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RESUMO

A unicidade ergódica do fluxo horocíclico no fibrado tangente unitário de uma superfície
compacta com curvatura negativa é conhecida desde Furstenberg [Fur73]. Esta dissertação
de mestrado, sob a orientação dos professores Bruno Santiago (UFF) e Sébastien Alvarez
(Udelar), apresenta uma prova alternativa desse resultado, que combina um teorema devido
a Coudène [Cou09] sobre teoria ergódica em espaços métricos, e um resultado em dinâmica
hiperbólica, devido a Plante [Pla72], que caracteriza quando a folheação instável forte de um
fluxo Anosov transitivo é minimal.



ABSTRACT

The unique ergodicity of the horocycle flow in the unit tangent bundle of a compact surface
with constant negative curvature is known since Furstenberg [Fur73]. This master’s thesis, under
the supervision of professors Bruno Santiago (UFF) and Sébastien Alvarez (Udelar), presents
an alternative proof of this result, which combines a theorem due to Coudène [Cou09] on ergodic
theory on metric spaces and a result from hyperbolic dynamics, due to Plante [Pla72], that
characterizes when the strong unstable foliation of a transitive Anosov flow is minimal.
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3.5 The open sets Ũ and Ṽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 A small portion of the manifold Σ̃, for small ε > 0. . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The product neighborhood N(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The points u and v on L and x on L \ L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Refining the choice of u and v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Fyz(W
ss(u)) 6= W ss (Fyz (u)), i.e., non-jointly integrable foliations. . . . . . . . . . . . . 63

4.5 u ∈ Fss(v) ∩K ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 The failure of jointly integrability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Applying the flow to Fyz(W uu
loc (y)) for small enough t. . . . . . . . . . . . . . . . . . . . . 65

5.1 A product neighborhood with transverse leafs from Fu and Fss. . . . . . . . . . . . . . . . 67

5.2 The neighborhood Vx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Local coordinates for x ∈ Vx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 z ∈M \ Vx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 z ∈ Vx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Applying g−t for t ≥ 0 to W u
ε (hs(x)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 The space Es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 The local product structure guarantees the existence of the points [x, y] = W s
loc(x) ∩W u

loc(y)

and [y, x] = W s
loc(y) ∩W u

loc(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 If a leaf of Fu intersects the ball Br(p), it crosses a product neighborhood N(p). . . . . . . 89

A.4 Applying Lemma 26 to obtain a disc Dx ⊂W u(x) transverse to W s
loc(p). . . . . . . . . . . 89

11



Contents

List of Figures 11

1 Introduction 13

2 Some preliminaries in Dynamics and in Ergodic Theory 17
2.1 Dynamics and foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Topological Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Anosov and geodesic flows 33
3.1 Anosov Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Geodesic Flow on T 1M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Minimality of invariant manifolds 53
4.1 Density of (weak) invariant manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Minimality of the strong unstable foliation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Proofs of the lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Horocycle flows are minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Unique ergodicity of the horocycle Flow 67
5.1 Proving the three lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Horocycle flows are uniquely ergodic . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Anosov diffeomorphisms: transitivity, minimality and topological mixing 79
A.1 Anosov diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Some properties of Anosov diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . 84

A.3 Minimal Anosov diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Approximation by rationals 91

Bibliography 97

12



CHAPTER 1

Introduction

Dynamical Systems seek the understanding of the structure of the orbits of systems as it evolves with

time. A very classical area of research within Dynamical System focus on the study of systems where

such evolution in time occur over a continuous parameter. The idea of such a system is formalized in the

concept of a flow. Precisely, a flow is a map ϕ : R×M→M such that ϕ(0, x) = x for all x ∈M and

such that ϕ(s, ϕ(t, x)) = ϕ(s+ t, x) for all x ∈M and s, t ∈ R. Given a flow ϕ onM, one can wonder

what it does for each point x ∈M by studying its orbit:

Oϕ(x) := {ϕ(t, x) ∈M | t ∈ R}.

Unfortunately, the problem of studying orbits of flows is too abstract to ask for precise answers. Hence,

it is useful to require more hypotheses to the problem, for example on the setM or on the flow ϕ. One

such possible fashion is to demand geometric properties onM and that is what we do most of the times

here.

Given a closed and connected Riemannian manifold (M, 〈·, ·〉) and a point x ∈M , there exists a flow

defined on the unit tangent bundle T 1M of M , that comes from its geometry, called the geodesic flow.

This flow consists in, initiating at the point x, to travel trough the geodesic that leaves x with a prescribed

direction v ∈ TxM . With those restrictions, i.e.,M = T 1M being the unit tangent bundle of a closed

and connected Riemannian manifold and g the geodesic flow, what can we say about the orbit Og(x, v) of

a point (x, v) ∈ T 1M?

As we will see in Chapter 3, if M has constant negative seccional curvature, the geodesic flow has

very remarkable characteristic: hyperbolicity. In particular, the tangent bundle TT 1M admits an invariant

splitting

TT 1M = Es ⊕ 〈X〉 ⊕ Eu,

where X is the vector field tangent to the flow and the subbundle Es contracts vectors exponentially fast

and the subbundle Eu expands vectors also exponentially fast.

Those spaces are integrable, in the sense that for each p = (x, v) ∈ T 1M there are submanifolds

W s(p) and W u(p) on T 1M extremely related with the dynamics presented by the geodesic flow, such

that Tx(W s(p)) = Eu(p) and Tx(W u(p)) = Eu(p), for each p ∈ T 1M . Whenever M is a surface (of

genus at least 2 for it to have a metric of negative curvature), the subbundles Es and Eu have dimension

1, and also the submanifolds W s and W u.

Since those submanifolds are 1-dimensional we can parametrize them by what is called the horocycle

flow: hs : T 1M → T 1M . What is the dynamics of this flow? Does it interact with the geodesic flow on

13



T 1M? In fact, in the setting of constant negative curvature, one has:

gt ◦ hs = hse−t ◦ gt, (1.1)

for every t, s ∈ R.

gt gt

p hs(p)

gt(p) gt(hs(p)) = hse−t(gt(p))

s

se−t

Figure 1.1: Relation between hs and gt for t < 0.

In particular, equation 1.1 states that gt moves points in the orbit of hs by a exponential rate in time.

Precisely, if we fix p ∈ T 1M , s ∈ R and t < 0, the geodesic flow gt send a segment of orbit hs of size s

in time to a segment of size se−t.

The fact that the horocycle flow parametrizes the stable/unstable manifold of the geodesic flow and

from this very particular equation between them suggests that it may be interesting to study the dynamics

of hs. In general, this flow may not have the hyperbolic properties that one may be used to. For example,

horocycle flows on compact negatively curved surfaces are examples what are called parabolic flows1.

Therefore, one may turn its attention to the statistical properties of it. The main result of this sort presented

here is that the horocycle flow on a compact surface with constant negative curvature is uniquely ergodic.

The text is structured as follows: in Chapter 2 we give a brief introduction on topics in Dynamical

Systems and in Ergodic Theory that will be needed throughout the text. In Chapter 3 we take a quick

glance at the background needed on both Anosov and geodesic flows. In particular, we present the concept

of Anosov flow, and exhibit two examples of it: the suspension flow of an Anosov diffeomorphism and the

geodesic flow on a compact negatively curved manifold. Moreover, using tools from symplectic geometry,

we prove that these two examples are distinct, meaning that a geodesic flow can never be the suspension

of a diffeomorphism on a compact manifold.

Next, in Chapter 4, we establish a topological property of horocycles flows on compact negatively

curved surfaces: in this setting, the horocycle flow is a minimal flow, meaning that all its orbits are dense.

Instead of giving the classical proof by Hedlund [Hed36], we make a broad walk and present a proof of a

more general result by Plante [Pla72], and that uses the hyperbolicity of the geodesic flow:

Theorem (Plante). The weak and strong stable (unstable) foliations of a transitive Anosov flow on a

closed and connected Riemannian manifold are always minimal, unless the flow is the suspension of an

Anosov diffeomorphism.

1For a brief description of parabolic flows, see [Ulc21].
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Since we will have proved in Chapter 3 that geodesic flows can never be suspensions, we obtain the

minimality of the horocycle flow.

Finally, in Chapter 5 we prove the unique ergodicity of the horocycle flow. This result was first

obtained by Furstenberg [Fur73]. However, we present here a proof given by Yves Coudène in [Cou09].

Coudène’s theorem deals with measures that decomposes on special way: we say a measure µ has a

local product structure if, in a small enough foliated chart V = L× I ⊆M , with L ∈ F , the measure

µ can be disintegrated, up to renormalization of the measures, as∫
V
f dµ =

∫
I

∫
L
f(x, s) dνs ds,

for all f ∈ C0(M). Here, ds is the Lebesgue measure on I and the νs are probability measures on L that

vary measurably on s.

With this definition we can state Coudène’s theorem:

Theorem (Coudène). Let gt : M →M be an Anosov flow on a compact Riemannian manifold such that

the stable foliation W s(x) has constant dimension equal 1. Suppose, moreover, that the stable foliation

W s is parametrized by a continuous flow hs : M → M , that the volume measure µ on M is invariant

under both flows gt and hs, that µ has local product structure and that

gt ◦ hs = hse−t ◦ gt,

for every t, s ∈ R.

Then, if hs has a dense orbit, it is uniquely ergodic.

Besides being a short and beautiful proof of a classical result, this theorem has a very notable feature:

the way it is stated, the proof still works in general settings, such as the partially hyperbolic one.
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CHAPTER 2

Some preliminaries in Dynamics and
in Ergodic Theory

This master thesis is about a special class of flows. In this chapter we give a brief introduction on the

Dynamics and the Ergodic Theory of flows with some regularity.

Throughout the text, (M, g) will be closed (compact without boundary) and connected Riemannian

manifold. As presented at the Introduction, a flow ϕ : R×M →M is a map satisfying:

• ϕ(0, x) = x for all x ∈M ;

• ϕ(s, ϕ(t, x)) = ϕ(s+ t, x) for all x ∈M and s, t ∈ R.

Unless we explicitly say otherwise, we will always assume the flow ϕ to be of class Cr, with r ≥ 1. In

particular, for each t ∈ R, the map ϕt : M →M defined by ϕt(x) = ϕ(t, x), always is of class Cr.

The existence of flows on manifolds are intimately related to the existence of vector fields, as next

example tell us.

Example 1 (Flows and vector fields). Consider a vector field X ∈ Xr(M). Then, the Fundamental

Theorem of ODE’s guarantees that, through each point p ∈M , the initial value problemx′(t) = X(x(t))

x(0) = p

admits a unique solution γp : R→M . Moreover, the map ϕ : R×M →M defined by (t, p) 7→ γp(t) is

a flow of class Cr such that
∂ϕ(t, p)

∂t
= X(ϕ(t, p)).

Reciprocally, to each flow ϕt on a manifold M , there is a vector field X that it integrates: one just

has to define X(p) = X(ϕ0(p)) = ∂ϕ(0,p)
∂t , for each p ∈M .

A general statement, as well as a proof, of the Fundamental Theorem of ODE’s can be found in

[Lee13], as Theorem 9.12, p. 212. Also, the fact that flows on compact manifolds are complete, i.e., are

well-defined over R, is proved in the same text: see Corollary 9.17, p. 216.

We now give a concrete example of a flow on a compact manifold. To do so, we explicit the

construction of the quotient Tn = Rn/Zn. Define, on Rn, the following equivalence relation: we say two
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points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn are equivalent if and only if their difference is an

integer vector. More explicitly,

(x1, . . . , xn) ∼ (y1, . . . , yn) ⇐⇒ (x1 − y1, . . . , xn − yn) ∈ Zn.

We denote by [x] or [(x1, . . . , xn)] the equivalence class of the point x = (x1, . . . , xn). Finally, we define

Td to be the quotient of Rn by this equivalence relation: Tn = Rn/Zn.

Note that Tn is an abelian group with the operation:

[(x1, . . . , xn)] + [(y1, . . . , yn)] = [(x1 + y1, . . . , xn + yn)].

Example 2 (Linear flow on Tn). Let θ = (θ1, . . . , θn) ∈ Rn be a fixed vector and let Tn = Rn/Zn be

the n−dimensional torus endowed with the volume measure µ. Define the linear flow ϕt on Tn in the
direction of θ as the map ϕt : Tn → Tn such that to each [x] = [(x1, . . . , xn)] ∈ Tn associates

ϕt(x) = [x+ tθ].

In this example, the linear flow ϕt is the solution of the following ODE on Tn:

dx

dt
= θ.

As presented in the Introduction, given a flow ϕ on M , we want to know what happens to its orbits:

Oϕ(x) := {ϕ(t, x) ∈M | t ∈ R},

for each x ∈M .

Since we are mainly dealing with invertible systems, it makes sense to brake the orbit of each point

x ∈M into two subsets: the positive semi-orbit and the negative semi-orbit by the flow ϕ. Respectively,

they are defined as follows:

• O+
ϕ (x) := {ϕ(t, x) ∈M | t ≥ 0};

• O−ϕ (x) := {ϕ(t, x) ∈M | t ≤ 0}.

Figure 2.1: The flow ϕt(x) = [x+ tθ] on T2 = R2/Z2.
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With these definitions, Oϕ(x) = O−ϕ (x) ∪ O+
ϕ (x).

If, for a point p ∈M there exists a time T ∈ R such that ϕT (p) = p, we call the point p a periodic
point for ϕ. Also in this setting, and we say the orbit of p is closed and if τ ∈ R is such that ϕτ (p) = p

and for all 0 < t < τ , we have ϕt(p) 6= p, then we say the orbit of p closed of period τ . The set of all

periodic points p for ϕ is denoted by Per (ϕ).

In general, flows can have plenty, few, or even none periodic orbits. Even in the simple setting of

Example 2, the orbits of point through the flow behave very differently depending on the direction vector

θ:

Proposition 1. Consider θ = (θ1, . . . , θn) ∈ Rn. If each θi is rational, say θi = pi
qi

with pi, qi ∈ Z,

qi 6= 0 and gcd (pi, qi) = 1 for each i = 1, . . . , n, then each point x ∈ Tn is periodic.

Proof. Indeed, consider T = lcm (q1, . . . , qn). Then,

ϕT (x) = [x+ Tθ] = [x],

for all x ∈ Tn.

On the opposite direction of the above proposition, if α is a irrational number, then the linear flow

in the direction of θ = (α, 0, . . . , 0) has no periodic points: for each x ∈ Tn, the orbit ϕt(x) remains

in a vertical circle, on which the dynamics is an irrational rotation by α. Hence, this linear flow has no

periodic orbit.

During the text we will focus on two different ways of studying the orbit of point x by a flow ϕ: a

topological and a measure theoretic one. At this point, however, we make a brief detour in order to look at

the orbit of regular flows via foliation theory.

2.1 Dynamics and foliations

This section has as its main objective to define foliations and to present their relation to flows with certain

regularity. In particular, we want to stress out the fact that the orbits of the linear flow on Tn produce

a foliation with several dynamical properties of great interest. Through this Section we follow mainly

[CN13].

Definition 1 (Foliation). Let M be a smooth manifold of dimension m. A Cr foliation of dimension n in

M is a Cr atlas F on M which is maximal with the following properties:

(a) If (U,ϕ) is a chart in F , then ϕ(U) = U1 × U2 ⊂ Rn × Rm−n where U1 and U2 are open discs in

Rn and Rm−n, respectively;

(b) If (U,ϕ) and (V, ψ) are charts in F such that U ∩ V 6= ∅ then the change of coordinates map

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) is of the form

ψ ◦ ϕ−1(x, y) = (h1(x, y), h2(y)),

where h1 and h2 are Cr diffeomorphisms with (x, y) ∈ (U1 ∩ V1)× (U2 ∩ V2).

Whenever M admits such an atlas F , we say that M is foliated by F , or that F is a foliated structure

of dimension n and class Cr on M , and call the charts (U,ϕ) ∈ F foliation charts.
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Example 3. Our first example of foliation is the example o a foliation defined by a submersion.

Let f : M → N , a Cr submersion between manifolds M and N of dimensions m and n, respectively.

Given a point p ∈ M we can use the local form of the submersions to obtain local charts (U,ϕ) on M

and (V, ψ) on N , such that p ∈ U , f(p) ∈ V , ϕ(U) = U1 × U2 ⊆ Rm−n × Rn, and ψ(V ) = V2 ⊃ U2

and the composition ψ ◦ f ◦ ϕ−1 : U1 × U2 → U2 has the form of a projection π2 to second coordinate in

Rm = Rm−n × Rn: ψ ◦ f ◦ ϕ−1(x, y) = y, as shown in Figure 2.2 below.

Figure 2.2: Local form of the submersions.

From that we obtain a Cr−foliation F of dimension n on M : for the foliated charts we choose, for

each point p ∈ M , the chart (U,ϕ) which satisfies the local form of the submersions with some local

chart (V, ψ) over f(p).

To check that F is indeed a foliation we only need to see the condition of compatibility of the charts:

let (U,ϕ) and (Ũ , ϕ̃) be charts in F such that U ∩ V 6= ∅. So we must prove that, on ϕ(U ∩ Ũ), one can

write:

ϕ̃ ◦ ϕ−1(x, y) = (h1(x, y), h2(y)).

In order to do that, pick p ∈ U ∩ Ũ and let (V, ψ) and (Ṽ , ψ̃) be charts on N over f(p) such that, on

ϕ(U ∩ Ũ) and on ϕ̃(U ∩ Ũ) we have:

ψ ◦ f ◦ ϕ−1
∣∣
ϕ(U)

= π2

∣∣
ϕ(U)

(2.1)

and

ψ̃ ◦ f ◦ (ϕ̃)−1
∣∣∣
ϕ̃(Ũ)

= π2

∣∣
ϕ̃(Ũ)

. (2.2)

Therefore, if we write ϕ̃ ◦ ϕ−1 : ϕ
(
U ∩ Ũ

)
→ ϕ̃

(
U ∩ Ũ

)
as

ϕ̃ ◦ ϕ−1(x, y) = (h1(x, y), h2(x, y)),
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we have:

h2(x, y) = π2 ◦ ϕ̃ ◦ ϕ−1(x, y)

= ψ̃ ◦ f ◦ ϕ̃−1 ◦ ϕ̃ ◦ ϕ−1(x, y) (by 2.2)

= ψ̃ ◦ f ◦ ϕ−1(x, y)

= ψ̃ ◦ ψ−1 ◦ ψ ◦ f ◦ ϕ−1(x, y)

= ψ̃ ◦ ψ−1 ◦ π2(x, y) (by 2.1)

= ψ̃ ◦ ψ−1(y),

meaning that we can write h2(x, y) simply as h2(y), as we wished. Hence, (U,ϕ) is a foliated chart of

the foliated structure F of dimension n and class Cr on M .

Definition 2. Given a Cr foliation F of dimension n on a m−dimensional smooth manifold M (where

0 < n < m). Consider a local chart (U,ϕ) ∈ F such that ϕ(U) = U1 × U2 ⊆ Rn × Rm−n. We call the

sets of the form ϕ−1(U1 × {c}), with c ∈ U2, the plaques of U (or of F).

A path of plaques of F is a sequence α1, . . . , αk of plaques of F such that αj ∩ αj+1 6= ∅ for all

j ∈ {1, . . . , k − 1}. Moreover, since we can cover M by plaques of F , we can define the following

equivalence relation on M :

p ∼ q ⇐⇒ there exists a path of plaques α1, . . . , αk with p ∈ α1 and q ∈ αk.

The equivalence classes of the relation ∼ on M are called leaves of the foliation F .

Notice that, given a local chart (U,ϕ) ∈ F such that ϕ(U) = U1 × U2 ⊆ Rn × Rm−n as above, if

we fix a point c ∈ U2, the map ϕ−1
∣∣
U1×{c} : U1 × {c} → U is a Cr embedding. Remembering that U1 is

a open disc, the plaques are path-connected n−dimensional Cr submanifolds of M .

Therefore, if p and q in M are in the same leaf of F , there is a path of plaques connecting the two and,

moreover, there is a continuous path connecting them because αj ∩ αj+1 6= ∅ for all j ∈ {1, . . . , k − 1}
and the plaques are path-connected.

Example 4. In Example 3 the leaves are the connected components of the level sets f−1(c), where c ∈ N .

Example 5. Let f : R3 → R be a submersion defined by

f(x, y, z) = α(x2 + y2) · ez,

where α : R→ R is a C∞ function such that α(1) = 0, α(0) = 1 and if t > 0 then α′ < 0.

Using the construction of the Example 3, let F be the foliation of R3 whose leaves are the connected

components of the submanifolds f−1(c), for c ∈ R.

The leaves of F are of three types, all ruled by the relation with the solid cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1},

in the following way:

(i) the boundary of C, i.e., ∂C = {(x, y, z) ∈ R3 | x2 + y2 = 1} is a leaf of F;
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(ii) outside C, i.e., on the set of points (x, y, z) ∈ R3 such that x2 + y2 > 1, the leafs of F are all

homeomorphic to cylinders;

(iii) finally, in the interior of C, i.e., on the set of points (x, y, z) ∈ R3 such that x2 + y2 < 1,

the leafs of F are all homeomorphic to R2 by a parametrization σ : D2 → R3 from the disk

D2 = {(x, y) ∈ R2 | x2 + y2 < 1} to R3, defined by:

σ(x, y) =

(
x, y, log

(
c

α(x2 + y2)

))
.

Figure 2.3: Example of foliation coming from a submersion.

The next example is the main example of this Section and has a very dynamical nature.

Example 6. Foliations arising from vector fields without singularities.

LetX be aCr (r ≥ 1) vector field without singularities on a compact manifoldM (with dimM = m).

As we have seen in Example 1, associated to X we have a flow ϕ(t, x) such that

X(ϕ(t, x)) =
∂ϕ(t, x)

∂t

for every (t, x) ∈ R×M .

Let i : Bm−1(0)→ M be an embedding of a small m− 1 disk around 0 ∈ Rm, such that i(0) = p,

that is transverse to X everywhere. Since X(p) 6= 0, for ε > 0, the map

Φ: Bm−1(0)× (−ε, ε)→M

defined by

Φ(x, t) = ϕ(t, i(x))

has maximal rank at (0, 0) ∈ Bm−1(0)× (−ε, ε).

By the Inverse Mapping Theorem, there is a neighborhood V ⊂ M around p such that Φ−1
∣∣
V

is a

diffeomorphism between V and a product neighborhood B̃m−1(0)× (−ε′, ε′) ⊆ Bm−1(0)× (−ε, ε) of

(0, 0). This is a local chart for the one dimensional foliation on M defined by the curves t 7→ ϕt(x), the

integral curves of X .

Therefore, from a regular vector X on M , we obtain a one-dimensional foliation F whose leafs are

the integral curves of X .
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Example 7 (Linear flow on Tn). A particular case of the previous example, is the case where M = Tn

and X(x) = θ for all x ∈ Tn, where θ ∈ Rn.

From Example 2, we know that the solutions of the ODE dx
dt = X(x) is ϕt(x) = [x+ tθ]. Hence, in

the particular case of the foliation obtained from X , the leafs are

Lx = {ϕt(x) | t ∈ R}.

In the next section, Section 2.2 we will study the topology of this foliations that arises from a

dynamical systems X as a subset of Tn.

For now, we comment on how we could extend the relation between foliations on manifolds M and

higher dimensional analogues of vector fields.

Definition 3. A field of k−planes on a manifold M is a map P : M → Gk(TM)1 which associates each

point x ∈M a k−dimensional vector subspace P (x) ⊂ TxM . In the particular case of k = 1, we call

the map P a line field.

We say a k−plane field P on M is of class Cr if, for every q ∈ M , there exist k vector fields

X1, . . . , Xk defined in a neighborhood V of q and of class Cr, and such that {X1(x), . . . , Xk(x)} is a

basis for P (x) for every x ∈ V .

Definition 4. Given a k−plane field P on M , we call a submanifold N ⊂ M an integral manifold of
P if TxN = P (x) for every x ∈ N . We say P is integrable if there exists a foliation F such that, for

every point x ∈M there exists a leaf F(x) of F such that Tx (F(x)) = P (x). Moreover, we say that P

is uniquely integrable if the foliation above is unique.

Definition 5. We say a plane field P is completely integrable if, given two vector fields X and Y such

that, for each q ∈M , if X(q) and Y (q) are in P (q), then [X,Y ](q) ∈ P (q), where [·, ·] is the Lie bracket

on M .

Finally, we present a theorem of Frobenius that generalizes to plane fields the existence of tangent

foliations:

Theorem. Let P be a Cr k−plane field (for k ≥ 1) on M . If P is completely integrable, then there exists

a Cr foliation F of dimension k on M such that Tq(F) = P (q) for all q ∈M . Conversely, if F is a Cr

(r ≥ 2) foliation and P is the tangent plane field to F , then P is uniquely integrable.

2.2 Topological Dynamical Systems

In this section we present some facts and definitions, that deal mostly with asymptotic features of orbits

for continuous flows.

Definition 6 (Limit set). The ω−limit set of a point x ∈M is the closed set of limit points of the positive

semi-orbit

ω(x) =
⋂
t≥0

O+
ϕ (ϕt (x)).

1Here Gk(TM) denotes the Grassmannian manifold of k−dimensional subspaces of TM .
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Similarly, we define the α−limit set of a point x ∈ M as the closed set of limit points of the negative

semi-orbit

α(x) =
⋂
t≥0

O−ϕ (ϕ−t (x)).

Finally, we define the limit set of a flow ϕ as the set:

L(ϕ) =
⋃
x∈M

ω(x) ∪ α(x).

Definition 7 (Nonwandering set). A point x ∈M is called nonwandering for a flow ϕt : M →M if for

any open set U containing x, and every T > 0, there is a t > T such that

ϕt(U) ∩ U 6= ∅.

Naturally, a point is called wandering if it is not nonwandering. The set of all nonwandering points for a

flow ϕt is called the nonwandering set and is denoted by Ω(ϕ).

Definition 8 (Transitivity). We say a continuous flow ϕt : M →M is topologically transitive (or simply

transitive) if for every x ∈M its positive orbit by the flow is dense on M , i.e., O+
ϕ (x) = M .

Proposition 2 (Characterization of transitivity). Suppose M to be a compact metric space and ϕt a

continuous flow on M . Then the following conditions are equivalent:

(i) ϕt is transitive (has a dense positive orbit);

(ii) ϕt has a dense orbit;

(iii) for non-empty open sets U, V ⊂M there exists t ∈ R such that ϕt(U) ∩ V 6= ∅;

(iv) for non-empty open sets U, V ⊂M there exists t ≥ 0 such that ϕt(U) ∩ V 6= ∅.

Proof. For a proof see Proposition 1.6.9, p. 80, on [FH19].

Next, we follow [FH19] on the review of the example of the linear flow on Tn to check what are the

conditions on θ that makes ϕt(x) = [x+ tθ] transitive.

Definition 9. We say the components of a vector θ ∈ Tn is rationally independent if k ∈ Zn and

〈k, v〉 = 0 then k = 0.

Proposition 3. A linear flow ϕt(x) = [x+ tθ] on Tn is transitive if, and only if, the components of θ are

rationally independent.

To prove Proposition 3 we need a lemma:

Lemma 1. There is no constant continuous functions f : M → R invariant by a transitive flow.

Proof. Suppose f : M → R is an ϕt−invariant continuous function and let x ∈ M be such that

Oϕ(x) = M .

Since f is ϕt−invariant, there is c ∈ R such that f(Oϕ(x)) = c. Since f is continuous, we can write:

c = f(Oϕ(x)) = f
(
Oϕ(x)

)
= f(M),

i.e., f is constant.
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Proof of Proposition 3. First we show that, if θ is not rationally independent, then ϕt is not transitive.

The idea here is to construct a non-constant invariant function and then use Lemma 1.

Suppose 〈k, θ〉 = 0 and that not all ki’s are zero. Next, consider the function f : Tn → R defined by

f(x) = sin 2π〈k, x〉.

The function is well-defined on Tn by periodicity of sin and is non-constant since rationally independence

implies that not all the ki’s are zero, and then f is not constant. However, it is ϕt−invariant:

f(ϕt(x)) = sin 2π〈k, ϕt(x)〉

= sin 2π〈k, x+ tθ〉

= sin 2π (〈k, x〉+ t〈k, θ〉)

= sin 2π〈k, x〉

= f(x).

Then, f is a ϕt−invariant non-constant continuous function from Tn to R and, hence, ϕt is not transitive.

This proves that: if ϕt is transitive, then the θ components of θ are rationally independent.

To prove the reciprocal, will be proven in Section 2.3, after we introduce the notion of invariant

measure.

Next we present another important concept on topological dynamical systems.

Definition 10 (Minimality). A continuous flow on a compact metric space is called minimal if every orbit

is dense.

As in the case of transitivity, the linear flow provides a variety of examples depending on the choice

of θ:

Proposition 4. A linear flow ϕt(x) = [x+ tθ] on Tn is minimal if, and only if, the components of θ are

rationally independent.

Proof. Of course, if ϕt is minimal, then it is transitive and then the components of θ are rationally

independent.

Reciprocally, suppose rationally independence and consequently transitivity of ϕt. Let x be a point

on Tn such that its orbit is dense: Oϕ(x) = Tn. We claim that, for every other x′ ∈ Tn, we also have

Oϕ(x′) = Tn.

Observe that:

ϕt(x
′) = x′ + tθ

= (x′ − x) + x+ tθ

= (x′ − x) + ϕt(x),

so that Oϕ(x′) = (x′ − x) +Oϕ(x) and then Oϕ(x′) = (x′ − x) +Oϕ(x). Hence, Oϕ(x′) = Tn if, and

only if, Oϕ(x) = Tn. This proves ϕt is minimal.
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2.3 Ergodic Theory

Definition 11. Let (M,B, µ) be a measure space. We say a flow ϕ : R×M →M is measure preserving
if for each t ∈ R:

• ϕt : M →M is a measurable function;

• µ (ϕt(A)) = µ(A) for every measurable set A ∈ B.

Example 8. Consider, on Tn, the Lebesgue probability measure defined as follows. Let Leb be the

Lebesgue measure on Rn, B the Borel σ−algebra, and p = π
∣∣
[0,1]n

: [0, 1]n → Tn be the restriction to

[0, 1]n of the canonical projection of Rn to Tn, i.e., p is the map defined as x 7→ p(x) = [x] for every

x ∈ [0, 1]n.

Call a set B ⊆ Tn measurable on Tn if P−1(B) is measurable, and define the Lebesgue probability
measure on Tn by:

µ(B) = Leb (p−1(B)),

for every measurable set on Tn.

Since the Lebesgue measure Leb on Rn is invariant under translation, this measure µ is invariant

under the linear flow ϕt on Tn in the direction of a vector θ ∈ Rn.

As we will see in more generality in Section 3.2, the invariance of the Lebesgue (volume) measure in

this context is a consequence of the Liouville theorem (see Theorem 1.3.7, p.21 of [VO16]):

Theorem (Liouville). Let ϕt : M → M be the flow associated to a C1 vector field X on M . Then, ϕt
preserves the volume of M if and only if divX = 0.

A consequence of the invariance of the Lebesgue measure on Tn by the linear flow ϕt allow us to

follow [FH19] in the proof of the if part of Proposition 3, i.e.,

Proposition. If the components of θ are rationally independent then ϕt(x) = [x+ tθ] is transitive.

Before proving it we need one more lemma:

Lemma 2. If ϕt is a continuous flow on Tn and every bounded Lebesgue measurable ϕt−invariant

function is constant, then ϕt is transitive.

Proof. Let O be an open ϕt−invariant set then χO its characteristic function is ϕt−invariant. By

hypothesis, χO will be constant for Leb−almost everywhere. Hence, Leb (O) = 0 or Leb (O) =

Leb (Tn) = 1, since:

Leb (O) =

∫
Tn

χO dLeb =

0, if χO(x) = 0 for Leb−a.e. x ∈ Tn

1, if χO(x) = 1 for Leb−a.e. x ∈ Tn
.

In particular, there are no disjoint non-empty ϕt−invariant open sets.

Now, let U and V be non-empty open sets on Tn. Hence, the ϕt−invariant open sets:

Ũ =
⋃
t∈R

ϕt(U)
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and

Ṽ =
⋃
t∈R

ϕt(V )

are not disjoint. In particular, there are t0, s0 ∈ R such that

ϕt0(U) ∩ ϕs0(V ) 6= ∅.

Therefore, ϕt0−s0(U) ∩ V 6= ∅, which proves transitivity of ϕt by Proposition 2.

Proof of Proposition 3 - if part. Suppose ϕt is not transitive. Then, by the previous lemma, there exists a

bounded Lebesgue ϕt−invariant measurable function f : Tn → R that is not constant.

Observe that, being bounded and Lebesgue measurable on Tn, the function f : Tn → R admits a

Fourier expansion, say:

f(x) =
∑
k∈Zn

fk · e2π〈k,x〉.

Since f is ϕt−invariant we have:∑
k∈Zn

fk · e2πi〈k,x〉 = f(x)

= f(ϕt(x))

= f(x+ tθ)

=
∑
k∈Zn

fk · e2πi〈k,x+tθ〉

=
∑
k∈Zn

fk · e(2πi〈k,x〉)+(2πit〈k,θ〉)

=
∑
k∈Zn

fk · e2πi〈k,x〉 · e2πit〈k,θ〉.

Now, since f is not constant, there exists some k ∈ Zn − {0} such that fk 6= 0. By uniqueness of the

Fourier expansion of f , we then have

e2π〈k,x〉 = e2πi〈k,x〉 · e2πit〈k,θ〉,

so that e2πit〈k,θ〉 = 1 for every t ∈ R. So, we must have 〈k, θ〉 = 0. This implies that the components of

θ are not rationally independent.

So we have shown that if ϕt is not transitive, then the components of θ are not rationally independent.

Equivalently, if the components of θ are rationally independent, ϕt is transitive.

After giving the family of examples of flows that arises from C1 vector fields X with ÷X = 0, and

after studying a little the dynamics of the linear flow on Tn, one could ask a more general question: given

a flow on some space, there is some probability measure that is invariant by it. For continuous flows on

metrizable compact spaces, the answer is positive.

Theorem 1 (Krylov-Bogoliouboff). Any continuous flow on a metrizable compact space has an invariant

Borel probability measure.

Proof. See Theorem 3.1.15, p. 161, at [FH19].
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Poincaré Recurrence Theorem and some of its consequences

The study of systems that preserve measures have several consequences on the theory of Dynamical

Systems. One of the most important one due Poincaré:

Theorem 2 (Poincaré Recurrence Theorem). Let ϕ : R ×M → M be a measure preserving flow of a

probability space (M,B, µ). If E ⊆ M is a measurable set with µ(E) > 0 then, for µ−almost every

x ∈ E, there a sequence (tn)n with tn → +∞ such that ϕtn(x) ∈ E for all n ∈ N.

Proof. A proof of Poincaré Recurrence Theorem can be found in several books, such as [FH19] (as

Theorem 3.2.1 in p. 163). For its discrete version, one can look at [VO16] (Theorem 1.2.1, p. 4).

As claimed, Poincaré’s theorem has a very direct consequence on the dynamics of a flow ϕ : R×M →
M on a compact metric space M :

Corollary 1 (Poincaré Recurrence Theorem - topological version). Let M be a compact metric space and

B its Borel σ−algebra. If ϕ : R×M →M is a continuous flow and µ is a ϕ−invariant Borel probability

measure on M , then

µ(Rec(ϕ)) = µ(L(ϕ)) = µ(Ω(ϕ)) = 1.

In particular, µ−almost every point x ∈M is recurrent for ϕ.

Proof. For a proof see [FH19], Corollary 3.2.2, p. 163.

Corollary 2 (Birkhoff Recurrence Theorem). Let M be a compact metric space and ϕ : R×M →M a

continuous flow on M . Then there exists some point x ∈M that is recurrent for ϕ.

Proof. Since ϕ is a continuous flow on a compact metric space, Theorem 1 say that there exists an invariant

Borel probability measure. Now, Corollary 1 guarantees that Rec (ϕ) 6= ∅. Hence, Rec (ϕ) 6= ∅.

Ergodic Theorems

Poincaré Recurrence Theorem guarantees that, given a set of positive measure, almost every point of the

set must return infinitely many times to it. But can we have more information on how it happens? The

ergodic theorems we state next provide a statistical light on this process of recurrence.

Theorem 3 (von Neumann Ergodic Theorem). Let (M,B, µ) be a measure space, ϕt : M → M be a

measure preserving flow and f ∈ L2(µ). Then

lim
T→+∞

∥∥∥∥ 1

T

∫ T

0
f ◦ ϕt dt− Pϕ(f)

∥∥∥∥
2

= 0,

where Pϕ is the projection of f to the subspace of invariant functions by ϕt.

Proof. A proof of this von Neumann ergodic theorem can be found in p. 164 of [FH19] in Theorem

3.2.4.

Since von Neumann ergodic theorem is a statement about ergodic properties of L2−maps, we use this

opportunity to state and prove a lemma about L2−dynamical systems that will be important in Chapter 5:

28



Lemma 3. Let (X, d) be a compact metric space, f : X → X an homeomorphism and µ a probability

on X that is invariant under f . Also, let ψ ∈ L2(µ) and (gk)k a sequence of functions also in L2(µ),

such that

• gk −→
L2

ψ;

• gk ◦ f = gk for all k ∈ N.

Then for µ−almost everywhere we have ψ ◦ f = ψ. In other words: the L2-limit of f−invariant functions

is still f−invariant.

Proof. First we notice that gk ◦ f −→
L2

ψ ◦ f . Indeed, since µ is f−invariant and since gk −→
L2

ψ, we have:

‖ψ ◦ f − gk ◦ f‖22 =

∫
X
|ψ ◦ f − gk ◦ f |2 dµ

=

∫
X
|ψ − gk|2 ◦ f dµ

=

∫
X
|ψ − gk|2 dµ = ‖ψ − gk‖22 −−−−→

k→+∞
0.

So, given ε > 0 we have, for sufficiently large k ∈ N,

‖ψ ◦ f − ψ‖2 ≤ ‖ψ ◦ f − gk ◦ f‖2 + ‖gk ◦ f − gk‖2 + ‖gk − ψ‖2
= ‖ψ ◦ f − gk ◦ f‖2 + 0 + ‖gk − ψ‖2 < 2ε,

because gk is f−invariant for every k ∈ N.

This shows that ‖ψ ◦ f − ψ‖2 = 0. Then, (ψ ◦ f)(x) = ψ(x) for µ−a.e. x ∈ X or, equivalently, that

ψ is f−invariant.

Theorem 4 (Birkhoff Ergodic Theorem for flows). Let (M,B, µ) be a probability space, ϕt : M →M a

µ−preserving flow on M , and f ∈ L1(µ). Then,

f̃(x) = lim
t→+∞

1

t

∫ t

0
f ◦ ϕs(x) ds,

for µ−almost every x ∈M .

Proof. For a proof of Birkhoff Ergodic Theorem for flows see Theorem 3.2.17, p.169, in [FH19].

Unique ergodicity

In this subsection we define the concept of unique ergodicity and give examples and conditions related to

it. The notion of uniquely ergodic systems will be the theme of the main theorem presented in this text.

Definition 12. We say a continuous flow ϕ : R×M → M on a metrizable compact space is uniquely
ergodic if it has exactly one invariant Borel probability measure.

As in the case of topological dynamics, the linear flow ϕt on Tn provides several scenarios for unique

ergodicity. Indeed, if θ = (θ1, . . . , θn) has rational components, then ϕt(x) = [x+ tθ] is periodic and

then the Dirac measure supported on the periodic orbit O, i.e.,

δO(x) =

1, if x ∈ O

0, if x /∈ O
,
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is an invariant measure distinct from Leb on Tn. Hence, in this case, ϕt is not uniquely ergodic.

However, if the components of θ are rationally independent, we obtain unique ergodicity for the

linear flow ϕt(x) = [x+ tθ]. To see that, we first remember a very important theorem about existence of

measures invariant under translations on the abelian group (Tn,+):

Theorem (Haar). About the group (Tn,+), it holds:

(i) There exists some Borel measure µG on G that is invariant under all right-translations, finite on

compact sets and positive on open sets;

(ii) If η is a measure invariant under all right-translations and finite on compact sets then η = cµG for

some c > 0.

Proof. For a proof of this theorem for a more general case where instead of (Tn,+) we have a Lie group

(G, ·), see Theorem 6.3.4 on p.165 of [VO16].

An application of the previous theorem for the Tn is the following.

Corollary 3. If η is a probability measure invariant under all right-translations and positive on open sets

on Tn then η = cLeb for some c > 0. Moreover, since η is a probability, η(Tn) = 1 and then η = Leb.

Now, we show unique ergodicity for ϕt(x) = [x+ tθ] whenever the components of θ are rationally

independent. In this case, Proposition 4 implies ϕt is minimal and we have the following:

Proposition 5. If the linear flow ϕt(x) = [x+ tθ] is minimal, then it is uniquely ergodic.

Proof. For this proof we follow [VO16] and show that if µ is a probability measure invariant by ϕt, then

µ = Leb.

So let µ be a probability measure invariant by ϕt and x0 ∈ Tn be fixed.

Since µ is ϕt−invariant, for every t ∈ R and every continuous function f : Tn → R we have∫
Tn

f(x) dµ(x) =

∫
Tn

f(x+ tθ) dµ(x).

Moreover, since ϕt is minimal, every orbit is dense. Hence, there is a sequence (tn)n with limn tn →
+∞ such that

lim
n→+∞

ϕtn(0) = lim
n→+∞

tn · θ = x0.

Since Tn is compact, for every ε > 0, there is a δ > 0 such that for all x, y ∈ Tn with ‖x− y‖ < δ,

we have |f(x)− f(y)| < ε. So, if n is sufficiently large,

‖(x+ tn · θ)− (x+ x0)‖ = ‖tn · θ − x0‖ < δ,

for all x ∈ Tn. In particular, |f(x+ tn · θ)− f(x+ x0)| < ε for all x ∈ Tn and then,∣∣∣∣∫
Tn

(f(x)− f(x+ x0)) dµ

∣∣∣∣ =

∣∣∣∣∫
Tn

(f(x+ tn · θ)− f(x+ x0)) dµ

∣∣∣∣ < ε.

Since ε > 0 is arbitrary, it follows that∫
Tn

f(x) dµ(x) =

∫
Tn

f(x+ x0) dµ(x)

for all x0 ∈ Tn and all continuous function f : Tn → R. In other words, we have shown that µ is invariant

by every right-translation on Tn. From Corollary 3, µ = Leb.

30



Whenever we know the flow is uniquely ergodic, then we get more information on the limit function

on Theorem 4:

Proposition 6. If ϕ : R×M →M is uniquely ergodic then, for every continuous function f ∈ C0(M),

the time averages
1

T

∫ T

0
f ◦ ϕt(x) dt

converge uniformly to a constant.

Proof. For a proof, see Proposition 3.3.33, at p. 177 in [FH19].

On the other hand, we could ask if the reciprocal holds, i.e., if the uniform convergence of the time

averages to a constant implies unique ergodicity. The answer is yes as we will see in the next proposition.

Before, we define a notation that will be extremely useful, mainly in Chapter 5: given a flow

ϕs : M →M and a continuous function f : M → R, we write the Birkhoff sum as

St(f) =

∫ t

0
f ◦ ϕs ds,

for t ∈ R.

Proposition 7. Let ϕs : M → M be a continuous flow on a compact metric space M . If, for every

sequence (tk)k with tk → +∞ such that the uniform limit

lim
k→+∞

1

tk
Stk(f)

exists, the limit function is constant, then ϕs is uniquely ergodic.

Before proving Proposition 7 we need three lemmas:

Lemma 4. Let (X, d) be a compact metric space and {xt}t∈R a family of points xt ∈ X . Suppose there

exists x ∈ X such that, for all sequence (tk)k with tk → +∞, there exists a subsequence (tkj )j such that

limj xtkj = x. Then,

lim
t→+∞

xt = x.

Proof. We are going to prove that for every ε > 0 there exists N ∈ N such that d(xt, x) < ε for every

t ≥ N . To do so, suppose it is not true, i.e., that there exists ε0 > 0 such that for every n ∈ N there is

some tn ≥ n with d(xtn , x) ≥ ε0.

The sequence (tn)n defined above is such that tn → +∞. However, doesn’t exist a subsequence

(xtnj
)j of (xtn)n with xtnj

→ x as j → +∞. This is a contradiction.

Lemma 5. A system (f, µ), where f : X → X is an homeomorphism on a compact metric space and µ

invariant probability measure, is uniquely ergodic if, and only if, the sequence 1

n

n−1∑
j=0

ϕ ◦ f j

n

converges uniformly to a constant function, for all ϕ ∈ C0(X).
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Proof. This is a standard proof in ergodic theory and can be found in [VO16] (Proposition 6.1.1, p.

158).

Lemma 6. Let (tk)k be a sequence with tk → +∞. If the Birkhoff averages(
1

tk
Stk(f)

)
k

converges uniformly to a function f , then
∫
X f dµ =

∫
X f dµ.

Proof. From Birkhoff’s Ergodic Theorem we know that

f̃(x) := lim
t→+∞

1

t
St(f)(x)

exists for µ−a.e. x ∈M . Since we are supposing that 1
tk
Stk(f) converges uniformly to f , we conclude

that f̃(x) = f(x) for µ−a.e. x ∈M .

Birkhoff’s theorem also guarantees that∫
X
f̃ dµ =

∫
X
f dµ

and hence
∫
X f dµ =

∫
X f̃ dµ =

∫
X f dµ, as claim.

We are finally ready to prove Proposition 7:

Proposition. Let ϕs : M →M be a continuous flow on a compact metric spaceM . If, for every sequence

(tk)k with tk → +∞ such that the uniform limit

lim
k→+∞

1

tk
Stk(f)

exists, the limit function is constant, then ϕs is uniquely ergodic.

Proof. Let (tk)k be a sequence such that tk → +∞ and the uniform limit

lim
k→+∞

1

tk
Stk(f)

exists.

By hypothesis, the limit ψ = limk→+∞
1
tk
Stk(f) must be a constant function. Now, Lemma 6 implies∫

X ψ dµ =
∫
X f dµ and, since ψ is constant and µ(X) = 1 we have:

ψ = ψ · µ(X) = ψ ·
∫
X

1 dµ =

∫
X
ψ dµ,

which gives

lim
k→+∞

1

tk
Stk(f)

unif−−−→
∫
X
f dµ.

Now, by compactness of S on the uniform topology, which is given by Lemma 18, we know that for

every sequence (tk)k with tk → +∞ there exists a such limit ψ for
(

1
tk
Stk(f)

)
k
. By hypothesis, this

limit ψ is constant and from what we have just seen, ψ =
∫
X f dµ.

From Lemma 4,

lim
t→+∞

1

t
St(f)

unif−−−→
∫
X
f dµ.

Finally, Lemma 5 implies ϕs to be uniquely ergodic.
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CHAPTER 3

Anosov and geodesic flows

In this Chapter 3 we present the main characters of the text. On Section 3.1 we give the definition,

highlight properties, and give the first example of Anosov flow.

On Section 3.2 we introduce the geodesic flow and discuss several of its properties. For example, we

notice it is a Hamiltonian flow, observe that in negative curvature it is an example of Anosov flow that is

never a suspension flow.

Finally, we observe that in the case of negatively curved surfaces, the geodesic flow has another flow

to which it is related: the horocycle flow.

3.1 Anosov Flows

This master thesis is about a very special class of flows, the so called Anosov flows. There are still many

unknown facts about Anosov flows, what makes them a current topic on mathematical research. We here

exhibit some introductory facts about them.

Definition 13 (Anosov flow). A flow ϕt : M → M , t ∈ R, is called an Anosov flow if there exists a

ϕt−invariant decomposition

TM = Eu ⊕ Ec ⊕ Es,

i.e., each subspace Eu, Ec and Es, is preserved by dϕt, Ec is the space generated by the vector field

associated to the flow, and the vectors on Eu are exponentially expanded by dϕt and the vectors on Es

are exponentially contracted by dϕt. In other words, there exists λ, µ ∈ R, with, 0 < λ < 1 < µ, such

that:

‖dϕt(v)‖ ≥ µt‖v‖, for all t ∈ R and v ∈ Eu,

and

‖dϕt(v)‖ ≤ λt‖v‖, for all t ∈ R and v ∈ Es.

The spaces Eu and Es are called unstable and stable spaces, respectively.

The first example of Anosov flow we present here is the suspension flow of an Anosov diffeomorphism.

A diffeomorphism is called Anosov if there exists a f−invariant splitting

TM = Eu ⊕ Es,
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i.e., each subspace Eu and Es, is preserved by df , and the vectors on Eu are exponentially expanded by

df and the vectors on Es are exponentially contracted by df . In other words, there exists λ, µ ∈ R, with,

0 < λ < 1 < µ, such that:

‖dfn(v)‖ ≥ µn‖v‖, for all v ∈ Eu and n ≥ 0,

and

‖dfn(v)‖ ≤ λn‖v‖, for all v ∈ Es and n ≥ 0.

As in the case of flows, the spaces Eu and Es are called unstable and stable spaces, respectively.

A well-known example of Anosov diffeomorphism is the Anosov Cat Map, that is defined as follows:

let A : R2 → R2 be the linear map defined by

Av =

(
2 1

1 1

)
· v.

Since A(Z2) ⊆ Z2 and detA = 1, we have an induced map fA : T2 → T2 from T2 = R2/Z2 to itself

defined by fA([v]) = [Av], where [v] = {w ∈ R2 | w − v ∈ Z2} ∈ T2 and the definition of fA does not

depend on the element w in the class [v]. Now, this map fA : T2 → T2 is an Anosov diffeomorphism on

the torus T2, called Anosov’s Cat Map, and has very interesting dynamical properties such as topological

minimality and the fact that the set of periodic points of fA is dense on T2. More details on Anosov

diffeomorphisms as well as an argument on why fA is an example of them is discussed in Appendix A.

Once in possession of an Anosov diffeomorphism, there is a somewhat canonical Anosov flow

associated to it, that is obtained via a general construction from the qualitative theory of ODE’s. Let

X ∈ Xr(M) be a vector field on M and Σ ⊂M be a compact codimension one submanifold of M . We

call Σ a global transverse section of X if X is transverse to Σ and every positive orbit of X through

each point p ∈M intersects Σ again in the future.

Then, if Σ is a global transverse section of a vector field X ∈ Xr(M), the flow associated to X

induces a diffeomorphism P : Σ→ Σ that associates, for each point x ∈ Σ the first point P (x) such that

the positive orbit O+
ϕ (x) = {ϕt(x) | t ≥ 0} intersects the section Σ again, i.e., for t > 0. The map P is

called the Ponincaré map associated to Σ.

A very important feature of the Poincaré map is that the orbit structure of the flow ϕt associated to X

is determined by its Poincaré map (and vice-versa). For example, a point x ∈ Σ is a periodic point of P if

and only if Oϕ(x) is closed.

Suspension flow

Now we go on the other direction and from a diffeomorphism construct a flow: on this subsection we

present a construction that allow us to, for each Cr−diffeomorphism f : M →M , find a flow ϕt, called

the suspension flow of f , such that f is conjugated to the Poincaré map P of ϕt.

Let M be a compact Riemannian manifold and f : M →M be a Cr diffeomorphism, (r ≥ 1).

On M × R, define the following equivalence relation:

(p, s) ∼ (q, t) ⇐⇒ s− t = n ∈ Z and q = fn(p).

Let M̃ be the quotient space M × R/ ∼ and let π : M × R → M̃ be the projection map, i.e., for each

pair (p, s), the image π(p, s) is the equivalence class of (p, s).
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For each s0 ∈ R the restriction of π to M × (s0, s0 + 1) is an one-to-one correspondence between

M × (s0, s0 + 1) and M̃ − π(M × s0).

Figure 3.1: The relation ∼ on M × R. Figure 3.2: Restricted toM×(s0, s0 +1), π is 1−1.

To make M̃ a topological space, we set M̃ with the topology induced by π, i.e., Ã ⊆ M̃ is open if

and only if π−1(Ã) ⊆M ×R is open. Moreover, we want to show that M̃ is not only a topological space

but a smooth manifold.

To do so, we define an atlas for M̃ . First, let xi : Ui → U0 ⊆ Rn be local charts onM for i = 1, . . . , k,

with
⋃k
i=1 Ui = M . Now let Ũi and Ṽi be two families of open sets on M̃ , each defined as:

Ũi = π

(
Ui ×

(
−1

2
,
1

2

))
and Ṽi = π

(
Ui ×

(
1

4
,
5

4

))
,

for i = 1, . . . , k. Each Ũi and Ṽi is open on M̃ . Indeed, both

π−1(Ũi) = π−1

(
π

(
Ui ×

(
−1

2
,
1

2

)))
=
⋃
n∈Z

[
Ui ×

(
−1

2
+ n,

1

2
+ n

)]
and

π−1(Ṽi) = π−1

(
π

(
Vi ×

(
1

4
,
5

4

)))
=
⋃
n∈Z

[
Ui ×

(
1

4
+ n,

5

4
+ n

)]
are open in M × R, for every i = 1, . . . , k.

Now, for each i = 1, . . . , k, define x̃i : Ũi → U0 ×
(
−1

2 ,
1
2

)
by x̃i(π(p, s)) = (xi(p), s) and

ỹi : Ṽi → U0 ×
(

1
4 ,

5
4

)
by ỹi(π(p, s)) = (xi(p), s).

Observe that both x̃i and ỹi are well-defined since, in each open set Ui ×
(
−1

2 ,
1
2

)
and Ui ×

(
1
4 ,

5
4

)
there exists a unique element of each class (p, s). Moreover, since the restriction of π to Ui ×

(
−1

2 ,
1
2

)
is

one-to-one and the same holds for the restriction of π to Ui×
(

1
4 ,

5
4

)
, both x̃i and ỹi are homeomorphisms.

We claim that A = {(x̃i, Ũi), (ỹi, Ṽi) | i = 1, . . . , k} is a Cr-atlas on M̃ . Indeed, by making a small

notation abuse and confusing (p, s) with its equivalence class, we have:

x̃i ◦ x̃−1
j (u, s) = x̃i(x̃

−1
j (u, s)) = x̃i(x̃

−1
j (u), s) = (xi ◦ x−1

j (u), s),

ỹi ◦ ỹ−1
j (u, s) = ỹi(ỹ

−1
j (u, s)) = ỹi(ỹ

−1
j (u), s) = (yi ◦ y−1

j (u), s).

This proves that x̃i ◦ x̃−1
j and ỹi ◦ ỹ−1

j are Cr−diffeomorphisms. For the last case, i.e., x̃i ◦ ỹ−1
j (u, s),

we need to be a little more careful: since ỹ−1
j (u, s) ∈ Ṽi we pick (f(x−1

j (u)), s− 1) ∈ Ũi that satisfies

(f(x−1
j (u)), s− 1) ∼ (x−1

j (u), s). We then obtain:

x̃i ◦ ỹ−1
j (u, s) = x̃i(ỹ

−1
j (u, s)) = x̃i(f(x−1

j (u)), s− 1) = (xi(f(x−1
j (u)), s− 1),

proving that x̃i ◦ ỹ−1
j (u, s) is also a Cr−diffeomorphism. This shows that A is a Cr atlas.
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Actually, we can consider M̃ as a C∞ manifold since, from Whitney’s Embedding Theorem, there is

a smooth manifold structure on M̃ such that the maps x̃i and ỹi are Cr diffeomorphisms.1

Observe that π is a Cr−local diffeomorphism since, restricted to U0 ×
(
−1

2 ,
1
2

)
, the composition

x̃i ◦ π ◦ (x−1
i × Id) is the identity, and also, restricted to U0 ×

(
1
4 ,

5
4

)
the map ỹi ◦ π ◦ (x−1

i × Id). Now,

let ∂
∂t be the unit vector on M × R whose orbits are the lines {p} × R, for p ∈M . Define,

X(π(p, s)) = dπ(p,s) ·
∂π

∂t
(p, t).

From the definition of the relation ∼, it is straightforward to see that X(π(p, s)) = X(π(f(p), s− 1))

and that X is a Cr−1 vector field on M̃ .

Figure 3.3: The vector field X on M̃ .

If we call Σ̃ ⊆ M̃ the projection of M × {0} by π, i.e., Σ̃ = π(M × {0}), the vector field X is

transverse to Σ̃ and its orbit through p̃ = π(p, t) is π({p},R).

It can be shown that the positive orbit of X through a point p̃ = π(p, 0) ∈ Σ̃ return to Σ̃ again for the

first time at the point q̃ = π(p, 1) = π(f(p), 0). Moreover, the Poincaré map associated to the transverse

section Σ̃ is f̃ : Σ̃ → Σ̃ defined by f̃(π(p, 0)) = π(f(p), 0). Hence, the map h : M → Σ̃ defined by

h(p) = π(p, 0) is a Cr diffeomorphism which conjugates f and f̃ , i.e., f̃ ◦ h = h ◦ f .

A comment on suspension flows that will be extremely important for this text is that, even if the

dynamics before the suspension is topologically mixing, the suspension doesn’t need to be:

Proposition 8. If ϕt is the suspension flow of a diffeomorphism f : M → M then isn’t topologically

mixing.

Proof. We follow the ideas in [Day20]. As before, write the suspension flow ϕt : M → M , where

M̃ = M × R/ ∼ and, for small values of t, ϕt(x, s) = (x, s+ t). Consider U, V ⊂M open sets and fix

U ′ = U × (0, 1/4) and V ′ = V × (0, 1/4) open sets in M̃ .

Notice that, for a ∈ (0, 1/4), we can identify U × {a} ⊂ U ′ with f(U)× {0} by taking t = 1− a.

Indeed, we just have to notice that, for all x ∈ U :

ϕt(x, a) = (x, t+ a) = (x, 1) = (f(x), 0).

This implies that, for each x ∈ U , diamϕt (x× (0, 1/4)) = 1/4.

Now, suppose there exists T such that ϕT (U ′) ∩ V ′ 6= ∅. Since diamu× (0, 1/4) = 1/4 for all

u ∈ U and diam v × (0, 1/4) = 1/4 for all v ∈ V , the observation on the last paragraph shows that

ϕT+1/4(U ′) ∩ V ′ = ∅,
1For instance, see Theorem 0.19 on p. 9 of [PD12].
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proving that ϕt cannot be topologically mixing.

In fact, there is a deeper result in that sense, that is proven in [Day20]. To present it here, we need a

generalization on the construction of the suspension flow. The next definition follows the one given in

[BS02].

Definition. Given a map f : X → X and a function h : X → R+ bounded away from 0, consider the

quotient space

Mh = {(x, t) ∈ X × R+ | 0 ≤ t ≤ h(x)}/ ∼,

where∼ is the equivalence relation (x, h(x)) ∼ (f(x), 0). In this setting, the suspension of f with height
function h(x) is the flow ϕt(x, s) = (fn(x), s′) where n and s′ are given by:

n−1∑
j=0

h(f j(x)) + s′ = t+ s,

and

0 ≤ s′ ≤ h(fn(x)).

This definition generalizes the previous construction, since there we have taken the height function h

to be h(x) ≡ 1. Together with the smooth structure of M and the regularity of f on the previous case, this

allowed us to obtain several properties for the quotient space M̃ and the suspension flow ϕt. To obtain the

topologically mixing property for ϕt we need to make hypothesis on the roof function h:

Theorem. Let X be a compact metric space and f : X → X be a topologically mixing homeomorphism

with dense periodic points. A suspension flow over X is topologically mixing if and only if the height

function h : X → R is not cohomologous to a constant k, i.e., if there isn’t a continuous function

g : X → R such that h(x)− k = g(f(x))− g(x) for all x ∈ X .

The last paragraphs explained some of the difficulties for the suspension flow to be topologically

mixing even if the base dynamics f is. However, if we ask for the diffeomorphism f : M → M to be

Anosov, then it is a somewhat stronger assumption: the suspension flow will be an Anosov flow.

Proposition 9. The suspension flow ϕt : M̃ → M̃ of an Anosov diffeomorphism f : M → M , is an

Anosov flow.

Proof. To see this, fix a point (x, θ) ∈ M̃ . We need to show that there are contracting and expanding

subspaces Es and Eu, respectively, in T(x,θ)M̃ such that

T(x,θ)M̃ = Es ⊕ 〈X〉 ⊕ Eu.

This occur since, at each point x ∈M , such spaces Es and Eu are defined in TxM and the vector field X

defined above is transverse to TxM in T(x,θ)M .

Moreover, this decomposition is invariant by dϕt : T(x,θ)M̃ → Tϕt(x,θ)M̃ . Indeed, if 0 ≤ t+ s < 1,

we have that ϕt(x, θ) = (x, t + θ) and Tϕt(x,θ)M̃ = Es(x) ⊕ 〈X〉 ⊕ Eu(x). If t + s = 1, then

ϕt(x, θ) = (x, t+ θ) = (f(x), 0), and hence dϕt(x, θ) = (dfx, X) and

Tϕt(x,θ)M̃ = T(x,t+θ)M̃ = T(f(x),0)M̃.
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Now, since f : M →M is an Anosov diffeomorphism, the decomposition Es(x)⊕ Eu(x) is invariant

under df , the decomposition Es(x, θ)⊕ 〈X(x, θ)〉 ⊕ Eu(x, θ) is invariant under dϕt, i.e.,

dϕt (Es(x, θ)⊕ 〈X〉 ⊕ Eu(x, θ)) = Es(ϕt(x, θ))⊕ 〈X(ϕt(x, θ))〉 ⊕ Eu(ϕt(x, θ)).

Finally, for each section Σt = M × {t} of the suspension manifold, we have that ϕn
∣∣
Σt

= fn. Since f

is Anosov and the uniform expansion and contraction with respect to each space Eu and Es occur in a

regular interval gap, we must have uniform expansion and contraction for ϕt on Eu and Es as well. This

proves the flow ϕt is Anosov on M̃ .

After Proposition 9 we are now able to give the first concrete example of Anosov flow:

Example 9 (The suspension flow of the Cat Map). When the Anosov diffeomorphism is the Cat Map

presented above, the construction of the suspension flow, allows us to find a vector field X on a 3-manifold

(T2 × R/ ∼), whose associated flow is Anosov, and such that its Poincaré map is conjugated to the Cat

Map, and hence has all its interesting dynamical properties.

Figure 3.4: Suspension manifold for the Cat Map.

Stable manifold theorem for Anosov flows

Just as in the case of Anosov diffeomorphisms, Anosov flows have important and beautiful theorems that

make solid the theory and give tools for us to seek results. The first major result we present here is the

Stable Manifold Theorem for flows:

Theorem 5 (Stable Manifold Theorem). Let gt : M →M be a Cr (r ≥ 1) Anosov flow on M . Fix t > 0

and let λ, µ ∈ R, with, λ < 1 < µ, be as in definition of Anosov flow, i.e.,

‖dgt(v)‖ ≥ µt‖v‖, for all t ∈ R and v ∈ Eu,

and

‖dgt(v)‖ ≤ λt‖v‖, for all t ∈ R and v ∈ Es.

Then, for each x ∈M there is a pair of embedded Cr−discs, W ss
loc(x) and W uu

loc (x) (the local strong

stable manifold and the local strong unstable manifold of x, respectively) such that:

(i) Tx(W ss
loc(x)) = Es(x) and Tx(W uu

loc (x)) = Eu(x);

(ii) gt(W
ss
loc(x)) ⊂W ss

loc(gt(x)) and g−t(W uu
loc (x)) ⊂W uu

loc (g−t(x)), for every t ≥ t0 > 0;
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(iii) for every δ > 0 there exists C(δ) such that

d(gt(x), gt(y)) < C(δ)(λ+ δ)td(x, y), for y ∈W ss
loc(x) and t > 0

d(g−t(x), g−t(y)) < C(δ)(µ− δ)−td(x, y), for y ∈W uu
loc (x) and t > 0;

(iv) there exists a continuous family Ux of neighborhoods of x ∈M such that:

W ss
loc(x) =

{
y ∈M | gt(y) ∈ Ugt(x), for all t > 0 and lim

t→+∞
d(gt(y), gt(x)) = 0

}
,

W uu
loc (x) =

{
y ∈M | g−t(y) ∈ Ug−t(x), for all t > 0 and lim

t→+∞
d(g−t(y), g−t(x)) = 0

}
.

Proof. A proof of the stable manifold theorem for flows is presented at Theorem 17.4.3, p. 545, in

[KH97].

Whenever it is important to specify the size of the local stable/unstable manifold, we will use the

following notation (for example for the weak unstable manifold):

W u
ε (x) = {y ∈M | d(g−t(x), g−t(y)) < ε, for all t ≥ 0}.

A particular consequence of the Stable Manifold Theorem for Anosov flows is the existence of

foliations on the manifold M that are related to the dynamics.

The Theorem implies that each tangent bundles Eu, Es, Eu ⊕ Ec, and Es ⊕ Ec, are uniquely

integrable2 and give rise to foliations tangent to it. For each bundle we have the analogue foliation as

follows:

Bundle Foliation

Eu ⊕ Ec Fu

Es ⊕ Ec Fs

Eu Fuu

Es Fss

We call Fuu and Fss by the unstable and stable foliations, respectively, and Fu and Fs by center-

unstable and center-stable foliations, respectively. An important comment to make, is that the leafs of each

foliation is of the same class of differentiability of the the flow. However, for the regularity of the foliation

itself, we may only ask for it to be C0. For more details on the regularity of the invariant foliations, see

[PSW97].

The second major theorem we need to state is known as the Product Neighborhood Theorem. To do

so, we first introduce some notation: let du, ds, duu, dss be the metrics induced by d on the leaves of the

foliations Fu,Fs,Fuu,Fss, respectively. Define, for x ∈M and δ > 0, the following sets:

Bδ (x) = {y ∈M : d(x, y) < δ}

Bu
δ (x) = {y ∈W u(x) : du(x, y) < δ}

Bs
δ (x) = {y ∈W s(x) : ds(x, y) < δ}

Buu
δ (x) = {y ∈W uu(x) : duu(x, y) < δ}

Bss
δ (x) = {y ∈W ss(x) : dss(x, y) < δ}

2See Definition 4.
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Theorem 6. (Product Neighborhood Theorem) There exists δ0 > 0, not depending on x ∈M , such that

for δ ≤ δ0 the functions

G : Bs
δ (x)×Buu

δ (x)→M

H : Bss
δ (x)×Bu

δ (x)→M

given by

G (y, z) = Bs
2δ (z) ∩Buu

2δ (y)

H (y, z) = Bss
2δ (z) ∩Bu

2δ (y)

are well defined and are homeomorphisms onto its images.

This images are called product neighborhoods of x. The proof uses Theorem 5 and simple techniques

from hyperbolic dynamics. It can be found in Section 6.2 of [FH19] and, more precisely, it is a consequence

of Proposition 6.2.2 and Theorem 6.2.7 of the same reference.

Another very important theorem on hyperbolic dynamics that also has some geometric flavor and is

related to the Stable Manifold Theorem is the λ−Lemma (also known as Inclination Lemma). We present

here two versions of it (Propositions 6.1.7 and 6.1.10 at p.335 of [FH19]):

Theorem 7 (λ-lemma for fixed points). Suppose p is a hyperbolic fixed point of a smooth flow ϕt : M →
M and D is a disk that intersects W s(p) transversely. Then, the sets ϕt(D) accumulate on W u(p) in

the C1−topology, as t→ +∞. Specifically, for any disk ∆ in W u(p) and any ε > 0, there is an instant

t > 0 and D′ ⊂ D such that dC1(ϕt(D
′),∆) < ε.

The second version treats more explicitly what happens at the center-unstable manifolds:

Theorem 8 (λ-lemma for flows). Suppose p is a hyperbolic periodic point for a flow ϕt : M → M , of

least period T > 0, and suppose TpM has splitting TpM = Es ⊕ Ec ⊕ Eu. Let D be an embedded disk

that intersects W s(p) transversely in some point q ∈W s(p) such that dimD = dimEu + 1. Then, for

any ε > 0, there exists an order N ∈ N such that, for each n ≥ N , there is an embedded disk Dn ⊆ D
containing q such that ϕtn(Dn) is ε−close to W u(p) in the C1−topology.

An useful way to understand the dynamics of a system is to restrict ourselves to the set of periodic

points of ϕt, denoted by, Per (ϕt). Now, we present two theorems that corroborate the claim we’ve just

made.

The first one is about how big (topologically) the set of periodic points may be: its closure is at least

as big as the non-wondering set. Before stating it precisely, we need a definition:

Theorem 9 (Anosov Closing Lemma). Let M be a closed and connected Riemannian manifold and

ϕt : M →M an Anosov flow. Every recurrent point x ∈M is approximated by a periodic point.

Proof. See Corollary 18.1.8, p. 570, from [KH97].

Corollary 4. The periodic points of ϕt are dense in Ω(ϕ), i.e., Per (ϕ) = Ω(ϕ).

Proof. See Corollary 5.3.22, p. 298 of [FH19].
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The next result is about the structure of Per (ϕ). It states that this set can be broken into smaller

invariant and disjoint pieces, each of which is transitive when the dynamics is restricted to it. These pieces

are called basic sets for the dynamics.

Definition 14 (Basic sets). Let ϕt : M →M be an Anosov flow on a closed connect Riemannian manifold

M . A closed subset Λ ⊂M is called isolated if there is a neighborhood V of Λ (isolating neighborhood)

such that Λ =
⋂
t∈R ϕt

(
V
)
. Moreover, if we also have that ϕt

∣∣
Λ

is transitive, the set Λ is called a basic
set.

Theorem 10 (Spectral Decomposition). For an Anosov flow ϕt : M →M on a closed connected manifold

M , there exists a finite family Λ1, . . . ,Λk of compact disjoint invariant basic sets such that

Per (ϕ) = Λ1 ∪ · · · ∪ Λk.

Proof. For a proof check Theorem 5.3.37, p. 302, of [FH19].

Back to the problem of how big or representative the set of periodic points are, we may ask whether

its closure is equal to the hole manifold. By Corollary 4, we know that, if ϕt is an Anosov flow, this

question is equivalent as asking whether the non-wandering set is the whole manifold. More precisely, the

following holds:

Theorem 11. Let ϕt : M →M be an Anosov flow on a closed connected Riemannian manifold M . The

following properties are equivalent:

(i) The spectral decomposition of ϕ has only one piece, which is M itself;

(ii) Ω(ϕ) = M ;

(iii) Per (ϕ) = M ;

(iv) ϕt is topologically transitive;

(v) All center-stable leafs are dense, i.e., W s(x) = M for all x ∈M ;

(vi) All center-unstable leafs are dense, i.e., W u(x) = M for all x ∈M .

Proof. The proof of this theorem is, in some extent, a consequence of Theorem 10. A proof can be found

in p.342 of [FH19], being the proof of Theorem 6.2.10 of such text.

It was a long standing conjecture the claim that if ϕt : M → M is Anosov flow, then Ω(ϕ) = M .

Unfortunately, this conjecture was disproved in [FW80], at least in the generality it was presented.

Nevertheless, there are very interesting examples for which the conjecture works, namely the sus-

pension flow of an Anosov diffeomorphism and the geodesic flow on a manifold with constant negative

curvature.

Proposition 10. If f : M →M is a transitive Anosov diffeomorphism on a closed connected Riemannian

manifold M , then ϕt : M̃ → M̃ its suspension flow is an Anosov flow such that Ω(ϕ) = M .

The statement that the suspension flow of an Anosov diffeomorphism is itself an Anosov flow was the

content of Proposition 9. Hence, to prove this Proposition 10 we need to check that if f is transitive, its

suspension flow satisfy Ω(ϕ) = M . In order to do that we need a lemma:
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Lemma 7. If f : M → M is an transitive Anosov diffeomorphism on a closed connected Riemannian

manifold M , then f is topologically mixing.

Proof. The proof of this Lemma 7 will be done in detail in Appendix A, precisely in Theorem 26.

Proof of Proposition 10. Now, consider two non-empty open sets Ũ , Ṽ on M̃ . We need to show that

there exist some s ∈ R such that ϕs(Ũ) ∩ Ṽ 6= ∅.
By construction of the suspension manifold M̃ , we can suppose, without loss of generality, that

Ũ = U × IU and Ṽ = V × IV , where U and V are open sets on vertical sections M × {tU} and

M × {tV } of M̃ , respectively, for tU , tV ∈ R, and IU and IJ are small intervals.

Figure 3.5: The open sets Ũ and Ṽ .

From Appendix A we know that the transitive Anosov diffeomorphism f : M →M is also topologi-

cally mixing. So, given ε > 0 there exists N > 0 such that, if n ≥ N then fn(U) ∩ V 6= ∅. In particular,

since M is compact, there exists N > 0 such that, if n ≥ N then fn(U) is ε−dense on M .

Since ϕt is the suspension flow, it is tangent to the vector field ∂
∂t , so by its action the interval IV will

intersect the section ϕs(M × tU ) for an infinite number of instants s. In particular, there is some s > N

such that ϕs(M ×{tU})∩ Ṽ 6= ∅. Since we took s to be greater than N , the set f bsc(U) will be ε−dense

on M . So, by first reducing the choice of ε > 0 if necessary, we have that ϕs(Ũ) ∩ Ṽ 6= ∅.

Example 10. Since the Anosov Cat Map fA : T2 → T2 on T2 is transitive, we have Ω(fA) = T2. By the

previous proposition, its suspension flow ϕt also satisfy Ω(ϕ) = T̃2, where T̃2 is the suspension manifold

of T2 obtained by the suspension of fA.

The next example, the geodesic flow on a manifold with constant negative curvature, is the main topic

of this text and we reserve the next section to introduce it.

3.2 Geodesic Flow on T 1M

Let (M, 〈·, ·〉) be a closed Riemannian manifold of dimension n, where 〈·, ·〉 is a Riemannian metric on

M , and let∇ denote its Riemannian connection.

Definition 15 (Geodesic). A curve γ : I →M is called a geodesic if

∇γ′γ′ = 0.

42



Given a coordinate system (U, x), with U an open set around a point p ∈M , write Xi for the vector

field Xi = ∂
∂xi

on U . Since {X1, . . . , Xn} is a frame of TM
∣∣
U

, we can write∇XiXj =
∑

k ΓkijXk. The

real valued functions Γkij are called the Christoffel symbols of the connection∇ in the chart (U, x).

Proposition 11. A curve γ : I →M is a geodesic on M if and only if, in any coordinate system,

γ′′k +
∑
i,j

Γkijγ
′
iγ
′
j = 0, (3.1)

for all k = 1, . . . , n.

Proof. The proof of this fact follows immediately from a computation in local coordinates.

Given a manifold M , the tangent bundle TM of M is defined as the disjoint union of tangent spaces

TpM over all p ∈M , i.e.,

TM =
⊔
p∈M

TpM

and is also a manifold, now of dimension 2n. Remember that v ∈ TpM if and only if there exists a

smooth curve γ : I →M , from some interval I around 0 ∈ R to M , such that γ(0) = p and γ′(0) = v.

Moreover, observe that ‖γ′(t)‖ is constant for every t ∈ I . Indeed,

d

dt
‖γ′‖ =

d

dt
〈γ′, γ′〉

= 2 · 〈∇γ′γ′, γ′〉

= 0,

since∇γ′γ′ = 0.

From the theory of ODE’s, we obtain two properties: first, for each point p ∈M and vector v ∈ TpM
there is a unique geodesic γ : I →M with γ(0) = p and γ′(0) = v, defined on its maximal interval of

definition I . To prove it, we must solve the system of equations (3.1). Secondly, since ‖γ′‖ is constant,

the maximal interval of definition is, in fact, R, i.e., the geodesics are defined for all values t ∈ R.

Notice that each vector w ∈ TqM , where q is a point in the selected local coordinate system, can be

written as w =
∑n

k=1 ykXk. So, the point (q, w) ∈ TU is written as (γ1, . . . , γn, y1, . . . , yn) and these

coordinates give a smooth structure on TM .

So, each curve γ(t) on M determines a curve (γ(t), γ′(t)) on TM . If γ is a geodesic on U ⊂M that

is written in local coordinates as γ(t) = (γ1(t), . . . , γn(t)), the curve

t 7→
(
γ1(t), . . . , γn(t), γ′1(t), . . . , γ′n(t)

)
on TU is a solution to the system

dxk
dt = yk
dyk
dt = −

∑
i,j Γkijyiyj

, for k = 1, . . . , n, (3.2)

on the coordinate system (x1, . . . , xn, y1, . . . , yn) on TU . Hence, solving the second order system of

equations (3.1) on U is equivalent to solving the first order system (3.2) on TU .
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Lemma 8. There is an unique vector field G on TM whose flow linear are precisely the solutions to the

system of equations (3.2).

Proof. If such a vector field G exists, it must be unique. Indeed, let (U,x) be a coordinate system on M .

Then, on these local coordinates, G is uniquely defined be (3.2).

To prove existence of the field G, define it on each coordinate system by the local expression given by

(3.2). Since in the intersection of two coordinate charts the local expressions of G agree, the vector field

G is well-defined on all TM .

Another way to state Lemma 8 above is to say that there exists an unique vector field G on TM whose

flow lines are of the form t 7→ (γ(t), γ′(t)), where γ is a geodesic on M .

Definition 16. The vector field G defined on Lemma 8 is called geodesic field on TM and its solution is

called the geodesic flow on TM .

Applying the Fundamental Theorem of ODE’s (see Example 1 for a brief discussion) to the geodesic

field G on TM at the point (p, 0) ∈ TM , we obtain the following:

Theorem. For each p ∈ M there is an open set U of TU , where (U, x) a coordinate system around p,

and such that (p, 0) ∈ U , and there are a positive number δ > 0 and a C∞−map g : (−δ, δ)× U → TU

such that t 7→ gt(q, w) is the unique trajectory of G that satisfies the initial condition g0(q, w) = (q, w),

for each (q, w) ∈ U .

The Geometry of TM

We make a small detour into symplectic geometric and Hamiltonian dynamics, in order to obtain new

information on the geodesic flow. More precisely, we show that the geodesic flow is Hamiltonian and,

hence, has no divergence. This will be used to show that the geodesic flow cannot be an example of

suspension flow.

Definition 17 (Symplectic manifold). A symplectic form on a manifold M is a nondegenerate, closed

2-form ω on M .

Proposition 12. Let M be a manifold and ω ∈ Ω2(M) be a 2-form on M . Then, ω is nondegenerate if

and only if M is even-dimensional, say dimM = 2n, and ωn = ω ∧ · · · ∧ ω is a volume form on M .

Proof. For a proof, see Proposition 3.1.5, p.166, and Proposition 3.1.3, p. 165, of [AM08].

As a consequence we observe that, if ω ∈ Ω2(M) is nondegenerate, M is orientable. Denote the

standard volume by

Ωω :=
(−1)n/2

n!
ωn.

The first example of symplectic manifold is the euclidean space R2n with the following form: if

(x1, . . . , xn, y1, . . . , yn) are the coordinates of R2n define

ω =
n∑
i=1

dxi ∧ dyi.
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A less obvious symplectic manifold is the tangent bundle TM of a Riemannian manifold (M, 〈·, ·〉).

In order to define a form on TM we need to study first its tangent bundle, i.e., TTM .

Let π : TM →M be the canonical projection, i.e., if θ = (p, v) ∈ TpM ⊂ TM then π(θ) = p. For

each θ = (p, v) ∈ TM , the tangent space TθTM has a decomposition on subspaces that will be very

useful for us.

Define the vertical subspace V (θ) as the subspace of TθTM of vectors that, for t = 0, are tangent to

curves X : (−ε, ε)→ TM of the form

t 7→ (p, v + tw),

where w ∈ TpM . In other words, V (θ) := ker dπθ.

Now, for the same θ = (p, v) ∈ TM , we define another subspace of TθTM as the kernel of a

map Kθ : TθTM → TM as follows: let ξ ∈ TθTM and X(t) be a curve on TM with X(0) = θ and

X ′(0) = ξ. Call γ(t) = π ◦X(t) and define:

Kθ(ξ) = ∇γ′X(0),

where∇ is the Riemannian connection of (M, 〈·, ·〉).

This map Kθ is well-defined (i.e., it does not depend on the curve X) and is linear (see [Kni02], p.455,

for details). Set H(θ) = kerKθ.

Lemma 9. For each θ = (p, v) ∈ TM , the following hold:

(i) H(θ) ∩ V (θ) = {0};

(ii) dimH(θ) = dimV (θ) = dimM ;

(iii) TθTM = H(θ)⊕ V (θ);

(iv) The restrictions dπθ
∣∣
H(θ)

: H(θ)→ TpM and Kθ

∣∣
V (θ)

: V (θ)→ TpM are linear isomorphisms.

Proof. Observe that item (iii) is a direct consequence of items (i) and (ii). For proofs of items (i), (ii),

and (iv), see [Kni02], p.455.

As a direct consequence of the above lemma, the map (dπθ,Kθ) : TθTM → TpM × TpM defined

by ξ 7→ (dπθ(ξ),Kθ(ξ)) is a linear isomorphism between TθTM and TpM × TpM . We the identify

H(θ) ' {(w, 0) | w ∈ TpM},

and

V (θ) ' {(0, w) | w ∈ TpM},

and call H(θ) the horizontal subspace of TθTM and V (θ) the vertical subspace of TθTM . With the

above identification we write ξ ∈ TθTM as ξ = (ξh, ξv), where ξh = dπθ(ξ) and ξv = Kθ(ξ).

An useful application of the identification between TθTM and TpM × TpM is that, in this notation,

the geodesic vector field G (see Definition 16) can be written as

G(θ) = (v, 0), (3.3)

for each θ = (p, v) ∈ TM (for details see p.455 of [Kni02]).

With the decomposition TθTM = H(θ)⊕ V (θ) in hand, we can define a Riemannian metric on TM

that makes the subspaces H(θ) and V (θ) orthogonal:
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Definition 18 (Sasaki metric). At each θ = (p, v) ∈ TM , define the Sasaki metric at θ by

〈ξ, η〉Sasθ = 〈dπθ(ξ), dπθ(η)〉π(θ) + 〈Kθ(ξ),Kθ(η)〉π(θ)

= 〈ξh, ηh〉π(θ) + 〈ξv, ηv〉π(θ)

= 〈ξh, ηh〉p + 〈ξv, ηv〉p,

for all ξ, η ∈ TθTM .

Also from the decomposition TθTM = H(θ) ⊕ V (θ) we can use the Sasaki metric to define a

symplectic form ω on TM . For θ = (p, v) ∈ TM , define ωθ as

ωθ(ξ, η) = 〈Kθ(ξ), dπθ(η)〉π(θ) − 〈Kθ(η), dπθ(ξ)〉π(θ) = 〈ξv, ηh〉p − 〈ηv, ξh〉p. (3.4)

We are going to show that ω is a symplectic form on TM . It is clearly nondegenerate. To see it is

closed, define a 1−form Θ on TTM by taking, for each θ = (p, v) ∈ TM , the map Θ: TθTM → R
defined by Θθ(ξ) = 〈θ, dπθ(ξ)〉. Writing ξ = (ξh, ξv) ∈ H(θ)× V (θ), we have: Θθ(ξ) = Θθ(ξh, ξv) =

〈v, ξh〉p.

Lemma 10. The 2−form ω and the 1−form Θ satisfy:

dΘ = ω.

In particular, ω is closed.

Proof. See Lemma 1.2, p.456, of [Kni02].

Example 11. From Lemma 10 above we conclude that the pair (TM,ω), where ω is the differential form

defined by (3.4), is a symplectic manifold.

The form ω defined by 3.4 has a very important property for our goals.

Hamiltonian Flows

In this subsection we show that the geodesic flow on TM is a particular case of a more general type of

flows, namely the Hamiltonian flows.

Proposition 13. For each θ = (p, v) ∈ TM , the form ω defined by (3.4) is invariant under the geodesic

flow gt : TM → TM , i.e., for all t ∈ R and ξ, η ∈ TθTM , we have:

ωθ((dgt)θ(ξ), (dgt)θ(η)) = ωθ(ξ, η).

Proof. See Lemma 1.3, p.457, of [Kni02].

Definition 19. Let (M,ω) be a symplectic manifold and H : M → R be a given Cr (r ≥ 1) function.

The Hamiltonian vector field XH of the function H is determined by

ω(XH , Y ) = dH · Y,

for all vector field Y ∈ Xr−1(M). If we write ı for the contraction operation, we may write:

ıXH
(ω) = dH.
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Proposition 14. Let (q1, . . . , qn, p1, . . . , pn) be the canonical coordinates for ω (so that ω =
∑n

i=1 dq
i∧

dpi). Then, in these coordinates,

XH =

(
∂H

∂pi
,−∂H

∂qi

)
= J · dH,

where J =

(
0 I

−I 0

)
. Thus, (q(t), p(t)) is an integral curve of XH if and only if the following equations

hold: 
dqi

dt = ∂H
∂pi

dpi
dt = −∂H

∂qi

, (3.5)

for i = 1, . . . , n.

Proof. See Proposition 3.3.2 at p.187 of [AM08] for a proof.

The equations 3.5 are called Hamilton equations of the system (M,ω,XH).

Now we present a proposition that is the central property that we want the geodesic flow to satisfy:

Proposition 15. Let (M,ω,XH) be a Hamiltonian system and ϕt be the flow of XH . Then, divXH = 0

and, for each t, ϕ∗tω = ω and ϕt preserves the volume Ωω.

Proof. For a proof of this proposition see Proposition 3.3.4, p. 188 of [AM08], together with the proof of

Liouville’s Theorem, at p. 69 of [Arn13].

Definition 20 (Volume measure). Define on M the volume measure m induced by the volume form, i.e.,

for measurable set B contained in some coordinate domain we set:

m(B) =

∫
B

Ωω.

Theorem 12 (Liouville). Let ϕt : M →M be the flow associated to a C1 vector field X on M . Then, ϕt
preserves the volume of M if and only if divX = 0.

Proof. For a proof see Theorem 1.3.7, p.21, of [VO16] or, alternatively, Liouville’s Theorem, at p. 69 of

[Arn13].

Corollary 5. Every Hamiltonian flow preserves the volume measure.

Example 12. Let (M, 〈·, ·〉) be a symplectic manifold and let H : TM → R be a map defined by

H(p, v) =
1

2
〈v, v〉p.

Then, a curve γ : I → M is an integral curve of XH if, and only if, γ is a geodesic. In particular, this

shows that the geodesic vector field is Hamiltonian.

Indeed, let θ = (p, v) ∈ TM and ξ ∈ TθTM . If we write XH = (X,Y ) and ξ = (ξh, ξv) we have:

ωθ(ξ,XH) = 〈ξv, X〉p − 〈ξh, Y 〉p.
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Now, let Z : (−ε, ε) → TM be a curve with Z(0) = θ and Z ′(0) = ξ. By writing γ(t) = π ◦ Z(t)

we may also write Z ′(0) = (γ′(0),∇γZ(0)). So,

dHθ(ξ) =
d

dt

∣∣∣∣
t=0

H(Z(t))

=
1

2

d

dt

∣∣∣∣
t=0

〈Z(t), Z(t)〉

= 〈Z(0),∇γZ(0)〉

= 〈v, ξv〉

= 〈v, ξv〉 − 〈ξh, 0〉

= ωθ(G(θ), ξ),

by the representation of the geodesic field G given in (3.3).

Since we are interested on dynamical properties of the geodesic flow gt : TM → TM , it is worth to

study it on a compact manifold. Since, even if M is, TM need not to be compact, we should study the

flow somewhere else.

Observe that, as we showed in the beginning of Section 3.2, the norm of γ′ is constant. Therefore, if

we want to analyze the geodesic flow, we can restrict ourselves to unit vectors. To do so, define T 1M , the

unit tangent bundle of M , by:

T 1M = {(p, v) | x ∈M, v ∈ TpM and ‖v‖ = 1}.

Now, T 1M is a compact 2n− 1 manifold and the restriction of gt to T 1M is well defined in the sense

that gt(T 1M) ⊆ T 1M .

Next, we present a classical theorem due to Anosov (see [Ano67]) that describes the dynamics of the

geodesic flow on the unit tangent bundle of a negatively curved complete manifold.

Theorem 13. Let (M, 〈·, ·〉) be a complete Riemannian manifold such that there are constants β ≥ α > 0

satisfying −β2 ≤ K ≤ −α2 for all its sectional curvatures. Then its geodesic flow is an Anosov flow.

Proof. See Proposition 3.2, p.474, of [Kni02].

Corollary 6. The geodesic flow gt : T
1M → T 1M on the unit tangent bundle of a compact Riemannian

manifold M with constant negative curvature is an Anosov flow.

It may be interesting to say some words on what happens outside the curvature hypothesis, i.e., the

hypothesis that all sectional curvatures are bounded as follows:

−β2 ≤ K ≤ −α2,

where β ≥ α > 0 are constant.

Outside these hypothesis there are all sort of behavior: from a result due to Klingenberg from the

70’s (see [Kli74]), neither the sphere nor the torus admit Riemannian structures whose geodesic flows

are Anosov. This means that for positive curvature (such as in the case of the sphere), we could never

formulate a general result such as Theorem 13.
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If, instead of positive curvature, we allow non-negative curvature, one can find examples! Donnay

and Pugh present in [DP03] examples of embedded compact surfaces in R3 such that its geodesic flow is

Anosov. So in non-negative curvature we have both Anosov and non-Anosov behaviors.

In fact, the proper setting of the curvature hypothesis is indeed the one presented in Theorem 13. Even

in strictly negative curvature, there are counter-examples. In [MR20], Ítalo Melo and Sergio Romaña

show that there are a class of embedded surfaces in R3 negative curvature, but such that its geodesic

flow is not Anosov. The issue here is that either their curvature is unbounded bellow or is asymptotically

zero. In particular, the hypothesis on Theorem 13 are the correct ones, in the sense that we could find

counter-examples otherwise.

Example 13. Let S be a compact orientable surface with genus at least 2. It follows from Proposition

4.5, p.167 of [DF92], that we can endow it with a Riemannian metric with constant negative curvature.

This gives explicit examples of Anosov geodesic flows.

Since the suspension of an Anosov diffeomorphism is already an example of Anosov flow, one could

ask if the new and the old examples are, indeed, different.

Proposition 16. A geodesic flow on the unit tangent bundle T 1M of a n-dimension manifold M , is never

a suspension.

The proof of this fact follows from the following lemma:

Lemma 11. On T 1M , there is no codimension one smooth closed submanifold that is transverse to the

geodesic flow gt.

The proof of Lemma 11 we present here follows what is done in Lemma 2.52, in p.49 of [Pat12].

Before we start, we need to clarify one point: since dimT 1M = 2n− 1, T 1M has odd dimension and

hence, it cannot admit a symplectic form (and of course, cannot be a symplectic manifold). Instead, it

admits a contact form.

Definition 21 (Contact manifold). A 1−form α on an orientable manifold N of dimension 2n − 1 is

called a contact form if the (2n− 1)−form

α ∧ (dα)n−1

never vanishes. A pair (N,α) of an odd-dimensional manifold and a contact form is called a contact
manifold.

One can define a contact one form α on T 1M as follows: for θ = (p, v) ∈ T 1M and ξ ∈ TθT 1M we

set

αθ(ξ) = 〈ξ,G(θ)〉Sasθ = 〈dπθ(ξ), v〉p, (3.6)

where G is the geodesic vector field and π : TM →M is the canonical projection.

Proposition 17. The 1−form α and the symplectic form ω on TM are related by the following formula:

ω = −dα. (3.7)

Proof. For a proof, see Proposition 1.24 in [Pat12].
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Corollary 7. The 1−form α is a contact form on T 1M .

Proof. See Corollary 1.29 in [Pat12].

Given a contact manifold (N,α) there is an unique vector field X on N , that satisfies:ıXα = 1

ıXdα = 0
.

This vector field X called characteristic vector field (or Reeb vector field) and its flow is called charac-
teristic vector flow.

Note that the characteristic flow preserves α. Indeed, by Cartan’s magic formula, we know that

LXα = dıXα+ ıXdα = 0 where LXα stands for the Lie derivative. In particular,

0 = LXα =
d

dt

∣∣∣∣
t=0

(ϕ∗tα),

i.e., ϕ∗tα = α.

In the case N = T 1M and α is the contact form defined in (3.6), we have that the characteristic flow

of α is the geodesic flow. Indeed, for θ = (p, v) ∈ T 1M , we have

αθ(G(θ)) = 〈dπθ(G(θ)), v〉 = 〈v, v〉 = 1,

i.e., ıGαθ = 1. Also, for ξ ∈ TθT 1M , we have:

ıG(dαθ)(ξ) = dαθ(G(θ), ξ) = −ωθ(G(θ), ξ) = −dHθ(ξ) = 0,

since dHθ(ξ) = 〈Kθ(ξ), v〉 and since ξ ∈ TθTM lies in TθT 1M if and only if Kθ(ξ) = 0. From the

previous paragraph, the geodesic flow preserves the contact form α on T 1M .

Definition 22 (Liouville measure). The volume measure induced by the volume form α ∧ (dα)n−1 on

T 1M is called the Liouville measure. Whenever M has finite volume, the volume form α ∧ (dα)n−1 has

finite integral over T 1M and, hence, gives rise to a probability measure.

After introducing the contact form α on T 1M , we are ready to prove Lemma 11:

Proof of Lemma 11. Suppose Σ is a codimension one closed submanifold in T 1M and that Σ is transverse

to the geodesic flow gt, that is, at each point θ = (p, v) ∈ Σ ⊆ T 1M , we have:

TθT
1M = TθΣ⊕ 〈G(θ)〉.

Consider now the symplectic form ω on TM defined on (3.4). Let i : Σ → T 1M be the inclusion

map and let i∗ω denote the pull-back of the form ω by the inclusion i. We claim the pair (Σ, i∗ω) is a

symplectic manifold.

In order to prove the claim, recall that the geodesic vector field G is the characteristic vector field of

the contact form α, defined in (3.6). Since Σ is transverse to the geodesic flow, we have TΣ ⊆ kerα. In

fact, since α is a non-degenerate contact form:

dim kerα = (2n− 1)− 1 = dimTΣ,
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and hence TΣ = kerα.

On the other hand, for a contact form α, the restriction of dα to kerα is non-degenerate. Then, dα

restricted to Σ is symplectic. Since we know, from Proposition 17, that −dα = ω, the pair (Σ, i∗ω) is

symplectic.

A consequence of this conclusion is that, since Σ is a codimension one manifold in T 1M , and i∗ωn−1

is nondegenerate 2n− 2 form on Σ, i∗ωn−1 a volume form in Σ. So,∫
Σ
i∗ωn−1 6= 0.

On the other hand, by definition of ω, ωn−1 coincides (up to a sign) with (dα)n−1 = d(α ∧ (dα)n−2).

Then, since we are supposing Σ to be without boundary, Stokes’ theorem implies:∫
Σ
i∗ωn−1 =

∫
Σ
i∗
(
d
(
α ∧ (dα)n−2

))
=

∫
Σ
d
(
i∗d
(
α ∧ (dα)n−2

))
=

∫
∂Σ
i∗d(α ∧ (dα)n−2) = 0,

i.e.,
∫

Σ i
∗ωn−1 = 0. This is a contradiction.

Proof of Proposition 16. Suppose, by contradiction, that the geodesic flow gt : T
1M → T 1M is a

suspension flow, i.e., that there exists a diffeomorphism f : Σ → Σ from a n − 1-dimensional closed

manifold to itself such that:

(i) T 1M = Σ×R/ ∼, where∼ is the equivalence relation defined in the construction of the suspension

flow (in Subsection 3.1);

(ii) the geodesic vector field X = ∂gt
∂t is transverse to Σ;

(iii) the Poincaré map of gt is conjugated to f .

Since Σ ' Σ × {0}, we can think of Σ as a codimension one closed submanifold in T 1M . By

property ii above, the vector field X is transverse to Σ, providing a contradiction with Lemma 11. Hence,

the geodesic flow on T 1M can never be a suspension of a diffeomorphism.

Figure 3.6: A small portion of the manifold Σ̃, for small ε > 0.
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As we claimed at the very end of Subsection 3.1, we now prove that an Anosov geodesic flow is an

example of a transitive flow.

Theorem 14. An Anosov geodesic flow gt : T
1M → T 1M is always transitive.

Proof. From Theorem 11, proving gt is transitive is equivalent as showing that Ω(ϕ) = M . Since the

geodesic flow is a Hamiltonian flow, Corollary 5 implies that the Liouville measure µ on T 1M is invariant

by gt, i.e., (gt)∗µ = µ.

From Poincaré Recurrence Theorem, µ−almost every point in M is recurrent for gt.3 Since, the

Liouville measure µ has full support, i.e., supp (µ) = M , we have:

M = supp (µ) = Rec (gt) ⊆ Ω(gt) ⊆M,

and then Ω(gt) = M , proving the claim.

At this point, we presented two examples of Anosov flows: the geodesic flow on negatively curved

manifolds and the suspension flow of an Anosov diffeomorphism. Proposition 16 shows that they are,

indeed, two different examples. However, one can ask whether they are dynamically different: can they

be topologically conjugated?

The next chapter is devoted to prove a theorem that show this question has a negative answer. Placing

together Theorem 14 with two results from next chapter (namely Theorem 15 and Proposition 19), we

prove that an Anosov geodesic flow is topologically mixing. This is never the case of a suspension flow

with constant height function, as we will discuss in further detail through Chapter 4.

The case of surfaces and the horocycle flow

Whenever the manifold M is a 2−dimensional surface S, the geodesic flow acts on the 3−dimensional

manifold T 1S. If we also ask for S to have constant negative curvature, Corollary 6 implies that the

geodesic flow gt : T
1S → T 1S is an Anosov flow.

Since it is an Anosov flow, the tangent bundle of T 1S admits a decomposition of the form

T (T 1S) = Eu ⊕ Ec ⊕ Es,

on unstable, center, and stable spaces. The Stable Manifold Theorem (Theorem 5) guarantees that, through

each point (x, v) ∈ T 1S, we have well-defined 1−dimensional integral manifolds to Eu and Es: the

unstable and stable manifolds W u(x, v) and W s(x, v).

These can be parametrized as flows that we call stable and unstable horocycle flows, respectively.

By calling the stable horocycle flow hs : T 1S → T 1S, we have the interesting property that relates it

with the geodesic flow gt:

Proposition 18. Let θ = (p, v) ∈ T 1S and s, t ∈ R. Then,

gt ◦ hs ◦ g−t(θ) = hse−t(θ).

Proof. For a proof see, for example, Property 3.3, p. 119, in [Dal10].

3See, for example, Theorem 1.2.4 on [VO16].
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CHAPTER 4

Minimality of invariant manifolds

In the spirit of the examples given in the previous chapter, we keep on studying transitive Anosov flows.

There, we introduced two different examples of Anosov flows: the geodesic flow on negatively curved

manifolds and the suspension flow of an Anosov diffeomorphism. From Proposition 16 we concluded that

they are, indeed, two different examples. In this chapter we prove even more: that their dynamic are also

of a different nature.

The main theorem of this Chapter 4 establishes a dichotomy for transitive Anosov flows. It shows

that such a flow is a suspension flow, or that it is minimal, i.e., that the leafs of the stable and unstable

are dense. Next we show that this minimality property implies the topologically mixing property. As a

consequence, we conclude that a geodesic Anosov flow is topologically mixing and, therefore, cannot be

topologically conjugated to a suspension flow.

Throughout this Chapter 4, M will be a closed and connected Riemannian manifold and ϕt : M →M

an Anosov flow of class Cr (with r ≥ 1) on M . We remember that, by definition of Anosov flow, there

exists a ϕt−invariant decomposition

TM = Eu ⊕ Ec ⊕ Es,

i.e., each subspace Eu, Ec and Es, is preserved by dϕt, Ec is the space generated by the vector field

associated to the flow, and the vectors on Eu are exponentially expanded by dϕt and the vectors on Es

are exponentially contracted by dϕt. Remember also that the spaces Eu and Es are called unstable and

stable spaces, respectively.

By the Stable Manifold Theorem (see Theorem 5 above), we know that each of these tangent bundles

are uniquely integrable and give rise to foliations tangent to it. For each bundle we have the analogue

foliation as follows:

Bundle Foliation

Eu ⊕ Ec Fu

Es ⊕ Ec Fs

Eu Fuu

Es Fss

Now, since the bundles are originated by the dynamics of the Anosov flow ϕt, it would be a natural

work to look out for this new interplay between that flow and the foliation we have obtained by integrating
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those tangent bundles. On that direction, J. Plante shows on his 1972 paper [Pla72] an interesting property

that each leaf of these foliations must satisfy:

Theorem 15. Let ϕt : M →M be an Anosov flow on a compact and connected Riemannian manifold. If

ϕt is transitive then all (weak) stable and unstable manifolds are dense on M and, if some strong stable

or unstable manifold is not dense, then ϕt is the suspension of diffeomorphism defined on a codimension

one compact submanifold.

Note that Theorem 15 reveals a striking difference between transitive Anosov flows and transitive

Anosov diffeomorphisms. Indeed, as we show in Appendix A, for a transitive Anosov diffeomorphism

f : M →M , every stable and unstable manifolds are dense onM (i.e., f is minimal) and f is topologically

mixing.

Warning: during the text we will call a flow minimal in two different contexts. It will

have the meaning that all its orbits are dense, that is the notion for a general dynamical

system. Also, it will have the meaning that all stable and unstable leafs are dense, that

will be used for Anosov flows. Observe that an Anosov flow cannot be minimal in the

sense that all its orbits are dense, since it has periodic points. From the context, it will be

clear to which meaning we are referring to.

As Theorem 15 indicates, the case for flows may be different. In Example 10 we have seen that

indeed there are examples of transitive Anosov flows that are the suspension flow of some diffeomorphism.

Whenever that is the case, the flow cannot be mixing. More precisely we have the following propositions:

Proposition 19. Let ϕt : M → M be a transitive Anosov flow on a closed and connected Riemannian

manifold M . If ϕt is minimal, then ϕt is topologically mixing.

Proof. The proof of this proposition is very similar to what is done in the case of diffeomorphisms. In

fact, we simply adapt the proof given in Appendix A for Theorem 26.

Lemma 12. If every (strong) unstable manifold is dense inM , then for every ε > 0 there isR = R(ε) > 0

such that every ball of radius R in every (strong) unstable manifold is dense on M .

Proof. Let x ∈M and notice thatW uu(x) =
⋃
R>0W

uu
R (x), whereW uu

R (x) represents the local (strong)

unstable manifold of diameter R around x. Since W uu(x) is dense, there is R(x) > 0 such that W uu
R(x)(x)

is ε/2−dense on M . Moreover, since the foliation W uu is continuous, there exists a δ(x) > 0 such that

W uu
R(x)(y) is ε−dense for all y ∈ Bδ(x)(x).

Since we are supposingM compact, there is a finite subcollectionB′ of the collectionB := {Bδ(x)(x) |
x ∈M} that still covers M . By taking R to be the maximum R(x) associated with the balls on B′, we

obtain an uniform radius R such that every R-ball in some unstable manifold is dense on M .

Now let U, V ⊆M be non-empty open sets and x ∈ U . Inside U , consider D ⊆W uu(x)∩U a small

disc of (strong) unstable manifold; and inside V consider a small ball Bε of radius ε.

SinceD lies inside the (strong) unstable foliation there is λ > 1 such that d(ϕt(x), ϕt(y)) > λtd(x, y)

for all t ∈ R and all x, y ∈ D. So, there exists T > 0 such that diam (ϕT (D)) > 2R. Hence, by Lemma

12 above, ϕT (D) is ε−dense on M . Therefore, ϕT (D) ∩Bε 6= ∅ and, in particular, ϕT (U) ∩ V 6= ∅.
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Moreover, since ϕT (D) ⊆ ϕt(D) ⊆W uu(x) for all t > T ,

diam(ϕt(D)) > diam(ϕT (D)) > 2R,

for all t > T . And then, ϕt(U) ∩ V 6= ∅ for all t ≥ T , proving that ϕ is topologically mixing.

On the other hand, as we have proved in Proposition 8, if we know that ϕt is the suspension flow of

an Anosov diffeomorphism, then it cannot be topologically mixing.

Throughout the rest of this Chapter 4 we present the proof of Theorem 15, that is given in [Pla72].

4.1 Density of (weak) invariant manifolds

In this section we prove the first part of our claim:

Theorem 16. Let M be a compact and connected Riemannian manifold and ϕt : M →M be an Anosov

flow of class Cr (with r ≥ 1) on M . If Ω(ϕt) = M , then:

W s(x) = W u(x) = M,

for all x ∈M .

Proof. We prove the theorem for W u(x) (the stable case is similar). Since we are assuming the manifold

M to be connected, we restrict ourselves to prove that the closed non-empty set W u(x) is also open.

In order to do that, let z ∈ W u(x) and let N(z) ⊆ M be a product neighborhood for z in M . We

shall prove that

Per (ϕ) ∩N(z) ⊆W u(x)

and to do so, consider p ∈ Per (ϕ) ∩N(z) (which exists by Corollary 4). Moreover, let q ∈ N(z) be the

intersection point of W s
loc(p) and W uu

loc (z), i.e., {q} = W s
loc(p) ∩W uu

loc (z).

Figure 4.1: The product neighborhood N(z).

Since p ∈ Per (ϕ) and q ∈W s
loc(p), the ω−limit set of q coincides with the orbit of p:

ω(q) = O(p),
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and hence p ∈ ω(q). On the other hand, since q ∈W uu
loc (z) we obtain q ∈W u(z) ⊆W u(x) and, because

W u(x) is saturated by the flow ϕt, we must have ω(q) ⊆W u(x). Now, since p ∈ ω(q), we conclude that

p ∈W u(x).

Hence, we have shown that for every point z ∈W u(x) there is an open neighborhood N(z) such that

N(z) ⊂ N(z) = Per (ϕ) ∩N(z) ⊆W u(x),

proving that W u(x) is, more than a non-empty closed subset of M , also an open one. This shows that

W u(x) = M .

4.2 Minimality of the strong unstable foliation

The minimality of the strong stable and unstable manifolds is a little more subtle: it may not even occur.

However, if this happens in our setting, we have a side effect that may be useful in several occasions1:

Theorem 17. Let M be a compact and connected Riemannian manifold and ϕt : M →M be an Anosov

flow of class Cr (with r ≥ 1) on M . If Ω(ϕt) = M , then there are exactly two possibilities:

(i) The strong unstable (stable) manifolds through every point x ∈M is dense on M , i.e.,

W uu(x) = M,

for every x ∈M ;

(ii) If there exists x ∈ M such that W uu(x) 6= M , then there exists an Anosov diffeomorphism

f : K → K on a compact codimension one C1-submanifold K ⊂M such that the Anosov flow ϕt

is a suspension of this diffeomorphism.

The proof is a little bit long and follows through several steps, which we state without proof for a

moment in order to prove this Theorem 17. The theorem states a dichotomy, so let’s suppose that there

exist such a point x ∈M such that its strong unstable manifold is not dense, i.e., such that W uu(x) 6= M .

(a) First of all we can suppose that x is, in fact, a periodic point of ϕt, since

Lemma 13. If W uu (p) is dense on M for all periodic point p then W uu (x) is dense on M for all

x ∈M .

Since we’re supposing that there exists a point x ∈M such that W uu(x) 6= M , this Lemma implies

the existence of a periodic point p ∈ M such that W uu(p) 6= M , i.e., there exists a point p ∈ Per (ϕ)

such that its strong unstable manifold is not dense on M .

(b) In this case, where there exists p ∈ Per (ϕ) such that W uu(p) 6= M , we obtain a fibration:

Lemma 14. If p ∈ Per (ϕ) is such that W uu(p) 6= M , then:

• M is a fiber bundle;

• with base space S1;
1See, for instance, Section 4.4.
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• with fiber K = W uu(p);

• and ϕt is the suspension flow of an homeomorphism f : K → K.

It is important to notice that this lemma does not resume the proof of Theorem 17: at this point, this

fibration only exists at the topological level and we still want two major improvements. First we must

check that the set K = W uu(p) is, in fact, a compact C1-submanifold of codimension one in M ; second,

we need f to be an Anosov diffeomorphism. In order to complete the proof we need two more lemmas:

(c) The first one translate the condition W uu(p) 6= M that has to do with a single leaf with a global

property on the whole foliations Fuu and Fss:

Lemma 15. If some strong unstable (stable) manifold is not dense on M , then the foliations Fuu

and Fss are jointly integrable.

(d) The second and last lemma allow us to obtain an integrability condition on the bundle we are studying:

Lemma 16. The foliations Fuu and Fss are jointly integrable if and only if the splitting Eu ⊕Es is

integrable.

In possession of the Lemmas 13, 14, 15 and 16 we are able to prove Theorem 17:

Proof of Theorem 17. By Lemma 16 we obtain a codimension one foliation on M tangent to Eu ⊕Es.
Consider a leaf L of this foliation such that L ⊆W uu(p) = K. We will prove that L = K.

Since W uu(p) ⊂ L, it is clear that L = K, so we only need to check that L is a closed subset of M ,

or equivalently since M is a compact manifold, we only need to see that L is compact. Suppose that is

not the case, i.e., that exists a point x ∈ L \ L and a pair of points u and v in L that are both near x on M

but are very far from each other on L, as in Figure 4.2 bellow.

Figure 4.2: The points u and v on L and x on L \ L.

Since TL = Eu ⊕Es, the flow ϕt is transverse to L and hence we can refine our choice on u and v

in such a way that ϕt(u) = v for some t > 0 small (as in Figure 4.3). Hence, in one direction, we have

v ∈ L ⊆ K; on the other hand, v = ϕt(u) ∈ ϕt(K). So, ϕt(K) ∩K 6= ∅. This is a contradiction with

Lemma 14. Therefore, L = K.

We have concluded that K is a closed leaf of a codimension one Cr-foliation, with r ≥ 1, and

therefore a compact codimension one C1-submanifold of M . Last, we claim that f : K → K is an

Anosov diffeomorphism.

To see that, notice that f is the restriction of ϕt to the closed submanifold K ⊂ M and, hence, f

is a local diffeomorphism. It will follow from the proof of Lemma 14 that, if ϕt(K) ∩ K 6= ∅, then
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Figure 4.3: Refining the choice of u and v.

ϕt(K) = K. Hence, f is surjective and this implies that f : K → K is a diffeomorphism. Additionally,

since TxK = Eu(x)⊕ Es(x), K is a hyperbolic set for f and so, f is an Anosov diffeomorphism which

has suspension flow ϕt.

4.3 Proofs of the lemmas

Lemma 13

Lemma. If W uu (p) is dense on M for all periodic point p then W uu (x) is dense on M for all x ∈M .

Given an arbitrary leaf W ∈ Fuu, we need to show that W = M . In other words, given an arbitrary

point x ∈M and ε > 0 we need to show that every leaf W ∈ Fuu intersects Bε(x). To do so we shall

use the compactness of M , the density of the periodic points of ϕt and the hypothesis that W uu (p) is

dense on M for all periodic point p.

These hypothesis will guarantee a finite covering of M with balls centered on periodic points. An

important step of the proof is to find an instant t such that each ball Buu
ε (pi) of the covering intersects the

fixed ball Bε(x) at the same time.

To do so, we need a beautiful result from Number Theory that generalizes the approximation of a real

number by rationals to a more general setting, namely: given a m× n matrix A ∈Mm×n(R) with real

entries and an arbitrary real number ε > 0, are there lattice points k ∈ Zn and h ∈ Zm such that the rows

of Ak and h are arbitrarily close? As in the case where A is a real number, the answer is yes. We reserve

the Appendix B to answer this question and the consequence of this fact that is used to prove Lemma 13.

Proof. We need to show that fixed x ∈M and an ε−ball Bε(x) around it, every leaf W of Fuu intersects

Bε(x). This is the path we follow.

For r > 0, we shall call Nr(x) the following open set containing x:

Nr (x) =
⋃

y∈Buu
r (x)

Bs
r (y) .

It follows from Theorem 6 that, given such r > 0 there exists δ = δ (r) such that Bδ (x) ⊂ Nr (x)

for all x ∈M . It is worth noticing that δ doesn’t depend on x ∈M : it follows from the Stable Manifold

Theorem (Theorem 5 above) that the size of the embedded discs is uniform regarding to x. Now, fix r > 0

and let δ = δ (r) be the associate δ.

Observe that, given δ > 0 and the open cover
⋃
y∈M Bδ/2 (y) for M , there is a finite subcover⋃k

i=1Bδ/2 (yi) of M . Now, since the set of periodic points is dense on M , in each of the balls Bδ/2 (yi)

there is a periodic point pi and hence,

Bδ/2 (yi) ⊆ Bδ (pi) ,
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and then M =
⋃k
i=1Bδ (pi).

By hypothesis, we know that W uu(pi) is dense for every i = 1, . . . , k. In particular, this leads to the

conclusion that {ϕt (Buu
r (pi)) | t ∈ R} is dense on M for each i and, hence, intersects Br(x) eventually.

The next claim says that we can obtain an uniform time t such that the image of Buu
r (pi) by the flow

intersects Br(x) at the same t for all i = 1, . . . , k.

Claim. There exists t > 0 such that

ϕt (Buu
r (pi)) ∩Br (x) 6= ∅,

for all i = 1, . . . , k.

Proof. By hypothesis, W uu (pi) = M for all i = 1, . . . , k. So, there is T > 0 such that Buu
T (pi) ∩

Br (x) 6= ∅. By continuity of the foliation and since we are dealing with a finite number of points

{p1, . . . , pk}, exists λ ∈ (0, 1) small enough such that, if ti is the period of the point pi by the flow, then:

|t| < λti =⇒ ϕt (Buu
T (pi)) ∩Br (x) 6= ∅, (4.1)

for all i = 1, . . . , k.

Now, consider the diffeomorphism ϕti : M → M . Since the strong stable and strong unstable

manifolds are invariant by it, we obtain:

lim
n→∞

diam (ϕnti (Buu
r (pi))) =∞.

Since Buu
T (pi) is a bounded subset on W uu (pi) that contains pi and since mti is always a multiple

of pi’s period for m ∈ N, the set ϕmti (Buu
r (pi)) always contains pi. Hence, there is a ni ∈ N such that,

if m ≥ ni, then

Buu
T (pi) ⊆ ϕmti (Buu

r (pi)) . (4.2)

We now need the approximation lemma from Number Theory that we mentioned before the proof and

that we prove at Appendix B:

Lemma. For all λ, t1, . . . , tN ∈ (0,+∞) and n0 ∈ N, there are n1, . . . , nN ≥ n0 and t ∈ R such that

|niti − t| < λti,

for all i = 1, . . . , N.

The above lemma guarantees the existence of t ∈ R such that |t− niti| < λti, for all i = 1, . . . , k.

Writing t = niti + εi, we obtain |εi| < λti. By noticing that ϕt (Buu
r (pi)) = ϕεi (ϕniti (Buu

r (pi))), it

follows from (4.2) that ϕεi (Buu
T (pi)) ⊆ ϕt (Buu

r (pi)) .

By the implication (4.1) above, it follows that ϕεi (Buu
T (pi)) ∩Br (x) 6= ∅ and, therefore,

ϕt (Buu
r (pi)) ∩Br (x) 6= ∅,

for all i = 1, . . . , k. This proves the claim.
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Back to the proof of Lemma 13, fix t > 0 given in the Claim we have just proven and consider

ϕ−t (W ) ∈ Fuu, where W is an arbitrary leaf of Fuu. Since M =
⋃k
i=1Bδ (pi), there is j (1 ≤ j ≤ k)

such that ϕ−t (W ) ∩Bδ (pj) 6= ∅. Moreover, the Claim implies ϕt (Buu
r (pj)) ∩Br (x) 6= ∅, i.e., there

exists qj ∈ Buu
r (pj) such that d (ϕt (qj) , x) < r, for each j.

Also notice that, being Bδ (pj) ⊆ Nr (pj), we have ϕ−t (W )∩Nr (pj) 6= ∅ and, by Theorem 6, there

is an unique point y ∈ ϕ−t (W ) ∩W s
loc (qj). Therefore, by applying the flow to qj and y, the distance

between these two points does not increase. So, if d (qj , y) < r it follows that d (ϕt (qj) , ϕt (y)) < r,

and then:

d (x, ϕt (y)) ≤ d (x, ϕt (qj)) + d (ϕt (qj) , ϕt (y)) < 2r.

Since ϕt (y) ∈W , we have shown that W ∩B2r (x) 6= ∅, for an arbitrary r > 0, and this concludes

the proof of Lemma 13.

Lemma 14

Before proving Lemma 14, we need a general statement on flows acting on metric spaces:

Lemma. Let (M,d) be a compact metric space and ϕ : R×M →M a continuous flow. If K ⊆M is

compact, then

U :=
⋃

a≤t≤b
ϕt (K)

is closed.

Proof. Let p ∈ U . There are ϕtn (xn) with tn ∈ [a, b] and xn ∈ K such that

ϕtn (xn)→ p.

Since K is compact, there exists a subsequence xnk
converging to some x ∈ K as k → +∞. Again

by compactness, there is some subsequence tnkj
, now of (tnk

)k, which converges to some t ∈ [a, b].

By the flow’s continuity, the sequence ϕtnkj
(xnkj

) converges to ϕt (x). Since it also converges to p,

we conclude that ϕt (x) = p ∈ U , showing that U ⊆ U , and hence that U is a closed set.

We now are able to prove Lemma 14:

Lemma. If p ∈ Per (ϕ) is such that W uu(p) 6= M , then:

• M is a fiber bundle;

• with base space S1;

• with fiber K = W uu(p);

• and ϕt is the suspension flow of an homeomorphism f : K → K.

Proof. Let τ ∈ N be the period of the point p through ϕ. Since W uu(p) is invariant by ϕτ , we have:⋃
t∈R

ϕt (W uu(p)) ⊆
⋃
t∈R

ϕt

(
W uu(p)

)
=

⋃
0≤t≤τ

ϕt

(
W uu(p)

)
.
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Since, by the previous Lemma,
⋃

0≤t≤τ ϕt

(
W uu(p)

)
is closed and, by Theorem 16, W u(p) is dense

on M , we obtain:

M =
⋃

t0≤t≤τ
ϕt

(
W uu(p)

)
.

Now, let K ⊂W uu(p) be a non-empty minimal set with respect to the following conditions:

(i) K is a closed subset of M ;

(ii) K is Fuu−saturated;

(iii) K is invariant by the ϕτ , i.e., ϕτ (K) = K.

The existence of a non-empty set K ⊂ W uu(p) satisfying properties (i), (ii), and (iii) above, is

guaranteed by Zorn’s Lemma. Now define U :=
⋃
t∈[0,τ ] ϕt(K). We claim that U = M .

In order to see that we notice that K is ϕt−invariant, Fu−saturated (since K is Fuu−saturated) and

closed (by compactness of M and by the flow’s continuity). Moreover, being U non-empty and being Fu

a minimal foliation (by Theorem 16), we must have U = M .

At this point, we know that U :=
⋃
t∈[0,τ ] ϕt(K). However, to prove Lemma 14, we still need to put

some effort on checking two important assertions:

(a) the union in U is, in fact, disjoint: ⋃
t∈[0,τ ]

ϕt(K) =
⊔

t∈[0,τ ]

ϕt(K);

(b) the minimal set K is actually W uu(p).

The statement (b) is pretty direct: since p ∈ K and since K is Fu−saturated, we must have

W uu(p) ⊆ K. Therefore, since W uu(p) satisfies (i), (ii) and (iii), we conclude by minimality, that we

must have W uu(p) = K.

To prove (a), let t ∈ [0, τ ] be such that

Kt := K ∩ ϕt(K) 6= ∅.

Since ϕt(K) is closed, ϕτ−invariant, and Fuu−saturated (by the invariance of the strong unstable

foliation by ϕt), minimality implies K ⊆ Kt. In particular, this leads to K ⊆ ϕt(K) and hence

ϕ−t(K) ⊆ K.

Naturally, the set ϕ−t(K) also satisfies the properties (i), (ii) and (iii), and by minimality we have

K ⊆ ϕ−t(K) and hence:

K = ϕt(K).

So now, we have the information that K = ϕt(K) is equivalent to K ∩ϕt(K) 6= ∅. With expectations

that this equivalence leads to something, define:

G = {s ∈ R | K ∩ ϕs(K) 6= ∅}

= {s ∈ R | K = ϕs(K)} .
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This set is clearly non-empty since 0 ∈ G and, in fact, it is an additive subgroup of (R,+). Indeed, if

a, b ∈ G, then

ϕa+b(K) = ϕa (ϕb (K)) = ϕa (K) = K

and

ϕ−a (K) = ϕ−a (ϕa (K)) = K.

Consider now s0 = inf (G ∩ R>0). We claim that s0 = τ . To prove it, one should ask what cannot

occur: the only thing that could happen to make the claim false is that s0 = 0; otherwise, if s0 > 0 then

s0 = τ , since τ is the period of p ∈ K.

So, suppose by absurd that s0 = 0. In particular, assume that G accumulates at 0. Being an additive

subgroup of R, this implies G = R. We are going to show that actually, in this case, G = R. To do so,

consider t̃ ∈ R and a sequence (tn)n ⊆ G with tn → t̃. Since tn ∈ G for every n ≥ 1, we have

ϕtn(K) = K,

for all n ≥ 1. Since the flow is continuous and K is a compact set (it is closed on M ), we conclude that:

dH (ϕtn(K), ϕt̃(K))→ 0

as n→∞ (here dH is the Hausdorff’s distance on M ). So, ϕt̃(K) = K and then G = R.

By definition, we have just proven that ϕt (K) = K for all t ∈ R and, in particular, that

K =
⋃
t∈R

ϕt (K) .

Since ϕt (K) is Fu−saturated and since the union of saturated sets is still saturated, we conclude that

along with non-empty and closed, K is also Fu−saturated. So, applying Theorem 16 once more, we

conclude that K = M .

However, this cannot occur! Since K ⊂W uu(p), if K = M , we would conclude that W uu(p) = M ,

a contradiction with the hypothesis of this Lemma 14. So, 0 < s0 and as discussed above, s0 = τ . This

shows that ⋃
t∈R

ϕt(K) =
⋃

t∈[0,τ ]

ϕt(K) =
⊔

t∈[0,τ ]

ϕt(K).

To conclude the proof of this Lemma, we only need to observe carefully what we have done: first, by

these observations a and b we have

M =
⊔

t∈[0,τ ]

ϕt(K),

since U =
⋃
t∈[0,τ ] ϕt(K) is a non-empty, closed, and Fu−invariant set. Moreover, if we consider

the projection from M to S1 given by the map which associates ϕt(K) 7→ t (mod r) and the maps

h = ϕτ |K , to get the fibration and homeomorphism claimed at the Lemma’s statement.

Lemma 15

To give a complete proof of Lemmas 15 and 16, and hence to establish Theorem 17, we need to define

what are jointly integrable foliations.

Let N = G (Bs
δ (x)×Buu

δ (x)) be a product neighborhood of a point x ∈ M as in Theorem

6. If y and z are at the same strong unstable manifold on N , then there exists δ′ > 0 such that the

Fy,z : Bs
δ′ (y)→ Bs

δ (z) given by the projections onto the strong unstable manifolds is well defined.
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Definition. The foliations Fuu and Fss are said to be jointly integrable on N if, for y, z and δ′ as above,

we have:

Fy,z (W ss (u) ∩Bs
δ′ (y)) ⊆W ss (Fy,z (u)) ∩Bs

δ (z)

where u ∈ Bs
δ′ (y) . Moreover, we say that Fuu and Fss are jointly integrable if each point on M belongs

at a product neighborhood N where both Fuu and Fss are jointly integrable. In this last case we also

call the bundles Eu and Es jointly integrable.

At this point we should observe that the knowledge of a foliation to be jointly integrable gives extra

information on the holonomy Fy,z . Whenever u ∈ Bs
δ′(y) and we consider the image of the strong stable

leaf through u by the holonomy, we obtain a continuous curve. At first, this curve do not need to be at the

strong stable leaf through Fy,z(u). To ask that the foliation is jointly integrable is precisely to ask, in fact,

this curve is entirely contained on the strong stable leaf through Fy,z(u).

Figure 4.4: Fyz(W ss(u)) 6= W ss (Fyz (u)), i.e., non-jointly integrable foliations.

We now are able to prove Lemma 15, which claimed:

Lemma. If some strong unstable (stable) manifold is not dense on M , then the foliations Fuu and Fss

are jointly integrable.

Proof. By Corollary 4 there is a point p ∈ Per (ϕ) such that W uu(p) 6= M , and therefore we are in

conditions to apply Lemma 14 and then think of M as a fiber bundle with fiber K = W uu(p).

That K is Fuu−saturated it is clear. Here we are going to show that K is also Fss−saturated and

then show that this two conditions happening simultaneously implies jointly integrability.

To see that K is indeed Fss−saturated, we proceed by contradiction: suppose that is not the case, i.e.,

that there exists a point v ∈ K such that Fss(v) 6⊆ K. Therefore exists another fiber K ′ = ϕt(K) for

some t ∈ (0, τ), such that

Fss(v) ∩K ′ 6= ∅.

Pick a point u ∈ Fss(v) ∩K ′, as in the Figure 4.5 bellow.

Now, we use the homeomorphism h : K → K defined in Lemma 14. Since h = ϕτ |K , the map h

sends fiber to fiber we have, in one hand:

d (hn(u), hn(v)) ≥ dH
(
K ′,K

)
> 0.
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Figure 4.5: u ∈ Fss(v) ∩K ′

However, since u ∈W ss(v) we must have d (hn(u), hn(v))→ 0 as n→∞. This provides a contradic-

tion and shows that K is also Fss−saturated.

Now we wish to prove that the fact that K is both Fuu−saturated and Fss−saturated, implies that

the foliations Fuu and Fss are jointly integrable. To do that suppose, once again, the opposite: that

they are not jointly integrable. Then there are y, z ∈ M such that Fyz(W ss(y)) 6= W ss (Fyz (z)), for

z ∈W uu
loc (y).

Figure 4.6: The failure of jointly integrability.

Since K is simultaneously Fuu and Fss saturated, the sets W uu
loc (y) and Fyz(W uu

loc (y)) are both

contained in the same fiber, since Fyz is the holonomy map and just moves W uu
loc (y) along Fuu.

Now, for small enough t, if we apply the flow to Fyz(W uu
loc (y)), we must have

ϕt (Fyz(W
uu
loc (y))) ∩W ss (Fyz(y)) 6= ∅,

(see Figure 4.7) and hence ϕt(K) ∩K 6= ∅, a contradiction. Hence, Fuu and Fss are jointly integrable.

Lemma 16

Finally, to prove Lemma 16, we remember Definition 4, where we define what means a foliation to be

integrable:

Definition. Let M be a smooth manifold and let E ⊆ TM be a continuous subbundle of the tangent

bundle. We call E integrable if it is the tangent bundle of a C0,1-foliation, i.e., a C0 foliation with C1

leafs.

Lemma. The foliations Fuu and Fss are jointly integrable if and only if the splitting Eu ⊕ Es is

integrable.
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Figure 4.7: Applying the flow to Fyz(W uu
loc (y)) for small enough t.

Proof. If Eu ⊕ Es is integrable, is quite straightforward to see that Fuu and Fss are jointly integrable.

Indeed, call T (Fus) = Eu ⊕ Es. Since the holonomy of W ss(x) trough Fuu is tangent to Es, it follows

that Fxz(W ss(x)) = W ss(Fxz(x)), for z ∈W uu(x). Since x and z were taken arbitrarily, it follows that

Fuu and Fss are jointly integrable.

Reciprocally, suppose the foliations are jointly integrable. Then, through each point x ∈ M there

exists an embedded C1-submanifold of M , say Lx, such that its tangent space Tx(Lx) is Eux ⊕ Esx. What

we need to do is to check that this collection of C1-submanifolds is, in fact, a foliation.

To do so, call by F such a collection. We are going to construct a foliated chart to F . To do so,

through each point x0 ∈ M , consider η a C1−embedding of an open disk B(x0) of Lx0 around x0 to

Rn−1.

Applying the flow to B(x0) for small enough δ > 0 we obtain an open set U :=
⋃
|t|<δ ϕt(B(x0)) in

a way that the flow map B(x0)× (−δ, δ)→ U defined by (x, t) 7→ ϕt(x) is an diffeomorphism onto its

image.

Moreover, since dϕt(Eux ⊕ Esx) = Euϕt(x) ⊕ E
s
ϕt(x), the flow sends “leafs”2 in F to “leafs” in F . So,

defining the map ψ : U → Rn−1 ×R by ψ (ϕt(x)) = (η(x), t), we obtain a C1−foliated chart around x0

in M . Now, varying x0 ∈M , gives a C1−foliation F tangent to Eu ⊕ Es. Thus, is integrable.

4.4 Horocycle flows are minimal

Theorem 15 shows that a transitive Anosov flow on a compact Riemannian manifold is minimal or is a

suspension flow. This has a very nice implication in the case of geodesic flows:

Theorem 18. The horocycle flow associated to a geodesic flow gt : T
1S → T 1S on the unit tangent

bundle a surface of constant negative curvature is minimal.

Proof. Indeed, since W uu(x) = {hs(x) | s ∈ R} and since gt cannot be a suspension flow, Theorem

15 implies that W uu(x) is dense for every x ∈ M or, equivalently, the orbit of x by hs, i.e., Oh(x) =

{hs(x) | s ∈ R} is dense for every x ∈M . This shows that hs is a minimal flow.

2At this point we don’t know already that the elements of F are leafs of a foliation.
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CHAPTER 5

Unique ergodicity of the horocycle
Flow

We now establish an important property of the horocycle flow: an ergodic one. In order to do so, we need

to analyze finer structure of measures on M that are invariant under a flow ψs : M →M that is transverse

to a foliation F on M .

Recall that, if ϕt : M →M is an Anosov flow on a closed Riemannian manifold M , we have a local

product structure onM . In particular, there are foliated charts on which the plaques are unstable manifolds

and charts on which the plaques are strong stable manifolds, transverse to the previous one.

Figure 5.1: A product neighborhood with transverse leafs from Fu and Fss.

Throughout this Chapter we will study measures that respect this local product structure.

Definition 23. We say a measure µ has a local product structure if, in a small enough foliated chart

V = L× I ⊆M , with L ∈ F , the measure µ can be disintegrated, up to renormalization of the measures,

as ∫
V
f dµ =

∫
I

∫
L
f(x, s) dνs ds,

for all f ∈ C0(M). Here, ds is the Lebesgue measure on I and the νs are probability measures on L that

vary measurably on s.

With that definition in hands we can state the main theorem of this chapter:
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Theorem 19. Let gt : M → M be an Anosov flow on a compact Riemannian manifold such that the

stable foliation W ss(x) has constant dimension equal 1. Suppose, moreover, that the stable foliation W ss

is parametrized by a continuous flow hs : M →M , that the volume measure µ on M is invariant under

both flows gt and hs, that µ has local product structure and that

gt ◦ hs = hse−t ◦ gt,

for every t, s ∈ R.

Then, if hs has a dense orbit, it is uniquely ergodic.

We follow a very elegant proof by Yves Coudène [Cou09]. Surely the flow gt mimics the geodesic

flow, which has all the properties on the theorem, as we shall see bellow.

The proof presented here follows from a series of lemmas. Being a theorem on ergodicity, we recall

the definition Birkhoff sums associated, now associated with the flow hs:

St(f)(x) =

∫ t

0
f (hs (x)) ds,

where f : X → R is a continuous function. Through this Chapter, unless stated otherwise, the expression

St(f)(x) will always refer to the Birkhoff sum associated with the flow hs.

To make the proof of the main theorem of this Chapter clearer, we restate Proposition 7 from Chapter

2 as a Lemma, and stated specifically to the flow hs:

Lemma 17. If, for every sequence (tk)k with tk → +∞ such that the uniform limit

lim
k→+∞

1

tk
Stk(f)

exists, the limit function is constant, then hs is uniquely ergodic.

So, the main work is to show that, with the hypothesis on the theorem, we can achieve the hypothesis

of this Lemma 17. Since we have proven Lemma 17 as Proposition 7 in Chapter 2, it will imply unique

ergodicity of hs.

To see that the hypotheses of Theorem 19 implies the hypothesis of Lemma 17 we use following chain

of lemmas:

Lemma 18. LetM = {Mt(f)}t>0 be a family of functions defined by

Mt(f)(x) =

∫ 1

0
f (g− ln t (hs(x))) ds.

ThenM is equicontinuous and each of its accumulation point on C0(X) is a constant function.

Lemma 19. With respect to St(f) we have:

(1) the family S =
{

1
tSt(f)(x)

}
t>0

has compact closure on C0(X);

(2) each accumulation point of S is constant.

As we shall see in a while, the hypothesis on Theorem 19 prove Lemma 18 and also we prove that

Lemma 18 implies Lemma 19. Nevertheless, with the lemmas in hand, it is easy to prove Theorem 19:

68



Proof. From Lemma 19, we know that if (tk)k is a sequence with tk → +∞, then

lim
k→+∞

1

tk
Stk(f)

has a limit (since S has compact closure on C0(X)) and this limit is constant. Now, unique ergodicity

follow from Lemma 17.

5.1 Proving the three lemmas

The three lemmas follow the logical chain:

Lemma 18

Lemma 19

Lemma 17

First, we use the hypothesis of Theorem 19 to check Lemma 18: namely we strongly use the

hyperbolicity of gt and the relation between gt and hs and the invariance of the Liouville measure µ under

both flows.

For the proof of Lemma 19 we use Lemma 18, the relation between gt and hs given by the equation

gt ◦ hs = hse−t ◦ gt, and the existence of a dense orbit by hs.

Lemma 18

Lemma 18 is where the heart of the proof relies. To prove it we need to break it into two pieces: first we

show that the family of functionsM = {Mt(f)}t>0, where

Mt(f)(x) =

∫ 1

0
f (g− ln t (hs(x))) ds,

is equicontinuous and then we prove that all its accumulation points on C0(X) are constant functions.

Before proving equicontinuity, we need several lemmas that explore the hyperbolicity of the flow gt,

the relation between gt and hs and finally the fact that the measure µ is invariant under both flows. One

example is the following Lemma 20, where we use the fact the we are asking the flows to be Anosov,

hence of regularity at least C1:

Lemma 20. Locally, the Liouville measure µ satisfy the local product structure as in Definition 23, where

L ∈ Fu is the center-unstable leaf and I ∈W s is a stable leaf which is parametrized by hs.

Proof. This Lemma is a direct consequence of the characterization of the measure µ done in Proposition

4.1.4, on p. 68 of [Alv13].
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For the next Lemma, set Vx0 ⊆ M to be a open subset of the product neighborhood N(x0) of the

point x0 ∈M , i.e., we may think as N(x0) as a subset of W u(x0)×W ss(x0).

Since the flow hs parametrizes the one dimensional submanifold W ss(x0), any point x ∈ N(x0)

can be described as a pair (y(x), s(x)), where y(x) ∈ W u(x0) is the projection of x onto W u(x0) and

s(x) represents the projection of x on W ss(x0). On that setting we define, for every point in N(x0), the

neighborhood Vx of x defined as

Vx = B(y(x), δ)× (s(x), s(h1(x))),

where B(y(x), δ) is a ball in W u(x0) and (s(x)), s(h1(x))) an open segment contained in the one-

dimension submanifold W ss(x0).

Figure 5.2: The neighborhood Vx0 . Figure 5.3: Local coordinates for x ∈ Vx0 .

Lemma 21. The family of functions 1
µ(Vx)χVx converges to 1

µ(Vx0)
χVx0 in L2(µ), as x→ x0.

Before proving this Lemma 21, we need more two lemmas:

Lemma 22. Let (X,Σ, µ) a probability space and (ψn)n a sequence of measurable functionsψn : X → R,

uniformly bounded, i.e., there is C ≥ 0 such that ‖ψn‖∞ ≤ C for all n ∈ N. Suppose ψn converge

pointwise to a function ψ : X → R. Then, ψ is integrable and

lim
n→+∞

∫
X
ψn dµ =

∫
X
ψ dµ.

Proof. Define the function f(x) = C for all x ∈ X , so that

|ψn(x)| ≤ f(x),

for all x ∈ X and all n ∈ N. Since µ(X) = 1, we have that
∫
X f dµ = C · µ(X) = C < +∞. Hence,

by the Dominated Convergence Theorem, we know that ψ is integrable and that

lim
n

∫
X
ψn dµ =

∫
X

lim
n
ψn dµ =

∫
X
ψ dµ.

Lemma 23. Let (X, d) be a compact metric space and µ a Borel probability measure on X with full

support. Then, for every x ∈ X and r > 0 there is some 0 < δ < r such that µ (∂B(x, δ)) = 0.

Proof. Suppose the contrary, i.e., that there exists some x0 ∈ X and some r0 > 0 such that for all

0 < δ < r0 we have µ (∂B(x, δ)) > 0.
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We claim that there exists some constant C > 0 and a sequence (rn)n with rn ∈ (0, r0) such that

rn+1 < rn and

µ (∂B(x0, rn)) > C,

for all n ∈ N.

To prove the claim, notice that for each δ ∈ (0, r0) there exists some n = n(δ) ∈ N such that

µ (∂B(x0, δ)) >
1
n . So, if we define

Sn =

{
δ ∈ (0, r0) | µ (∂B(x0, δ)) >

1

n

}
we have (0, r0) =

⋃+∞
n=1 Sn and Sn ⊆ Sn+1 for all n ∈ N.

Since (0, r0) is uncountable, there is some n0 ∈ N such that Sn0 must also be uncountable. Now, take

a monotone decreasing sequence on Sn0 , say (rn)n, and take C = 1
n0

. This proves the claim.

Back to the proof of the main statement, notice that

∞⋃
n=1

∂B(x0, rn) =

∞⊔
n=1

∂B(x0, rn) ⊆ B(x0, r0)

and hence:

1 ≥ µ
(
B(x0, r0)

)
≥ µ

( ∞⋃
n=1

∂B(x0, rn)

)

= µ

( ∞⊔
n=1

∂B(x0, rn)

)

=

∞∑
n=1

µ (∂B(x0, rn))

≥ n · C,

for every n ∈ N, (since rn ∈ Sm for every n ∈ N). This absurd concludes the proof.

Proof of Lemma 21. The idea is to prove that 1
µ(Vx)χVx converges to 1

µ(Vx0)
χVx0 almost everywhere and

then use Lemma 22 to obtain the L2−convergence.

To do so, we first show convergence for the characteristic functions χVx . For, choose δ > 0 such that

µ(∂Vx0) = 0 (which is possible by Lemma 23). Notice that, for all z ∈M \ ∂Vx0 , we have

lim
x→x0

χVx(z) = χVx0 (z).

Indeed, there are two options: first z ∈M \ Vx0 . In this case there is an open neighborhood Ox0 of x0

such that, for all x ∈ Ox0 we have χVx(z) = χVx0 (z) = 0. On the other hand, if z ∈ Vx0 , we also have

an open neighborhood Ox0 of x0 such that for all x ∈ Ox0 , the equality χVx(z) = χVx0 (z) = 1 hold.

Hence, for almost every z ∈M , χVx(z)→ χVx0 (z) as x→ x0.

The previous statements can be made formal. To do so, we use the neighborhood

Vx0 = B(y(x0), δ)× (s(x0), s(h1(x0)))

= B(x0, δ)× (0, 1),
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Figure 5.4: z ∈M \ Vx0 . Figure 5.5: z ∈ Vx0 .

where againB(x0, δ) is a ball inW u(x0). By continuity of hs we have that, when x→ x0, the coordinates

y(x), s(x) and s(h1(x)) tend to y(x0) = x0, s(x0) = 0 and s(h1(x0)) = 1, respectively.

This local understanding allow us to give a more precise assertion to what happen to the maps χVx0
and χVx applied to z ∈M \ ∂Vx0 when x→ x0. Indeed, the previous paragraph implies, in particular,

that Vx converges to Vx0 on the Hausdorff topology, and then z ∈ Vx0 implies χVx(z)→ 1 = χVx0 and

z ∈M \ Vx0 implies χVx(z)→ 0 = χVx0 , as claimed.

Now, let (xn)n to be any sequence on M \ ∂Vx0 with xn → x0. We will show that

‖χVxn − χVx0‖2 → 0,

as n→ +∞.

Indeed, χVxn (z)→ χVx0 (z) pointwise for µ−a.e. z and for all n ∈ N,

‖χVxn‖∞ ≤ 1 and ‖χVx0‖∞ ≤ 1.

By calling ψn(z) = |χVxn (z)− χVx0 (z)|2 we have, from Lemma 22,

lim
n→+∞

∫
X
|χVxn (z)− χVx0 (z)|2 dµ = lim

n→+∞

∫
X
gn dµ

=

∫
X

lim
n→+∞

gn dµ

=

∫
X

0 dµ = 0,

i.e., we have shown that χVxn
L2(µ)−−−−−→
n→+∞

χVx0 .

Since χVxn (z)− χVx0 (z) ∈ {0, 1} for all z ∈ M , we have that |χVxn (z)− χVx0 (z)| = |χVxn (z)−
χVx0 (z)|2, and then, L2(µ)-convergence implies L1(µ)-convergence. Therefore,

|µ(Vxn)− µ(Vx0)| =
∣∣∣∣∫
X
χVxn dµ−

∫
X
χVx0 dµ

∣∣∣∣
=

∣∣∣∣∫
X
χVxn − χVx0 dµ

∣∣∣∣
≤
∫
X
|χVxn − χVx0 | dµ→ 0,

as n→ +∞. This shows that µ(Vx)→ µ(Vx0) as x→ x0.

Hence, we have that the family of functions 1
µ(Vx)χVx(z) converges to the function 1

µ(Vx0 )χVx0 (z)

for µ−almost every z ∈ M . Since µ(Vx) → µ(Vx0), we know that both 1
µ(Vx)χVx and 1

µ(Vx0 )χVx0 are
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uniformly bounded. Applying one more time Lemma 22, we finally conclude L2(µ)−convergence:∥∥∥∥ 1

µ(Vx)
χVx −

1

µ(Vx0)
χVx0

∥∥∥∥
2

→ 0,

as x→ x0.

To finally prove Lemma 18 we present a relation between the Mt(f)(x) =
∫ 1

0 f (g− ln t (hs(x))) ds

and the Birkhoff sums of the horocycle flow St(f)(x) =
∫ t

0 f (ϕs(x)) ds.

Lemma 24. For every t ∈ R, every continuous function f : X → R, and x ∈ X we have:

1

t
St(f)(x) = Mt(f) (gln t(x)) .

Proof. In order to prove that
1

t
St(f)(x) = Mt(f)(gln t(x)), (5.1)

for all t > 0 and x ∈ X , we first make a change of variables s←→ s̃t to obtain:

1

t
St(f)(x) =

1

t

∫ t

0
f(hs(x)) ds

=
1

t

∫ 1

0
f(hs̃t(x)) t · ds̃

=

∫ 1

0
f(hs̃t(x)) ds̃,

and returning to our ‘dummy’ variable s, we can write 1
tSt(f)(x) =

∫ 1
0 f(hst(x)) ds. Using the fact that

g− ln t ◦ hs = hseln t ◦ g− ln t = hst ◦ g− ln t, we get∫ 1

0
f(hst(x)) ds =

∫ 1

0
f ((g− ln t ◦ hs ◦ gln t) (x)) ds = Mt(f)(gln t(x)),

proving equality (5.1) and hence Lemma (24).

Now we prove the first statement of Lemma 18, which is, in some extension, the heart of the proof of

Theorem 19. It is interesting to observe that, in order to prove equicontinuity ofM = {Mt(f)(x)}t≥0

we make use of the hyperbolicity of the geodesic flow gt, as we demand points in the same weak unstable

leaf of size ε > 0 of gt remains at most ε−close when iterated by g−t, for some t ≥ 0.

Lemma. The familyM = {Mt(f)(x)}t≥0 is equicontinuous.

Proof. Let ε > 0 and x0 ∈M be fixed arbitrarily and set

ωf (ε) = sup {|f(x)− f(y)| | x, y ∈M with d(x, y) < ε}.

Recall the definition of local (weak) unstable manifold of size ε > 0:

W u
ε (x) = {y ∈M | d(g−t(x), g−t(y)) < ε, for all t ≥ 0},

and define

Kx = W u
ε (x) ∩ h(−2,3) (B (y(x), δ) ∩W u

ε (x0)) .

Now, in the local coordinate system N(x) associated to x, Vx can be written as Vx = Kx × (0, 1) and,

from Lemma 20, the measure µ
µ(Vx) has a local product structure.
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Claim. |Mt(f)(x)−Mt(f)(x0)| ≤ 2ωf (ε) + 1
2‖f‖2 ·

∥∥∥ 1
µ(Vxn )χVxn −

1
µ(Vx0 )χVx0

∥∥∥
2
.

If we prove the claim, we are done since ωf (ε) and
∥∥∥ 1
µ(Vx)χVx −

1
µ(Vx0 )χVx0

∥∥∥
2

go to 0 as x → x0,

both independent of t > 0, from the continuity of f and from Lemma 5.1.

To prove that claim we first notice that
∣∣∣Mt(f)(x)−

∫ 1
0

∫
Kx
f(g− ln t(y, s)) dνs(y)ds

∣∣∣ < ωf (ε).

Indeed,

∣∣∣∣Mt(f)(x)−
∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds

∣∣∣∣ =∣∣∣∣∫ 1

0
f(g− ln t(0, s)) ds−

∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds

∣∣∣∣ =∣∣∣∣∫ 1

0

∫
Kx

f(g− ln t(0, s)) dνs(y)ds−
∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds

∣∣∣∣ ≤∫ 1

0

∫
Kx

|f(g− ln t(0, s))− f(g− ln t(y, s))| dνs(y)ds ≤

ωf (ε),

since both (0, s) and (y, s) are on the same weak unstable local leaf of W u
ε (hs(x)) and, since W u

ε (hs(x))

is invariant1 by g−t for t ≥ 0, the image of points in W u
ε (hs(x)) are still at most ε−close from each other.

Hence, we deduce that |f(g− ln t(0, s))− f(g− ln t(y, s))| ≤ ωf (ε).

Figure 5.6: Applying g−t for t ≥ 0 to W u
ε (hs(x)).

Adding and subtracting
∫ 1

0

∫
Kx
f(g− ln t(y, s)) dνs(y)ds and

∫ 1
0

∫
Kx0

f(g− ln t(y, s)) dνs(y)ds inside

1For all x ∈M , g−t (Wu
ε (x)) ⊆Wu

ε (g−t(x)) for all t ≥ 0.
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the modulus |Mt(f)(x)−Mt(f)(x0)|, we get:

|Mt(f)(x)−Mt(f)(x0)| =
∣∣∣∣Mt(f)(x)−

∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds

+

∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds−
∫ 1

0

∫
Kx0

f(g− ln t(y, s)) dνs(y)ds

+

∫ 1

0

∫
Kx0

f(g− ln t(y, s)) dνs(y)ds−Mt(f)(x0)

∣∣∣∣∣
Using that

∣∣∣Mt(f)(x)−
∫ 1

0

∫
Kx
f(g− ln t(y, s)) dνs(y)ds

∣∣∣ < ωf (ε) and applying the triangular in-

equality, we get:

|Mt(f)(x)−Mt(f)(x0)| ≤ 2ωf (ε)+∣∣∣∣∣
∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds−
∫ 1

0

∫
Kx0

f(g− ln t(y, s)) dνs(y)ds

∣∣∣∣∣ .
Next, we use local product structure of the measure to write:

∣∣∣∣∫ 1

0

∫
Kx

f(g− ln t(y, s)) dνs(y)ds −
∫ 1

0

∫
Kx0

f(g− ln t(y, s)) dνs(y)ds

∣∣∣∣∣ =∣∣∣∣∣ 1

µ(Vx)

∫
Vx

f ◦ g− ln t dµ−
1

µ(Vx0)

∫
Vx0

f ◦ g− ln t dµ

∣∣∣∣∣ .
Then, we have:

|Mt(f)(x)−Mt(f)(x0)| ≤ 2ωf (ε) +

∣∣∣∣∣ 1

µ(Vx)

∫
Vx

f ◦ g− ln t dµ−
1

µ(Vx0)

∫
Vx0

f ◦ g− ln t dµ

∣∣∣∣∣
= 2ωf (ε)+

∣∣∣∣ 1

µ(Vx)

∫
X

(f ◦ g− ln t) · χVx dµ−
1

µ(Vx0)

∫
X

(f ◦ g− ln t) · χVx0 dµ
∣∣∣∣

≤ 2ωf (ε)+

∣∣∣∣∫
X

(f ◦ g− ln t) ·
χVx
µ(Vx)

dµ−
∫
X

(f ◦ g− ln t) ·
χVx0
µ(Vx0)

dµ

∣∣∣∣
≤ 2ωf (ε)+

∣∣∣∣∫
X

(f ◦ g− ln t) ·
[
χVx
µ(Vx)

−
χVx0
µ(Vx0)

]
dµ

∣∣∣∣
≤ 2ωf (ε)+

∫
X

∣∣∣∣(f ◦ g− ln t) ·
[
χVx
µ(Vx)

−
χVx0
µ(Vx0)

]∣∣∣∣ dµ.
Now, applying Hölder’s inequality with p = q = 2, for the L2(µ)−functions f ◦ g− ln t and[
1

µ(Vxn )χVxn −
1

µ(Vx0 )χVx0

]
, we have:∫

X

∣∣∣∣(f ◦ g− ln t) ·
[
χVx
µ(Vx)

−
χVx0
µ(Vx0)

]∣∣∣∣ dµ ≤ ‖f ◦ g− ln t‖2 ·
∥∥∥∥ 1

µ(Vxn)
χVxn −

1

µ(Vx0)
χVx0

∥∥∥∥
2

.

This implies:

|Mt(f)(x)−Mt(f)(x0)| ≤ 2ωf (ε) +

∫
X

∣∣∣∣(f ◦ g− ln t) ·
[
χVx
µ(Vx)

−
χVx0
µ(Vx0)

]∣∣∣∣ dµ
≤ 2ωf (ε) + ‖f ◦ g− ln t‖2 ·

∥∥∥∥ 1

µ(Vxn)
χVxn −

1

µ(Vx0)
χVx0

∥∥∥∥
2

.
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Since µ is gt−invariant, we must have:

‖f ◦ g− ln t‖2 = ‖f‖2.

Hence,

|Mt(f)(x)−Mt(f)(x0)| ≤ 2ωf (ε) + ‖f ◦ g− ln t‖2 ·
∥∥∥∥ 1

µ(Vxn)
χVxn −

1

µ(Vx0)
χVx0

∥∥∥∥
2

≤ 2ωf (ε) + ‖f‖2 ·
∥∥∥∥ 1

µ(Vxn)
χVxn −

1

µ(Vx0)
χVx0

∥∥∥∥
2

.

This proves the claim and also the Lemma.

Lemma. Let f be an accumulation point for the familyM = {Mt(f)(x)}t≥0 on C0(X) and suppose

hs has a dense orbit. Then f must be constant.

Proof. Let f be an accumulation point for M and (tn)n be a sequence such that tn → +∞. Then,

‖Mtn(f)− f‖∞ → 0 and, in particular,

‖Mtn(f)− f‖2 → 0

as n→ +∞. Using equality 1
tSt(f)(x) = Mt(f)(gln t(x)) from Lemma 24 and using the fact that µ is

g−invariant, we have:∥∥∥∥ 1

tn
Stn(f)− f ◦ gln tn

∥∥∥∥
2

=
∥∥Mtn(f) ◦ gln tn − f ◦ gln tn

∥∥
2

= ‖Mtn(f)− f‖2 → 0,

as n→ +∞.

Now, recalling that St(f) is the Birkhoff sum of the horocycle flow hs and applying von Neumann

Ergodic Theorem (Theorem 3), we conclude that there exists an hs−invariant function Ph(f) ∈ L2(µ)

such that
∥∥1
tSt(f)− Ph(f)

∥∥
2
→ 0 as t→ +∞. In particular, we conclude that∥∥f ◦ gln tn − Ph(f)

∥∥
2
→ 0

when n→ +∞. Once again using the g−invariance of the measure µ we have∥∥f − Ph(f) ◦ g− ln tn

∥∥
2

=
∥∥f ◦ gln tn − Ph(f)

∥∥
2
−−−−−→
n→+∞

0.

Since gt sends hs−orbits into hs−orbits and since Ph(f) is hs−invariant, for each t ∈ R the

composition Ph(f) ◦ gt is still a hs−invariant function. Moreover, applying Lemma 3 to this setting, we

conclude that, since f is the L2−limit of hs−invariant functions, f will itself be hs−invariant. Since

there exists a dense hs−orbit and since f ∈ C0(X), then f is constant. This concludes the proof of this

Lemma and also the proof of Lemma 18.

Lemma 19

Lemma. With respect to St(f) we have:

(1) the family S =
{

1
tSt(f)(x)

}
t

has compact closure on C0(X);

(2) each accumulation point of S is constant.
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Proof. To check both items (1) and (2), take a sequence (tn)n with tn → +∞. From Lemma 18 there are

a subsequence (tnk
)k and a constant c ∈ R such that

Mtnk
(f)

unif−−−→ c.

So, given ε > 0 there is an order k0 ∈ N such that, if k ≥ k0, then:
∣∣∣Mtnk

(f)(x)− c
∣∣∣ < ε, for all x ∈M .

Hence, for x ∈M , we have∣∣∣∣ 1

tnk

Stnk
(f)(x)− c

∣∣∣∣ =
∣∣∣Mtnk

(f)(gln tnk
(x))− c

∣∣∣ < ε,

for all k ≥ k0.

5.2 Horocycle flows are uniquely ergodic

Now we apply Theorem 19 to the context of horocycle flow associated to a geodesic flow on the unit

tangent bundle of a surface with constant negative curvature. Even though constant negative curvature

implies the geodesic flow to be an Anosov flow, at first glace we cannot say much about the dynamics of

the horocycle flows associated to this geodesic flow.

In Chapter 4 we obtained a first property about its dynamics: they are minimal (i.e., every orbit is

dense). In this Chapter 5 we obtained another information, from the point of view of ergodic theory: they

admit an unique invariant probability measure.

To be more precise, in Chapter 3 we have shown that the Liouville measure on a compact negatively

curved manifold M is invariant under both the geodesic gt and the horocycle hs flows. As we claimed,

Theorem 19 guarantees that, in this context, it is the unique ergodic measure invariant under hs:

Theorem 20. The horocycle flow associated to a geodesic flow gt : T
1S → T 1S on a surface with

constant negative curvature is uniquely ergodic.

Proof. Since the geodesic flow gt : T
1S → T 1S on a surface with constant negative curvature is an

Anosov flow with dimension one unstable foliation. From Proposition 18, the horocycle flow satisfy the

relation

gt ◦ hs = hse−t ◦ gt,

for every t, s ∈ R. Finally, by Theorem 18, hs has a dense orbit. Hence, we are in the hypotheses of

Theorem 19: this shows that hs is uniquely ergodic.
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APPENDIX A

Anosov diffeomorphisms: transitivity,
minimality and topological mixing

A.1 Anosov diffeomorphisms

Let M be a closed Riemannian manifold. A diffeomorphism f : M →M is called Anosov if there exists

a f−invariant hyperbolic splitting

TM = Eu ⊕ Es,

i.e., each bundle Eu and Es, is preserved by df , and the vectors on Eu are exponentially expanded by df

and the vectors on Es are exponentially contracted by df . In other words, there exists constants C ≥ 0

and 0 < λ < 1, such that:

‖df−n(v)‖ ≤ Cλn‖v‖, for all v ∈ Eu and n ≥ 0,

and

‖dfn(v)‖ ≤ Cλn‖v‖, for all v ∈ Es and n ≥ 0.

As in the case of flows, the spaces Eu and Es are called unstable and stable spaces, respectively.

A well-known example of Anosov diffeomorphism is the Anosov Cat Map, that we presented in

Chapter 3 and that we here investigate with more details, following [Wen16]. To do so, first recall that an

invertible matrix A : Rn → Rn is called hyperbolic if it has no eigenvalue of absolute value 1.

Definition 24 (Anosov automorphism). A linear map A : R2 → R2 is called an Anosov automorphism if

detA = ±1, A has integer entries and is hyperbolic.

Proposition 20. If A : R2 → R2 is an Anosov automorphism, then the eigenvalues of A are irrational

numbers λs, λu ∈ R such that |λs| < 1 < |λu|, and the slopes of the two eigenspaces are irrational.

Proof. There are three options for the eigenvalues λs and λu: or they are complex conjugate, or they are

the same, or they are real and distinct. We want to show that they satisfy the last condition.

Since detA = λs · λs and | detA| = 1, if we were in the first two cases, this would imply |λs| = 1 =

|λu|, contradicting the hypothesis that A is hyperbolic. This proves the eigenvalues λu and λs are real and

distinct and we can suppose, without loss of generality, that |λs| < 1 < |λu|.
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To see that λs is irrational (the proof for λu is analogous), suppose λs = p
q , where p, q ∈ Z, q 6= 0

and gcd (p, q) = 1. Note that, since |λs · λu| = 1, we must also have p 6= 0. Now, observe that

0 = det

(
A− p

q
I

)
=
p2

q2
− p

q
· trA+ detA

=
p2

q2
− p

q
· trA± 1,

so 0 = p2 − pq trA± q2. This equality implies:

q(p trA∓ q) = p2,

and

p(−p+ q trA) = ±q2,

which imply, since gcd (p, q) = 1, q|p and p|q. But this would imply |λs| = 1, contradicting once again

the hyperbolicity of A. Since an analogous proof works for λu, we conclude that λs and λu are irrational.

Finally, for the statement on the slope of the eigenvalues, let v = (v1, v2) be an eigenvector of λs.

First note that v indeed has a slope, i.e., v1 6= 0. To see that, suppose the matrix A is of the form:

A =

(
a11 a12

a21 a22

)
.

If v1 = 0 then Av = λ1v implies a22 = λs, contradicting the hypothesis that A has only integer entries.

So, v1 6= 0 and we can suppose v = (1, α).

To prove the slope of the eigenspace associated to λs is irrational, we are going to show that α ∈ R\Q.

Since, once again, Av = λsv, we get:(
a11 a12

a21 a22

)(
1

α

)
=

(
λs

λs · α

)
.

Thus, a11 + a12 · α = λs and, if α were rational, we would have λs also rational. Hence, α ∈ R \Q as

we claimed. The proof for the slope of the eigenspace of λu is similar.

Note that, since it has only integer entries, an Anosov automorphism A : R2 → R2 preserves the

lattice Z2, i.e., A(Z2) ⊂ Z2. In particular, for any vectors v ∈ R2 and n ∈ Z2, we have:

A(v + n)−A(v) = A(n) ∈ Z2.

This allow us to define a map fA : T2 → T2 on the torus that makes the diagram

R2 R2

T2 T2

π

A

fA

π
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Figure A.1: The space Es.

to commute, i.e., π ◦A = fA ◦ π. Here π : R2 → T2 is the canonical projection to the quotient, that is,

the map that to each v ∈ R2 associates its equivalence class on the quotient R2/Z2:

π(v) = {w ∈ R2 | w − v ∈ Z2} = [v].

The map fA is a C∞ diffeomorphism. Indeed, it is a C∞ map and, if we suppose A is once again of

the form

A =

(
a11 a12

a21 a22

)
,

the A−1 will be:

A−1 =
1

detA
·

(
a22 −a12

−a21 a11

)
.

Since |detA| = 1, all the entries of A−1 are still integers and A−1 also induces a C∞ map on T2 which

is the inverse of fA, i.e.,

(fA)−1 = fA−1 .

Example 14 (The Cat Map). Consider the Anosov automorphism A : R2 → R2 defined by

Av =

(
2 1

1 1

)
· v.

The induced map fA on T2 is called Anosov’s Cat Map.

Example 15. Another example of Anosov diffeomorphism on the torus is the map fB induced be the

Anosov automorphism B : R2 → R2 defined by

Bv =

(
2 1

3 2

)
· v.

This follows from the fact that A has integer entries, detB = 4 − 3 = 1 and its eigenvalues are

λ2 = 2−
√

3 and λ1 = 2 +
√

3, so that

0 < λ2 < 1 < λ1.
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Whenever we have an Anosov automorphism A : R2 → R2, the projection to the torus T2 generates

an Anosov diffeomorphism:

Proposition 21. An Anosov toral automorphism fA : T2 → T2 induced by an Anosov automorphism

A : R2 → R2 is an Anosov diffeomorphism.

Proof. Since (dfA)x = A for every point x in the torus, we have a fA−invariant hyperbolic decomposition

TxT2 = Es ⊕ Eu originated from A and the previous Proposition 20 guarantees this decomposition

contract vectors on Es and expands vectors on Eu.

Now, we present the notion of stable and unstable spaces for toral automorphisms. A brief study of

these sets will allow us to obtain further information about the dynamics of fA.

Given a hyperbolic matrix A : R2 → R2 and a vector v ∈ R2, define

W s(v,A) = {w ∈ R2 | lim
n→+∞

‖Anw −Anv‖ → 0}

and

W u(v,A) = {w ∈ R2 | lim
n→+∞

‖A−nw −A−nv‖ → 0},

the stable and unstable spaces of v with respect to A.

Similarly, given a point x ∈ T2, define the (global) stable and unstable manifolds of x with respect to

fA as the sets:

W s(x, fA) = {y ∈ T2 | lim
n→+∞

d(fnA(x), fnA(y))→ 0}

and

W u(x, fA) = {y ∈ T2 | lim
n→+∞

d(f−nA (x), f−nA (y))→ 0},

respectively. These set are f−invariant, in the sense that fA (W s(x, fA)) = W s(fA(x), fA) and

fA (W u(x, fA)) = W u(fA(x), fA).

The next theorem relates these two notions (for A and fA) and gives more details on the geometry of

the stable and unstable manifolds of a point in T2 with respect an Anosov toral automorphism.

Theorem 21. Let A : R2 → R2 be an Anosov automorphism and fA : T2 → T2 be the induced toral

automorphism. Then:

(i) for any v ∈ R2, W s(v,A) = v + Es and W u(v,A) = v + Eu, where R2 = Es ⊕ Eu is the

hyperbolic splitting of A.

(ii) for any x ∈ T2, W s(x, fA) = π(W s(v,A)), where v is an arbitrary point v ∈ π−1(x). The same

holds for the unstable manifold.

(iii) W s(x, fA) is an immersed C∞ submanifold that is dense in T2. Likewise forW u(x, fA). Moreover,

for any x, y ∈ T2, W s(x, fA) intersects W u(y, fA) transversely at a dense subset of T2.

Proof. To prove the assertion in (i), take w ∈ W s(v,A). Then, ‖An(w − v)‖ = ‖Anw − Anv‖ → 0

as n → +∞. So, w − v ∈ Es, i.e., w ∈ v + Es. This proves W u(v,A) ⊆ v + Eu. Reciprocally, let

w ∈ v+Eu. Hence, ‖Anw−Anv‖ = ‖An(w− v)‖ → 0 as n→ +∞, proving that w ∈W s(v,A) and

that W s(v,A) = v + Es. The case for the unstable set is similar.
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Now, fix v ∈ R2 such that x = π(v), fix v ∈ π−1(x). In order to prove W s(x, fA) = π(W s(v,A))

we start by proving W s(x, fA) ⊇ π(W s(v,A)).

Let w ∈ W s(v,A). Then, ‖Anw − Anv‖ → 0 as n → +∞. Since the projection π is uniformly

continuous, we have d(π(Anw), π(Anv))→ 0 as n→ +∞ and then

d(fnA(π(w)), fnA(x))→ 0,

as n→ +∞. This proves that π(w) ∈W s(x, fA) and, since w was taken arbitrarily, that π(W s(v,A)) ⊆
W s(x, fA).

We now prove that W s(x, fA) ⊆ π(W s(v,A)). To do so, note that if we take ε = 1
2 > 0 then for any

v, w ∈ R2 such that ‖w− v‖ ≤ ε then d(π(w), π(v)) = ‖w− v‖. Now, take 0 < δ < ε such that for any

v, w ∈ R2 with ‖w − v‖ ≤ δ then ‖Aw −Av‖ ≤ ε. Such δ can be taken by the uniform continuity of A.

Now let y ∈ W s(x, fA). We are going to find w ∈ W s(v,A) such that π(w) = y. Since y ∈
W s(x, fA), d(fnA(y), fnA(x))→ 0 as n→ +∞. Take m ∈ N such that

d(fnA(y), fnA(x)) ≤ δ,

for all n ≥ m.

Since π(Amv) = fm(x), there is a unique z ∈ B(Amv, ε) such that π(z) = fm(y). By taking

w = A−m(z), we have:

π(w) = π(A−mz) = f−m(π(z)) = f−m(fm(y)) = y.

So, if we prove that w ∈W s(v,A) we are done. This is equivalent to prove that z ∈W s(Amv,A), and

that is what we shall do. Since ‖z −Amv‖ ≤ ε, we have

‖z −Amv‖ = d(π(z), π(Am(v))) = d(fm(y), fm(x)) ≤ δ.

By the choice of δ, we get ‖Az −A(Amv)‖ ≤ ε. But then,

‖Az −A(Amv)‖ = d(π(Az), π(A(Amv))) = d(fm+1(y), fm+1(x)) ≤ δ.

Proceeding inductively, we finally get:

‖Anz −An(Amv)‖ = d(fm+n(y), fm+n(x)) ≤ δ.

Since, d(fm+n(y), fm+n(x)) → 0 as n → +∞, we conclude that z ∈ W s(Amv,A), or equivalently,

that w ∈W s(v,A), concluding the proof that W s(x, fA) ⊆ π(W s(v,A)), and hence that W s(x, fA) =

π(W s(v,A)). Once again, the unstable case is analogous. This proves item (ii) of the theorem.

Finally, we show (iii). The set W s(v,A) is a line in R2. Since the projection π : R2 → T2 is a C∞

embedding, the set W s(x, fA) is an immersed C∞ submanifold of T2.

For the denseness part, we use a fact we proved in Chapter 2. There we presented Proposition 4,

which states the following:

Proposition. A linear flow ϕt(x) = [x + tθ] on Tn is minimal if, and only if, the components of θ are

rationally independent.
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Recall that the components of the vector θ = (θ1, . . . , θn) are rationally independent if k ∈ Zn and

〈k, v〉 = 0, then k = 0.

Back to the setting of fA suppose, without loss of generality, that x = π(0). We claim the set

W s(x, fA) coincides with the orbit of a minimal flow on T2 and, therefore, is a dense set on T2.1

Claim. The set W s(x, fA) coincides with a orbit of a linear flow ϕt(x) = [x + tθ] on T2, for θ with

rationally independent components.

Proof of the Claim. In this case, where we suppose x = π(0), we have W s(0, A) = Es and, by Propo-

sition 20 above, we know that Es is a line through the origin of R2 generated by a vector (1, α), with

α ∈ R \Q. Then,

Es = {t ·Θ | t ∈ R},

where Θ := (1, α) ∈ R2 has rationally independent components.

Since W s(x, fA) = π (W s(0, A)) = π(Es), we have:

W s(x, fA) = {π(0 + t ·Θ) | t ∈ R}

= {π(0) + t · π(Θ) | t ∈ R}

= {[x+ t · θ] | t ∈ R},

where θ = π(Θ). Observe that since the components of Θ are rationally independent, the same holds for

θ. This proves the claim.

Lastly, the transversality condition follow from the fact that for any w, v ∈ R2, the linesW s(v,A) and

W u(w,A) intersect transversely. Since π is a local embedding, W s(x, fA) and W u(y, fA) intersect (in a

dense set) transversely. This concludes the proof of item (iii) and, therefore, the proof of the theorem.

A fact we extract from Theorem 21 is a result we will proof in a more general setting in Section

A.3. An toral automorphism fA : T2 → T2 has the property of being minimal, i.e., all stable and

unstable manifolds are dense on T2. The main goal of Section A.3 is to prove an analogous for Anosov

diffeomorphisms. We use the next Section to introduce several properties that will be important for this

proof.

A.2 Some properties of Anosov diffeomorphisms

In this section we describe some properties that all Anosov diffeomorphisms share. Inspired on what we

have done for the Anosov toral automorphisms in Theorem 21, we provide a brief discussion aimed to

understand a little more of the structure of the stable and unstable manifolds of an Anosov diffeomorphism.

Once again, we restrict our context to a diffeomorphism f : M → M defined on a Riemannian closed

manifold.

Definition 25. Given a point x ∈ M , its ω−limit is the set of all y ∈ M such that there is an infinite

sequence (ni)i∈N, with ni →∞, such that fni(x)→ y. We denote it by ω(x).

1Observe that this is the same sort of idea used to prove Theorem 18: there we showed that the orbit of the horocycle flow
coincides with a dense set. Here we are showing that a set coincides with a dense orbit of a flow.
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Definition 26. A compact invariant2 subset Λ ⊆M is called transitive if there is some point x ∈ Λ such

that ω(x) = Λ.

An equivalent definition of transitivity for diffeomorphisms is the following:

Proposition 22. A compact invariant subset Λ ⊂ M is transitive if and only if for any two open sets

U, V ⊆ Λ exists n ≥ 1 such that fn(U) ∩ V 6= ∅.

Definition 27. A compact invariant subset Λ ⊆M is called topologically mixing if for any two relative

open sets U and V of Λ, there is an integer N = N(U, V ) ≥ 1 such that fn(U) ∩ V 6= ∅ for all n ≥ N .

Definition 28 (Local Stable Manifold). For a point x ∈M and r > 0, define the local stable manifold
of x of size r with respect to f to be

W s
r (x) =

{
y ∈M | d(fn(y), fn(x)) ≤ r for all n ≥ 0, and lim

n→+∞
d(fn(y), fn(x)) = 0

}
.

Similarly, define the local unstable manifold of x of size r with respect to f to be

W u
r (x) =

{
y ∈M | d(f−n(y), f−n(x)) ≤ r for all n ≥ 0, and lim

n→+∞
d(f−n(y), f−n(x)) = 0

}
.

There will be several occasions where we won’t need to specify the size r of the local stable and

unstable manifold. When this happens we simply write W s
loc(x) and W u

loc(x), respectively.

For an Anosov diffeomorphism f : M → M , we have the following characterization for the local

stable and unstable manifolds:

Proposition 23. There are uniform constants r > 0, C ≥ 1, and 0 < λ < 1 such that for any x ∈ Λ:

W s
r (x) = {y ∈M | d(fn(y), fn(x)) ≤ r, for all n ≥ 0}

= {y ∈M | d(fn(y), fn(x)) ≤ r, and d(fn(y), fn(x)) ≤ Cλnd(x, y), for all n ≥ 0} ,

and similarly:

W u
r (x) = {y ∈M | d(f−n(y), f−n(x)) ≤ r, for all n ≥ 0}

=
{
y ∈M | d(f−n(y), f−n(x)) ≤ r, and d(f−n(y), f−n(x)) ≤ Cλnd(x, y), for all n ≥ 0

}
.

Proof. For a proof see Theorem 4.13, on p. 101 of [Wen16].

We now introduce a structure that, for the case of Anosov diffeomorphisms, the local stable and

unstable manifolds endow M with:

Proposition 24. Let f : M → M be an Anosov diffeomorphism. Then M has a product structure, i.e.,

there are small enough ε > 0 and δ > 0 such that:

(i) for all x and y on M , the intersection W s
ε (x) ∩W u

ε (y) consists of at most a point;

(ii) for all x and y on M such that d(x, y) < δ the intersection above consists of exactly one point,

denoted [x, y] = W s
ε (x) ∩W u

ε (y), and the intersection is transverse.

Proof. For a proof see, for example, Proposition 5.9.3 on p. 129 of [BS02].
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Figure A.2: The local product structure guarantees the existence of the points [x, y] = W s
loc(x) ∩W u

loc(y)
and [y, x] = W s

loc(y) ∩W u
loc(x).

Next, we follow once more [Wen16] to state a very important theorem that provides a geometrical

structure to a dynamical set.

Theorem 22 (Stable Manifold Theorem). Let f : M →M be a Ck (k ≥ 1) Anosov diffeomorphism on

M with splitting TM = Es ⊕ Eu. Then, there is r > 0 such that, for every x ∈M :

(i) W s
r (x) is a Ck embedded submanifold of M of dimension dimEs(x) tangent at x to Es(x), and

W s
r (x) varies continuously in x ∈M with respect to the Ck topology.

(ii) the family {W s
r (x)}x∈M is self-coherent, i.e., for any x, y ∈M ,

intW s
r (x) ∩ intW s

r (y)

is open in both W s
r (x) and W s

r (y).

(iii) the global stable manifold W s(x), i.e., the set

W s(x) =

{
y ∈M | lim

n→+∞
d(fn(y), fn(x))→ 0

}
,

is an immersed Ck submanifold of M of dimension dimEs(x).

Proof. Proofs of the stable manifold theorem for diffeomorphisms can be found in many books on

dynamical systems, such as [BS02], [KH97] and [Wen16].

Note that, for all r > 0, we have the following relation between the local and global stable and

unstable manifold:

W s(x) =
⋃
n≥0

f−n (W s
r (fn(x))) ,

W u(x) =
⋃
n≥0

fn
(
W u
r

(
f−n(x)

))
.

2We say that that a subset Λ ⊆M is invariant by f is f(Λ) = Λ.
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A.3 Minimal Anosov diffeomorphisms

Whenever f : M → M is an Anosov diffeomorphism, we can apply the Stable Manifold Theorem for

each point and the self-coherence of the families {W s
r (x)} and {W u

r (x)} will imply that both W u(x)

and W s(x) give rise to invariant foliations: the unstable foliation Fu, whose leafs are W u(x) and the

stable foliation Fs, whose leafs are W s(x).

Definition 29. An Anosov diffeomorphism is called minimal if its global stable and unstable leafs through

every point is dense on M .

Warning: as in the case of flows, we will call a diffeomorphism minimal in two different

contexts. It will have the meaning that all its orbits are dense, that is the notion for a

general dynamical system. Also, it will have the meaning that all stable and unstable

leafs are dense, that will be used for Anosov diffeomorphism. Observe that an Anosov

diffeomorphism cannot be minimal in the sense that all its orbits are dense, since it has

periodic points. From the context, it will be clear to which meaning we are referring to.

In Chapter 4 we have shown that a transitive Anosov flow can either be minimal or be the suspension

of a diffeomorphism. This dichotomy cannot occur in the case of Anosov diffeomorphisms.

Theorem 23. Let f : M → M be a transitive Anosov diffeomorphism on a compact and connected

Riemannian manifold M . Then,

W u(x) = W s(x) = M,

for all x ∈M . In other words, if f is transitive Anosov diffeomorphism, then it is minimal.

Proof. The proof will follow from three lemmas, starting by:

Lemma 25. For all x ∈M we have W u (O (x)) = M , where W u (O (x)) :=
⋃
y∈O(x)W

u(y).

Proof. Fix x ∈ M and choose arbitrary y ∈ M and r > 0. Since we are supposing f to be transitive,

there exists p ∈ M such that ω(p) = M . In particular, there exists n ≥ 0 such that fn(p) belongs to a

product neighborhood around x and m > n such that fm(p) ∈ Br(y).

Since fn(p) belongs to a product neighborhood around x, its local stable neighborhood W s
loc(f

n(p))

intersects the local unstable neighborhood W u
loc(x) of x in a unique point z ∈W s

loc(f
n(p)) ∩W u

loc(x).

Now, from the fact that z ∈ W s
loc(f

n(p)), we must have d(fk(fn(p)), fk(z)) < d(fn(p), z) for all

k > 0. Since m > n,

d(fm(p), fm−n(z)) = d(fm−n(fn(p)), fm−n(z)) < d(fn(p), z).

So, by refining our choice of n in the beginning so that d(fn(p), z) < r/2, we have concluded that

d(y, fm−n(z)) < r.

On the other hand, z ∈W u
loc(x) and hence fm−n(z) ∈W u (O (x)). So we have shown that, for all

y ∈M and all r > 0, there is q ∈W u(O (x)) ∩Br(y).

A direct corollary of this lemma is:
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Corollary 8. For all periodic point p ∈M , W u(O (p)) = M .

Remark 1. Notice that the statement of the Corollary does not demand the existence of a periodic point

to be true. However, that there exists, in fact, a periodic point for f is a simple consequence of the fact

that f is transitive and from a very powerful theorem: the Anosov’s Closing Lemma.

Theorem 24 (Anosov Closing Lemma). The set of periodic points for an Anosov diffeomorphism f is

dense on Ω(f), i.e.,

Per(f) = Ω(f).

Proof. See [Wen16], p. 132, Theorem 4.28.

The next lemma we need to prove Theorem 23 will be a consequence if another celebrated and useful

theorem, with a very geometrical flavor.

In order to present it, we need some notation: for a hyperbolic fixed point p ∈ M of f , we call

u = dimW u(p) and a u−dimensional C1 embedded disc in M a u−disc. Likewise for s−disc and

s = dimW s(p).

Theorem 25 (λ−Lemma). Let p ∈M be a hyperbolic fixed point of f : M →M . For any u−disc B in

W u(p), any point x ∈W s(p), any u−disc D transverse to W s(p) at x, and any ε > 0, there is N > 0

such that if n > N , fn(D) contains a u−disc that is C1 ε−close to B.

So we fix a such periodic point (that we henceforth suppose, without loss of generality, a fixed point

for f ) and will use the fact that W u(p) = M to show that W u(x) = M for all x ∈M .

Lemma 26. There is m ∈ N such that for all x ∈ M the unstable manifold W u(fm(x)) of fm(x)

intersects the local stable manifold W s
loc(p) of p transversely.

Remark 2. It’s worth to emphasize that the order m ∈ N that we obtain in the Lemma, does not depend

on the point: the same m works for all x ∈M . This uniformity is essential to what comes ahead.

Proof. Since W u (O (x)) = M for all x ∈ M , there exists m = m(x) ∈ N such that W u(fm(x)) ∩
Br(p) 6= ∅ for some r−ball Br(p) centered in p inside a product neighborhood around p.

By continuity of fm, for every x′ close enough to x, fm(x) is near fm(x′); and since the unstable

manifolds varies continuously, W u(fm(x)) is arbitrarily close to W u(fm(x′)) for x′ close enough to x,

say for all x′ in a neighborhood Vx.

Now, the compactness of M guarantees that there are a finite subcollection of those open sets:

Vx1 , . . . , Vxn such that

M =

n⋃
i=1

Vxi ,

and to each xi, we have a mi = m(xi) associated to it. Since we are stating a property of the unstable

manifold, if W u(fm(x))∩W s
loc(p) 6= ∅ then W u(fm

′
(x))∩W s

loc(p) 6= ∅ for m′ > m. So, choosing the

maximum of those mi, we obtain an order m that makes the intersection occur for every x ∈M .

To see that this intersection is actually transverse, we just notice that the ball Br(p) lies inside a

product neighborhood and hence, if a leaf of the unstable foliation Fu, intersects this ball, it must intersect

W s
loc(p) and must do it transversely.
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Figure A.3: If a leaf of Fu intersects the ball Br(p), it crosses a product neighborhood N(p).

Lemma 27. There is an integer N with the following property: if z ∈M is such that W u(z) intersects

W u
loc(p) transversely, then fN (W u(z)) is r−dense, i.e., for all y ∈M and all r > 0, there is an integer

N > 0 such that

fN (W u(z)) ∩Br(y) 6= ∅.

Proof. Fix a point y ∈ M and r > 0. We are going to find an integer N such that N > 0 such that

fN (W u(z)) ∩Br(y) 6= ∅.
From Lemma 26 we know that, for every x ∈M , the unstable manifold W u(x) intersects W s

loc(p),

the local stable manifold of the fixed point p, transversely: just apply the lemma to f−m(x). For each

x ∈M consider a small disc Dx transverse to W s
loc(p) lying inside W u(x).

Figure A.4: Applying Lemma 26 to obtain a disc Dx ⊂W u(x) transverse to W s
loc(p).

Applying Corollary 8 to the fixed point p we have W u(p) = M . Next, applying the λ−Lemma

(Theorem 25), we obtain an order nx such that for n ≥ nx we have:

W u (fnx(x)) ∩Br(y) 6= ∅.

Observe that, by continuity of z 7→W u (fnx(z)) in the Hausdorff topology, if z ∈M is sufficiently

close to x, then W u (fnx(z)) ∩Br(y) 6= ∅. In other words, there is an open set Vx around x in M such

that if z ∈ Vx then W u (fnx(z)) ∩Br(y) 6= ∅.
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By compactness of M , there is a finite cover of open sets Vxi , i = 1, . . . , k, such that M =
⋃k
i=1 Vxi .

Hence, if we set N = max {nx1 , . . . , nxk}, then for all n ≥ N we have:

W u (fn(x)) ∩Br(y) 6= ∅,

for all x ∈M . This proves the lemma.

We now apply Lemma 27 to conclude the proof of the theorem. Fix y ∈M and r > 0 and, to prove

the theorem we are going to show that W u(x) ∩Br(y) 6= ∅.
Lemma 27 implies that there is an integer N such that for all y ∈M and r > 0, we have

W u
(
fN (x)

)
∩Br(y) 6= ∅,

for all x ∈ M . Since f is a diffeomorphism, this is enough to prove the theorem: instead of x, just

consider f−N (x) and we are done.

As in the case of Anosov flows, we show that if f is a minimal Anosov diffeomorphism, then it is

topologically mixing.

Theorem 26. Let f : M → M be a Anosov diffeomorphism on a compact and connected Riemannian

manifold M . If W u(x) = M for all x ∈M , then f is topologically mixing.

Proof. As above, the proof will follow from a pair of lemmas (here we follow the ideas contained in

[BS02]):

Lemma 28. If every unstable manifold is dense in M , then for every ε > 0 there is R = R(ε) > 0 such

that every ball of radius R in every unstable manifold is ε−dense on M .

Proof. Let x ∈M and notice that W u(x) =
⋃
R>0W

u
R(x), where W u

R(x) represents the local unstable

manifold of diameter R around x. Since W u(x) is dense, there is R(x) > 0 such that W u
R(x)(x) is

ε/2−dense on M . Moreover, since the foliation W u is continuous, there exists a δ(x) > 0 such that

W u
R(x)(y) is ε−dense for all y ∈ Bδ(x)(x).

Since we are supposingM compact, there is a finite subcollectionB′ of the collectionB := {Bδ(x)(x) |
x ∈M} that still covers M . By taking R to be the maximum R(x) associated with the balls on B′, we

obtain an uniform radius R such that every R-ball in some unstable manifold is dense on M .

Now let U, V ⊆M be non-empty open sets and x ∈ U . Inside U , consider Bu
δ (x) ⊆W u(x) ∩ U a

small disc of unstable manifold; and inside V consider a small ball Bε of radius ε.

Since D lies inside a unstable foliation, there exists k ∈ N such that diam (fm(D)) > 2R for

all m ≥ k. Hence, by Lemma 28 above, fm(D) is ε−dense on M , for all m ≥ k. Therefore,

fm(D) ∩ Bε 6= ∅ and, in particular, fm(U) ∩ V 6= ∅, again for all m ≥ k. This proves that f is

topologically mixing.
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APPENDIX B

Approximation by rationals

We dedicate this Appendix to the proof of number theoretic lemma inside of Lemma 13, i.e.,

Lemma. For all λ, t1, . . . , tN ∈ (0,+∞) and n0 ∈ N, there are n1, . . . , nN ≥ n0 and t ∈ R such that

|niti − t| < λti,

for all i = 1, . . . , N .

To do so, we follow the proof given in [Niv05], where the above lemma is obtained as a corollary of

a pair of theorems. Throughout this Appendix B, we shall denote by bαc the largest integer that is not

larger than the real number α. Alternatively, for each α the number bαc is the only solution m in Z for

the inequalities:

m ≤ α < m+ 1.

Also, we denote by dαe the least integer not less than α, i.e., the unique solution m ∈ Z to the inequality

m < α ≤ m+ 1.

For a real number α, we have −b−τc = dτe.
A classical problem on Number Theory asks how well an irrational number α can be approximated by

a rational number. More precisely: given an irrational number α and ε > 0, are there integers k and h

such that |kα− h| < ε? The answer is yes and is given by the following theorem:

Theorem. Given any irrational number α and any positive integer n, there exist integers h and k with

0 < k ≤ n such that

|kα− h| < 1

n
.

Proof. A proof of this fact can be found in [Niv05] itself, at p.44, Theorem 4.2; but also in many books

on Number Theory, such [Fig11] (see Teorema 5.2, p. 22) and [MAR+15] (Exemplo 0.10, p. 12).

There are several ways to generalize the above theorem for higher dimensions. One goes as follows:

given real numbers α1 and α2, can we find a lattice point k = (k1, k2) ∈ Z2 such that both k1α1 and

k2α2 are arbitrarily close to integers? The following theorems provide that we still have positive answers

for this kind of question.
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Theorem 27. Let A ∈Mn×m(R) be a n×m real matrix with entries denoted by aij and let τ be a real

number greater or equal to 1. Also, define T = −b−τc = dτe, so that T is the smallest integer not less

than τ .

Then there exist lattice points (k1, . . . , km) ∈ Zm and (h1, . . . , hn) ∈ Zn such that:

• |kj | ≤ Tn/m for all j = 1, . . . ,m;

•
∑m

j=1 |kj | 6= 0;

•
∣∣∣∑m

j=1 aijkj − hi
∣∣∣ < 1/τ , for i = 1, . . . , n.

This theorem can be interpreted as follows: given n linear forms,

Ψi(k1, . . . , km) =

m∑
j=1

aijkj , where i = 1, . . . , n,

the theorem states that we can chose (k1, . . . , km) ∈ Zm in such a way that this n forms are arbitrarily

close to an integer. To put it in another way: by setting

Ψ(k1, . . . , km) = (Ψ1(k1, . . . , km), . . . ,Ψn(k1, . . . , km)),

and thinking of it as a point in Rn, the theorem states that fixing an arbitrary distance, we can choose

(k1, . . . , km) properly in such a way that Ψ(k1, . . . , km) will at most this distance far from some point

(h1, . . . , hn) ∈ Zn with integer coordinates in Rn.

Since we’re requesting some point (h1, . . . , hn) ∈ Zn, this goal would be trivially satisfied by setting

(k1, . . . , km) = (0, . . . , 0). This justifies the restriction
∑m

j=1 |kj | 6= 0 in the conclusion: the theorem

provides a non-trivial point satisfying the required condition.

Proof of Theorem 27. Fixed a positive integer q, there are (q + 1)m points (y1, . . . , ym) in Zm such that

0 ≤ yi ≤ q, for i = 1, . . . ,m. If we set

ωi =

m∑
j=1

aijyj

for each i = 1, . . . , n, there are also (q + 1)m options for the n−tuple (ω1, . . . , ωn) ∈ Zn.

Now, for each i = 1, . . . , n, let xi be the integer that 0 ≤ xi−ωi < 1, i.e., for each i = 1, . . . , n, define

xi to be xi = dωie. By doing this we obtain a collection Q of (q + 1)m points in the cube C := [0, 1)n.

Partitioning this cube C into Tn smaller cubes of side 1
T , with sides being parallel hyperplanes and such

that the projection onto each side of C being half-open such as [0, 1/T )n.

Next, set q = bTn/mc, so that:

(q + 1)m = (bTn/mc+ 1)m >
(
Tn/m

)m
= Tn.

Hence, by the pigeon-hole principle, the (q + 1)m points in Q being distributed in Tn cubes of side 1/T ,

cannot all lie in different cubes. Thus, there are at least two different points ofQ lying in the same subcube,

say (x1 − ω1, . . . , xn − ωn) and (x′1 − ω′1, . . . , x′n − ω′n), where ω′i =
∑m

j=1 aijy
′
i for some lattice point
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(y′1, . . . , y
′
m) in Zm, different from (y1, . . . , ym), but still with 0 ≤ y′i ≤ q for all i = 1, . . . ,m. Then,

1

T
>
∣∣(xi − ωi)− (x′i − ω′i)

∣∣
=
∣∣(ω′i − ωi)− (x′i − xi)

∣∣
=

∣∣∣∣∣∣
 m∑
j=1

aijy
′
j −

m∑
j=1

aijyj

− (x′i − xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

aij
(
y′j − yj

)
− (x′i − xi)

∣∣∣∣∣∣ ,
for i = 1, . . . , n. So, if we fix kj = y′j − yj and hi = x′i − xi, and use the fact that τ < T , we obtain:∣∣∣∑m

j=1 aijkj − hi
∣∣∣ < 1/τ , for i = 1, . . . , n.

In order to obtain the other two conclusions of the theorem first observe that, being (y1, . . . , ym) and

(y′1, . . . , y
′
m) distinct, there is at least one index j0 ∈ {1, . . . ,m} such that yj0 6= y′j0 . So, there exists j0

such that kj0 6= 0 and then
∑m

j=1 |kj | 6= 0.

Finally, since 0 ≤ yj ≤ q and 0 ≤ y′j ≤ q for all j = 1, . . . ,m, it follows that

|kj | = |y′j − yj | ≤ q = bTn/mc ≤ Tn/m,

as desired.

Corollary. Given any real numbers α1, . . . , αm and any integer t ≥ 1, there exists a lattice point

(k1, . . . , km, h) with |kj | ≤ t for all j = 1, . . . ,m and
∑
|kj | 6= 0, such that∣∣∣∣∣∣

m∑
j=1

αjkj − h

∣∣∣∣∣∣ < 1/tm.

Proof. In the theorem above, substitute n by 1 to get only one row in the matrix A,

α11, . . . , α1m,

and we call α1j by αj , for each j = 1, . . . ,m. Still in the theorem above, replace τ by tm to obtain

T = tm and Tn/m = T 1/m = t.

Hence, the conclusions of the theorem will be: there exists h1 ∈ Z, that we call h, and (k1, . . . , km) ∈
Zm and h ∈ Z with |kj | ≤ t for all j = 1, . . . ,m,

∑m
j=1 |kj | 6= 0 and∣∣∣∣∣∣

m∑
j=1

αjkj − h

∣∣∣∣∣∣ < 1/tm.

The next consequence of Theorem 27 we present here is the central fact that we use to prove the

statement inside Lemma 13:

Theorem 28. Given any real numbers α1, . . . , αn, there exists infinitely many sets of integers k, q1, . . . , qn,

with k > 0, such that ∣∣∣αi − qi
k

∣∣∣ < 1

k n
√
k
, (B.1)

for i = 1, . . . , n.
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Proof. If, in Theorem 27, we set m = 1, substitute αi1 by αi, and demand τ to be a positive integer,

in such a way that τ = dτe = T , we conclude that, for any positive integer T there is a lattice point

(k1, h1, h2, . . . , hn) ∈ Zn+1, with 0 < |k1| ≤ Tn, and such that:

|αik1 − hi| <
1

T
,

for i = 1, . . . , n. Note that each of the n inequalities still holds if we exchange (k1, h1, h2, . . . , hn) by

(−k1,−h1,−h2, . . . ,−hn). Either k1 or −k1 must be positive. Call it k and call the point the it is a

coordinate by (k, q1, . . . , qn). In particular, we have shown that for each positive integer T there is a

lattice point (k, q1, . . . , qn) ∈ Zn+1 such that 0 < k < Tn and

|αik − qi| <
1

T
, (B.2)

for i = 1, . . . , n.

Moreover, since 0 < k < Tn, we have that 1
T < 1

n√
k

. Then, |αik − qi| < 1
T if and only if∣∣αi − qi

k

∣∣ < 1
kT , and then ∣∣∣αi − qi

k

∣∣∣ < 1

kT
<

1

k n
√
k
,

i.e., we proved that there exists (k, q1, . . . , qn) ∈ Zn+1 such that 0 < k < Tn and that
∣∣αi − qi

k

∣∣ < 1
k

n√
k

,

for i = 1, . . . , n.

To conclude the proof, we need to prove that there exist infinitely many lattice points such as the

one above. To do so, we consider two distinct cases: one is what happens when all the real numbers

α1, . . . , αn are rational; the second is when at one of them is irrational.

In the first case, i.e., when α1, . . . , αn ∈ Q, it is easy to find (k, q1, . . . , qn) ∈ Zn+1 satisfying the

inequalities stated. Actually, we can ignore all that was done until now and consider k to be any integer

that is a common multiple of the denominators of all αi’s and take qi = kαi. Of course, there are infinitely

many choices for k.

So we remain in the last case, i.e., some of the αi’s is irrational. Suppose, without loss of generality,

that α1 ∈ R \Q. To obtain a contradiction, suppose there is only a finite number of integers k, q1, . . . , qn

such that
∣∣α1 − qi

k

∣∣ < 1
k

n√
k

, for i = 1, . . . , n. In particular, there would be only a finite number of

corresponding values |α1k−q1|, all positive (since α1 is irrational). But each of these values would exceed
1
T , provided we choose T to be large enough. Now, this large enough T would, by the argumentation that

we have done to obtain the inequality (B.2), give us a different set of integers k, q1, . . . , qn. This is a

contradiction since we were supposing the first set of integers we have picked was the largest as possible.

This completes the proof of the theorem.

Finally, we prove the result inside Lemma 13:

Lemma. For all λ, t1, . . . , tN ∈ (0,+∞) and n0 ∈ N, there are n1, . . . , nN ≥ n0 and t ∈ R such that

|niti − t| < λti,

for all i = 1, . . . , N .

Proof. First we prove that, for all ε > 0 and all t1, . . . , tN > 0, the set ofN+1−tuples (t, n1, . . . , nN ) ∈
R× ZN that satisfy ∣∣∣∣ tti − ni

∣∣∣∣ < ε,
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for each i = 1, . . . , N is infinite.

To prove this claim, fix αi = 1
ti

for each i = 1, . . . , N in Theorem 28. It guarantees the existence of

infinitely many N + 1−tuples (t, n1, . . . , nN ) ∈ R× ZN , with t > 0 and satisfying inequality (B.1), i.e.,∣∣αi − ni
t

∣∣ < 1
t N√t

, for each i = 1, . . . , N . In other words,

|tαi − ni| = t ·
∣∣∣αi − ni

t

∣∣∣ < 1
N
√
t
,

for each i = 1, . . . , N . Since tαi = t
ti

and since there are infinitely many (t, n1, . . . , nN ) that make this

inequality work, we may choose t > 0 sufficiently large such that 1
N√t

< ε, and hence the first statement

is proved.

Moreover, if we ask for ε > 0 to be sufficiently small, since all the ti’s and t are positive, we may ask

that the ni’s are all positive as well.

Now, how do we move to the statement of the lemma? First, choose ε > 0 to be ε < λ. So, for every

i = 1, . . . , N , we find infinitely many N + 1−tuples (t, n1, . . . , nN ) such that t > 0, the ni’s are positive

(by reducing ε if necessary) and since there are infinitely many of then, we can ask them all to be greater

than n0 ∈ N fixed. Finally, each ni satisfy:

|niti − t| < εti < λti,

for all i = 1, . . . , N .
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