Universidade Federal Fluminense

Entropy Rigidity for Surface Anosov
Diffeomorphisms

Vitor Gomes Ferreira

Niterdi
Setembro 2025



Entropy Rigidity for Surface Anosov
Diffeomorphisms

Vitor Gomes Ferreira

Dissertacdo submetida ao Programa de Pés-
Graduacao em Matematica da Universidade
Federal Fluminense como requisito parcial
para a obtencdo do grau de Mestre em
Matematica.

Orientador:
Prof. Bruno Santiago (UFF)

Niteroéi
Setembro 2025



Ficha catalogréafica automatica - SDC/BIME
Gerada com informacdes fornecidas pelo autor

F383e

Ferreira, Vitor Gones

Entropy Rigidity for Surface Anosov Diffeonorphisns / Vitor
CGones Ferreira. - 2025.

88 f.

Orientador: Bruno Rodrigues Santiago.
Di ssertacdo (nestrado)-Universidade Federal Fluni nense,
Instituto de Matematica e Estatistica, Niter6i, 2025.

1. Dinamica Hi perbolica. 2. Teoria Ergodica. 3. Rigidez.
4. Classificagdo. 5. Producéo intelectual. |. Santiago,
Bruno Rodrigues, orientador. Il. Universidade Federal
Fl um nense. Instituto de Matemdtica e Estatistica. I11.
Titul o.

CDD - XXX

Bibliotecério responséavel: Debora do Nascimento - CRB7/6368




Dissertacao de Mestrado da Universidade Federal Fluminense

por

Vitor Gomes Ferreira

apresentada ao Programa de P6s-Graduagdo em Matematica como requesito parcial para a
obtencao do grau de

Mestre em Matematica

Titulo da tese:

Entropy Rigidity for Surface Anosov Diffeomorphisms

Defendida publicamente em 04 de setembro de 2025.

Diante da banca examinadora composta por:

Bruno Santiago UFF Orientador

Jiagang Yang UFF Examinador
Sébastien Alvarez  UDELAR Examinador
Ali Tahzibi USP Examinador



DECLARACAO DE CIENCIA E CONCORDANCIA DO ORIENTADOR

Autor da Dissertacdo: Vitor Gomes Ferreira
Data da defesa: 04/09/2025
Orientador: Bruno Santiago

Para os devidos fins, declaro estar ciente do contetido desta versao corrigida elaborada em atengdo
as sugestdes dos membros da banca examinadora na sessdo de defesa do trabalho, manifestando-me

favoravelmente ao seu encaminhamento e publicacdo no Repositério Institucional da UFF.

Niterdi, 30/09/2025.

Documento assinado digitalmente

b BRUNO RODRIGUES SANTIAGO
g Ll Data: 30/09/2025 13:40:57-0300
Verifique em https://fvalidar.iti.gov.br

Nome do Orientador



AGRADECIMENTOS

In first place, | thank God for giving me the capacity to be where | am. | am also very grateful
to my parents, for they always encouraged me.

Throughout my path | have met many wonderful teachers who guided me here. Special
thanks to Mitchael Martelo, Juliana Coelho, Ralph Teixeira and Pablo Guarino who, with a few
spot-on advice, made a great impact on me.

| was also very lucky to have met Caio Caetano in my college freshman year. It was his
figure that made me dive into this amazing world of math.

| thank each member of the examining board: Jiagang Yang, Sébastien Alvarez, Ali Tahzibi
and Bruno Santiago for accepting this task. Special thanks for Bruno Santiago, for he is a brilliant
advisor. His enthusiasm is contagious, which fits perfectly with his attention with didactics. Also,
his patience and guidance were key for my development.

And, of most importance, | thank Keila Nunes. For | love her and she is the greatest source
of happiness of my days.

At last, | thank CAPES for the financial support via a master’'s scholarship of humber
88887.897113/2023-00.

O presente trabalho foi realizado com apoio da Coordenacéo de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES)
- Codigo de Financiamento 001.




RESUMO

Quando as medidas fisicas (SRB) sdo de maxima entropia?
Quando dois sistemas sao conjugados de forma suave?

O objetivo deste texto é apresentar um resultado elegante (classico) de rigidez para difeo-
morfismos de Anosov em dimensao dois que conecta essas duas questdes: precisamente, n0s
mostramos que a medida SRB de f tem maxima entropia se e s6 se f for conjugado a um
mapa linear de forma suave ao longo da folheacao instavel. A prova classica desse resultado
(veja cor. 20.4.5 de [KH95]) depende do formalismo termodinamico: os estados de equilibrio
associados a potenciais diferentes sdo mutualmente singulares, a menos que os potenciais
sejam co-homologos. Outra maneira de se provar € por meio de uma rigidez dos expoentes de
Lyapunov: se o push-forward da medida SRB pela conjugacao for uma medida com 0 mesmo
expoente de Lyapunov, entdao a conjugagao tem que ser suave ao longo de folhas instaveis. No
texto, iremos apresentar uma demonstragdo geométrica autocontida desse fato, baseada em
um estudo detalhado das medidas condicionais em folhas instaveis da SRB (leafwise measures)
e das medidas de maxima entropia (familia de Margulis).

Palavras-chave:Sistemas Dinamicos; Teoria Ergodica; Rigidez; Entropia.



ABSTRACT

When physical SRB measures are of maximal entropy?
When two given systems are smoothly conjugated?

The goal of this text is to outline a beautiful (classical) rigidity result for Anosov systems in
dimension two that connects these two questions: Precisely, we show that the SRB measure of
f maximizes the entropy if and only if f is smoothly conjugated to its linearization along unstable
leaves. The classical proof of this result (see cor. 20.4.5 of [KH95]) relies on thermodynamical
formalism: the equilibrium states associated with different potentials must differ, unless the
potentials are co-homologous. Another approach can be made via Lyapunov exponent rigidity:
if the push-forward of the SRB measure by the conjugacy is a measure with the same Lyapunov
exponent, then the conjugacy must be smooth along the leaves. In the text, we shall present
a self-contained geometrical proof based on a detailed study of conditional measures along
unstable leaves for the SRB (leafwise measures) and for the MME (Margulis family).

Keywords:Dynamical Systems; Ergodic Theory; Rigidity; Entropy.
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CHAPTER 1

Introduction

In this text we will study the dynamics of Anosov diffeomorphisms which are a kind of system described
by a simple axiom: its derivative preserves a pair of complementary directions, contracting one and
expanding the other. One of the major questions about them is whether you can classify up to conjugacies
all of them, i.e. whether you can find an explicit collection of Anosov diffeomorphisms whose all others
are conjugated to it. For low dimensions this question was positively answered up to the topological level
by Franks-Newhouse (see theorem. [2.3.3).

Since the topological classification is already done, it incites us to explore the class of smooth
conjugacies. However, it doesn’t take long to notice that this type of conjugacy is very sensible: suppose
f and g are two Anosov systems conjugated by a smooth diffeomorphism h, thatis h o f = g o h. Then,

if you take any periodic point p for f with period n, you can differentiate the conjugacy to obtain
dh - dpf" = dp(p) 9" - dh

Thus, the linear maps d,, f" and dj,(,)g" are also conjugated, which implies that they have the same
spectrum (we say that they have the same periodic data). It is a notorious fact that Anosov diffeomorphisms
in low dimension always have a dense set of periodic points; thus this condition on the derivatives must
hold in a dense set. This condition is, of course, very fragile: any small perturbation, as smooth as you
want, is capable of changing the spectrum at a point, which breaks the equality. Hence, there is no hope of
classifying them up to smooth conjugacies.

There is, however, a peculiar phenomena that arises in this situation. A smooth conjugation is so rigid
that it, in some sense, can characterize excessively specific properties. L.e. requiring a system to satisfy
a very restrictive property may cause all the systems that satisfy it to be smoothly conjugated. This is
nothing but a mantra, however, a fruitful one.

An example of such phenomena already appeared in the discursion given above: not just smooth
conjugacy implies equality of periodic data, but equality of periodic data also implies smooth conjugacy!
(see appendix [A).

This equality of periodic data is explicitly gross and it makes sense to imply rigidity. What we will
show is something more subtle: Start with a conservative linear Anosov diffeomorphism. For this system,
its invariant volume measure coincides with its maximal entropy measure. If you consider a conservative
perturbation of this system, it still preserves the volume, however its measure of maximal entropy may not

be equal it. What happens if you require it to still be the measure of maximal entropy?
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We will see that this condition implies rigidity. In fact, we’ll not be restricted to the conservative case:
When the system is not conservative, there is a type of measure (the SRB measure) that naturally takes its

place. The main theorem that we will prove is the following

Theorem 1.0.1 (Main Theorem). If f : T? — T? is an Anosov diffeomorphism of class C? such that
its SRB measure p is of maximal entropy, then f is conjugated to a linear toral automorphism and the

conjugacy h is C't when restricted to any unstable leaf.
And as a corollary we will obtain that

Corollary 1.0.2 (The Conservative Case). If f : T? — T? is a conservative Anosov diffeomorphism such
that its invariant volume measure maximizes the entropy, then it is C1T% conjugated to a linear toral

automorphism.

The classical proof of these facts uses the thermodynamical formalism: the measure of maximum
entropy and the SRB measure are both equilibrium states of different potentials (the identically null
potential and the logarithm of the unstable jacobian respectively).

When the equilibrium states are equal, the potentials must be co-homologous, which implies that
the logarithm of the unstable jacobian is co-homologous to a constant. From it, you can deduce that the
conjugacy between f and its linear counterpart, which sends equilibrium states into equilibrium states,
must be absolutely continuous along the unstable foliation, and this forces the smoothness.

A more geometrical approach, which better aligns with this work, is with the use of Ledrappier-
Young’s theory: By the entropy formula, the Lyapunov exponent of f must be equal to the entropy of
the SRB measure. Thus, since topological entropy is invariant along a class of conjugation, if the SRB is
of maximal entropy we obtain that its Lyapunov exponent coincides with the logarithm of the unstable
eigenvalue of the linear model.

This equality involving the Lyapunov exponents in turn implies in the smoothness of the conjugacy
(see, for example [SY19]).

In this work we present a complete self-contained proof of Theorem[I.0.1|and corollary [I.0.2]

Our main focus will lie on the geometrical structure of the conditional measures.

We will present the construction of the Leafwise measures for the SRB measure. These are a family of
locally finite borelian measures defined on each unstable leaf that coincides (up to normalization) with the
conditional measures. The construction we show in chapter { closely follows the work done in [Alv+24].

We’ll also present the construction of the affine parameters, also known as normal forms, which are a
type of non-stationary linearization. With this affine structure, we will see that the leafwise measures can
be identified with the usual Lebesgue measure on the real line.

Also, in chapter[5] we will present the Margulis family.

The main difference between the Margulis family and the Leafwise family is in how it is renormalized
under the dynamics: the Margulis family scales with the topological entropy while the Leafwise family
scales with the unstable jacobian.

When the SRB measure is of maximal entropy, this allows us to re-obtain Ledrappier- Young’s entropy
formula by a direct computation.

We then proceed to present a self-contained proof, for our particular context, that the equality between
the Lyapunov exponents of the SRB measure with those of the Lebesgue measure for a linear map implies

that the conjugacy is Lipschitz continuous and, furthermore, that it is C'**+.
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It is important to emphasize that there are many similar, but different, ways to achieve the same
conclusion that we obtain here. However, in this work, the main purpose is to exhaustively explore the
following heuristics: in low dimensions, the preservation of local asymptotic quantities by the conjugation
implies in rigidity.

This same heuristics is also present in appendix A} where we show that the coincidence of periodic

data, as discoursed before, also implies in smoothness for the conjugacy.

13






CHAPTER 2

Anosov Diffeomorphisms

In this chapter I will present some fine properties of Anosov diffeomorphisms. Those form a class of
systems that are of great importance to the study of dynamical systems. Their dynamics is very rich and
are an important example of a structurally stable system.

In the first two sections we define them and establish some basic results about them. In the third

section we discourse about their stability and classification.

2.1 Invariant Manifolds

Definition 2.1.1. A diffeomorphism f : M — M on a Riemann manifold M is said to be Anosov if there
are constants 0 < C, A > 1 and an invariant decomposition 7'M = E* @& E of the tangent bundle such
that forall p € M

|df"v| < CA™™w| , forallv e E*(p)

|df ~"u| < CA™"|v| , forallu € E*(p)

The distributions £° and E* are called stable and unstable distributions respectively. The constant A
is a rough estimate on the rate of contraction in the stable direction and expansion in the unstable direction.
The constant C' is to account for a correction in the firsts iterates. Often times one ignores this constant by
making it equal to 1. This can be done if you (as we) is not interested in the fine properties of a Riemann

manifold, because it is always possible to redefine the Riemann metric so that it happens:

Proposition 2.1.2. If f : M — M is Anosov and M is compact, then there is a Riemann metric | - |t on
M such that the constant C' in the definition[2.1.1)is 1.

Using this adapted norm, an Anosov diffeomorphism is an instantaneous contraction on the stable
direction ¥ and expansion in the unstable direction £, i.e. if S C M is any sufficiently small sub-
manifold of M tangent to the stable (resp. unstable) distribution E° (resp. E*) of a point p € M, then
d(f(p), f(q) < /\:1d(p, q) (resp. d(f(p), f(q)) > Alld(p, q)), where X is as close to \ as long as you
make ¢ — pin S.

This is nothing but saying that a map can be well approximated by its own derivative. However, for
Anosov diffeomorphisms we require these stable and unstable directions to be defined everywhere and
even more they are invariant. If we could integrate these distributions, the resulting manifolds would be
invariant and have contraction\expansion properties. One may ask themselves if those invariant manifolds

actually capture all the asymptotical behavior of a point or not. With this question I mean the following
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Definition 2.1.3. Given amap f : M — M and a point p € M, the stable and unstable manifold of p are

the sets
def.

W*(p) = {q € M|d(f"q, f"p) = 0 as n — +oo}
W(p) & {q € MId(f"q, f"p) = 0 as n — —oc}
respectively.
The sets W#*(p) and W*"(p) capture all asymptotical behavior at p in the sense that every point whose
orbit follows the trajectory of p is at one or another. At first, the name ‘manifold’ above is only formal, for

the sets W7 (p) are not necessarily manifolds. But only at first, because those sets are actually immersed

manifolds. It follows from the well know Stable Manifold Theorem:
Theorem 2.14. If f : M — M is an Anosov Diffeomorphism of class C”, r > 1 with invariant
decomposition TM = E° & E", then there exists an €y > 0 such that for every 0 < € < €y, the set

def.

We(p) = {q € Mld(f"p, f"q) < ¢&,Yn >0}

is a C" embedded disk that is and tangent to E° and of the same dimension of it. Moreover, the map

p — W2(p) is continuous in the C" topology.

It is clear from its definition that if £ satisfies the Theorem above then
We(p) = |J £ (WE(f"p))
neN

so that W#(p) is an immersed manifold. To avoid the use of unnecessary parameters, we may write this
local stable manifold W2 (p) as W _(p) without expliciting . Also, if W} (p) is a local stable manifold
for f~!, we may as well define the local unstable manifold of f as W (p) = W} (p). We obtain W*(p)

in the same manner.

Remark 2.1.5. In particular, since these manifolds are tangent to the distributions E“, the convergence in
definition[2.1.3]is exponentially fast.

This Theorem is classical, and the general proof can be easily found in many textbooks; see [Wen16].
Since we are interested in surface diffeomorphisms I will present the particular case for a fixed point in
dim M = 2:

Theorem 2.1.6. If f : M — M is C" and p € M is a fixed point such that the eigen values of d,, f are
A1 < 1 < \g then there exists a C' embedded curve W (p) satisfying

1. Invariance : f(W} (p)) € W .(p).
2. Convergence : For all ¢ € W} _(p) we have that f"(q) converges exponentially fast to p.

3. Uniqueness : If ¢ € M is so that f"(q) converges exponentially fast to p then there exists N € N
such that N (q) € Wi _(p).

4. Tangency : W} (p) is tangent to the eigen space of d, f associated to \;.

For the proof we will follow section 3.1 of Rafael Potrie’s lecture notes [Pot16]. The proof is based

on the following steps:

16



1. We construct a good local representation of f.
2. Considering a certain space of curves, we find one that is invariant by this local representation.

3. We show that this curve restricted to the origin is the one satisfying the conclusions of the Theorem.

Local Expression

Consider a local chart ® : U — R? around p with ®(p) = 0. Since p is a fixed point and f is a

def.

diffeomorphism, we have that f~!(U) is a neighborhood of p. Let V= U N f~1(U) and notice that
fE ®ofod (V) - R

is well defined. The benefit of this expression is that in this way, d5 f shares the same eigenvalues

0 <A1 <1< Ayofd,f. Also, up to linear change of coordinates, we may suppose that the eigenspaces

. (M0
o= (3 1)

f($7y) = ()\1.%’ + OC(ZC,y),)Qy + ﬁ(xvy))

of dg f are the & and ¢ axes. In particular

By Taylor’s Theorem, we can write

Where o and 3 are of class C'!, «(0) = 3(0) = 0 and V(0) = V3(0) = 0.
By continuity, given € > 0, we can take a 0 > 0 such that both ||| s)llc1 and ||8]os)llcr < €

are bounded by ¢. Let us now consider a smooth bump function 7 satisfying
Cn(a,y) = Lif[[(z,9)] < 3
- n(e,y) = 0,if [[(z, y)|| > 0
V(z Yl < 5

Using this function, we can extend f to a map in R? by defining

Near the origin f coincides with f , and far from the origin f coincides with dg f . However, ideally, f and
dg f are very similar near the origin. Hence, f turns out to be very close to the linear map dg f everywhere.

That is, f = dg f + 7 where ||r||c1 is very small. Explicitly, in coordinates:

f(z,y) = Mz +n(z,y)a(z, y), Aoy + n(z,y) Bz, y))
Lets write @ = na and 3 = np.

Claim 2.1.6.1. Given € > 0 it is possible to choose £ > 0 such that

{ [@(p1) — @(p2)| < Emin{d, [lp1 — 2}
B(p1) — B(pa)| < Emin{s, p1 — paf}}

17



Proof. Let p1, p2 € R2. Notice that |n(p;)| < 1 and that if ||p;|| < J we have

a(pi)] < lla] g 5 len il < 25

And if ||p;|| > 6 then
In(pi)a(pi)| =0 < ed

Thus
[@(p1) —a(p2)] < |a(pi)|+ [a@(p2)|
= [n(p1)a(p1)| + [n(p2)c(p2)|

= [n(p)l|a(p1)] + [n(p2)||a(p2)|
< ed+ed

= 2e0

In another way, if ||p1|| > 0 and ||p2|| > 0 we have

[a(p1) — @(p2)| =0
But if atleast one p; < J (say p1 < §), we have

n(p1)a(pr) — n(p2)a(p)|

n(p1)e(p1) — n(pr)apz)| + [n(p1)a(p2) — n(p2)o(p2)|
= [n(p1)l|a(p1) — a(p2)| + |a(p2)[|n(p1) — n(p2)]

<ellp1 — p2| + €63 lp1 — p2l]

= 5¢|lp1 — p2||

[@(p1) — a(p2)]

<

The same results holds for 5. Finally, taking & < % we finish the claim. O
In particular, this claim says that ||@|c1 < £ and || 3||c1 < . Thus, in fact
7 = daf +7

where ||7]| -1 is as small as we want. By the inverse function theorem, f is a diffeomorphism. Since f is
just dg f plus a very small perturbation, we would like to say that T_l is [dj f]_l plus something tiny.

Thankfully to this next technical lemma, we can actually say it

Lemma 2.1.7. Let A : E — E be a continuous linear isomorphism and A : E — E be of class C*.
Then, given e > 0 there exists a 09 > 0 such that is ||A||c1 < o then A + A is invertible and

(A+A)t=A"14¢
where e : E — E and ||e]|c1 < €.

Proof. The fact that for some &y > 0 the map A + A is invertible with C'* inverse follows directly from

the inverse function theorem. Given that we know that, the only way that € could be defined is by
eZ (A+A) -4
All we have to do is to verify that for any choice of ¢g > 0 we can make ||e||c1 < o.

18



ef.

Letz € E and puty = (A + A)(z). We have

deEH = de(A + A)_l - dyA_IH
= || [da(A+ A)] 7" = [de A ||
= || Inv(A 4+ d,;A) — Inv(A)||

Since the operator Inv : £(E) — L(€) is a continuous function, there exists a §; > 0 such that
(A + d,A) — Al < d; implies

| Inv(A + dyA) — Inv(A)]| < &0

Taking & < d; we obtain
|dyel| < eo, Yy e E

Also, by continuity of A~ there exists some 2 > 0 such that ||y’ — y|| < & implies that
147y — A7yl < =

For any y € E, we can find 2 € E such that y = (4 4+ A)(xz). For this z let y/ “= Az and notice that
ly' — |l = |A()|| < So. Thus if we choose 5y < da we have ||A~1y’ — A=1y|| < ¢, and hence

le()ll = (A +A)"Hy) = A7yl = A7 — A7ly|| < =
Thus ||e||c1 as desired. O

Corollary 2.1.8. Given € > 0 we can, if necessary, diminish € > 0 so that we can write

T @y) = O 2+ 0(z,9), Ay 'y + Oz, y))

where ||0]|c1 < € and ||9||cr < E.
This f is our desired local expression. We will now go to the next step in our proof, which is to search

for a f invariant curve.

Invariant Curve

We will look for an invariant curve among graphs of Lipschitz functions, i.e. lets consider the set
Lip; = {: R = R|p(0) = 0e Lipp < 1}

We endow this set with the following norm:

|- :Lip, —R
def. lel
o = el = SUD£0 ]
Claim 2.1.8.1. (Lipy, || - ||) is a Banach space.

Proof. Ttis clear that || - | defines a norm, we must only check that it is complete.

Let (¢n)nen C Lip; be a Cauchy sequence. In particular

[n(t) — om(t)]
|t]

< |l¢n — @ml|| — 0 when n,m — 400
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Thus (p,(t))nen € R is Cauchy for every ¢ € R. Since R is complete, this sequence converges.
Define ¢(t) = limy,—, 1 o0 ¢ (t). By definition of being a Cauchy sequence, given ¢ > 0 there exists a
N € N such that for all m,n > N we have

lon — omll <e

Fixing m and taking the limit as n — +oc we obtain that

e —emll <e

Thus, it seams that ¢,, — . It only remais to show that ¢ € Lip;. For it, just notice that for this same
m > N that we fixed, we have

p(t) = (s)] < le) = emO)] + lem(t) = em(s)] + [om(s) — @(s)|
< 2e + Lip |t — 3]
< 2+ |t — s

Since € > 0 was arbitrary, we have
o(t) —@(s)| < |t — s

so that ¢ € Lip; and the claim is proven. O

The graph graph ¢ of a function ¢ € Lip, is invariant by f if f(graph ) = graph ¢, or equivalently,
. ——1
if graph o = f ~(graph ).

To proceed we need the following claim

Claim 2.1.8.2. If € > 0 is small enough, it holds that for all ¢ € Lip; we have that f_l (graph ¢) is the

graph of a function.

Proof. A set A C R? is the graph of a function in R if for all 2 € R there is one and only one y € R such
that (z,y) € A. Equivalently, let 7 : R? — R be the projection in the first coordinate; a set A C R? is the
graph of a function in R if the restriction to A of the projection is a bijection.

We have that

et € R}

T graphe) ={F
{ATTE+9(t, (1), A3 M o(t) + D(t, o(t))|t € R}

Thus using ¢ as a parameter of f_l (graph ¢), we can write pz"?_l (t) = A\t +0(t, (t)). Notice

that

(graph o)

16(, ¢(2)) = 0(s, ()| <E[(E,(2)) = (5, 0(s))]
)

<EV(t—5)2+(t—9)?

= V/2E|t — 5|
Thus Lip(6(-, ¢(-))) < v/2&. Hence, by the (Lipschitz) Inverse Function Theorem, if Z is sufficiently
small, 7["?71 (graph ) is a lipeomorphism and this concludes the claim. O

20



Since the graph of a function completely characterizes the function, this claim says that for every
@ € Lip, there is one and only one function whose graph is ?71 (graph o). Thus we have a well defined
function f* that takes a map ¢ € Lip; and returns the unique map f_lgo such that

graph 7o = T (graph o) (*)

Now, the task to find a function whose graph is invariant to f has been converted into the task to find a

fixed point for the map f*. To do it we must first understand the functions f*¢. Let’s start by noticing
that, since graphs are parameterized by a single real parameter, the equation (*) implies that for every
t € R there exists a N,(t) € R such that

(t, fro(t) = f (Ny(t), p(Ny(t))) ¢))

Claim 2.1.8.3. Given ¢ € Lip,, the map N, : R — R given by the formula above is well defined and a

bijection.

Proof. Tf N, (t) € R also satisfies (1), them

Thus

Thus

And again, since f is a bijection, we have

(N (1), 9 (Np(2))) 7 (Nip(5), p(Np(s))) = Nop(t) # Ny(s) ou p(Nyp(t)) # ¢(Ny(5))
= Ny(t) # Ny(s)

so that N, is injective. To see that IV, is surjective, let £ € R. By equation (*), there must be a K (t) € R

such that
1

(K (), [ro(E (1) = F (t,¢(t))

Thus, by definition of IV,,, we have that N, (K (t)) = t. Hence N,, is also surjective, and the claim is
proved.
O
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Back to equation (1), opening the first coordinate shows that

t= AT NG (8) + 0(Np(t), (N, (1))

By the claim, IV, is a bijection, so we can write ¢ = N 1(s). With this the expression above becomes

Ny (s) = AL s 4+ 0(s, o(s))

Notice that this is the same expression that we obtained in claim [2.1.8.2] where we saw that this is a

lipeomorphism. In particular, the (Lipchitz) Inverse Function Theorem gives that Lip(NV,,) < m,
T
ie. " |
-5
N,(t) —
INaD) = Nolo)] < 3o

Now that we have understood a little about the function N, we can go back to equation (2) and open the

second coordinate
Fro(t) = 25 (N (1)) + I(Ny(t), (N (1))
Claim 2.1.8.4. If  is small enough, then given ¢ € Lip; we have that f*¢ € Lip,.

Proof. We have that

[FFe(t) = Fro(s)] =123 o(Ng(1) + D(Np(t), p(Np(£)) = A5 M p(Nop () — (N(s), (N (5)))]
< A3 (N () = (N (5)] = [9( go()wp( (1)) = (Np(s), (N (s)))]
<A IN(t) = Ny (s)| = V22| Ny (t) — Ny ()|

Since /\2 A1 < 1, in the limit where ¢ — 0 we have that - 7@2 — )\2_1/\1 < 1. Thus, for € small, we

get
[F*o(t) — fro(s) < [t — 5]
Also, (0,0) € graph ¢, Thus
(0,0)=f (0,0) € f "(graphep) = graph f*¢

and f*p(0) = 0. With all that we conclude that f*¢ € Lip, and finish the claim. O

Thanks to this claim, we now have a well defined map
f*:Lip; — Lip,
@ = fre
It would be great if this map f* were a contraction. In that way we could use Banach’s Fixed Point
Theorem to find an unique fixed point, i.e. a unique invariant curve ¢* € Lip;, which is exactly what we

want. In fact, it does hold that f* is a contraction, and to see it we will need some computations. Before

them, we need the following lemma:

Lemma 2.1.9. Let (X, d) be a metric space, £ € R<g, 0 < £ < X and suppose that (fy : R — R),cx is

a family of homeomorphisms satisfying

{\h@%—h@ﬂﬁéﬂ%yW! (1)
| fo(£) = M| < elt] 2)
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Then -1
5106 £ € ey gy Sl

Proof. By equation (2) we have that
f;r(t) = A+ 7y (t> (1)

where Lipr, < e. Using (2) we obtain

[fo(t) = fy(B)] = [ra(t) — ry(8)] < Ed(z, y)lt]

Since f, is an homeomorphism we can write t = f, () for some s. Using this in (i) we get

Fol(s) =2 = AT (£ (9))
Thus

[fa () = St = A ra (£ (s) = 7“y(J"y’l(S))!
<A Hra(fa () = ry (£ )+ Ay (f () =y (fy ()]
< ATHed(z, )1 f )+ AT Lipry £ (s) — 7 ()]
< A d(@ ) )+ A el £ () — £y (s)]

Rearranging the terms with | ! (s) — Iy L(s)| we obtain

-1

5765) = ) < 2t )

More over, by the Lipschitz Inverse Function Theorem, Lip(f; ') < W < )\ . Hence
-1 1 A1
16 =7 ) < Tyt gy Sl s
as desired. O

Corollary 2.1.10. Ifg > 0 is small enough, then
A€
(1-MvV2e) (A = V28)

Proof. If necessary, diminish Z > 0 so that v/2¢ < )\*1 Apply the lemma above for X = Lip,, £ =,
A = \[', e = V22 and the family (N ‘R = R)yeLip, -

[N (1) = Ng(t)] < (e, @)lt|

O

With this result, we can now show that f* is indeed a contraction:

Claim 2.1.10.1. If £ > 0 is small enough, then there exists a y € (0, 1) such that Lip(f*) < v
Proof. We have that

[Fo(t) = FF3(t) = 1Ay e(Ny(t)
<25 (N (1)) — &(

HI(Ng (1), o (N,

+H[I(N, (1),

+I(Np(t), (N (1)) = A3 G(Np(s)) — I (Nip(s), G(Nig(s)))|
¢(t))\+)\21|<P(N¢(t)) P(Np(1))]

£))) = O(Np(t), p(Np(t)))]

P(Ny(t))

Ny (1)) = O(Np (1), 2(Na (1))
Where, by definition
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Also, since [Ny (t) — Ny (s)| < 5 |t sl we have that

—V/2E
p(N. ¢ <d(p, ¢ —|t
(N (8)) = PN (8)] < d( ) \fH
Thus using that Lip(¢) < 1 and corollary 2.1.10] we see that
- - A1E -
PN (8)) = AN (8)] < d(p, P)It]

1-AVE)N - VE)

Simillarly, by corollary 2.1.8]and the same arguments above, we also see that
[9(Np(t), p(Np(t))) — DNy (t), B(Ny(t)))] < Ed(p, )=t
and

- - - AE -
N0, BNA0) = V), NSO < VB e dion B

Thus, gathering all those estimates above, we obtain

- == At Ay 1A16 1
[Frolt) = frett)] 3( VE T TR, Ve N v
ME ~
+V2E e(l_mg;;_l_ﬁgp) d(, Bt}

In the limit where € — 0, the coefficient above goes to A5 'A\; < 1. Hence we can take a y € (A; '\, 1),

which for € small, satisfies
|Fro(t) — F*o(t)| < vd(p, @)t

For ¢ # 0 this means that

[fro(t) — F*o(t)|
i

Taking the supremum over all £ # 0 we conclude that

< 7vlle — &l

e = Fell <lle — 2l
Hence Lip(f*) < + as desired. O

Finally, by this claim, f* is a contraction. Hence, by Banach’s Fixed Point Theorem, we have an
unique invariant map ¢* € Lip; whose graph is an invariant curve.
We define W}° .(p) in the chart ® by the restriction of this curve to the ball B;(0). Le.
2

def.

Wise(p) & @1 (graph* 1 B3 (0))

We will now prove that this curve satisfies the conclusions of the Theorem.

Convergence and Invariance

Consider the dynamics restricted to this graph

— R
t = Mt +alt¢*(t))

pi=m ofo

‘gmph P* |gmph P* :
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and notice that the following diagram commutes

-1
graph ¢*

s
R —— graph ¢*

b

R m graph ¢*
loc

Forp € W _,letx = ®(p). Since x € graph ¢*, we can write x = 7 ;Tlaph o+ (t) for some ¢. With this

we have
And in particular

However, notice that

lp(t) = p(s)| = [\t +a(t, *(t) — Ais —a(s, p*(s))]
< (M1 +V28)|t — 5|

Thus, for € < 1?}‘1, we have that p is a contraction. Hence, since p(0) = 0, it holds that p"(t) — 0

exponentially fast. Also, since ¢*(0) = 0 and o* is Lipschitz, it follows that f () — 0 exponentially
fast. That is, f™(po) — p exponentially fast. In particular, ?’Wfo . is a contraction, so f (We.) CWe ..

Uniqueness

Suppose that ¢ € M is such that f"(q) — p exponentially fast. In particular, f(q) is eventually
in the domain of our local expression. Thus, for n € N big, we can construct a sequence of points
(T, yn) = ®(f"(q)) € R? such that (z,,,y,) — (0,0) exponentially fast. Now, to prove that f"(q) is
eventually in W}? (p) is to prove that (z,, y,) is eventually in graph(yp*).

This sequence satisfies (2,11, Ynt1) = ® o f 0 ®~(z,,,yn). Hence, since (1, i) is eventually in
B% (0) (where f coincides with ® o f o ®~1), we have (2,11, Yn+1) = f(2n, yn) for all n big enough.

Claim 2.1.10.2. If we choose € > 0 small enough, then |y, 11| < |yy,| only if |yn| < |4

Proof. Suppose that for some n € N we have |y,,| > |x,|. In particular, we have ||(z,,, yn)|| < V2|yn|.
Thus, by the definition of the sequence and claim [2.1.6.1] we have

[Ynt1] = [Moyn + B(@ns yn)| > Xolyn| — 1B(@n, yn)| > Aalyn| — V2E|yn| = (N2 — V/28)|ya|

Since Ao > 1, we can chose € > (0 small enough so that Ao — V22 > 1 which proves the claim. ]

Since we know that (z,, y,) — 0, we also know that y,, — 0. Thus, there must be some n’s such that
Un+1 < Yn. By the claim above, for these n’s, we must have y,, < x,. Actually, this must hold for every

n:

Claim 2.1.10.3. For all n € N, it holds that |y,| < |z].
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Proof. Suppose by contradiction that there is a ng € N such that |y,,| > |2y, |. Then, as before, we have
1 (@ng Yno )|l < V/2|@n,|. Thus, by the definition of the sequence and claim [2.1.6.1

|yn0+1’ > ()‘2 - \/ig)kl/no‘

and
|Znot1] = [M1@1 + WTng, Yno )| < (A1 + V28) Yo |
Thus
Ynotl | A2 — V28
Tng+1 o )\1 + \/??

Since 0 < A1 < A2, we can take € > 0 small enough so that the term above is greater than 1. In particular
|Yno+1| > |Zng+1] and by induction |y, | > |z, | for every n > ng. However, by claim [2.1.6.1] this means
that y,, is increasing for n > ng. This contradicts the fact that y,, — 0 and concludes the claim. ]

Now, consider the subset Lip, (¢) of Lip; given by

Lip;(¢q) = {¢ € Lip; |¢(xn) = yn, Vn € N}

Claim 2.1.10.4. Lip,(q) is a non empty closed f*-invariant subset of Lip; .

Proof. 1t is nonempty because it contains the map g defined by
©o(zn) =yn and ¢ is linear between each x,,

which is in Lip; by claim[2.1.10.3| To show that it is closed, let { ¢y }ren € Lip;(g) be a sequence such
that ¢, — ¢ € Lip;. We have that

o(Tn) = lim or(Tn) = lim yn = yn

Thus ¢ € Lip; (q) and Lip;(q) is in fact closed. To show that it is f* invariant, let ¢ € Lip,. We already

know that f*p € Lip;, thus we must only show that f*¢(z,,) = y,. Recall that by definition of f* we
have

S~ graph(p)) = graph(f*¢)

Also, by definition of the sequence, we have (z,,, ¥) = f = (Zn41, Yns1)- Since ¢ € Lip; (q) we have
(%Tnt1,Yn)) € graph(p), thus

(Zn, yn) € f-1(graph(p)) = graph(f*y)

Le. f*¢(2n) = yn and the claim is proven. O

From this and claim[2.1.10.1, we can use Banach’s Fixed Point Theorem to find a f* invariant map

¢ By unicity we must have p§ = ¢*, which means that ¢*(x,,) = y,. This is what we wanted.
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Tangency and Smoothness

To obtain the smoothness, notice that since (x is Lipschitz, the accumulation points of

¢*(x) — ¢*(@0)
T — X9

as T — xy

is a subset of [—1, 1]. In particular, if you define a cone at ¥ € R? of width § > 0 and diameter 1 > 0

tangent to Z as the set
d

C(Z,6,m) = {(z,y) € By(@)|ly| < olz|}

It follows that every piece of the graph of (x* is contained in a cone of width 1. In particular, the
derivative of f—! contracts the width of these cones. Hence, since the graph is invariant, for every point
# € graph(¢*) you can obtain a tangent line L C (), f~"(C(f" (&), 1,7,)). With a similar argument,
you show that those eigenspaces must vary continuously; otherwise these cones wouldn’t degenerate.
At 0 the derivative is diagonal; thus the tangent line must be parallel to the = axis. Hence, W} .(p)
is tangent to the eigenspace of d,, f associated to the contracting eigenvalue A\1. And the last item of the

theorem is proved. 0

2.2 Local Product Structure

A crucial consequence of the existence of those stable and unstable manifolds is that, locally, you can use

them as coordinates. This is called the local product structure. To be more precise:

Definition 2.2.1 (Product Neighborhood). A system f : M — M is said to have the local product
structure if for every p € M there is an open neighborhood U of p parameterized by a continuous map

P Wlf)c(p) X Wlléc(p) —U

such that ®(q1, ¢2) € W"(¢q1) N W*(q2). Any such neighborhood is called a product neighborhood (or
foliated box).

To obtain this, notice that the continuity of df and the uniform contraction of £* implies that this

distribution is continuous:
Lemma 2.2.2. The distribution E® is Holder continuous.
Proof. See Theorem 19.1.6 of [KH95]. O

The same holds for £*. Since F£® and F* are transverse at each point, the angle between them is
positive. Thus, by their continuity, it is locally bounded from 0. Hence, for small neighborhoods, the
manifolds W (p) and W} (p) form a collection of smooth uniformly transverse curves; in particular

they intersect each other at one and at most one point:

Proposition 2.2.3. Given p € M there exists €y > 0 such that for every € < € there is a § > 0 such that
for every neighborhood U of p with diameter less than ¢, it holds that W2 (q1) N W (q2) consists of a
single point for every two points q1,qs € U.

With this proposition we easily obtain the local product structure:
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Theorem 2.2.4. If f : M — M is Anosov, then it as the local product structure.

Proof. Take p € M and let e, > 0 be as in the proposition above. We have that W (p) and Wy'(p) are
within a § neighborhood of p. Hence, the map ®; that takes (q1, g2) € W5 (p) x Wy'(p) and sends it to
the unique element of W (q1) N W2(q2) is well defined continuous map. By unicity, if ¢ = ®5(q1, g2),
then ¢; is the unique element in W (q) N W2 (p) and g2 is the unique element in W2 (q) N W (p). Thus,
for any ¢’ < 4, ®s restricted to the closure of W5, (p) x Wi (p) is a homeomorphism. In particular, we

obtain a parametrization ®5 : W5 (p) x Wi (p) for any ¢’ < 0. O
A fundamental use of this structure is to obtain Holonomy maps:
Definition 2.2.5. A stable Holonomy map from p € M to ¢ € M is any continuous map of the form

/HP—NZ : quéc(p) - MZc(q)
T Hpog(r) € WH(r) N W*(q)

such that H,,_,,(p) = ¢q

These maps glue pieces of unstable manifolds of a point to those of another by carrying them along
stable manifolds. Their regularity is of great importance for the study of the dynamics; see, for example
[Gu23].. For us, they will be an essential tool for the construction of the Margulis family in chapter 5]

Using the local product structure we can easily show their existence at short distances: Given a product
neighborhood U with parametrization ® of a point p € M, you can define an Holonomy H,,_,, for any
q € UNWig,.(p) by

def.

re V[/l%c(p) = /Hp—ﬂl(r) = @(q,?‘) € I/Vl’(uyc(q)

by lemma [2.2.2] this map is Holder.

In fact, in our context of surface Anosov diffeomorphisms, they are actually C''+®. We prove it in
[.2.7)using that we can construct a very special kind of parameter for the unstable manifolds (the affine
structures 4.2.1)).

Their existence is not limited to small neighborhoods; in chapter [5| we’ll show that for every open
segment of unstable leaf we can map uniformly small sets everywhere inside it. The usefulness of this
procedure is that the set we have just mapped inside the other is connected by segments of stable manifolds
(which will have uniform length). Thus, as we iterate, this small set gets exponentially closer to the big

one. This allows us, in some sense, to pass information from one to another (see proposition [5.1.4).

2.3 Topological Classification on Dimension Two

We have now defined the type of systems that we will work on and some properties that come with them.
The question that we ask now is: How many Anosov maps exist?

This question must be made carefully. If you pay attention to the definition of Anosov diffeomorphism,
it is clearly open in the C'! topology. Hence, if there is one Anosov map, then there is an entire infinite-
dimensional open set of them. It is not hard to find some starting examples.

The simplest one is an hyperbolic matrix in R™. Le. if A € GL(n,R) is a n x n real invertible
matrix with eigenvalues |A1| < -+ < A\ <1 < Ay < -+- < Ay, then A : R” — R” is an Anosov

diffeomorphism. However, that’s not the best example, because some of their properties we want for them
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require the space to be compact. We can make a better one by making its domain more interesting: The
n-torus is the quotient space T" = R"/Z", where Z" acts in R" by translations. If the coefficients of
an x n matrix A are all integers, it preservers the the ‘grid’ Z". Thus, the class [A(p)] € T™ does not

depend on the representative of [p] € T™. In particular, we have another example

Example 2.3.1 (Linear Anosov Diffeomorphisms). If A € SL(n,Z) is hyperbolic, then f4 : T — T"

given by fa([p]) = [A(p)] is an Anosov diffeomorphism in T".
Taking small perturbations of these examples we obtain an infinity of Anosov diffeomorphisms. The

question now is whether we can topologically classify them. By this we mean

Definition 2.3.2. Two continuous maps f : M — M and g : N — N are said to be topologically
conjugated if there exists an homeomorphism h : M — N such that ho f = go h.

Topological conjugacy is an equivalence relation. To topologically classify all Anosov maps, we mean
finding all classes of topological conjugacy. This result is partially given when the map is of codimension

one, i.e. when either £ or E* is one-dimensional:

Theorem 2.3.3. If f : M — M is a codimension one Anosov diffeomorphism, then f is topologically

conjugated to a linear toral automorphism.

This is a well-known result, initially proved under some hypothesis by Franks in his thesis and later
stated as here by Newhouse [New70]]. Curiously, that simple example [2.3. 1| turned out to be very general.
In particular, in dimensions 2 and 3, every Anosov diffeomorphism must be of codimension one. Hence,
for these low dimensions, topologically, there are only linear toral Anosov diffeomorphisms, and the
classification is complete.

For higher dimensions, the topological problem is still open for now. In particular, it is not even known
which kind of manifolds supports Anosov diffeomorphisms. It is a conjecture that a closed manifold that
supports it is homeomorphic to an infranilmanifold, which is, in some sense, a generalization of the torus.

Anyway. Since we are interested in surface Anosov diffeomorphisms f : M — M, we will, without
loss of generality, assume that A/ = T? and that he is conjugated to linear Toral automorphism f4 for
some hyperbolic matrix A € SL(2,7Z).

A consequence of this classification is that, for our case Holonomies are globally defined:

Corollary 2.3.4. If f : T? — T? is an Anosov diffeomorphism, then for every two unstable leaves W*(p)
and W*"(q) there is a bijective Holonomy map H : W*(p) — W"(q).

Proof. Let h : T?> — T? be the conjugacy between f and its linearization f4. Let e € R? be the
eigenvector of A associated to its contracting eigenvalue. Since the unstable and stable leaves of f4
are (projections of) lines, it follows that the holonomies of f4 between any two points ¢; € T? and
g2 € W73, (q1) are given by
Heysae 0 WY, (1) — Wi, (q2)
q = q+te’

where ¢ € R is given by the distance of ¢; to ¢ in W;A(ql). Since h is a homeomorphism and T2

is compact, both i and h~! is uniformly continuous; hence, they send Cauchy sequences in Cauchy
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sequences. If you recall the definitions of the unstable and stable manifolds (see definition [2.1.3)), it means
that L(W7 (p)) = W7, (h(p)) for o = s, u.

Thus, for any two unstable leaves W (p), W}(q) and any p € W;(p) N W} (q), the induced map
Hp—p “hlo Hh(p)—sh(p) © b is a globally defined Holonomy map for f. By Theorem ahead, we
can always find such p € W (p) N W'(g), which concludes the proof. O

This is of great use because, as said before, Holonomies will be very important for us. In this sense,

another consequence of this classification is that, in our case, unstable and stable leaves are dense:

Theorem 2.3.5. If f : T? — T2 is an Anosov diffeomorphism, then all its stable and unstable manifolds

are dense in T2.

Proof. We know that W¢ (p) = h_l(W}‘ZA (h(p)) (see the proof of the corollary above). Since h~! is
continuous, it suffices to show that the stable and unstable manifolds of f4 are dense. However, the
condition that A € SL(A,7Z) with eigenvalues A; < 1 < A2 implies that the eigenvectors e® and e* of A
have irrational angles (there is no non-trivial solution for €? - 2’ € Z for 2 € Z and ¢ = s, u). This, in

turn, implies that the projection of the subspaces spanned by e® and e* are dense in T2. O

This result will be used later on in chapter [5]to prove the existence of uniformly bounded Holonomies

between points far away (see proposition [5.1.4).

The C' Regularity of the Foliations

This subsection enters here as a remark: A foliation .% of a n-dimensional manifold M is a collection
of disjoint k-dimensional (k fixed) immersed connected manifolds such that for every p € M there is
Fp € F withp € F),.

An atlas A for a foliation .7 is a collection of homeomorphisms {®,, : D¥ x D"~* — M} such that
(D x {y}) C Fa(oy)-

Definition 2.3.6. A foliation .% is said to be of class C", r > 1, if it admits an atlas made of C”

diffeomorphisms.

By Theorem (and the remarks after it) we have a well defined stable foliation W* = {W?*(p)} e rsr
that is continuous. However, this regularity is not optimal for us. There is a weaker notion of regularity

for foliations:

Definition 2.3.7. A foliation .7 is said to be weak-C", r > 1, if every leaf .%, € .% is a C" immersed

manifold and every local holonomy map between its leaves is of class C".

It is immediate that C" regularity implies in weak-C" regularity. But, it is not true, in general, that
weak-C" regularity implies C" regularity. However, in Theorem 6.1 of [PSWO0O] they prove that C" ¢
and weak-C" ™ are actually equivalent if the holonomies are uniform. Theorem already says that
the leaves are C'", and in Proposition we give a proof that the holonomies are of class C'* (with

uniformly bounded Jacobian). Thus

Theorem 2.3.8. If f : T2 — T2 is an Anosov diffeomorphism of class C?, then its stable and unstable

foliations are C1 T,
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The extra regularity that we obtain here is a low-dimensional phenomena: to obtain the regularity of
the stable foliation, we need the regularity of the stable holonomies, which we’ll prove using the affine
parameters (see prop. [4.2.1). Those require the unstable leaves to be one-dimensional. Since the argument
is symmetric, to obtain the regularity for the unstable foliation (by our methods), we also need the stable

leaves to be one-dimensional.
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CHAPTER 3

The Ergodic Theory of Anosov
Diffeomorphisms

In this chapter I will present a brief survey on Ergodic Theory. This is a major field of dynamics and is of
fundamental importance for the understanding of what follows in the following chapters.

Ergodic Theory is the study of dynamics under the view of measures. It’s principal concepts are those
of invariant measures and ergodicity. Its roots were set not so long ago (less than 200 years) when, to
establish a wonderful result about the energy of a gas, Boltzmann supposed that the state of a system
would equally float around all accessible states so that the time averages of any measurable property of
the system would equal its average under all states.

This so-called ‘Ergodic Hypothesis’ is not true in all generality; however, it drew the attention of many.
Over time this hypothesis unfolded a grand scope of applicability and culminated in a formal statement

known as Birkhoff’s Ergodic Theorem, which characterizes exactly when the hypothesis is true.

3.1 The Ergodic Theorem

Birkhoff’s Theorem

For this section, (X, B3) is a measurable space. Le. X is a set, and B is a sigma algebra, and f : X — X

is a measurable function. The following starts the theory:

Definition 3.1.1. A measure x in (X, B) is said to be f invariant if for every measurable set A € B we
have that j(A) = u(f~1A).

As always, let’s interpret f as some physical process: the dynamics f takes a state € X in the
present and returns its evolution f(z) one unit of time in the future. With this in mind, the meaning of
an invariant measure is that the chance p(A) of finding a state in a configuration A is the same chance
u(T~LA) of finding a state € f~1(A) that in a unit of time will be in A.

The pair (f, 1) is said to be a measurable system. Some examples are:

Example 3.1.2. The pair (T, Leb) where T : R™ — R" is a diffeomorphism with JacT = 1 and Leb is

the Lebesgue measure in R™. It follows directly from the change of variables formula:

Leb(A) = / dLeb = / JacT'dLeb = / dLeb = Leb(T 1 A)
A T-1A T-14
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Example 3.1.3. The pair (T, Leb) where S! is the circle identified as R modulo 1 and T : S* — S' is
given by T'(x) = 2z mod 1. It may seem strange that T preserves Lebesgue, because T of a (small)
set has twice the length of the set. However, notice that the definition of invariant measure requires that
Leb(A) = Leb(T~'A) and not that Leb(A) = Leb(T A). It happens that for every interval I C S?,
T~Y(I) consists of two intervals with half the size of I; consequently, T in fact preserves the measure
Leb.

Example 3.1.4. The pair (T, 6, ) where p € Per,, (T) is a periodic point and 6y, is the sum of diracs

along the orbit of p: 6., = 1 ?:_01 i

Example is also a reflection of a much more interesting behavior: If you consider § = limy, 0,
then it follows directly from the periodicity of p that § = J,,,,. But this convergence is not limited to the
orbit of p; it also happens that if g is in the stable manifold of p then lim,, d,,, also exists and is equal to
this same d. All those points are said to be in the basin of J (see definition [3.3.6) and in section we
study a particular type of measure that have a lot of points in their basin (see Theorem [3.3.7).

Now, we have the most basic definition of the theory and some examples. The first connection of
this concept with the dynamics comes in the form of Poincaré’s Recurrence Theorem. It says that an
invariant measure only ‘sees’ recurrent points, i.e. for almost every x € X there is a sequence of iterates
f™(x), f*2(x),...such that f™(x) F2ERO o Tt proof is simple, so we give it here:

Theorem 3.1.5. If (f, ) is a measurable system and (i is a finite Borel measure in a second countable

metric space X, then p-almost every point is recurrent.

Proof. We first begin by proving the following claim:
Claim 3.1.5.1. For all measurable A C X with p(A) > 0 it holds that

p({z € Alf*(z) ¢ A, Vn > 1}) = 0

In fact, suppose this claim was false. Let B be the set above. Since p is f-invariant, all the sets
B, f~Y(B), f~2(B), ... have the same positive measure. Hence, since y is finite, they can’t be all disjoint.
Thus, there are some n > m > 0 such that f~™(B) N f~"(B) # (). Consequently

frmmB)N fTMB)) CfTM(B)NB £ D

Take a y in f*~"™(B) N B. This point satisfies y € B and f" ™ (y) € B. But B C A, hence y € A and
fk(y) € A, where k L — m > 0. This contradicts the definition of y being in B and proves the claim.

This claim asserts that almost every point in a set returns to itself. To pass from this to recurrence,
let’s use that X is second countable to take a dense subset {xy, }neny € X. The balls B, , < B (x)
for m € N fixed form a cover of X. By the claim, each B,,, ,, has a subset A, ,,, of full measurg such

that every point in A, ,,, returns to B, ,,. Define A,,, by
An = | Bayim
neN

and

A= () Am
meN
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Each A, has full measure; thus, A as full measure. I claim that every z € A is recurrent. In fact, let
V be a neighborhood of z. For a sufficiently small ¢ > 0, we have that B.(z) C V. Let m € N be
big enough so that % < 5, and find a n € N such that d(z,,z) < % The ball B, ,, contains x and
is contained in V. By definition of x € A, we have that x € A, ,,,, hence there is a £ > 0 such that
fk(x) € B, m € V. Since V was an arbitrary neighborhood of x, we conclude that x is recurrent and

the Theorem is proven. O

This Theorem gives a first heuristic of the theory: an invariant measure only sees non-wandering
points. It is in favor of the initial intuition that states of a system do not go away. However, there are some
qualitative flaws about this theorem. That is, we don’t know how much time the points take to return close
to themselves. Also, we don’t know the behavior of the points along their orbits; we only know that they
come back.

Lets try to formalize what we want. Let C°(X) denote the set of all continuous functions from X to R.
Such a continuous function ¢ € C°(X) takes a state z € X of our system and returns a real value ¢()
that may be understood as some property of our system that we can observe. For example, if X was an
ensemble of gases, some familiar observables would be its pressure P, its volume V/, and its temperature

7ﬂ Given a state z € X, the time average of ¢ at x is simply its mean value along the orbit of x:

n

e n_l 71 .

when this limit exists. Now, for the space mean, we need to first take a measure  and then compute [ pdy.
Also, for this to be a mean, p should be normalized, i.e. we require that  is a probability (u(X) = 1).
The ergodic hypothesis is then

“ba) = [

At first, there is a drastic ambiguity between these values: The time mean depends on the starting
point and the space mean depends on the chosen measure. The major hint relating these values is that for
invariant measures f ! supp p = supp p and @(fx) = $(z), i.e., invariant measures can only ‘see’ an
invariant set and the time mean is invariant under f.

After all this discusion, Birkhoff’s Ergodic Theorem enters with the following assertion which is

almost what we wanted

Theorem 3.1.6 (Birkhoft’s Ergodic Theorem). Suppose p is a f-invariant probability measure. Then, for
every ¢ € L' (1), its time mean $ exists for ji-almost every point in X and

/@duz/sodu

This theorem is excellent, because it says that you can first take the time mean and then integrate it
for the same value. Also, in some sense, it says that an invariant measure is uniform along orbits, thus,
it seems to be a combination of measures that only sees ‘one orbit’ each. Lets try to define this class of

measures:

Definition 3.1.7 (Ergodic Measure). An invariant probability measure p is said to be ergodic if for every
measurable subset A C X that is invariant (in the sense that f~*A = A) we have u(A) € {0,1}.

'Somehow, in many cases, those are all the relevant observables.
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If 11 is an ergodic measure, we say that (f, u1) is an ergodic system. The support of an ergodic measure
is an invariant set and there is no smaller invariant set A C supp p with intermediate value, i.e. such that
0 < pu(A) < 1. In fact, you can prove that supp p will always be the closure of some orbit. This is one
way to define an ergodic measure, but, if you may prefer, there are many equivalent definitions for it.

Some of interest are the following:
Lemma 3.1.8. For a f-invariant measure p, the following is equivalent:
(1) pisergodic.

(2) For every p € L(p) invariant (i.e. such that p(fz) = p(x)) we have that p(x) is constant for
u-almost every x € X.
(3) For A C X measurable we have that the mean sojourn time of a point x in A

dof. - C’ard{O <j<n-1|fi(z) € A}
=" lim

n n

Ta(z)
exists for p-almost every point and is equal to the measure of A.

Item (3) makes it explicit how an ergodic measure behaves with the dynamics: For a given region
A C X, almost every state float around the space spending an amount of time in A proportional to its
measure. Item (2) is clearly a strong property, after all it is something that works for every ¢ € L(u).
If you take in account that the time average ¢ of a ¢ € L' () is a f-invariant function and that for X

compact we have C°(X) C L!(u), we can extract the following case from Birkhoff’s Ergodic Theorem

Corollary 3.1.9. If X is compact and i is an ergodic measure, then for every observable ¢ € C°(X), its

time average () exists for pi-almost every x € X and moreover, for these points, $(x) = [ @dp.

This was our initial goal. The answer we got is that the Ergodic Hypothesis is true when the measure
is Ergodic. Stating it like that seems like we just made an ad hoc: Ergodic measure is a measure satisfying
the Ergodic Hypothesis. This is, in fact, what we did. However, the surprising point that we haven’t
touched yet is that those definitions are very natural. Actually, it happens that every map f : X — X is

ergodic! (For some measure).

Existence of Ergodic Measures

First, let M (X) be the set of all finite measures in X. It is a vector space thus we can endow it with the
weak* topology. Let P(X) C M(X) denote the set of all probability measures in X.

Theorem 3.1.10. The set P(X) of all probability measures in X is compact in the weak* topology.

Lets define the push forward f,p of p by the measure f,pu(A) = p(f~1A). With this, an invariant

measure (see definition 3.1.1)) is precisely a fixed point of the map fi.

Lemma 3.1.11. If f : X — X is continuous, then the map f. : M(X) — M(X) is continuous in the
weak* topology.

The restriction fi|p(x) : P(M) — P(X) is well defined and the set P(.X) is compact and convex,
hence, by Tychonoff’s fixed point theorem, there exists a u € P(X) such that f,u = p. Let Py(X)

denote the set off all f-invariant measures. What we have shown is that

36



Theorem 3.1.12. If f : X — X is continuous, then there exists an invariant probability measure
me Pf(X )

Now we know that there exists invariant measures, but we also want ergodic measures. For it, le us
recall that a measure v is said to absolutely continuous with respect to another measure p if for every
measurable set A C X such that u(A) = 0 we have v(A) = 0. To denote it we write v < p.

Lemma 3.1.13. If i1 and o are invariant measures and | is ergodic, then ji1 = L
Proof. Let ¢ be a bounded measurable function, then, since po is ergodic, we have
o) = [ i
for po-almost every point. Since 1 < o, it follows that
b(a) = [ s

is also constant for p;-almost every point. Hence

/ edpr = / ed o

and by the arbitrarily of ¢ we obtain p; = . O

As said before, P¢(X) is convex. Using the lemma above it follows that the set of ergodic measures

are the extrema of Py (M):

Lemma 3.1.14. An invariant measure 1 € Py(X) is ergodic if and only if there is no t € (0,1) and
P, p2 € Pr(X) with py # po such that 1 = tpy + (1 —t) po.

Proof. If 11 is not ergodic, we can find an invariant set B C X with intermediate measure p(B) € (0, 1).

In particular x(B) and p(B€) are both non zero and for every measurable A C X we can write

M(A):;L(AQB) w(A N B¢
#(B) u(B°)
where both measures zi;(A) o u sjég?) and £ LA(E?)C) are invariant probability measures. Hence, we have

shown that if we cannot write p like in the statement, p is ergodic.

Now, suppose that y is ergodic and that p(A) = tui(A) + (1 — t)uz(A) where t € (0,1) and
P, p2 € Pp(X). If 1(A) = 0 we must have p1(A) = 0 and pz(A) = 0. Hence g < pand pg < pu.
By the preceding lemma p; = p and po = p. In particular, we showed that ©11 = p9 and in fact, for p

ergodic, it cannot be written as in the statement. O

By Krein-Milman’s Theorem, the set P (X)) is the closed convex hull of the set P, ( f) of all ergodic

measures in X with respect to f. In particular, we obtain

Theorem 3.1.15. If f : X — X is continuous, then there exists an ergodic measure (i € Pepg(f).
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Ergodic Decomposition

Right before definition I said that invariant measures seems to be combinations of ergodic measures.
It is true, and to understand it we have to talk about disintegrations.
The simplest idea if disintegration is the following: Let i be a measure in X and B C X be a

measurable subset with p(B) € (0, 1). Then, for every A C X measurable, we can write

u(A) = p(AN B) + u(AN B°) = wANB) u(AN B

uE) MO

Defining 5 (A4) = “(l‘:l(%]?c) for z € B and pB(A4) = “ﬁggc) for x € B¢ we obtain a family of

probability measures {12 },cx such that 2 = ,uf if 2, y are both in B or both in B¢ satisfying

u() = [ ufa)an

for every A C X measurable. This family of measure is called the disintegration of  with respect to the

partition £ = {B, B} of X. This procedure can be generalized has follows:

Definition 3.1.16. An atmost countable partition of X is a collection £ of atmost countably many pairwise
disjoint measurable subsets B C X such that X = Upe¢B.

Given a partition £ of X and some point x € X, there is only one B € £ such that x € B. We denote
this B by £(x) and we call it the atom of £ at x. Also, given two partitions &; and £, we denote their
common refinement &; V & by the partitions whose atoms are the intersection of their atoms:

&iVE& ={B1NDBy|B1 €& and By € &}

Also, if for every x € X the atom &; () is contained in the atom & (x) we say that & is thinner than &,
and we denote it by &3 < &;.

The simple example I gave before can very easily be extended to a general atmost countable partition
¢ instead of the simplest possible choice of £ = { B, B}. What is not so simple, but very useful, is that
we can extend it to a class of very more general partitions:

Definition 3.1.17 (Measurable Partition). A collection £ of subsets of X is said to be a measurable partition

if there is a sequence &7, &9, . . . of atmost countable partitions of X suchthat{ =& VE V- -- = \/;’:"f&.

Measurable partitions are way more general than countable partitions, e.g.

Example 3.1.18. If X is a separable metric space, then the point partition £ = {{x}}.cx of X will be
a measurable partition. To see it, let {U,;};cn be a countable basis for the topology of X. Since X is a

metric space, it is Hausdorff, thus we have {x} = Nyey,U; for all x € X. If we define &; = {U;, X\ U;},
them &; is a finite partition of X for each v € N and & o f:of& is a measurable partition satisfying

&(x) = Ni&i(x) € Nyev,&i(x) = Ngev, Ui = {x} as desired.

Example 3.1.19. The partition of R? in vertical lines {{x} x R},cr is a measurable partition. To see
it consider the intervals I, ; = [%, %)for n € Nand i € 7. It is clear that each &, Lt {I;; x R}iez
is a countable partition of R?> whose atoms are vertical columns of width 2/n. Thus & = j:ofﬁz is
a measurable partition and its atoms are vertical lines. The same is true for the partition of R"™ in

k-dimensional parallel planes.
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Example 3.1.20. The partition associated with a foliated box B (see definition is the partition &
whose atoms for every point of B are segments of unstable leaves and just M \ B for points outside B.
This partition is measurable because you are assuming that B is parametrized by a map in R that sends
dim E"“-dimensional planes in segments of unstable leaves, so by a local argument, the last example

applies here.

For both these examples, there are uncountably many atoms in the final partitions; thus, it is not
clear how we could disintegrate a measure in it (atleast, our previous method does not work anymore).

Rokhlin’s Theorem comes with great news:

Theorem 3.1.21 (Rokhlin’s Disintegration). If £ is a measurable partition of X and p is a measure in X,

then there exists a family of probability measures { ug}xe x such that
(1) For almost every x € X their support is their atom: pi%(&(z)) = 1.
(2) Fory € &(x) the components of the disintegration agree: ,ug = ,ug.
(3) is a convex combination of them: For every A C X measurable we have pi(A) = [ /é (A)dp(z)

Moreover, this family is almost unique in the sense that if {V;%}IE x Is another family satisfying these
3

conditions, then v = g for p-almost every ¢ € X.
Now we can disintegrate measures in measurable partitions. This will be the main tool used in section

[.3]of chapter ] For now, we conclude this subsection stating the following

Theorem 3.1.22. If f : X — X is continuous, X is a complete separable metric space and p is a
f-invariant probability measure, then there is a suitable choice of measurable partition & of X such that

p-almost every component (i, of its disintegration { ,ug}xe x is ergodic.

3.2 Entropy and Pressure

In the section above, we defined what ergodic measures are and showed that they exist. However, the
proof of their existence was not constructive; thus, even though they behave very well with the dynamics
within their support, we don’t know how much they are actually measuring.

To be more clear, consider as an example a toral automorphism f4 : T™ — T™. It’s easy to see that it
has a lot of periodic points; in particular, the origin 0 € T" is a fixed point. Hence the Dirac dg at 0 is
ergodic (an invariant set either contains 0 or not). But, in the other side, the Lebesgue measure Leb in T™

is also ergodic:

Proposition 3.2.1. For a linear Anosov toral automorphism f4 : T" — T", the Lebesgue measure Lebrn

is ergodic.
Proof. Let ¢ € L?(Lebrn) and write

P(@) =D ome™T

mez™
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where the terms (3 are the Fourier components of . Composing with f4, we have

- 2rim- Ax 2mi AT -7 omiAtm-z
po fa@) =) eme = > ome = > pae
mezZn mezZn mezn

If we suppose that ¢ is invariant, we have ¢ o f = ¢, so their Fourier series must agree, and we have
s = P at.p- By induction, if k € N, we must have ¢ = @415 Since A is hyperbolic, if 1m 7 0,
we have that ||(AT)*m| — 400 as |k| — +oo. Using that ¢ € L2, we know that 5 — 0 as ||| — 0;
thus, for m # 0 we have

om = lim (ANFm =0

n—-+00

and we conclude that

is constant. By lemma [3.1.8] we prove the proposition. O

Even though they are both ergodic, the reason for them being so is very different. The Dirac delta d; is
ergodic simply because its support is so tiny that there is no difficulty in behaving well with the dynamics.
However, the Lebesgue measure Lebpn has full support; thus, the fact that it is ergodic is not trivial at all,
and to know it actually says a lot about the dynamics in the entire manifold.

The contrast above highlights a little problem that we must face now: sometimes there are too many
ergodic measures!

In fact, for many systems f, the set of ergodic measures Pe,4( f) is dense in the (usually very big) set
of invariant measures P (X ). In any case, we must be more specific with what we are measuring. In this
section we define the entropy of a system and its generalization, the pressure. Those are numbers that, in
some sense, measure the complexity of the dynamics. We then define a measure-theoretic analogue, and
we relate them using the variational principle. This allows us to define a measure of maximal entropy,

which are those that capture the entire complexity of the dynamics.

Topological Entropy

We will measure the complexity of the dynamics by counting the number of orbits in X . Of course, (if
X is not countable), there are infinitely many orbits, so we need to be very precise in what we mean by
‘counting orbits’.

Imagine that X represents a set of states of a physical system that you can watch. You, as an observer,
cannot fully trust in your eyes, which are imperfect. Hence, if two states are too close to each other, you
cannot distinguish them. To express this, given an imprecision € > 0, we say that a subset E' of X is
e-separated if the distance of any pair of points x,y € F is greater than ¢.

Also, there is a dynamic occurring, so the states are evolving with time. Since you are not immortal,
nor would you have the patience to wait forever, you can only count finitely many iterates of a state. If
you were tracking the iterates of some state, and suddenly you see it splitting in two, then you know that
you were actually looking at two states. Hence, even though two states may initially be very close, if they
eventually get apart from each other at some moment, you can spot it. To express this, given a time n € N,

we introduce the time n metric d,, by
dn(,y) = max{d(f'z, f'y)|0 < i < n}
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for every x,y € X. And, for a subset F of X, we say that E is (n, )-separated if E is e-separated for the

metric d,,. With this notation, the number s(n, ) of orbits that we can distinguish at time n is given by
s(n,e) = max{Card(FE)|E is (n,)-separated } (3.1)

As you let the time n € N pass, every two states have more and more chance to separate more (i.e. the
metric d,, is increasing with n). Hence, the number s(n, €) of distinguished orbits increases with n. If it
increases slowly, the system is simple. There are many possible rates of growth that we could consider;
for reference see [[CP24]] Theorem 1.2. We are interested in (very) chaotic dynamics; hence, we will care

about the exponential rate of growth of s(n, 5

of. 1. 1
r(e) < lim sup — log(r(n, €))
n n
Similarly, if we increase the precision, (g) grows (i.e. if £1 < €9, then r(e2) < r(e1). Hence, since we

want the finest measurement possible, we should take the limit as € — 0. This limit will be the entropy:

Definition 3.2.2 (Topological Entropy). The topological entropy of a continuous map f : X — X defined

on a compact metric space X is the number

of. 1. - 1
hiop(f) = lim () = lim lim sup — log(s(n, €))

e—0 e—0 n n

when this limit is finite or (the symbol) 400 when it is not.
The most important property of entropy is that it is a topological invariant:

Theorem 3.2.3. If f1 : X1 — X4 and fo : Xo — X9 are continuous maps on compact metric spaces and
® : X1 — Xy is a homeomorphism satisfying ® o fi = fa o ®, then hiop(f1) = hiop(f2).

In particular, the entropy hyop(f) only depends on the topology of X and not on the metric d that
we used to compute it. Talking about computing it, that’s very hard from the definition; thus, in general,
one must find different equivalent methods to do it. In particular, to ease the exposition, I omitted the
non-compact case and completely ignored the definition via (n, £)-spanning sets that is generally given

together with ours. For further details, see [WalOO] chapter 7.

Measure Theoretic Entropy

Now, we will once again try to measure the complexity of our system, but this time we will try to guess its
behavior beforehand. In the subsection above, we sought orbits without caring about their trajectory. To
take their position into account, we’ll partition our space X into smaller pieces and distribute probabilities
on them.

A guess here will be represented as a choice of a probability measure 1 € P(X). Given a finite
partition £ = {Aq,...,A,} of X, the numbers p(A;) may be seen as (what we suppose to be) the

likelihood of looking at our system and finding it in a state x € A;. Let’s represent the ‘uncertainty’ of this

That’s not the only reason to choose the exponential rate. It will be more clear when we relate the topological entropy
with the the measure theoretic entropy. To define the latter, we require some properties that lead to a unique possible expression
(Theorem [3.2.4). This expression is naturally related to the topological entropy defined here using the exponential rate of growth

(Variational Principl¢3.2.10).
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guess by a number H,(£). We identify the entropy of a partition as this value. What kind of properties
should this function H,,(-) satisfy?

First, the uncertainty of a guess only depends on the probability I gave to each set and not on the
set itself, i.e. if § = {Aq,...,An}, then H,(§) = H(pu(Ar),. .., 1(Ay)). Similarly, this uncertainty
H should not depend on the order in which I told you the sets; after all, for £ = {A;, Ao, As,..., A}

we have £ = {Ag, A1, As, ..., Ay} (the set is not ordered), then for any permutation o of n letters we
should have H (p1,...,pn) = H(Py(1), - - - Po(n))- If an outcome is impossible, it doesn’t matter, so that
H(p1,...,pn,0) = H(p1,...,pn). Moreover, if we are so certain about an outcome that we choose a

set with probability 1 while every other with probability 0, there will be no uncertainty in this guess to
that H(0,...,1,...,0) = 0. In the completely opposite case, if we don’t know the slightest and take a
partition & = { Ay, ..., A, } with all sets with the same probability 1/n, it must be the most uncertain, so
that H(1/n,...,1/n) is a maximum.

With the above requirements, we are measuring the entropy of partition, static in time. We must not
forget to include the dynamics in the discussion. Let’s say we guessed £ = { A1, ..., A, } and we want to
measure it two times. At first, you verify the state x of your system and find it in the configuration A € .
Right after that, you’ll see in which set A; will be f(z). However, since you know it was in A, you won’t
just suppose that its chance of being in A; is 11(A;); you can now refine your measure by restricting it to

A, i.e. the chance of being in A; knowing it was in A will be

\ def. ,U(Aj N A)
MA(AJ) = 7#(14)

if 1(A) # 0, or zero if u(A) = 0. To know that z € A; and f(z) € A; is to know that z € A; N f~1(4;),

in other words, is to know in which element of ¢ \V f~1¢ is 2. Hence, what we are requiring above is that

H,(EV 716 = Hu(§) + > u(A)

Aegg

Thankfully, all this discussion has a reward. We required many properties of H,, and, in the end, there

does not just exist a function satisfying it, but it is unique!

Theorem 3.2.4. If H(p1,...,pn) is a function defined for every n € N and collection of real numbers
pi > 0 satisfying Y. p; = 1 such that

1. H(ps(1)s -+ Po(n)) = H(p1, ..., pn) for any permutation o of n letters.

2. For every two finite partitions £, ¢ of X and p € P(X) it holds that

Hy(EV Q) = Hu(§) + ) ul(A)

Aegg
3. Forn fixed, H(p1,...,pn) has its maximum at p; = --- = p, = 1/n.
4. H(pi,...,pn) > 0 with equality if and only if some p; is 1.
5. H(p1,...,pn) is continuous for n fixed.
6. H(p1,...,pn,0) = H(p1,...,pn)

Then there exists a X\ > 0 such that H(p1,...,pn) = —A Zpﬁéo pilog(p;).
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Proof. See [|Khi57|], page 9. 0
This lemma says that there is a canonical way of measuring the entropy of a partition:

Definition 3.2.5. For a finite partition £ of X its entropy H,,(£) with respect to a measure ;1 € P(X) is
given by
Hy(&) = = > p(A)log(u(A)).

Ace
1(A)#0

Now, similarly as before, we will now define the entropy of our map f with respect to a partition £

and measure p as the growth rate of this number when you keep measuring it indeterminately

n—1
H,(f,¢) < lim sup %H# <\/ f_Z§>
" i=0

And finally, the entropy of f with respect to this measure is the supremum over all partitions of the number

above:

Definition 3.2.6 (Measure Theoretic Entropy). The metric entropy of a measurable map f : X — X

defined on a measurable space (X, %) with respect to a measure x € P(X) is the number

-1
def. . 1 \ —1
hy(f) = sup H(f,€) = —suplimsup —H,, | \/ 7%
£ isa £ isa n n i=0
finite partition finite partition

when this limit is finite or (the symbol) 400 when it is not.
Just like for topological entropy, this number is an invariant:

Theorem 3.2.7. If f1 : (X1,11) — (X1, p1) and fo : (Xo, po) — (Xo, u2) are measure-preserving
maps and ® : (X1, 1) — (Xo, p2) is an invertible measure-preserving map such that ® o fi = fo o ®,

then hy, (f1) = hy, (f2).

Variational Principle

Those two methods of measuring entropy have their differencee: the topological entropy hiop(f) is
uniquely defined for a given map f, while its metric entropy h,,(f) depends on the measure p € Py (X).
Since there is so much more freedom available for the metric entropy, before we relate them, we may
extend the notion of topological entropy to a more general one.

Just like we did for the measure theoretic case, we will count states caring about the place in X that
they are. Recall the equation (1) that defines the amount s(n, €) of distinguishable orbits of length n and
precision . Notice that it can be written as

s(n,e) = sup {Z 1|E is (n, 5)—separated}
LA D)

Introduce some observable ¢ € C°(X). Instead of summing 1 for each point z in E, we will now consider

the output of the observable ¢ by summing e¥ along its orbit (see the next subsection for the reason why)

s(n, e, ) = sup {Z eZico “”(fix)\E is (n, 5)—separated}
zelE
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Now, just like before, we’ll take the exponential rate of growth of this number and make the limit as €

goes to zero. This limit is called the pressure of f with respect to ¢:

Definition 3.2.8 (Pressure). The pressure of a continuous map f : X — X with respect to an observable
¢ € C°(X) is the number

ef. ;. . 1 n— i .
P(f.p) = lim Ifm sup -— sup { E eXizo #UD|E s (n, 6)-separated}
" zelE

Remark 3.2.9. The topological entropy is the pressure of f with respect to the constant observable:
P(fa 0) = htop(f)-
Given this way more general definition, the Variational Principle comes as a connection between

h,(f)and P(f,):

Theorem 3.2.10 (Variational Priciple). For a continuous map f : X — X of a compact metric space X
and ¢ € C°(X), we have

P(f,¢) = sup {hu(f) +/fdu’u € 7’f(X)}
Now we may define our special kind of measures:

Definition 3.2.11. A measure ;1 € Py(X) is said to be an equilibrium state for an observable ¢ € C%(X)
if it attains the supremum in Theorem [3.2.10] i.e. if

P(f,9) = hu(f) + / fdp

In particular, p is said to be a measure of maximal entropy if it is an equilibrium state for the potential

w=0.

In chapter [5| we show that every Holder continuous observable admits an equilibrium state. Moreover,

this equilibrium state is a very well-behaved measure.

The Physical Meaning of Counting Orbits

Throughout this section, I tried to motivate the definitions of entropy by saying we are ‘counting orbits’.
However, when defining both metric entropy and Pressure, there were some arbitrary choices we made.
In the latter, the meaning of ‘counting orbits’ was affected by the choice of measure, and in the former,
it was influenced by the exponential of a potential. In this subsection I give a brief background on
Thermodynamics and statistical mechanics, which is where lies the physical concepts of these definitions.

The starting point is energy: every physical system has an associated internal energy U. This energy

U satisfies the following axiom:

Axiom 3.2.12 (First Law of Thermodynamics). For a quasi-stationary transformation, the energy U of a

system satisfies the following differential equation:
dU =dQ —dWw
where () is the heat absorbed by the system and W the work done by the system.
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This axiom introduces the idea of Heat and Work; however, it does not precisely define how they are
nor how to compute them. This is very similar to the well-known Newton’s third law, - ' = m#- which
makes reference to forces without explicitly showing their expression.

In practice, these quantities will depend in how we choose to model our system. The work W is
supposed to represent any purely mechanical way of transferring energy, while the heat () is to account for
the thermal ways to do it (in other words, to account for what we can’t explain). For example, the work to
compress a balloon of helium is dW = —PdV, where P is its pressure and V' the volume displaced.

Another word that this axiom introduces is the ‘quasi-stationary transformation’. This comes from the

following axiom, which in general is implicitly assumed within the many axioms of thermodynamics:

Axiom 3.2.13. For every thermodynamical system, there exists a finite number of observable quantities

that completely describe their equilibrium state.

A thermodynamical system will always go to an equilibrium state, i.e. a state that does not undergo
any transformations as long as it is isolated. The axiom above says that this final state is uniquely defined
as long as you know a finite amount of properties of your system. The main example of the theory is the
ideal gas: an ideal gas is a collection of non-interacting free particles. This system can be described by
three observables: its pressure P, its volume V/, and its temperature 7'.

It was using this system that the French military Sadi Carnot showed that the most efficient possible
thermodynamical cycle (a repeating process that extract the most heat using the minimum work) depends
only on the initial and final temperatures. Later Rudolf Clausius showed that in an invertible cycle, the
heat absorbed d@); and the heat emitted dQ)5 satisy

a0, _ do,
Th b

while in a non-invertible cycle d%l < C%Q. This led him to define the entropy (from Greek entropée:

change) of the system as .S = Q/T. This quantity seams to never decrease (experimentally), so the

following axiom was declared

Axiom 3.2.14. The entropy S of a system is non-decreasing: dS > 0. Moreover, dS > 0 if and only if

the system suffers a non-invertible transformation.

For us, this is enough thermodynamics. Now, it is time to connect this independent ‘heat’ theory with
mechanics. The person that did this was Boltzmann and his idea was the following:

Suppose that you can distinguish every possible state of your system (up to a microscopic resolution)
and let €2 be the collection of all these micro-states. If you have an observable ¢ : {2 — R, the set of all
states in €2 such that ¢ is equal to some fixed value a € R is said to be a macro-state. What is the most
probable macro-state of your system?

Well, if you don’t know anything about how the system evolves but you know (2, you can do an
educated guess. Let Q(p = a) C  be the subset of € consisting of all micro-states of your system such
that ¢ is equal to a (Q(¢ = a) = ¢~!(a)). With this definition, the cardinality of Q(¢ = a) is the number
of states where ¢ = 0. In particular, a good guess is that the most probable value of ¢ is the one that
maximizes the number of available states in Q(¢ = a).

We now found something interesting. This quantity, card(2(¢(+))) (as a function of the state), is

being maximized. This, which is a defining property of the entropy, led Boltzmann to the following claim:
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Axiom 3.2.15 (The Fundamental Law of Statistical Mechanics). The entropy of a system is given by
S = kplog(card(Q2)).

This kp is just a constant of proportionality (Boltzmann’s constant), and the logarithm appears here
for the same reasons as in Theorem [3.2.4] The entropy is a function of the values of the observables, i.e.

S =S(p1 =ai,...,on = ay). This axiom comes with a natural distribution of probability

Definition 3.2.16. The probability of an observable ¢ : {2 — R to assume a value a € R is given by

card((p = a))
card(Q

P(p=a)=

This definition is self-justifying by the phrase ‘The most probable state is the most probable state’.

Now, let us connect it with what we have done in this section. First, let’s see why we added the
exponential of the potential in the definition of equilibrium states.

Suppose you have a system whose the work done by it is given by dW = dn, where ¢ and n are
some observables. If it undergoes a transformation while we maintain its energy U constant, the first law
of thermodynamics says that

0=TdS — pdn

Thus, up to order 1, we have
P

S = constant + 7

Using the fundamental law of statistical mechanics, we obtain that P = ce%, where c is a constant.
Hence P = C 6@%’7. In a laboratory, you may be able to fix the temperature 7" and this property 7. Then,
the probability of a state is given by P = cpe®. Up to a constant, this is our definition in[3.2.8]

Now, let’s understand the connection of this with our definition of metric entropy.

This connection follows from an issue that I hid from you: all the construction above assumes that
you can count each possible state in €2 one by one. And moreover, it assumes that card(2) is finite. This,
however, is not the case.

There isn’t a unique way of defining €2, as an example: imagine you have a system made of two
identical particles. At the beginning, one particle is at your left and the other at your right. This is a
configuration of your system. But now, suppose you swap them: the particle in the right goes to the left,
and the particle in the left goes to the right. Is this a new configuration? Or is it just the same state?

This question has no definite answer: if you are modeling the system with classical mechanics, then it
is a new state. If you are modeling it with quantum mechanics, then no, it is just the same state. This is
just an example, but there are many other cases where this happens. Another problem is that {2 may have
infinitely many states; in fact, in classical mechanics it will generally be a submanifold of some R". For
these cases, there is no natural way to count the states; you may either discretize it or use some volume
form to measure their size. These different choices are said to define different ensembles for your system,

and this freedom is what accounts for the different possible measures in the definition of metric entropy.

46



3.3 Smooth Ergodic Theory

For this section, M is a Riemann manifold and Leb is the Lebesgue measure in M.

Smooth Ergodic Theory is the branch of ergodic theory that tries to explore invariant smooth measures,
i.e. measures absolutely continuous with respect to the volume of your space. However, since absolutely
continuous invariant measures are not always available, we need a more suitable class of measures that, in

some sense, are still relatable to them:

Definition 3.3.1. A measure y € P¢(M) is said to be a SRB measure if for every foliated box B (see
, the components in B of its disintegration { ugB }penr with respect to the partition associated to B
(see example|3.1.20) are absolutely continuous with respect to the volume in the leaves. L.e. forallp € B

,U/gB << Lebyru (p)

What this definition says is that SRB are measures that are ‘smooth along unstable manifolds’. This
class of measures is good because they come with many fine properties. Also, they are good because they

exist:

Theorem 3.3.2. If f : M — M is an Anosov diffeomorphism of class C?, then there exists a SRB measure

pfor f.

Sketch of the proof. Take any point p € M and let D C W}% _(p) be a small open disk around p contained
in its local unstable manifold. If Lebp is the Lebesgue measure induced in D, let

def. 1 fi Lebp

Hn,D = *LebD )

where f, is the pushforward by f of a measure. Each of those i, p has absolutely continuous components
in the unstable direction; however, are not invariant. With a suitable distortion argument, one can show
that any weak* accumulation point . of the sequence {/ip , }nen is still absolutely continuous in the
unstable direction. Hence, since any accumulation point of this sequence is invariant, ;4 is a SRB measure.
(see chapter 11 of [BDVO0G]).

The fact that those measures are very regular in the unstable leaves will allow us to obtain precise
quantitative estimates for their disintegrations (see. [#.3.17). To see it, instead of using the generic

expansion rate A defined in we will need a more precise one:

Definition 3.3.3. For p € T?, let Ap = |dp f| £ (p)]> and for n € Z, also define A7 (n) =\ dp f7 o s

where o = s, u.

These pointwise expansion rates A give way more detail than the constant A. In particular, you can
recover A by setting A = min{inf, X%, sup, (A3) "'}

In fact, these values are so precise that they are sufficient to characterize SRB measures:

Theorem 3.3.4 (Ledrappier-Young’s formula). Let f : T2 — T2 be an Anosov diffeomorphism; then, for

every invariant measure i € Pg(M), you have
hu(f) < [ Apdu(p)
And the equality holds if and only if 1 is SRB.
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This quantity on the right is called the mean Lyapunov exponent of f:

Definition 3.3.5. The Lyapunov exponent of f at a point p € M is the following limit

wyoydef. o1 u
A¥(p) ' lim —log A\, (n)

n—+oo N

Which, by Birkhoff’s ergodic theorem, exists for almost every point. The mean Lyapunov exponent of f

with respect to p is
A [ Xyp)an

Both these quantities will be useful for us. In particular, we’ll show a particular case of this formula
for our context.
Another property of SRB measures, which we will not use but is worth mentioning, is that, in our

context, they are physical measures. This means the following:

Definition 3.3.6. The Basin of Attraction of a measure p € P¢(M) is the set (see example [3.1.4)
B(u) = {p € M|bpn = 11}
The measure i is said to be physical if Leb(IB(u)) > 0.

A point p being in B(x) means that the measure perfectly describes its orbit, i.e. the time averages at
p converge to the measure p. Hence, since Leb is our reference measure, the condition Leb(IB(x)) > 0
means that a physical measure is a measure that describes the orbits of a significant amount of points. Do
not confuse with (B(u)) > 0. We require the Lebesgue measure of B(u) to be positive and not the
measure of it. In fact, for ergodic measures, Birkhoff’s Ergodic Theorem gives that (B(u)) = 1.

If the diffeomorphism is slightly regular, SRB measures coincide with Physical measures

Theorem 3.3.7. If f : M — M is an Anosov diffeomorphism of class C?, then the SRB is physical.

Proof. Let {Nfo}pe M be a disintegration of p with respect to a partition subordinated to the unstable

foliation. Since
| = u(B(y)) = / S (B(12))dp(p)

it follows that for at least some p € M, we must have ;5(B(x)) > 0. Thus, since ;5 << Leb,,, we

obtain a set ] = Wie.(p) N B(p) with Leby(I) > 0. It is clear from the definition that every point in
o1 Wio(a) € B(u). Since the

foliation is C'' and the stable and unstable leaves are transversal, Fubini’s Theorem gives that

the unstable manifold of a point in B(x) will also be in B(x). Hence | J

Leb(B(u) > Leb | | Wi(a) | > 0.
qel

And the theorem is proven. O

48



CHAPTER 4

Leafwise Measures

In the previous chapter we introduced equilibrium states and SRB measures, which are both the measures
of most interest for us. Here and forwards, we start developing some very special properties of them that
will be of great use for us.

In this chapter we focus on the SRB measure. Specifically, we show that associated with them, there
exists a family of locally finite measures defined on entire unstable leaves, which, when restricted to a
foliated box and normalized, gives you the disintegration of your SRB.

These measures will not be probabilities. However, in turn, we’ll see that they behave very well with
the dynamics. So well that in a special parameterization of the leaves (the affine parameters [4.2.1]), they

are the Lebesgue measure (times 0.5).

4.1 Subordinated Partitions

We want to obtain a more global definition for an SRB measure. In the last chapter (definition[3.3.1)) we
defined them as measures such that the components of their decomposition in foliated boxes were smooth.
A silly manner to make this definition not so local is to ask them to be smooth along entire unstable
manifolds. This would save us of some trouble, however, unfortunately, in most cases we cannot ask this.
The problem is not like they wouldn’t be smooth, but that we can’t even decompose a measure along
entire unstable manifolds.

In lemma 3.2.4 of [Bro+19]] it was proven that the partition of our space into unstable manifolds
is measurable if and only if our system has zero entropy. But our interest in this text lies in Anosov
diffeomorphisms, which have non-zero entropy. Fortunately, we can avoid this problem. Instead of
searching for a partition made of entire unstable manifolds, we can look for one such that each atom is a

piece of unstable manifold.

Definition 4.1.1 (Subordinated Partition). A measurable partition ¢ is said to be subordinated to the

unstable foliation W* with respect to a measure p if
(i) For p-a.e.p € T? there is a number 7(p) > 0 such that Wi (p) C &(p).
(ii) There exists an R > 0, such that for all p € T? we have £(p) € WE(p).
(i) /25 f™(€) is the point partition of M.
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(iv) € isincreasing: &€ < f~1(€).

The main concern for this section is with their existence which, thanks to F. Ledrappier and J.-M.

Strelcyn, we know that it is granted:

Theorem 4.1.2. If f : T?> — T? is Anosov and . € Py (T?), then there exists a partition & subordinated

to the unstable foliation.

Since this partition is measurable, we can use Rokhlin’s Theorem to disintegrate p with respect to it.
The usefulness that we take from this object is that the measure p is SRB if and only if its components
from this disintegration are absolutely continuous with respect to the leaves Volumeﬂ

The construction that I present here follows appendix D of [Bro+19].

An Ansatz for ¢

At first sight, a subordinated partition may seem like a lot of foliated boxes around the entire manifold.
And that is almost what they are. If you restrict yourself to a small neighborhood of a point, conditions
(1) and (ii) basically say the subordinated partition looks like a foliated box, but with open segments of
unstable leaves of non-constant length. Conditions (iii) and (iv) are just what you would expect from the
contraction of unstable leaves by f~1.

For each p € T?, consider a foliated ball B, (p) (see of radius R(p) to be defined around it.
Since T? is compact, we can choose finitely many of these open balls By, Bo, ..., B that cover it. Each
B; defines a measurable partition & whose atoms are unstable leaves at B; and the entire complement B
outside B; (see example . Consider their mutual refinement &g et \/fL:1 &.

This partition &, already looks like a subordinated partition. In fact, if we choose R(p) < R for a
fixed R, conditions (i), (ii) and (iii) already holds:

(i) If a point p is not in the boundary of any B;, then each &;(p) contains an open interval of p in
W*"(p). Thus, there is a r(p) > 0 such that Wi (p) C &o(p). Also, the boundary of each B; can

be chosen to have zero measurethus, this 7(p) exists for almost every p € T2.
(ii) Every point p € T? is in some B;, hence &y(p) C WH(p).
(iii) Since this R is the same for every point, it follows that
F76(f"p) € FTMWE(S"D) € Wit g(p) "5 {p)
Thus \/,"25 "o is the point partition of T2.

There is, however, no certainty about the fourth condition. Instead of conditions (i),(ii) and (iii) which
require either a static or long-term behavior, condition (iv) is a first-time condition. L.e. it requires that the
first (backwards) iterate of an atom to already be contained in another. This is, of course, very restrictive.

However, is essential for the construction of Leafwise measures on section To obtain this property,

!This should seem intuitive, but by no means it is obvious. At least not until section where we prove the Superposition
Property. There we see that nested partitions have proportional conditional measures. Hence the equivalence.

This follows because there are uncountably many possible radius which give rise to uncountably many disjoint shells. Since
a measure is additive, it cannot be positive at each one of those shells.
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there is a clever trick: If we want every atom to already fall on another, then, just force it to happen!

Define
—+o00

¢=\ e

n=0

This partition ¢ is thinner than &g, hence it also satisfies (ii) and (iii). Now we also made it satisfy (iv),

because
“+o00 “+o00 —+o00
fre=f1 (\/ f"io) =\ =" v\V ro=r'ove-¢
n=0 n=0 n=0

But this came with a price. Property (i) is not necessarily true anymore. The problem is, we iterated so
much that we lost track of the boundaries we had to avoid before. The heart of the proof is that it can be

fixed by a suitable choice of the previously stated radius R(p).

A Borel-Cantelli Argument

For every p € T2, let 0 < Ro(p) < R be so that, for any choice of radius 0 < R(p) < Ro(p), the foliated
ball Bp,)(p) is well defined. When defining &y, we used a simple cardinality argument to achieve a
R(p) such that (0Bg,)(p)) = 0. But now, since we are iterating, we don’t just want the measure of
OBRr(p)(p) to be zero, we want that points remains far from it while we iterate them. Lemma isa
refinement of this argument and says that we can always find a such R(p) that keeps points uniformly
away from 0B, (p). But before we prove it, we need a technical lemma which is a particular case of

Besicovitch’s Covering Theorem that we prove here for completeness:

Lemma 4.1.3. If'Y is a non-empty bounded subset of R then, for any o > 0 we can cover Y with finitely

many intervals I,.() = (r — o, 7 + &) with v € Y and such that no point is in more than two of them.

Proof. Let I be a compact interval in R that contains Y. Being compact, we can cover I by finitely many
intervals I, (o/10), ..., I;,(a/10). Foreach i = 1,...,l take a r; € I, N'Y if this intersection is non
empty. For all those with non empty intersection we have I, (/10) € I,/ (cx). Thus

l
ycJI(e/10)c |J Li(e/r0)C | Iu(e)
=1

L, NY #0 L, NY #)

Thus, these intervals 1,/ () with 1} € Y covers Y. Rearrange these points 7; so that r; < ;. If a point
r € Y is in three or more intervals Irgl (@),..., Irgk (), i1 < ---ig. Then the extremal intervals 17“;1 ()
and I, (a) covers all the other I,/ (v), i1 < i < ix. Hence these intervals in the middle are redundant
and car;c be discarded from our cover. Now this point 7 is in only two intervals of our cover. Each time we
do this process we discard at least one of the intervals in our cover, thus, since it is finite, in the worst case
we would eventually have only two intervals covering Y and at this point there can’t be a point in three or
more intervals. So, this process eventually ends leaving us with a finite cover covering at most two times

a point, as desired. O

With this little result, we can proceed on our context: Recall the exponent A > 1 given in definition

LI
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Lemma 4.1.4. For p € T2, we can find a R(p) € [Ro(p)/2, Ro(p)] such that for u-almost every q € T?,
for all n € N sufficiently big we have that d(f~"(q), 0By (p)) > A~

Proof. For aset A C T?, let Bs(A) denote the set of points & close to A. The conclusion of the lemma is
equivalent to “almost every point ¢ € T? is only in finitely many of the sets f/(B,—; (0B R(p)(P)))". By
Borel-Cantelli’s lemma it would suffice to have

400
> 1 (7 (By-i (0B (p))) < +00

J=0

Define an auxiliary measure 7 on the interval [0, R(p)] by

n([a,b]) = ({g € T?|a < d(p, q) < b})

This measure measures the boundaries of balls around p. In particular, if for r € [0, Ry(p)] the intervals
I [r — X, r + A ] are in [0, Ro(p)], we have

n(I7) = p (Bx-i(0Br) (p)))

Since p is f-invariant, this means that

n(I}) = 11 (f/(Bx-i (0Brp) ()

Thus, our problem is reduced to show that

+o00 _
> n(I}) < 400

j=0
This series would converge if n(IZ ) < 1/42. Thus, let’s track the r’s that don’t satisfy it. Define

Y; € {r € [0, Ro()]In(Lf) > 1/}

These sets Y are a subset of the compact interval [0, Ro(p)], thus bounded. By lemma we can find a

finite cover of Y by intervals [ J TR | J ; with rzj € Y; that covers Y; intersecting each point no more
T

T
1 lj

than twice. Hence

Leb(Y;) < Z Leb(I z]: 2N =1 2077

Also, using the definition of Y; we have

l; l;
% Z% Z ) < 20([0, Ro(p)])

Which implies that [; < 2j2. Thus Leb(Y;) < 452X/ and >_;Leb(Y}) < +o0. By Borel-Cantelli’s
lemma, Lebesgue almost every point » € [0, Ry(p)] is in only finitely many Y;’s. Taking a R(p) €
[Ro(p)/2, Ro(p)] satisfying it we conclude the lemma. O

An immediate consequence of this lemma, is that for this choice of R(p) almost no point falls in

IBR(p) (p). In particular, if OB denotes the union of the boundaries of the finite cover By, ..., By, then
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Lemma 4.1.5. For y-almost every point ¢ € T? we have that f(q) ¢ 0B foralln € 7Z

Proof. We want to show that the sets f"(0Bp(y)(p)) have zero measure. But since p is f-invariant, it

suffices to show it for n = 0. In particular, since 0 Br,)(p) € By~ (0Bg(y)(p)), we have

“+oo

ZuMh <> 1 (Br-i(0Bry)(p)))

7=0

This last sum was shown to be finite in the previous lemma, and the first sum can only be finite if

11 (0BRp)(p)) = 0.
O

Finally, we have everything ready to prove their existence:

Proof of Theorem

Let £ be as above, where R(p) was given by lemma and R was chosen smaller than 1. Conditions
(ii), (iii) and (iv) were already verified. We need only to verify condition (i). For it, take ¢ € T? satisfying
lemma and Let ng be the number given by lemma such that d(f~"(q),0B) > A™" for
alln > ng. By lemma each atom &y(f~"¢), k € N contains an open interval of unstable manifold.
Thus each iterate f*(¢£y(f"¢)) also have. Hence, there is a r(g) > 0 such that

) ﬂﬂ&m 7)) <Vﬂ@>

I claim that for n > ng we have (\/}_, f%¢)(q) = (V32 *€0)(g). If this claim is right, them

=<Vf&> (Vf&) ) 2 Wi, (9)

and the theorem will be proven. To prove the claim, suppose it was not true. Them, there would be a

m > ng such that
() & (F ) < [ 5 &(f *q))
k=0 k=0

In particular, this means that for some mg > n the interval (32, f*(£0(f~*¢)) is not properly contained
in fM0(&y(f~™0q)). Thus, there is a point g in the boundary of f™0 (£, (f~™0¢)) that crosses it. That is,
there is a point gy € f™(0B) N2, f¥(&0(f*q)). Since 12, f*(&0(f~"q)) is contained in WE(q)
we have d(q, f™(0B)) < R < 1. Iterating and using that ¢ and ¢ are in the same unstable leaf we get
that d(f~"°q, 0B) < A~™9, which contradicts the definition of ny and concludes the proof. O

4.2 Affine Structures

In this section we develop once again another tool towards the understanding of the global structure of
the unstable and stable foliations. Here we construct the so called normal forms (or Affine Structures)
which are a collection of parameterizations of unstable leaves that behave very well under the dynamics.

Precisely, we prove the following:
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Proposition 4.2.1. If f € Diffi(’]I‘Q) is an Anosov diffeomorphism, then there exists an unique continuous
family of C*T<-diffeomorphisms H, : W"(p) — E*“(p) for p € T? such that:

(i) Hy, depends C° on p restricted to unstable leaves in the C1T topology.
(ii) Hy(p) = 0 and dyH, is the identity
(iii) Hyo Hp_lforq € W*(p) is affine
(v) Hyy o f =dpf - Hy

These parameters do an incredible job in simplifying many arguments. If you simply interpret E“(p)
as an ordinary copy of R, them these parameters behave just like a linearization of the dynamics. In
fact, condition (iv) precisely says that the action of the dynamics under these coordinates is given by its
derivative.

There is, of course, a technicality here: The parameter H,, depends on the base point p. This may
seem to diminish the effectiveness of this family, however, it is not expected that we would be able to
linearize it for an arbitrary f. In fact, it already is a miracle that it is possible to do this non stationary
linearization and even though it depends on the base point, items (ii) and (iii) says that they vary very
well. Even more, if we apply the dynamics in an unstable neighborhood of a fixed (or periodic) point, you
can track the exact length of expansion/contraction of the leaves to be just a multiplication by the unstable
eigen value.

As a proof of their usefulness, if their essential role on the next section isn’t enough, in the end of this
section I show how they can be used to prove the regularity of stable Holonomies. This will be used in the

construction of the Margulis family in the next chapter.

Proof of Proposition

The main reference we follow here is [KKO06].

To simplify the exposition I will assume the existence of a unitary vector field tangent to the unstable
distribution p € T? +— v%(p) € E%(p). We can identify the unstable direction E*(p) with R via the
relation av®(p) € E%(p) ~ a € R. If p : T? x T? — R is continuous, then for every p € T? we can
define a map H), : W*(p) — E“(p) by

" [ ! o(pr)dr

where the integral above is taken in a path connecting p to ¢ contained in W*(p) and with sign given by
the field v*. Our job now is to find an appropriate p which gives us the desired properties of H,. First,
if we had chosen p Holder continuous, we would have that H), is the integral of a Holder continuous
function, hence C1*°. If we also happens to choose p positively bounded from bellow, then dH,, is
always invertible, and being it one dimensional, we get that H,, would be a diffeomorphism. In fact, by
the fundamental theorem of calculus, we have d,H,, = p(p, q), thus if we have p(p, p) = 1 then d, H), is
the identity.

All these properties above are very loose and would only give us properties (i) and (ii). Thankfully,

property (iv) is way more enlightening. To see it, suppose for a moment that item (iv) holds. Them, for all
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p € T? and ¢ € W"(p) we would have that

Since ¢ € W*(p) was arbitrary, the integrands must coincide. Le.

JUf(@)p(f(p), f(a) = A\pp(p; @)

Also, since W"(p) is one dimensional, we have that J* f(q) = A;. Rearranging and using induction we
see that for any n € N:

Ap Ap )\“

p(f(p), f(q)) = v p(pa) = pvR A

n u
p(f 7l f ) = Hﬁ p(f"p, f ")
f1q i=0 f
Since ¢ € W*(p), we have that d(f~"p, f "q) — 0. Hence, since we choose p(r,r) = 1 for any r € T2,
it makes sense to suppose that p(f~"p, f~"q) — 1. In this case, the formula above gives an explicit

expression for our candidate p:
“+oo )\u

u ?
)\f‘zq

for ¢ € W*(p)

All we have to do now is to prove that it is well defined and satisfies the previous hypothesis.

Lemma 4.2.2 (Distortion Lemma). For p € T2, the function ¢ € W"(p) — p,(q) “ o(p,q) € R where

p(p, q) is defined as above is a well defined Holder continuous function.

Proof. Fix a p € T?. Define a sequence of functions p, : W*(p) — R by

=il

These p,, are well defined because A\* > 0. Also, since f is C2 and E* is Holder continuous, we have that
AY is Holder continuous. The manifold T? is compact and A\* > 0 is continuous on it, thus it is bounded

away from zero and p,, is also Holder continuous. Notice that

log(pn (g Z log(X}—i,) —log(X}—.,)

Hence, using that the logarithm is Lipschitz when restricted to an interval bounded away from zero, we

see that

n—1
| log(pn(g) |<Z(10g Xfi,) = log(A ‘
=1

< Z celd(f~'p, f )"

i=1
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The series above converges when n — 400 because p and ¢ are exponentially asymptotic. In particular,
for m > n:
m- . .
| log(pm(q)) —log(pa(q))| < Y CC'd(f'p, fIg)
=n
So log(pn(q)) is Cauchy and it converges to a function g(x). Thus the sequence p,, converges to the

function py,(q) = €7 (#) which is Holder with the same exponent of the p,,’s. O

These p, are what we’ll use to define our H,, in place of that hypothetical p of before. The lemma
above says it is well defined and by construction H,, already satisfies property (iv). It is also clear from
their definition that p,(p) = 1 and H,(p) = 0, thus property (ii) is also done. Now, for item (i), notice
that

Lemma 4.2.3. For p',q € W"(p) we have py(q) = pp(p")pp (q).

Proof. 1t follows from a direct computation:

oo )\u oo Au )\u “+o0 )\u —+o00 Au
pp(q)— )\ﬁ L - x{ 2 A’; ? - /\“ “ 11 A’; 2 = pp@)p (0)
f~iq i=1 " f7p T f7ip =1 " fiq

O

Thus Hy,(q) = pp(p')Hy (q) and dH, = p,(p')dH,s. Hence H, depends continuously on p restricted

to unstable leaves in the C''* topology. Finally, it remains to show property (iii):
Lemma 4.2.4. For g € W*(p), the map Hy o H, ' is affine.

Proof. To show that a map is affine is equivalent to show that its derivative is constant. In fact, let r € R

and put p/ = H,(r). With that, we have

/
dT’(Hl] o Hp_l) == dp’Hq ° dTHp_l == dp/Hq . [dp/Hp]_l = pq(p)

Taking ¢ = p’ in Lemma[4.2.3] we see that 1/p,,(p') = p, (p). Thus, by the same Lemma, the expression
above is equals to p,(p')pp (p) = pq(p) Which does not depends on 7. O

Here, we finished the proof of the existence of this family. The p,’s we defined looks like they are
uniquely defined (up to zero measure), thus the family { )}, },cr2 seems to be unique. However, we made
some assumptions before we had the expression for the p,’s. Thus the unicity is not obvious and we must
properly check it:

Lemma 4.2.5. This family { Hp},cr2 is unique.

Proof. Suppose that {ﬁp}peTQ is another family satisfying the conclusions of Propositionm For each
p € T2, define a transition map G, : R — Rby G(t) = S Hpo H L(t). 1t follows from property (iv) that
for any n € Z we have that

Hy=df™ - Hyngyo f* and p—df"an o f"
Hence
Gf"p()‘% (=n)t)

Golt) = A"+ Gonpodf "t = =
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By property (i) we have G(0) = 0 and G},(0) = 1, thus since A}, (—n)t — 0 as n — +00, we obtain
that

_ Gy (o)D) = Cyony0) GOy (1)) = Gy (0)

=1
Afup(=1) =0 n—00 Afup(—1)t =0

Gp(t)
Thus G, is the identity and H,, = pr. O

Regularity of Holonomies

In this subsection we use these affine parameters to increase the regularity of our Holonomy maps.
Recall that in [2.2] we saw that Holonomies are, locally, translations along the stable direction: If you
have an holonomy between p and ¢, then take a thin (but maybe long) foliated neighborhood containing p
and ¢, what the holonomy does is to take the segment of unstable leaf at p at move it along the stable lines
connecting it to an unstable segment at ¢ (in the local chart this is precisely a translation. See[2.2.1). This
means that holonomies are unique, in the sense that if they have the same base point then they agree. This,

in turn, reveal another feature that make holonomies enjoyable; They commute with the dynamics:

Lemma 4.2.6. If H,_.q and H yn,_, ynq are Holonomies from p to q and from f"p to f"q respectively,
then f" o Hy g = Hpnpng o [ when booth sides are well defined.

Proof. Define the map H,, , () = f~" 0 Hnpspng 0 f*(r). We have H;,_, (p) = g and

Hyypg(r) € WP (M) N W (f7q) = W2 (r) N W"(q)

p—q
Thus 7—[; _,q 1s an holonomy from p to g. By unicity H;_)q = Hp—q in their respective domains and the
lemma is proven. 0

Now, as said, Holonomies are translations of peaces of unstable manifolds (which are as smooth as f)
along stable manifolds (which are as smooth as f). However, we only required them to be continuous. It
may seem plausible that they also are as smooth as f. Sadly, this isn’t always the case. Even thought the
leaves are smooth, the foliation as a whole is only Holder. Different sections of leaves are moving away at
different rates, and this may hamper the smoothness. Haply, in our case, they do are smooth, for, they are

linear in these affine charts we just defined:

Proposition 4.2.7. If H,_,, is an holonomy and we define the map ¢ o HyoHpqo Hy L where H,

and H are the affine parameters at p and q respectively. Then, this map is C I+a

Proof. We already know that the maps H,, and H, are C'*e thus the proposition is all about Hp—q
being C''*“. Notice that the base point of an holonomy map is only for intuition convenience, i.e. if
r € Dom(H,p—q) is another point on the domain of #,,_,, then, the map #, 3, () (2) = Hpsg(2) is
an actual holonomy between 7 and H,_,,(7). Thus, if we assumed that every holonomy is differentiable
at its base point, we obtain that

dr Hp—>q = derr—pr%q

so that the holonomies are actually differentiable everywhere. Since H,,” 1(0) = p, it means that, to prove
the proposition, we need only show that 77 is differentiable at O and obtain a value that is Holder on p

and q.
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Forn € Nand ¢ € R, lemma4.2.6|says that

H () = Njng(—n)Hyng 0 Hpnpos prg © Hpl (N (n)1)

Since H ng is C'!, and #(0) = 0, by the mean value theorem we have
()| = () = H0)] < ANjng(=n)|dH prglne - | T (1, 1))
where
| T(n, )] = d"(H prps prg © Hplk (A(n)t), f7q)

is the length of the interval of unstable manifold J connecting the point H fnp_, gng 0 H J;}p()\g(n)t) to

def.

F™(q) = Hpnpsfrg © H;nlp(()) and ||dH nglnt = suppey ||dpH pngl| is the maximum of the norm of
the derivative of H yn, along this interval. Actually, since ||dj, H yn|| is Holder in h, with Holder constants
independent of the base point and ||dfnyH ¢n4|| = 1, we have that

[dH prgllng < 1+ e1(]I(n,2)])
where e1(|J(n,t)|) — 0as |J(n,t)| — 0. Now, we need to control the term |J(n, t)|. Notice that
H frnps frg © H;nlp()\;f(n)t) = f"q) a t—0

Thus, given n € N, we can find a t,, > 0, such that for ¢ < ¢, the points H pn),_, pnq © H]?nlp()\;(n)t) and
f™(q) are in a same product neighborhood. Since the unstable manifold is C"*, in this neighborhood, the
distances along unstable leaves d“ and the distance in the entire manifold d are equivalent. In particular,
there is a C' > 0 such that,

d"(Hprps jrg © Hpn (Ap(n)t), 7q) < Cd(H prp g © Hpl (A (0)t), "q)

by compactness, this C' > 0 can be chosen uniform. Now, for ¢ < t,, we can use the triangle inequality to
obtain that

90001 < € (A0 gy Hpl NG )), HE (N 0))
FA(HEL ), )
+d(f"p, f"Q)>

Let e2(n) be the sum of the first and last terms above. Since they are the distance between two points in
the same stable manifold, they go to 0 exponentially fast in n, i.e. £2(n) 2P 0 as n — +o0. For the term

in the middle, we have

d(HRE (s (m)D), [7p) < d“(H L (Ns(m)), f)

= @ (H L (L)1), H L (0))

< sup|gj s (mye |ds Hpap || - [\ ()1

Similarly to before, we can write

sup HdSH_nlpH < 1+e3(Ay(n)lt])
Is|<Ap(n)t
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where e3(A;(n)t) — 0 as Ajj(n)t — 0. Gathering all those estimates we conclude that,

0] < Oy ) (14220700 ) (2 + |1+ 201D A1)
Dividing by [t| and making the limit n — +o0, ¢ — 0 while also making A;(n)[t[ — 0 we obtain that

. |2 (t)| ] )\g(n)
lim su < Clim
T A VT0D)

= Cpp(q)

where, analogously to lemma the limit above converges to a Holder function pz(q). Using infimums
instead of the supremums above, we obtain the same estimate but for the lim inf. Thus concluding the

proposition. O

4.3 Leafwise Measures

In the last sections we made some general results, now we fix y as the SRB measure of f and use those
results to construct the Leafwise measures, which are a family of measures defined on W* which locally
gives a disintegration of i in product neighborhoods that scales with the unstable Lyapunov exponent \“
of f.

The outline of the proof is that we start with a subordinated partition and we iterate it. These iterates
form a sequence of partitions whose atoms gets bigger and bigger. By proving a superposition principle,
we show that the disintegrations of our measure in these partitions converges (in some sense) to measures
in entire unstable leaves. Using the affine parameters we constructed, we can obtain that their pullback
is precisely 0.5 times the Lebesgue measure in R. With that, using the linearity of the dynamics under

normal forms, we can return this estimate to the manifolds and conclude the Theorem.

The superposition Property

Let £ < W™ be a subordinated partition. Since atoms of &y are intervals of unstable leaves, the dynamics

dilates each £y(p) so that by iterating &y we can define a family of wider and wider subordinated partitions:
Definition 4.3.1. For n € N we set &, o &

In fact, by property (iv) of definition we have that £,11 < &,. Also, each one of these partitions
is measurable, so by Rokhlin’s Theorem, we can disintegrate u with respect to &, to obtain a family of

conditional measures { ,u%” }per2. Their domain, &,(p), grows with n in the following sense:
Lemma 4.3.2. For pi-almost every point p € T? and R > 0, 3ng € N such that
Wi(p) € &(p)
Sfor all n > ny.
Proof. For € > 0 define the set
Ale) = {p € T2WX (p) € £(0)}
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If p € T? is such that f~"(p) € A(%), then, by the uniform expansion of f we have

FIWEF ) € F1EFT () = Win (p) € &nlp)

k

where A > 1 is as in definition Hence, if n > log,.(kR) we have W(p) C &,(p) and the lemma
is true for this p. Thus, it suffices to prove that the set

U m4a@ (*)
keN
n>logy (kR)

has full measure. For it notice that, by item (i) of , the set | ;e A(%) has full measure. So, by the

f-invariance of p, so does (). ]

Using this lemma, we see that for a given R > 0, almost every measure ,ug" with n sufficiently big is

well defined in W}%(p). We will show that, modulo a normalization, they all agree on Wg. For it, use the

fact that the family (,ui" )peT2 is measurable to define an auxiliary measure 775:71 on &, (p) by:

Definition 4.3.3. If m > nand A C ,,(p), put

- [ [[ vt
Em(p) &n(a)

Remark 4.3.4. Tt will be convenient for later to notice that if A C &,(p), the expression above greatly

du§m (q)

simplifies. This happens because if A C &, (¢) then the inner integral is O for all ¢ ¢ &, (p) and constant
for ¢ € &,(p) (item 2 of |3.1.21). Thus it can be rewritten as

Em — n &m — &n Em
Ny (A) /é - []lgn(p)(Q) /s » T 4dpg ] dpym(q) = pp* (A) ™ (§n(p))

Lemma 4.3.5. For p-almost every p € T? we have

My = 15"

Proof. Let ¢ : T2 — R be integrable. Then, using that both { ,uf,m }per2 and { ,ug" }pere are disintegrations

of 1 we have:

/ [/ﬁm(p) sodngj;;] dute) = -/Sm(p) [/ﬁn(q) SOdqu] d,uf;" (q)] dulp)

/ wduq”'] dp(p)
R &n(p)

edp

Il
—_— — —

Thus { 7753‘1 }per2 is a disintegration of j in &,,,. The lemma follows by the a.e. unicity of disintegrations.
O
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The appearance of 175% combined with this lemma may suggest that { ,uf," }peenm (p) 18 @ disintegration

p)
of ug’” in the partition {£,,(p) }peg,(p) Of Em(p). This suggestion is true: By item (i) of definition ,
almost every atom &, (p) contains an open interval, thus, since &,,(p) is second countable, it contains at
most enumerably many atoms of &,,. Hence, the partition of &,,(p) by atoms of ,, is measurable and the

lemma above precisely describes the disintegration of ,uf,’" as { Mgn Y petm(p)-
Lemma 4.3.6. For ji-almost every p € T? we have uf;” (&n(p)) > 0 for m > n.

Proof. Define Y = {p € T?| ,uf{” (&n(p)) = 0}. We want to show that 4(Y") = 0. For it, notice that

u(¥) = [xvdu= [ g (v)an
By the remark above, we can write &, (p) = Upee,, (p)&n(p) Where this union is atmost countable. Then

psr (V)= > pir(&(p)nY)

PEEM (P)
1—per atom

It suffices to show that the right side is 0. If £,(p) N Y = () we are done. If this is not empty, let
q € &u(p) NY. By definition we have p5™ (&, (p)) = 0. However, &,(p) C {m(p), 80 ¢ € &xn(p) and by

item (ii) of Theorem(3.1.21| we have ug’" (&n(p)) = ,ug’" (&n(p)) and consequently ,uf,m &) NnY)=0
as wanted. O

With this lemma we can normalize these measures as follows: Consider the collection of normal
forms {H, : W*(p) — R},cr2 and notice that since they are C"! there is a C' > 0 such that W& (p) C

H; L([-1,1]) for every p € T?. Notice that, by the proof of Theorem , we can choose 0 < R < C

in the definition so that £(p) € H,'([-1,1]) for almost every p. Then by the lemma above
uf,’” (H,'([-1,1])) > 0 and we can set

Definition 4.3.7.

€y def. /ng

T Hy i (1, 1)

With this definition we have the following stability property:

Proposition 4.3.8. For u-almost every p € T?, VK C W"(p) compact, there is a ng € N such that for

all m,n > ng we have
g (1) = i ()

Proof. Let p € T? be generic. Since K C W*(p) is compact, there is a R > 0 such that K C WH(p).
We can use lemmaf4.3.2]to obtain a ng € N such that for all ng < n < m we have K C &,(p) € &m(p).
Using lemma4.3.5|and the remark above it, we have

pg (K) = i (K™ (6a(p))
By lemma uf,’" (&n(p)) > 0 generically, thus

6 () — 10" ()

(1)
e L (En(p))
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The only condition to obtain this equality was that K was bounded in W, in particular, this is also the

case of H,, 1([~1,1]), hence, applying everything above to it we obtain

Hp *MIEJW([ 17 1])
15" (6n(p))

Dividing (1) by (2), the term ,u " (&r(p)) cancels and we obtain ,ué’" (K) = [Lg" (K). O

Hy iy ([-1,1]) = 2)

One simple corollary, obtained in the proof above, which is interesting by itself to have a name:

§n7 Mp |€n(p) foruaepe’]I‘szn<m

Corollary 4.3.9. (Superposition Property) piy, T e (n)

By the above proposition, we now see that the family of measures { ﬂf)" }per2 are stationary, in the
sense that they (almost everywhere) eventually agree. With that, and the fact that the domain of each /1,5,”

converges to the entire unstable leaf W"(p), we can define “pre”-measure /i, on W*"(p) by setting:

def. ~&n

Definition 4.3.10. /i,(K) = lim,, 4 1" (K), for K C W"(p) compact.

Here, we are in a standard setting of measure theory: There is a pre-measure defined on all compacts
of a Borel Space. So, by Carathéodory’s Theorem (see Theorem 1.14 of [Fol99]) we can extend f,,
to a Borel measure /i, in W*"(p) such that they agree in compacts, i.e. fi,(K) = p,(K). This family
{#p}per2 is the leafwise measures. To see in which sense they give a local disintegration of . we first

need a general lemma:

Lemma 4.3.11. For p-a.e. p € T? and n € N we have
gn — fn 13
Hp — Jx :U’f—n(p)

Proof. It follows from a direct computation and unicity: Let ¢ : T?> — R be integrable, then, by the

invariance of u and the fact that { ugn }pe2 is a disintegration of 1, we have
/ po frdus | du
|/ €(p)

/soduz/swf"dﬂ =/
= po f"d,u,g,n ] du
/ _/ﬁ(f‘"(p)) e

/ wdf*uf () |
()

n, &
/£ edf, Mf_n(p)] du

Hence, { f’ttf-n(p) }peT2 is a disintegration of 11 with respect to &;,. By unicity, f}'ftp-n(y) = ,up for

p-ae. p € T2, O
With this result, we can show the following universal property of this family:
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Lemma 4.3.12. There is an almost everywhere defined family {1, },ct2 of measures in unstable leaves

such that for all partition £ subordinated to W*" we have

4 = Fole(p)
P w(E(p)

Proof. Let {1y} ,cr2 be the family described after Lemmal4.3.10, If £ is thinner than some &, used in the

above construction, i.e. if £, < & then the claimed property follows from the superposition property (Cor.
[4.3.9) and the definition of 1,:

4 = e Hpepi (L1) A'lew) ol
U EW)  Hyad (-1,1) 451 (Elp))  Hp(E(P))

There is, however, no guarantee that we can find such a n € N. To overcome this problem, lets use that
the inferior bound r(p) > 0 for the atoms of &, given in def. [4.1.2]is measurable. Thus, we can find an
increasing family of subsets K1 C Ko C --- K, C --- C T2 such that u(K;) — 1 and for each i € N
there is a ¢; > 0 such that 7(p) > ¢;.

Since atoms of ¢ are uniformly bounded by some constant R, let n; € N be big enough so that
A" R < g;. With that choice, for every p € K the atom f~"¢(p) of f~"¢ is contained in the atom &y (p)
of . Hence, if we restrict f~"& and & to partitions f~"¢|x, and &o| i, of K, the superposition property
gives us that

ok,
f77L£‘Ki o ,U'p ’f*nE‘Kz

P T ol
up (e K ()
for almost every p € K;. By lemma[.3.11] we have

=
and
MfaO'Ki = fe "uf&‘;{i
Thus ek
ol = L el
p

F UG (fne|k, (p)
Since f7"¢|k,(p)) = f7"(&|k, (f"p)) and f"u(A) = pu(f"A), this denominator on the right is just

fn‘Ki

finy, ' (€lx,(f"p)). Hence, applying f;, we obtain that

§n|K'

i _ P e olkioew)
T ey N Ew)

for every p € f"Kj;. Since | J; K; covers almost every point, the above equality actually holds for the
entire atom of ¢ almost everywhere and the lemma is proven. O
Scaling Property

Until now, all we used was the properties of a subordinated partition ¢ and the fact that y is f-invariant.
We now use the fact it is SRB to verify that these leaf-wise measures {1, },c2 constructed above have a

great scaling property under the dynamics.

63



For it, recall definition and notice that there is nothing bad by setting £_ = €. This, once
again, defines a subordinated partition verifying £ < £_1 and we can obtain a decomposition { uffl }pet2
of 1 with respect to that. Comparing that with the disintegration given by Lemma allow us to
obtain an exclusive property of SRB measures: It’s densities are dynamically determined.

For it, recall that by definition of being SRB we have
¢ = pLeb"
Hp = pLe
for some measurable function p : T2 — R. Thus, we have the following:

Lemma 4.3.13. For p-a.e. p € T? and ,uf,-a.e. q € &£(p) we have

p(a) = p(f (@) AF-1) " (61 (p) !

Proof. Let A C T? be measurable. Since ¢ < £_1, the superposition property says that for p-a.e.
p € T? we can write

Hp(ANE1(p)

E-1(A) —
b= )

— e [ pedLen()

ANé_1(p)

Also, by lemma[4.3.1T]

ny '(A4) = f*_lui(p) (4) = Ni:v(p)(f(A)) Fr(p)

I
\
(oW

fLANE(f(P))

/ ()d Leb"(2)
LANE(f(p)

_ / o f(2) Atd Leb"(2)
Anf—1(

_ / () AUd Leb¥(2)
ANg_1(

Thus, comparing those expressions:

(1 () /

pd Lebt — / po f(z) Aud Leb®()
ANE_1(p) ANé_1(p)

Since A was arbitrary, we must have
(5(E-1(0)) " p(2) = po f(2) AL

for ,uf,—a.e. z € £_1(p). Finally, since f(£-1(p)) = £(f(p)), every q € £(f(p)) can be written as ¢ = f(r)
for some r € £_1(p). Using it, and rearranging the expression above, we get

p(@) = p(F (@) N1 )~ (5(E-1(p))

for ,ufc(p)—a.e. q € £(f(p))- By changing f(p) to p we have proven the lemma. O

That’s a curious property, but the term (ug(f_l (p)))~! makes it a little clumsy to say that it ‘dynam-
ically defines’ the density. Well, with a little rearrangement we can get rid of this term and obtain an

expression that is so more visually appealing that I will state it as a lemma on it’s own:
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Lemma 4.3.14. For ji-a.e. p € T? and ,uf,-a.e. q € &£(p) we have

Proof. By lemmaf4.3.13|we have

pla) _ AP @) Na Al (@) ﬁ Af-1w) p(f"(9))
p(p)  Aferp(F7HP)  Afea (g Afmi (P (F 2 (D) N1 PUTP))

7

=1
By lemma[4.2.2] the limit of this product converges. Hence

+oo \u

pla) _ 0 g PETN@)

pp) i Njeygy e p(f7(P))

Since ¢ € W"(p) and almost every p is recurrent, we get a set of full measure such that this limit is 1.

Proving the lemma. O

This lemma says that if you know the value of p at a point p, then you know its value at every point of
&(p). If you compare this infinity product with the Jacobian p;, of the normal forms { H},},,c2 introduced
in subsection 4.2 you will see that they are the same thing! It is not a coincidence, of course this was
made to be like that. With this, we have that p(q) = Cd,H,, where C' is constant on atoms. That very
convenient expression invites us to explore the behavior of ug in these affine coordinate charts. For it,
define the following

Definition 4.3.15. For p € T? and I C R, put i, (1) = (Hp).p1(I)
Those 7z, are a collection of measures in R and they reveal the following amazing regularity of i,
Lemma 4.3.16. For p-a.e. p € T? we have f1, = 0.5 Lebg.

Proof. Let I C R be compact and find 7 € N big enough so that H, ' (I) C &,(p) then, by lemma(4.3.12|
for all J C I we have ,U,p(Hp_l(J)) = Co,uf," (HP_I(J)) where Cy = 11,(&,(p)) is constant. Then

=) / dzHgl(z)p o Hgl(z)d Lebgr(2)
b

By the remark above definition@4.3.15, we have po H l(2)=cCd -1 (z)HP‘ Also, by the inverse function
p
theorem we have d. H, ' = (ngl(z)Hp)_l’ thus

- 1
d.H, Y(2)po H, (2)=C

Hence
1i,(J) = CoC / d Lebg(2)
J
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Since J C I was arbitrary, the measures coincides minus a constant in . And since  was an arbitrary
compact in R, the measures coincides in R minus a constant. To determine the constant, just notice that
by definitions [4.3.10|and [4.3.7] for n € N sufficiently big we have

o (Hp([-1,1))

iy (Hyp([—1,1]) = —1
. pp (Hp([—1,1])
Thus
1= CoCLebR(Hp([—l, 1]) = QCOC
so that CyC = 0.5 and i, = 0.5 Lebg. L]

The fact the leaf-wise measures are exactly (0.5)Lebesgue under the normal forms reparameterization
is really strong. In particular, since in normal forms f acts on a set by multiplying it by it’s derivative, we

can recover this property to the manifold:
Lemma 4.3.17. For p-a.e. p € T? and n € N we have fI'p,, = A;ﬁnp(—n),ufn(p)

Proof. It follows from a direct calculation: Let A C T2 and define B <" H F7(p) (A) C R. Then, by the
item (iv) of Prop. [#.2.1) we have

Frup(A) = wp(f o Hyl ) (B) = pp(Hy "Ny (—0)B) - = Ty (N, (—n)B)
= 0.5Lebp (A4, (—n)B) = A4, (—n)0.5Lebp(B) = A4, (—n)fi,(B)
= Ny (=) (Hy N (B)) = Ny (—10) 11 (A).

66



CHAPTER 5

The Margulis Family

In the previous chapter we focused on the SRB measure and constructed a family of measures defined on
entire unstable leaves that behaved very well under the dynamics. Now it’s the turn of the measure of
maximal entropy v. Here we construct a family of measures defined on W* and W* which locally gives a
disintegration of v in product neighborhoods that scales with the topological entropy Ay, of f.

This family is called the Margulis Family and their applicability in fact holds for equilibrium states in
general and not just the maximal entropy measure. Since the effort to construct them for the general case
is similar to our case, we present general one. The outline of the proof is to define a linear operator of
functions on leaves and use the Riez Representation Theorem to obtain a measure on each leaf. For these
measures to behave well we will construct them as to be a fixed point of a good action.

The main reference for this chapter is [Alv13]]

5.1 A fixed point for an action

When we write A C W7 we mean A C W7(p) for some p € M, o = s,u. Also, for A, B C W" we
denote an Holonomy from A to B by H 4., i.e. we are just dropping the base point of the holonomy
and denoting it by its domain and codomain (H 4, 5(A) C B). In particular, if you interpret a point as a
singleton we have H 1,1 = Hp—q and this notation agree with the definition @

Definition 5.1.1. Given A, B C W*", we say A and B are c-equivalent if there is a well defined surjective
Holonomy map H4—,p : A — B such that d(H(z),x) < e, Vx € B.

Consider the set of continuous functions over unstable leaves with compact support

C.(W™) = {p : M — R|supp(yp) C W* is compact and ®lsupp(,) 18 continuous }

»)

Definition 5.1.2. We say ¢, pg € C.(WW") are e-equivalent if supp (1) and supp(p2) are e-equivalent
via an Holonomy H and ¢; = @92 o H.

It is a curious feature of transitive systems that for any open A C W*, all sufficiently small unstable
balls are e-equivalent to A. We see it in Proposition|[5.1.4] just after a little definition.

Definition 5.1.3. A disk of radius € and center in p € M is the set
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IIZG

(_17 1)2 - R2

UW“

geEWeE(p

when well defined via a foliated chart ® : D.(p) — (—1,1)2. A disk can be endowed with an
analogue of the sum metric in R": d*(p, ¢) = d*(p, ) 4+ d*(r,q), where r € W(¢) N W2 (p).

Proposition 5.1.4. For any A C W™ open, there exists r,e > 0 such that Vp € M, B} (p) is e-equivalent
to a subset of A.

Proof. Letp € M and g € A. Find r > 0 such that there are well defined product neighborhoods Dy, (p)
and Do, (q). By theorem[2.3.5] W (p) is dense. Thus there exists ¢ > 0 such that W2 (p) (| Dar(q) # 0.
In fact, since W* and W*" are continuously transverse, € can be chosen so that for a small enough r,
WZ(z) intersects W3 (¢) in a single point for each z € W3 (p). Thus there is a well defined map

H: DQT(P) — D27‘(Q>

which in restriction to any unstable plaque W* N Da,(p) gives an Holonomy map. If needed, diminish
7 so that Do, (q) is above A. Now, if 2 € D,.(p) we have B;!(2) C Da,(p) thus H|pgu . is an Holonomy

and

d(H|B}‘(Z)(x)7x) <e ,Vze Bg(Z)

so it establish an e-equivalence between B}(z) and a subset of A for every z € D,(p). To finish,
cover M by finitely many such neighborhoods D, (p;), take r to be the minimum of such 7/}s and ¢ the

maximum of each associated ¢;.

O]
Let ¢ : M — R be a Holder observable. We define densities kY by
/{: dif exp (Z Yolf )
Thoose satisfies the following cocycle relation: Vni,no € Nand p € M
o () = K, (D)KL, (£ () (5.1)
We will be interested in the action on C.(W*") of the functionals
LY (p) < / kYoo fd Leb® (5.2)

As we explore it, we will see that they behave very well as the time n advances. In fact, fixing one
observable, it is possible to compare all the others with its value. To achieve those comparisons we need

many more lemmas and some very numericals as the one below

Lemma 5.1.5. Ifn € Nand (a;)]'_1, (b1)]-, € R are finite sequences with b; > 0 then
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Proof. Let S = % and suppose the Lemma is false. Then, for all 0 </ < n we have
=1

%<S — a; < bS
4

Thus

ian iblS
S = ZTLl < l=i -9

a contradiction.

Lemma 5.1.6. If M and N are manifolds endowed with the Lebesgue measure Leb, g : M — N isa
local diffeomorphism and 1 : M — R, @9 : N — Rs g are continuous and integrable, we have

/M prdlLeb <<p2 . gsm (p) )

< sup
/ ¢2d Leb peEM (p) Jacg(p)
g(M)

Proof. By the Change of Variables Theorem

/ (pgdLeb—/ p20g Jacg dLeb
9(M) M

Since ¢ and @9 are continuous and integrable, their Lebesgue integral can be taken as a limit of
Riemann sums. In particular, if we take a partition P, = {X1 p,

.., Xyn} such that Leb(X; ) =
Leb(M)/n and z;,, € X;, then using lemma
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/ ©1d Leb > e1(x1n) Leb(Xip)
M

= lim =1

n—+oo
/g(M)SOQdLeb Z 9(x1)) Jacg(x;,,) Leb(Xy )
=1
Z‘Pl(xl,n)
=1

p2(9(z1,0)) Jacg(xn)
=1

= lim
n—-+o0o

) ‘Pl(xl,n)
< lim max
n—+o0 1<i<n 2(g(71,n)) Jacg(zin)

v1(p)
= <¢2<g<p>> Jacg<p>>

O]

Lemma 5.1.7. If A C W*" is open with compact closure. Then, 3C' = C(A) > 0 such that Vp € M and
n € N:

/ k¥dLeb® < C k¥d Leb®
"(BY 4 (P)) r(A)

Proof. Letp € M and B = H,,4(B}(p)) be the subset of A e-equivalent to B}(p) given by the
Proposition [5.1.4] By lemma [5.1.6| we have

/ k¥d Leb" .
(B #) - ( k(") ) . < )
/ FedLebt  a€Br) \kn (" o Hpsa(0)) ) aebpo) \TOH ) pr()(4)
f(B)
Denote § = H,_, 4(¢) and notice that
L)) _ N
kn (f"(q _ n—l n— l < LA\
< Hél(w)fa > ()
=1
+0o0
< Hol(1)e Y (M)

=1
which is bounded independently of p.
Also, Proposition[4.2.7 gives us that JacH gn(y)_, n(p)(q) is uniformly close to 1, hence the second
term is also bounded. Finally, f"(B) C f™(A) and k. is positive, so

/ k¥d Leb" < / k¥Yd Leb"
"(B) " (A)

Gathering all those estimates and applying to the first equation, finishes the demonstration.
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Lemma 5.1.8. Let py € C.(W*") be positive and non-null. Then, for all ¢ € C.(W*") non-negative,
there exists a C = C(yp) > 0 such that Vn € N:

LY () < CLY (o)

Proof. Let e > 0 be small enough so that A = {z € M|po(x) > €} is non-empty. In particular, A is
open with compact closure, so we can obtain a constant r(A) > 0 given by Proposition 2.2.4.

Let K C W™ be a compact such that supp(¢) C K and cover K by a finite number N of u-balls of
radius 7(A4). By lemma[5.1.7| we have:

/k;fgoof_"dLeb“ < H(p]oo/ EYdLeb < HcpHOONC(A)/ k¥d Leb"
Fr(K) frA)

O L (o), O(p) e 1Pl NC(A)

€
O
Now, consider the set £ of functions L on C.(W™) that restrained to each unstable leaf is linear:
LEZA{L:C.(W") - R|Vpe M, L|c,(wu(p)) is linear}
L is a vector space and can be endowed with the product topology via the identification:
Le Ll (L@)eccwn € ] Re (5.3)

p€C (W)
The dynamics naturally acts in £ by the action F'¥ given by
FYL(p) = Lkypo f7")

We fix a g € C.(W*) positive with ¢ > 1 for an open A C W* and set a renormalized action £
by

b
pope PiL
Fn L(@O)

Lemma 5.1.9. The action of Fff is continuous.

Proof. An open in the base of the product topology is given by taking a finite number of intervals

I, ..., Iy and functions ¢1, ...,y in C.(W™) to obtain a set of the form:

US{Lel|Lg)elji=1,...,N}

The action simply gives
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(F) ' ={LeL| L(kpiof ™ €li=1,...,N}

which is clearly open, since k% ; o f~" € C.(W™).

The cocycle relations in ll implies F'¥ and F' satisfies the following properties

P FiL(9) = Fi Lkt 0 [7%%) = Likigy 0 f702F)) = B, L)
FY, L
FY, v
B YL - B Fol _ MERLeo) _ FuFnl  _ Fpan, L v,
1 2 ni 1 2
Filpo) gLt LE ) T ELELL(g0)  Fl oy Lig0)
ny $o

and acting in the previously defined functionals (5.2)) we have

FY LY (@) = LY, (knypo ™) = / kY oo frn) = 1Y ()

i (ss)
m( Li )‘ W) FSLE i
L, (o) Fw( <>> F4LE(p0) Ly (0)
Wy (00)

The first two properties shows that F¥ and F" are in fact actions. And, the last property means

%0

that F'¥ preservers the space of functionals of the form We denote the closure of all the convex

Ly,
o . Ly (o)
combinations of thoose functionals by Z:

aot. ———— ([ L%
Zo = convhull ” n >0
L (o)

Lemma 5.1.10. All L € 2 are positive, i.e. if p € C.(W™) and ¢ > 0 then L(p) > 0

Proof. Clearly each LY is positive and this property is maintained by either convex combinations and

limits.
O
Lemma 5.1.11. Z) is compact
Proof. Suppose ¢ € C.(W*") is non-negative. Then by lemma [5.1.8/3C(¢) > 0 such that ( ) <
®o

C(p) Vn € N. This estimate is kept by convex combinations and Timts, thus, it holds for every Le 20.
Also, by taking positive and negative parts and by linearity, if ¢ € C.(W™") is arbitrary, the same holds.
Le. 3C = C(¢) > O such that VL € Z.

—C(p) < L(p) < C(yp)

By the identification it means that 2 is contained in [ cc, () [=C(9), C(p)], which by
Tychonoff’s Theorem is compact. Since 2 is closed, it means that .2 is compact.
O
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For N € N we can define the subset of .2 given by

def. ————<—737 L%
Zn = convhull ” In >N
Ly (900)

2o () 2n

N>0

and their intersection

which by Lemma 5.1.11}] being the intersection of decreasing compact sets, is non-empty.
Lemma 5.1.12. Im € 2 such that ﬁf{bm =m Vn €eN.

Proof. As we saw, Fﬁf is continuous and Fff Zn € Zn. Thus, Fﬁf’ Zso € Zoo. Also, Zx is compact
and convex. Thus, by Tychonoff’s fixed point theorem, Im € 2, such that Ffp m = m. Since F'¥ is an

action, m is fixed for all n € N.
O

5.2 Estimates on the fixed point

This fixed point satisfies some very special properties. To see it, given p € M, for ¢ € W*(p) and
r € W*(p) define

+o00
k5 (p,q) = exp <Z¢ o fl(a) —vo fl(p)>
=1

+oo
4(p.r) = exp (Z Yo fT(r)—yo f‘l(p)>
I=1
Since 1) is Holder and stable and unstable leaves are contracting for f and f~! respectively; the sums

above converges. With that definition we have:

Lemma 5.2.1. If p € C.(W"), p € supp(p) and H;_, , : K — K' is a stable Holonomy between p and
p € W*(p) then

m(poHy p) = mky (s Hy oy ())e)
Proof. We’ll show that
poH?, N
e o) R
PN I =p
independently of my € 2. This shows that

vo /H;Z’%p —m
Moo (W) = Moo ()

' —p
for any meo € Z. S0, using the linearity of m., and arbitrariness of K C supp(¢y), it concludes

the Lemma.
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Let N > 0 and define

ol 20Ty

kg (M (4)50)

' —p

Changing variables we have

k(@) o 1y, (f7(9))

¢ _ e u /
Li(9) = /fN(K,) R, (), 7)) e (@)

RS (7—[5 N(p)— NV ( /)(Q)) B ) .
:/fN(K) Ky, (f~ N(q), H;ip ?f—N(q))(pof N(q)JachN(p)_}fN(p,)(q)dLeb (q)

For q € fN(K) write ¢/ = H;N(p)ﬁfN(p,)(q) and define

def. k%(Q)
kX @)k, (F~N(a), FN(q))

TaH b gy 3 1) (9)
With this we see that

L) = [ Rx@kiaee S L ()

Thus
LY(¢) — Liy(p) = / (Rn(q) — 1)kX (q)p o f~ (g)d Leb*(q)
fN(K)
And
Ly(@) Iy | _ Ly (p) |
- < Ssu R -1 (1)
L%(‘PO) L%(@o) quNI()K)‘ V@ ’L%(wo)

»
By Lemma|5.1.8 LLw (( )) is bounded independently of N > (. Also, by Proposition 4.2.7|and the fact

that p’ € W#(p) we have JacH iy

D)= fN) 1. Finally

= o (Zwo (@) — o f'(f~ (q’)>>

which goes to zero since ¢ is Holder, d(f =V (q), f~V(¢')) < d(K, K') is bounded and ¢’ € W*(q).
Thus Ry (q) goes to 1 and so (i) goes to 0.

As any my € Zn can be written as the limit of convex combinations of all the above

N(S@O)
estimates holds for my. Le. |mpy(¢) — mny(¢)| — 0. Thus meo(¢) = Mmoo () as we wanted.

O]

Proposition 5.2.2. There exists Py € R such that Vo € C.(W") and Vn € N:

m(po f*) = e "m(ky )
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Proof. Letn € N and write a,, = m(kﬁf o o f~™). Then, by|5.1|and the fact that m is a fixed point, we
have for m,n € N

mgn = MKkl o fg 0 f0 f7™) = m(kingpo o f~™) Em(ki o o f")
= m(kbo o fT™)m(kl o o f™)
= Qman

thus 3P, € R such that a,, = ape™. Since ag = m(pg) = 1, we have a,, = ",

Again, with more computations we get

P Y
mipo f) = Ffm(po ") = (k”;;’“" @}_n) = M Pem (k)
n P0 ©

O]

Now, each leaf in W*" is a locally compact Hausdorff space and in restriction to it, m is a positive
linear functional. Thus, by the Riez Representation Theorem, we obtain a measure v, ,, in each leaf. In

fact, by re-constructing everything above for f~!, we also obtain a family of measures pr , In the stable
leaves. Precisely:

Theorem 5.2.3. There exists two family of measures (v, ,)pen and (v, ,)pe in the unstables and stable
leaves respectively, such that

a) (Leafwise) If ¢ € W (p) then Vi g = Vi And if 7 € W*(p) then Vg r = Vi

b) (Holonomy deformation) For p' € W*(p) and q in the domain of a stable Holonomy 'Hp ot

A, * v

p'—p * Yy s
T @ =k )

For p” € W"(p) and r in the domain of an unstable Holonomy "Hp‘ﬁ\p
dH ll /!
+¢P(T) ki (r, My (1))
¥,p

¢) (Dynamical deformation) There exists real numbers Py, P{,) such that Vp € M and n € N we have:

df”*yw

n—1
Tf()(p) = exp (Zw o f"(p) — Pw)>
»,p =0
and

dfm v n_l
¥, f- ()
dll—w _exp< Z¢o ¢))

=

Proof. As said, the existence is just a consequence of the Riez representation Theorem. And to obtain
properties (b) and (c), apply Lemma [5.2.1) and Proposition[5.2.2]
O
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Property (b) shows that both measures varies continuously along the domain of the other. Thus we

can integrate one with respect to the other to obtain a measure in M.

Lemma 5.2.4. There exists a probability measure vy, in M that is locally given by the integration of

def.
P pVis.p DY Vi o Where PiZ,p(CJ) = kié(n q).

Proof. The local existence of this measure is given by the continuity with respect to the holonomies as
discoursed in the remark above. The measure is finite because Vivp and pr,po are locally finite and T? is
compact. Thus, up to a constant multiplication, we can say it is a probability.

What remains to prove is that these local expressions are coherent. I.e. the value measured does not
depend in which stable leaves you choose to integrate papyt’;’p. But it is no problem, since the Holonomy

S
deforms Vi po 38

p“ dHu//_> * V;Z: 7
P = k3 (po, pg) = B ()
pw,pg 1,po

Thus the collage is well defined.

5.3 Passing to the measure

This measure v, is an equilibrium state. To see it we need to pass these estimates on the fixed point to it.

Lets start by seeing that it is atleast invariant:
Lemma 5.3.1. We have P, = Pq’#, thus vy is f-invariant.

Proof. By integrating A C M and using how the dynamics deforms the measure (property (c)) we see
that v (f"(A)) = en(P*”*Pv;))%(A). Putting A = M we obtain P, = P. And thus, vy, is invariant.
O

To confirm that v, is an equilibrium state is basically to show that P, is the pressure of f with respect

to . For it we will need some computation. But before it, we need two more lemmas.

Lemma 5.3.2. There exists g > 0 and C > 1 such that for all p € T? and ¢ < £

Be1e(p) © De(p)  Bee(p)
Proof. Since distances in leaves are surely atleast bigger that in the entire manifold, i.e. d(p, ¢) < d*(p, q)

(when defined). We have

De (p) g BQ& (p>

Thus it remais to show that 3C > 2 such that d* (p, q) < Cd(p, q).
Let p € T? and g¢ > 0 be so that D, (p) is well defined. Put U = D_,(p), and notice that Vg € U

def.

we have a well defined disk D, (q) € K =" Ds,(p). Consider a foliated chart

®: D3, (p) — (—1,1)* C R?
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and set M = sup, ;e {Jac®(x), Jacd ' (x)}. If p,q € U and r = (p, q) we have

®(r) @(q)
d*(p,q) :/ dlS—i—/ div :/ Jac<I>dZ+/ Jac®dl
p—r r—q o(p) a(r)

< M[d(®(p), ®(r)) + d(B(r), D(q))]

= Md,(®(p), ®(q))

But, in R?, the metrics dg2 and dﬁ% are strongly equivalent, thus 3Cy > 0 such that dﬁ% < Codge

and we obtain

d*(p,q) < Mdl(®(p), ®(q)) < MCdga(®(p), ®(q)) < M*Cod(p, q)

Setting C' = max{2, M Cj} concludes the lemma for ¢ € U. To extend it to the entire torus, cover
T? by finite such U’s, take the minimum of all £q’s and the maximum of all C"s.
O

Lemma 5.3.3. Ve > 0, 3C. > 1 such thatVp € T?, C-1 < vy(B:(p)) < Ce.

Proof. Since v, is a probability, the upper bound is given by C; > 1. Also, we may just show the
lemma for sufficiently small €. Let ¢y and C' be the constants given by lemma|[5.3.2] For 0 < ¢ < &,
let 0 < § < C~'e/2 be small enough so that D;(p) is well defined for all p € T?. By compacity, cover
T? by finite many disks Ds(p;), i = 1,..., k. Notice that, with those choices, for every p € T2, there is
ani € {1,...,1} such that Ds(p;) C B:(p). Hence, it suffices to see that v, (Ds(p;)) > C-! for some

C: > 1. Forit, let x;,7 = 1,..., k be continuous bump functions satisfying

Xi‘Ds/z(pi) = land Xi’Dg(m) =0

For every g € W§), (pi)s X7 o Xilwu(q) € Ce(W™) is positive and non-null. Thus, we are under the

hypothesis of lemma 5.1.8|and there exists C§' > 0 such that, foralln € N,

q
U Ln(Xz)
* 7 Lu(po)
Since the measures A; are the limits of convex combinations of such quotients, we must have

A (X)) > Cy > 0. Similarly, A5, (Xi‘Wf/g(pi

the product measure of A" and \*, which we have just shown are strictly positive at the subsets D; /2 (p;)

y) > 0. Now, the measure v, in a product disc, is given by

of Ds(p;). Thus vy (Ds(p;)) > 0 fori = 1,...,k and taking C- ! as the minimum of those values, the

lemma is proven.
O

We recall that the time n metric by f is given by

dn(p.q) = max d(f'(p), f'(q))

0<i<n-—1
and denote by B. ,,(p) the time n ball of radius € at p. Restricting this metric to paths contained in
leaves, we can similarly to def|5.1.3|define Den(p) = Ugews () Wein(q) as the time n disk of radius e
at p, where W7, (p) is the & neighborhood of p in its W leaf with respect to this metric.
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Lemma 5.3.4. There exist g > 0 such that for 0 < € < o, 3E. > 0 such that Vp € T? and n > 0 we

have
Uy (Ba,n (p))
w(Svern )
=1

Proof. By lemma(5.3.2} it suffices to prove the lemma by replacing B.(p) with D.(p). Using a metric

E-l <

€

<E.

adapted to f as in Prop. [2.1.2] the instantaneous contraction of W* and dilatation of W" gives us
Wen(p) = Wi(p) and W, (p) = f~"(WZ(f"(p))). Also, for ¢ € W (p) we have

o [P (¥ e ['(9) - LAY (L SO SN
log (exp (Z?:1¢°fl(P))>) < ;W(f (@) =¥ (f (p)] < ltfol(w);A <C

Thus exp (Y- ¥ o fl(q)) < e%exp (X o f!(p)). Swapping p and ¢ we get

eC exp (Zw o fl(p)> < exp <Z¢ o fl(q)> < Cexp (Zw o fl(p))
=1 =1 =1

Let E. = C.e“, where C. is the constant given by lemma Property c¢) of Theorem then

gives

E&jl exp (Zq/; o fl(p) — PTZ’) < Vz/}(Da, (p)) < E-exp (Zd} o Pw)
=1

as desired.
O

We say that a set F is (n, ¢)-separated if d,,(p, q) > € for all p, ¢ € E. We remember that the pressure
of an observable 1) with respect to f is given by the beautiful expression below

P(¢) = lim limsup — sup log Z exp <Z¢ o fY( )) ‘ E is (n,e) separated

e—0 n
n—-+oo peE

Lemma 5.3.5. P, is the pressure P(1).

Proof. Let E be amaximal (n, )-separated set. In particular, being maximal implies T? = Uper Ben(p)s
thus by the precedent lemma

S o) < 8. e (e 1) )

peEE peEE
so that P, < P(¢ o f). Now, E being (n, €)-separated implies that the time n balls B, 5 ,,(p) are all
mutually disjoint. Thus lemma/[5.3.4] gives

1> ZVTZJ(BS/QJL > E_ /2 Zexp <Z¢O - )

pEE peEE
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so that P(¢ o f) < Py, hence Py = P(v o f). By a theorem of Walters (Teo. 9.7 (vii))[Wal00]
P(o f) = P(¢). So Py = P(¢)).
O

Lemma 5.3.6. The measure vy, is a Gibbs state for 1) with respect to f.

Proof. Using Birkov’s Ergodic Theorem, lemma|[5.3.4|readily gives

lim lim sup 0g vy (Ben(P)
n

e=0 nooo

) < Py _/@Zjdl/zp < lim lim inf 0g vy (Ben(p))

e—0 n—oo n

So the limits above exists and are equal. A theorem by Brin & Katok [[BKS83| states that this limit is
the topological entropy Ao, (f) of f. Thus vy is a measure maximizing the Variational Principle and the
lemma is proven.
O
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CHAPTER 6

Lyapunov Exponents Rigidity

Now, we have everything ready to prove the Main Theorem and its corollary. We will start by proving
lemmal6.1.1) which, if you recall that we are assuming hop(f) = hy,(f), is Ledrappier-Young’s formula
in out context. Then, after some technical lemmas, we use it to prove lemma [6.1.5] and show that the
conjugacy is Lipschitz along the unstable foliation.
To pass from Lipschitz continuity to C'*® regularity will only require absolutely continuity from h.
In the second section, we will prove the conservative case (corollary which, will be reduced to

an application of Journé’s lemma.

6.1 Proof of The Main Theorem

Let f € Diffi(TZ), 1 be the SRB measure for f and suppose that h,(f) = hiop(f). Since pis both a SRB
and a measure of maximal entropy, we have two associated family of measures: The leaf-wise measures
{#p}per> and the Margulis family {v}; },c72 associated to the zero potential ¢ = 0. Let { < W* be a
subordinated partition. By the superposition property (Cor. #.3.9) their mutual normalization must agree,

i.e.

This leads to the following equality:
Lemma 6.1.1. \%(1) = hiop(f)

Proof. By the Poincaré Recurrence Theorem, we can find p € T? recurrent. For each n € N let
A, < Hf_,,,l(p)([—l, 1]). By Lemma}.3.17|and Theo. |5.2.3|item (c) we have

([T (An)) = Ngnp (=) gy (An) = Afnp,(=1)0.5 Lebg([—1,1]) = Ay, (—n)

and
vy (7" (4n)) = e‘”ht“”(f)V}‘n(p) (4n)

Thus, by the remark above and a little rearrangement, we have

frp(=n) = mv}%(m (Ay)eer(f) )

Since p is recurrent we can take a subsequence (f"*(p))ren of (f™(p))nen such that f™#(p) — p.

Thus, since A,, are of uniformly bounded length, all A,,, lies on a compact set of T?2. Hence, because
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the measures y;j are locally finite and varies continuously (Theorem@ item (b)), we conclude that
Vn(p) (A;) is bounded. Applying the logarithm, dividing by n and taking the limit in the expression

above we have

. 1 u _
kEI—II—loo 7719 log )\f”p(_nk) = htOP(f)

Using that A, (—ny) = (A%(nx))~" we obtain exactly what we wanted. O

Remark 6.1.2. By our hypothesis, the above lemma can be written as A% (x) = hy(f). This in turn, is
Ledrappier-Young’s Theorem, which is true in a much wider setting. Here, we recovered this result in a

particular case by exploring pure geometrical properties of the system.

Let f4 and h : T? — T2 be as in the Franks-Newhouse Theorem We already have that h is
Holder, and we want to promote it to C'! in the unstable direction. For it, we first will promote it to

Lipschitz. And for that, we will need to measure some sets:

Definition 6.1.3. For J C W"(p) measurable, we denote by |J|, it’s length in normal forms at p and |.J|
def.

it’s length in W*. Le. |.J|, = Lebg(H,(J)) and |.J| “= Leb"(.J). Also, if ¢, € W*(p) we write [¢, 7]

to denote the shortest interval in W*(p) connecting ¢ and 7.

In particular, for ¢, € W%(p), we have |[¢q,7]| = d“(q,r). And since normal forms are C! along
unstable leaves and their Jacobian is 1 at the base point (Prop. item (ii)), they are locally Lipschitz.
This means that if € > 0, there exists a C' > 1 such that for any set J C W*(p) we have

1
A<l < Cl

This is interesting, for the dynamics is really well behaved under normal forms, in the sense that
|f™ ()] gnpy = Ap(n)|J]p. And fortunately, even though the equivalence between lengths is only local,

the following lemma says that, somehow, to promote a Holder function to Lipschitz is a local matter.

Lemma 6.1.4. Iffor a p € T? there exists a 6o > 0 and a C > 0 such that for any interval J C W*(p)
such that | J| < dp we have
[h(D)] < C|J|

Then h|yyu(p) is Lipschitz.

Proof. Suppose that the conclusion is false. Then there exists sequences (¢, )nen, (7n)neny € WH(p)
such that

d*(h(gn), h(rn)) = nd*(gn, )

I claim that d“(gp, ) — 0 as n — +oo. In fact, since h is Holder along unstable leaves, we have a
Co > 0and « € (0, 1) such that

d*(h(gn); h(rn)) < Co(d"(gn, ™))"

But, if the claim was false, there would be a § > 0 such that d“(h(gy,), h(ry)) > 0. However, the function
t € Rus — t* € Rygis C! bounded. Thus 3C; > 0 such that

t* < Cit
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Hence,
du(h(qn>7 h(?"n)) < COCIdu(Qn7 7’”)

This contradicts the definition of these sequences and cannot happen. The claim is proved. Now, let
Jn = [qn, ). We have |J,,| — 0 but

(h(Jn)| = [P(gn), h(rn)| = d(h(gn), h(rn)) = nd*(gn,Tn) = n|Jn]
Which is a contradiction to the hypothesis and the lemma is proven. 0

To obtain the hypothesis of the lemma above, recall that the topological entropy hiop(fa) of the linear
model f4 is simply given by the logarithm log(A“(A)) of A greatest eigen value A*(A). Since topological
entropy is a conjugacy invariant, we have Aoy (fa) = hiop(f) and in particular o (f) = log(A*(A)).
Together with this, we use equation (x) of Lemma|6.1.1]to prove the following

Lemma 6.1.5. There exists constants 5o > 0 and a C > 0 such that for pi-a.e. p € T? for all J C W*(p)
with | J| < dp we have
[h(J)| < C|J|

Proof. Consider the intervals J,,(p) = f~"(Jo(p)) where Jo(p) = H,'([-1,1]). Since all Jy’s are the
image of the same set [—1, 1] by H !, their length is bounded by an uniform constant. Furthermore, since
the dynamics contracts unstable intervals in the past we have that |.J,,(p)| — 0 uniformly on p.

In particular, since they are all mutually bounded, |.J,,(p)| is proportional to |J,,(p)|.. Thus it suffices
to show the lemma for | - |, instead of | - |. In fact, all we need to show is that |h(J,,(p))|p/|Jn(P)]p is
bounded. For convenience, will drop the base point of .J,,(p) for the rest of the proof.

Using how the dynamics acts linearly under normal forms we have
[ Inlp = 17" (Jo)lp = Afap(=1)[Jolp = 2A%n, (—n)
and by the commutativity of h with the dynamics,
[h(Jn)l = [ho [T (Jn)| = [f4™ o h(Jo)| = (A*(A))"[~(Jo)|

Since h is Holder and the Jy’s are bounded, we have h(Jy) < 2C) for some constant. Also, using the

remark above the lemma, (A\%(A))~" = e~"or(f) Thus, the above equation becomes
|h(J,)| < 2Cge™heer(f)

Dividing both terms we get
—nhtop(f)
] Xt ()

By the equation (x) of Lemmal6.1.1] we have

MO _ L ED)
< Ot ey i)™

where A,, = Jo(f"p). Similarly to what was done there, we may suppose p is recurrent. So, A,, lies in a

compact product neighborhood of p, and since the Aj,’s are all uniformly bounded bellow and v} varies
continuously, u}‘n ) (A,) is also bounded below. So the above expression is bounded and the lemma is

proven. O
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An immediate consequence of the two lemmas above is
Corollary 6.1.6. For every p € T2, h|yu(y) is Lipschitz.

Now that A is Lipschitz, we can finally show that it is C'! in the unstable direction and with that we

finish the proof of the Theorem:
Lemma 6.1.7. For every p € T2, hlwu(p) is Ccl.

Proof. Since h\Wu(p) is Lipschitz, it is absolutely continuous. Thus, the pushback f* Leb, is also absolute
continuous on unstable leaves. In particular, since & is a conjugation and Leb is f4 invariant, h* Leb is f
invariant. Thus, h* Leb is the SRB measure for f. Hence, we have h* Leb = u. Consider a subordinated
partition ¢ < W, For p € T? and ¢ € W*(p) we have

Lebt ) ([4(p), h(a)]) = h* Leb([p,q]) = 1 ([p>]) = /[ pd Leb

If we take smooth arc-length parameterizations of W*(p) and W*(h(p)) identifying them with R we
have

h(q) — h(p) = /q pd Lebg

Thus, hyu(p is the integral of a continuous function, hence is C' L O

6.2 The Conservative Case

For the conservative case, the result above implies that the conjugation is in fact C'. To see it, let
f € Diffpen, (T?) and suppose that heop(f) = NLebo, (f)-

The Lebesgue measure Lebr2 is, of course, the SRB measure for f. Thus, by the main theorem
1.0.1} the conjugacy h : M — M between f and its linear counterpart f4 is C'! along unstable leaves.
However, Lebrz is also invariant for f~1, so it is the SRB measure of f~! as well. Since f is invertible,
we have hop(f) = heop(f 1) and hieb,, (f) = DLeby, (f71), hence hyop(f~1) = hreb,, (f~1) and it
also satisfies the hypothesis of the main theorem. Thus, the conjugacy h between f~! and its linear
counterpart f;l is C'! along unstable leaves of f~1.

The unstable leaves of f~! are the stable leaves of f. Hence we have obtained that h is C' when
restricted to either the unstable or stable manifold. Since these manifolds form two continuous transverse

foliations, any real function that is C'! along them will be C'! in the entire manifold:

Lemma 6.2.1. If an observable ¢ € C°(M) is C! when restricted to the leaves of two continuously
transverse foliations W* and W, then o is C 1

Proof. Since differentiability is a local matter, we may take coordinates around a point and treat ¢ as a
function in C°(R™). Similarly, we may suppose that W* and W have a global product structure. Since
@ is C! along W, there is map L* : R® — L(R",R) that for every z € R"™ associates the unique
linear transformation LY : T,W" — R that satisfies p(y) — ¢(x) = L¥(y — ) + R"(y — =), where
R“(y —x)/ly — x| goesto O as y — x as long as y — x € T, W*". The same for L*. These maps are

continuous along their respective foliations.
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Now, I will define L : R™ — L(R"™, R) as the map that associates for ever x € R" the linear map
Ly=LY® L] : T, W"®T,W?.Iclaim that this map L is continuous and is the derivative of ¢ at each
point. To prove it, take =, y € R™ and let z be the unique element in W*(z) N W*(y). We have

oY) —p(@) =9y) —e(z) +p(z) — ()

=Li(y—2)+R(y—2)+ L%z —z) + R*(z — x)

As y — x, we have that z — z along a leaf of W*. Hence L — L7, ie. L] = L? + ¢, where the

operator norm of €, goes to 0 as z — x. Thus

oY) —p(r) =Li(y—2)+ Ly(z —x)+ R°(y — 2) + R*(2 — ) +e.(y — 2)

=L, (y—xz)+R(y—2)+ R*(z—x)+e,(y— 2)

All terms other than L (y — x) above are of a higher order than O(|y — z|), thus L, is in fact the derivative
of v at z. In particular, for Z € W*(y) N W*(z) we also have

oy) —p(x) =Ly(y—o)+ R(x—2)+R(Z—-y) +ez(x - 2)

so that L, — L, = R(y — ) where R(y — z) — 0 as y — 0, that is, L is continuous. O

To use this lemma for h, we remember that a function b : M — M is C' if and only if poh : M — R
is C'! for every ¢ € C'(M). Hence, since h being C! restricted to stable and unstable leaves implies that
@ o h also is, the lemma above gives that

Corollary 6.2.2. The conjugacy h is C*.

Which proves corollary [I.0.2]and concludes the text.
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APPENDIX A

Periodic Data Rigidity

Two systems f, g € Diff (M) conjugated by a homeomorphism A : M — M are said to have the same
periodic data if for every point p € Per,(f) you have

spec(d, f™) = Spec(dh(p)g")
In this appendix we prove the following

Theorem A.0.1. Let f, g : T? — T? be two Anosov diffeomorphisms of class C? with the same periodic
data and let h : T?> — T? be a conjugation between f and g. Then h is C1 T,

This theorem can be generalized for dimension 3. However its proof requires way more effort than for
the two dimensional case and it also requires more hyphothesis: you must either require f and g to be
C! close to a linear automorphism or that one of them admits a partially hyperbolic invariant splitting
TT? = E* @ E¥" & E“ and the conjugacy h is homotopic to a linear automorphism (see [GGO08]]). In
fact, just like our main theorem, this is a low dimensional phenomena: there exists counterexamples for
dimension d > 4.

To prove this theorem we will use the affine parameters 4.2.1] some properties of holonomies (as
lemma[4.2.6) and the density of the foliations (see theorem [2.3.5]).

Proof of Theorem [A.0.1]

Lets first prove that h|yy« is Lipschitz.

Claim A.0.1.1. For all p € T?, h|yu(y) is Lipschitz.

Proof. Let p € M and take an interval I C W}L(p) in the unstable leaf of p. Write is image by h as
I “E h(I)and p = f(p). Since h is a conjugacy between f and g we have I C W4 (D).

In dimension 2, we know that the unstable leaves are one-dimensional. Thus, the length of an interval
is nothing more than the distance between its end points. With this observation, the task to show that
hyyu(p) is Lipschitz becomes the task to bound the ratio |1]/|I| from above. Also, since the normal forms
are an uniform family of diffeomorphisms, we can measure lengths under their linearized coordinates, i.e.
we only need to bound |I|,/|1],.

Also, since the conjugacy is Holder, we may assume that ||, < 1 (see lemma|6.1.4).

Let g € Perk(f) be a periodic point for f. Since the stable leaves of f are dense (see Theorem ,
we can find a stable holonomy map H;,;: [ — J C W}L(q) where J < H,_, J(I). In particular, since
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holonomies commutes with the dynamics, it induces an Holonomy H gt I—Jcwy (q) where
J = H; ;1) and ¢ = h(q).

Since the holonomies are uniformly C*, we can find a C' > 1 such that
Ol <|Jlg < Clllp and  Cl|;* < |J]g < C|I|
Thus . .
Uy _ coldl
1y | lq

def.

Thus it suffices to bound |j|q/\J]q. For it, define J,,;, C W]? (q) by Jpi = f”k(J) and let J,x =y h(Jnk)-
Take no € N big enough so that |.J,,,x|, > 1. Since h is Holder, this implies that |jn0k|q [ noklq < Co
where Cj is the Holder constant of h. However, by item (iv) of prop. |4.2.1] we have

k
| Tnoklq = [dq.f5]™ ||
Also, since h commutes with the dynamics, we have jno = g”ok(j ). Thus, using the same item
R k R
| Tnoklq = |dgg™ |||

But, since they have the same periodic data, we have |d, f*|™0 = |d;g*|™0, thus

Uy _ Poutla _
| J|q ‘ J, nok ‘q
which concludes the claim. O

To pass from h|y« Lipschitz to it being C'* apply lemma Also, since f and g have the
same periodic data, it follows that f~! and g~ also have the same periodic data. Thus, since  is also a
conjugacy between f ! and g~!, all arguments above are symmetrical and can be used to prove that Ay s
is also C''. By lemma (Journé’s lemma), it follows that A is C1** and the theorem is proven. [
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