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Abstract. We show that within a C1-neighbourhood U of the set of volume
preserving Anosov diffeomorphisms on the three-torus T3 which are strongly
partially hyperbolic with expanding center, any f ∈ U ∩ Diff2(T3) satisfies
the dichotomy: either the strong stable and unstable bundles Es, Eu of f are
jointly integrable, or any fully supported u-Gibbs measure of f is SRB.
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1. Introduction

1.1. Context. Invariant foliations play a key role in partially and uniformly
hyperbolic dynamics. For example, they can be used to obtain ergodicity, topo-
logical transitivity and mixing for certain systems. In the path of trying to
understand these foliations, one can investigate their topological and ergodic
properties. For topological properties, one may ask about minimality, or robust
minimality, of the invariant foliations. In this paper we are going to focus on
understanding ergodic properties of the invariant foliations for a certain type of
dynamical system.

We refer the reader to Section 2 for the definition of the dynamical objects that
appear in this introduction. Let us denote by T3 def.= R3/Z3 the three-dimensional
torus. We let A2(T3) ⊂ Diff2(T3) be the set of Anosov diffeomorphisms which
are strongly partially hyperbolic with uniformly expanding center, that is, a
diffeomorphism f belongs to A2(T3) if f is Anosov and admits a splitting

TT3 = Es ⊕ Ec ⊕ Eu,
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where Ec expands uniformly under the action of Df . A diffeomorphism in
A2(T3) can be seen as an Anosov and as a partially hyperbolic diffeomorphism.
In this context the bundles Es, Eu, Eu⊕Ec, Es⊕Ec and Ec integrate to invariant
foliations respectively denoted by Ws,Wu,Wcu,Wcs and Wc, and called the
stable, unstable, center-unstable, center-stable and center foliations (see [4, 38]).
If we see f as an Anosov diffeomorphism, Wcu is a (two dimensional) unstable
foliation. If we see it as a partially hyperbolic diffeomorphism, Wu is the (one
dimensional) strong-unstable foliation.

There are two types of elements of A2(T3): the conservative elements, which
preserve some volume (that must be ergodic by Hopf’s argument) and form a
set denoted by A2

m(T3), and the dissipative ones, which don’t. In both cases
there exists a unique invariant measure which is the “most compatible” with the
volume and that is called the SRB measure (for Sinai-Ruelle-Bowen): measures
that are absolutely continuous with respect to the Lebesgue measure along center
unstable leaves (see §2.5). In particular, they capture the “statistical” behavior
of Lebesgue-almost every point (see [49]). SRB measures are very important in
the theory of smooth dynamics. Palis conjectured that for a typical dynamical
system there are finitely many attractors, each attractor supporting a unique
SRB measure and these measures capture the behavior of Lebesgue almost every
point [36]. This conjecture remains open.

1.2. Dynamics of (center)-unstable foliation. Let f ∈ A2(T3) with a split-
ting TT3 = Es ⊕Ec ⊕Eu. The dynamics of the center-unstable foliation Wcu is
very well understood. It is minimal (i.e., every leaf is dense in T3) and there is
a unique SRB measure.

On the other hand, recall that properties of the strong-unstable foliation Wu

are especially interesting for dissipative dynamics: the study of topological and
ergodic properties of attractors or quasi-attractors (which are Wu-saturated, i.e.,
they contain its Wu-leaves) is closely related to the problem of understanding
properties of these foliations (or laminations). Apart from some finiteness results
(see [10, 21, 23]), the dynamical properties of strong-unstable foliation are not
well understood even in the uniformly hyperbolic setting.

For instance, it was only recently announced by Avila-Crovisier-Eskin-Potrie-
Wilkinson-Zhang that Wu is minimal for any C1+α Anosov diffeomorphism of
T3. In higher dimensions, Avila-Crovisier-Wilkinson recently announced that C1-
openly and Cr-densely among the transitive Anosov diffeomorphisms admitting
a decomposition Es ⊕ Ec ⊕ Eu, where Ec is one dimensional and uniformly
expanding, the strong unstable manifold is minimal.

A type of invariant measures that is associated with Wu are the so-called u-
Gibbs measures. A measure is u-Gibbs if it admits conditional measures along
Wu leaves that are absolutely continuous with respect to the Lebesgue measure
of these leaves. In particular the support of such a measure is Wu-saturated.
Let us make a few remarks about u-Gibbs and SRB measures in our setting:

(1) SRB measures are absolutely continuous along two dimensional objects
(Wcu leaves), while u-Gibbs are absolutely continuous along one dimen-
sional objects (Wu leaves).

(2) SRB measures are also u-Gibbs measures.
(3) In general, we don’t know when a u-Gibbs measure is an SRB measure.

1.3. Main result. The goal of this paper is related to item (3) above. We are
interested in knowing when the u-Gibbs property implies SRB. In other words,
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given a measure that is absolutely continuous along Wu, when can we show that
this measure is absolutely continuous along Wcu?

For A2(T3), we say that Es and Eu are jointly integrable if there exists a two
dimensional foliation Wsu tangent to Es ⊕ Eu. It is known that C1-openly and
C2-densely in A2(T3) the directions Es and Eu are not jointly integrable (see
[45]).

Our main result is the following:

Theorem A. There exists an open neighbourhood U of A2
m(T3) within Diff2(T3)

so that for every f ∈ U , either
(1) Es and Eu are jointly integrable, or
(2) any fully supported ergodic u-Gibbs measure µ is SRB.

Remark 1.1. The hypothesis that the system is near a volume preserving one
is used to have C1-stable holonomies. The conclusion of Theorem A also holds
for f ∈ A2(T3) with C1-stable holonomies, see Theorem 5.10.

Remark 1.2. As we mentioned before, Avila et al. announced that for any C1+α

Anosov diffeomorphism in T3 the strong unstable foliation is minimal. Since the
support of any u-Gibbs measure is saturated by Wu-leaves, their result would
imply that the case (2) of Theorem A could be improved to every u-Gibbs measure
is SRB. We could also apply the result announced by Avila-Crovisier-Wilkinson,
that we mentioned, to obtain that open and densely in U every u-Gibbs is SRB,
where U is the open set from Theorem A.

Let us mention one application of our result. In [19], Gogolev, Kolmogorov
and Maimon consider the linear Anosov diffeomorphism on T3 induced by the
matrix

A =

2 1 0
1 2 1
0 1 1

 .
The eigenvalues of A are real and approximately 0.2, 1.55 and 3.25. In particu-
lar, the diffeomorphism induced by this matrix belong to A2

m(T3). In [19], the
authors did a numerical study for two explicit families of perturbations of A,
one conservative and one dissipative. Their numerical study indicates that for
these families of perturbations of A, there is a unique u-Gibbs measure and this
measure coincides with the SRB measure. They make the following conjecture.

Conjecture ([19], Conjecture 1.3). For all analytic diffeomorphisms f in a suf-
ficiently small neighbourhood of A there exists a unique u-Gibbs measure.

Our result gives that for any C2-diffeomorphism in a neighbourhood of A,
either Es and Eu are jointly integrable or any u-Gibbs fully supported is SRB.
If we assume Avila et al.’s result, then we would obtain that either we have joint
integrability or there is only one u-Gibbs measure. In Section 12 we introduce
Gogolev-Kolmogorov-Maimon’s conservative and dissipative families and prove
that for both examples, Es and Eu are not jointly integrable, applying a very
convenient criterion of Gan-Shi [17]. That gives a theoretical explanation for
their numerical study. Let us remark that in [19] the authors also make conjec-
tures about transitivity and minimality of Wu. In [46], Rodriguez Hertz-Ures
gave a positive answer to their transitivity conjecture.

1.4. Related works and further results. One can think of a u-Gibbs measure
as a measure that is “homogeneous” along strong unstable manifolds and an SRB
measure as being “homogeneous” along entire unstable manifolds.
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In a series of celebrated works, in the homogeneous setting, Ratner classified
measures that are invariant by the action of a unipotent group [41, 40, 42, 43].
She proved that such measures are homogeneous, i.e., they are the Haar measure
of some subgroup. Observe that unipotent flows parameterize unstable manifolds
of the geodesic flow on surfaces with constant negative curvature (the horocy-
cle flow). Hence, a consequence of Ratner’s measure rigidity result is measure
rigidity of the u-Gibbs measures of the geodesic flow on surfaces with constant
negative curvature. A key idea in Ratner’s approach is the so-called polynomial
drift, which allowed her to obtain extra invariance of the measure from invariance
along orbits of the unipotent flow.

In [2], Benoist-Quint introduced the idea of exponential drift to prove a mea-
sure rigidity result for stationary measures of a Zariski dense random walk on
homogeneous spaces.

Outside the homogeneous setting, Eskin-Mirzakhani gave a non trivial modifi-
cation of the exponential drift strategy, which is called the factorization method,
to prove measure rigidity results for the action of SL(2,R) on moduli spaces
[15]. Since then, these ideas were pushed to some different settings. In [7],
Brown-Rodriguez Hertz classified the hyperbolic stationary measures of random
products of surface diffeomorphisms. Cantat-Dujardin applied Brown-Rodriguez
Hertz’s result to classify random products of automorphisms of real and complex
projective spaces [8].

In the partially hyperbolic setting, the third author adapted Brown-Rodriguez
Hertz’s result to obtain a rigidity result for u-Gibbs measures for partially hy-
perbolic skew products with two dimensional center [35].

In [30], Katz adapts the Eskin-Mirzakhani strategy for the smooth setting.
He proved that for any C∞ Anosov diffeomorphism f having a splitting TM =
Es⊕Ec⊕Eu, where Ec is one dimensional and expanding, any u-Gibbs measure
that verifies a technical condition called QNI (quantified non-integrability) is
SRB. After our work, Eskin-Potrie-Zhang [16] obtained equivalent notions to
QNI that are easier to work with. In our setting, their result implies that,
assuming C∞ regularity, either any fully supported u-Gibbs measure is SRB, or
Es and Eu verify a condition that they called joint integrability up to order l,
for every l > 0, which is slightly weaker than the usual joint integrability. Their
result will be used by Avila et al., in another ongoing project, to prove that for
any Anosov diffeomorphism in A∞(T3) either Es and Eu are jointly integrable,
or every u-Gibbs measure is SRB. All of these works are stated for C∞ regularity,
but they can be obtained for Cr regularity for r ≫ 1. Part of the goal of this
paper is to obtain this type of measure rigidity result for u-Gibbs measures, but
in lower regularity (in our case C2).

1.5. Ingredients of the proof. The first ingredient concerns the transversality
condition. We replace Katz’s QNI condition by a zero-one law for angles inspired
by Brown-Rodriguez Hertz [6, Lemma 7.1] (see also [2]). We use the fact that
stable holonomies (Hs

x,y)x,y are C1 for any diffeomorphism f ∈ A2(T3) close to
a conservative one (see Lemma 2.6); thus, for x, y in the same stable manifold,
we can define an (unoriented) angle (see Figure 1)

αs(x, y) def.= ∠(DHs
x,yE

u(x), Eu(y)).

Note that conditional measures µsx on stable manifolds are not well defined.
But full- and zero-measure sets for µsx are well defined, see §2.4. We can now
state our zero-one law (see Theorem 4.2 for a slightly more general statement).
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Figure 1. Stable holonomies and the angle function.

Theorem B (A zero-one law for angles). There exists an open neighbourhood
U of A2

m(T3) within Diff2(T3) such that for any f ∈ U , and for any ergodic
f -invariant measure µ, the following dichotomy holds:

(1) for µ-a.e. x ∈ T3 and µsx-a.e. y ∈ Ws(x), αs(x, y) = 0;
(2) for µ-a.e. x ∈ T3 and µsx-a.e. y ∈ Ws(x), αs(x, y) > 0.

This theorem is stated here in terms of the angle function αs; yet, it seems
possible to generalize it to a broader context (see Remark 4.4).

Another ingredient which plays an instrumental role in our proof is the ex-
istence of normal forms for the dynamics along two-dimensional unstable foli-
ations. The dynamics along unstable manifolds is simplified when it is looked
at in normal forms. The theory of non-stationary normal forms has been stud-
ied quite extensively since the pioneering work of Guysinsky-Katok [22], see for
instance [26, 27, 18]. Katz uses the result from [26] where higher regularity is
needed depending on the Lyapunov spectrum.

Yet, these results do not apply directly here, due namely to the fact that f is
merely assumed to be C2. We use instead an ad hoc construction, of different
nature, based on one-dimensional normal forms along the center/unstable direc-
tions. Although the outcome is somewhat similar to the result in [26], we list a
few differences with their work in Remark 1.3 below. We show:

Theorem C (Normal forms). Let f ∈ A2(T3). Then, there exists a family
{Φx}x∈T3 of C1 diffeomorphisms Φx : R2 → Wcu(x) such that

(1) f ◦ Φx = Φf(x) ◦Nx, with Nx
def.=
[
λux 0
0 λcx

]
, letting λ∗

x
def.= ∥Df(x)|E∗∥;

(2) Φx(0) = x and DΦx(0)(1, 0) = vu(x), DΦx(0)(0, 1) = vc(x), vu(x), resp.
vc(x) being a unit vector in Eu(x), resp. Ec(x);

(3) Φx(·) depends continuously with the choice of x in the local C1-topology1;
(4) Φx is a foliated chart for Wu, i.e., for all s ∈ R, Φx(R × {s}) =

Wu(Φx(0, s)), and Φx({0} × R) = Wc(x).

Remark 1.3. Compared with [26], our construction only requires f to be C2, and
does not need (pointwise) 1/2 pinching. The price to pay is that the resulting
change of coordinates is merely C1, while it is C∞ in [26]. Yet, this suffices
for our purpose; indeed, u-Gibbs measures, when they are looked at in normal
coordinates, still have the property of being absolutely continuous along the image
of Wu, namely, the horizontal foliation. Contrary to [26], the normal forms

1Uniform convergence of the function and its first derivative on compact sets.
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{Φx}x∈T3 we obtain do not in general define an affine structure on the foliation
Wcu (see Remark 6.4); yet, we will investigate in Section 6 certain invariance
properties of these normal forms under changes of charts.

(0, 0)
Φx

Wc(x)

Wcu(x)

Wu(x)

R2

x

Figure 2. Theorem C provides non-stationary C1 linearisations
of the dynamics along center unstable leaves. They send horizon-
tal lines onto unstable manifolds.

Note that Katz also uses the C∞ regularity many other times in his adaptation
of Eskin-Mirzakhani’s factorization method for Anosov systems. For example,
at some moments, he has to approximate stable/unstable manifolds by Taylor
polynomials with very high degree. In our setting, Theorems B and C are the
two main reasons why we are able to adapt the Eskin-Mirzakhani’s strategy in
lower regularity.

We stress that, differently from previous works, we implement Y -
configurations and a version of the factorization technique of [15] without using
suspensions nor any reparametrization. We make all estimations directly with
the diffeomorphism. This is possible because we can obtain uniform estimates
for the drift of leaf-wise (quotient) measures along the center as well as syn-
chronization estimates for stopping times (see §9.3), using only basic distortion
estimates (see §2.3).

1.6. Organization of the paper. This paper is organized as follows: in Sec-
tion 2 we introduce the basic definitions and results we need. In Section 3 we
give an outline of the proof of Theorem A. In Section 4 we establish a zero-one
law for transversality between the bundles Es and Eu. In Section 5 we reduce
the proof of Theorem A to a more technical result, see Theorem 5.10. In Sec-
tion 6 we construct a non-stationary family of C1 linearisations of the dynamics
restricted to center unstable manifolds and use them to construct a family of
measures {ν̂cx}x∈T3 on the real line. We reduce the proof of our main technical
result to proving that these measures are Lebesgue almost surely. In Section 8,
we explain an argument from [7, 25] that shows that if the measures ν̂cx are
“invariant” by certain affine maps for many point x, then the measures ν̂cx are
actually the Lebesgue measure. We then explain how this is achieved by reducing
the proof in proving Proposition 8.2. In Section 9 we introduce Y -configurations
and other objects crucial for our argument. In Section 10 we introduce matched
Y -configurations and in Section 11 we complete the proof.
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2. Partially hyperbolic diffeomorphisms with expanding center

In this section we introduce the class of dynamical systems we work with
as well as the main objects, taking the opportunity to fix notations and recall
important basic facts.

2.1. Definitions. For any integer r ≥ 1, we let PHr(T3) be the set of all Cr
(strongly) partially hyperbolic diffeomorphisms of T3 with one-dimensional sta-
ble/center/unstable bundles, i.e., the diffeomorphisms f : T3 → T3 such that
there exist a continuous splitting of TT3 into Df -invariant line bundles,

TT3 = Es ⊕ Ec ⊕ Eu,

as well as a Riemannian metric ∥.∥ adapted to this splitting such that the func-
tions

x 7→ λ∗
x

def.= ∥Df(x)|E∗∥, ∗ ∈ {s, c, u},
are continuous and satisfy λsx < 1 < λux and λsx < λcx < λux, for all x ∈ T3. We will
sometimes make the dependence on f explicit and write λ∗

f,x instead of λ∗
x. We

also let Ecs def.= Ec⊕Es, resp. Ecu def.= Ec⊕Eu be the center-stable, resp. center-
unstable subbundle, and set Esu def.= Es ⊕ Eu. We refer to Katok-Hasselblatt’s
book [28] for more details.

2.1.1. Anosov diffeomorphisms with uniformly expanding center. We denote by
Ar(T3) ⊂ PHr(T3) the subset consisting of partially hyperbolic diffeomorphisms
f ∈ PHr(T3) with uniformly expanding center, i.e., such that λcx > 1, for all
x ∈ T3; in particular, any such diffeomorphism f is Anosov, for the hyperbolic
splitting Es ⊕ Ecu. We also denote by Ar

m(T3) ⊂ Ar(T3) the subset made of
conservative Anosov diffeomorphisms (i.e., that preserve some volume).

To simplify the exposition, we assume that the bundles E∗ are orientable and
that f preserves their orientation (this can always be achieved by taking an
orientable cover and considering powers of f). In particular, there are unitary
vector fields x ∈ T3 7→ v∗(x) ∈ E∗(x) such that

Df(x)v∗(x) def.= λ∗
xv

∗(f(x)).
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2.1.2. Notations for orbits and derivatives. To give a more friendly aspect of
some long calculations we shall make, we introduce the following notation. For
a point x ∈ T3 we denote

xn = fn(x) for n ∈ Z. (1)
Also, for n ∈ Z and for ∗ = s, c, u we denote the derivative of f in restriction to
the bundle E∗ by

λ∗
x(n) def.= ∥Dfn(x)|E∗∥. (2)

The following cocycle property follows from the chain rule and the fact that the
bundles are one-dimensional:

λ∗
x(n+m) = λ∗

fn(x)(m)λ∗
x(n), ∗ ∈ {s, c, u}. (3)

The following quantities associated to f will be useful for crude estimations

∥Df∥ def.= max{∥Df(x)v∥ : x ∈ T3, v ∈ TxT3, ∥v∥ = 1}
and

m(Df) def.= min{∥Df(x)v∥ : x ∈ T3, v ∈ TxT3, ∥v∥ = 1}.

2.1.3. Adapted metric and hyperbolic estimates. The following quantity will play
a key role later when we introduce stopping times and Y -configurations:

dℓx
def.=

λcx−ℓ
(ℓ)

λux−ℓ
(ℓ) . (4)

Notice that dℓx measures the amount of projective hyperbolicity we have for the
dominated splitting Ec ⊕ Eu.

We fix a Riemannian metric on T3 and constants χ∗
j ∈ R, for ∗ ∈ {c, s, u, d}

and j = 1, 2 such that the following holds:
(1) χd1 < χd2 < 0 and eχ

d
1ℓ < dℓx < eχ

d
2ℓ, for every x ∈ T3 and every ℓ ∈ Z.

(2) χs1 < χs2 < 0 and eχ
s
1ℓ < λsx(ℓ) < eχ

s
2ℓ, for every x ∈ T3 and every ℓ ∈ Z.

(3) χc1 > χc2 > 0 and eχ
c
1ℓ > λcx(ℓ) > eχ

c
2ℓ, for every x ∈ T3 and every ℓ ∈ Z.

(4) χu1 > χu2 > 0 and eχ
u
1 ℓ > λux(ℓ) > eχ

u
2 ℓ, for every x ∈ T3 and every ℓ ∈ Z.

2.1.4. Invariant manifolds. Let r ≥ 1, and let f ∈ Ar(T3). It is well-known (see
[24]) that the strong bundles Es and Eu are uniquely integrable to f -invariant
continuous foliations with Cr-leaves Ws

f = Ws and Wu
f = Wu respectively, called

the strong stable and strong unstable foliations. Since the splitting Es ⊕ Ecu is
Anosov, the center-unstable bundle Ecu also integrates uniquely to an f -invariant
continuous foliation Wcu

f = Wcu, called the center-unstable foliation. For any
x ∈ T3 and ∗ = s, u, cu, we denote by W∗(x) the leaf of W∗ through x; it is an
immersed Cr manifold.

We now define the concept of joint integrability which appear in the statement
of Theorem A

Definition 2.1 (Joint integrability). We say that f ∈ Ar(T3) is (or that the
bundles Es and Eu are) jointly integrable if the bundle Es ⊕ Eu integrates to a
continuous foliation with C1 leaves.

Let r ≥ 1, and fix a Cr Anosov diffeomorphism f ∈ Ar(T3). By Corollary
1.3 in [34] the non-wandering set Ω(f) of f is equal to T3, and f is topologically
conjugated to a hyperbolic toral automorphism. As a consequence, one has the
following lemma (see Theorem 1.3 in [37] for a proof).

Lemma 2.2. The stable foliation of f is minimal, i.e., each leaf of Ws is dense
in T3.
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2.1.5. Dynamical coherence. As remarked before, any diffeomorphism f ∈
Ar(T3) can be seen either as a strongly partially hyperbolic diffeomorphism
with respect to the splitting Es ⊕Ec ⊕Eu and an Anosov diffeomorphism with
respect to the splitting Es ⊕ Ecu. By Lemma 2.2 we know that Ω(f) = T3.

By the results of Potrie [38] and Brin-Burago-Ivanov [4] on partially hyperbolic
diffeomorphisms of T3, we have that f is dynamically coherent. In particular,
Ecs is also integrable to an f -invariant continuous foliation Wcs

f = Wcs, called
the center-stable foliation. Moreover, Ws subfoliates Wcs, while Wu subfoliates
Wcu, and the collection of all leaves Wc(x) def.= Wcs(x)∩Wcu(x), x ∈ T3, forms a
foliation Wc

f = Wc, called the center foliation, which integrates Ec, and subfoli-
ates both Wcs and Wcu. For ∗ ∈ {u, c, s, cu, cs}, let d∗ be the leaf-wise distance,
and for x ∈ T3, σ > 0, set W∗

σ(x) def.= {y ∈ W∗(x) | d∗(x, y) < σ}.
In our Anosov case we can show rather easily that the foliations Wc and Wu are

globally transverse inside each Wcu leaf, as the two lemmas below demonstrate.

Lemma 2.3. For any x ∈ T3, it holds Wcu(x) = ∪y∈Wc(x)Wu(y).

Proof. Let z ∈ Wcu(x) be arbitrary. We need to show that Wc(x) ∩ Wu(z) ̸= ∅.
Since the bundles Ec and Eu are integrable and the local leaves have uniform
size due to hyperbolicity, since the splitting Ec⊕Eu is dominated and backwards
iteration under f contracts distances uniformly along Wcu we must have some
n ∈ N such that

Wc(f−n(x)) ∩ Wu(f−n(z)) ̸= ∅,

with transverse intersection. By forward iteration and using that integral mani-
folds are invariant by the dynamics we obtain the conclusion of the lemma. □

Lemma 2.4. For every y ∈ Wc(x), it holds Wc(x) ∩ Wu(y) = {y}.

Wc(x)

Wu(y) •

•

y

y′
•
•

f−n(y)

f−n(y′)
f−n

Figure 3. Proof of Lemma 2.4: iterating the picture of the left
we arrive at a small scale where the picture violates the uniformly
positive angle between Ec and Eu.

Proof. Assume by contradiction the existence of a point y′ ̸= y in Wc(x)∩Wu(y).
Consider the piece γu of unstable manifold joining y to y′. Since the length of
f−n(γu) decreases exponentially there exists some n such that the curve f−n(γu)
is entirely contained in a coordinate chart for which the line field Ec is almost
vertical. Since this curve joins the points f−n(y) and f−n(y′) which belong to
the same local integral curve of Ec, this proves that the tangent space of f−n(γu)
is almost vertical somewhere. This contradicts the dominated splitting Ec ⊕Eu

and completes the proof. □
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2.1.6. Holonomies. Let x1, x2 ∈ T3 be two stably connected points, i.e., such
that x2 ∈ Ws(x1). Set r def.= ds(x1, x2). By transversality, for any sufficiently
small ε > 0, there is σ1 > 0 such that for any point y1 ∈ Wcu

σ1 (x1), there exists a
unique point y2 ∈ Ws(y1) ∩ Wcu

1 (x2) with ds(y1, y2) ∈ (r − ε, r + ε). We denote
Hs
x1,x2(y1) def.= y2. Thus, we get a well defined local homeomorphism

Hs
x1,x2 : C1 → C2,

from a neighbourhood C1 of x1 within Wcu(x1) to a neighbourhood C2 of x2 within
Wcu(x2), called the (local) stable holonomy map between C1 and C2. Holonomies
Hu, Hcs, Hcu along Wu, Wcs, Wcu are defined in a similar way.

2.2. Regularity of extreme bundles and holonomy maps. It is crucial to
our proof that certain holonomy maps are of class C1. This is the case when some
bunching inequalities are satisfied between the rates of contraction/expansion of
the system; they actually hold in a neighbourhood of volume preserving Anosov
diffeomorphisms of T3, which is the main motivation behind this assumption in
our result.

In our setting, we will say that f is bunched if there exists some n ∈ N such
that for any x ∈ T3,

λsf,x(n) <
λcf,x(n)
λuf,x(n) , (5)

where the notation λ∗
f,x(n) was introduced in §2.1. In the equation above, we

explicited the dependence of the contraction and expansion rates on f . We
remark that this is clearly a C1-open condition. This definition appears in [39]
(see also [9, §4.7]).

2.2.1. Regularity of the unstable bundle. Let f ∈ A2(T3). Then, f is a strongly
partially hyperbolic diffeomorphism with one-dimensional center bundle, hence
f is automatically center bunched. By [39, Theorem B], the unstable bundle
Eu is C1 when restricted to any center unstable leaf Wcu(x). In particular, the
vector field vu|Wcu is a C1 vector field over the immersed submanifold Wcu(x)
and its C1 norm depends continuously with respect to x ∈ T3.

As a corollary, we obtain that for any two small and nearby center curves
γ1, γ2 ⊂ Wcu(x), in the same center unstable leaf, the unstable holonomy map
Hu : γ1 → γ2 is C1. This regularity will play a role in our argument in Sec-
tion 10.4. Moreover, for some estimations in our proof it is important to quan-
tify the Lipschitz constant of these unstable holonomy maps, as in the following
result, which is simply a more precise statement of [39, Theorem B] in our case.

Lemma 2.5. Let f ∈ A2(T3). There exists ρ0 > 0, Cu > 0 such that for every
x, y ∈ T3, if x ∈ Wu

2 (y) then the unstable holonomy Hu
x,y between local center

manifolds is defined over Wc
ρ0(x) and for every z, z′ ∈ Wc

ρ0(x) we have

d(Hu
x,y(z), Hu

x,y(z′)) ≤ Cud(z, z′).

2.2.2. Regularity of the stable bundle. For the bundle Es a stronger statement
can be made when f is close to a volume preserving map. Indeed, fix an arbitrary
f0 ∈ A1

m(T3).

Lemma 2.6. There exists a neighbourhood U(f0) of f0 within Diff2(T3) such
that for any diffeomorphism f ∈ U(f0), we have f ∈ A2(T3) and the stable
bundle Es of f is of class C1.



RIGIDITY OF U-GIBBS NEAR CONSERVATIVE ANOSOV DIFFEOMORPHISMS 11

Proof. Since f0 is uniformly hyperbolic, there exists a continuous function T3 ∋
x 7→ C(x) ∈ GL(3,R) such that for every point x ∈ T3,

Df0(x) = C(f0(x))−1

λ
s
f0,x

0 0
0 λcf0,x

0
0 0 λuf0,x

C(x).

The matrix C(x) is a matrix with positive determinant that takes a basis formed
by unit vectors in E∗(x), and sends it to the orthogonal basis (1, 0, 0), (0, 1, 0)
and (0, 0, 1). In particular, there exists a uniform constant C ≥ 1 such that

max{|det C(x)|, |det C(x)−1|} ≤ C.

Consequently,

|det Df0(x)| = |det C(f0(x))−1| · |det C(x)| · λsf0,xλ
c
f0,xλ

u
f0,x.

Observing that for every n ∈ N,

|det Dfn0 (x)| = |det C(fn0 (x))−1| · |det C(x)| · λsf0,x(n)λcf0,x(n)λuf0,x(n).

The diffeomorphism f0 is conservative so its Jacobian is a coboundary (by Livšic’s
Theorem [33] and [3, Theorem 4.14]). Thus, there exists a continuous function
ϕ : T3 → (0,∞) bounded away from 0 and ∞ such that for any x ∈ T3, we have

|det C(f0(x))−1| · |det C(x)| · λsf0,xλ
c
f0,xλ

u
f0,x = ϕ ◦ f0(x)

ϕ(x) .

Hence,

λsf0,x(n) =
λsf0,x

(n)λcf0,x
(n)λuf0,x

(n)
λcf0,x

(n)λuf0,x
(n)

= |det C(fn0 (x))−1|−1 · |det C(x)|−1 · ϕ ◦ fn(x)
ϕ(x) · 1

(λcf0,x
(n))2

λcf0,x
(n)

λuf0,x
(n)

<
λcf0,x

(n)
λuf0,x

(n) ,

as long as n is large enough so that

|det C(f0(x))−1| · |det C(x)|ϕ ◦ fn(x)
ϕ(x) < (λcf0,x(n))2.

Such an integer n may be chosen independently of x because ϕ is uniformly
bounded away from 0 and ∞, max{|det C(x)−1|, |det C(x)|} ≤ C and Ec is
uniformly expanding. In particular, if f ∈ Diff2(T3) is sufficiently C1-close to
f0, then f ∈ A2(T3), and for the same choice of n ∈ N and every x ∈ T3,
it holds λsf,x(n) <

λcf,x(n)
λu
f,x

(n) and f verifies (5). In other words, the hyperbolic
splitting Es ⊕ Ecu of f is bunched (see (5)). Then, according to the results of
[39] (see also [9, Theorem 4.21]), the stable bundle Esf is C1, as well as the stable
holonomy maps. □

Remark 2.7. As noted in the above proof, the assumption that f is C1-close to
a conservative diffeomorphism ensures that the following bunching condition is
automatically satisfied (hence that stable holonomies Hs are C1, by [39]):

λsf,x(n) <
λcf,x(n)
λuf,x(n) , ∀x ∈ T3. (6)
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In other words, (6) means that the lack of conformality of Df along Ecu is
dominated by the contraction along Es. In particular, the conclusion of Theorem
A holds true for any Anosov diffeomorphism f ∈ A2(T3) satisfying (6).

2.2.3. Hölder regularity of cs-holonomies. Despite the above regularity results,
a substantial source of technical difficulties for our strategy comes from the
absence of smoothness for center stable holonomies. The quest for overcoming
this is the main reason behind our matching argument for Y -configurations in
Sections 10 and 11.3.2. In our setting, the best that can be said about center
stable holonomies comes from Theorem A in [39], which we quote below in a
convenient way for our purposes.

Lemma 2.8. Let f ∈ A2(T3). Then there exist ρ0 > 0 (which we can assume
is the same from Lemma 2.5), Ccs > 0, θcs > 0 such that for every x, y ∈ T3 if
x ∈ Wcs

ρ0(y) then the center-stable holonomy Hcs
x,y is defined on Wu

2 (x) and for
every z, z′ ∈ Wu

2 (x) we have

d(Hcs
x,y(z), Hcs

x,y(z′)) ≤ Ccsd(z, z′)θcs .

We remark that the roles of ρ0 and 2 are “exchanged” when compared with
the role of these constants in Lemma 2.5. Here, the transversal we are looking
at for the center-stable holonomy has size 2, while in Lemma 2.5 the transversal
has size ρ0.

2.3. Basic distortion estimates. The goal of this subsection is to collect some
classical distortion estimates and fix once and for all some constants which are
going to be very important all along our constructions.

Lemma 2.9 (Basic distortion lemma). Let φ : T3 → R be a Hölder continuous
function. Then, there exists a constant C = C(φ) > 0 such that

(a) If y ∈ Ws
1(x) and n > 0 or

(b) if fn(y) ∈ Wcu
1 (fn(x)), for n ∈ N, then∣∣∣∣∣

n−1∑
ℓ=0

φ(f ℓ(x)) − φ(f ℓ(y))
∣∣∣∣∣ ≤ C.

We omit the proof as it is quite classical. Applying the lemma to the functions
φ = log ∥Df(.)|E∗∥, ∗ = c, u we obtain a constant C0 = C0(f) ≥ 1 such that if
y ∈ Ws

1(x) and n > 0 or if f ℓ(y) ∈ Wcu
1 (f ℓ(x)) for every ℓ = 0, . . . , n, then

C−1
0 ≤ ∥Dfn(x)|E∗∥

∥Dfn(y)|E∗∥
≤ C0. (7)

Moreover, up to enlarging C0, we also have that if y ∈ Wcu
1 (x) then

C−1
0 ≤ ∥Df−n(x)|E∗∥

∥Df−n(y)|E∗∥
≤ C0. (8)

for every n ∈ N. Another important application is obtained by considering the
function ψ(x) = log ∥Df(x)|Ec∥

∥Df(x)|Eu∥ . We can assume that the constant C0 also satisfies
the following

Corollary 2.10. Given ℓ ∈ N recall from (4) that dℓx = ∥Dfℓ(f−ℓ(x))|Ec∥
∥Dfℓ(f−ℓ(x))|Eu∥ . If

f−ℓ(y) ∈ Ws
1(f−ℓ(x)), then,

C−1
0 ≤ dℓx

dℓy
≤ C0.
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2.3.1. Distortion for quadrilaterals. One of the key dynamical configuration for
our strategy are the quadrilaterals. A quadrilateral is a quadruple (x, xu, y, yu) ∈
(T3)4 such that xu ∈ Wu

1 (x), y ∈ Ws
1(x), and yu ∈ Wu

1 (y) ∩ Wcs(xu). For such a
quadrilateral, we define the point zu def.= Hs

x,y(xu), so that zu ∈ Ws(xu)∩Wc(yu).

•xu

Ws
1(x)•x

Wu
1 (x)

zu•

Wu
1 (y)

•y

•yu

Figure 4. A quadrilateral.

From our previous distortion results, we can take a larger constant C0 = C0(f)
in order to have the following.

Corollary 2.11. Now, assume that y ∈ Ws
1(x) and that xu ∈ Wu

1 (x) and yu ∈
Wu

1 (y) are such that yu = Hcs
x,y(xu). Let zu = Hs

x,y(xu). If n ∈ N satisfies
d(fn(zu), fn(yu)) ≤ 1 then

C−1
0 ≤ ∥Df ℓ(xu)|Ec∥

∥Df ℓ(yu)|Ec∥
≤ C0,

for every ℓ = 0, . . . , n.

Proof. The result follows from (7) since
∥Df ℓ(xu)|Ec∥
∥Df ℓ(yu)|Ec∥

= ∥Df ℓ(xu)|Ec∥
∥Df ℓ(zu)|Ec∥

× ∥Df ℓ(zu)|Ec∥
∥Df ℓ(yu)|Ec∥

. □

2.4. Subordinate partitions and disintegrations. We move now to the er-
godic theory of Anosov diffeomorphisms of T3 with expanding center. Before
giving the main definitions, we give some preliminaries on measurable partitions,
disintegration and invariant measures.

2.4.1. Measurable partitions. Let µ be a probability measure of some standard
Borel set X. Let ξ1, ξ2 be two partitions (mod 0) of X into measurable subsets.
Say that ξ1 is finer than (or refines) ξ2 if for µ-a.e. x ∈ X we have ξ1(x) ⊂ ξ2(x)
mod 0. This will be denoted by ξ2 ≺ ξ1.

The join of ξ1 and ξ2 is the partition defined as ξ1 ∨ ξ2 = {ξ1(x) ∩ ξ2(x) : x ∈
X}.

A partition ξ of X is measurable whenever there exists a sequence (ξn)n∈N of
finite partitions of X by Borel subsets such that

ξ =
∞∨
n=0

ξn.

Rokhlin proved the following fundamental result in [47]. The measure µ can be
disintegrated into atoms of any measurable partition ξ. It means that there exists
a family of probability measures {µξx}x, called a family of conditional measures
of µ relative to ξ defined for µ-a.e. x ∈ X and satisfying for µ-a.e. x ∈ X:

(1) µξx is a probability measure on X satisfying µξx(ξ(x)) = 1;
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(2) if y ∈ ξ(x) then µξy = µξx.
Moreover for every Borel subset A⊂X,

(3) x 7→ µξx(A) is measurable;
(4) µ(A) =

∫
µξx(A) dµ(x).

Moreover such a family is unique modulo a null set of µ.

2.4.2. Disintegration of invariant measures. Assume now that µ is invariant by
some invertible measurable transformation f : X → X. Let ξ be a measurable
partition and, for n ∈ Z, let ξn

def.= fnξ. Let {µx}x
def.= {µξx}x and {µn,x}x

def.=
{µξnx }x be families of conditional measures of µ relative to ξ and ξn respectively.
The following lemma will be useful for our purposes.

Lemma 2.12. For every n ∈ N and µ-almost every x ∈ X, we have

µn,x = fn∗ µf−n(x).

Proof. Let φ ∈ L1(X,µ). We first disintegrate µ along ξ and use twice the
f -invariance:∫

φ(x) dµ(x) =
∫
φ ◦ fn(x) dµ(x) =

∫ (∫
ξ(x)

φ ◦ fn(y) dµx(y)
)
dµ(x)

=
∫ (∫

ξ(f−n(x))
φ ◦ fn(y) dµf−n(x)(y)

)
dµ(x)

=
∫ (∫

ξn(x)
φ(y) d

(
fn∗ µf−n(x)

)
(y)
)
dµ(x).

We deduce that {fn∗ µf−n(x)}x is a system of conditional measures of µ with
respect to ξn. The lemma follows by uniqueness µ-a.e. of conditional measures.

□

2.4.3. Partitions subordinate to expanded and contracted foliations. Let M be a
closed manifold, f : M → M be a diffeomorphism of M , and µ be an ergodic
invariant measure of f . Assume that W+ is a foliation invariant by f . Assume
furthermore that it is uniformly expanded, that is ∥Df−1|TW+∥ ≤ λ for some
constant and 0 < λ < 1.

A measurable partition ξ is subordinate to W+ if the following properties hold
for µ-a.e. x ∈ M :

(1) ξ(x) contains an open (in the internal topology) neighbourhood of x in
W+(x);

(2) ξ ≺ f−1ξ (we say that ξ is increasing);
(3)

∨∞
n=0 f

−nξ is the partition into points.
The existence of subordinate partitions was proven in [31] in a more general
context (see also [48] and [5, Appendix D]).

Remark 2.13. The subordinate partitions constructed in [48, 5] have atoms with
uniformly bounded diameter. In particular, we can take subordinate partitions
with diameter bounded by 1.

Remark 2.14. Assume that W ′ ⊂ W+ is an f -invariant subfoliation with ex-
pansion constant 0 < λ′ ≤ λ and that ξ is subordinate to W+. Then it follows
from the proofs given in [5, 31, 48] that the partition ξ′ = ξ ∨ W ′ is subordinate
to W ′.



RIGIDITY OF U-GIBBS NEAR CONSERVATIVE ANOSOV DIFFEOMORPHISMS 15

Similarly, assume W− is invariant and uniformly contracted by f . This means
that ∥Df |TW−∥ < λ for some 0 < λ < 1. We say that ξ is subordinate to W−

if properties (1)-(2)-(3) above hold replacing f by f−1. We then say that ξ is
decreasing for f .

Remark 2.15. If W+ (resp. W−) has dimension 1 then atoms of the subordi-
nate partition constructed in [5, 31, 48] are intervals.

2.4.4. Superposition property of subordinate partitions. Let M,f,W+ be as in
the above § 2.4.3. Let ξ be a partition subordinate to W+. Then, for every
n ≥ 0, ξ−n

def.= f−nξ is also a partition subordinate to W+. Since ξ−n(x) contains
an open neighbourhood of x for µ-a.e. x ∈ M , an atom of ξ contains at most
countably many atoms of ξ−n. In the terminology of [12, Definition 5.15], we say
that ξ and ξ−n are countably equivalent.

From [12], Proposition 5.17 we obtain the following superposition property.

Lemma 2.16 (Superposition property). For µ a.e. x ∈ M it holds that
µx(ξ−n(x)) > 0,

for every n ∈ N. Moreover, if µ−n,x is the disintegration of µ with respect to the
partition ξ−n, then for any measurable set A,

µ−n,x(A) = µx(A ∩ ξ−n(x))
µx(ξ−n(x)) .

By the definition of a subordinate partition, for µ-a.e. x ∈ M , {ξ−n(x)}n≥0
contains a basis of open neighbourhoods of x.

Corollary 2.17. For µ-a.e. x ∈ M , µx charges every open neighbourhood of x.

Remark 2.18. If W− is contracting, and ξ is subordinate to W−, then the
analogous statements to Lemma 2.16 and Corollary 2.17 hold for W−, replacing
ξ−n with ξn, for n ≥ 0.

2.4.5. Uniform growth property. Another useful property of the sequence of par-
titions ξn subordinate to a uniformly expanded foliation W+ is the following
uniform growth property.

Lemma 2.19. Given a real number R > 0, for µ almost every x ∈ M there
exists n0 = n0(x,R) > 0 such that if n > n0 then

W+
R (x) ⊂ ξn(x).

Proof. Define Λ(ε) = {x ∈ T3 : W+
ε (x) ⊂ ξ(x)}, and observe that µ(Λ(ε)) →

1 as ε → 0, due to property (1) in the definition of subordinate partitions.
The conclusion holds whenever f−nk(x) ∈ Λ(1/k) where nk > log(kR)

− log λ (recall
that ∥Df−1|TW+∥ < λ < 1). So the conclusion of the lemma holds in the set⋃
k f

nk(Λ(1/k)) which has measure 1 by f -invariance of µ. □

Remark 2.20. The above lemma has an analogous version for measurable par-
titions subordinate to uniformly contracted foliations: the integer n0 is then neg-
ative and the conclusion holds for all n < n0.

2.5. SRB and u-Gibbs measures. We return now to our partially hyperbolic
setting where f ∈ A2(T3). Let ξcu be a measurable partition of T3 subordinate
to the center unstable foliation Wcu. Let µ be an ergodic invariant measure for
f . We say that µ is an SRB measure if its disintegration {µcux }x∈T3 with respect
to the partition ξcu satisfies that µcux is absolutely continuous with respect to the
inner Lebesgue measure Lebcux of Wcu(x) for µ a.e. x ∈ T3.
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Consider now ξu a measurable partition subordinate to the unstable foliation
Wu and let {µux}x∈T3 denote the disintegration. Moreover, suppose that ξu has
diameter bounded from above by 1 (see Remark 2.13). We say that µ is a u-
Gibbs measure provided that µux is absolutely continuous with respect to the
inner Lebesgue (length) measure Lebux of Wu(x) for µ a.e. x ∈ T3.

Remark 2.21. By Ledrappier-Young [32] none of the above definitions depend
on the respective particular choice of subordinate partition.

2.5.1. Conditional measures along unstable leaves of an u-Gibbs measure. We
can (and we shall) consider the particular case in which the atoms of ξu are
ξu(x) = Wu(x) ∩ ξcu(x). By Remark 2.14 we know that this defines a partition
subordinate to the unstable foliation Wu. This is especially important in our
setting, in which we want to prove that a given u-Gibbs measure is SRB. In a
similar fashion, we consider the partition ξc whose atoms are ξc(x) = Wc(x) ∩
ξcu(x).

Denote by ξ∗
n

def.= fn(ξ∗), for ∗ = u, cu, c and n ≥ 0, with ξ∗
0 = ξ∗. Consider µ a

u-Gibbs measure and let µcun,x denote the conditional measures along the partition
ξcun . Notice that {ξun(y)}y∈ξcun (x) is a measurable partition of the probability
space (ξcun (x), µcun,x,B|ξcun (x)), where B|ξcun (x) denotes the Borel sigma algebra of
T3 restricted to the atom ξcun (x). Rokhlin’s disintegration theorem in this case
give us a probability measure µcn,x defined on ξcn(x) and a family of probability
measures {µun,y}y∈ξcn(x) such that for every A ⊂ ξcun (x) Borel measurable set we
have

µcun,x(A) =
∫
A∩Wc(x)

µun,y(A ∩ Wu(y))dµcn,x(y).

Remark 2.22. For simplicity of the exposition in many situations, where no
confusion may arise, given a set A ⊂ W∗(x), we shall denote |A| def.= Leb∗

x(A)
for ∗ ∈ {s, c, u}.

An easy consequence of the u-Gibbs property is the following.

Lemma 2.23. There exists β > 1 depending only on the diffeomorphism f such
that for µ-almost every x ∈ T3,

1
β Lebux [ξu(x)] <

dµux
dLebux

<
β

Lebux [ξu(x)]

inside ξu(x).

Proof. This follows from the fact that µux is a probability measure that has a uni-
formly log-Hölder continuous density with respect to Lebux and that the diameter
of ξu(x) is less than 1. □

3. Heuristics of the proof

This section can be used to get an overview of the proof of Theorem A and
also as a guide to read our paper.

From now on let f ∈ A2(T3) be a diffeomorphism that is close to a conservative
one. In this case, stable holonomiesHs

x,y are C1, and we can define angles αs(x, y)
for two points x, y in the same stable manifold (see Definition 4.1). The vanishing
of the angle αs can be seen as a kind of infinitesimal joint integrability.

Let µ be an ergodic u-Gibbs measure for f .
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Starting point: a zero-one law. We first use Theorem B, which yields the
following dichotomy.

Case 1: αs(x, y) = 0, for µ-a.e. every pair (x, y) in the same stable manifold;
Case 2: αs(x, y) > 0, for µ-a.e. every pair (x, y) in the same stable manifold.
The proof of this theorem will be given in Section 4 and relies on a martingale
argument. In words, we either have positive angles almost everywhere along the
stable manifold of almost every point, or we have zero angles almost everywhere
along the stable manifold of almost every point.

The rest of the proof is divided into two parts:
• [Case 1 + supp(µ) = T3] =⇒ joint integrability;
• Case 2 =⇒ µ is SRB.

Part 1: joint integrability. Given a point x ∈ T3 we define the Bad set as

B def.= {x ∈ T3 : µsx{αsx > 0} = 0},

where αsx
def.= [y ∈ Ws(x) 7→ αs(x, y)], and µsx is the conditional measure of x

along a stable manifold (see §5.1 for more details). The Bad set is the set of
points such that there is an “infinitesimal” joint integrability with almost every
other point in its stable manifold.

The first part is an argument by contraposition that goes as follows (see Propo-
sition 5.5):

• if there is no joint integrability, then for any x ∈ T3, the set {αsx > 0} is
open and dense within the stable manifold Ws(x) (see Lemma 5.8);

• if, furthermore, the Bad set B has measure 1, the continuity of the angles
implies that whenever αs(x0, y0) > 0, there exists a small foliated chart
V around y0 for Ws of measure 0 (see Lemma 5.9);

• hence, combining the two previous points, if there is no joint integrability
and B has full measure, then the support of µ must have empty interior.

The last point is the only place in the paper where the support condition on µ
is used.

Part 2: transversality implies SRB. Most of this paper is dedicated to
proving that if µ is a u-Gibbs measure such that µ(B) = 0 then µ is SRB
(Theorem 5.10).

To check that a u-Gibbs measure µ is SRB, one can consider the disintegration
of this measure along center-unstable manifolds {µcux } and then quotient it by
the strong unstable manifolds {µ̂cx}. These are called the transverse measures.
Then µ is SRB if and only if the transverse measures are equivalent to Lebesgue.
In this approach, it is really convenient to consider certain parameterizations
of center-unstable manifolds that simplify the dynamics, the so-called normal
forms (see Section 6). These coordinates allow us to identify the quotient mea-
sures {µ̂cx} with measures {ν̂cx} in R. To conclude that the measures {µ̂cx} are
equivalent to Lebesgue, we will show that the measures {ν̂cx} are proportional to
the Lebesgue measure on R, where we say that two locally finite Borel measures
ν, η are proportional, and we indicate it by ν ∝ η, if ν = cη for some c > 0.

To do so, it is enough to prove that for µ-a.e. x ∈ T3, ν̂cx is invariant by
translation. Actually, thanks to an argument due originally to Katok-Spatzier
[29] and Kalinin-Katok [25] (see also [7, Proposition 7.1]), which is a beautiful
mixture of ergodic and Lie theoretic arguments, it is enough to prove something
weaker: for a set G of points x ∈ T3 with positive measure, there exist affine
maps ψ = as + b, with |a| uniformly bounded from above and 0 < |b| arbitrarily
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small, such that ν̂cx ∝ ψ∗ν̂
c
x. This is Lemma 8.1 (largely inspired by [6, Lemma

6.1]).
The construction of these affine maps is where our key arguments are located.

Our strategy is to use the Y -configurations introduced by Eskin-Mirzakhani [15]
(see also Eskin-Lindenstrauss [14]). Below we outline this proof, splitting the ex-
planation in two parts, for the sake of clarity. First, we describe Y -configurations.
Then we explain how to use them in order to get invariance by affine maps in
the way we described in last paragraph.

Y -configurations. See Figure 5. Fixing ℓ ∈ N we find points x and y that are
typical for µ such that:

(1) y ∈ Ws
loc(x) and d(x, y) ≈ ∥Df ℓ|Es∥;

(2) if x−ℓ = f−ℓ(x) and y−ℓ = f−ℓ(y), then d(x−ℓ, y−ℓ) ≈ 1 and the angle
αs(x−ℓ, y−ℓ) is more than some constant 1

C .

As a consequence of points (1) and (2), αs(x, y) ≥ 1
C

∥Dfℓ(x−ℓ)|Ec∥
∥Dfℓ(x−ℓ)|Eu∥ . Normal forms

help a lot here. This computation is performed inside the proof of Lemma 9.2.
We can then find points xu ∈ Wu

loc(x) and yu ∈ Wu
loc(y) such that:

• there exists a point zu with {zu} = Ws
loc(xu) ∩ Wc

loc(yu);
• d(zu, yu) ≈ ∥Dfℓ(x−ℓ)|Ec∥

∥Dfℓ(x−ℓ)|Eu∥ .
So far we obtained points xu and yu with some estimate of the displacement in

the center direction that we get when projecting xu to Wu
loc(y) by center stable

holonomy. Next, fixing ε > 0, we define the stopping time

τ(ℓ) = τ(x, xu, ε, ℓ) def.= inf
{
n ∈ N : ∥Df ℓ(x−ℓ)Ec∥

∥Df ℓ(x−ℓ)|Eu∥
∥Dfn(xu)|Ec∥ ≥ ε

}

and consider the points f τ(ℓ)(xu) and f τ(ℓ)(yu). The choice of the stopping time
τ(ℓ) is such that

d(f τ(ℓ)(xu), f τ(ℓ)(yu)) ≈ ε, (9)
see §9.3.2. Essentially, these points are related to the translational part of size
ε of the affine maps that we desire to construct. To control the derivative of
the affine maps and to actually obtain an “invariance” of the measures ν̂cx, as we
mentioned before, we also define another stopping time

t(ℓ) = t(x, xu, ε, ℓ) def.= inf
{
n ∈ N : ∥Dfn(x)|Ec∥

∥Df τ(ℓ)(xu)|Ec∥
≥ 1

}
.

In particular, this condition implies that

∥Df t(ℓ)(x)|Ec∥ ≈ ∥Df τ(ℓ)(xu)|Ec∥, (10)

see §9.1.

How to use Y -configurations to get invariance by affine maps. By construction
of measures {ν̂cp}p∈T3 we understand how they change under three basic moves.

(1) Applying the dynamics. For µ-a.e. p ∈ T3, ν̂cfn(p) ∝ Λ∗ν̂
c
p, for every n ∈ N,

where Λ(s) = ∥Dfn(p)|Ec∥s is a linear map of R (see Lemma 7.13).
(2) Moving along unstable manifolds. For q ∈ Wu(p) then ν̂cq ∝ L∗ν̂

c
p

where L(s) = βs is a linear map, for some C−1
u ≤ β ≤ Cu, and

Cu = Cu(du(p, q)) > 1 is a number which is bounded from above and
it depends on the unstable distance du(p, q) (see Lemma 7.14).



RIGIDITY OF U-GIBBS NEAR CONSERVATIVE ANOSOV DIFFEOMORPHISMS 19

Ws
loc(x−ℓ)
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Figure 5. The points x, xu, x−ℓ, f
τ(l)(xu) and f t(ℓ)(x) are called

a Y -configuration (similarly the points involving y’s).

(3) Moving along center manifolds. For q ∈ Wc(p) then ν̂cq ∝ Ψ∗ν̂
c
p

where Ψ(s) = as + b, with C−1
c ≤ a ≤ Cc for some constant Cc =

Cc(dc(p, q)) > 1 bounded from above with dc(p, q), and with b ≈ dc(p, q)
(see Lemma 7.12).

Now we look at the points on the top part of Figure 5 and deduce two facts.
(a) ν̂c

fτ(ℓ)(xu) ∝ (Λ1)∗ν̂
c
f t(ℓ)(x) for some linear map Λ1 : R → R with bounded

norm independently of ℓ.
(b) ν̂c

fτ(ℓ)(yu) ∝ (Λ2)∗ν̂
c
f t(ℓ)(y) for some linear map Λ2 : R → R with bounded

norm ndependently of ℓ.
There is a subtlety here: stopping times τ(ℓ) and t(ℓ) depend on x, xu and not

on y, yu. This is treated by our synchronization estimates (Lemma 9.4). Recall
that zu ∈ Ws(xu) and y ∈ Ws(x). Now note that as ℓ → ∞, τ(ℓ), t(ℓ) → ∞
so d(f τ(ℓ)(xu), f τ(ℓ)(zu)) → 0 and d(f t(ℓ)(x), f t(ℓ)(y)) → 0. If we knew that the
family of measures ν̂cz were continuous with z then we could hope to compare
ν̂c
fτ(ℓ)(xu) with ν̂c

fτ(ℓ)(yu) and take accumulation points to construct the desired
set G.

But the objects we are working with are only measurable, so we must first fix a
large Lusin set for which the map z 7→ ν̂cz is continuous (among other dynamical
objects that appear in the proof). We want to do the constructions of all of the
points mentioned above, in a way that all of them belong to this Lusin set. For
this, it is essential to obtain quasi-isometric estimates for the functions τ(·) and
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t(·) (see Lemma 9.1; see also Lemma 11.5 where the quasi-isometric estimates
for stopping times are used in a crucial way).

By continuity, we have that ν̂c
f t(ℓ)(x) ≈ ν̂c

f t(ℓ)(y) and ν̂c
fτ(ℓ)(xu) ≈ ν̂c

fτ(ℓ)(zu). We
conclude from this that ν̂c

fτ(ℓ)(xu) is almost proportional to ν̂c
fτ(ℓ)(yu), up to some

linear map with controlled derivative.
After considering a subsequence ℓk we obtain points p and q (obtained as the

limit of f τ(ℓk)(xu) and f τ(ℓk)(yu))) with the properties that:
• q ∈ Wc

loc(p);
• d(p, q) ≈ ε;
• p and q belong to the Lusin set;
• ν̂cq ∝ Λ̂∗ν̂

c
p, Λ̂ being linear with uniformly bounded norm (see §10.4).

Finally we explained that ν̂cp ∝ Ψ∗ν̂
c
q for an affine map Ψ = as + b with |a|

uniformly bounded and |b| ≈ ε: we find ν̂cp ∝ (ΨΛ̂)∗ν̂
c
p: ΨΛ̂ is the desired affine

map (with bounded slope and translational part ≈ ε).

A technical difficulty. There is one delicate point in the above argument. Since
the center stable foliation is not absolutely continuous, in general, we cannot
choose the points xu and yu at the same time in the Lusin set and such that
yu ∈ Wcs

loc(xu). To overcome this difficulty, we introduce the notion of matched
Y -configurations in Section 10 (the picture changes just a little bit from the one
described above) and use it to prove our theorem (see Section 11).

Let us also emphasize that the control we obtain on the distance between the
points zu and yu is possible because Hs is C1, so essentially we can control this
distance by looking at the angle between DHs

x,yE
u(x) and Eu(y). This allows us

to explicitly define the stopping time τ in our construction. This is not possible in
Katz’s proof since the holonomies are only Hölder. To get around this problem,
he defines a much more complicated stopping time built from an operator using
ideas from Eskin-Mirzakhani.

4. A zero-one law for angles

The goal of this section is to prove Theorem B. In a slightly more general
context, i.e., for some f ∈ PH2(T3) with C1 stable holonomies (for instance, if
f is close to some f0 ∈ A2

m(T3), as we saw in Lemma 2.6), we introduce the
angle function αs, which measures the “twist” of unstable manifolds along stable
manifolds.

Definition 4.1 (The angle function). Let x ∈ T3 and y ∈ Ws(x). The angle
function is the assignment (x, y) 7→ αs(x, y) def.= ∠(DHs

x,y(x)Eu(x), Eu(y)).

In this context, we have the following zero-one law, whose proof is inspired by
the work of Brown-Rodriguez Hertz [6, Lemma 7.1].

Theorem 4.2 (A zero-one law for angles). Let f ∈ PH2(T3) be a partially
hyperbolic diffeomorphism with a splitting TT3 = Es ⊕ Ec ⊕ Eu, whose stable
holonomies Hs along the strong stable foliation Ws are C1. Fix an ergodic f -
invariant measure µ. Let ξs be a measurable partition subordinate to Ws and
{µsx}x be a system of conditional measures relative to ξs. Then the following
dichotomy holds:

(1) either for µ-almost every x ∈ T3,

µsx {y ∈ ξs(x) : αs(x, y) = 0} = 1;
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(2) or for µ-almost every x ∈ T3,
µsx {y ∈ ξs(x) : αs(x, y) = 0} = 0.

The second alternative will allow us to build “twisted” quadrilaterals (such as
the one depicted in Figure 4) with points x, y in some good Lusin set while for
xu and yu we will find points of the Lusin set arbitrarily close to them, so that
the twisted quadrilateral will be part of a matched Y -configurations associated
to x and y.

4.1. Conditional expectation, σ-algebras and martingales. The proof of
Theorem 4.2 requires some preliminaires about martingales. If ξ is a measurable
partition of a measurable space X then we let Fξ denote the σ-algebra generated
by unions of atoms of ξ. Let {µx}x be a system of conditional measures of µ
with respect to ξ. We define the conditional expectation of φ ∈ L1(X,µ) as the
following L1-function

Eµ[φ | Fξ] : x 7→
∫
ξ(x)

φdµξx.

Note that if (ξn)n is an increasing sequence of partitions (in the sense that
ξn ≺ ξn+1) then we have Fξn ⊂ Fξn+1 .

The following result is a consequence of the increasing martingale theorem
(for which we refer to [13, Theorem 5.5, p.126]).

Theorem 4.3 (Increasing martingale theorem). Let (ξn)n∈N be an increasing
sequence of measurable partitions of X such that

∨∞
n=0 ξn is the partition into

points. Then, for every φ ∈ L1(X,µ) and µ-almost every x ∈ X, we have
lim
n→∞

Eµ
[
φ
∣∣Fξn

]
(x) = φ(x).

4.2. Proof of the zero-one law. We are now ready to prove Theorem 4.2. We
fix ξs, a measurable partition subordinate to Ws. For n ∈ N, set ξsn

def.= fnξs.
Systems of conditional measures relative to ξs and ξsn are denoted respectively
by {µsx}x and {µsn,x}x. For µ-almost every x ∈ T3 and every n ∈ N, set

• Pξs(x) def.= {y ∈ ξs(x) : αs(x, y) = 0},
• Pξs

n (x) def.= {y ∈ ξsn(x) : αs(x, y) = 0}.
By definition of ξsn and invariance of the unstable bundle and of the stable foli-
ation, we have the following commutation relation for µ-almost every x ∈ T3:

fnPξs (f−n(x)
)

= Pξs

n (x). (11)

Let A def.= {x ∈ T3 : µsx[Pξs(x)] > 0}. This is a Borel set. We must prove that
if µ(A) > 0, then

µ(A) = 1, and for µ-almost every x ∈ T3, µsx[Pξs(x)] = 1. (12)
So let us suppose µ(A) > 0 and prove (12). With that goal in mind, we claim

that A is an f -invariant set (mod 0). Indeed, take a µ generic point x ∈ A.
Notice that Pξs

1 (x) ⊂ Pξs(x), since ξs1(x) ⊂ ξs(x). Also, recall from Lemma 2.12
that

µs1,f(x) = f∗µ
s
x.

Combining this with (11) one obtains that

µs1,f(x)(P
ξs

1 (f(x))) = µsx(f−1(Pξs

1 (f(x)))) = µsx(Pξs(x)) > 0.

Thus, from the superposition property (Lemma 2.16 and Remark 2.18) one gets

µsf(x)(P
ξs(f(x))) ≥ µsf(x)(P

ξs

1 (f(x))) = µs1,f(x)(P
ξs

1 (f(x)))µsf(x)(ξ
s
1(f(x))) > 0,
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which implies that f(x) ∈ A, proving our claim.
From the ergodicity of µ, we have µ(A) = 1. We define functions in L1(T3, µ)

by
• ϕ : x 7→ µsx[Pξs(x)];
• ϕn : x 7→ µsn,x[Pξs

n (x)] = µsn,x[Pξs(x)], for each n ∈ N.
For µ-almost every x ∈ T3 and every n ∈ N we consider

• Fs
x = Fs

ξs(x) = {∅, ξs(x)}, the trivial σ-algebra over ξs(x);
• Fs

n,x = Fs
n,ξs(x), the σ-algebra generated by unions of atoms ξsn(y), y ∈

ξs(x) (note that Fs
n,x ⊂ Fs

n+1,x);
• Fs

∞,x = Fs
∞,ξs(x), the smallest σ-algebra containing

⋃∞
n=0 Fs

n,x. This is
the Borel σ-algebra of ξs(x).

For µ-almost every x ∈ T3 and n ∈ N, we define the function ψn,x ∈
L1(ξs(x), µsx) by the following formula, for µsx-almost every y ∈ ξs(x):

ψn,x(y) = Eµsx
[
1Pξs (x)

∣∣Fs
n,x

]
(y) = µsn,y

[
Pξs(x)

]
.

Note that ψn,x(y) = ϕn(y) for all n and µsx-almost every y ∈ Pξs(x) (note that
in that case Pξs(x) = Pξs(y)).

On the one hand, for µ-almost every x ∈ T3, by the increasing martingale the-
orem (we apply Theorem 4.3 to the probability space (ξs(x), µsx)), ψn,x converges
to 1Pξs (x) µ

s
x-almost surely as n → +∞. In particular,

for µsx-a.e. y ∈ Pξs(x), ψn,x(y) = ϕn(y) → 1 as n → +∞. (13)

Let us define the set

S def.= {x ∈ T3 : ϕn(x) → 1 as n → +∞}.

For each n ∈ N, ϕn is measurable, hence S is a Borel set. Assume that µ[S] = 0.
Since µ[S] =

∫
µsx[S]dµ(x), we would then have µsx[S] = 0, for µ-a.e. x ∈ T3.

But (13) implies that for µ-a.e. x ∈ A, µsx[S] ≥ µsx[S ∩ Pξs(x)] = µsx[Pξs(x)] > 0,
and by our assumption that µ[A] > 0, we reach a contradiction. Therefore,

µ[S] = µ{x ∈ T3 : ϕn(x) → 1 as n → +∞} > 0.

On the other hand, we deduce from (11) and from Lemma 2.12 that

ϕn(x) = µsn,x[Pξs

n (x)] = fn∗ µ
s
f−n(x)[f

nP(f−n(x))] = ϕ(f−n(x)).

The latter proves that ϕ◦f−k converges to 1 µ-almost surely on S as k → +∞.
Therefore, by considering Cesàro averages 1

n

∑n−1
k=0 ϕ◦f−k(x) for a µ-generic point

x ∈ S, and by Birkhoff’s theorem, we conclude that
∫
T3 ϕdµ = 1. As ϕ takes

values in [0, 1], we must have ϕ(x) = 1, for µ-almost every x ∈ T3. □

Remark 4.4. It is clear that αs(x, y) = 0 is an equivalence relation on stable
leaves, so Theorem 4.2 can be generalized as follows. Let f be as in Theorem
4.2. Let R be a measurable equivalence relation on stable leaves (i.e., such that
xRy ⇒ y ∈ Ws(x)) such that xRy ⇒ fn(x)Rfn(y), for any n ∈ N. Fix a
measurable partition ξs subordinate to Ws, a system {µsx}x of conditional mea-
sures relative to ξs, and for x ∈ T3, let Pξs(x) be its R-equivalence class. Then
the following dichotomy holds:

(1) either for µ-almost every x ∈ M , µsx[Pξs(x)] = 1;
(2) or for µ-almost every x ∈ M , µsx[Pξs(x)] = 0.
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5. Joint integrability and the Bad set

We start in this section the formal proof of Theorem A. So we let f ∈ A2(T3) be
an Anosov diffeomorphism, strongly partially hyperbolic with expanding center
and C1 stable bundle. Recall from Lemma 2.6 that this is always satisfied when
f is close to a conservative map f0. Let µ denote an ergodic u-Gibbs measure,
with full support.

We are going to reduce the proof of Theorem A to a more technical version
of the result by studying the set of points x for which one sees almost no twist
of the bundle Eu by the application of the stable holonomy. Our main technical
result says that if the measure of this Bad set is zero then µ is SRB.

5.1. The Bad set. For any x ∈ T3, we denote

P(x) def.=
{
y ∈ Ws(x) : αs(x, y) = 0

}
, N (x) def.=

{
y ∈ Ws(x) : αs(x, y) > 0

}
.

Observe that given any measurable partition ξs subordinate to Ws we have
that for µ-a.e. x ∈ T3, Pξs(x) = P(x) ∩ ξs(x), where Pξs(x) was defined in the
proof of Theorem 4.2, our zero-one law: see §4.2.

Remark 5.1. Since the unstable bundle Eu is invariant under Df , and holo-
nomy maps are equivariant with the dynamics, i.e.,

f ◦Hs
x,y = Hs

f(x),f(y) ◦ f, (14)

we have ∀x, y,
αs(x, y) = 0 ⇐⇒ ∀n ∈ Z, αs(fn(x), fn(y)) = 0. (15)

For any x ∈ T3, the function αs(x, ·) on Ws(x) is continuous. Therefore, the
sets P(x) and N (x) are respectively closed and open. Moreover, by Remark 5.1,
it holds

fn(P(x)) = P
(
fn(x)

)
, fn(N (x)) = N (fn(x)), ∀n ∈ Z. (16)

Definition 5.2 (Bad set). Let ξs be a measurable partition subordinate to the
stable foliation Ws, and let {µsx}x∈T3 be a system of conditional measures relative
to ξs. The Bad set B = B(ξs, µ) is defined as

B def.=
{
x ∈ T3 : µsx(N (x)) = 0

}
.

Recall that in Section 4.2, we introduced the set A = {x ∈ T3 : µsx[Pξs(x)] >
0}. Using our zero-one law, and the results established in §4.2, we have the
following properties.

(1) B is equal µ-almost everywhere to the set A;
(2) B is measurable and f -invariant, and it satisfies that for all ℓ ∈ Z

B(ξs, µ) = B(ξsℓ , µ), (17)
where we recall ξsℓ = f ℓ(ξs) is still a measurable partition subordinate to
Ws;

(3) B has measure 0 or 1.
A priori the Bad set B = B(ξs, µ) depends on the particular choice of the

measurable partition subordinate to Ws. Nevertheless, the next lemma shows
that the Bad set associated to another subordinate partition is equal to B modulo
sets of measure 0.

Lemma 5.3. For every measurable partition ηs subordinate to Ws we have
µ (B(ξs, µ)) = µ (B(ηs, µ)) ∈ {0, 1}.



24 SÉBASTIEN ALVAREZ, MARTIN LEGUIL, DAVI OBATA, BRUNO SANTIAGO

Proof. For ℓ ∈ Z, let us denote ξsℓ
def.= f ℓ(ξs). Then, all the partitions ξsℓ are

measurable partitions subordinate to Ws and by (17) we have that for all ℓ ∈ Z,
B(ξs, µ) = B(ξsℓ , µ). These sets have measure 0 or 1; assume they have measure
1. Consider a µ-generic point x so that

• ηs(x) contains an open neighbourhood of x in Ws(x) so µξ
s
m
x (ηs(x)) > 0

for all m ∈ Z (see Corollary 2.17);
• ηs(x) has diameter less than 1 and;
• µ

ξsm
x (N (x)) = 0, for all m ∈ Z.

Using Lemma 2.19 (specifically Remark 2.20) there exists m < 0 such that
ηs(x) ⊂ ξsm(x) so we can apply the superposition property and

µη
s

x (N (x)) = µ
ξsm
x (N (x) ∩ ηs(x))
µ
ξsm
x (ηs(x))

≤ µ
ξsm
x (N (x))
µ
ξsm
x (ηs(x))

= 0.

As a result, x ∈ B (ηs, µ). This proves that µ (B(ηs, µ)) = 1, confirming the
second assertion and concluding. □

Although we always need to fix a partition to speak about the bad set,
Lemma 5.3 allows us to speak about the measure of the Bad set without fix-
ing a particular choice of a partition.

Remark 5.4. The conclusion of Lemma 5.3 remains valid even if the measurable
partition ηs is only required to have the following properties for µ-a.e. x ∈ T3

(1) ηs(x) ⊂ Ws(x);
(2) ηs(x) contains an open neighbourhood of Ws(x) in the internal topology.
(3) ηs(x) has uniformly bounded diameter;

Indeed the proof of Lemma 5.3 does not use that ηs is decreasing.
There are many (non decreasing) measurable partitions satisfying these three

properties. For example, consider any finite foliated atlas A for Ws composed of
open charts Ui such that µ(∂Ui) = 0. Define a finite partition mod 0 of T3 as

Q =
∨
i

{
Ui,T3 \ Ui

}
,

Each atom Q(x) is an open set included inside a foliated chart for Ws. As a
result it is trivially foliated by stable plaques: this defines a measurable partition
of Q(x). We obtain a refinment of Q, denoted by ηs, that satisfies the desired
properties, and is referred to as the measurable partition associated to A.

5.2. Joint integrability. When the Bad set has positive measure, by ergodicity
we have that for almost every x, we see almost no twist of Eu along Ws(x). This
can be read as an infinitesimal form of joint integrability between Es and Eu.
In this paragraph we shall improve this to actual joint integrability.

Proposition 5.5. Let f : T3 → T3 be a C2 Anosov diffeomorphism, strongly
partially hyperbolic with expanding center and C1 stable holonomies. Let µ be
a fully supported ergodic f -invariant measure. If the Bad set has full measure
then Es and Eu are jointly integrable.

It is worth to point out that the proof of this proposition is the only place
in our argument towards Theorem A where the full support assumption of the
u-Gibbs measure is used. Moreover, in Proposition 5.5 the ergodic invariant
measure µ does not need to be u-Gibbs.
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5.2.1. Local joint integrability. In the proof of Proposition 5.5 we shall apply a
criterion for joint integrability that comes from [11]. See also [44, §2.3].

Definition 5.6. Given x ∈ T3 we say that the bundles Es and Eu are jointly
integrable at x if there exists δ, ε > 0 such that for each z ∈ Ws

δ (x) and y ∈
Wu
δ (x) it holds

Wu
ε (z) ∩ Ws(y) ̸= ∅.

The result below follows directly from [11, Lemma 5] (see also [44, Lemma
2.3.7]).

Lemma 5.7. Let f ∈ A2(T3). Assume that Es and Eu are jointly integrable at
each x ∈ T3, with uniform constants δ, ε. Then, f is jointly integrable (in the
sense of Definition 2.1).

5.2.2. Proof of Proposition 5.5. This Proposition follows directly from
Lemma 5.8 and Lemma 5.9 below.

On the topological level, we have:

Lemma 5.8. Let f : T3 → T3 be a C2 Anosov diffeomorphism, strongly partially
hyperbolic with expanding center and C1 stable holonomies. If for some x ∈
T3 the set N (x) is not open and dense in Ws(x), then Es and Eu are jointly
integrable.

Proof. Let us assume that there exists x0 ∈ T3 such that P(x0) contains a
non-trivial open interval, i.e., that for some x ∈ Ws(x0), and ε > 0, it holds
Ws
ε (x) ⊂ P(x0). Since P(x) = P(x0), we also have P(x) ⊃ Ws

ε (x), hence by
(16), for any integer n ≥ 1,

P
(
f−n(x)

)
⊃ f−n(Ws

ε (x)
)
. (18)

By compactness, we can take a subsequence (f−nk(x))k≥0 such that f−nk(x) → y
as k → +∞, for some point y ∈ T3. Since the restriction of f−1 to stable leaves
is uniformly expanding, we deduce from (18) that

P(y) = Ws(y). (19)
Let us now show that the same holds for any point, i.e., that P(z) = Ws(z),

for any z ∈ T3. Fix z ∈ T3 and z′ ∈ Ws(z). By minimality of the stable foliation,
the leaf Ws(y) is dense in T3, hence there exists a sequence (yn)n≥0 ∈ (Ws(y))N

such that limn→+∞ yn = z. For each integer n ≥ 0, we let y′
n

def.= Hs
z,z′(yn) ∈

Wcu(z′)∩Ws(yn). In particular, we also have limn→+∞ y′
n = Hs

z,z′(limn yn) = z′.
By continuity of the angle function αs, we deduce that

αs(z, z′) = lim
n→+∞

αs(yn, y′
n) = 0,

i.e., z′ ∈ P(z). Since z′ ∈ Ws(z) was chosen arbitrarily within Ws(z), we deduce
that Ws(z) = P(z), for all z ∈ T3.

Now, fix an arbitrary x ∈ T3. Let 0 < δ < ε be chosen so that the stable
holonomy map Hs

x,z : Wcu
δ (x) → Wcu

ε (z) is well defined for every z ∈ Ws
δ (x).

Notice that for any y ∈ Wu
δ (x), for any z ∈ Ws

δ (x), if we set y′ def.= Hs
x,z(y) ∈

Ws
ε (y), then we have

∠
(
DHs

x,zE
u(y), Eu(y′)

)
= αs(y, y′) = 0.

In particular, Hs
x,z

(
Wu
δ (x)

)
is a C1 curve that is everywhere tangent to Eu and

at y′ it is tangent to Eu(y′). By the unique integrability of the Eu bundle, we
conclude that
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Hs
x,z

(
Wu

loc(x)
)

⊂ Wu(y′).
Hence, we obtain that for any x ∈ T3, any z ∈ Ws

δ (x) and y ∈ Wu
δ (x) we have

Wu
ε (z) ∩ Ws

ε (y) ̸= ∅.
This proves that f fulfils the assumption of Lemma 5.7. Therefore, f is jointly
integrable. □

The lemma below concludes the proof of Proposition 5.5.

Wu
loc(x0)

Hs
x0,y0 (Wu

loc(x0))
Wu

loc(y0)

x0

π(y)
y

Ws(x0)

U

Ws(π(y)) = Ws(y)

T
Vy0

Wcu
loc(y0)

y0

αs(x0, y0)

Figure 6. Case where Es⊕Eu is not integrable and ν(Bν) = 1.

Lemma 5.9. Let f : T3 → T3 be a C2 Anosov diffeomorphism, strongly partially
hyperbolic with expanding center and C1 stable holonomies. Assume that Es and
Eu are not jointly integrable and let ν be an ergodic f -invariant Borel probability
measure on T3. If supp(µ) has non empty interior, then the Bad set associated
to ν has zero measure.

Proof. Fix ν as in the statement of the lemma, and let x0 ∈ T3. Assume the first
possibility does not occur. Then, the Bad set has full measure. As we assume
that Es and Eu are not jointly integrable, by Lemma 5.8, the set N (x0) is open
and dense in Ws(x0). Fix y0 ∈ N (x0), i.e., such that αs(x0, y0) ̸= 0. By the
continuity of the angle function αs, there exist:

• a foliated chart U for Ws containing x0, y0; stable plaques of U are de-
noted by {U(x)}x;

• a transversal T for Ws at x0;
• a neighbourhood Vy0 ⊂ U of y0;
• a projection π : Vy0 ∋ y → π(y) ∈ T along stable plaques of U ;

such that
∀ y ∈ Vy0 , αs(π(y), y) > 0.

The open set U is obtained as a sufficiently small neighbourhood of a path inside
Ws from x0 to y0 (which must be trivially foliated by Ws by Reeb’s stability
theorem). See Figure 6.

We claim that ν(Vy0) = 0. To see this, we consider a finite foliated atlas A
for Ws such that

(1) U is included inside a foliated chart U ′ of A with µ(∂U ′) = 0;
(2) every other foliated chart of A is disjoint from U , and its boundary has

measure 0.
To obtain such an atlas, first observe that from our construction, U can be
obtained so that its closure lies inside an open set U ′ trivially foliated by Ws.
Next, we cover the compact set T3 \ U ′ by finitely many open balls Bi that
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trivialize Ws, have µ(∂Bi) = 0 and are disjoint from U . Let η be the measurable
partition associated to A (see Remark 5.4). By construction, stable plaques U(x)
are contained inside atoms of η and we have that for almost every x ∈ T ,

η(x) ∩ Vy0 = U(x) ∩ Vy0 ⊂ N (x),
hence νηx(η(x)∩Vy0) ≤ νηx(N (x)) = 0 for µ-a.e. x. By the definition of conditional
measures, this implies that ν(Vy0) = 0. In other words, any point y ∈ N (x0) has
an open neighbourhood Vy ∋ y such that T3 \ Vy has full measure therefore,

supp(ν) ⊂ T3 \
⋃

y∈N (x0)
Vy.

As N (x0) is open and dense in Ws(x0), and Ws(x0) is dense in T3, the set⋃
y∈N (x0) Vy is open and dense in T3. Thus, supp(ν) has empty interior. □

5.3. Main technical theorem. We shall now show that our main result, The-
orem A, can be reduced to a more technical statement involving the Bad set.
Theorem 5.10. Let f : T3 → T3 be a C2 Anosov diffeomorphism, strongly par-
tially hyperbolic with expanding center and C1 stable holonomies. Let µ be an
ergodic u-Gibbs measure. If the Bad set of µ has zero measure then µ is an SRB
measure.
5.3.1. Proof of Theorem A assuming Theorem 5.10. Recall that by Lemma 2.6
for every f0 ∈ A2

m(T3) there exists a small neighbourhood U(f0) in Diff2(T3) so
that every f ∈ U(f0) is an Anosov diffeomorphism, strongly partially hyperbolic
with expanding center and C1 stable holonomies. Let U def.= ∪f0∈A2

m(T3)U(f0).
Take f ∈ U . Then f fulfils the assumptions of Theorem 5.10. Assume that Es
and Eu are not jointly integrable and let µ be a fully supported ergodic u-Gibbs
measure. Then, Lemma 5.9 implies that the Bad set has zero measure. By
Theorem 5.10 it follows that µ is SRB, concluding. □

It is important to remark that in this main technical result we do not assume
that our u-Gibbs measure is fully supported. The result says that the existence
of positive angles αs(x, y) for almost every y ∈ Ws(x) and almost every x ∈ T3

suffices to convert µ into an SRB measure.

6. Normal forms

In this section, our goal is to prove Theorem C. This section is independent
of the rest of the paper and we want to emphasize that we do not require any
regularity of holonomies. We begin by revisiting the normal forms along one
dimensional expanding foliations, as developed by Kalinin-Katok [25]. Then,
using strongly that Eu is C1 along the center-unstable manifold, we extend this
construction to two dimensions. In the final part of the section, we study the
change of coordinates for points on the same leaf of Wcu.

Let f : T3 → T3 be a C2 Anosov diffeomorphism with a decomposition TT3 =
Es ⊕ Ec ⊕ Eu, where Ec is uniformly expanded.

Let us recall some notations that will be frequently used in this section.
• Given a point x ∈ T3 we will write λ∗

x
def.= ∥Df(x)|E∗∥, for ∗ = c, u.

Observe that ∥Df−1(x)|E∗∥ = (λ∗
x−1)−1.

• Given ℓ ∈ Z we write xℓ = f ℓ(x).
• Given n ∈ Z, and ∗ = c, u, we write

λ∗
x(n) def.= ∥Dfn(x)|E∗∥ =

{ ∏n−1
ℓ=0 λ

∗
xℓ
, when n ≥ 0;∏−n

ℓ=1
1

λ∗
x−ℓ

= 1
λ∗
xn

(−n) , when n < 0. (20)
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6.1. One dimensional normal forms. Given x ∈ T3 and y ∈ Wcu(x), we
consider the functions

ρ∗
x(y) def.=

+∞∏
ℓ=1

λ∗
x−ℓ

λ∗
y−ℓ

= lim
n→+∞

λ∗
y(−n)
λ∗
x(−n) , for ∗ = c, u. (21)

It follows readily from the definition that ρ∗
y(x) = (ρ∗

x(y))−1. Furthermore, for
any z ∈ Wcu(x) = Wcu(y), we have

ρ∗
x(z) = ρ∗

y(z)ρ∗
x(y). (22)

The basic distortion result (Lemma 2.9) implies that ρ∗
x : Wcu(x) → (0,+∞) is a

continuous map that depends continuously on the base point (for further details
we refer to [25]).

We then define
H∗
x(y) def.=

∫ y

x
ρ∗
x(ŷ) dŷ, (23)

which gives a C1 diffeomorphism from W∗(x) to the real line. Now, consider the
inverse map Φ∗

x = (H∗
x)−1. Here’s the proposition.

Proposition 6.1 (Kalinin-Katok – see [25], Section 3.1). For ∗ = c, u, The
family {Φ∗

x}x∈T3 of C1 diffeomorphisms Φ∗
x : R → W∗(x) satisfies

(1) f ◦ Φ∗
x(s) = Φ∗

x1(λ∗
xs), for all s ∈ R;

(2) Φ∗
x(0) = x;

(3) DΦ∗
x(0)e1 = v∗(x), where e1 denotes the unitary tangent vector field of

the real line R.

For any x ∈ T3 and y ∈ W∗(x), we define the change of charts as

H∗
x,y

def.= H∗
y ◦ (H∗

x)−1 = (Φ∗
y)−1 ◦ Φ∗

x : R → R. (24)
We remark that H∗

x,y(0) = H∗
y(x).

Lemma 6.2. For any x ∈ T3 and y ∈ W∗(x), and for any s ∈ R, it holds
H∗
x,y(s) − H∗

x,y(0) = ρ∗
y(x) · s. (25)

In other words, the change of one-dimensional normal form coordinates is affine
with derivative ρ∗

y(x).

Proof. Fix s ∈ R, and let z def.= (H∗
x)−1(s) = (H∗

y)−1(H∗
x,y(s)) ∈ W∗(x) = W∗(y).

By the definition of H∗
x(x) (see (23)), after differentiating H∗

x,y = H∗
y ◦ (H∗

x)−1

at s, we get
dH∗

x,y

ds
(s) =

(H∗
y)′(z)

(H∗
x)′(z) =

ρ∗
y(z)
ρ∗
x(z) = ρ∗

y(x),

thus H∗
x,y(s) − H∗

x,y(0) =
∫ s

0 ρ
∗
y(x) dt = ρ∗

y(x) · s. □

6.2. Two dimensional normal forms. Recall that there are unitary vector
fields T3 ∋ x 7→ v∗(x) ∈ E∗(x) such that

Df(x)v∗(x) = λ∗
xv

∗(x1).
Notice that since f is C2, the bundle Eu is C1 inside Wcu and since ∥vu(x)∥ > 0
the map x 7→ λux ∈ R is C1 in restriction to center unstable manifolds. Moreover,
for a fixed R > 0 the C1 norm

sup{∥D(λu|Wcu(x))(y)∥ : y ∈ Wcu
R (x), x ∈ M}

is bounded by some uniform constant C = C(R, f) > 0. These results follow
from [39].
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We restate here Theorem C, which gives a center-unstable version of Propo-
sition 6.1.
Theorem 6.3. There exists a family of C1 diffeomorphisms Φx : R2 → Wcu(x),
depending continuously on x such that:

(1) f ◦ Φx(t, s) = Φf(x)(λuxt, λcxs), for all (s, t) ∈ R2;
(2) Φx(0, 0) = x;
(3) DΦx(0, 0)e1 = vu(x) and DΦx(0, 0)e2 = vc(x);
(4) Φx(·, ·) depends continuously with the choice of x in the C1-topology;
(5) for all s ∈ R, Φx(R × {s}) = Wu(Φx(0, s)), and Φx({0} × R) = Wc(x)

(see Figure 2).
The drawback of our construction is that the natural generalization of

Lemma 6.2 is no longer true, as the remark below demonstrates.
Remark 6.4. Note that in general, we cannot expect the change of normal charts
Hx,y

def.= Φ−1
y ◦ Φx : R2 → R2 to be affine for any x ∈ T3 and y ∈ Wcu(x).

Suppose it were the case. We claim that it implies that for any x ∈ T3, the
center foliation Wc is C1 within the center-unstable leaf Wcu(x). Indeed, for any
y ∈ Wcu(x), by Theorem 6.3(5), we have

Φ−1
x (Wc(y)) = Hy,x ◦ Φ−1

y (Wc(y)) = Hy,x({0} × R),
which is a straight line since the map Hy,x is affine. Since two distinct cen-
ter leaves cannot cross, and Φ−1

x (Wc(x)) = {0} × R is vertical, it follows that
Φ−1
x (Wc(y)) is vertical for any y ∈ Wcu(x). In particular, since the normal chart

Φx is C1, it does imply that Wc is C1 within Wcu(x).
However, regularity of the center foliation Wc is a rare phenomenon. For

instance, in [20, Lemma 3], it is shown that for r ≥ 2, there exsits a C1-open and
Cr-dense set V ⊂ Ar

m(T3) of the set of Cr conservative Anosov diffeomorphisms
on T3 considered in the present work such that for f ∈ Ar

m(T3), the center
foliation Wc is Lipschitz inside the center-unstable foliation Wcu if and only if
f ∈ Ar

m(T3) \ V.
We now proceed to the proof of Theorem 6.3.

6.2.1. A foliated chart. A natural way of obtaining a parametrization (t, s) of
Wcu(x) is to consider the arc-length parameter t along the curve Wu(Φc

x(s)). As
we shall see, it is not hard to prove that this indeed gives a C1 identification
with nice properties (for instance horizontal lines are mapped onto unstable
manifolds). The difficulty for proving Theorem 6.3 is that in these coordinates
the map f does not acts linearly. For this reason in the forthcoming paragraphs
we will perform suitable reparametrizations.

More formally, let ϕ : R×Wcu(x) → Wcu(x) denote the flow of the vector field
x 7→ vu(x). Notice that vu|Wcu(x) is C1, with its C1 norm depending continuously
on x on compact subsets of Wcu(x). With this flow at hand we define a map
Γx : R2 → Wcu(x) by

Γx(t, s) def.= ϕt(Φc
x(s)), ∀ (t, s) ∈ R2,

where {Φc
x}x∈T3 are Kalinin-Katok’s normal forms in Wc (see Theorem 6.3).

Lemma 6.5. For each x ∈ T3, the map Γx is a C1 diffeomorphism whose C1

norm depends continuously with x.
Proof. Let us show that this defines a C1 diffeomorphism. Indeed, Γx is injective
and surjective due to Lemmas 2.3 and 2.4 respectively. Therefore it suffices to
prove that Γx is C1 with invertible derivative at each point.
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Choosing an arbitrary coordinate system locally in Wcu(x) we can think of
Γx as a map from R2 to R2. Now, observe that the Jacobian matrix of the map
(t, s) 7→ ϕt(Φc

x(s)) is the 2×2 matrix whose columns are the vectors vu(ϕt(Φc
x(s)))

and Dϕt(Φc
x(s)) ddsΦ

c
x(s). Since ϕt is a C1 flow and Φc

x is a C1 curve this proves
that Γx has continuous derivative. Moreover, since vu(Φc

x(s)) and d
dsΦ

c
x(s) are

transverse and since Dϕt(Φc
x(s)) is a linear isomorphism, we have that the vectors

vu(ϕt(Φc
x(s))) = Dϕt(Φc

x(s))vu(Φc
x(s)) and Dϕt(Φc

x(s)) d
ds

Φc
x(s)

are also transverse. Thus the Jacobian matrix of Γx is invertible, proving the
assertion. The continuous dependence of the C1 norm follows from that of vu
and Φc. □

6.2.2. Preliminary construction. We shall start the construction of the map Φ
with a slight modification of the construction of the foliated chart Γx. Instead
of using the arc-length parameter along unstable manifolds we shall use normal
forms. This choice will allow us to perform the required reparametrization for
linearizing the action of f |Wcu(x).

Lemma 6.6. The map Ψx : R2 → Wcu(x) given by Ψx(t, s) def.= Φu
Φcx(s)(t) is a C1

diffeomorphism, with C1 norm depending continuously from x.

Proof. Notice that Ψx is bijective because we can define directly an inverse map.
Indeed, given y ∈ Wcu(x) we consider the point yc ∈ Wc(x), whose existence is
ensured by Lemmas 2.3 and 2.4, such that

{yc} = Wu(y) ∩ Wc(x).
Define then a map Ξx : Wcu(x) → R2 by

Ξx(y) def.= (Hu
yc(y),Hc

x(yc)).
From the definitions we have

Ψx ◦ Ξx(y) = Φu
Φcx(Hc

x(yc))(H
u
yc(y)) = Φu

yc(Hu
yc(y)) = y.

In a similar way one sees that Ξx ◦ Ψx(t, s) = (t, s). It suffices then to check that
Ξx is C1 with invertible derivative at each point.

To prove that Ξx is a C1 diffeomorphism then it suffices to establish that
Ξx ◦ Γx : R2 → R2 is a C1 diffeomorphism. To compute the derivative of this
map fix a point y = Γx(t, s) ∈ Wcu(x). Then, since Γx is a foliated chart, we
have yc = Γx(0, s). Thus,

Ξx ◦ Γx(t, s) = (Hu
Γx(0,s)(Γx(t, s)),Hc

x(Γx(0, s))).

Note that (t, s) 7→ Hc
x(Γx(0, s)) = s is a C1 function. Moreover, as

Hu
Γx(0,s)(Γx(t, s)) =

∫ Γx(t,s)

Γx(0,s)
ρΓx(0,s)(Γx(r, s))dr,

Leibniz rule will imply that Ξx ◦ Γx is a C1 map as long as we prove that
(t, s) 7→ ρΓx(0,s)(Γx(t, s)) ∈ (0,+∞) is C1. To verify this assertion, recall that

ρuΓx(0,s)(Γx(t, s)) =
+∞∏
ℓ=0

∥Df−1(f−ℓ(Γx(t, s)))|Eu∥
∥Df−1(f−ℓ(Γx(0, s)))|Eu∥

.

Consider the auxiliary function g(t, s) = log ρuΓx(0,s)(Γx(t, s)). Then we can write

g(t, s) =
+∞∑
ℓ=0

(
log λuf−ℓ−1(Γx(0,s)) − log λuf−ℓ−1(Γx(t,s))

)
.
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First notice that as λu(.) : Wcu → R is C1 and since
d(f−ℓ(Γx(0, s)), f−ℓ(Γx(t, s))) → 0 exponentially fast (with uniform rate,
depending only on f), we deduce that g is the uniform limit on compact sets of
the sequence of partial sums. Consider the function gℓ(t, s) = log λu

f−ℓ−1(Γx(t,s)).
By the chain rule,

Dgℓ(t, s) =
Dλu

f−ℓ−1(Γx(t,s))Df
−ℓ−1(Γx(t, s))DΓx(t, s)

λu
f−ℓ−1(Γx(t,s))

.

Therefore, for (t, s) ∈ BR(0) there is a uniform constant C = C(R, f) > 0 so
that

∥Dgℓ(t, s)∥ ≤ C∥Df−ℓ−1(Γx(t, s))|Ecu∥.
The right hand side above has a uniform bound decreasing exponentially as ℓ
increases for ∥Df−ℓ(x)|Ecu∥ ≤ e−χc2ℓ, for every x ∈ T3, with χc2 > 0 (recall our
notations from §2.1.3). Thus,

∥Dgℓ(t, s)∥ ≤ Ce−χc2ℓ.

An analogous estimate holds for the function g̃ℓ(t, s) = log λuΓx(0,s). This
proves that the derivative of the truncated series defining g also converges
uniformly on compact sets. By elementary calculus (see for instance Propo-
sition 1.41 of [1]) this proves that g is C1, and therefore we conclude that
(t, s) 7→ ρuΓx(0,s)(Γx(t, s)) ∈ (0,+∞) is C1, as desired. To complete the proof
of the lemma, observe that the derivative of Ξx ◦ Γx is an upper triangular ma-
trix with non-zero entries in the diagonal. By the inverse function theorem, as
Ξx ◦ Γx is bijective, this proves that this map is in fact a C1 diffeomorphism.
This ends the proof of the lemma. □

6.2.3. A reparametrization function. Here again, the diffeomorphism Ψx con-
structed in Lemma 6.6 does not satisfy all the requirements we need. Indeed,
to obtain condition (1) from Theorem 6.3 it is necessary to perform a suitable
reparametrization. The design of such a map is the content of next lemma.

Lemma 6.7. For each x ∈ T3, there exists a C1 function βx : R → R+ such that
Df(Φc

x(s)) · βx(s)vu (Φc
x(s)) = λuxβx1(λcxs)vu

(
Φc
x1(λcxs)

)
. (26)

Proof. Let us fix a point x ∈ T3. Consider the sequence of functions R ∋ s 7→
ψx−ℓ(s) ∈ Wc(x−ℓ) where

ψx−ℓ(s)
def.= Φc

x−ℓ

(
(λcx−ℓ

· · ·λcx−1)−1s
)
.

For coherence of notation also make the convention that ψx0 (s) = Φc
x(s).

Remark 6.8. Note that by property of Kalinin-Katok’s normal forms, we have
that if y = ψx0 (s) = Φc

x(s) for some s ∈ R and ℓ ∈ N, then

f−ℓ(y) = ψx−ℓ(s).

Using this sequence we define hn,x : R → R,

hn,x(s) def.=
n∑
ℓ=1

(
log λuψx−ℓ(s) − log λux−ℓ

)
.

Notice that y 7→ λuy is uniformly bounded from above and from below, and the
lower bound is larger than 1. Thus

| log λuψx−ℓ(s) − log λux−ℓ
| ≤ |λuψx−ℓ(s) − λux−ℓ

|.
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Now, as y 7→ λcy is also uniformly bounded with a lower bound larger than 1,
since the family {Φc

x} is continuous in the C1 topology and Φc
x−ℓ

(0) = x−ℓ it
follows that d(ψx−ℓ(s), x−ℓ) → 0 exponentially fast with uniform constants (keep
in mind Remark 6.8). Moreover, as y 7→ λuy is uniformly C1 inside Wcu there
exists some constant C > 0 such that

|λuψx−ℓ(s) − λux−ℓ
| ≤ Cd(ψx−ℓ(s), x−ℓ).

This proves that hn,x converges uniformly to a continuous function hx. We define
βx(s) def.= ehx(s). Observe that with Notation (21), we can write

βx(s) =
+∞∏
ℓ=1

λuψx−ℓ(s)

λux−ℓ

= ρuΦcx(s)(x) = 1
ρux(Φc

x(s)) . (27)

We claim that λuΦcx(s)βx(s) = λuxβx1(λcxs). This formula immediately gives us
(26). Indeed note that by property of Kalinin-Katok’s normal forms

Df(Φc
x(s)) · vu(Φc

x(s)) = λuΦcx(s)v
u(f(Φc

x(s)))
= λuΦcx(s)v

u(Φc
x1(λcxs)),

and combining this equality with the claim provides (26).
To prove the claim we first remark that

ψx1
−ℓ(λ

c
xs) = Φc

x−ℓ+1

(
(λcx−ℓ+1 · · ·λcx−1λ

c
x)−1λcxs

)
= ψx−ℓ+1(s).

We deduce that

βx1(λcxs) =
+∞∏
ℓ=1

λu
ψ
x1
−ℓ(λcxs)

λux−ℓ+1

=
∞∏
ℓ=1

λuψx−ℓ+1(s)

λux−ℓ+1

=
λuΦcx(s)
λux

βx(s),

proving our claim.
To finish the lemma it remains to show that βx is a C1 function, depending

continuously (with respect to the local C1 topology) on x. With that goal in
mind we compute

d

ds
ψx−ℓ(s) = (λcx−ℓ

· · ·λcx−1)−1DΦc
x−ℓ

(
(λcx−ℓ

· · ·λcx−1)−1s
)
e1.

Applying thus the chain rule we obtain
d

ds
λuψx−ℓ(s)

= D(λuψx−ℓ(s))
d

ds
ψx−ℓ(s)

= (λcx−ℓ
· · ·λcx−1)−1D(λuψx−ℓ(s))DΦc

x−ℓ

(
(λcx−ℓ

· · ·λcx−1)−1s
)
e1,

where D(λuy) denotes the derivative of the function y 7→ λuy at y. As
(λcx−ℓ

· · ·λcx−1)−1 → 0 exponentially fast with uniform constants, the left
hand side above also vanishes exponentially fast because λuy is C1 and x 7→
max|s|≤1 ∥DΦc

x(s)∥ is uniformly bounded. As a consequence the sequence

h′
n,x(s) =

n∑
ℓ=1

d
dsλ

u
ψx−ℓ(s)

λu
ψx−ℓ(s)

is uniformly bounded by a convergent geometric series, because λuy is lower
bounded by a constant larger than 1. Since hn,x → hx uniformly on compact
sets, by elementary calculus (see for instance [1] Proposition 1.41) this proves
that hx is C1 with h′

x = limn→+∞ h′
n,x. Moreover, the uniform estimates ob-

tained show that the C1 norm of f changes continuously with x. This completes
the proof of the lemma. □
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6.2.4. Defining the normal form. With Lemmas 6.6 and 6.7 at hand we are
in position to define our two dimensional parametrization of center-unstable
manifolds Wcu(x). For each x ∈ T3 we consider

Φx :
{

R2 → Wcu(x),
(t, s) 7→ Ψx(βx(s)t, s) = Φu

Φcx(s)(βx(s)t).

Notice that, by Lemma 6.7, s 7→ βx(s) is a C1 positive function. It follows that
(t, s) 7→ (βx(s)t, s) is a C1 diffeomorphism of R2. Therefore, applying Lemma 6.6
we obtain that Φx is a C1 diffeomorphism. We denote Hx

def.= Φ−1
x .

Proof of Theorem 6.3. Properties (2)-(4) are automatic from the construction of
Φx. To prove (1) we apply Proposition 6.1 and obtain

f(Φx(t, s)) = f
(
Φu

Φcx(s)(βx(s)t)
)

= Φu
f◦Φcx(s)

(
λuΦcx(s)βx(s)t

)
.

Now, equality (26) implies that
βx(s)λuΦcx(s)v

u(f ◦ Φc
x(x)) = λuxβx1(λcxs)vu

(
Φc
x1(λcxs)

)
.

Proposition 6.1 applied with Φc
x shows that f ◦ Φc

x(s) = Φc
x1(λcxs), where x1 =

f(x). Combining we get βx(s)λΦcx(s) = λuxβx1(λcxs). One deduces then
f(Φx(t, s)) = Φu

Φcx1 (λcxs) (λuxβx1(λcxs)t) .

The very definition of Φx says that
Φu

Φcx1 (λcxs) (λuxβx1(λcxs)t) = Φx1(λuxt, λcxs). □

Remark 6.9. It follows readily from our construction that the inverse map
Hx : Wcu(x) → R2 sends each unstable manifold Wu(y), for y ∈ Wc(x) onto
the horizontal line {s = Hc

x(y)}.
6.3. Change of normal form coordinates. As in (24) and Remark 6.4, for
any x ∈ T3 and y ∈ Wcu(x), we define the change of charts

Hx,y
def.= Hy ◦ H−1

x = Φ−1
y ◦ Φx :

{
R2 → R2,

(t, s) 7→ (h1
x,y(t, s), h2

x,y(t, s)).
(28)

The function h2
x,y only depends on the second coordinate, as demonstrated by

the following lemma.
Lemma 6.10. For any x ∈ T3 and y ∈ Wcu(x), the diffeomorphism Hx,y pre-
serves the foliation of R2 into horizontal lines {s = cst}.
Proof. This is a straightforward consequence of the fact that normal forms sends
horizontal lines to unstable manifolds (see Remark 6.9). More precisely, given
s ∈ R, using item (5) of Theorem 6.3 we have

Wu(Φc
x(s)) = Φx(R × {s}).

Now define ŷ = Wc(y) ∩ Wu(Φc
x(s)) (recall Lemma 2.4). Applying item (5) of

Theorem 6.3 once more we obtain
Hy(Wu(ŷ)) = R × {Hc

y(ŷ)}
Since Wu(ŷ) = Wu(Φc

x(s)), this shows that
Hx,y(R × {s}) = R × {Hc

y(ŷ)},
which concludes the proof. □

Lemma 6.11. The diffeomorphism Hx,y(·, ·) depends continuously in the C1

topology with the pair (x, y), x ∈ T3 and y ∈ Wcu(x). Moreover, for any x̄ ∈ T3,
and for (t̄, s̄) ∈ R2,
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(1) Hx,y(t, s) → (t̄, s̄) as (x, y) → (x̄, x̄) and (t, s) → (t̄, s̄);
(2) DHx,y(t, s) → IdR2 as (x, y) → (x̄, x̄) and (t, s) → (t̄, s̄).

Proof. It follows immediately from Theorem 6.3(4), since Hx,y = Hy ◦ H−1
x , and

DHx,y(t, s) = DHy(H−1
x (t, s)) ◦DH−1

x (t, s), with
DHx(t, s) → DHx̄(t̄, s̄),

as x → x̄ and (t, s) → (t̄, s̄), and
DHy(H−1

x (t, s)) → DHx̄(H−1
x̄ (t̄, s̄)) = (DH−1

x̄ (t̄, s̄))−1,

as (x, y) → (x̄, x̄) and (t, s) → (t̄, s̄). □

6.3.1. Change of normal charts for two points in the same center leaf. We first
study the change of normal charts between two points of the same center leaf.

Lemma 6.12. Let x ∈ T3 and y ∈ Wc(x). For any (t, s) ∈ R2, it holds
(1) h1

x,y(t, s) = ρuy(x)t;
(2) h2

x,y(s) = Hc
x,y(s) = ρcy(x)s+ Hc

y(x).

Proof. We start by proving (2). Consider the function h1
x,y. As x and y belong

to the same center leaf, for any s ∈ R, it holds h1
x,y(0, s) = 0, and

Φc
x(s) = Φx(0, s) = Φy(h1

x,y(0, s), h2
x,y(s)) = Φy(0, h2

x,y(s)) = Φc
y(h2

x,y(s)),
hence by (25),

h2
x,y(s) = (Φc

y)−1 ◦ Φc
x(s) = Hc

x,y(s).
The second claimed equality follows from Lemma 6.2.

Now, let us prove (1). Fix (t, s) ∈ R2, and denote t′ def.= h1
x,y(t, s) and s′ def.=

h2
x,y(s) for simplicity. By definition, and as Φc

y(h2
x,y(s)) = Φc

x(s), we obtain

Φu
Φcx(s)(βx(s)t) = Φx(t, s) = Φy(t′, s′) = Φu

Φcy(s′)(βy(s
′)t′),

hence
βx(s)t = βy(s′)t′. (29)

On the other hand, by (27) we have
βy(s′) = ρuΦcy(s′)(y) = ρuΦxx(s)(y)

= ρuΦcx(s)(x)ρux(y) = βx(s)ρux(y), (30)

where in the second line we applied (22). Combining this with (29) we deduce
t′ = ρuy(x)t, concluding. □

6.3.2. Change of normal forms for two points in the same unstable leaf. Let
us now study the change of normal charts Hx,x′ : (t, s) 7→ (h1

x,x′(t, s), h2
x,x′(s))

between two points x, x′ of the same unstable leaf. Unlike the previous case,
here we do not get an affine map.

Lemma 6.13. Let x ∈ T3 and x′ ∈ Wu(x). Then, there exists a C1 function
ax,x′ : R → R such that for any (t, s) ∈ R2, it holds

h1
x,x′(t, s) = ρux′(x)t+ ax,x′(s).

Proof. Consider (t, s) ∈ R2, and let us abbreviate t′ def.= h1
x,x′(t, s), s′ def.= h2

x,x′(s),
y = y(s) def.= Φc

x(s), y′ = y′(s) def.= Φc
x′(s′), and z = z(t, s) def.= Φx(t, s) = Φx′(t′, s′).

Recall that z = Φx(t, s) = Φu
y(βx(s)t). By (23), we thus obtain

βx(s)t =
∫ z

y
ρuy(ŷ) dŷ. (31)
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Similarly, z = Φx′(t′, s′) = Φu
y′(βx′(s′)t′), and

βx(s′)t′ =
∫ z

y′
ρuy′(ŷ) dŷ, (32)

Observe that y′ ∈ Wu(y). By (22), for any point ŷ ∈ Wu(y) = Wu(y′), we have
ρuy′(ŷ) = ρuy(ŷ)ρuy′(y). Hence,

βx′(s′)t′ =
∫ z

y′
ρuy′(ŷ) dŷ =

∫ z

y′
ρuy′(y)ρuy(ŷ) dŷ

= ρuy′(y)
(∫ z

y′
ρuy(ŷ) dŷ

)
= ρuy′(y)

(∫ y

y′
ρuy(ŷ) dŷ +

∫ z

y
ρuy(ŷ) dŷ

)
= ρuy′(y)βx(s)t+ ρuy′(y)

∫ y

y′
ρuy(ŷ) dŷ,

where in the last equality we used (31). We conclude that

t′ = ρy′(y) βx(s)
βx′(s′) · t+

ρuy′(y)
βx′(s′)

∫ y

y′
ρuy(ŷ) dŷ.

Set ax,x′(s) def.=
ρu
y′ (y)

βx′ (s′)
∫ y
y′ ρuy(ŷ) dŷ. This is the translation part of the change of

coordinates. Recall that

βx(s) = ρuΦux(s)(x) = ρuy(x).

Similarly,
βx′(s′) = ρuΦu

x′ (s′)(x
′) = ρuy′(x′) = (ρux′(y′))−1.

Therefore, by (22), it holds

ρuy′(y) βx(s)
βx′(s′) = ρuy(x)ρuy′(y)ρux′(y′) = ρuy(x)ρux′(y) = ρux′(x).

We conclude that t′ = ρux′(x) · t+ ax,x′(s). Moreover,

ax,x′(s) def.=
ρuy′(y)
βx′(s′)

∫ y

y′
ρuy(ŷ) dŷ = ρux′(x)

βx(s)

∫ y

y′
ρuy(ŷ) dŷ

= ρux′(x)
ρuy(x)

∫ y

y′
ρuy(ŷ) dŷ = ρux′(y)

∫ y

y′
ρuy(ŷ) dŷ =

∫ y

y′
ρuy(ŷ)ρux′(y) dŷ

=
∫

Wu(y′,y)
ρux′(ŷ) dŷ,

where in the last integral, ŷ ranges over the segment Wu(y′, y) ⊂ Wu(y) of
unstable manifold connecting the points y′ and y. □

Let us now study the map h2
x,x′ : R → R. The first step is to characterize it in

terms of unstable holonomies.

Lemma 6.14. Fix x ∈ T3 and x′ ∈ Wu(x) and let Hu
x,x′ : Wc(x) → Wc(x′)

denote the unstable holonomy map. Define the map Lux,x′ : R → R by

Lux,x′(s) def.= Hc
x′ ◦Hu

x,x′ ◦ Φc
x(s).

Then, we have h2
x,x′(s) = Lux,x′(s).

Proof. Consider an s ∈ R and define y = Φc
x(s) and y′ = Hu

x,x′(y). Set s′ def.=
Hc
x′(y′). Notice that, by definition, s′ = Lux,x′(s). By Remark 6.9 we know that
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Φx(R × {s}) = Wu(y), and similarly Φx′ sends R × {s′} onto Wu(y′). Since
Wu(y) = Wu(y′) this shows that

Hx′ ◦ Φx(R × {s}) = R × {s′},

and therefore h2
x,x′(s) = s′. □

We now prove that unstable holonomies, when conjugated by normal forms
(as in the previous lemma), become a linear maps of the real line.

Lemma 6.15. Fix x ∈ T3 and x′ ∈ Wu(x). Then, Lux,x′(s) = ρcx′(x)s.

Proof. For ease of notation in this proof, we will denote L(s) = Lux,x′(s). By
definition, we have that

Φc
x′ ◦ L(s) = Hu

x,x′ ◦ Φc
x(s).

Now, consider an integer k ∈ Z and define the functions gk : R → R, s 7→ λcx(k) ·s
(recall Notation (20)). Similarly let g′

k : R → R, s 7→ λcx′(k) · s. By applying
fk to both sides of the above equation and using the equivariance properties of
normal forms and holonomy maps, we obtain

Φc
x′
k
(g′
k ◦ L(s)) = Hu

xk,x
′
k

◦ Φc
xk

(gk(s)).

Taking derivatives with respect to s ∈ R on both sides we get

DΦc
x′
k
(g′
k(s))λcx′(k)dL

ds
(s) = DHu

xk,x
′
k
(Φc

xk
(gk(s)))DΦc

xk
(gk(s))λcx(k). (33)

Recall that det DΦc
xk

(gk(s)) = 1
ρcxk

(Φcxk (gk(s))) , and det DΦc
x′
k
(g′
k(s)) =

1
ρc
x′
k

(Φc
x′
k

(g′
k

(s))) . Passing to the determinant in (33), we deduce that

dL

ds
(s) =

ρcx′
k
(Φc

x′
k
(g′
k(s)))

ρcxk(Φc
xk

(sk(s)))
· λ

c
x(k)

λcx′(k) · det DHu
xk,x

′
k
(Φc

xk
(gk(s))). (34)

We now let k → −∞. By compactness, up to considering a subsequence, we
can assume that xk, x′

k → q ∈ T3 as k → −∞. Moreover, gk(s), g′
k(s) → 0 as

k → −∞, and by the properties of Φc
(·)(·) stated in Proposition 6.1, we have

Φc
xk

(gk(s)),Φc
x′
k
(g′
k(s)) → Φc

q(0) = q as k → −∞. By continuity of ρc(·)(·), we
deduce that

lim
k→−∞

ρcx′
k
(Φc

x′
k
(g′
k(s)))

ρcxk(Φc
xk

(gk(s)))
=
ρcq(q)
ρcq(q)

= 1.

Since the holonomy maps Hu
xk,x

′
k

converge uniformly to Hu
q,q = Id|Wc(q) in the

C1 topology as k → −∞, we also have limk→−∞ det DHu
xk,x

′
k
(Φc

xk
(gk(s))) = 1.

By (34), (20) and (21), we conclude that

dL

ds
(s) = lim

k→−∞

λcx(k)
λcx′(k) =

+∞∏
ℓ=1

λcx′
−ℓ

λcx−ℓ

= ρcx′(x).

This completes the proof. □

7. Leaf-wise quotient measures

Let us denote by M(R) the set of locally finite Borel measures on the real
line. Using the families of parametrizations {Φx}, {Φc

x}x∈T3 we will construct a
family of elements of M(R) which will be the main object of study in this paper.
We summarize the result of the construction with the following statement.
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Theorem 7.1. Let f ∈ A2(T3) be an Anosov diffeomorphism with expanding
center. Let µ be an ergodic u-Gibbs measure of f . Then, there exists a family
{ν̂cx}x∈T3 ⊂ M(R) of lacally finite Borel measures on the real line with the fol-
lowing property: if, for µ almost every x, the measure ν̂cx is proportional to the
Lebesgue measure of R then µ is an SRB measure.

The family {ν̂cx}x∈T3 is referred to as leaf-wise quotient measures. Once The-
orem 7.1 is established, our main result is reduced to proving that, for µ almost
every x, each ν̂cx is a translation-invariant measure on the real line. The propo-
sition below summarizes the properties of the family {ν̂cx}x∈T3 ⊂ M(R) that
enable us to achieve this result.

Proposition 7.2 (Basic moves). The family {ν̂cx}x∈T3 ⊂ M(R) satisfies the
following properties on a full measure subset Λ of T3, which is Wu-saturated.
For every x ∈ Λ

(1) if y ∈ Wc(x) ∩ Λ then ν̂cx ∝ (Hc
x,y)∗ν̂

c
y, where Hc

x,y : R → R is the change
of normal form coordinates on the manifold Wc(x), which is an affine
map.

(2) ν̂cf(x) ∝ (Λcx)∗ν̂
c
x, where Λcx : R → R is the linear map Λcx(s) = λcxs.

(3) if x′ ∈ Wu(x) then ν̂cx′ ∝ (Lx,x′)∗ν̂
c
x, where Lx,x′ : R → R is the linear

map Lx,x′(s) = ρcx′(x)s.

The remainder of this section is dedicated to proving Theorem 7.1 and Propo-
sition 7.2. Thus, we fix f ∈ A2(T3) and µ an ergodic u-Gibbs measure.

7.1. Conditional measures of µ in normal forms. We will show that when
we push the conditional measures of µ along center unstable manifolds using the
normal forms and subsequently disintegrate this measure along the horizontal
lines (corresponding to unstable manifolds), we obtain measures proportional
to the Lebesgue measure. his fact plays a fundamental role in the proofs of
Theorem 7.1 and Proposition 7.2.

7.1.1. Some preliminary facts about the conditional measures µcun,x. Let us start
by recalling the notation from §2.5.1 and stating some basic lemmas that will
be useful throughout this section. Start with ξcu0 , an increasing measurable
partition subordinate to the uniformly expanded foliation Wcu. When we apply
the dynamics, we obtain a sequence ξcun

def.= fn(ξcu0 ) of measurable partitions that
remain subordinate to Wcu. Moreover, for every n ∈ N, we have ξcun+1 ≺ ξcun . Now
consider {µcun,x}x∈T3 to be the disintegration of µ with respect to the partition
ξcun . Similar to Lemma 2.16, we find that the following superposition property
holds for µ-a.e. x ∈ T3:

ifm > n, then µcun,x(A) =
µcum,x(A)

µcum,x(ξcun (x)) , (35)

for every measurable set A ⊂ ξcun (x). Furthermore, as µ is f -invariant, the
distintegrations {µcun,x}n∈N, x∈T3 satisfy:

Lemma 7.3. For every n ∈ N and for µ-almost every x ∈ T3, we have

µcun+1,f(x) = f∗µ
cu
n,x.

Proof. The proof follows a similar approach to that of Lemma 2.12. □

By intersecting with the center foliation Wc, or unstable foliation Wu, we can
refine each partition ξcun , n ∈ N. More precisely, for ⋆ = c, u, we consider a
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partition ξcun ≺ ξ⋆n = {ξ⋆n(y)}y∈T3 , with

ξ⋆n(y) def.= W⋆(y) ∩ ξcun (y), ∀ y ∈ T3.

By Remark 2.14, we obtain:

Lemma 7.4. For ⋆ = c, u, the family of sets ξ⋆n is a measurable partition subor-
dinate to W⋆.

For every n ∈ N and for µ-almost every x ∈ T3, we define ζ⋆n(x) def.=
Hx(ξ⋆n(x)) ⊂R2, and νcun,x

def.= (Hx)∗µ
cu
n,x. Note that due to item (1) of Theo-

rem 6.3, for each x ∈ T3, it holds

Nx ◦ Hx|Wcu(x) = Hf(x) ◦ f |Wcu(x), where Nx : (t, s) 7→ (λuxt, λcxs). (36)

As a result of (36) and Lemma 7.3, we conclude:

Lemma 7.5. For every n ∈ N and for µ-almost every x ∈ T3, it holds

νcun+1,f(x) = (Nx)∗ν
cu
n,x.

7.1.2. Disintegration of the conditional measures in normal forms. As in §2.5.1
when we disintegrate µcun,x along the atoms {ξun(y)}y∈ξcun (x) we get a probability
measure µcn,x over ξcn(x) and a family {µun,y}y∈ξcun (x), each of which is a probability
measure on ξun(y).

Now, let Hx : Wcu(x) → R2 be the inverse map of the normal form coordinate
chart. Define the measures

ν⋆n,x
def.= (Hx)∗µ

⋆
n,x, for ⋆ = c, cu,

and

νun,s
def.= (Hx)∗µ

u
n,y, for each s = Hc

x(y), with y ∈ ξcn(x).
A remarkable property of u-Gibbs measures is that their conditional measures

along unstable manifolds in normal forms are proportional to Lebesgue.

Lemma 7.6. For µ-a.e. x ∈ T3 and νcun,x-a.e. (t, s) ∈ ζcun (x), there exists
a constant γn,x(s) > 0 (independent of t) such that for every Borel set B ⊂
ζun(Φc

x(s)), the following holds

νun,s(B) = γn,x(s) Leb(B).

Proof. Given that µ is a u-Gibbs measure, for µ-a.e. x ∈ T3, and µcun,x-a.e.
y ∈ ξcun (x), the measure µun,y is absolutely continuous. Its density, up to a
constant, is given by (referring to Notation (21))

ρuy : ξun(y) ∋ z 7→ ρuy(z) =
+∞∏
j=0

∥Df−1(f−j(z))|Eu∥
∥Df−1(f−j(y))|Eu∥

.

Let (t, s) def.= Hx(y), so that νun,s = (Hx)∗µ
u
n,y. Restricted to R × {s}, Φx = H−1

x

is given by the map Φu
Φcx(s)(βx(s)t), for some βx(s) ∈ R. Therefore, up to a

constant that depends only on s, the density of νun,s = (Hx)∗µ
u
n,y is given by

ρ̃us : t 7→ ρuy(Φu
Φcx(s)(t))DΦu

Φcx(s)(t).

Since DΦu
Φcx(s)(t) = (DHu

y )−1(Φu
Φcx(s)(t)) = ρuy(Φu

Φcx(s)(t))
−1, hence ρ̃us is constant.

□
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7.2. Construction of leaf-wise quotient measures. The measures we define
here are similar to the quotient measures νcn,x, but we will use unstable segments
of a fixed length together with a normalization that allows for stabilization when
n is sufficiently large large enough (see Lemma 7.8 below). Let I ⊂R be any
bounded interval centered at 0. It determines the length of unstable segments
used in defining the leaf-wise quotient measures. Given a bounded Borel set
B⊂R and a µ-typical point x ∈ T3 there exists n0 = n0(x, I,B) such that for
every n ≥ n0, I ×B⊂ ζcun (x) and I × [−1, 1] ⊂ ζcun (x): see Lemma 2.19. We first
show that the choice of length of unstable segments, and thus the interval I ⊂ R
will not modify the definition.

Lemma 7.7. For any other interval J ⊂ R centered at 0, there exists n0(J)
such that

νcun,x(I ×B)
νcun,x(I × [−1, 1]) =

νcun,x(J ×B)
νcun,x(J × [−1, 1]) ,

for every n ≥ n0(J).

Proof. Consider real numbers α and β such that the affine map ψ(t) = αt + β
satisfies ψ(I) = J . Then, applying the disintegration in conditional measures
and using Lemma 7.6 we obtain

νcun,x(J ×B)
νcun,x(J × [−1, 1]) =

∫
B ν

u
n,s(J)dνcn,x(s)∫

[−1,1] ν
u
n,s(J)dνcn,x(s)

=
∫
B γn,x(s) Leb(αI + β)dνcn,x(s)∫

[−1,1] γn,x(s) Leb(αI + β)dνcn,x(s)

=
∫
B γn,x(s) Leb(I)dνcn,x(s)∫

[−1,1] γn,x(s) Leb(I)dνcn,x(s)

=
∫
B ν

u
n,s(I)dνcn,x(s)∫

[−1,1] ν
u
n,s(I)dνcn,x(s)

=
νcun,x(I ×B)

νcun,x(I × [−1, 1]) .

This equality holds for sufficiently large n, ensuring that J × B and J × [−1, 1]
are both subsets of ζcun (x). Notice that this can always be achieved due to
Lemma 2.19. This completes the proof. □

Given B ⊂ R a bounded Borel measurable subset, and given n ∈ N we define
the following number

ν̂cn,x(B) def.=
νcun,x(I ×B)

νcun,x(I × [−1, 1]) . (37)

We now use the superposition property to show that this sequence stabilizes
for large n.

Lemma 7.8. For µ-almost every x ∈ T3, every bounded Borel set B ⊂ R, and
every interval I, there exists a number n0 = n0(x, I,B) ∈ N such that for all
integers m > n ≥ n0 we have ν̂cm,x(B) = ν̂cn,x(B).

Proof. Firstly, observe that for each pair m > n, there exists a µ-full measure set
of points x ∈ T3 for which µcum,x(ξcun,x(x)) > 0. This follows from the superposition
property (35). By taking the countable intersection of all these sets, and applying
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(35) again, we deduce that for every bounded Borel set B ⊂ R, and m > n ≥
n0(x, I,B), so that I ×B, I × [−1, 1] ⊂ ζcun (x) ⊂ ζcum (x), the following holds

ν̂cn,x(B) =
µcun,x(Φx(I ×B))

µcun,x(Φx(I × [−1, 1]))

=
µcum,x(Φx(I ×B))
µcum,x(ξcun,x(x)) ×

µcum,x(ξcun,x(x))
µcum,x(Φx(I × [−1, 1])) = ν̂cm,x(B). □

Hence, the construction above defines a family of measures on R.

Definition 7.9 (Leaf-wise quotient measure). For µ-a.e. x ∈ T3, let ν̂cx be the
unique locally finite Borel measure defined in R so that, for each bounded Borel
B ⊂ R, one has

ν̂cx(B) def.= ν̂cn0(x,B),x(B).

By Lemma 7.8 the right hand side above is well defined.

Remark 7.10 (Choice of normalization). By construction, we have that
ν̂cx([−1, 1]) = 1.

Remark 7.11. By construction, for µ-a.e. x ∈ T3, ν̂cx gives positive measure
to any open neighbourhood of 0. This follows from the definition and Corollary
2.17.

7.3. Obtaining the SRB property: Proof of Theorem 7.1. To complete
the proof of Theorem 7.1 we assume that for µ almost every x ∈ T3 the measure
ν̂cx is proportional to Lebesgue on R. To conclude that µ is an SRB measure
it suffices to show that the conditional measures µcu0,x are absolutely continuous
with respect to LebWcu(x) for µ almost every x. To achieve this goal, consider
a < 0 < b with b− a large enough so that, denoting I = [a, b], we have

ξcu0 (x) ⊂ Φx(I × I), for µ-almost every x ∈ T3.

This can be done because the atoms of ξcu0 have uniformly bounded diameter and
the C1 norm of Φx depends continuously on x. Let R = maxx∈T3 diam(Φx(I×I)).
Then, applying Lemma 2.19 with this number we get that for µ almost every x,
there exists n0(x, I) such that if n ≥ n0(x, I) then

(1) I ⊂ ζcn(x);
(2) I × {s} ⊂ ζun(Φc

x(s)), for every s ∈ I.
Now, given such x and n ≥ n0(x, I) take s ∈ I. We observe

1 = νun,s(ζun(Φc
x(s))) ≥ νun,s(I)

= γn,x(s) Leb(I)
= γn,x(s)(b− a). (38)

Therefore,
0 < γn,x(s) < 1

b− a
.

We claim that νcn,x|I is absolutely continuous with respect to the leaf-wise quo-
tient measure ν̂cx|I . Indeed, let us denote for simplicity α = (νcun,x(I× [−1, 1]))−1.
Then, if B ⊂ I we have

ν̂cx(B) = ανcun,x(I ×B) = α

∫
B
νun,s(I) dνcn,x(s)

= αLeb(I)
∫
B
γn,x(s) dνcn,x(s). (39)
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Since γn,x > 0 if ν̂cx(B) = 0 then νcn,x(B) = 0, which proves our claim. Since,
by assumption, ν̂cx ∝ Leb we conclude that indeed νcn,x|I is absolutely contin-
uous with Leb |I . As dνcun,x(t, s) = dνun,s(t)dνcn,x(s), it follows immediately from
Lemma 7.6 that νcun,x|I×I is absolutely continuous with respect to the two di-
mensional Lebesgue measure Leb |I×I . Since Φx is C1, we get that µcun,x|Φx(I×I)
is absolutely continuous with respect to LebWcu(x). By the superposition prop-
erty we deduce that µcu0,x is absolutely continuous, as desired. The theorem is
proved. □

7.4. Basic moves for leaf-wise measures. We now proceed with the proof
of Proposition 7.2. Our goal is to investigate how the measures ν̂cx change as we
move the base point x. In this analysis, the understanding of how the normal
form coordinates change with the base point on the same center-unstable leaf
plays a crucial role.

Φy

Φx

y

x

Wc(x)ν̂c
y

ν̂c
x

Figure 7. Moving the base point within a central leaf changes
the leaf-wise measure by an affine map up to renormalization.

7.4.1. First basic move: moving along center manifolds. In the following lemma
we show that for points on the same center leaf there exists an affine map that
makes the corresponding leaf-wise quotient measure proportional to each other:
see Figure 7. It is important to note that the derivative of this affine map is
determined by normal form coordinates along the center manifold.

Lemma 7.12. For µ-a.e. x ∈ T3, and y ∈ Wc(x), we have

ν̂cy ∝ (h2
x,y)∗ν̂

c
x,

where h2
x,y : R → R is the affine map defined by s 7→ ρcy(x) · s + Hc

y(x), corre-
sponding to the action of the change of normal forms on the second coordinate
given by Lemma 6.12.

Proof. Let I be a bounded interval centered at 0 and B be a bounded Borel
subset of R. Consider n ∈ N, large enough so that y ∈ ξcun (x) and

Φy(I ×B) ∪ Φy(I × [−1, 1]) ⊂ ξcun (y) = ξcun (x).
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This is possible after Lemma 2.19. Recall the normal form coordinate change
Hx,y(t, s) = Hy ◦ Φx = (h1

x,y(t, s), h2
x,y(s)), which is given by (see Lemma 6.12)

h1
x,y(t, s) = ρuy(x)t and h2

x,y(s) = ρcy(x)s+ Hc
y(x).

Let B̃ = h2
x,y(B), I1 = [−1, 1] and Ĩ1 = h2

x,y(I1). Then, we can apply Lemma 7.6
as before to argue that

ν̂cx(B) =
µcun,x(Φx(I ×B))
µcun,x(Φx(I × I1)) =

µcun,y(Φy ◦ Hx,y(I ×B))
µcun,y(Φ ◦ Hx,y(I × I1))

=
νcun,y(ρuy(x)I × B̃)
νcun,y(ρuy(x)I × Ĩ1)

=
∫
B̃ ν

u
n,s(ρuy(x)I)dνcn,x(s)∫

Ĩ1
νun,s(ρuy(x)I)dνcn,x(s)

=
∫
B̃ ν

u
n,s(I)dνcn,x(s)∫

Ĩ1
νun,s(I)dνcn,x(s) =

νcun,x(I × B̃)
νcun,x(I × Ĩ1)

= α(x, y)ν̂cy(B̃),

where α(x, y) = νcun,x(I×I1)
νcun,x(I×Ĩ1) . This is exactly the desired conclusion. □

Φx

Φf(x)

x

Wc(x)

f(x)

f
Wc(f(x))

ν̂c
x

ν̂c
f(x)

Figure 8. Applying the dynamics to the base point changes the
leaf-wise measure by a linear map given by the differential of f
along Ec up to renormalization.

7.4.2. Second basic move: applying the dynamics. When we push x to f(x) the
change on the measures is linear and the slope of the linear map is given by the
derivative at x along the center direction. Recall that for ∗ = c, u, we denote by
Λ∗
x the linear map t 7→ λ∗

x · t (where λ∗
x

def.= ∥Df(x)|E∗∥).

Lemma 7.13. For µ-a.e. x ∈ T3, we have

ν̂cf(x) ∝ (Λcx)∗ν̂
c
x.
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Proof. Let I be a bounded interval centered at 0 and B be a bounded Borel
subset of R. Fix n ∈ N large so that I ×B, I × [−1, 1] ⊂ ζcun+1(f(x)) (see Lemma
2.19). By definition, we have

ν̂cn+1,f(x)(B) =
νcun+1,f(x)(I ×B)

νcun+1,f(x)(I × [−1, 1]) ,

and by Lemmas 7.5 and 7.6
νcun+1,f(x)(I ×B)

νcun+1,f(x)(I × [−1, 1]) =
νcun,x(N−1

x (I ×B))
νcun,x(N−1

x (I × [−1, 1]))

=
∫

(Λcx)−1(B) ν
u
n,s((λux)−1I)dνcn,x(s)∫

(Λcx)−1([−1,1]) ν
u
n,s((λux)−1I)dνcn,x(s)

=
νcun,x(I × (Λcx)−1(B))

νcun,x(I × (Λcx)−1([−1, 1]))

=
νcun,x(I × (Λcx)−1(B))
νcun,x(I × [−1, 1]) ×

νcun,x(I × [−1, 1])
νcun,x(I × (Λcx)−1([−1, 1]))

=
( 1
ν̂cx((Λcx)−1([−1, 1]))

)
ν̂cx

(
(Λcx)−1(B)

)
= α(x)ν̂cx((Λcx)−1(B)), (40)

where α(x) = ν̂cx((Λcx)−1([−1, 1]))−1. We deduce that
ν̂cf(x)(B) ∝ (Λcx)∗ν̂

c
x(B). □

Φx Φx′

ν̂c
x ν̂c

x′

x x′Wu(x)

Figure 9. Moving the base point within an unstable leaf
changes the leaf-wise measure by a linear map up to renormaliza-
tion.

7.4.3. Third basic move: moving along unstable manifolds. For points on the
same strong unstable leaf the change is also linear, but the slope is determined by
the derivative of the unstable holonomy map, which coincides with the derivative
of the linear map giving the action of the change in normal form coordinates on
the second variable. The lemma below completes the proof of Proposition 7.2.
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Lemma 7.14. For µ-a.e. x ∈ T3, and x′ ∈ Wu(x), it holds
ν̂cx ∝ (Lux,x′)∗ν̂

c
x′ ,

for the linear map Lux,x′ : s 7→ ρcx′(x) · s corresponding to the action of the change
of normal coordinates on the second variable given by Lemmas 6.14 and 6.15.

Proof. For µ-a.e. x ∈ T3, and x′ ∈ Wu(x), we proceed as follows. Let I be any
bounded interval centered at 0 and B be any bounded Borel subset of R. Then,
there exists n large so that x′ ∈ ξcun (x) and I ×B, I × [−1, 1] ×B⊂ ζcun (x). This
is possible by Lemma 2.19. As before, let Hx,x′(t, s) = (h1

x,x′(t, s), h2
x,x′(s)) be

the change in normal form coordinate. By Lemmas 6.13, 6.14 and 6.15 we have
h1
x,x′(t, s) = ρux′(x)t+ ax,x′(s), and h2

x,x′(s) = ρcx′(x)s.

Now, introduce B̃ = h2
x,x′(B), Ĩ1 = h2

x,x′(I1), where I1 = [−1, 1]. By Lemma 7.6:

ν̂cx′(B) =
µcun,x(Φx ◦ Hx,x′(I ×B))
µcun,x(Φx ◦ Hx,x′(I × I1))

=
νcun,x(h1

x,x′(I ×B) × B̃)
νcun,x(h1

x,x′(I × I1) × Ĩ1)

=
∫
B̃ ν

u
n,s(ρux′(x)I + ax,x′(ρcx(x′)s))dνcn,x(s)∫

Ĩ1
νun,s(ρux′(x)I + ax,x′(ρcx(x′)s))dνcn,x(s)

=
∫
B̃ ν

u
n,s(I)dνcn,x(s)∫

Ĩ1
νun,s(I)dνcn,x(s)

=
νcun,x(I × B̃)
νcun,x(I × Ĩ1)

= α(x, x′)ν̂cx(B̃), (41)

where α(x, x′) =
(
ν̂cx(Ĩ1)

)−1
. This completes the proof of the lemma. □

8. Invariance by affine maps

Once we have constructed the leaf-wise quotient measures {ν̂cx}x∈T3 , Theo-
rem 7.1 tells us that the proof of Theorem 5.10 reduces to show that ν̂cx is a
multiple of the Lebesgue measure of the real line. As in [7] this can be achieved
by proving that ν̂cx is, for many points x, invariant by affine maps with con-
trolled slope and small translational part. More precisely, the lemma below is
the analogue of [7, Proposition 7.1] in our context.

Lemma 8.1. There exist constants M0 > 0 and δ0 ∈ (0, 1) such that for every
ε > 0 sufficiently small one can find a compact set G(ε) ⊂ T3 so that µ(G(ε)) ≥
δ0 and for every p ∈ G(ε) there exists an affine map ψ : R → R satisfying

(1) 1
M0

< |ψ′(0)| < M0;
(2) ε

M0
< |ψ(0)| < εM0;

(3) ψ∗ν̂
c
p ∝ ν̂cp.

Furthermore, writing G0
def.= {p ∈ T3 : p ∈ G( 1

N ) for infinitely many N ∈ N}, we
have µ(G0) ≥ δ0.

Exactly as in [7], the lemma above implies Theorem 5.10. The proof is a direct
adaptation of [25, Lemma 3.10] and [7, Lemma 7.3]; for the convenience of the
reader, we provide this beautiful argument below and we refer to [7, 25] for other
applications of the same argument.
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Proof of Theorem 5.10 assuming Lemma 8.1. Let Aff(R) denote the group of in-
vertible affine maps of R, and for p ∈ T3, let A(p) ⊂ Aff(R) be the subgroup of
affine maps ψ : R → R such that ψ∗ν̂

c
p ∝ ν̂cp.

We claim that A(p) is a closed subgroup of Aff(R). Let ψn ∈ A(p) converge
to ψ ∈ Aff(R). Since each element of Aff(R) is a homeomorphism of the real
line and since the convergence in Aff(R) implies converge in the compact-open
topology we have, for each continuous function with compact support ϕ : R → R
that ∫

ϕ ◦ ψn dν̂cp →
∫
ϕ ◦ ψ dν̂cp.

This implies that (ψn)∗ν̂
c
p → ψ∗ν̂

c
p. On the other hand, for each n we have

(ψn)∗ν̂
c
p = cnν̂

c
p, (42)

for some constant cn, which can therefore be obtained by

cn =
ν̂cp(ψ−1

n (K))
ν̂cp(K) ,

for any measurable set K ⊂ R with finite positive measure with respect to both
ν̂cp and (ψn)∗ν̂

c
p. Now, as all the measures are locally finite we can require further

that such compact set K is also a continuity set (of finite measure) for ψ∗ν̂
c
p.

In particular, since (ψn)∗ν̂
c
p(K) → ψ∗ν̂

c
p(K), we deduce that cn converges to

some positive real number c. We deduce from (42) and uniqueness of limits that
ψ∗ν̂

c
p = cν̂cp. This proves that ψ ∈ A(p) and establishes our claim. This implies

in particular that A(p) is a Lie group.
By Lemma 8.1, for every p ∈ G0, A(p) contains a sequence (ψj)j∈N of elements

ψj : t 7→ λjt + vj , with vj ̸= 0, limj→+∞ vj = 0, and limj→+∞ λj = λ, for some
λ ̸= 0. In particular, A(p) contains the homothety hλ : t 7→ λt, and (h−1

λ ◦ψj)j∈N
converges to the identity within A(p). Therefore, A(p) is not discrete and must
be of dimension 1 or 2. This implies that the identity component A0(p) ⊂
A(p) contains a one-parameter subgroup of Aff(R): such a group consists of
translations, or is conjugate to homothety.

We now claim that the groups A0(p) are isomorphic for a.e p ∈ T3. Indeed,
recall the linear map Λcp : R → R given by Λcp(t) = λcpt, where λcp = ∥Df(p)|Ec∥.
Then, it follows from Lemma 7.13 that ψ ∈ A0(p) if, and only if, Λcp◦ψ◦(Λcp)−1 ∈
A0(f(p)), proving our claim.

Since isomorphisms classes of closed subgroups of Aff(R) form a separable
space and since µ(G0) > 0, the claim then follows by ergodicity. In particular,
for µ-a.e. p ∈ T3, A0(p) contains a one-parameter subgroup of Aff(R).

Assume by contradiction that A0(p) were conjugate to homothety for a posi-
tive measure set of p ∈ T3. Then, by ergodicity, for µ-a.e. p ∈ T3, the action of
A0(p) on R would have a unique fixed point t(p) ∈ R. Since A0(p) contains affine
maps with arbitrarily small (and non-zero) translational part, we have t(p) ̸= 0
for a set of positive measure.

Besides that, as we observed above A0(fn(p)) = {Λcp,n ◦ ψ ◦ (Λcp,n)−1 : ψ ∈
A0(p)}, where Λcp,n(t) = λcp(n)t (recall (2)). As a consequence we deduce

|t(fn(p))| = λcp(n) · |t(p)|. (43)
Consider a positive measure compact subset K of G0 where the measurable
function p 7→ t(p) is continuous and bounded. By Poincaré recurrence for some
p ∈ K we have pnk = fnk(p) ∈ K for infinitely many iterates nk ∈ N. By
compactness, we can assume pnk → q ∈ K. However, (43) is incompatible with
the boundedness of t|K . We have thus reached a contradiction.
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Therefore, A0(p) contains the group of translations, for µ-a.e. p ∈ T3. For
t ∈ R, p ∈ T3, we let g = gt : s 7→ s+ t and c(p, t) def.= ν̂cp([−t− 1,−t+ 1]), so that

dg∗ν̂
c
p

dν̂cp
= c(p, t). (44)

Let us see some properties of the function (p, t) 7→ c(p, t). Firstly, for µ-a.e.
p ∈ T3, A0(p) contains all translations. This implies that ν̂cp has no atom, which
implies that c(p, ·) is continuous. We claim that

c(p, t) = c(pn, λcp(n)t), (45)

where pn = fn(p). To prove the claim, consider ψ = Λcp,n ◦ g ◦ (Λcp,n)−1 and
observe that ψ(s) = s+ λcp(n)t. From the definition it follows that

c(pn, λcp(n)) = ν̂cpn(ψ−1([−1, 1])) =
ν̂cpn(ψ−1([−1, 1]))
ν̂cpn([−1, 1]) .

In the last equality we have used our normalization choice ν̂cpn([−1, 1]) = 1 for
leaf-wise quotient measures. Applying now Lemma 7.12 we deduce

ν̂cpn(ψ−1([−1, 1]))
ν̂cpn([−1, 1]) =

ν̂cp((λcp(n))−1 × ψ−1([−1, 1]))
ν̂cp((λcp(n))−1 × [−1, 1])

=
ν̂cp(g−1(λcp(n))−1 × ([−1, 1])))

ν̂cp((λcp(n))−1 × [−1, 1])

=
g∗ν̂

c
p(λcp(n))−1 × ([−1, 1]))

ν̂cp((λcp(n))−1 × [−1, 1])
= c(p, t), (46)

where on the second equality we applied the definition of ψ and in the last
equality we have used the fact that the measures g∗ν̂

c
p and ν̂cp are proportional

by a factor precisely equal to c(p, t). This establishes (45).
We now give the final argument for completing the proof. For each ε > 0, let

r > 0 be chosen such that the set

Br,ε
def.=
{
p ∈ T3 : |c(q, t) − 1| < ε, ∀ |t| < r

}
satisfies µ(Br,ε) > 0. By ergodicity, µ-a.e. point p ∈ T3 visits Br,ε infinitely
many times both in future and past; but (45) implies that |c(p, t) − 1| < ε for
all t ∈ R and µ-a.e. p ∈ T3. Letting ε → 0, we conclude that c(p, t) = 1 for
all t ∈ R and µ-a.e. p ∈ T3, hence, by (44), ν̂cp is invariant under the group of
translations, for µ-a.e. p ∈ T3, hence it is proportional to Lebesgue measure. □

8.1. Drift along the center. Recall that the normal forms {Φc
x : R →

Wc(x)}x∈T3 give us parametrizations of the center manifolds whose change of
coordinates are affine maps. Using these changes of coordinates one can build
the maps ψ : R → R promised in Lemma 8.1. Indeed, we claim that it suffices
to prove the result below.

Proposition 8.2. There exist constants M > 0 and δ0 ∈ (0, 1) such that for
every ε > 0 sufficiently small one can find a compact set G = G(ε) ⊂ T3 so that
µ(G) ≥ δ0 and for every p ∈ G there exists a point q ∈ Wc

1(p), so that

M−1ε ≤ |Hc
p(q)| ≤ Mε and ν̂cq ∝ B∗ν̂

c
p, (47)

for some linear map B : R → R of the form s 7→ β · s so that M−1 < |β| < M .
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8.1.1. Proof of Lemma 8.1 assuming Proposition 8.2. We only need to show
that the set G of Proposition 8.2 satisfies the claims in Lemma 8.1 for a suitably
chosen constant M (which will be perhaps a bit larger than the one already
given by the proposition). To see this, take q ∈ Wc

1(p) for some p ∈ T3 and let
us, for the sake of this proof, denote by ξ = Hc

p,q = Hc
p ◦ Φc

q : R → R the affine
change of normal form coordinates along the center direction. Because normal
forms depends continuously with respect to the base point, we may enlarge M
if necessary so that |ξ′(0)| ∈ (M−1,M).

Now, take G the set given by Proposition 8.2 and let p ∈ G. We shall construct
the affine map ψ : R → R claimed by the lemma. For this take q ∈ Wc

1(p) given
by Proposition 8.2 and notice that, at one hand, Lemma 7.12 gives us that
ν̂cq ∝ ξ∗ν̂

c
p. On the other hand, Proposition 8.2 says that for some linear map

B : R → R with derivative β bounded in betweenM−1 andM we have ν̂cq ∝ B∗ν̂
c
p.

These two properties give us that ν̂cp ∝ ψ∗ν̂
c
p, where ψ = B−1ξ is an affine map.

The bounds we have on β and on |ξ′(0)| give

|ψ′(0)| ∈ (M−2,M2).

Moreover, by Proposition 8.2

|ψ(0)| = |B−1ξ(0)| = |B−1Hc
p(q)| ∈ (M−2ε,M2ε).

This shows that ψ satisfies all the requirements in Lemma 8.1 with M0 = M2,
thus completing the proof. □

8.1.2. The Lusin set. We now move on to the proof of Proposition 8.2, where
our key arguments are concentrated. Our approach here draws inspiration from
Eskin-Lindenstrauss’ work [14]. To offer some insight of our reasoning, recall
from Lemma 7.13 that the measures ν̂cx change linearly when we shift the base
point from x to fn(x), with the slope of this linear map being ∥Dfn(x)|Ec∥. Our
strategy involves identifying specific dynamical configurations in which points,
almost on the same center leaf, drift apart by a center distance proportional
to ε. In these configurations, their corresponding leaf-wise quotient measures
are almost proportional to each other, modulo a linear map whose slope can
be controlled using the dynamics. To pinpoint the precise set where “almost”
turns into “equality”, we take limits. To achieve this we must consider points
belonging to compact sets restricted to which the assignment x 7→ ν̂cx has good
properties.

With that goal in mind, we denote by C0
c (R) the space of continuous functions

with compact support of the real line.

Lemma 8.3. For every δ > 0 there exists a compact set A ⊂ T3 with µ(A) > 1−δ
such that for all {xn}n∈N ⊂A converging to x ∈ A the following holds∫

φdν̂cxn →
∫
φdν̂cx, for every φ ∈ C0

c (R).

Proof. Let us denote K def.= supp(φ). We first claim that, given φ ∈ C0
c (R), the

function x ∈ T3 7→
∫
φdν̂cx ∈ R is measurable. Indeed, consider the set

Λ(ε) = {x ∈ T3; Wc
ε(x) ⊂ ξc0(x)}.

Since µ(Λ(ε)) → 1 as ε → 0 it suffices to check that, for a given ε > 0, the re-
striction of the function to the corresponding set Λ(ε) is measurable (notice that
the set Λ(ε) itself is measurable). By compactness of K and uniform continuity



48 SÉBASTIEN ALVAREZ, MARTIN LEGUIL, DAVI OBATA, BRUNO SANTIAGO

of the C1-norm of our normal forms in compact sets, Lemma 2.19 ensures the
existence of an n ∈ N such that

K ⊂ ζcn(x), for every x ∈ Λ(ε). (48)

Define φ̂ : R2 → R as φ̂(t, s) = φ(s). Then, denoting α(x) = 1/νcun,x(I × [−1, 1]),
it follows from (48) that∫

φdν̂cx = α(x)
∫
φ̂ ◦ Hx(z)dµcun,x(z),

for every x ∈ Λ(ε). Since the right-hand side above depends measurably on
x ∈ Λ(ε) our claim is proved.

As a second step in our proof, we claim the existence of a countable dense sub-
set {φℓ}ℓ∈N ⊂ C0

c (R) with the following property: for a sequence {xn}n∈N ⊂T3

converging to a point x ∈ T3, if∫
φℓdν̂

c
xn →

∫
φℓdν̂

c
x,

for all ℓ ∈ N, then we can conclude that∫
φdν̂cxn →

∫
φdν̂cx,

for every φ ∈ C0
c (R).

To construct such a dense subset, start with a countable dense subset F of
C0
c (R) with the following property: if φ is in C0

c (R) and K = supp(φ), then
define K̂ = [inf K − 1, supK + 1]. For every ε > 0 small enough there exists
ψ ∈ F such that ∥φ − ψ∥∞ < ε and supp(ψ) ⊂ K̂. The existence of F follows
from standard arguments.

Now, augment F by adding, for each positive integer n, a continuous bump
function that equals 1 inside the interval [−n, n] and 0 outside (−n − 1, n + 1).
The resulting set, still denoted as F , remains countable and dense, but now
has the property that for any compact set K ⊂ R, there exists some function
ψ ∈ F such that ψ(x) ≥ 1 for every x ∈ K. To show that F meets the claim’s
requirements, consider φ in C0

c (R) and let K and K̂ be as above. Choose ψ ∈ F
such that ψ|K̂ ≥ 1. Then,

ν̂cxn(K̂) ≤
∫
ψdν̂cxn .

By assumption, the right-hand side above converges to
∫
ψdν̂cx. Thus, ν̂cxn(K̂)

is bounded by some number β(K) > 0, independent of n. Now, given ε > 0,
choose ψ̂ in the countable dense family such that

∥ψ̂ − φ∥∞ <
ε

3β(K) ,

and with supp(ψ̂) ⊂ K̂. Since ψ̂ is in F there exists n0 ∈ N such that if n ≥ n0∣∣∣∣∫ ψ̂dν̂cxn −
∫
ψ̂dν̂cx

∣∣∣∣ < ε

3 .
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Thus, if n ≥ n0 we have∣∣∣∣∫ φdν̂cxn −
∫
φdν̂cx

∣∣∣∣ ≤
∣∣∣∣∫ φdν̂cxn −

∫
ψ̂dν̂cxn

∣∣∣∣+ ∣∣∣∣∫ ψ̂dν̂cxn −
∫
ψ̂dν̂cx

∣∣∣∣
+
∣∣∣∣∫ ψ̂dν̂cx −

∫
φdν̂cx

∣∣∣∣
<
εν̂cxn(K̂)
3β(K) + ε

3 + εν̂cx(K̂)
3β(K)

≤ ε.

This proves our second claim. To conclude the proof of the lemma, take
F = {φℓ}ℓ∈N as the countable dense family of our previous claim. For each
ℓ, according to our first claim, the function gℓ : x ∈ T3 7→

∫
φℓdν̂

c
x is measur-

able. By Lusin’s theorem there exists a compact set Aℓ ⊂ T3 with measure
µ(Aℓ) > 1 − δ/2ℓ+1 and such that gℓ|Aℓ is continuous. Define the compact set
A =

⋂∞
ℓ=0Aℓ. Then, µ(A) > 1 − δ and if a sequence {xn}n∈N ⊂ A converges to

x, we have gℓ(xn) → gℓ(x) for every ℓ, and the lemma follows from the above
claims. □

Let us take L ⊂ T3 a compact set with large measure (we shall give precise
estimates below) such that the conclusion of Lemma 8.3 holds for A = L. We
shall require further the following properties:

(1) For σ = s, c, u, cu given ξσ, a measurable partition subordinate to Wσ,
there exists r0 > 0 so that for every x ∈ L,

Wσ
r0(x) ⊂ ξσ(x).

(2) For every x ∈ L, ξu(x) is an interval whose size ru(x) varies continuously
with x ∈ L (see Remark 2.15).

The continuity of the function L ∋ x 7→ ν̂cx together with Remark 7.11 imply
the following.

Corollary 8.4. For each M > 1 there exists c = c(M) > 0 such that if B : R →
R is a linear map with derivative in [M−1,M ] then ν̂cx(B−1[−1, 1]) ∈ [c−1, c] for
each x ∈ L.

Proof. Assume by contradiction that a lower bound does not hold. Denote J0 =
[−M−1,M−1]. Then, for each n there must exist xn ⊂ L such that ν̂cxn(J0) ≤ 1/n.
We can assume, by compactness of L, that xn → x ∈ L. Since y ∈ L 7→ ν̂cy is
continuous, we have that

ν̂cx(J0) ≤ lim inf
n→∞

ν̂cxn(J0) = 0,

which violates Remark 7.11. By a similar reasoning, considering J1 = [−M,M ]
and assuming that the upper bound does not hold we would obtain a point x ∈ L
for which ν̂cx(J1) = ∞, which is also impossible by local finiteness. □

8.1.3. The main proposition. Let us fix two numbers δ and δ0 such that

0 < δ0 <
1
10 , and δ = 3δ0.

We will require µ(L) > 1 − δ0. The constant δ0 is the constant appearing in
Lemma 8.1 and Proposition 8.2. Further assumption will be given on δ and δ0
in Section 11, and more precisely in §11.3.6.
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Given M, ε > 0 set

G(ε,M) def.=

p ∈ T3 :

∃ q ∈ Wc
1(p), ∃B(s) = β · s linear map such that

ν̂cq ∝ B∗ν̂
c
p

M−1ε ≤ |Hc
p(q)| ≤ Mε

M−1 ≤ |β| ≤ M

 .
(49)

Notice that G(ε,M) is nothing but the set of points p ∈ T3 for which the conclu-
sion of Proposition 8.2 holds with constants ε,M . Recall that in order to prove
Proposition 8.2, and thus Lemma 8.1, we must show that µ(G(ε,M)) ≥ δ0.

Given this choice of parameters, Proposition 8.2 follows from the statement
below.

Proposition 8.5. There exists M > 0 such that for ε > 0 small enough and
every compact set K00 with µ(K00) > 1 − 2δ0,

K00 ∩ L ∩G(ε,M) ̸= ∅.

Proof that Proposition 8.5 =⇒ Proposition 8.2. Let M > 0 be the constant
given in the statement above. Assume by contradiction that Proposition 8.2
does not hold with the constants M and δ0. Then, for some small ε > 0 we must
have µ(G(ε,M)) < δ0. By regularity of µ there exists an open neighbourhood
U of G(ε,M) such that µ(U) < δ0. Let K00

def.= T3 \ U . This set is compact
and satisfies µ(K00) ≥ 1 − δ0 > 1 − 2δ0. Proposition 8.5 then implies that
K00 ∩G(ε,M) ̸= ∅, which is absurd. □

In order to start the proof of Proposition 8.5, fix ε > 0 (independently of δ:
notice that while δ is fixed we need to take ε → 0). More assumptions on ε will
be given later on. This is the expected size of the drift we want to see along the
center direction. Given a compact set K00 whose measure is larger than 1 − 2δ0,
notice that the compact set

K0
def.= K00 ∩ L.

has measure µ(K0) > 1 − 3δ0 = 1 − δ. We shall prove that K0 ∩ G(ε,M) ̸= ∅.
This will occupy the rest of the paper.

9. Stopping times, Y -configurations, quadrilaterals and
synchronization

The goal of this section is to introduce the key dynamical ingredients involved
in the proof of Proposition 8.5, which is the main part of our implementation of
an exponential drift argument. We also use this section to derive some estimates
relating these ingredients.

9.1. Stopping times. We introduce below the stopping time functions. They
are devised to measure the appropriate time length of the top part of Figure 5
so that we get the precise drift we want along the center direction.

9.1.1. Definition of stopping times. Recall our concise notations for derivatives

λ⋆x(n) = ∥Dfn(x)|E⋆∥ ⋆ = c, s, u,

and

dℓx =
λcx−ℓ

(ℓ)
λux−ℓ

(ℓ)
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introduced in (2) of §2.1.2 and (4) of §2.1.3, respectively, where xn = fn(x) is
our concise notation for orbit points introduced in (1) of §2.1.2. Given x ∈ T3,
xu ∈ Wu(x), ε > 0, and ℓ ∈ N, we define

τ(ℓ) = τ(x, xu, ε, ℓ) def.= inf
{
n ∈ N : dℓx × λcxu(n) ≥ ε

}
.

We also define

t(ℓ) = t(x, xu, ε, ℓ) def.= inf
{
n ∈ N : λcx(n)

λcxu(τ(ℓ)) ≥ 1
}
.

These functions are called the stopping times.

9.1.2. Quasi-isometric estimates. In the following, we fix ε > 0. Recall that for
x ∈ T3, xu ∈ Wu(x), we abbreviate τ(ℓ) = τ(x, xu, ε, ℓ) and t(ℓ) = t(x, xu, ε, ℓ).

Lemma 9.1 (Quasi-isometric estimates). There exists Θ = Θ(f) > 1 and A =
A(f) > 0 so that given ℓ,m ∈ N, x ∈ T3 and xu ∈ Wu(x) the following holds

(1) Θ−1m−A < τ(ℓ+m) − τ(ℓ) < Θm+A and
(2) Θ−1m−A < t(ℓ+m) − t(ℓ) < Θm+A.

Proof. In this proof we shall make use of the constants of hyperbolicity of f
introduced in §2.1.3. With these constants at hand, we can now develop the
argument for the quasi-isometric estimates. For this, fix x ∈ T3 and xu ∈ Wu(x).
Given some ε > 0, let us consider τ(ℓ) = τ(x, xu, ε, ℓ) and t(ℓ) = t(x, xu, ε, ℓ).
From the definition of τ , we have that

dℓxλ
c
xu (τ(ℓ)) ≥ ε and dℓxλ

c
xu (τ(ℓ) − 1) < ε, for each ℓ ∈ N.

Thus,
ε ≤ dℓxλ

c
xu (τ(ℓ)) < eχ

c
1ε, for each ℓ ∈ N. (50)

Fix ℓ,m ∈ N. On the one hand, by the cocycle property (3) we have that
dℓ+mx = dℓxd

m
xℓ

and therefore we can use (50) to obtain

εemχ
d
1 < dℓ+mx λcxu (τ(ℓ)) < εeχ

c
1+mχd2 .

On the other hand, we can use the cocycle property once more to write
λc
fτ(ℓ)(xu) (τ(ℓ+m) − τ(ℓ)) = λc

xu
(τ(ℓ+m))

λc
xu

(τ(ℓ)) and thus obtain

eχ
c
2(τ(ℓ+m)−τ(ℓ)) <

λcxu (τ(ℓ+m))
λcxu (τ(ℓ)) < eχ

c
1(τ(ℓ+m)−τ(ℓ)).

Therefore, since dℓ+mx λcxu (τ(ℓ+m)) = dℓ+mx λcxu (τ(ℓ)) λ
c
xu

(τ(ℓ+m))
λc
xu

(τ(ℓ)) we can com-
bine the two above inequalities and obtain

εemχ
d
1+χc2(τ(ℓ+m)−τ(ℓ)) < dℓ+mx λcxu (τ(ℓ+m)) < εeχ

c
1+mχd2+χc1(τ(ℓ+m)−τ(ℓ)).

Putting ℓ+m instead of ℓ in (50) and combining with this we get the inequalities

εeχ
c
1+mχd2+χc1(τ(ℓ+m)−τ(ℓ)) > ε and εe−χc1+mχd1+χc2(τ(ℓ+m)−τ(ℓ)) < ε.

Dividing by ε and taking logarithms we deduce that

m

[
−χd2
χc1

]
− 1 < τ(m+ ℓ) − τ(ℓ) < m

[
−χd1
χc2

]
+ χc1
χc2
. (51)

Let us deal with the function ℓ 7→ t(ℓ). From its very definition we have an
inequality analogous to (50):

1 ≤ λcx (t(ℓ))
λcxu (τ(ℓ)) < eχ

c
1 , for every x ∈ T3, ℓ ∈ N. (52)
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To simplify the remainder of the exposition, we shall denote τℓ,m
def.= τ(ℓ+m) −

τ(ℓ) and tℓ,m = t(ℓ+m) − t(ℓ). Notice that

eχ
c
2tℓ,m−χc1τℓ,m <

λc
f t(ℓ)(x) (t(ℓ+m) − t(ℓ))

λc
fτ(ℓ)(xu) (τ(ℓ+m) − τ(ℓ)) < eχ

c
1tℓ,m−χc2τℓ,m .

Combining this with (52), we can use the decomposition

λcx (t(ℓ+m))
λcxu (τ(ℓ+m)) =

λcx (t(ℓ))λc
f t(ℓ)(x) (t(ℓ+m) − t(ℓ))

λcxu (τ(ℓ))λc
fτ(ℓ)(xu) (τ(ℓ+m) − τ(ℓ))

and conclude that

eχ
c
2tℓ,m−χc1τℓ,m <

λcx (t(ℓ+m))
λcxu (τ(ℓ+m)) < eχ

c
1tℓ,m−χc2τℓ,m+χc1 .

Now, using (52) with ℓ+m instead of ℓ, the above inequality implies that

eχ
c
2tℓ,m−χc1τℓ,m < eχ

c
1 and 1 < eχ

c
1tℓ,m−χc2τℓ,m+χc1 ,

and thus
eχ

c
2tℓ,m−χc1τℓ,m−χc1 < 1 < eχ

c
1tℓ,m−χc2τℓ,m+χc1 .

Taking logarithms leads us to[
χc2
χc1

]
τℓ,m − 1 < tℓ,m <

[
χc1
χc2

]
τℓ,m + χc1

χc2
,

which combined with (51) ends the proof. □

9.2. Y -configurations. We introduce below a dynamical ingredient inspired by
[14, 15]. They allow us to “decompose” Figure 5 in the “x-side” and in the “y-
side”. Notice that each side has a kind of Y -shape. The idea from [14] for getting
the points inside the Lusin set is to try to prove the existence of a large amount
of these Y -shaped dynamical configurations and then try to find some of them
which are linked through stable manifolds, as it appears in Figure 5. These
measure theoretical arguments will be developed in Section 11. In this section,
we introduce these configurations and establish synchronization and (center)
drift estimates for them.

9.2.1. Definition. Given ε > 0 and ℓ ∈ N, a Y -configuration Y = Y (x, xu, ℓ) is
a quintuple of points (x, xu, x−ℓ, x

u
τ , xt), that depends on parameters x, xu ∈ T3

and ℓ (the dependence on ε is implicit throughout the text), and such that
(1) xu ∈ Wu(x);
(2) x−ℓ = f−ℓ(x);
(3) xuτ = f τ (xu), where τ = τ(x, xu, ε, ℓ);
(4) xt = f t(xu), where t = t(x, xu, ε, ℓ).

where τ(x, xu, ε, ℓ) and t(x, xu, ε, ℓ) are the stopping times defined above.
We call ℓ the length of the Y -configuration. Moreover, given a set Λ ⊂ T3, we

say that a Y -configuration (x, xu, x−ℓ, x
u
τ , xt) is Λ-good if x, xu, xuτ , xt ∈ Λ.

In [14], the authors defined a notion of pairs of coupled Y -configurations.
For technical reasons we shall replace this notion by that of pairs of matched
Y -configurations that will appear in the next section.
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Time

0

−ℓ

τ(ℓ)
t(ℓ)

Wu(x)

τ(ℓ) = τ(x, xu, ε, ℓ)
t(ℓ) = t(x, xu, ε, ℓ)

ℓ

xu

x−ℓ

x

f t(ℓ)(x)
fτ(ℓ)(xu)

Figure 10. A Y -configuration.

9.3. Quadrilaterals and synchronization. Another important aspect of Fig-
ure 5 is located at its middle, where we have a kind of a quadrilateral, twisted
along the unstable direction. This, indeed, is the third dynamical ingredient
in our implementation of an exponential drift argument. It will allow us to
use the angle condition and to define the aforementioned notion of matching of
Y -configurations.

9.3.1. Quadrilaterals. A quadrilateral is a quadruple (x, xu, y, yu) ∈ (T3)4 such
that

(1) y ∈ Ws(x);
(2) xu ∈ Wu(x) belongs to the domain of a center-holonomy map Hcs

x,y;
(3) yu = Hcs

x,y(xu) ∈ Wu(y) ∩ Wcs(xu).

For such a quadrilateral, we define the point zu def.= Hs
x,y(xu), so that zu ∈

Ws(xu) ∩ Wc(yu). Moreover, given C > 1, ℓ ∈ N, we say that (x, xu, y, yu) is a
(C, ℓ)-quadrilateral if, besides,

(4) C−1 < d(x−ℓ, y−ℓ) < 1,
(5) C−1 < αs(x−ℓ, y−ℓ) < C and
(6) C−1 < d(x, xu) < C,

where, as before, x−ℓ = f−ℓ(x), y−ℓ = f−ℓ(y).

9.3.2. Drift estimates. In Figure 5 we claim that the displacement along the
center at the left top of the configuration is proportional to the parameter ε. We
shall now make this assertion precise in terms of normal form coordinates. We
first introduce a useful notation that will be used throughout the text, and in
particular in the next proof.

Given a set of real parameters c1, . . . , cn and two quantities a and b (that may
or may not depend on other variables) we denote a ≍c1,...,cn b if there exists a
real valued function ρ = ρ(c1, . . . , cn) ≥ 1 such that

ρ−1a ≤ b ≤ ρa.
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Ws
loc(x−ℓ)

Wu
loc(x−ℓ) Hs

x−ℓ,y−ℓ
(Wu

loc(x−ℓ))

zu
−ℓ

Wu
loc(y−ℓ)

yu−ℓ

γu

f ℓ

αs(x−ℓ, y−ℓ)

f ℓ

x−ℓ y−ℓ

xu

xu
−ℓ

y
x

zu

yu

Figure 11. A quadrilateral and its pre-image by f ℓ.

Lemma 9.2. Fix ε > 0. Given C > 1 and T > 0, there exists a constant
κ = κ(C, T ) > 1 such that for every ℓ ∈ N large enough, every (C, ℓ)-quadrilateral
(x, xu, y, yu), and every τ ≥ 0 such that |τ − τ(y, yu, ε, ℓ)| ≤ T we have

ε

κ
<
∣∣∣Hc

fτ (zu)(f
τ (yu))

∣∣∣ < κε. (53)

Proof. Let γu = [x, xu] ⊂ Wu(x) be the segment of strong unstable manifold
connecting the points x and xu. See Figure 11. Then, f−ℓ ◦ Hs

x,y(γu) is a
C1 curve joining y−ℓ and zu−ℓ.2 Since, f−ℓ ◦ Hs

x,y(γu) = Hs
x−ℓ,y−ℓ

◦ f−ℓ(γu)
the assumption C−1 < αs(x−ℓ, y−ℓ) < C implies that the vector tangent to
the curve f−ℓ ◦ Hs

x,y(γu) at y−ℓ and the strong unstable direction Eu(y−ℓ) are
transverse with an angle between C−1 and C. Recall that Hy−ℓ : Wcu(y−ℓ) → R2

sends Wu(y−ℓ) onto the horizontal axis (see Theorem 6.3). As the length of
f−ℓ ◦ Hs

x,y(γu) is exponentially small with ℓ and the bundle Eu is continuous,
a standard compactness argument then ensures that for some constant c1 =
c1(C) > 0 and for ℓ large enough, the curve Hy−ℓ ◦ f−ℓ ◦ Hs

x,y(γu) on R2 is
contained in the cone

C1 =
{

(v1, v2) ∈ R2 : c−1
1 |v1| ≤ |v2| ≤ c1|v1|

}
.

Now, observe that Hy ◦ Hs
x,y(γu) = Hy ◦ f ℓ ◦ Φy−ℓ ◦ Hy−ℓ ◦ f−ℓ ◦ Hs

x,y(γu) and
that Hy ◦ f ℓ ◦ Φy−ℓ is the linear map (t, s) ∈ R2 7→ (λuy−ℓ

(ℓ)t, λcy−ℓ
(ℓ)s). These

two observations put together imply that the curve Hy ◦ Hs
x,y(γu) is contained

in the cone

C2 =
{

(v1, v2) ∈ R2 : c−1
1
λcy−ℓ

(ℓ)
λuy−ℓ

(ℓ) |v1| ≤ |v2| ≤ c1
λcy−ℓ

(ℓ)
λuy−ℓ

(ℓ) |v1|
}
.

Now let γc denote the piece of center manifold connecting zu to yu. Then
Hy ◦γc connects the point Hy(zu), whose distance to the origin only depends on
the constant C and is bounded from above and below, to the point Hy(yu), which
lies on the horizontal axis. Since Hy(zu) ∈ C2, we deduce that (see Figure 12)

length(Hy ◦ γc) ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) .

Since C−1 < du(x, xu) < C and we have C1 holonomies, we also have that
C−1 < d(zu, y) < C (upon enlarging the constant C if necessary in order to take
into account the action of holonomy maps). Recall that normal forms change

2Recall our notation convention for orbit points: pn = fn(p) for n ∈ Z.



RIGIDITY OF U-GIBBS NEAR CONSERVATIVE ANOSOV DIFFEOMORPHISMS 55

Hy−ℓ
(y−ℓ)Hy−ℓ

(yu
−ℓ)

Hy−ℓ
(zu

−ℓ)

Hy(y)Hy(yu)

Hy(zu)

Hy ◦ f ℓ ◦ Φy−ℓ

Figure 12. On normal form coordinates the dynamics on Wcu

acts as a diagonal matrix, with stronger expansion on the hori-
zontal.

continuously in the C1 topology, so another compactness argument ensures that
the C1 norm of Hzu ◦ Φy|W cu

2C(y) is bounded by some constant depending on C.
Thus

length(Hzu ◦ γc) ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) .

On the other hand, by the construction of normal forms, Hzu ◦ γc ⊂ R2 is a
vertical segment with length |Hc

zu(yu)|. This proves that

|Hc
zu(yu)| ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) .

As we did before it is possible to bound uniformly from above the C1-norms of
all Hc

∗ in restriction to center segments of uniform radius so (upon enlarging ℓ if
necessary) we also have

dc(yu, zu) ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) , and

∣∣∣Hc
yu(zu)

∣∣∣ ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) .

Since the dynamics on normal forms acts linearly, this implies∣∣∣Hc
fτ(ℓ)(yu)(f

τ(ℓ)(zu))
∣∣∣ ≍C

λcy−ℓ
(ℓ)

λuy−ℓ
(ℓ) × λcyu(τ(ℓ))

where τ(ℓ) = τ(y, yu, ε, ℓ) is the stopping time. By definition this implies that∣∣∣Hc
fτ(ℓ)(yu)(f

τ(ℓ)(zu))
∣∣∣ ≍C ε. (54)

Since |τ − τ(ℓ)| ≤ T we obtain∣∣∣Hc
fτ (yu)(f

τ (zu))
∣∣∣ ≍C,T ε. □

Corollary 9.3. There exists a constant κ = κ(C, T ) such that for every τ sat-
isfying |τ − τ(y, yu, ε, ℓ)| ≤ T it holds

dc(f τ (yu), f τ (zu)) ≤ κε.

Proof. This follows from the proof of Lemma 9.2 and the fact that normal forms
{Hc

x}x∈T3 are C1 maps with continuously varying C1 norm on compact sets. □
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9.3.3. Synchronization estimates. The last set of estimates we need concerns the
oscillation of the stopping times from one side to the other when we have a
(C, ℓ)-quadrilateral.

Lemma 9.4 (Synchronization for quadrilaterals). For any C > 1, there exists
a constant T0 > 0 depending only on f, C such that for any ℓ ∈ N, and any
(C, ℓ)-quadrilateral (x, xu, y, yu), it holds

|τ(y, yu, ε, ℓ) − τ(x, xu, ε, ℓ)| < T0, |t(y, yu, ε, ℓ) − t(x, xu, ε, ℓ)| < T0.

Proof. Recall the constants χc2, χc1 > 0 introduced in §2.1.3. They satisfy ekχc2 ≤
λcx(k) ≤ ekχ

c
1 for every k ∈ N and every x ∈ T3 where λcx(k) = ∥Dfk(x)|Ec∥ is

our concise notation for derivatives from (2). For the sake of simplicity, denote
τ(ℓ) = τ(x, xu, ε, ℓ) and τ ′(ℓ) = τ(y, yu, ℓ, ε). Assume that τ(ℓ) ≥ τ ′(ℓ). By
definition

dℓyλ
c
yu(τ ′(ℓ)) ≥ ε. (55)

Let us write for k ∈ N
dℓxλ

c
xu(τ ′(ℓ) + k)

dℓyλ
c
yu(τ ′(ℓ)) = dℓx

dℓy
× λcxu(τ ′(ℓ))
λcyu(τ ′(ℓ)) × λcxu

τ ′(ℓ)
(k). (56)

We now bound from below each factor appearing in (56). We treat the third
factor by observing that λcxu

τ ′(ℓ)
(k) ≥ ekχ

c
2 . To treat the first factor, we use that

y−ℓ ∈ Ws
1(x−ℓ) so the distortion control given by Corollary 2.10 gives dℓy

dℓx
≥ C−1

0
Finally, in order to treat the second factor, we notice that Corollary 9.3 provides
that

dc(f j(zu), f j(yu)) ≤ Cε,

for some constant C = C(f) > 0 and for every j = 0, . . . , τ ′(ℓ). With no loss
of generality we can assume that Cε < 1. Applying the distortion control of
Corollary 2.11 we obtain λc

xu
(τ ′(ℓ))

λc
yu

(τ ′(ℓ)) ≥ C−1
0 . These lower bounds together with

(56) provide the following estimate

dℓxλ
c
xu(τ ′(ℓ) + k) ≥ ekχ

c
2

C2
0
ε ≥ ε

as soon as we choose k = k(f) such that
ekχ

c
2 ≥ C2

0 . (57)
Hence by definition of the stopping time, we obtain τ ′(ℓ) + k ≥ τ(ℓ) so τ(ℓ) −

τ ′(ℓ) ≤ k. A symmetric argument shows that τ ′(ℓ) − τ(ℓ) ≤ k if τ ′(ℓ) ≥ τ(ℓ).
We consider now the stopping time t. As above, we denote t(ℓ) = t(x, xu, ε, ℓ)

and t′(ℓ) = t′(y, yu, ε, ℓ). By definition

λcy(t′(ℓ))
λcyu(τ ′(ℓ)) ≥ 1. (58)

Let us write for k′ ∈ N:
λcx(t′(ℓ) + k′)
λcxu(τ(ℓ))

λcyu(τ ′(ℓ))
λcy(t′(ℓ)

=
λcyu(τ ′(ℓ))
λcxu(τ ′(ℓ)) × λcx(t′(ℓ)

λcy(t′(ℓ)

× λcxt′(ℓ)
(k′) × 1

λcxu
τ ′(ℓ)

(τ(ℓ) − τ ′(ℓ)) .

We now bound from below each factor of the product above. We have already
seen how to treat the first factor λc

xu
(τ ′(ℓ))

λc
yu

(τ ′(ℓ)) ≥ C−1
0 . To treat the second factor,
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we use that y ∈ Ws
1(x) and apply Corollary 2.11 to get λcx(t′(ℓ))

λcy(t′(ℓ)) ≥ C−1
0 . We treat

the third factor by observing that λcxt′(ℓ)
(k′) ≥ ek

′χc2 . Note that |τ(ℓ) − τ ′(ℓ)| ≤ k

so the last bound follows from 1
λc
xu
τ ′(ℓ)

(τ(ℓ)−τ ′(ℓ)) ≥ e−kχc1 . Finally we find

λcx(t′(ℓ) + k′)
λcxu(τ(ℓ)) ≥ ek

′χc2

C2
0e
kχc1

×
λcy(t′(ℓ)
λcyu(τ ′(ℓ)) ≥ 1, (59)

as soon as we choose k′ = k′(f) such that

ek
′χc2 ≥ C2

0e
kχc1 . (60)

Hence by definition we must have t(ℓ) ≤ t′(ℓ) + k′ so t(ℓ) − t′(ℓ) ≤ k′. Here
again a symmetric argument yields t′(ℓ) − t(ℓ) ≤ k′. Hence

T0 = max(k, k′), (61)

is the desired constant. This ends the proof. □

10. Matching of Y -configurations

In this section we develop a concept devised specifically to address the tech-
nical difficulty to implement the exponential drift idea we want to employ, a
difficulty which was described at the end of Section 3. Namely, due to lack of
absolute continuity of center stable holonomies we cannot ensure that the points
xu and yu of Figure 5 belong both to the Lusin set. What we can actually prove
is that small perturbations of these two points can indeed be put inside the Lusin
set. This will lead us to the notion of matched configurations.

10.1. Matching of dynamical balls. We start the formal definition of match-
ing in our scenario by introducing intervals along the unstable manifold which
measure the amount of perturbation of the points f τ(ℓ)(xu) and f τ(ℓ)(yu) which
are allowed, without breaking the estimates we performed for quadrilaterals in
the previous section.

10.1.1. Unstable dynamical balls. Although the notion of dynamical balls is quite
standard in ergodic theory, we use this name in this paper for a more specific
object, adapted to our needs.

Definition 10.1. Let ε > 0, ℓ ∈ N, x ∈ T3 and xu ∈ Wu(x). Let τ(ℓ) =
τ(x, xu, ε, ℓ). The (ε, ℓ)-unstable dynamical ball at xu is defined as

J(xu) = J(xu, ε, ℓ) def.= f−τ(ℓ)
(
Wu

1 (f τ(ℓ)(xu))
)
.

Remark 10.2. By definition, for every a ∈ J(xu) and j ∈ {0, . . . , τ(x, xu, ε, ℓ)}

du(f j(xu), f j(a)) < 1.

10.1.2. Synchronization inside a dynamical ball. Before we define the notion of
matching of Y -configuration it is useful to study the oscillation of stopping times
inside an unstable dynamical ball.

Let T0 > 0 be the constant obtained in Lemma 9.4.

Lemma 10.3. For every a ∈ J(xu) it holds |τ(x, a, ε, ℓ)−τ(x, xu, ε, ℓ)| < T0 and
|t(x, a, ε, ℓ) − t(x, xu, ε, ℓ)| < T0.



58 SÉBASTIEN ALVAREZ, MARTIN LEGUIL, DAVI OBATA, BRUNO SANTIAGO

Proof. The proof is almost identical to that of Lemma 9.4. In particular con-
stants 0 < χc2 < χc1 are those defined in §2.1.3 and k and k′, those defined by (57)
and (60). Let us denote τa(l)

def.= τ(x, a, ε, ℓ). Suppose first that τa(ℓ) ≥ τ(ℓ).

dℓxλ
c
a(τ(ℓ) + k)

dℓxλ
c
xu(τ(ℓ)) = λca(τ(ℓ))

λcxu(τ(ℓ)) × λcaτ(ℓ)
(k). (62)

We have λcaτ(ℓ)
(k) ≥ ekχ

c
2 . Finally we have by definition f τ(ℓ)(a) ∈

Wu
1 (f τ(ℓ)(xu)) so by the distortion control (7) we have λca(τ(ℓ))

λc
xu

(τ(ℓ)) ≥ C−1
0 and,

by choice of k,

dℓxλ
c
a(τ(ℓ) + k) ≥ ekχ

c
2

C0
dℓxλ

c
xu(τ(ℓ)) ≥ ε.

Hence τa(ℓ) − τ(ℓ) ≤ k. A symmetric argument yields τ(ℓ) − τa(ℓ) ≤ k.

We consider now the stopping time t. As above, we denote ta(ℓ)
def.= τ(x, a, ε, ℓ)

and t(ℓ) = t(x, a, ε, ℓ). Let us first suppose ta(ℓ) ≥ t(ℓ). We have
λcx(t(ℓ) + k′)
λca(τa(ℓ))

× λcxu(τ(ℓ))
λcx(t(ℓ)) = λcxu(τ(ℓ))

λca(τ(ℓ)) × λcxt′(ℓ)
(k′)

× 1
λcxu

τ(ℓ)
(τ(ℓ) − τ ′(ℓ)) .

The first factor is ≥ C−1
0 . The second one is ≥ ek

′χc2 . The third one is ≥ e−kχc1 .
Hence by our choice of k′,

λcx(t(ℓ) + k′)
λca(τa(ℓ))

≥ ek
′χc2

C0e
kχc1

× λcxu(τ(ℓ))
λcx(t(ℓ)) ≥ 1.

This proves that ta(ℓ) − t(ℓ) ≤ k′. Again, a symmetric argument gives ta(ℓ) −
t(ℓ) ≤ k′ if t(ℓ) ≥ ta(ℓ). This ends the proof of the lemma since T0 = max(k, k′).

□

10.1.3. Matching of dynamical balls and distortion control. We first define the
notion of matched unstable dynamical balls and study their geometric properties.

Definition 10.4 (Matched unstable dynamical balls). When (x, xu, y, yu) is a
(C, ℓ)-quadrilateral, then we say that J(xu) = J(xu, ε, ℓ) and J(yu) = J(yu, ε, ℓ)
are (C, ℓ)-matched.

We will need the following distortion control for matched unstable dynamical
balls.

Proposition 10.5. For ε small enough, there exists κ1 = κ1(f, ε) such that if
ℓ is sufficiently large, for every (C, ℓ)-matched dynamical balls J(xu) and J(yu),
and every a ∈ J(xu), b ∈ J(yu), we have

κ−1
1 ≤ λ∗

b(j)
λ∗
a(j)

≤ κ1,

for every integer 0 ≤ j ≤ max(τ(x, xu, ε, ℓ), τ(y, yu, ε, ℓ)) and ∗ = c, u.

Proof. Let us assume that τ(ℓ) ≤ τ ′(ℓ), where τ(ℓ) = τ(x, xu, ε, ℓ) and τ ′(ℓ) =
τ(y, yu, ε, ℓ). Let us first notice that by Lemma 9.4, we have τ ′ ≤ τ + T0.

Let j ≤ τ(ℓ) so in particular
|f j(J(xu))|, |f j(J(yu))| < 1.

Let zu = Hs
x,y(xu) so d(xu, zu) < 1, for ℓ large enough, and, by Corollary 9.3,

d(f j(yu), f j(zu)) ≤ d(f τ ′(yu), f τ ′(zu)) ≍C,T0 ε < 1.
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Let ϕ∗
def.= log ∥Df |E∗∥ and c∗, θ∗ be the Hölder constant and exponent of ϕ∗,

for ∗ = c, u. We have∣∣∣∣log λ
∗
b(j)
λ∗
a(j)

∣∣∣∣ ≤
j−1∑
i=0

|ϕ∗(f i(a)) − ϕ∗(f i(b))|.

Hence,
|ϕ∗(f i(a)) − ϕ∗(f i(b))| ≤ |ϕ∗(f i(a)) − ϕ∗(f i(xu))| + |ϕ∗(f i(xu)) − ϕ∗(f i(zu))|

+ |ϕ∗(f i(zu)) − ϕ∗(f i(yu))| + |ϕ∗(f i(yu)) − ϕ∗(f i(b))|,

Note that for i < j, d(f i(a), f i(xu)), d(f i(b), f i(yu)) ≤ eχ
u
1 (i−j). On the other

hand, we have d(f i(xu), f i(zu)) ≤ eiχ
s
2 . Finally d(f i(zu), f i(yu)) ≤ eχ

c
1(i−j). It

follows that
|ϕ∗(f i(a)) − ϕ∗(f i(b))| ≤ c∗

(
2eθ∗χu1 (i−j) + eiθ∗χs2 + eθ∗χc1(i−j)

)
.

By summing over i we deduced that
∣∣ log λ∗

b (j)
λ∗
a(j)

∣∣ is uniformly bounded from
above by a constant depending only on f and ρ. Of course we can now bound
these quotients for j up to τ ′(ℓ) by using that

d−T0
0

λ∗
b(j)
λ∗
a(j)

≤ λ∗
b(j + T0)
λ∗
a(j + T0) ≤ dT0

0
λ∗
b(j)
λ∗
a(j)

,

where d0 = ∥Df∥/m(Df) (recall §2.1.2). □

Corollary 10.6. There exists κ2 = κ2(f, ε) such that if ℓ is sufficiently large,
for every (C, ℓ) matched dynamical balls J(xu) and J(yu),

κ−1
2 ≤ |f j(J(yu))|

|f j(J(xu))| ≤ κ2,

for every integer 0 ≤ j ≤ max(τ(x, xu, ε, ℓ), τ(y, yu, ε, ℓ)).

Proof. As before we denote τ(ℓ) = τ(x, xu, ε, ℓ) and τ ′(ℓ) = τ(y, yu, ε, ℓ). Sup-
pose τ(ℓ) ≤ τ ′(ℓ) ≤ τ(ℓ) + T0 (where T0 is defined by Lemma 9.4). In particular
m(Df)T0 ≤ |f τ(ℓ)(J(yu))| ≤ 1 and |f τ(ℓ)(J(xu))| = 1.

For j ∈ {0, . . . , τ(ℓ)}, we notice that

|f j(J(xu))|
|f j(J(yu))| =

∫
fτ(ℓ)(J(xu)) λ

u
q (k)dq∫

fτ(ℓ)(J(yu)) λ
u
q (k)dq ,

where k = j − τ(ℓ) ≤ 0. By the bounded distortion along the strong unstable
manifolds (7) we find

C−2
0
λu
fτ(ℓ)(xu)(k)
λu
fτ(ℓ)(yu)(k)

|f τ(ℓ)(J(xu))|
|f τ(ℓ)(J(yu))|

≤ |f j(J(xu))|
|f j(J(yu))|

≤ C2
0
λu
fτ(ℓ)(xu)(k)
λu
fτ(ℓ)(yu)(k) × |f τ(ℓ)(J(xu))|

|f τ(ℓ)(J(yu))|
.

Notice that
λufτ(ℓ)(xu)(k) = λuxu(−k)

λuxu(τ(ℓ)) ,

and a similar equation holds with yu instead of xu. Therefore, we can apply
Proposition 10.5 to obtain

C−2
0 κ−2

1 ≤ |f j(J(xu))|
|f j(J(yu))| ≤ C2

0∥Df∥T0(κ1)2.
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We conclude the proof of the corollary by noting that

m(Df)2T0 |f j(J(xu))|
|f j(J(yu))| ≤ |f j+T0(J(xu))|

|f j+T0(J(yu))| ≤ ∥Df∥2T0 |f j(J(xu))|
|f j(J(yu))| . □

10.2. Matching of Y -configurations. We now define the notion of matched
Y -configurations and show that our drift argument (Proposition 8.5) boils down
to constructing arbitrarily long pairs of matched Y -configurations.

10.2.1. Matching. We first give the main definition.
Definition 10.7 (Matched Y -configurations). Let L ⊂T3, C > 0, ℓ ∈ N. Let
X = X(x, xu, ℓ) and Y = Y (y, yu, ℓ) be two Y configurations of length ℓ. We say
that X and Y are (L, C, T )-matched if there exist a, b ∈ T3, and τ, t ∈ N such
that

(1) (x, xu, y, yu) is a (C, ℓ)-quadrilateral;
(2) a ∈ J(xu, ε, ℓ) and b ∈ J(yu, ε, ℓ);
(3) |τ − τ(x, xu, ε, ℓ)| ≤ T and |t− t(x, xu, ε, ℓ)| ≤ T ;
(4) a, b, x, y, f τ (a), f τ (b), f t(x), f t(y) ∈ L.

Wu
1 (y)

Wu
1 (x)

J(yu)

•b

J(xu)

s

•
xu

•
zu

•yu

•a

s•
x

•
y

Wc(yu)

Figure 13. For matched Y -configurations we can only put in-
side the Lusin set “small perturbations” a and b of the endpoints
xy and yu (respectively) of the quadrilateral.

Remark 10.8. At first sight this definition is not symmetric (see item (3)). But
the synchronization estimate (Lemma 9.4) implies that,

|τ − τ(y, yu, ε, ℓ)| ≤ T + T0, and |t− t(y, yu, ε, ℓ)| ≤ T + T0.

10.2.2. Finding pairs of long and matched Y -configurations. We are now ready
to state our main technical lemma which, as we shall see, implies Proposition
8.5.

Let L be the Lusin set defined in §8.1.2 and δ = 3δ0 > 0 be the constant fixed
in §8.1.3: we shall give further assumption on δ later on.
Lemma 10.9. Let K0 ⊂ L be a compact set of measure µ(K0) > 1 − δ. There
exist constants C = C(δ) and T = T (δ) and an infinite subset D ⊂ N such that
for every ℓ ∈ D there exists a pair (X,Y ) of (K0, C, T )-matched Y -configurations
of length ℓ.

The end of the section is devoted to proving that Lemma 10.9 implies Propo-
sition 8.5. The proof of Lemma 10.9 will be the object of Section 11.
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10.3. Asymptotic control of leaf-wise measures for matched configura-
tions. The goal of this paragraph is to study how leaf-wise quotient measures
change along a pair of matched Y -configurations, and what happens when we
have sequences of longer and longer pairs. To simplify the exposition, we shall
break this explanation in two parts. First we deal with a single Y -configuration,
and then we treat the full situation.

10.3.1. Control along a Y -configuration. The lemma below is essentially an easy
corollary of Lemmas 7.13 and 7.14.

Lemma 10.10. For x ∈ T3, xu ∈ Wu
r (x), for some r > 0, ε > 0, and ℓ ∈ N as

above, it holds
ν̂cfτ(ℓ)(xu) ∝ (Ax,xu,ℓ)∗ν̂

c
f t(ℓ)(x),

for the linear map Ax,xu,ℓ : s 7→ ax,xu,ℓ · s, with

ax,xu,ℓ
def.= ρcxu(x) λ

c
x(t(ℓ))

λcxu(τ(ℓ)) .

Moreover, |ax,xu,ℓ| ∈ (a−1
0 , a0) for some constant a0 = a0(r) > 1 depending

only on the upper bound r > 0 on the distance along Wu between x and xu;
in particular, the linear map Ax,xu,ℓ is uniformly bounded away from 0 and ∞,
independently of ℓ.

Proof. Applying Lemma 7.13 and Lemma 7.14 we successively obtain:

ν̂cfτ(ℓ)(xu) ∝ (Λcτ(ℓ),xu)∗ν̂
c
xu

∝ (Lx,xu ◦ Λcτ(ℓ),xu)∗ν̂
c
x

∝ (Lx,xu ◦ Λcτ(ℓ),xu ◦ (Λct(ℓ),x)−1)∗ν̂
c
f t(ℓ)(x),

where Λcn,x denotes the linear map s 7→ λcx(n)s, and Lx,xu denotes the linear map
s 7→ ρcxu(x) · s. Thus, Ax,xu,ℓ

def.= Λcτ(ℓ),xu ◦ Lx,xu ◦ (Λct(ℓ),x)−1 is equal to

s 7→ ρcxu(x) λ
c
x(t(ℓ))

λcxu(τ(ℓ)) · s.

By the fact that du(x, xu) < r, and by the definition of t(ℓ), |A′
x,xu,ℓ(0)| is

uniformly bounded, depending only on r and f , but not on ℓ, which concludes
the proof. □

10.3.2. Control for matched configurations. We now deal with the full picture of
sequences of pairs of good and matched configurations. For the next result, we
refer to §8.1.2 for the definition of the Lusin set L, to §9.3 and to §10.2 for that
of quadrilaterals and (C, ℓ)-matched Y -configurations respectively.

The result of this subsection is the core of the proof that Lemma 10.9 implies
Proposition 8.5. Until the end of this section, the notation xn will NOT stand
for fn(x) but for the usual notation of sequences.

Lemma 10.11. Let ε > 0 (ℓn) be an increasing sequence of integers. Sup-
pose there exist constants T,C > 0 (independent of ε), and two sequences
Xn = (xn, xun, ℓn) and Yn = (yn, yun, ℓn) of Y -configurations of length ℓn that
are (L, C, T )-matched. Let τn, tn, an, bn be the objects given by the condition of
matching and consider the sequences

f τn(an), f τn(bn) ∈ L, and f τn(xun), f τn(yun) ∈ T3.
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Assume all these sequences converge to points a∞, b∞, p and q respectively. Then
q ∈ Wc(p) and there exists γ = γ(C, T ) > 1 and M = M(C, T ) such that

ε

γ
≤ |Hc

p(q)| ≤ γε, (63)

and
ν̂ca∞ ∝ B∗ν̂

c
b∞ . (64)

where B(s) = β · s, is a linear map that satisfies 1
M < |β| < M .

Proof. Note first that τn and tn tend to infinity: indeed, this is a consequence of
the matching condition and of the fact that ℓn → ∞ so the stopping times also
tend to infinity (by Lemma 9.1).

Now suppose the sequences f τn(an), f τn(bn), f τn(xn), f τn(yn) converge to
a∞, b∞, p, q respectively. Let zun = Hs

xn,yn(xun) ∈ Ws(xn). The condition of
matching implies that d(zun, xun) is uniformly bounded so d(f τn(zn), f τn(xn)) → 0
as n → +∞ and f τn(zun) → p. Since normal forms changes continuously, we have
that

Hc
fτn (zun)(f

τn(yun)) → Hc
p(q), as n → +∞.

Thus (63) follows directly from Lemma 9.2 and Remark 10.8. Let us
show (64). For this we use the matching condition: for all n, the points
f τn(an), f τn(bn), f tn(xn), f tn(yn) all belong to the Lusin set L.

Combining Lemma 10.10 with Lemma 7.14 and Remark 10.8 we deduce that
there exist linear maps Bn : R → R and B̃n : R → R and constants Cn, C̃n > 0
such that the derivatives B′

n and B̃′
n lie inside [M−1,M ] for some constant M =

M(T,C), independent of n and

ν̂cfτn (an) = Cn(Bn)∗ν̂
c
f tn (xn) and ν̂cfτn (bn) = C̃n(B̃n)∗ν̂

c
f tn (yn).

We claim that Cn and C̃n are uniformly bounded away from 0 and ∞. Indeed,
let us consider Cn. Let c = c(M) > 0 be the constant given by Corollary 8.4.
Then, denoting I = [−1, 1] we have that, by our choice of normalization (see
Remark 7.10) ν̂cfτn (an)(I) = 1 and therefore

Cn = 1
ν̂cf tn (xn)(B

−1
n (I))

∈ [c−1, c],

for f tn(xn) ∈ L for each n. A similar argument treats the constants C̃n. There-
fore up to enlarging M , we can assume that Cn, C̃n ∈ [M−1,M ].

The condition of matching implies that yn ∈ Ws(xn) for every n and that
d(xn, yn) is uniformly bounded. Now recall that f tn(xn), f tn(yn) belong to the
Lusin set L, which is compact. We can assume without loss of generality that
there exists a point x ∈ L such that f tn(xn) → x and f tn(yn) → x. For simplicity,
let us denote ân = f τn(an), b̂n = f τn(bn), x̂n = f tn(xn) and ŷn = f tn(yn). We
can also assume that Cn → C and C̃n → C̃ and that there exist linear maps
B, B̃ : R → R such that Bn → B and B̃n → B̃ in the C1 topology, i.e. the slopes
of Bn converge to the slope of B and similarly for B̃n and B̃.

Now, we claim that ν̂ca∞ = CB∗ν̂
c
x and ν̂cb∞

= C̃B̃∗ν̂
c
x. Once we prove this

claim, the lemma will be established. To prove the claim, we first observe that∫
Cn(φ ◦Bn)dν̂cx̂n →

∫
C(φ ◦B)dν̂cx,
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for every φ ∈ C0
c (R). Indeed, we can write∣∣∣∣∫ Cn(φ ◦Bn)dν̂cx̂n −

∫
C(φ ◦B)dν̂cx

∣∣∣∣ ≤
∣∣∣∣∫ Cn(φ ◦Bn)dν̂cx̂n −

∫
C(φ ◦B)dν̂cx̂n

∣∣∣∣
+
∣∣∣∣∫ C(φ ◦B)dν̂cx̂n −

∫
C(φ ◦B)dν̂cx

∣∣∣∣ .
The second term on the right-hand side above converges to zero as n → ∞
because L satisfies the conclusion of Lemma 8.3 and x̂n ∈ L converges to x.
The first term also converges to zero because Cn(φ ◦ Bn) converges uniformly
to C(φ ◦ B) and ν̂cx̂n(supp(φ)) is bounded independently of n. We use this
observation to conclude the proof of the claim as follows. Given any φ ∈ C0

c (R)
we have that ∫

φdν̂ca∞ = lim
n→∞

∫
φdν̂cân = lim

n→∞

∫
Cn(φ ◦Bn)dν̂cx̂n

=
∫
C(φ ◦B)dν̂cx,

proving that ν̂ca∞ = CB∗ν̂
c
x. The proof that ν̂cb∞

= C̃B̃∗ν̂
c
x is similar so we omit

it. The proof of the lemma is complete. □

With Lemma 10.11 at hand we are now in position to reduce the proof of
Theorem 5.10 to the proof of Lemma 10.9.

10.4. Proof that Lemma 10.9 =⇒ Proposition 8.5. Let K00 be a compact
set with µ(K00) > 1−2δ0. We apply Lemma 10.9 to the compact setK0 = K00∩L
which has measure µ(K0) > 1−3δ0 = 1−δ. So let C = C(δ) > 0, T0 = T0(δ) > 0,
K0 = K00 ∩ L, and D be the objects given by Lemma 10.9.

As the set D is infinite, there exists a sequence ℓn → +∞ of integers belonging
to D. For each such integer, let Xn = (xn, xun, ℓn) and Yn = (yn, yun, ℓn) be
the pair of (K0, C, T )-matched Y -configurations given by Lemma 10.9. We let
an, bn, τn, tn be the points and times corresponding to the pair (Xn, Yn) (see
Definition 10.7). By definition, we have

f τn(an), f τn(bn) ∈ K0.

We also consider the sequences

f τn(xun), f τn(yun).

Upon extracting subsequences if necessary, we may assume that these four
sequences converge respectively to points a∞, b∞, p and q. Observe that
a∞, b∞ ∈ K0, but we do not know if the same holds for p and q. However,
we have good estimates for the distance between these points (see Figure 14).
Indeed, by Lemma 10.11 there exists γ = γ(C, T ) > 1 and M = M(C, T ) such
that

ε

γ
≤ |Hc

p(q)| ≤ γε, (65)

and
ν̂ca∞ ∝ B∗ν̂

c
b∞ . (66)

where B(s) = β · s, satisfies 1
M < |β| < M . We shall prove that these conditions

ensure that b∞ ∈ G(ε, M̃), for some constant M̃ to be defined later. This will
show Proposition 8.5. Notice that by construction the four points a∞, b∞, p
and q belong to the same center unstable leaf. Let us consider the local strong
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s• •xt yt

≍ ε

Wcu(zuτ )

Figure 14. For each ℓn we have a picture like this one (we have
suppressed the dependence on n for simplicity). The top-left part
will converge to Figure 15.

unstable manifolds Wu
3 (p) and Wu

3 (q). Notice that, also by construction we have
a∞ ∈ Wu

1 (p) and b∞ ∈ Wu
1 (q). An application of Corollary 9.3 yields

dc(p, q) ≤ κε. (67)

Hence we can choose ε small enough so that the intersection point â = Wu(q) ∩
Wc(a∞) given by Lemmas 2.3 and 2.4 satisfies du(â, q) < 2. Similarly we can
choose b̂ = W u(p) ∩ Wc(b∞) so that du(b̂, p) < 2 (see Figure 15). Denote by
γca∞,â the segment of center manifold joining the points a∞ and â and similarly
consider the segments of center manifolds γcp,q and γc

b∞,b̂
. By (67) we have that

length(γcp,q) = length(Φc
p[0,Hc

p(q)]) ≍C,γ ε.

Note that du(a∞, p) < 2, du(b∞, q) < 2 and dc(p, q) ≤ κε < ρ0, where ρ0 is the
constant of Lemma 2.5 (provided ε is choosen small enough). Hence Lemma 2.5
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W cu(q)

W u
3 (p)

W u
3 (q)

γca∞,â

•
a∞

•
â

γc
b∞,b̂

•b̂

•
b∞

γcp,q,â ≍ ε

•
p

•
q

< 2

< 2

Figure 15. How to get invariance by an affine map using the
exponential drift: we can move the leaf-wise measures from b∞ to
a∞ with a linear map, and from a∞ to b̂ with a linear map and
from b̂ back to b∞ with an affine map.

implies that the unstable holonomy maps Hu
p,a∞ and Hu

q,b∞
are bilipschitz with

constants which depends only on f . Since γca∞,â = Hu
p,a∞(γcp,q) and similarly

γc
b∞,b̂

= Hu
p,a∞(γcp,q) we deduce that

length(γca∞,â) ≍C,γ ε and length(γc
b∞,b̂

) ≍C,γ ε

Therefore, as ε is small we deduce that b̂ ∈ Wc
1(b∞). Using the uniform bound

for the C1 norm of the normal forms in segments of bounded length we have
that

Hc
b∞(b̂) ≍C,γ ε. (68)

We apply Lemma 7.14 to get a linear map L : R → R whose derivative satisfies
L′(0) ∈ [C−1, C], for a constant C = C(f) such that ν̂b̂ ∝ L∗ν̂a∞ . Therefore,

ν̂b̂ ∝ (LB)∗ν̂b∞

and the linear map L ◦B has a derivative bounded by [C−1M−1, CM ]. This to-
gether with (68) implies that b∞ ∈ G(ε, M̃) for some constant M̃ = M̃(γ,C,M)
(see (49) for the definition of the set G(ε, M̃)), concluding the proof of Proposi-
tion 8.5. □

11. Construction of matched Y -configurations: end of the proof

This section is devoted to the proof of Lemma 10.9. Recall that we reduced
our main Theorem A to Lemma 10.9. Let us recall what we want to do. We
assume that µ(B) = 0, where B = B is the Bad set introduced in Definition
5.2. In particular, it follows from the zero-one law (Theorem 4.2) that for µ-a.e.
x ∈ T3,

µsx {y ∈ ξs(x) : αs(x, y) = 0} = 0. (69)
where we recall that αs(x, y) = ∠(DHs

x,y(x)Eu(x), Eu(y)) when y ∈ Ws(x).
Given a large compact set K0 we want to find arbitrarily long pairs of matched
Y -configurations which are K0-good (meaning that their points belong to K0).

11.1. Angle condition and absolute continuity. We start this section by
showing how to use the condition µ(B) = 0 to obtain abundance of pairs of
points y ∈ Ws

1(x) so that αs(x, y) is uniformly bounded from below.
Before carrying on the proof recall that for ∗ = s, u, c, cu, we have fixed mea-

surable partitions ξ∗ subordinate to W∗, whose atoms have diameter less than 1,
as well as disintegrations {µ∗

x}x relative to ξ∗. We fixed a Lusin set L of measure
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µ(L) > 1 − δ (further assumptions on δ will be given later on) as given in §8.1.2.
In particular there exists r0 > 0 such that for every x ∈ L,

W∗
r0(x) ⊂ ξ∗(x). (70)

11.1.1. A Markov type inequality. Our first ingredient will be a simple inequality
à la Markov that will be used several times throughout the section.

Lemma 11.1. Let (X,B, µ) be a probability space, and η ∈ (0, 1). Let ψ : X →
[0, 1] be a measurable function with

∫
ψdµ > 1 − η. Let B def.= {x ∈ X : ψ(x) >

1 − √
η}. Then, µ(B) > 1 − √

η.

Proof. We have

1 − η <

∫
B
ψdµ+

∫
X\B

ψdµ ≤ µ(B) + (1 − √
η)(1 − µ(B)) = 1 − √

η(1 − µ(B)),

which gives µ(B) > 1 − √
η. □

11.1.2. Bounding from below the angle function. We fix a measurable partition
ξs subordinate to Ws and a disintegration {µsx}x of µ relative to ξs. Below we
use the condition µ(B) = 0: by (69) it means that for µ-a.e. x ∈ T3 and µsx-a.e.
y ∈ ξs(x), αs(x, y) > 0.

Until the end of the section we fix r0 > 0 such that (70) holds for all x ∈ L. We
consider a constant η = η(δ) > 0 which goes to 0 with δ. This will be explicitly
given later on.

Lemma 11.2. Let B⊂ L of measure µ(B) > 1 − η. Then there exists a mea-
surable set B′ ⊂B as well as a number c = c(η) such that 0 < c ≤ r0η and such
that the following properties hold:

(1) µ(B′) > 1 − 2√
η; and for µ-a.e. x ∈ B′ there exists y ∈ B ∩ ξs(x) such

that
(2) αs(x, y) > c.

Proof. Let us consider the set B1
def.= {x ∈ T3 : µsx[B ∩ ξs(x)] > 1 − √

η}. It
follows from Lemma 11.1 that µ(B1) > 1 − √

η.
Now, given α ≥ 0, we define for µ-a.e. x ∈ T3:

Aα(x) def.= {y ∈ ξs(x) : αs(x, y) > α},

Aα,η
def.= {x ∈ T3 : µsx[Aα(x)] > 1 − η}.

Using that µ(B) = 0 we find µsx[A0(x)] = 1, for µ-almost every x ∈ T3. This
implies that µ[A0,η] = 1. Then, there exists α = α(η) > 0 such that the set
B2

def.= Aα,η has measure µ(B2) > 1 − η.
Let us define the set

B′ def.= B ∩B1 ∩B2,

so
µ(B′) > 1 − 2η − √

η > 1 − 2√
η

(provided η < 1/4, so 2η < √
η). Then for any x ∈ B′,

• µsx(B ∩ ξs(x)) > 1 − √
η;

• µsx{y ∈ ξs(x) : αs(x, y) > α} > 1 − η;
Set c = c(η) def.= min (α(η), r0η) ∈

(
0, r0η

]
. Then, for every x ∈ B′, we have

µsx{y ∈ B ∩ ξs(x) : αs(x, y) > c} ≥ 1 − √
η − η > 1 − 2√

η > 0.
So we conclude that for every x ∈ B′, then there exists y ∈ ξs(x) such that

αs(x, y) > c. This concludes the proof of the lemma. □
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11.2. Recurrence estimates: building long and good Y -configurations.
In this subsection we fix a measurable set K ⊂T3 of measure µ(K) > 1 − δ for
some small δ > 0. The main result of this paragraph is Proposition 11.6, that
builds K-good Y -configurations of length ℓ for every integer ℓ inside a subset
of N of positive density. We start by establishing some preliminary results from
ergodic theory.

11.2.1. An elementary quantitative recurrence estimate. For the sake of clarity
in the presentation, we introduce the following notion.

Definition 11.3. Given γ > 0, n > 0 and B a measurable set, we say that a
point x ∈ T3 is (γ, n)-recurrent to B if L > n implies that

#
{
ℓ ∈ [0, L] : f ℓ(x) ∈ B

}
> (1 − γ)L.

The following holds for any ergodic system (f,B, µ).

Lemma 11.4. For every measurable set B with µ(B) > 1 − γ there exist T =
T (γ) and a subset B◦ ⊂ B with µ(B◦) > 1 − γ so that any x ∈ B◦ is (γ, T )-
recurrent to B.

Proof. Let B be a measurable set with µ(B) > 1 − γ. We consider the sequence
(φn)n∈N of L1 functions given by φn(x) def.= 1

n

∑n−1
k=0 1B(fk(x)). By Birkhoff’s

Theorem, the sequence (φn)n∈N converges almost surely to the constant function
µ(B). Moreover, by Egorov’s Theorem, there exists a measurable subset B◦ ⊂ B
of measure µ(B◦) > 1−γ such that the sequence (φn|B◦)n∈N converges uniformly
to µ(B). Then, there exists T > 0 such that for any x ∈ B◦ and n > T ,
φn(x) > 1 − γ. Such an x is (γ, T )-recurrent to B by definition. □

11.2.2. Stopping times and return times to K for pairs (x, xu). Recall that we
fixed a measurable set K ⊂T3 with measure µ(K) > 1−δ. Applying Lemma 11.4
to K yields an integer T1 = T1(δ) and a measurable subset K◦ ⊂K with measure
µ(K◦) > 1 − δ consisting of (δ, T1)-recurrent points to K. Up to enlarging T1 we
can assume

T1 > 4T0 (71)
where T0 is the constant given by the synchronization estimates of Lemmas 9.4
and 10.3.

Given a pair ω = (x, xu), with xu ∈ ξu(x) we set

E(x, xu) = E(ω) def.= {ℓ ∈ N : f τ(ℓ)(xu) ∈ K and f t(ℓ)(x) ∈ K}. (72)
The objects T1 and K◦ appearing in the next statement are the ones con-

structed in the previous paragraph.

Lemma 11.5. There exists a constant r > 0 which only depends on the quasi
isometric estimates so that for every L > T1, x ∈ K◦ and xu ∈ ξu(x) ∩K◦ and
ω = (x, xu),

# (E(ω) ∩ [0, L]) > (1 − rδ)L.

Proof. Recall that the stopping times satisfy t(ℓ) ≥ 0 as well as the quasi-
isometric estimate

Θ−1|ℓ−m| −A < |t(ℓ) − t(m)| < Θ|ℓ−m| +A,

for some constants Θ > 1 and A > 0 depending only on f : see Lemma 9.1.
In particular for every L > 0 we have t(L) ∈ [0, L′] where L′ = ΘL + A. By
hypothesis, x ∈ K◦ so whenever L > T1 (and thus L′ > T1), we have

#{k ∈ [0, L′] : fk(x) /∈ K} ≤ δL′.
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On the other hand, the quasi-isometric estimate also implies that an integer
in [0, L′] has at most 2AΘ preimages by t so we have

#{ℓ ∈ [0, L] : f t(ℓ)(x) /∈ K} ≤ 2AΘ#{k ∈ [0, L′] : fk(x) /∈ K} ≤ 2AΘδ(ΘL+A).

This proves that for every L > T1, the set Et(x) def.= {ℓ ∈ N : f t(ℓ)(x) ∈ K}
has density > 1 − r1δ inside [0, L] for some constant r1 > 0 depending only on A
and Θ. Now, since xu also belongs to K◦, the same property also holds for the
set Eτ (xu) def.= {ℓ ∈ N : f τ(ℓ)(xu) ∈ K}: it has density > 1 − r2δ inside [0, L] for
r2 > 0 depending only on the quasi-isometry constants of τ from Lemma 9.1.

Finally we can estimate from below the density of E(ω) = E(x, xu) = Eτ (xu)∩
Et(x) inside [0, L] using the following inequality

#(E(ω) ∩ [0, L]) ≥ #(Eτ (xu) ∩ [0, L]) − #([0, L] \ Et(x)) > (1 − (r1 + r2)δ)L.

This ends the proof of the lemma. □

11.2.3. Space of pairs (x, xu). It will be useful to consider a measurable structure
on the space of pairs

Ω def.= {ω = (x, xu) : x ∈ T3 and xu ∈ ξu(x)}.

Note that Ω is contained inside the continuous submanifold of T3 ×T3 defined as
Y = {(x, xu) : x ∈ T3 and xu ∈ Wu

1 (x)} (recall that 1 is a uniform upper bound
of the diamaters of atoms of ξu). The topology on Y induced by the product
topology of T3 × T3 provides it with a Borel σ-algebra. Its restriction to Ω is
denoted by A. Let π : Ω → T3 be the projection on the first coordinate. So we
have B ∈ A if and only if its projection π(B) is a measurable subset of T3, and
B ∩ ({x} × ξu(x)) is a measurable subset of {x} × ξu(x). Hence we can define a
measure ν on Ω by

ν(B) def.=
∫
π(B)

µux [B ∩ ({x} × ξu(x))] dµ(x).

11.2.4. Construction of many long and good Y -configurations. Assume ℓ ∈ E(ω)
for ω = (x, xu) with x, xu ∈ K◦. Then (x, xu, x−ℓ, f

τ(ℓ)(xu), f t(ℓ)(x)) is a K-
good Y -configuration of length ℓ. So constructing many long and good Y -
configurations means constructing many integers ℓ ∈ N for which the set of
pairs ω = (x, xu) ∈ K◦ ×K◦ with ℓ ∈ E(ω) has large measure for ν.

More precisely, let us fix a continuous function η : [0, 1] → [0,∞) vanishing at
0 and, abusing notation, write η = η(δ). An explicit construction will be given
in the proof of the next proposition. We will assume that δ is small enough so
that η < 1. For ℓ ∈ N and x ∈ K◦ let us define

Qu(x) def.= K◦ ∩ ξu(x), (73)
and

Qu(x, ℓ) def.= {xu ∈ ξu(x) : xu ∈ K◦, and ℓ ∈ E(x, xu)} ⊂Qu(x). (74)
This yields a set of K-good Y -configurations with length ℓ. Next we define

K(ℓ) def.= {x ∈ K◦ : µux[Qu(x, ℓ)] > 1 − η}. (75)

We want to construct a large set of integers ℓ with µ[K(ℓ)] is large enough. This
is provided by the following statement, inspired by Eskin-Lindestrauss’ paper
[14] and which is essentially a Fubini-like argument.
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Proposition 11.6 (see Claim 6.4 in Eskin-Lindenstrauss [14]). Set

D def.= {ℓ ∈ N : µ[K(ℓ)] > 1 − η}. (76)

Then for every L > T1 we have

#(D ∩ [0, L]) > (1 − η)L.

Proof. We start the proof by considering the set

K1
def.=
{
x ∈ K◦ : µux[Qu(x)] > 1 −

√
δ
}
,

so that after applying Lemma 11.1 with ψ : x 7→ µux[Qu(x)] = µux[K◦ ∩ ξu(x)] we
see that µ(K1) > 1 −

√
δ. The set

B
def.= {ω = (x, xu) ∈ Ω : x ∈ K1, x

u ∈ Qu(x)}

is a measurable subspace of Ω of measure

ν(B) =
∫
K1
µux[Qu(x)]dµ(x) > (1 −

√
δ)2 = 1 − δ′,

for some δ′ = δ′(δ) > 0 tending to zero with δ.
Now let L > T1 and consider the space (IL,m), for the set IL

def.= [0, L] ∩ N
endowed with the counting measure that we denote by m. Let F ⊂ Ω × IL be
the set of pairs (ω, ℓ) such that ω ∈ B and ℓ ∈ E(ω). It follows from Lemma 11.5
that for all ω ∈ B, m[E(ω)] > 1 − rδ. Hence

(ν ×m)(F ) =
∫
B
m[E(ω)] dν(ω) > (1 − rδ)(1 − δ′) def.= 1 − δ′′,

for some δ′′ = δ′′(δ) that tends to zero with δ.
On the other hand set B(ℓ) = {ω ∈ B : ℓ ∈ E(ω)} so we have

F = {(ω, ℓ) ∈ Ω × IL : ω ∈ B(ℓ)} =
⋃
ℓ∈IL

B(ℓ) × {ℓ}.

Applying Fubini’s theorem we get

(ν ×m)(F ) =
∫

Ω

∫
IL

1F (ω, ℓ) dm(ℓ) dν(ω) =
∫
IL

∫
Ω

1F (ω, ℓ) dν(ω) dm(ℓ)

=
∫
IL

ν(B(ℓ)) dm(ℓ).

It follows from Lemma 11.1 that the set of integers DL
def.= {ℓ ∈ IL : ν(B(ℓ)) >

1 −
√
δ′′} has measure > 1 −

√
δ′′ for m. Note that

ν(B(ℓ)) =
∫
K1
µux[Qu(x, ℓ)] dµ(x),

hence, another application of Lemma 11.1 yields µ{x ∈ K1 : µux[Qu(x, ℓ)] >
1 − η} > 1 − η where η

def.= 4√δ′′ is the function we were looking for. Now
since by definition {x ∈ K1 : µux[Qu(x, ℓ)] > 1 − η} ⊂K(ℓ) we conclude that
µ[K(ℓ)] > 1 − η. This implies that DL ⊂ D ∩ [0, L] where D is the set defined in
(76). We deduce that #(D ∩ [0, L]) > (1 − η)L as claimed. □
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11.3. Construction of matched Y -configurations. We are now ready to
finish the proof of Lemma 10.9, and thus that of our main Theorem. We will
build arbitrarily long pairs of good and matched Y -configurations.

Let K0 be a compact set included inside the Lusin set L defined in §8.1.2 of
measure µ(K0) > 1 − δ.

We consider the measurable set

K = (K0)◦,

so points of K are (δ, T )-recurrent in K0 for some T = T (δ), and µ(K) > 1 − δ.
We apply the results of §11.2.1 to K. They yield a set D ⊂N as defined in (75)
and Proposition 11.6. In particular, by definition, D has density > 1−η in [0, L]
for L large enough and for every ℓ ∈ D, µ[K(ℓ)] > 1 − η (where η = η(δ) < 1).

11.3.1. Constructing the tails. Recall that for x, y ∈ T3 and ℓ ∈ N we let x−ℓ
and y−ℓ denote f−ℓ(x) and f−ℓ(y) respectively.

Lemma 11.7. For every ℓ ∈ D, there exists K ′(ℓ) ⊂K(ℓ) such that µ[K ′(ℓ)] >
1 − 2√

η and for every x ∈ K ′(ℓ), there exists y ∈ K(ℓ) ∩ ξs(x) such that

αs(x−ℓ, y−ℓ) > c(η),

where c(η) is the constant introduced in Lemma 11.2.

Proof. We apply Lemma 11.2 to A = f−ℓ(K(ℓ)) which has measure µ(K(ℓ)) >
1 − η. Then we can define K ′(ℓ) = f ℓ(A′) where A′ is the set provided by that
lemma. It is clear that this set satisfies the desired properties (recall that ξs is
decreasing). □

11.3.2. Constructing the quadrilaterals: the matching argument. For x ∈ K ′(ℓ),
so ξu(x) is an interval of size r(x), we set

Iu(x) def.= {z ∈ ξu(x) : du(x, z) > c(η), and du(z, ∂ξu(x)) > c(η)} . (77)

Recall that 0 < c(η) ≤ r0η ≤ |ξu(x)| (see Lemma 11.2), hence |Iu(x)| >
(1 − 4η)|ξu(x)|. Note furthermore that if y ∈ L is close enough to x then
Hcs
x,y(Iu(x)) ⊂ ξu(y) (we use here that r(y) = |ξu(y)| is uniformly continuous

in L and that center-stable holonomy maps converge uniformly to the identity
as x tends to y).

Since µux is absolutely continuous continuous with respect to the inner
Lebesgue length |.| of Wu(x), with a uniform bound β on the densities (recall
Lemma 2.23) it follows that

|Qu(x, ℓ)|
|ξu(x)| > 1 − βη,

Proposition 11.8 (Matching argument). There exists L0 ∈ N such that for
every ℓ ≥ L0 and x ∈ K ′(ℓ), if y ∈ K(ℓ) ∩ ξs(x) is given by Lemma 11.7 then
there exist xu ∈ ξu(x) and yu ∈ ξu(y) such that the following properties hold

(1) du(x, xu) > c(η);
(2) yu = Hcs

x,y(xu);
(3) J(xu, ε, ℓ) ∩Qu(x, ℓ) ̸= ∅ and J(yu, ε, ℓ) ∩Qu(y, ℓ) ̸= ∅.

The next paragraphs are devoted to the proof of this proposition.
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11.3.3. Good matching. Let x, y ∈ T3 be points verifying Lemma 11.7. Note
that the lengths of dynamical balls |J(z)| = |J(z, ε, ℓ)| tend uniformly to 0 as
ℓ → ∞. Hence we may suppose that ℓ is large enough so that for every z ∈ Iu(x),
J(z) ⊂ ξu(x) and J(Hcs

x,y(z)) ⊂ ξu(y).
Let x1, . . . , xk ∈ Iu(x) ⊂ ξu(x) and J1, . . . , Jk ⊂ Wu(x) be the dynamical balls

defined by
Ji

def.= J(xi, ε, ℓ) ⊂ ξu(x).
We may assume that the following properties are satisfied
(1) for every i ≥ 1, d(xi, x) > c(η);
(2) Iu(x) ⊂

⋃k
i=1 Ji;

(3) for every z ∈ Iu(x), #{i : z ∈ Ji} ≤ 2.
Set

yi
def.= Hcs

x,y(xi) ∈ ξu(x), and J ′
i

def.= J(yi, ε, ℓ) ⊂ ξu(x).
The dynamical balls Ji and J ′

i are matched. In particular Corollary 10.6 implies
that

κ−1
2 |Ji| ≤ |J ′

i | ≤ κ2|Ji|.
Set

τi
def.= τ(x, xi, ε, ℓ), and τ ′

i
def.= τ(y, yi, ε, ℓ),

so |τi − τ ′
i | < T0 for all i.

Lemma 11.9 (Control of overlap). There exists m = m(f) ∈ N such that for
every z ∈ ξu(y)

#{i : z ∈ J ′
i} ≤ m.

Proof. Let J ′
i1 , . . . , J

′
im be the dynamical balls in Wu(y) that contain z. Note

that for every j, |τ ′
ij

− τ ′
z| ≤ T0 < T1 (see Lemma 10.3). Let

J
def.=

m⋃
j=1

Jij , J ′ def.=
m⋃
j=1

J ′
ij , and τ∗ def.= min

j=1,...m
{τij , τ ′

ij}.

We claim that the oscillations inside the set {τi1 , . . . , τim , τ ′
i1 , . . . , τ

′
im} are less

than T1. Indeed, by Lemma 9.4, for every j we have that |τij − τ ′
ij

| < T0. Also,
by Lemma 10.3 we have |τ ′

ij
− τ(y, z, ε, ℓ)| < T0 and thus |τ ′

ij
− τ ′

ik
| < 2T0 and

|τij − τik | < 4T0. We conclude that for every α ∈ {τi1 , . . . , τim , τ ′
i1 , . . . , τ

′
im} it

holds
|α− τ∗| < 4T0, (78)

which proves our claim due to our choice of T1 in (71)
On the one hand f τ∗(z) belongs to the intersection of intervals f τ∗(J ′

i), which
have length ≤ 2, so |f τ∗(J ′)| ≤ 4.

With this claim established we can bound from below the length |f τ∗(J)|.
In fact, because at most two intervals Ji can overlap at the same time, we can
estimate ∣∣f τ∗(J)

∣∣ =

∣∣∣∣∣∣
m⋃
j=1

f τ
∗(Jij )

∣∣∣∣∣∣ ≥ 1
2

m∑
i=1

|f τ∗(Jij )|.

Now, by definition of the unstable dynamical ball we have |f τij (Jij )| = 2 and by
(78) |τ∗ − τij | < T1 for every j = 1, . . . ,m. Therefore,

|f τ∗(Jij )| ≥ 2
∥Df−T1∥

.
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Combining the last two inequalities one deduces that

|f τ∗(J)| ≥ m

∥Df−T1∥
.

This implies in particular that there exist two points of f τ∗(J) that are at distance
of at least m

2∥Df−T1 ∥ . Since such a point is at distance ≤ 1 of some f τ∗(xi) we
deduce that there exists j, l such that

d(f τ∗(xij ), f τ∗(xil)) ≥ m

2∥Df−T1∥
− 2.

On the one hand d(f τ∗(yij ), f τ
∗(yil)) ≤ 2 (this follows from the definition of τ∗

and the fact that f τ∗(z) ∈ Wu
1 (f τ∗(yij )) ∩ Wu

1 (f τ∗(yil))). On the other hand if ℓ
is large enough and ε small enough we may ask d(f τ∗(yij ), f τ

∗(xij )) ≤ ρ0 (where
ρ0 is the constant of Lemma 2.8). Hence the Hölder regularity of center-stable
holonomies provided by Lemma 2.8 yields

m

2∥Df−T1∥
− 2 ≤ d(f τ∗(xij ), f τ∗(xil))

≤ Ccsd(f τ∗(yij ), f τ∗(yil))
θcs

≤ Ccs2θcs .
We obtain

m ≤ (Ccs21+θcs + 4)∥Df−T1∥.
This upper bound only depends on f , which concludes the proof. □

11.3.4. Proof of Proposition 11.8. We are now ready to give a proof of Propo-
sition 11.8 which is a modification of that of [15, Lemma 12.8]. Recall that x
and y are given by Lemma 11.7 and their distance goes to zero as ℓ → +∞. By
continuity of the size of ξu(x) inside the Lusin set K, we may suppose that for
ℓ sufficiently large, |ξu(x)| ≤ 2|ξu(y)|.

Set
Ix def.= {i ∈ {1, . . . , k} : Ji ∩Qu(x, ℓ) ̸= ∅} , J x def.= {1, . . . , k} \ Ix,

and
Iy def.=

{
i ∈ {1, . . . , k} : J ′

i ∩Qu(y, ℓ) ̸= ∅
}
, and J y def.= {1, . . . , k} \ Iy.

Let
Q

def.= {z ∈ Qu(x, ℓ) : ∀ i, (z ∈ Ji ⇒ i ∈ Iy)}.
It suffices to show that Q ∩ Iu(x) ̸= ∅.

Note that
(Qu(x, ℓ) ∩ Iu(x)) \Q⊂

⋃
i∈Ix∩J y

Qu(x, ℓ) ∩ Ji

so
|(Qu(x, ℓ) ∩ Iu(x)) \Q| ≤

∑
i∈Ix∩J y

|Qu(x, ℓ) ∩ Ji| ≤
∑

i∈Ix∩J y

|Ji| ≤ κ2
∑
i∈J y

|J ′
i |

≤ κ2m

∣∣∣∣∣∣
⋃
i∈J y

J ′
i

∣∣∣∣∣∣ ≤ κ2m|ξu(y) \Qu(y, ℓ)|

≤ κ2mβη|ξu(y)| ≤ 2κ2mβη|ξu(x)|.

Hence there exists β′ = β′(f) such that
|Q∩ Iu(x)| ≥ |Qu(x, ℓ) ∩ Iu(x)| − |(Qu(x, ℓ) ∩ Iu(x)) \Q| ≥ (1 − β′η)|ξu(x)| > 0,
as soon as η < 1

β′ .
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Now let a ∈ Q. There exists i such that d(x, xi) > c, a ∈ J(xi, ε, ℓ) and
J(yi, ε, ℓ) ∩ Qu(y, ℓ) ̸= ∅ where yi = Hcs

x,y(xi): the proof of the proposition is
over. □

11.3.5. The synchronization. We are now ready to finish the proof of Lemma
10.9. Let ℓ ∈ D such that ℓ ≥ L0. Let x ∈ K ′(ℓ) and y ∈ K(ℓ) ∩ ξs(x) be given
by Lemma 11.7. Let xu ∈ ξu(x) and yu ∈ ξu(y) be given by Proposition 11.8:
there exist a ∈ J(xu, ε, ℓ) ∩Qu(x, ℓ) and b ∈ J(xu, ε, ℓ) ∩Qu(y, ℓ).

Lemma 11.10. There exists T > 0 independent of ℓ and τ, t > 0 such that
(1) |τ − τ(x, xu, ε, ℓ)| ≤ T and |t− t(x, xu, ε, ℓ)| ≤ T ;
(2) f τ (a), f t(x), f τ (b), f t(y) ∈ K0.

It follows from Lemma 11.10 that for ℓ ∈ D larger than L0, the Y -
configurations X = X(x, xu, ℓ) and Y = Y (y, yu, ℓ) are (K0, C, T )-matched.
This proves Lemma 10.9.

Proof. Set
τ(ℓ) = τ(x, a, ε, ℓ), t(ℓ) = t(x, a, ε, ℓ), τ ′(ℓ) = τ(y, b, ε, ℓ), t′(ℓ) = t(y, b, ε, ℓ).

By construction (x, xu, y, yu) is a (C, ℓ)-quadrilateral and a ∈ J(xu), b ∈ J(yu).
Combining the results of Lemmas 9.4 and 10.3 we obtain

|τ(ℓ) − τ(x, xu, ε, ℓ)| < T0, |t(ℓ) − t(x, xu, ε, ℓ)| < T0

as well as
|τ ′(ℓ) − τ(x, xu, ε, ℓ)| < 2T0, |t′(ℓ) − t(x, xu, ε, ℓ)| < 2T0,

and consequently
|τ ′(ℓ) − τ(ℓ)| < 3T0, |t′(ℓ) − t(ℓ)| < 3T0,

where T0 = T0(δ).
Proposition 11.8 implies that

f τ(ℓ)(a), f t(ℓ)(x), f τ ′(ℓ)(b), f t′(ℓ)(y) ∈ K,

which means that these points are (δ, T )-recurrent inside the compact set K0.
Now we might have τ(ℓ) ̸= τ ′(ℓ) or t(ℓ) ̸= t′(ℓ). Assume for example that
t(ℓ) < t′(ℓ). Let T ′ = T ′(δ) > max(T, T0) such that

T0
T ′ < δ,

in such a way that [t(ℓ), t′(ℓ)] has density < 3δ inside [t(ℓ), t′(ℓ) + T ′]. Since
T ′ > T , this implies that{

k ∈ [t(ℓ), t′(ℓ) + T ′] : fk(x) ∈ K0
}

∩ [t′(ℓ), t′(ℓ) + T ′]

has density > 1 − 4δ in [t′(ℓ), t′(ℓ) + T ′]. On the other hand the set{
k ∈ [t′(ℓ), t′(ℓ) + T ′] : fk(y) ∈ K0

}
has density > 1 − δ inside [t′(ℓ), t′(ℓ) + T ′]. Therefore these two sets must
intersect (as soon as δ < 1/5) so there exists t ∈ [t′(ℓ), t′(ℓ) + T ′] such that
f t(x), f t(y) ∈ K0. This integer t satisfies

|t− t(x, xu, ε, ℓ)| ≤ |t− t′(ℓ)| + |t′(ℓ) − t(x, xu, ε, ℓ)| < T ′ + 2T0

so T = T ′ + 2T0 is the desired constant. The same argument can be reproduced
to treat a and b and find the number τ . □
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11.3.6. Postliminary: choice of δ0 and δ. Let us list the requirements we made
on the constant δ0 and δ = 3δ0. We needed to require

δ < min
(1
5 ,

1
r

)
,

where r only depends on f (it is defined in Lemma 11.5).
We defined in Proposition 11.6 a function η(δ) (of the order of δ1/4) that

depends only on a and required that

η < min
(1
4 ,

1
β
,

1
β′
)
,

where β is the constant of Lemma 2.23 and β′ appears in §11.3.4.

12. Remarks on Gogolev-Kolmogorov-Maimon’s perturbations

In [19] the authors consider two families of perturbations of the linear Anosov
diffeomorphism f0 : T3 → T3 induced by the matrix

A =

2 1 0
1 2 1
0 1 1

 .
The dissipative family is given

fD,ε

xy
z

 = A

xy
z

+ ε

2π

sin(2πx)
0
0

 mod(1).

The Jacobian at the fixed point of fD,ε is given by

JacfD,ε

0
0
0

 =

∣∣∣∣∣∣
2 + ε 1 0

1 2 1
0 1 1

∣∣∣∣∣∣ = 1 + ε,

so fD,ε is dissipative: it does not preserve any volume.
The conservative family is given by

fC,ε

xy
z

 = A

xy
z

+ ε

2π

sin(2πx)
sin(2πx)

0

 mod(1).

The Jacobian at any point of fC,ε is given by

JacfC,ε

xy
z

 =

∣∣∣∣∣∣
2 + ε cos(2πx) 1 0
1 + ε cos(2πx) 2 1

0 1 1

∣∣∣∣∣∣ = 1.

We apply Gan-Shi’s criterion for joint integrability obtained in [17] in order to
prove that these two families of perturbations are accessible and hence Theorem
A applied to both of them gives the following theorem.

Theorem 12.1. If |ε| > 0 is small enough fD,ε or fC,ε are accessible. Hence any
fully supported ergodic u-Gibbs measure for fD,ε or fC,ε is SRB (this is Lebesgue
in the conservative case).

Proof. In our context, Gan-Shi’s criterion for accessibility is the following. A
C1+α difeomorphism f C1-close to f0 is not accessible if and only if its central
Lyapunov exponents at every perdiodic points coincide with those of f0.

In order to prove the accessibility of fD,ε and fC,ε it is enough to prove that the
central Lyapunov exponent at the fixed point differ from the one of A (which is
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approximately 1.55). This can be done as follows. The characteristic polynomial
of the differential at the fixed point for the dissipative family is

PD,ε(X) =

∣∣∣∣∣∣
2 −X + ε 1 0

1 2 −X 1
0 1 1 −X

∣∣∣∣∣∣ = −X3 + (5 + ε)X2 − (6 + 3ε)X + 1 + ε.

The coefficients of PD,ε(X) vary smoothly with ε and when ε = 0, this poly-
nomial has three disctinct roots. So by the implicit function theorem, for small
|ε|, PD,ε has three distinct roots λ1(ε) < λ2(ε) < λ3(ε) that depend smoothly on
ε and satisfy the relations

λ1λ2λ3 = 1 + ε

λ1 + λ2 + λ3 = 5 + ε

λ1λ2 + λ1λ3 + λ2λ3 = 6 + 3ε
.

We must have λ′
2(0) ̸= 0, which yields the accessibility of fD,ε. Indeed, if

λ′
2(0) = 0, then derivating the relations above gives (the functions below are

evaluated at 0) 
λ2(λ′

1λ3 + λ1λ
′
3) = 1

λ′
1 + λ′

3 = 1
λ2(λ′

1 + λ′
3) + λ′

1λ3 + λ1λ
′
3 = 3

.

Combining the above one finds λ2 + 1/λ2 = 3, which contradicts λ2 ≃ 1.55
(so λ2 + 1/λ2 ≃ 2.20).

The same computation works for the conservative family. Indeed, the charac-
teristic polynomial of the differential at the fixed point for this family is

PC,ε(X) =

∣∣∣∣∣∣
2 −X + ε 1 0

1 + ε 2 −X 1
0 1 1 −X

∣∣∣∣∣∣ = −X3 + (5 + ε)X2 − (6 + 2ε)X + 1.

So the relations between roots and coefficients give
λ1λ2λ3 = 1
λ1 + λ2 + λ3 = 5 + ε

λ1λ2 + λ1λ3 + λ2λ3 = 6 + 2ε
.

The same argument as before provides λ′
2(0) ̸= 0 (the calculations are left to

the reader), which yields the accessibility of fC,ε. □
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