^d$ o valor rms de x é a norma de x advinda do produto interno rms. Em outras palavras,

$$\mathsf{rms}(x) \stackrel{\text{\tiny def.}}{=} \sqrt{R(x,x)}.$$

- 1. Seja x = (1, -1, -1, 1) em \mathbb{R}^4 . Então, $\operatorname{rms}(x) = \sqrt{\frac{1}{4}(1^2 + (-1)^2 + 1^2 + (-1)^2)} = 1.$
- 2. Seja $e_{100}=(0,0,\ldots,0,1)\in\mathbb{R}^9$. Então, $\operatorname{rms}(e_{100})=\sqrt{\frac{1}{100}\big(0^2+\ldots+0^2+1^2\big)}=0.1.$ Note que $\|e_{100}\|=1.$

A desigualdade de Chebyshev

Proposição

Seja $x\in\mathbb{R}^d$ e seja $\varepsilon>0$. Suponha que n das d entradas de x tenham valor absoluto maior do que ε . Ou seja, existe um subconjunto $K\subset\{1,...,d\}$, com n elementos, tal que que se $j\in K$ então $|x_j|\geq \varepsilon$. Então vale a seguinte desigualdade

$$\frac{n}{d} \le \left(\frac{\mathsf{rms}(x)}{\varepsilon}\right)^2.$$

A desigualdade de Chebyshev

Proposição

Seja $x\in\mathbb{R}^d$ e seja $\varepsilon>0$. Suponha que n das d entradas de x tenham valor absoluto maior do que ε . Ou seja, existe um subconjunto $K\subset\{1,...,d\}$, com n elementos, tal que que se $j\in K$ então $|x_j|\geq \varepsilon$. Então vale a seguinte desigualdade

$$\frac{n}{d} \le \left(\frac{\mathsf{rms}(x)}{\varepsilon}\right)^2.$$

Se
$$\varepsilon = 10 \, \mathrm{rms}(x)$$
 então $\frac{n}{d} \leq \left(\frac{\mathrm{rms}(x)}{10 \, \mathrm{rms}(x)}\right)^2 = \frac{1}{100}$

A desigualdade de Chebyshev

Proposição

Seja $x\in\mathbb{R}^d$ e seja $\varepsilon>0$. Suponha que n das d entradas de x tenham valor absoluto maior do que ε . Ou seja, existe um subconjunto $K\subset\{1,...,d\}$, com n elementos, tal que que se $j\in K$ então $|x_j|\geq \varepsilon$. Então vale a seguinte desigualdade

$$\frac{n}{d} \le \left(\frac{\mathsf{rms}(x)}{\varepsilon}\right)^2.$$

Exemplo

Se $\varepsilon = 10 \, \mathrm{rms}(x)$ então $\frac{n}{d} \leq \left(\frac{\mathrm{rms}(x)}{10 \, \mathrm{rms}(x)}\right)^2 = \frac{1}{100} \implies$ menos de 1% das entradas de x podem exceder o valor rms de x em 10 vezes

Medindo distâncias em \mathbb{R}^d :

▶ Distância euclideana: $d(x,y) = ||x - y||, \forall x, y \in \mathbb{R}^d$

Medindo distâncias em \mathbb{R}^d :

- ▶ Distância euclideana: $d(x,y) = ||x y||, \forall x, y \in \mathbb{R}^d$
- ▶ Distância rms: $d_{rms}(x, y) = rms(x y)$

Definição

Dado $x \in \mathbb{R}^d$ a *média* de x é o número $\mu(x) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell$.

Definição

Dado $x \in \mathbb{R}^d$ a *média* de x é o número $\mu(x) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell$.

Exemplos

1. Se $\mathbb{I}=(1,...,1)\in\mathbb{R}^d$ então $\mu(\mathbb{I})=1$ para todo $d\geq 1$.

Definição

Dado $x \in \mathbb{R}^d$ a *média* de x é o número $\mu(x) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell$.

- 1. Se $\mathbb{I}=(1,...,1)\in\mathbb{R}^d$ então $\mu(\mathbb{I})=1$ para todo $d\geq 1$.
- 2. Se x = (1, -3, 7) então $\mu(x) = \frac{1}{3}(1 3 + 7) = \frac{5}{3}$.

Definição

Dado $x \in \mathbb{R}^d$ a *média* de x é o número $\mu(x) \stackrel{\text{def.}}{=} \frac{1}{d} \sum_{\ell=1}^d x_\ell$.

Exemplos

- 1. Se $\mathbb{I}=(1,...,1)\in\mathbb{R}^d$ então $\mu(\mathbb{I})=1$ para todo $d\geq 1$.
- 2. Se x = (1, -3, 7) então $\mu(x) = \frac{1}{3}(1 3 + 7) = \frac{5}{3}$.

Proposição

A função $\mu: \mathbb{R}^d \to \mathbb{R}$ é linear, i.e. $\mu(\alpha x + \beta y) = \alpha \mu(x) + \beta \mu(y)$.

Versão centrada

Seja $x \in \mathbb{R}^d$. A versão centrada de x é o vetor $x^c \stackrel{\text{def.}}{=} x - \mu(x)\mathbb{I}$.

Versão centrada

Seja $x \in \mathbb{R}^d$. A versão centrada de x é o vetor $x^c \stackrel{\text{def.}}{=} x - \mu(x)\mathbb{I}$.

Exemplos

1. Seja x=(1,3). Então $\mu(x)=2$ e $x^c=(-1,1)$

Versão centrada

Seja $x \in \mathbb{R}^d$. A versão centrada de x é o vetor $x^c \stackrel{\text{def.}}{=} x - \mu(x)\mathbb{I}$.

- 1. Seja x=(1,3). Então $\mu(x)=2$ e $x^c=(-1,1)$
- 2. Seja x=(0,-9,9,8,6) Então $\mu(x)=2.8$ e $x^c=(-2.8,-11.8,6.2,5.2,3.2)$

Versão centrada

Seja $x \in \mathbb{R}^d$. A versão centrada de x é o vetor $x^c \stackrel{\text{def.}}{=} x - \mu(x)\mathbb{I}$.

Exemplos

- 1. Seja x=(1,3). Então $\mu(x)=2$ e $x^c=(-1,1)$
- 2. Seja x=(0,-9,9,8,6) Então $\mu(x)=2.8$ e $x^c=(-2.8,-11.8,6.2,5.2,3.2)$

Proposição

$$\mu(x^c) = 0, \ \forall \ x \in \mathbb{R}^d.$$

O desvio padrão

Definição

Seja $x \in \mathbb{R}^d$. O desvio padrão de x é

$$\sigma(x) \stackrel{\text{def.}}{=} \operatorname{rms}(x^c) = \frac{\sqrt{\sum_{\ell=1}^d (x_\ell - \mu(x))^2}}{\sqrt{d}}.$$

1. Se
$$x=(1,1,4)$$
 em \mathbb{R}^3 então $\mu(x)=2$ e $x^c=(-1,-1,2)$. Portanto $\sigma(x)=\mathrm{rms}(x^c)=\sqrt{\frac{1}{3}\big((-1)^2+(-1)^2+2^2\big)}=\sqrt{2}$.

O desvio padrão

Definição

Seja $x \in \mathbb{R}^d$. O desvio padrão de x é $\sigma(x) \stackrel{\text{def.}}{=} \text{rms}(x^c) = \frac{\sqrt{\sum_{\ell=1}^d (x_\ell - \mu(x))^2}}{\sqrt{d}}$.

$$\sigma(x) = \min(x) = \frac{1}{\sqrt{d}}$$

- 1. Se x=(1,1,4) em \mathbb{R}^3 então $\mu(x)=2$ e $x^c=(-1,-1,2)$. Portanto $\sigma(x)=\mathrm{rms}(x^c)=\sqrt{\frac{1}{3}\big((-1)^2+(-1)^2+2^2\big)}=\sqrt{2}$.
- 2. Se x = (0, -9, 9, 8, 6) em \mathbb{R}^5 então $\sigma(x) \simeq 6.67$

Coeficiente de correlação

Definição

Sejam $x,y\in\mathbb{R}^d$. O coeficiente de correlação entre x e y é o número

$$\rho(x,y) \stackrel{\text{def.}}{=} \frac{\langle x^c, y^c \rangle}{\|x^c\| \|y^c\|}.$$

Coeficiente de correlação

Definição

Sejam $x,y\in\mathbb{R}^d$. O coeficiente de correlação entre x e y é o número

$$\rho(x,y) \stackrel{\text{def.}}{=} \frac{\langle x^c, y^c \rangle}{\|x^c\| \|y^c\|}.$$

Exemplos

1. Se x=(1,-1,1) e y=(0,1,0) então $\mu(x)=1/3$, $\mu(y)=1/3$, $x^c\simeq(0.66,-1.33,0.66)$, $y^c=(-0.33,0.66,-0.33)$. Logo $\rho(x,y)\simeq-1$. Observe que $-2y^c=x^c$.

Fórmula do desvio padrão da soma

Lema

Sejam $x,y\in\mathbb{R}^d$. Então

$$\sigma(x+y) = \sqrt{\sigma(x)^2 + 2\rho(x,y)\sigma(x)\sigma(y) + \sigma(y)^2}.$$

Suponhamos que $x,y\in\mathbb{R}^d$ representem as séries temporais de retornos de dois portfólios de investimento de tal forma que $\mu(x)=\mu(y)=m\in\mathbb{R}$ (os investimentos têm o mesmo retorno) e $\sigma(x)=\sigma(y)=r\in\mathbb{R}$ (os investimentos têm o mesmo risco).

Suponhamos que $x,y\in\mathbb{R}^d$ representem as séries temporais de retornos de dois portfólios de investimento de tal forma que $\mu(x)=\mu(y)=m\in\mathbb{R}$ (os investimentos têm o mesmo retorno) e $\sigma(x)=\sigma(y)=r\in\mathbb{R}$ (os investimentos têm o mesmo risco). Considere

$$z=\frac{x}{2}+\frac{y}{2}.$$

Seja
$$c = \rho(x, y)$$

Suponhamos que $x,y\in\mathbb{R}^d$ representem as séries temporais de retornos de dois portfólios de investimento de tal forma que $\mu(x)=\mu(y)=m\in\mathbb{R}$ (os investimentos têm o mesmo retorno) e $\sigma(x)=\sigma(y)=r\in\mathbb{R}$ (os investimentos têm o mesmo risco). Considere

$$z = \frac{x}{2} + \frac{y}{2}.$$

Seja $c = \rho(x, y)$ Então

$$\sigma(z) = r \frac{\sqrt{2}}{2} \sqrt{1+c}.$$
 (1)

Suponhamos que $x,y\in\mathbb{R}^d$ representem as séries temporais de retornos de dois portfólios de investimento de tal forma que $\mu(x)=\mu(y)=m\in\mathbb{R}$ (os investimentos têm o mesmo retorno) e $\sigma(x)=\sigma(y)=r\in\mathbb{R}$ (os investimentos têm o mesmo risco). Considere

$$z = \frac{x}{2} + \frac{y}{2}.$$

Seja $c = \rho(x, y)$ Então

$$\sigma(z) = r \frac{\sqrt{2}}{2} \sqrt{1+c}.$$
 (1)

 \implies Se c=0 então $\sigma(z)\simeq 0.707 r$.

Suponhamos que $x,y\in\mathbb{R}^d$ representem as séries temporais de retornos de dois portfólios de investimento de tal forma que $\mu(x)=\mu(y)=m\in\mathbb{R}$ (os investimentos têm o mesmo retorno) e $\sigma(x)=\sigma(y)=r\in\mathbb{R}$ (os investimentos têm o mesmo risco). Considere

$$z = \frac{x}{2} + \frac{y}{2}.$$

Seja $c = \rho(x, y)$ Então

$$\sigma(z) = r \frac{\sqrt{2}}{2} \sqrt{1+c}.$$
 (1)

 \implies Se c=0 então $\sigma(z)\simeq 0.707r$.

⇒ O risco fica 30% menor!

