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RESUMO

Quando as medidas físicas (SRB) são de máxima entropia?
Quando dois sistemas são conjugados de forma suave?

O objetivo deste texto é apresentar um resultado elegante (clássico) de rigidez para difeo-
morfismos de Anosov em dimensão dois que conecta essas duas questões: precisamente, nós
mostramos que a medida SRB de f tem máxima entropia se e só se f for conjugado a um
mapa linear de forma suave ao longo da folheação instável. A prova clássica desse resultado
(veja cor. 20.4.5 de [KH95]) depende do formalismo termodinâmico: os estados de equilíbrio
associados a potenciais diferentes são mutualmente singulares, a menos que os potenciais
sejam co-homólogos. Outra maneira de se provar é por meio de uma rigidez dos expoentes de
Lyapunov: se o push-forward da medida SRB pela conjugação for uma medida com o mesmo
expoente de Lyapunov, então a conjugação tem que ser suave ao longo de folhas instáveis. No
texto, iremos apresentar uma demonstração geométrica autocontida desse fato, baseada em
um estudo detalhado das medidas condicionais em folhas instáveis da SRB (leafwise measures)
e das medidas de máxima entropia (família de Margulis).

Palavras-chave:Sistemas Dinâmicos; Teoria Ergódica; Rigidez; Entropia.



ABSTRACT

When physical SRB measures are of maximal entropy?
When two given systems are smoothly conjugated?

The goal of this text is to outline a beautiful (classical) rigidity result for Anosov systems in
dimension two that connects these two questions: Precisely, we show that the SRB measure of
f maximizes the entropy if and only if f is smoothly conjugated to its linearization along unstable
leaves. The classical proof of this result (see cor. 20.4.5 of [KH95]) relies on thermodynamical
formalism: the equilibrium states associated with different potentials must differ, unless the
potentials are co-homologous. Another approach can be made via Lyapunov exponent rigidity:
if the push-forward of the SRB measure by the conjugacy is a measure with the same Lyapunov
exponent, then the conjugacy must be smooth along the leaves. In the text, we shall present
a self-contained geometrical proof based on a detailed study of conditional measures along
unstable leaves for the SRB (leafwise measures) and for the MME (Margulis family).

Keywords:Dynamical Systems; Ergodic Theory; Rigidity; Entropy.
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CHAPTER 1

Introduction

In this text we will study the dynamics of Anosov diffeomorphisms which are a kind of system described

by a simple axiom: its derivative preserves a pair of complementary directions, contracting one and

expanding the other. One of the major questions about them is whether you can classify up to conjugacies

all of them, i.e. whether you can find an explicit collection of Anosov diffeomorphisms whose all others

are conjugated to it. For low dimensions this question was positively answered up to the topological level

by Franks-Newhouse (see theorem. 2.3.3).

Since the topological classification is already done, it incites us to explore the class of smooth

conjugacies. However, it doesn’t take long to notice that this type of conjugacy is very sensible: suppose

f and g are two Anosov systems conjugated by a smooth diffeomorphism h, that is h ◦ f = g ◦ h. Then,

if you take any periodic point p for f with period n, you can differentiate the conjugacy to obtain

dh · dpfn = dh(p)g
n · dh

Thus, the linear maps dpfn and dh(p)gn are also conjugated, which implies that they have the same

spectrum (we say that they have the same periodic data). It is a notorious fact that Anosov diffeomorphisms

in low dimension always have a dense set of periodic points; thus this condition on the derivatives must

hold in a dense set. This condition is, of course, very fragile: any small perturbation, as smooth as you

want, is capable of changing the spectrum at a point, which breaks the equality. Hence, there is no hope of

classifying them up to smooth conjugacies.

There is, however, a peculiar phenomena that arises in this situation. A smooth conjugation is so rigid

that it, in some sense, can characterize excessively specific properties. I.e. requiring a system to satisfy

a very restrictive property may cause all the systems that satisfy it to be smoothly conjugated. This is

nothing but a mantra, however, a fruitful one.

An example of such phenomena already appeared in the discursion given above: not just smooth

conjugacy implies equality of periodic data, but equality of periodic data also implies smooth conjugacy!

(see appendix A).

This equality of periodic data is explicitly gross and it makes sense to imply rigidity. What we will

show is something more subtle: Start with a conservative linear Anosov diffeomorphism. For this system,

its invariant volume measure coincides with its maximal entropy measure. If you consider a conservative

perturbation of this system, it still preserves the volume, however its measure of maximal entropy may not

be equal it. What happens if you require it to still be the measure of maximal entropy?
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We will see that this condition implies rigidity. In fact, we’ll not be restricted to the conservative case:

When the system is not conservative, there is a type of measure (the SRB measure) that naturally takes its

place. The main theorem that we will prove is the following

Theorem 1.0.1 (Main Theorem). If f : T2 → T2 is an Anosov diffeomorphism of class C2 such that

its SRB measure µ is of maximal entropy, then f is conjugated to a linear toral automorphism and the

conjugacy h is C1+α when restricted to any unstable leaf.

And as a corollary we will obtain that

Corollary 1.0.2 (The Conservative Case). If f : T2 → T2 is a conservative Anosov diffeomorphism such

that its invariant volume measure maximizes the entropy, then it is C1+α conjugated to a linear toral

automorphism.

The classical proof of these facts uses the thermodynamical formalism: the measure of maximum

entropy and the SRB measure are both equilibrium states of different potentials (the identically null

potential and the logarithm of the unstable jacobian respectively).

When the equilibrium states are equal, the potentials must be co-homologous, which implies that

the logarithm of the unstable jacobian is co-homologous to a constant. From it, you can deduce that the

conjugacy between f and its linear counterpart, which sends equilibrium states into equilibrium states,

must be absolutely continuous along the unstable foliation, and this forces the smoothness.

A more geometrical approach, which better aligns with this work, is with the use of Ledrappier-

Young’s theory: By the entropy formula, the Lyapunov exponent of f must be equal to the entropy of

the SRB measure. Thus, since topological entropy is invariant along a class of conjugation, if the SRB is

of maximal entropy we obtain that its Lyapunov exponent coincides with the logarithm of the unstable

eigenvalue of the linear model.

This equality involving the Lyapunov exponents in turn implies in the smoothness of the conjugacy

(see, for example [SY19]).

In this work we present a complete self-contained proof of Theorem 1.0.1 and corollary 1.0.2.

Our main focus will lie on the geometrical structure of the conditional measures.

We will present the construction of the Leafwise measures for the SRB measure. These are a family of

locally finite borelian measures defined on each unstable leaf that coincides (up to normalization) with the

conditional measures. The construction we show in chapter 4 closely follows the work done in [Alv+24].

We’ll also present the construction of the affine parameters, also known as normal forms, which are a

type of non-stationary linearization. With this affine structure, we will see that the leafwise measures can

be identified with the usual Lebesgue measure on the real line.

Also, in chapter 5, we will present the Margulis family.

The main difference between the Margulis family and the Leafwise family is in how it is renormalized

under the dynamics: the Margulis family scales with the topological entropy while the Leafwise family

scales with the unstable jacobian.

When the SRB measure is of maximal entropy, this allows us to re-obtain Ledrappier-Young’s entropy

formula by a direct computation.

We then proceed to present a self-contained proof, for our particular context, that the equality between

the Lyapunov exponents of the SRB measure with those of the Lebesgue measure for a linear map implies

that the conjugacy is Lipschitz continuous and, furthermore, that it is C1+α.

12



It is important to emphasize that there are many similar, but different, ways to achieve the same

conclusion that we obtain here. However, in this work, the main purpose is to exhaustively explore the

following heuristics: in low dimensions, the preservation of local asymptotic quantities by the conjugation

implies in rigidity.

This same heuristics is also present in appendix A, where we show that the coincidence of periodic

data, as discoursed before, also implies in smoothness for the conjugacy.
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CHAPTER 2

Anosov Diffeomorphisms

In this chapter I will present some fine properties of Anosov diffeomorphisms. Those form a class of

systems that are of great importance to the study of dynamical systems. Their dynamics is very rich and

are an important example of a structurally stable system.

In the first two sections we define them and establish some basic results about them. In the third

section we discourse about their stability and classification.

2.1 Invariant Manifolds

Definition 2.1.1. A diffeomorphism f :M →M on a Riemann manifold M is said to be Anosov if there

are constants 0 < C, λ > 1 and an invariant decomposition TM = Es ⊕ Eu of the tangent bundle such

that for all p ∈M

|dfnv| ≤ Cλ−n|v| , for all v ∈ Es(p)

|df−nu| ≤ Cλ−n|v| , for all u ∈ Eu(p)

The distributions Es and Eu are called stable and unstable distributions respectively. The constant λ

is a rough estimate on the rate of contraction in the stable direction and expansion in the unstable direction.

The constant C is to account for a correction in the firsts iterates. Often times one ignores this constant by

making it equal to 1. This can be done if you (as we) is not interested in the fine properties of a Riemann

manifold, because it is always possible to redefine the Riemann metric so that it happens:

Proposition 2.1.2. If f :M →M is Anosov and M is compact, then there is a Riemann metric | · |f on

M such that the constant C in the definition 2.1.1 is 1.

Using this adapted norm, an Anosov diffeomorphism is an instantaneous contraction on the stable

direction Es and expansion in the unstable direction Eu, i.e. if S ⊆ M is any sufficiently small sub-

manifold of M tangent to the stable (resp. unstable) distribution Es (resp. Eu) of a point p ∈M , then

d(f(p), f(q)) < ˜λ−1d(p, q) (resp. d(f(p), f(q)) > ˜λ−1d(p, q)), where λ̃ is as close to λ as long as you

make q → p in S.

This is nothing but saying that a map can be well approximated by its own derivative. However, for

Anosov diffeomorphisms we require these stable and unstable directions to be defined everywhere and

even more they are invariant. If we could integrate these distributions, the resulting manifolds would be

invariant and have contraction\expansion properties. One may ask themselves if those invariant manifolds

actually capture all the asymptotical behavior of a point or not. With this question I mean the following

15



Definition 2.1.3. Given a map f :M →M and a point p ∈M , the stable and unstable manifold of p are

the sets

W s(p)
def.
= {q ∈M |d(fnq, fnp) → 0 as n→ +∞}

W s(p)
def.
= {q ∈M |d(fnq, fnp) → 0 as n→ −∞}

respectively.

The sets W s(p) and W u(p) capture all asymptotical behavior at p in the sense that every point whose

orbit follows the trajectory of p is at one or another. At first, the name ‘manifold’ above is only formal, for

the sets W σ(p) are not necessarily manifolds. But only at first, because those sets are actually immersed

manifolds. It follows from the well know Stable Manifold Theorem:

Theorem 2.1.4. If f : M → M is an Anosov Diffeomorphism of class Cr, r ≥ 1 with invariant

decomposition TM = Es ⊕ Eu, then there exists an ε0 > 0 such that for every 0 < ε < ε0, the set

W s
ε (p)

def.
= {q ∈M |d(fnp, fnq) < ε, ∀n ≥ 0}

is a Cr embedded disk that is and tangent to Es and of the same dimension of it. Moreover, the map

p→W s
ε (p) is continuous in the Cr topology.

It is clear from its definition that if ε satisfies the Theorem above then

W s(p) =
⋃
n∈N

f−n(W s
ε (f

np))

so that W s(p) is an immersed manifold. To avoid the use of unnecessary parameters, we may write this

local stable manifold W s
ε (p) as W s

loc(p) without expliciting ε. Also, if W̃ s
loc(p) is a local stable manifold

for f−1, we may as well define the local unstable manifold of f as W u
loc(p) = W̃ s

loc(p). We obtain W u(p)

in the same manner.

Remark 2.1.5. In particular, since these manifolds are tangent to the distributions Eσ, the convergence in

definition 2.1.3 is exponentially fast.

This Theorem is classical, and the general proof can be easily found in many textbooks; see [Wen16].

Since we are interested in surface diffeomorphisms I will present the particular case for a fixed point in

dimM = 2:

Theorem 2.1.6. If f :M →M is Cr and p ∈M is a fixed point such that the eigen values of dpf are

λ1 < 1 < λ2 then there exists a C1 embedded curve W s
loc(p) satisfying

1. Invariance : f(W s
loc(p)) ⊆W s

loc(p).

2. Convergence : For all q ∈W s
loc(p) we have that fn(q) converges exponentially fast to p.

3. Uniqueness : If q ∈M is so that fn(q) converges exponentially fast to p then there exists N ∈ N
such that fN (q) ∈W s

loc(p).

4. Tangency :W s
loc(p) is tangent to the eigen space of dpf associated to λ1.

For the proof we will follow section 3.1 of Rafael Potrie’s lecture notes [Pot16]. The proof is based

on the following steps:
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1. We construct a good local representation of f .

2. Considering a certain space of curves, we find one that is invariant by this local representation.

3. We show that this curve restricted to the origin is the one satisfying the conclusions of the Theorem.

Local Expression

Consider a local chart Φ : U → R2 around p with Φ(p) = 0. Since p is a fixed point and f is a

diffeomorphism, we have that f−1(U) is a neighborhood of p. Let V def.
= U ∩ f−1(U) and notice that

f̂
def.
= Φ ◦ f ◦ Φ−1(V ) → R2

is well defined. The benefit of this expression is that in this way, d0⃗f̂ shares the same eigenvalues

0 < λ1 < 1 < λ2 of dpf . Also, up to linear change of coordinates, we may suppose that the eigenspaces

of d0⃗f̂ are the x̂ and ŷ axes. In particular

d0⃗f̂ =

(
λ1 0

0 λ2

)

By Taylor’s Theorem, we can write

f̂(x, y) = (λ1x+ α(x, y), λ2y + β(x, y))

Where α and β are of class C1, α(⃗0) = β(⃗0) = 0 and ∇α(⃗0) = ∇β(⃗0) = 0⃗.

By continuity, given ε > 0, we can take a δ > 0 such that both ∥α|B(0,δ)∥C1 and ∥β|B(0,δ)∥C1 < ε

are bounded by ε. Let us now consider a smooth bump function η satisfying

· η(x, y) = 1, if ∥(x, y)∥ < δ
2

· η(x, y) = 0, if ∥(x, y)∥ > δ

· ∥∇η(x, y)∥ < 4
δ

Using this function, we can extend f̂ to a map in R2 by defining

f
def.
= ηf̂ + (1− η)d0⃗f̂ : R2 → R2

Near the origin f coincides with f̂ , and far from the origin f coincides with d0⃗f̂ . However, ideally, f̂ and

d0⃗f̂ are very similar near the origin. Hence, f turns out to be very close to the linear map d0⃗f̂ everywhere.

That is, f = d0⃗f̂ + r⃗ where ∥r∥C1 is very small. Explicitly, in coordinates:

f(x, y) = (λ1x+ η(x, y)α(x, y), λ2y + η(x, y)β(x, y))

Lets write α = ηα and β = ηβ.

Claim 2.1.6.1. Given ε > 0 it is possible to choose ε > 0 such that{
|α(p1)− α(p2)| < εmin{δ, ∥p1 − p2∥}
|β(p1)− β(p2)| < εmin{δ, ∥p1 − p2∥}

17



Proof. Let p1, p2 ∈ R2. Notice that |η(pi)| ≤ 1 and that if ∥pi∥ ≤ δ we have

|α(pi)| < ∥α|B(0,δ)
∥C1∥pi∥ < εδ

And if ∥pi∥ ≥ δ then

|η(pi)α(pi)| = 0 < εδ

Thus
|α(p1)− α(p2)| ≤ |α(p1)|+ |α(p2)|

= |η(p1)α(p1)|+ |η(p2)α(p2)|
= |η(p1)||α(p1)|+ |η(p2)||α(p2)|
< εδ + εδ

= 2εδ

In another way, if ∥p1∥ ≥ 0 and ∥p2∥ ≥ 0 we have

|α(p1)− α(p2)| = 0

But if atleast one pi < δ (say p1 < δ), we have

|α(p1)− α(p2)| = |η(p1)α(p1)− η(p2)α(p2)|
≤ |η(p1)α(p1)− η(p1)α(p2)|+ |η(p1)α(p2)− η(p2)α(p2)|
= |η(p1)||α(p1)− α(p2)|+ |α(p2)||η(p1)− η(p2)|
< ε∥p1 − p2∥+ εδ 4δ∥p1 − p2∥
= 5ε∥p1 − p2∥

The same results holds for β. Finally, taking ε < ε
5 we finish the claim.

In particular, this claim says that ∥α∥C1 < ε and ∥β∥C1 < ε. Thus, in fact

f = d0⃗f̂ + r⃗

where ∥r⃗∥C1 is as small as we want. By the inverse function theorem, f is a diffeomorphism. Since f is

just d0⃗f̂ plus a very small perturbation, we would like to say that f
−1

is [d0⃗f̂ ]
−1 plus something tiny.

Thankfully to this next technical lemma, we can actually say it

Lemma 2.1.7. Let A : E → E be a continuous linear isomorphism and ∆ : E → E be of class C1.

Then, given ε0 > 0 there exists a δ0 > 0 such that is ∥∆∥C1 < δ0 then A+∆ is invertible and

(A+∆)−1 = A−1 + ε

where ε : E → E and ∥ε∥C1 < ε0.

Proof. The fact that for some δ0 > 0 the map A+∆ is invertible with C1 inverse follows directly from

the inverse function theorem. Given that we know that, the only way that ε could be defined is by

ε
def.
= (A+∆)−1 −A−1

All we have to do is to verify that for any choice of ε0 > 0 we can make ∥ε∥C1 < ε0.

18



Let x ∈ E and put y def.
= (A+∆)(x). We have

∥dyϵ∥ = ∥dy(A+∆)−1 − dyA
−1∥

= ∥ [dx(A+∆)]−1 − [dxA]
−1 ∥

= ∥ Inv(A+ dx∆)− Inv(A)∥

Since the operator Inv : L(E) → L(E) is a continuous function, there exists a δ1 > 0 such that

∥(A+ dx∆)−A∥ < δ1 implies

∥ Inv(A+ dx∆)− Inv(A)∥ < ε0

Taking δ < δ1 we obtain

∥dyϵ∥ < ε0 , ∀y ∈ E

Also, by continuity of A−1, there exists some δ2 > 0 such that ∥y′ − y∥ < δ2 implies that

∥A−1y′ −A−1y∥ < ε0

For any y ∈ E, we can find x ∈ E such that y = (A +∆)(x). For this x let y′ def.
= Ax and notice that

∥y′ − y∥ = ∥∆(x)∥ < δ0. Thus if we choose δ0 < δ2 we have ∥A−1y′ −A−1y∥ < ε0, and hence

∥ϵ(y)∥ = ∥(A+∆)−1(y)−A−1y∥ = ∥A−1y′ −A−1y∥ < ε0

Thus ∥ε∥C1 as desired.

Corollary 2.1.8. Given ε > 0 we can, if necessary, diminish ε > 0 so that we can write

f
−1

(x, y) = (λ−1
1 x+ θ(x, y), λ−1

2 y + ϑ(x, y))

where ∥θ∥C1 < ε and ∥ϑ∥C1 < ε.

This f is our desired local expression. We will now go to the next step in our proof, which is to search

for a f invariant curve.

Invariant Curve

We will look for an invariant curve among graphs of Lipschitz functions, i.e. lets consider the set

Lip1
def.
= {φ̃ : R → R|φ(0) = 0 e Lipφ ≤ 1}

We endow this set with the following norm:

∥ · ∥ : Lip1 → R
φ 7→ ∥φ∥ def.

= supt̸=0
|φ|
|t|

Claim 2.1.8.1. (Lip1, ∥ · ∥) is a Banach space.

Proof. It is clear that ∥ · ∥ defines a norm, we must only check that it is complete.

Let (φn)n∈N ⊆ Lip1 be a Cauchy sequence. In particular

|φn(t)− φm(t)|
|t|

≤ ∥φn − φm∥ → 0 when n,m→ +∞
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Thus (φn(t))n∈N ⊆ R is Cauchy for every t ∈ R. Since R is complete, this sequence converges.

Define φ(t) = limn→+∞ φn(t). By definition of being a Cauchy sequence, given ε > 0 there exists a

N ∈ N such that for all m,n > N we have

∥φn − φm∥ < ε

Fixing m and taking the limit as n→ +∞ we obtain that

∥φ− φm∥ < ε

Thus, it seams that φn → φ. It only remais to show that φ ∈ Lip1. For it, just notice that for this same

m > N that we fixed, we have

|φ(t)− φ(s)| ≤ |φ(t)− φm(t)|+ |φm(t)− φm(s)|+ |φm(s)− φ(s)|
≤ 2ε+ Lipφm|t− s|
≤ 2ε+ |t− s|

Since ε > 0 was arbitrary, we have

|φ(t)− φ(s)| ≤ |t− s|

so that φ ∈ Lip1 and the claim is proven.

The graph graphφ of a function φ ∈ Lip1 is invariant by f if f(graphφ) = graphφ, or equivalently,

if graphφ = f
−1

(graphφ).

To proceed we need the following claim

Claim 2.1.8.2. If ε > 0 is small enough, it holds that for all φ ∈ Lip1 we have that f
−1

(graphφ) is the

graph of a function.

Proof. A set A ⊆ R2 is the graph of a function in R if for all x ∈ R there is one and only one y ∈ R such

that (x, y) ∈ A. Equivalently, let π : R2 → R be the projection in the first coordinate; a set A ⊆ R2 is the

graph of a function in R if the restriction to A of the projection is a bijection.

We have that

f
−1

(graphφ) = {f−1
(t, φ(t))|t ∈ R}

= {(λ−1
1 t+ ϑ(t, φ(t)), λ−1

2 φ(t) + ϑ(t, φ(t))|t ∈ R}

Thus using t as a parameter of f
−1

(graphφ), we can write pi|f−1
(graphφ)

(t) ≡ λ−1
1 t+θ(t, φ(t)). Notice

that
∥θ(t, φ(t))− θ(s, φ(s))∥ ≤ ε∥(t, φ(t))− (s, φ(s))∥

= ε
√
(t− s)2 + (φ(t)− φ(s))2

≤ ε
√
(t− s)2 + (t− s)2

=
√
2ε|t− s|

Thus Lip(θ(·, φ(·))) ≤
√
2ε. Hence, by the (Lipschitz) Inverse Function Theorem, if ε is sufficiently

small, π|f−1
(graphφ)

is a lipeomorphism and this concludes the claim.
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Since the graph of a function completely characterizes the function, this claim says that for every

φ ∈ Lip1 there is one and only one function whose graph is f
−1

(graphφ). Thus we have a well defined

function f∗ that takes a map φ ∈ Lip1 and returns the unique map f
−1
φ such that

graph f∗φ = f
−1

(graphφ) (*)

Now, the task to find a function whose graph is invariant to f has been converted into the task to find a

fixed point for the map f∗. To do it we must first understand the functions f∗φ. Let’s start by noticing

that, since graphs are parameterized by a single real parameter, the equation (*) implies that for every

t ∈ R there exists a Nφ(t) ∈ R such that

(t, f∗φ(t)) = f
−1

(Nφ(t), φ(Nφ(t))) (1)

Claim 2.1.8.3. Given φ ∈ Lip1, the map Nφ : R → R given by the formula above is well defined and a

bijection.

Proof. If Ñφ(t) ∈ R also satisfies (1), them{
(t, f∗φ(t)) = f

−1
(Nφ(t), φ(Nφ(t)))

(t, f∗φ(t)) = f
−1

(Ñφ(t), φ(Ñφ(t)))

Thus

f
−1

(Nφ(t), φ(Nφ(t))) = f
−1

(Ñφ(t), φ(Ñφ(t)))

Since f is a bijection, we have that

(Nφ(t), φ(Nφ(t))) = (Ñφ(t), φ(Ñφ(t))) ⇐⇒ Nφ(t) = Ñφ(t)

hence Nφ is well defined. If t ̸= s then

(t, f∗φ(t)) ̸= (s, f∗φ(s))

Thus

f
−1

(Nφ(t), φ(Nφ(t))) ̸= f
−1

(Nφ(s), φ(Nφ(s)))

And again, since f is a bijection, we have

(Nφ(t), φ(Nφ(t))) ̸= (Nφ(s), φ(Nφ(s))) ⇐⇒ Nφ(t) ̸= Nφ(s) ou φ(Nφ(t)) ̸= φ(Nφ(s))

=⇒ Nφ(t) ̸= Nφ(s)

so that Nφ is injective. To see that Nφ is surjective, let t ∈ R. By equation (*), there must be a K(t) ∈ R
such that

(K(t), f∗φ(K(t))) = f
−1

(t, φ(t))

Thus, by definition of Nφ, we have that Nφ(K(t)) = t. Hence Nφ is also surjective, and the claim is

proved.
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Back to equation (1), opening the first coordinate shows that

t = λ−1
1 Nφ(t) + θ(Nφ(t), φ(Nφ(t)))

By the claim, Nφ is a bijection, so we can write t = N−1
φ (s). With this the expression above becomes

N−1
φ (s) = λ−1

1 s+ θ(s, φ(s))

Notice that this is the same expression that we obtained in claim 2.1.8.2, where we saw that this is a

lipeomorphism. In particular, the (Lipchitz) Inverse Function Theorem gives that Lip(Nφ) ≤ 1
λ−1
1 −Lip(θ)

,

i.e.

|Nφ(t)−Nφ(s)| ≤
|t− s|

λ−1
1 −

√
2ε

Now that we have understood a little about the function Nφ, we can go back to equation (2) and open the

second coordinate

f∗φ(t) = λ−1
2 φ(Nφ(t)) + ϑ(Nφ(t), φ(Nφ(t)))

Claim 2.1.8.4. If ε is small enough, then given φ ∈ Lip1 we have that f∗φ ∈ Lip1.

Proof. We have that

|f∗φ(t)− f∗φ(s)| = |λ−1
2 φ(Nφ(t)) + ϑ(Nφ(t), φ(Nφ(t)))− λ−1

2 φ(Nφ(s))− ϑ(Nφ(s), φ(Nφ(s)))|
≤ λ−1

2 |φ(Nφ(t)− φ(Nφ(s)| − |ϑ(Nφ(t), φ(Nφ(t)))− ϑ(Nφ(s), φ(Nφ(s)))|
≤ λ−1

2 |Nφ(t)−Nφ(s)| −
√
2ε|Nφ(t)−Nφ(s)|

≤ λ−1
2 −

√
2ε

λ−1
1 −

√
2ε
|t− s|

Since λ−1
2 λ1 < 1, in the limit where ε→ 0 we have that λ

−1
2 −

√
2ε

λ−1
1 −

√
2ε

→ λ−1
2 λ1 < 1. Thus, for ε small, we

get

|f∗φ(t)− f∗φ(s)| ≤ |t− s|

Also, (0, 0) ∈ graphφ, Thus

(0, 0) = f
−1

(0, 0) ∈ f
−1

(graphφ) = graph f∗φ

and f∗φ(0) = 0. With all that we conclude that f∗φ ∈ Lip1 and finish the claim.

Thanks to this claim, we now have a well defined map

f∗ : Lip1 → Lip1
φ 7→ f∗φ

It would be great if this map f∗ were a contraction. In that way we could use Banach’s Fixed Point

Theorem to find an unique fixed point, i.e. a unique invariant curve φ∗ ∈ Lip1, which is exactly what we

want. In fact, it does hold that f∗ is a contraction, and to see it we will need some computations. Before

them, we need the following lemma:

Lemma 2.1.9. Let (X, d) be a metric space, ξ ∈ R>0, 0 < ε < λ and suppose that (fx : R → R)x∈X is

a family of homeomorphisms satisfying{
|fx(t)− fy(t)| ≤ ξd(x, y)|t| (1)

|fx(t)− λt| ≤ ε|t| (2)
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Then

|f−1
x (s)− f−1

y (s)| ≤ λ−1

(1− λ−1ε)(λ− ε)
ξd(x, y)|s|

Proof. By equation (2) we have that

fx(t) = λt+ rx(t) (i)

where Lip rx ≤ ε. Using (2) we obtain

|fx(t)− fy(t)| = |rx(t)− ry(t)| ≤ ξd(x, y)|t|

Since fx is an homeomorphism we can write t = f−1
x (s) for some s. Using this in (i) we get

f−1
x (s) = λ−1s− λ−1rx(f

−1
x (s))

Thus

|f−1
x (s)− f−1

y (s)| = λ−1|rx(f−1
x (s))− ry(f

−1
y (s))|

≤ λ−1|rx(f−1
x (s))− ry(f

−1
x (s))|+ λ−1|ry(f−1

x (s))− ry(f
−1
y (s))|

≤ λ−1ξd(x, y)∥f−1
x (s)∥+ λ−1Lip ry|f−1

x (s)− f−1
y (s)|

≤ λ−1ξd(x, y)∥f−1
x (s)∥+ λ−1ε|f−1

x (s)− f−1
y (s)|

Rearranging the terms with |f−1
x (s)− f−1

y (s)| we obtain

|f−1
x (s)− f−1

y (s)| ≤ λ−1

1− λ−1ε
ξd(x, y)|f−1

x (s)|

More over, by the Lipschitz Inverse Function Theorem, Lip(f−1
x ) ≤ 1

λ−Lip rx ≤ 1
λ−ε . Hence

|f−1
x (s)− f−1

y (s)| ≤ λ−1

(1− λ−1ε)(λ− ε)
ξd(x, y)|s|

as desired.

Corollary 2.1.10. If ε > 0 is small enough, then

|Nφ(t)−Nφ̃(t)| ≤
λ1ε

(1− λ1
√
2ε)(λ−1

1 −
√
2ε)

d(φ, φ̃)|t|

Proof. If necessary, diminish ε > 0 so that
√
2ε < λ−1

1 . Apply the lemma above for X = Lip1, ξ = ε,

λ = λ−1
1 , ε =

√
2ε and the family (N−1

φ : R → R)φ∈Lip1 .

With this result, we can now show that f∗ is indeed a contraction:

Claim 2.1.10.1. If ε > 0 is small enough, then there exists a γ ∈ (0, 1) such that Lip(f∗) ≤ γ.

Proof. We have that

|f∗φ(t)− f∗φ̃(t)| = |λ−1
2 φ(Nφ(t)) + ϑ(Nφ(t), φ(Nφ(t)))− λ−1

2 φ̃(Nφ̃(s))− ϑ(Nφ̃(s), φ̃(Nφ̃(s)))|
≤ λ−1

2 |φ(Nφ(t))− φ̃(Nφ(t))|+ λ−1
2 |φ̃(Nφ(t))− φ̃(Nφ̃(t))|

+|ϑ(Nφ(t), φ(Nφ(t)))− ϑ(Nφ(t), φ̃(Nφ(t)))|
+|ϑ(Nφ(t), φ̃(Nφ(t)))− ϑ(Nφ̃(t), φ̃(Nφ̃(t)))|

Where, by definition

|φ(Nφ(t))− φ̃(Nφ(t))| ≤ d(φ, φ̃)|Nφ(t)|
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Also, since |Nφ(t)−Nφ(s)| ≤ |t−s|
λ−1
1 −

√
2ε

, we have that

|φ(Nφ(t))− φ̃(Nφ(t))| ≤ d(φ, φ̃)
1

λ−1
1 −

√
2ε

|t|

Thus using that Lip(φ̃) ≤ 1 and corollary 2.1.10 we see that

|φ̃(Nφ(t))− φ̃(Nφ̃(t))| ≤
λ1ε

(1− λ1
√
2ε)(λ−1

1 −
√
2ε)

d(φ, φ̃)|t|

Simillarly, by corollary 2.1.8 and the same arguments above, we also see that

|ϑ(Nφ(t), φ(Nφ(t)))− ϑ(Nφ(t), φ̃(Nφ(t)))| ≤ εd(φ, φ̃)
1

λ−1
1 −

√
2ε

|t|

and

|ϑ(Nφ(t), φ̃(Nφ(t)))− ϑ(Nφ̃(t), φ̃(Nφ̃(t)))| ≤
√
2ε

λ1ε

(1− λ1
√
2ε)(λ−1

1 −
√
2ε)

d(φ, φ̃)|t|

Thus, gathering all those estimates above, we obtain

|f∗φ(t)− f∗φ̃(t)| ≤
(

λ−1
2

λ−1
1 −

√
2ε

+
λ−1
2 λ1ε

(1−λ1
√
2ε)(λ−1

1 −
√
2ε)

+ ε 1
λ−1
1 −

√
2ε

+
√
2ε λ1ε

(1−λ1
√
2ε)(λ−1

1 −
√
2ε)

)
)
d(φ, φ̃)|t|

In the limit where ε→ 0, the coefficient above goes to λ−1
2 λ1 < 1. Hence we can take a γ ∈ (λ−1

2 λ1, 1),

which for ε small, satisfies

|f∗φ(t)− f∗φ̃(t)| ≤ γd(φ, φ̃)|t|

For t ̸= 0 this means that
|f∗φ(t)− f∗φ̃(t)|

|t|
≤ γ∥φ− φ̃∥

Taking the supremum over all t ̸= 0 we conclude that

∥f∗φ− f∗φ̃∥ ≤ γ∥φ− φ̃∥

Hence Lip(f∗) ≤ γ as desired.

Finally, by this claim, f∗ is a contraction. Hence, by Banach’s Fixed Point Theorem, we have an

unique invariant map φ∗ ∈ Lip1 whose graph is an invariant curve.

We define W s
loc(p) in the chart Φ by the restriction of this curve to the ball B δ

2
(0). I.e.

W s
loc(p)

def.
= Φ−1

(
graphφ∗ ∩B δ

2
(0)
)

We will now prove that this curve satisfies the conclusions of the Theorem.

Convergence and Invariance

Consider the dynamics restricted to this graph

ρ := π|graphφ∗ ◦ f ◦ π|−1
graphφ∗ : R → R

t 7→ λ1t+ α(t, φ∗(t))
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and notice that the following diagram commutes

R graphφ∗

R graphφ∗

π|−1

graphφ∗

ρ f

π|Ws
loc

For p ∈ W s
loc, let x = Φ(p). Since x ∈ graphφ∗, we can write x = π|−1

graphφ∗(t) for some t. With this

we have

ρn(t) = π(f
n
(p1))

And in particular

f
n
(p1) = (ρn(t), φ∗(ρn(t)))

However, notice that

|ρ(t)− ρ(s)| = |λ1t+ α(t, φ∗(t))− λ1s− α(s, φ∗(s))|
≤ (λ1 +

√
2ε)|t− s|

Thus, for ε < 1−λ1√
2

, we have that ρ is a contraction. Hence, since ρ(0) = 0, it holds that ρn(t) → 0

exponentially fast. Also, since φ∗(0) = 0 and φ∗ is Lipschitz, it follows that f
n
(x) → 0 exponentially

fast. That is, fn(p0) → p exponentially fast. In particular, f |W s
loc

is a contraction, so f(W s
loc) ⊆W s

loc.

Uniqueness

Suppose that q ∈ M is such that fn(q) → p exponentially fast. In particular, fn(q) is eventually

in the domain of our local expression. Thus, for n ∈ N big, we can construct a sequence of points

(xn, yn) = Φ(fn(q)) ∈ R2 such that (xn, yn) → (0, 0) exponentially fast. Now, to prove that fn(q) is

eventually in W s
loc(p) is to prove that (xn, yn) is eventually in graph(φ∗).

This sequence satisfies (xn+1, yn+1) = Φ ◦ f ◦ Φ−1(xn, yn). Hence, since (xn, yn) is eventually in

B δ
2
(0) (where f coincides with Φ ◦ f ◦ Φ−1), we have (xn+1, yn+1) = f(xn, yn) for all n big enough.

Claim 2.1.10.2. If we choose ε > 0 small enough, then |yn+1| ≤ |yn| only if |yn| < |xn|.

Proof. Suppose that for some n ∈ N we have |yn| ≥ |xn|. In particular, we have ∥(xn, yn)∥ ≤
√
2|yn|.

Thus, by the definition of the sequence and claim 2.1.6.1, we have

|yn+1| = |λ2yn + β(xn, yn)| ≥ λ2|yn| − |β(xn, yn)| ≥ λ2|yn| −
√
2ε|yn| = (λ2 −

√
2ε)|yn|

Since λ2 > 1, we can chose ε > 0 small enough so that λ2 −
√
2ε > 1 which proves the claim.

Since we know that (xn, yn) → 0, we also know that yn → 0. Thus, there must be some n’s such that

yn+1 < yn. By the claim above, for these n’s, we must have yn < xn. Actually, this must hold for every

n:

Claim 2.1.10.3. For all n ∈ N, it holds that |yn| < |xn|.
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Proof. Suppose by contradiction that there is a n0 ∈ N such that |yn0 | ≥ |xn0 |. Then, as before, we have

∥(xn0 , yn0)∥ ≤
√
2|xn0 |. Thus, by the definition of the sequence and claim 2.1.6.1

|yn0+1| ≥ (λ2 −
√
2ε)|yn0 |

and

|xn0+1| = |λ1x1 + α(xn0 , yn0)| ≤ (λ1 +
√
2ε)|yn0 |

Thus ∣∣∣∣ yn0+1

xn0+1

∣∣∣∣ ≥ λ2 −
√
2ε

λ1 +
√
2ε

Since 0 < λ1 < λ2, we can take ε > 0 small enough so that the term above is greater than 1. In particular

|yn0+1| ≥ |xn0+1| and by induction |yn| ≥ |xn| for every n ≥ n0. However, by claim 2.1.6.1, this means

that yn is increasing for n ≥ n0. This contradicts the fact that yn → 0 and concludes the claim.

Now, consider the subset Lip1(q) of Lip1 given by

Lip1(q) = {φ ∈ Lip1 |φ(xn) = yn, ∀n ∈ N}

Claim 2.1.10.4. Lip1(q) is a non empty closed f∗-invariant subset of Lip1.

Proof. It is nonempty because it contains the map φ0 defined by

φ0(xn) = yn and φ0 is linear between each xn

which is in Lip1 by claim 2.1.10.3. To show that it is closed, let {φk}k∈N ⊆ Lip1(q) be a sequence such

that φk → φ ∈ Lip1. We have that

φ(xn) = lim
k
φk(xn) = lim

k
yn = yn

Thus φ ∈ Lip1(q) and Lip1(q) is in fact closed. To show that it is f∗ invariant, let φ ∈ Lip1. We already

know that f∗φ ∈ Lip1, thus we must only show that f∗φ(xn) = yn. Recall that by definition of f∗ we

have

f−1(graph(φ)) = graph(f∗φ)

Also, by definition of the sequence, we have (xn, yn) = f−1(xn+1, yn+1). Since φ ∈ Lip1(q) we have

(xn+1, yn1) ∈ graph(φ), thus

(xn, yn) ∈ f−1(graph(φ)) = graph(f∗φ)

I.e. f∗φ(xn) = yn and the claim is proven.

From this and claim 2.1.10.1, we can use Banach’s Fixed Point Theorem to find a f∗ invariant map

φ∗
0. By unicity we must have φ∗

0 = φ∗, which means that φ∗(xn) = yn. This is what we wanted.
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Tangency and Smoothness

To obtain the smoothness, notice that since φ∗ is Lipschitz, the accumulation points of

φ∗(x)− φ∗(x0)

x− x0
as x→ x0

is a subset of [−1, 1]. In particular, if you define a cone at x⃗ ∈ R2 of width δ > 0 and diameter η > 0

tangent to x̂ as the set

C(x⃗, δ, η) def.
= {(x, y) ∈ Bη(x⃗)||y| ≤ δ|x|}

It follows that every piece of the graph of φ∗ is contained in a cone of width 1. In particular, the

derivative of f−1 contracts the width of these cones. Hence, since the graph is invariant, for every point

x⃗ ∈ graph(φ∗) you can obtain a tangent line L ⊆
⋂
n f

−n(C(fn(x⃗), 1, ηn)). With a similar argument,

you show that those eigenspaces must vary continuously; otherwise these cones wouldn’t degenerate.

At 0⃗ the derivative is diagonal; thus the tangent line must be parallel to the x axis. Hence, W s
loc(p)

is tangent to the eigenspace of dpf associated to the contracting eigenvalue λ1. And the last item of the

theorem is proved.

2.2 Local Product Structure

A crucial consequence of the existence of those stable and unstable manifolds is that, locally, you can use

them as coordinates. This is called the local product structure. To be more precise:

Definition 2.2.1 (Product Neighborhood). A system f : M → M is said to have the local product

structure if for every p ∈M there is an open neighborhood U of p parameterized by a continuous map

Φ :W s
loc(p)×W u

loc(p) → U

such that Φ(q1, q2) ∈W u(q1) ∩W s(q2). Any such neighborhood is called a product neighborhood (or

foliated box).

To obtain this, notice that the continuity of df and the uniform contraction of Es implies that this

distribution is continuous:

Lemma 2.2.2. The distribution Es is Hölder continuous.

Proof. See Theorem 19.1.6 of [KH95].

The same holds for Eu. Since Es and Eu are transverse at each point, the angle between them is

positive. Thus, by their continuity, it is locally bounded from 0. Hence, for small neighborhoods, the

manifolds W s
loc(p) and W u

loc(p) form a collection of smooth uniformly transverse curves; in particular

they intersect each other at one and at most one point:

Proposition 2.2.3. Given p ∈M there exists ε0 > 0 such that for every ε < ε0 there is a δ > 0 such that

for every neighborhood U of p with diameter less than δ, it holds that W s
ε (q1) ∩W u

ε (q2) consists of a

single point for every two points q1, q2 ∈ U .

With this proposition we easily obtain the local product structure:
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Theorem 2.2.4. If f :M →M is Anosov, then it as the local product structure.

Proof. Take p ∈M and let ε, δ > 0 be as in the proposition above. We have that W s
δ (p) and W u

δ (p) are

within a δ neighborhood of p. Hence, the map Φδ that takes (q1, q2) ∈W s
δ (p)×W u

δ (p) and sends it to

the unique element of W u
ε (q1) ∩W s

ε (q2) is well defined continuous map. By unicity, if q = Φδ(q1, q2),

then q1 is the unique element in W u
ε (q) ∩W s

ε (p) and q2 is the unique element in W s
ε (q) ∩W u

ε (p). Thus,

for any δ′ < δ, Φδ restricted to the closure of W s
δ′(p)×W u

δ′(p) is a homeomorphism. In particular, we

obtain a parametrization Φδ′ :W
s
δ′(p)×W u

δ′(p) for any δ′ < δ.

A fundamental use of this structure is to obtain Holonomy maps:

Definition 2.2.5. A stable Holonomy map from p ∈M to q ∈M is any continuous map of the form

Hp→q :W
u
loc(p) → W u

loc(q)

r 7→ Hp→q(r) ∈W s(r)
⋂
W u(q)

such that Hp→q(p) = q

These maps glue pieces of unstable manifolds of a point to those of another by carrying them along

stable manifolds. Their regularity is of great importance for the study of the dynamics; see, for example

[Gu23]. For us, they will be an essential tool for the construction of the Margulis family in chapter 5.

Using the local product structure we can easily show their existence at short distances: Given a product

neighborhood U with parametrization Φ of a point p ∈M , you can define an Holonomy Hp→q for any

q ∈ U ∩W s
loc(p) by

r ∈W u
loc(p) 7→ Hp→q(r)

def.
= Φ(q, r) ∈W u

loc(q)

by lemma 2.2.2, this map is Hölder.

In fact, in our context of surface Anosov diffeomorphisms, they are actually C1+α. We prove it in

4.2.7 using that we can construct a very special kind of parameter for the unstable manifolds (the affine

structures 4.2.1).

Their existence is not limited to small neighborhoods; in chapter 5 we’ll show that for every open

segment of unstable leaf we can map uniformly small sets everywhere inside it. The usefulness of this

procedure is that the set we have just mapped inside the other is connected by segments of stable manifolds

(which will have uniform length). Thus, as we iterate, this small set gets exponentially closer to the big

one. This allows us, in some sense, to pass information from one to another (see proposition 5.1.4).

2.3 Topological Classification on Dimension Two

We have now defined the type of systems that we will work on and some properties that come with them.

The question that we ask now is: How many Anosov maps exist?

This question must be made carefully. If you pay attention to the definition of Anosov diffeomorphism,

it is clearly open in the C1 topology. Hence, if there is one Anosov map, then there is an entire infinite-

dimensional open set of them. It is not hard to find some starting examples.

The simplest one is an hyperbolic matrix in Rn. I.e. if A ∈ GL(n,R) is a n × n real invertible

matrix with eigenvalues |λ1| ≤ · · · ≤ λk < 1 < λk+1 ≤ · · · ≤ λn, then A : Rn → Rn is an Anosov

diffeomorphism. However, that’s not the best example, because some of their properties we want for them
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require the space to be compact. We can make a better one by making its domain more interesting: The

n-torus is the quotient space Tn = Rn/Zn, where Zn acts in Rn by translations. If the coefficients of

a n× n matrix A are all integers, it preservers the the ‘grid’ Zn. Thus, the class [A(p)] ∈ Tn does not

depend on the representative of [p] ∈ Tn. In particular, we have another example

Example 2.3.1 (Linear Anosov Diffeomorphisms). If A ∈ SL(n,Z) is hyperbolic, then fA : Tn → Tn

given by fA([p])
def.
= [A(p)] is an Anosov diffeomorphism in Tn.

Taking small perturbations of these examples we obtain an infinity of Anosov diffeomorphisms. The

question now is whether we can topologically classify them. By this we mean

Definition 2.3.2. Two continuous maps f : M → M and g : N → N are said to be topologically

conjugated if there exists an homeomorphism h :M → N such that h ◦ f = g ◦ h.

Topological conjugacy is an equivalence relation. To topologically classify all Anosov maps, we mean

finding all classes of topological conjugacy. This result is partially given when the map is of codimension

one, i.e. when either Es or Eu is one-dimensional:

Theorem 2.3.3. If f : M → M is a codimension one Anosov diffeomorphism, then f is topologically

conjugated to a linear toral automorphism.

This is a well-known result, initially proved under some hypothesis by Franks in his thesis and later

stated as here by Newhouse [New70]. Curiously, that simple example 2.3.1 turned out to be very general.

In particular, in dimensions 2 and 3, every Anosov diffeomorphism must be of codimension one. Hence,

for these low dimensions, topologically, there are only linear toral Anosov diffeomorphisms, and the

classification is complete.

For higher dimensions, the topological problem is still open for now. In particular, it is not even known

which kind of manifolds supports Anosov diffeomorphisms. It is a conjecture that a closed manifold that

supports it is homeomorphic to an infranilmanifold, which is, in some sense, a generalization of the torus.

Anyway. Since we are interested in surface Anosov diffeomorphisms f :M →M , we will, without

loss of generality, assume that M = T2 and that he is conjugated to linear Toral automorphism fA for

some hyperbolic matrix A ∈ SL(2,Z).
A consequence of this classification is that, for our case Holonomies are globally defined:

Corollary 2.3.4. If f : T2 → T2 is an Anosov diffeomorphism, then for every two unstable leaves W u(p)

and W u(q) there is a bijective Holonomy map H :W u(p) →W u(q).

Proof. Let h : T2 → T2 be the conjugacy between f and its linearization fA. Let es ∈ R2 be the

eigenvector of A associated to its contracting eigenvalue. Since the unstable and stable leaves of fA
are (projections of) lines, it follows that the holonomies of fA between any two points q1 ∈ T2 and

q2 ∈W s
fA
(q1) are given by

Hq1→q2 : W u
fA
(q1) → W u

fA
(q2)

q 7→ q + tes

where t ∈ R is given by the distance of q1 to q2 in W s
fA
(q1). Since h is a homeomorphism and T2

is compact, both h and h−1 is uniformly continuous; hence, they send Cauchy sequences in Cauchy
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sequences. If you recall the definitions of the unstable and stable manifolds (see definition 2.1.3), it means

that h(W σ
f (p)) =W σ

fA
(h(p)) for σ = s, u.

Thus, for any two unstable leaves W u
f (p), W

u
f (q) and any p̂ ∈ W s

f (p) ∩W u
f (q), the induced map

Hp→p̂
def.
= h−1 ◦ Hh(p)→h(p̂) ◦ h is a globally defined Holonomy map for f . By Theorem 2.3.5 ahead, we

can always find such p̂ ∈W s
f (p) ∩W u

f (q), which concludes the proof.

This is of great use because, as said before, Holonomies will be very important for us. In this sense,

another consequence of this classification is that, in our case, unstable and stable leaves are dense:

Theorem 2.3.5. If f : T2 → T2 is an Anosov diffeomorphism, then all its stable and unstable manifolds

are dense in T2.

Proof. We know that W σ
f (p) = h−1(W σ

fA
(h(p)) (see the proof of the corollary above). Since h−1 is

continuous, it suffices to show that the stable and unstable manifolds of fA are dense. However, the

condition that A ∈ SL(A,Z) with eigenvalues λ1 < 1 < λ2 implies that the eigenvectors es and eu of A

have irrational angles (there is no non-trivial solution for eσ · z⃗ ∈ Z for z⃗ ∈ Z and σ = s, u). This, in

turn, implies that the projection of the subspaces spanned by es and eu are dense in T2.

This result will be used later on in chapter 5 to prove the existence of uniformly bounded Holonomies

between points far away (see proposition 5.1.4).

The C1 Regularity of the Foliations

This subsection enters here as a remark: A foliation F of a n-dimensional manifold M is a collection

of disjoint k-dimensional (k fixed) immersed connected manifolds such that for every p ∈ M there is

Fp ∈ F with p ∈ Fp.

An atlas A for a foliation F is a collection of homeomorphisms {Φp : Dk ×Dn−k →M} such that

Φ(Dk × {y}) ⊆ FΦ(0,y).

Definition 2.3.6. A foliation F is said to be of class Cr, r ≥ 1, if it admits an atlas made of Cr

diffeomorphisms.

By Theorem 2.1.4 (and the remarks after it) we have a well defined stable foliationW s = {W s(p)}p∈M
that is continuous. However, this regularity is not optimal for us. There is a weaker notion of regularity

for foliations:

Definition 2.3.7. A foliation F is said to be weak-Cr, r ≥ 1, if every leaf Fp ∈ F is a Cr immersed

manifold and every local holonomy map between its leaves is of class Cr.

It is immediate that Cr regularity implies in weak-Cr regularity. But, it is not true, in general, that

weak-Cr regularity implies Cr regularity. However, in Theorem 6.1 of [PSW00] they prove that Cr+α

and weak-Cr+α are actually equivalent if the holonomies are uniform. Theorem 2.1.4 already says that

the leaves are Cr, and in Proposition 4.2.7 we give a proof that the holonomies are of class C1+α (with

uniformly bounded Jacobian). Thus

Theorem 2.3.8. If f : T2 → T2 is an Anosov diffeomorphism of class C2, then its stable and unstable

foliations are C1+α.
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The extra regularity that we obtain here is a low-dimensional phenomena: to obtain the regularity of

the stable foliation, we need the regularity of the stable holonomies, which we’ll prove using the affine

parameters (see prop. 4.2.1). Those require the unstable leaves to be one-dimensional. Since the argument

is symmetric, to obtain the regularity for the unstable foliation (by our methods), we also need the stable

leaves to be one-dimensional.
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CHAPTER 3

The Ergodic Theory of Anosov
Diffeomorphisms

In this chapter I will present a brief survey on Ergodic Theory. This is a major field of dynamics and is of

fundamental importance for the understanding of what follows in the following chapters.

Ergodic Theory is the study of dynamics under the view of measures. It’s principal concepts are those

of invariant measures and ergodicity. Its roots were set not so long ago (less than 200 years) when, to

establish a wonderful result about the energy of a gas, Boltzmann supposed that the state of a system

would equally float around all accessible states so that the time averages of any measurable property of

the system would equal its average under all states.

This so-called ‘Ergodic Hypothesis’ is not true in all generality; however, it drew the attention of many.

Over time this hypothesis unfolded a grand scope of applicability and culminated in a formal statement

known as Birkhoff’s Ergodic Theorem, which characterizes exactly when the hypothesis is true.

3.1 The Ergodic Theorem

Birkhoff’s Theorem

For this section, (X,B) is a measurable space. I.e. X is a set, and B is a sigma algebra, and f : X → X

is a measurable function. The following starts the theory:

Definition 3.1.1. A measure µ in (X,B) is said to be f invariant if for every measurable set A ∈ B we

have that µ(A) = µ(f−1A).

As always, let’s interpret f as some physical process: the dynamics f takes a state x ∈ X in the

present and returns its evolution f(x) one unit of time in the future. With this in mind, the meaning of

an invariant measure is that the chance µ(A) of finding a state in a configuration A is the same chance

µ(T−1A) of finding a state x ∈ f−1(A) that in a unit of time will be in A.

The pair (f, µ) is said to be a measurable system. Some examples are:

Example 3.1.2. The pair (T,Leb) where T : Rn → Rn is a diffeomorphism with JacT = 1 and Leb is

the Lebesgue measure in Rn. It follows directly from the change of variables formula:

Leb(A) =

∫
A
dLeb =

∫
T−1A

JacTdLeb =

∫
T−1A

dLeb = Leb(T−1A)
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Example 3.1.3. The pair (T,Leb) where S1 is the circle identified as R modulo 1 and T : S1 → S1 is

given by T (x) = 2x mod 1. It may seem strange that T preserves Lebesgue, because T of a (small)

set has twice the length of the set. However, notice that the definition of invariant measure requires that

Leb(A) = Leb(T−1A) and not that Leb(A) = Leb(TA). It happens that for every interval I ⊆ S1,

T−1(I) consists of two intervals with half the size of I; consequently, T in fact preserves the measure

Leb.

Example 3.1.4. The pair (T, δp,n) where p ∈ Pern(T ) is a periodic point and δp,n is the sum of diracs

along the orbit of p: δp,n
def.
= 1

n

∑n−1
i=0 δT ip.

Example 3.1.4 is also a reflection of a much more interesting behavior: If you consider δ = limn δp,n,

then it follows directly from the periodicity of p that δ = δp,n. But this convergence is not limited to the

orbit of p; it also happens that if q is in the stable manifold of p then limn δq,n also exists and is equal to

this same δ. All those points are said to be in the basin of δ (see definition 3.3.6) and in section 3.3 we

study a particular type of measure that have a lot of points in their basin (see Theorem 3.3.7).

Now, we have the most basic definition of the theory and some examples. The first connection of

this concept with the dynamics comes in the form of Poincaré’s Recurrence Theorem. It says that an

invariant measure only ‘sees’ recurrent points, i.e. for almost every x ∈ X there is a sequence of iterates

fn1(x), fn2(x), . . . such that fnk(x) k→+∞−→ x. Its proof is simple, so we give it here:

Theorem 3.1.5. If (f, µ) is a measurable system and µ is a finite Borel measure in a second countable

metric space X , then µ-almost every point is recurrent.

Proof. We first begin by proving the following claim:

Claim 3.1.5.1. For all measurable A ⊆ X with µ(A) > 0 it holds that

µ({x ∈ A|fn(x) /∈ A, ∀n ≥ 1}) = 0

In fact, suppose this claim was false. Let B be the set above. Since µ is f -invariant, all the sets

B, f−1(B), f−2(B), . . . have the same positive measure. Hence, since µ is finite, they can’t be all disjoint.

Thus, there are some n > m ≥ 0 such that f−m(B) ∩ f−n(B) ̸= ∅. Consequently

fn(f−m(B) ∩ f−n(B)) ⊆ fn−m(B) ∩B ̸= ∅

Take a y in fn−m(B) ∩B. This point satisfies y ∈ B and fn−m(y) ∈ B. But B ⊆ A, hence y ∈ A and

fk(y) ∈ A, where k def.
= n−m > 0. This contradicts the definition of y being in B and proves the claim.

This claim asserts that almost every point in a set returns to itself. To pass from this to recurrence,

let’s use that X is second countable to take a dense subset {xn}n∈N ⊆ X . The balls Bxn,m
def.
= B 1

m
(xn)

for m ∈ N fixed form a cover of X . By the claim, each Bxn,m has a subset Axn,m of full measure such

that every point in Axn,m returns to Bxn,m. Define Am by

Am
def.
=
⋃
n∈N

Bxn,m

and

A
def.
=
⋂
m∈N

Am

34



Each Am has full measure; thus, A as full measure. I claim that every x ∈ A is recurrent. In fact, let

V be a neighborhood of x. For a sufficiently small ε > 0, we have that Bε(x) ⊆ V . Let m ∈ N be

big enough so that 1
m < ε

2 , and find a n ∈ N such that d(xn, x) < 1
m . The ball Bxn,m contains x and

is contained in V . By definition of x ∈ A, we have that x ∈ Axn,m, hence there is a k > 0 such that

fk(x) ∈ Bxn,m ⊆ V . Since V was an arbitrary neighborhood of x, we conclude that x is recurrent and

the Theorem is proven.

This Theorem gives a first heuristic of the theory: an invariant measure only sees non-wandering

points. It is in favor of the initial intuition that states of a system do not go away. However, there are some

qualitative flaws about this theorem. That is, we don’t know how much time the points take to return close

to themselves. Also, we don’t know the behavior of the points along their orbits; we only know that they

come back.

Lets try to formalize what we want. Let C0(X) denote the set of all continuous functions fromX to R.

Such a continuous function φ ∈ C0(X) takes a state x ∈ X of our system and returns a real value φ(x)

that may be understood as some property of our system that we can observe. For example, if X was an

ensemble of gases, some familiar observables would be its pressure P , its volume V , and its temperature

T 1. Given a state x ∈ X , the time average of φ at x is simply its mean value along the orbit of x:

φ̂(x) = lim
n→+∞

φ(x) + φ(fx) + · · ·+ φ(fn−1x)

n
= lim

n→+∞

1

n

n−1∑
i=0

φ(f ix)

when this limit exists. Now, for the space mean, we need to first take a measure µ and then compute
∫
φdµ.

Also, for this to be a mean, µ should be normalized, i.e. we require that µ is a probability (µ(X) = 1).

The ergodic hypothesis is then

“φ̂(x) =

∫
φdµ”

At first, there is a drastic ambiguity between these values: The time mean depends on the starting

point and the space mean depends on the chosen measure. The major hint relating these values is that for

invariant measures f−1 suppµ = suppµ and φ̂(fx) = φ̂(x), i.e., invariant measures can only ‘see’ an

invariant set and the time mean is invariant under f .

After all this discusion, Birkhoff’s Ergodic Theorem enters with the following assertion which is

almost what we wanted

Theorem 3.1.6 (Birkhoff’s Ergodic Theorem). Suppose µ is a f -invariant probability measure. Then, for

every φ ∈ L1(µ), its time mean φ̂ exists for µ-almost every point in X and∫
φ̂dµ =

∫
φdµ

This theorem is excellent, because it says that you can first take the time mean and then integrate it

for the same value. Also, in some sense, it says that an invariant measure is uniform along orbits, thus,

it seems to be a combination of measures that only sees ‘one orbit’ each. Lets try to define this class of

measures:

Definition 3.1.7 (Ergodic Measure). An invariant probability measure µ is said to be ergodic if for every

measurable subset A ⊆ X that is invariant (in the sense that f−1A = A) we have µ(A) ∈ {0, 1}.
1Somehow, in many cases, those are all the relevant observables.
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If µ is an ergodic measure, we say that (f, µ) is an ergodic system. The support of an ergodic measure

is an invariant set and there is no smaller invariant set A ⊆ suppµ with intermediate value, i.e. such that

0 < µ(A) < 1. In fact, you can prove that suppµ will always be the closure of some orbit. This is one

way to define an ergodic measure, but, if you may prefer, there are many equivalent definitions for it.

Some of interest are the following:

Lemma 3.1.8. For a f -invariant measure µ, the following is equivalent:

(1) µ is ergodic.

(2) For every φ ∈ L1(µ) invariant (i.e. such that φ(fx) = φ(x)) we have that φ(x) is constant for

µ-almost every x ∈ X .

(3) For A ⊆ X measurable we have that the mean sojourn time of a point x in A

τA(x)
def.
= lim

n

Card
{
0 ≤ j ≤ n− 1|f j(x) ∈ A

}
n

exists for µ-almost every point and is equal to the measure of A.

Item (3) makes it explicit how an ergodic measure behaves with the dynamics: For a given region

A ⊆ X , almost every state float around the space spending an amount of time in A proportional to its

measure. Item (2) is clearly a strong property, after all it is something that works for every φ ∈ L1(µ).

If you take in account that the time average φ̂ of a φ ∈ L1(µ) is a f -invariant function and that for X

compact we have C0(X) ⊆ L1(µ), we can extract the following case from Birkhoff’s Ergodic Theorem

Corollary 3.1.9. If X is compact and µ is an ergodic measure, then for every observable φ ∈ C0(X), its

time average φ̂(x) exists for µ-almost every x ∈ X and moreover, for these points, φ̂(x) =
∫
φdµ.

This was our initial goal. The answer we got is that the Ergodic Hypothesis is true when the measure

is Ergodic. Stating it like that seems like we just made an ad hoc: Ergodic measure is a measure satisfying

the Ergodic Hypothesis. This is, in fact, what we did. However, the surprising point that we haven’t

touched yet is that those definitions are very natural. Actually, it happens that every map f : X → X is

ergodic! (For some measure).

Existence of Ergodic Measures

First, let M(X) be the set of all finite measures in X . It is a vector space thus we can endow it with the

weak* topology. Let P(X) ⊆ M(X) denote the set of all probability measures in X .

Theorem 3.1.10. The set P(X) of all probability measures in X is compact in the weak* topology.

Lets define the push forward f∗µ of µ by the measure f∗µ(A)
def.
= µ(f−1A). With this, an invariant

measure (see definition 3.1.1) is precisely a fixed point of the map f∗.

Lemma 3.1.11. If f : X → X is continuous, then the map f∗ : M(X) → M(X) is continuous in the

weak* topology.

The restriction f∗|P(X) : P(M) → P(X) is well defined and the set P(X) is compact and convex,

hence, by Tychonoff’s fixed point theorem, there exists a µ ∈ P(X) such that f∗µ = µ. Let Pf (X)

denote the set off all f -invariant measures. What we have shown is that
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Theorem 3.1.12. If f : X → X is continuous, then there exists an invariant probability measure

µ ∈ Pf (X)

Now we know that there exists invariant measures, but we also want ergodic measures. For it, le us

recall that a measure ν is said to absolutely continuous with respect to another measure µ if for every

measurable set A ⊆ X such that µ(A) = 0 we have ν(A) = 0. To denote it we write ν ≪ µ.

Lemma 3.1.13. If µ1 and µ2 are invariant measures and µ is ergodic, then µ1 = µ2

Proof. Let φ be a bounded measurable function, then, since µ2 is ergodic, we have

φ̂(x) =

∫
φdµ1

for µ2-almost every point. Since µ1 ≪ µ2, it follows that

φ̂(x) =

∫
φdµ2

is also constant for µ1-almost every point. Hence∫
φdµ1 =

∫
φdµ2

and by the arbitrarily of φ we obtain µ1 = µ2.

As said before, Pf (X) is convex. Using the lemma above it follows that the set of ergodic measures

are the extrema of Pf (M):

Lemma 3.1.14. An invariant measure µ ∈ Pf (X) is ergodic if and only if there is no t ∈ (0, 1) and

µ1, µ2 ∈ Pf (X) with µ1 ̸= µ2 such that µ = tµ1 + (1− t)µ2.

Proof. If µ is not ergodic, we can find an invariant set B ⊆ X with intermediate measure µ(B) ∈ (0, 1).

In particular µ(B) and µ(Bc) are both non zero and for every measurable A ⊆ X we can write

µ(A) =
µ(A ∩B)

µ(B)
+
µ(A ∩Bc

µ(Bc)

where both measures µ1(A)
def.
= µ(A∩B)

µ(B) and µ(A∩Bc)
µ(Bc) are invariant probability measures. Hence, we have

shown that if we cannot write µ like in the statement, µ is ergodic.

Now, suppose that µ is ergodic and that µ(A) = tµ1(A) + (1 − t)µ2(A) where t ∈ (0, 1) and

µ1, µ2 ∈ Pf (X). If µ(A) = 0 we must have µ1(A) = 0 and µ2(A) = 0. Hence µ1 ≪ µ and µ2 ≪ µ.

By the preceding lemma µ1 = µ and µ2 = µ. In particular, we showed that µ1 = µ2 and in fact, for µ

ergodic, it cannot be written as in the statement.

By Krein-Milman’s Theorem, the set Pf (X) is the closed convex hull of the set Perg(f) of all ergodic

measures in X with respect to f . In particular, we obtain

Theorem 3.1.15. If f : X → X is continuous, then there exists an ergodic measure µ ∈ Perg(f).
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Ergodic Decomposition

Right before definition 3.1.7 I said that invariant measures seems to be combinations of ergodic measures.

It is true, and to understand it we have to talk about disintegrations.

The simplest idea if disintegration is the following: Let µ be a measure in X and B ⊆ X be a

measurable subset with µ(B) ∈ (0, 1). Then, for every A ⊆ X measurable, we can write

µ(A) = µ(A ∩B) + µ(A ∩Bc) =
µ(A ∩B)

µ(B)
µ(B) +

µ(A ∩Bc)

µ(Bc)
µ(Bc)

Defining µBx (A)
def.
= µ(A∩Bc)

µ(B) for x ∈ B and µBx (A)
def.
= µ(A∩Bc)

µ(Bc) for x ∈ Bc we obtain a family of

probability measures {µBx }x∈X such that µBx = µBy if x, y are both in B or both in Bc satisfying

µ(A) =

∫
µBx (A)dµ

for every A ⊆ X measurable. This family of measure is called the disintegration of µ with respect to the

partition ξ = {B,Bc} of X . This procedure can be generalized has follows:

Definition 3.1.16. An atmost countable partition of X is a collection ξ of atmost countably many pairwise

disjoint measurable subsets B ⊆ X such that X = ∪B∈ξB.

Given a partition ξ of X and some point x ∈ X , there is only one B ∈ ξ such that x ∈ B. We denote

this B by ξ(x) and we call it the atom of ξ at x. Also, given two partitions ξ1 and ξ2 we denote their

common refinement ξ1 ∨ ξ2 by the partitions whose atoms are the intersection of their atoms:

ξ1 ∨ ξ2 = {B1 ∩B2|B1 ∈ ξ1 and B2 ∈ ξ2}

Also, if for every x ∈ X the atom ξ1(x) is contained in the atom ξ2(x) we say that ξ1 is thinner than ξ2
and we denote it by ξ2 ≺ ξ1.

The simple example I gave before can very easily be extended to a general atmost countable partition

ξ instead of the simplest possible choice of ξ = {B,Bc}. What is not so simple, but very useful, is that

we can extend it to a class of very more general partitions:

Definition 3.1.17 (Measurable Partition). A collection ξ of subsets ofX is said to be a measurable partition

if there is a sequence ξ1, ξ2, . . . of atmost countable partitions of X such that ξ = ξ1 ∨ ξ2 ∨ · · · def.
= ∨+∞

i=1 ξi.

Measurable partitions are way more general than countable partitions, e.g.

Example 3.1.18. If X is a separable metric space, then the point partition ξ = {{x}}x∈X of X will be

a measurable partition. To see it, let {Ui}i∈N be a countable basis for the topology of X . Since X is a

metric space, it is Hausdorff, thus we have {x} = ∩x∈UiUi for all x ∈ X . If we define ξi
def.
= {Ui, X \Ui},

them ξi is a finite partition of X for each i ∈ N and ξ def.
= ∨+∞

i=1 ξi is a measurable partition satisfying

ξ(x) = ∩iξi(x) ⊆ ∩x∈Uiξi(x) = ∩x∈UiUi = {x} as desired.

Example 3.1.19. The partition of R2 in vertical lines {{x} × R}x∈R is a measurable partition. To see

it consider the intervals In,i = [ in ,
i+1
n ) for n ∈ N and i ∈ Z. It is clear that each ξn

def.
= {In,i × R}i∈Z

is a countable partition of R2 whose atoms are vertical columns of width 2/n. Thus ξ def.
= ∨+∞

i=1 ξi is

a measurable partition and its atoms are vertical lines. The same is true for the partition of Rn in

k-dimensional parallel planes.
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Example 3.1.20. The partition associated with a foliated box B (see definition 2.2.1) is the partition ξ

whose atoms for every point of B are segments of unstable leaves and just M \B for points outside B.

This partition is measurable because you are assuming that B is parametrized by a map in Rn that sends

dimEu-dimensional planes in segments of unstable leaves, so by a local argument, the last example

applies here.

For both these examples, there are uncountably many atoms in the final partitions; thus, it is not

clear how we could disintegrate a measure in it (atleast, our previous method does not work anymore).

Rokhlin’s Theorem comes with great news:

Theorem 3.1.21 (Rokhlin’s Disintegration). If ξ is a measurable partition of X and µ is a measure in X ,

then there exists a family of probability measures {µξx}x∈X such that

(1) For almost every x ∈ X their support is their atom: µξx(ξ(x)) = 1.

(2) For y ∈ ξ(x) the components of the disintegration agree: µξx = µξy.

(3) µ is a convex combination of them: For every A ⊆ X measurable we have µ(A) =
∫
µξx(A)dµ(x)

Moreover, this family is almost unique in the sense that if {νξx}x∈X is another family satisfying these

conditions, then νξx = µξx for µ-almost every x ∈ X .

Now we can disintegrate measures in measurable partitions. This will be the main tool used in section

4.3 of chapter 4. For now, we conclude this subsection stating the following

Theorem 3.1.22. If f : X → X is continuous, X is a complete separable metric space and µ is a

f -invariant probability measure, then there is a suitable choice of measurable partition ξ of X such that

µ-almost every component µx of its disintegration {µξx}x∈X is ergodic.

3.2 Entropy and Pressure

In the section above, we defined what ergodic measures are and showed that they exist. However, the

proof of their existence was not constructive; thus, even though they behave very well with the dynamics

within their support, we don’t know how much they are actually measuring.

To be more clear, consider as an example a toral automorphism fA : Tn → Tn. It’s easy to see that it

has a lot of periodic points; in particular, the origin 0⃗ ∈ Tn is a fixed point. Hence the Dirac δ0⃗ at 0⃗ is

ergodic (an invariant set either contains 0⃗ or not). But, in the other side, the Lebesgue measure Leb in Tn

is also ergodic:

Proposition 3.2.1. For a linear Anosov toral automorphism fA : Tn → Tn, the Lebesgue measure LebTn

is ergodic.

Proof. Let φ ∈ L2(LebTn) and write

φ(x⃗) =
∑
m⃗∈Zn

φm⃗e
2πim⃗·x⃗
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where the terms φm⃗ are the Fourier components of φ. Composing with fA, we have

φ ◦ fA(x⃗) =
∑
m⃗∈Zn

φm⃗e
2πim⃗·A⃗x =

∑
m⃗∈Zn

φm⃗e
2πiA†m⃗·x⃗ =

∑
m⃗∈Zn

φm⃗e
2πiA†m⃗·x⃗

If we suppose that φ is invariant, we have φ ◦ f = φ, so their Fourier series must agree, and we have

φm⃗ = φA†·m⃗. By induction, if k ∈ N, we must have φm⃗ = φ(A†)k·m⃗. Since A is hyperbolic, if m⃗ ̸= 0⃗,

we have that ∥(A†)km⃗∥ → +∞ as |k| → +∞. Using that φ ∈ L2, we know that φm⃗ → 0 as ∥m⃗∥ → 0;

thus, for m⃗ ̸= 0⃗ we have

φm⃗ = lim
n→+∞

(A†)km⃗ = 0

and we conclude that

φ(x⃗) = φ0⃗

is constant. By lemma 3.1.8, we prove the proposition.

Even though they are both ergodic, the reason for them being so is very different. The Dirac delta δ0⃗ is

ergodic simply because its support is so tiny that there is no difficulty in behaving well with the dynamics.

However, the Lebesgue measure LebTn has full support; thus, the fact that it is ergodic is not trivial at all,

and to know it actually says a lot about the dynamics in the entire manifold.

The contrast above highlights a little problem that we must face now: sometimes there are too many

ergodic measures!

In fact, for many systems f , the set of ergodic measures Perg(f) is dense in the (usually very big) set

of invariant measures Pf (X). In any case, we must be more specific with what we are measuring. In this

section we define the entropy of a system and its generalization, the pressure. Those are numbers that, in

some sense, measure the complexity of the dynamics. We then define a measure-theoretic analogue, and

we relate them using the variational principle. This allows us to define a measure of maximal entropy,

which are those that capture the entire complexity of the dynamics.

Topological Entropy

We will measure the complexity of the dynamics by counting the number of orbits in X . Of course, (if

X is not countable), there are infinitely many orbits, so we need to be very precise in what we mean by

‘counting orbits’.

Imagine that X represents a set of states of a physical system that you can watch. You, as an observer,

cannot fully trust in your eyes, which are imperfect. Hence, if two states are too close to each other, you

cannot distinguish them. To express this, given an imprecision ε > 0, we say that a subset E of X is

ε-separated if the distance of any pair of points x, y ∈ E is greater than ε.

Also, there is a dynamic occurring, so the states are evolving with time. Since you are not immortal,

nor would you have the patience to wait forever, you can only count finitely many iterates of a state. If

you were tracking the iterates of some state, and suddenly you see it splitting in two, then you know that

you were actually looking at two states. Hence, even though two states may initially be very close, if they

eventually get apart from each other at some moment, you can spot it. To express this, given a time n ∈ N,

we introduce the time n metric dn by

dn(x, y) = max{d(f ix, f iy)|0 ≤ i < n}
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for every x, y ∈ X . And, for a subset E of X , we say that E is (n, ε)-separated if E is ε-separated for the

metric dn. With this notation, the number s(n, ε) of orbits that we can distinguish at time n is given by

s(n, ε) = max{Card(E)|E is (n, ε)-separated} (3.1)

As you let the time n ∈ N pass, every two states have more and more chance to separate more (i.e. the

metric dn is increasing with n). Hence, the number s(n, ε) of distinguished orbits increases with n. If it

increases slowly, the system is simple. There are many possible rates of growth that we could consider;

for reference see [CP24] Theorem 1.2. We are interested in (very) chaotic dynamics; hence, we will care

about the exponential rate of growth of s(n, ε)2:

r(ε)
def.
= lim sup

n

1

n
log(r(n, ε))

Similarly, if we increase the precision, r(ε) grows (i.e. if ε1 < ε2, then r(ε2) ≤ r(ε1). Hence, since we

want the finest measurement possible, we should take the limit as ε→ 0. This limit will be the entropy:

Definition 3.2.2 (Topological Entropy). The topological entropy of a continuous map f : X → X defined

on a compact metric space X is the number

htop(f)
def.
= lim

ε→0
s(ε) = lim

ε→0
lim sup

n

1

n
log(s(n, ε))

when this limit is finite or (the symbol) +∞ when it is not.

The most important property of entropy is that it is a topological invariant:

Theorem 3.2.3. If f1 : X1 → X1 and f2 : X2 → X2 are continuous maps on compact metric spaces and

Φ : X1 → X2 is a homeomorphism satisfying Φ ◦ f1 = f2 ◦ Φ, then htop(f1) = htop(f2).

In particular, the entropy htop(f) only depends on the topology of X and not on the metric d that

we used to compute it. Talking about computing it, that’s very hard from the definition; thus, in general,

one must find different equivalent methods to do it. In particular, to ease the exposition, I omitted the

non-compact case and completely ignored the definition via (n, ε)-spanning sets that is generally given

together with ours. For further details, see [Wal00] chapter 7.

Measure Theoretic Entropy

Now, we will once again try to measure the complexity of our system, but this time we will try to guess its

behavior beforehand. In the subsection above, we sought orbits without caring about their trajectory. To

take their position into account, we’ll partition our space X into smaller pieces and distribute probabilities

on them.

A guess here will be represented as a choice of a probability measure µ ∈ P(X). Given a finite

partition ξ = {A1, . . . , An} of X , the numbers µ(Ai) may be seen as (what we suppose to be) the

likelihood of looking at our system and finding it in a state x ∈ Ai. Let’s represent the ‘uncertainty’ of this

2That’s not the only reason to choose the exponential rate. It will be more clear when we relate the topological entropy
with the the measure theoretic entropy. To define the latter, we require some properties that lead to a unique possible expression
(Theorem 3.2.4). This expression is naturally related to the topological entropy defined here using the exponential rate of growth
(Variational Principle3.2.10).
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guess by a number Hµ(ξ). We identify the entropy of a partition as this value. What kind of properties

should this function Hµ(·) satisfy?

First, the uncertainty of a guess only depends on the probability I gave to each set and not on the

set itself, i.e. if ξ = {A1, . . . , An}, then Hµ(ξ) = H(µ(A1), . . . , µ(An)). Similarly, this uncertainty

H should not depend on the order in which I told you the sets; after all, for ξ = {A1, A2, A3, . . . , An}
we have ξ = {A2, A1, A3, . . . , An} (the set is not ordered), then for any permutation σ of n letters we

should have H(p1, . . . , pn) = H(pσ(1), . . . , pσ(n)). If an outcome is impossible, it doesn’t matter, so that

H(p1, . . . , pn, 0) = H(p1, . . . , pn). Moreover, if we are so certain about an outcome that we choose a

set with probability 1 while every other with probability 0, there will be no uncertainty in this guess to

that H(0, . . . , 1, . . . , 0) = 0. In the completely opposite case, if we don’t know the slightest and take a

partition ξ = {A1, . . . , An} with all sets with the same probability 1/n, it must be the most uncertain, so

that H(1/n, . . . , 1/n) is a maximum.

With the above requirements, we are measuring the entropy of partition, static in time. We must not

forget to include the dynamics in the discussion. Let’s say we guessed ξ = {A1, . . . , An} and we want to

measure it two times. At first, you verify the state x of your system and find it in the configuration A ∈ ξ.

Right after that, you’ll see in which set Aj will be f(x). However, since you know it was in A, you won’t

just suppose that its chance of being in Aj is µ(Aj); you can now refine your measure by restricting it to

A, i.e. the chance of being in Aj knowing it was in A will be

µA(Aj)
def.
=

µ(Aj ∩A)
µ(A)

if µ(A) ̸= 0, or zero if µ(A) = 0. To know that x ∈ Ai and f(x) ∈ Aj is to know that x ∈ Ai∩f−1(Aj),

in other words, is to know in which element of ξ ∨ f−1ξ is x. Hence, what we are requiring above is that

Hµ(ξ ∨ f−1ξ) = Hµ(ξ) +
∑
A∈ξ

µ(A)HµA(ξ)

Thankfully, all this discussion has a reward. We required many properties of Hµ, and, in the end, there

does not just exist a function satisfying it, but it is unique!

Theorem 3.2.4. If H(p1, . . . , pn) is a function defined for every n ∈ N and collection of real numbers

pi ≥ 0 satisfying
∑

i pi = 1 such that

1. H(pσ(1), . . . , pσ(n)) = H(p1, . . . , pn) for any permutation σ of n letters.

2. For every two finite partitions ξ, ζ of X and µ ∈ P(X) it holds that

Hµ(ξ ∨ ζ) = Hµ(ξ) +
∑
A∈ξ

µ(A)HµA(ζ).

3. For n fixed, H(p1, . . . , pn) has its maximum at p1 = · · · = pn = 1/n.

4. H(p1, . . . , pn) ≥ 0 with equality if and only if some pi is 1.

5. H(p1, . . . , pn) is continuous for n fixed.

6. H(p1, . . . , pn, 0) = H(p1, . . . , pn)

Then there exists a λ > 0 such that H(p1, . . . , pn) = −λ
∑

pi ̸=0 pi log(pi).
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Proof. See [Khi57], page 9.

This lemma says that there is a canonical way of measuring the entropy of a partition:

Definition 3.2.5. For a finite partition ξ of X its entropy Hµ(ξ) with respect to a measure µ ∈ P(X) is

given by

Hµ(ξ)
def.
= −

∑
A∈ξ

µ(A)̸=0

µ(A) log(µ(A)).

Now, similarly as before, we will now define the entropy of our map f with respect to a partition ξ

and measure µ as the growth rate of this number when you keep measuring it indeterminately

Hµ(f, ξ)
def.
= lim sup

n

1

n
Hµ

(
n−1∨
i=0

f−iξ

)
And finally, the entropy of f with respect to this measure is the supremum over all partitions of the number

above:

Definition 3.2.6 (Measure Theoretic Entropy). The metric entropy of a measurable map f : X → X

defined on a measurable space (X,B) with respect to a measure µ ∈ P(X) is the number

hµ(f)
def.
= sup

ξ is a
finite partition

Hµ(f, ξ) = − sup
ξ is a

finite partition

lim sup
n

1

n
Hµ

(
n−1∨
i=0

f−iξ

)

when this limit is finite or (the symbol) +∞ when it is not.

Just like for topological entropy, this number is an invariant:

Theorem 3.2.7. If f1 : (X1, µ1) → (X1, µ1) and f2 : (X2, µ2) → (X2, µ2) are measure-preserving

maps and Φ : (X1, µ1) → (X2, µ2) is an invertible measure-preserving map such that Φ ◦ f1 = f2 ◦ Φ,

then hµ1(f1) = hµ2(f2).

Variational Principle

Those two methods of measuring entropy have their differencee: the topological entropy htop(f) is

uniquely defined for a given map f , while its metric entropy hµ(f) depends on the measure µ ∈ Pf (X).

Since there is so much more freedom available for the metric entropy, before we relate them, we may

extend the notion of topological entropy to a more general one.

Just like we did for the measure theoretic case, we will count states caring about the place in X that

they are. Recall the equation (1) that defines the amount s(n, ε) of distinguishable orbits of length n and

precision ε. Notice that it can be written as

s(n, ε) = sup

{∑
x∈E

1|E is (n, ε)-separated

}

Introduce some observable φ ∈ C0(X). Instead of summing 1 for each point x inE, we will now consider

the output of the observable φ by summing eφ along its orbit (see the next subsection for the reason why)

s(n, ε, φ)
def.
= sup

{∑
x∈E

e
∑n−1
i=0 φ(f ix)|E is (n, ε)-separated

}
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Now, just like before, we’ll take the exponential rate of growth of this number and make the limit as ε

goes to zero. This limit is called the pressure of f with respect to φ:

Definition 3.2.8 (Pressure). The pressure of a continuous map f : X → X with respect to an observable

φ ∈ C0(X) is the number

P (f, φ)
def.
= lim

ε→0
lim sup

n

1

n
sup

{∑
x∈E

e
∑n−1
i=0 φ(f ix)|E is (n, ε)-separated

}

Remark 3.2.9. The topological entropy is the pressure of f with respect to the constant observable:

P (f, 0) = htop(f).

Given this way more general definition, the Variational Principle comes as a connection between

hµ(f) and P (f, ·):

Theorem 3.2.10 (Variational Priciple). For a continuous map f : X → X of a compact metric space X

and φ ∈ C0(X), we have

P (f, φ) = sup

{
hµ(f) +

∫
fdµ

∣∣∣∣µ ∈ Pf (X)

}
Now we may define our special kind of measures:

Definition 3.2.11. A measure µ ∈ Pf (X) is said to be an equilibrium state for an observable φ ∈ C0(X)

if it attains the supremum in Theorem 3.2.10, i.e. if

P (f, φ) = hµ(f) +

∫
fdµ

In particular, µ is said to be a measure of maximal entropy if it is an equilibrium state for the potential

ϖ ≡ 0.

In chapter 5 we show that every Hölder continuous observable admits an equilibrium state. Moreover,

this equilibrium state is a very well-behaved measure.

The Physical Meaning of Counting Orbits

Throughout this section, I tried to motivate the definitions of entropy by saying we are ‘counting orbits’.

However, when defining both metric entropy and Pressure, there were some arbitrary choices we made.

In the latter, the meaning of ‘counting orbits’ was affected by the choice of measure, and in the former,

it was influenced by the exponential of a potential. In this subsection I give a brief background on

Thermodynamics and statistical mechanics, which is where lies the physical concepts of these definitions.

The starting point is energy: every physical system has an associated internal energy U . This energy

U satisfies the following axiom:

Axiom 3.2.12 (First Law of Thermodynamics). For a quasi-stationary transformation, the energy U of a

system satisfies the following differential equation:

dU = dQ− dW

where Q is the heat absorbed by the system and W the work done by the system.
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This axiom introduces the idea of Heat and Work; however, it does not precisely define how they are

nor how to compute them. This is very similar to the well-known Newton’s third law, -F = mr̈- which

makes reference to forces without explicitly showing their expression.

In practice, these quantities will depend in how we choose to model our system. The work W is

supposed to represent any purely mechanical way of transferring energy, while the heat Q is to account for

the thermal ways to do it (in other words, to account for what we can’t explain). For example, the work to

compress a balloon of helium is dW = −PdV , where P is its pressure and V the volume displaced.

Another word that this axiom introduces is the ‘quasi-stationary transformation’. This comes from the

following axiom, which in general is implicitly assumed within the many axioms of thermodynamics:

Axiom 3.2.13. For every thermodynamical system, there exists a finite number of observable quantities

that completely describe their equilibrium state.

A thermodynamical system will always go to an equilibrium state, i.e. a state that does not undergo

any transformations as long as it is isolated. The axiom above says that this final state is uniquely defined

as long as you know a finite amount of properties of your system. The main example of the theory is the

ideal gas: an ideal gas is a collection of non-interacting free particles. This system can be described by

three observables: its pressure P , its volume V , and its temperature T .

It was using this system that the French military Sadi Carnot showed that the most efficient possible

thermodynamical cycle (a repeating process that extract the most heat using the minimum work) depends

only on the initial and final temperatures. Later Rudolf Clausius showed that in an invertible cycle, the

heat absorbed dQ1 and the heat emitted dQ2 satisy

dQ1

T1
=

dQ2

T2

while in a non-invertible cycle dQ1

T1
< dQ2

T2
. This led him to define the entropy (from Greek entropêe:

change) of the system as S def.
= Q/T . This quantity seams to never decrease (experimentally), so the

following axiom was declared

Axiom 3.2.14. The entropy S of a system is non-decreasing: dS ≥ 0. Moreover, dS > 0 if and only if

the system suffers a non-invertible transformation.

For us, this is enough thermodynamics. Now, it is time to connect this independent ‘heat’ theory with

mechanics. The person that did this was Boltzmann and his idea was the following:

Suppose that you can distinguish every possible state of your system (up to a microscopic resolution)

and let Ω be the collection of all these micro-states. If you have an observable φ : Ω → R, the set of all

states in Ω such that φ is equal to some fixed value a ∈ R is said to be a macro-state. What is the most

probable macro-state of your system?

Well, if you don’t know anything about how the system evolves but you know Ω, you can do an

educated guess. Let Ω(φ = a) ⊆ Ω be the subset of Ω consisting of all micro-states of your system such

that φ is equal to a (Ω(φ = a) = φ−1(a)). With this definition, the cardinality of Ω(φ = a) is the number

of states where φ = 0. In particular, a good guess is that the most probable value of φ is the one that

maximizes the number of available states in Ω(φ = a).

We now found something interesting. This quantity, card(Ω(φ(·))) (as a function of the state), is

being maximized. This, which is a defining property of the entropy, led Boltzmann to the following claim:
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Axiom 3.2.15 (The Fundamental Law of Statistical Mechanics). The entropy of a system is given by

S = kB log(card(Ω)).

This kB is just a constant of proportionality (Boltzmann’s constant), and the logarithm appears here

for the same reasons as in Theorem 3.2.4. The entropy is a function of the values of the observables, i.e.

S = S(φ1 = a1, . . . , φn = an). This axiom comes with a natural distribution of probability

Definition 3.2.16. The probability of an observable φ : Ω → R to assume a value a ∈ R is given by

P (φ = a) =
card(Ω(φ = a))

card(Ω)

This definition is self-justifying by the phrase ‘The most probable state is the most probable state’.

Now, let us connect it with what we have done in this section. First, let’s see why we added the

exponential of the potential in the definition of equilibrium states.

Suppose you have a system whose the work done by it is given by dW = φdη, where φ and η are

some observables. If it undergoes a transformation while we maintain its energy U constant, the first law

of thermodynamics says that

0 = TdS − φdη

Thus, up to order 1, we have

S = constant+
φ

T
η

Using the fundamental law of statistical mechanics, we obtain that P = ce
S
kB , where c is a constant.

Hence P = Ce
φ

kBT
η. In a laboratory, you may be able to fix the temperature T and this property η. Then,

the probability of a state is given by P = c0e
φ. Up to a constant, this is our definition in 3.2.8.

Now, let’s understand the connection of this with our definition of metric entropy.

This connection follows from an issue that I hid from you: all the construction above assumes that

you can count each possible state in Ω one by one. And moreover, it assumes that card(Ω) is finite. This,

however, is not the case.

There isn’t a unique way of defining Ω, as an example: imagine you have a system made of two

identical particles. At the beginning, one particle is at your left and the other at your right. This is a

configuration of your system. But now, suppose you swap them: the particle in the right goes to the left,

and the particle in the left goes to the right. Is this a new configuration? Or is it just the same state?

This question has no definite answer: if you are modeling the system with classical mechanics, then it

is a new state. If you are modeling it with quantum mechanics, then no, it is just the same state. This is

just an example, but there are many other cases where this happens. Another problem is that Ω may have

infinitely many states; in fact, in classical mechanics it will generally be a submanifold of some Rn. For

these cases, there is no natural way to count the states; you may either discretize it or use some volume

form to measure their size. These different choices are said to define different ensembles for your system,

and this freedom is what accounts for the different possible measures in the definition of metric entropy.
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3.3 Smooth Ergodic Theory

For this section, M is a Riemann manifold and Leb is the Lebesgue measure in M .

Smooth Ergodic Theory is the branch of ergodic theory that tries to explore invariant smooth measures,

i.e. measures absolutely continuous with respect to the volume of your space. However, since absolutely

continuous invariant measures are not always available, we need a more suitable class of measures that, in

some sense, are still relatable to them:

Definition 3.3.1. A measure µ ∈ Pf (M) is said to be a SRB measure if for every foliated box B (see

2.2.1), the components in B of its disintegration {µξBp }p∈M with respect to the partition associated to B

(see example 3.1.20) are absolutely continuous with respect to the volume in the leaves. I.e. for all p ∈ B

µξBp << LebWu(p)

What this definition says is that SRB are measures that are ‘smooth along unstable manifolds’. This

class of measures is good because they come with many fine properties. Also, they are good because they

exist:

Theorem 3.3.2. If f :M →M is an Anosov diffeomorphism of class C2, then there exists a SRB measure

µ for f .

Sketch of the proof. Take any point p ∈M and let D ⊆W u
loc(p) be a small open disk around p contained

in its local unstable manifold. If LebD is the Lebesgue measure induced in D, let

µn,D
def.
=

1

n

n−1∑
i=0

f j∗ LebD

f j∗ LebD(D)

where f∗ is the pushforward by f of a measure. Each of those µn,D has absolutely continuous components

in the unstable direction; however, are not invariant. With a suitable distortion argument, one can show

that any weak* accumulation point µ of the sequence {µD,n}n∈N is still absolutely continuous in the

unstable direction. Hence, since any accumulation point of this sequence is invariant, µ is a SRB measure.

(see chapter 11 of [BDV06]).

The fact that those measures are very regular in the unstable leaves will allow us to obtain precise

quantitative estimates for their disintegrations (see. 4.3.17). To see it, instead of using the generic

expansion rate λ defined in 2.1.1 we will need a more precise one:

Definition 3.3.3. For p ∈ T2, let λσp
def.
= |dpf |Eσ(p)|, and for n ∈ Z, also define λσp (n)

def.
= |dpfn|Eσ(p)|,

where σ = s, u.

These pointwise expansion rates λσp give way more detail than the constant λ. In particular, you can

recover λ by setting λ def.
= min{infp λup , supp(λsp)−1}.

In fact, these values are so precise that they are sufficient to characterize SRB measures:

Theorem 3.3.4 (Ledrappier-Young’s formula). Let f : T2 → T2 be an Anosov diffeomorphism; then, for

every invariant measure µ ∈ Pf (M), you have

hµ(f) ≤
∫
λupdµ(p)

And the equality holds if and only if µ is SRB.
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This quantity on the right is called the mean Lyapunov exponent of f :

Definition 3.3.5. The Lyapunov exponent of f at a point p ∈M is the following limit

λuf (p)
def.
= lim

n→+∞

1

n
log λup(n)

Which, by Birkhoff’s ergodic theorem, exists for almost every point. The mean Lyapunov exponent of f

with respect to µ is

λuf (µ)
def.
=

∫
λuf (p)dµ

Both these quantities will be useful for us. In particular, we’ll show a particular case of this formula

for our context.

Another property of SRB measures, which we will not use but is worth mentioning, is that, in our

context, they are physical measures. This means the following:

Definition 3.3.6. The Basin of Attraction of a measure µ ∈ Pf (M) is the set (see example 3.1.4)

B(µ) = {p ∈M |δp,n
w∗
→ µ}

The measure µ is said to be physical if Leb(B(µ)) > 0.

A point p being in B(µ) means that the measure perfectly describes its orbit, i.e. the time averages at

p converge to the measure µ. Hence, since Leb is our reference measure, the condition Leb(B(µ)) > 0

means that a physical measure is a measure that describes the orbits of a significant amount of points. Do

not confuse with µ(B(µ)) > 0. We require the Lebesgue measure of B(µ) to be positive and not the µ

measure of it. In fact, for ergodic measures, Birkhoff’s Ergodic Theorem gives that µ(B(µ)) = 1.

If the diffeomorphism is slightly regular, SRB measures coincide with Physical measures

Theorem 3.3.7. If f :M →M is an Anosov diffeomorphism of class C2, then the SRB is physical.

Proof. Let {µξp}p∈M be a disintegration of µ with respect to a partition subordinated to the unstable

foliation. Since

1 = µ(B(µ)) =

∫
µξp(B(µ))dµ(p)

it follows that for at least some p ∈ M , we must have µξp(B(µ)) > 0. Thus, since µξp << Lebup , we

obtain a set I def.
= W u

loc(p) ∩ B(µ) with Lebup(I) > 0. It is clear from the definition that every point in

the unstable manifold of a point in B(µ) will also be in B(µ). Hence
⋃
q∈IW

s
loc(q) ⊆ B(µ). Since the

foliation is C1 and the stable and unstable leaves are transversal, Fubini’s Theorem gives that

Leb(B(µ)) ≥ Leb

⋃
q∈I

W s
loc(q)

 > 0.

And the theorem is proven.
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CHAPTER 4

Leafwise Measures

In the previous chapter we introduced equilibrium states and SRB measures, which are both the measures

of most interest for us. Here and forwards, we start developing some very special properties of them that

will be of great use for us.

In this chapter we focus on the SRB measure. Specifically, we show that associated with them, there

exists a family of locally finite measures defined on entire unstable leaves, which, when restricted to a

foliated box and normalized, gives you the disintegration of your SRB.

These measures will not be probabilities. However, in turn, we’ll see that they behave very well with

the dynamics. So well that in a special parameterization of the leaves (the affine parameters 4.2.1), they

are the Lebesgue measure (times 0.5).

4.1 Subordinated Partitions

We want to obtain a more global definition for an SRB measure. In the last chapter (definition 3.3.1) we

defined them as measures such that the components of their decomposition in foliated boxes were smooth.

A silly manner to make this definition not so local is to ask them to be smooth along entire unstable

manifolds. This would save us of some trouble, however, unfortunately, in most cases we cannot ask this.

The problem is not like they wouldn’t be smooth, but that we can’t even decompose a measure along

entire unstable manifolds.

In lemma 3.2.4 of [Bro+19] it was proven that the partition of our space into unstable manifolds

is measurable if and only if our system has zero entropy. But our interest in this text lies in Anosov

diffeomorphisms, which have non-zero entropy. Fortunately, we can avoid this problem. Instead of

searching for a partition made of entire unstable manifolds, we can look for one such that each atom is a

piece of unstable manifold.

Definition 4.1.1 (Subordinated Partition). A measurable partition ξ is said to be subordinated to the

unstable foliation W u with respect to a measure µ if

(i) For µ-a.e.p ∈ T2 there is a number r(p) > 0 such that W u
r(p)(p) ⊆ ξ(p).

(ii) There exists an R > 0, such that for all p ∈ T2 we have ξ(p) ⊆W u
R(p).

(iii)
∨+∞
n=0 f

−n(ξ) is the point partition of M .
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(iv) ξ is increasing: ξ ≺ f−1(ξ).

The main concern for this section is with their existence which, thanks to F. Ledrappier and J.-M.

Strelcyn, we know that it is granted:

Theorem 4.1.2. If f : T2 → T2 is Anosov and µ ∈ Pf (T2), then there exists a partition ξ subordinated

to the unstable foliation.

Since this partition is measurable, we can use Rokhlin’s Theorem to disintegrate µ with respect to it.

The usefulness that we take from this object is that the measure µ is SRB if and only if its components

from this disintegration are absolutely continuous with respect to the leaves volume1.

The construction that I present here follows appendix D of [Bro+19].

An Ansatz for ξ

At first sight, a subordinated partition may seem like a lot of foliated boxes around the entire manifold.

And that is almost what they are. If you restrict yourself to a small neighborhood of a point, conditions

(i) and (ii) basically say the subordinated partition looks like a foliated box, but with open segments of

unstable leaves of non-constant length. Conditions (iii) and (iv) are just what you would expect from the

contraction of unstable leaves by f−1.

For each p ∈ T2, consider a foliated ball BR(p)(p) (see 2.2.1) of radius R(p) to be defined around it.

Since T2 is compact, we can choose finitely many of these open balls B1, B2, . . . , Bκ that cover it. Each

Bi defines a measurable partition ξi whose atoms are unstable leaves at Bi and the entire complement Bc
i

outside Bi (see example 3.1.20). Consider their mutual refinement ξ0
def.
=
∨k
n=1 ξi.

This partition ξ0 already looks like a subordinated partition. In fact, if we choose R(p) < R for a

fixed R, conditions (i), (ii) and (iii) already holds:

(i) If a point p is not in the boundary of any Bi, then each ξi(p) contains an open interval of p in

W u(p). Thus, there is a r(p) > 0 such that W u
r(p)(p) ⊆ ξ0(p). Also, the boundary of each Bi can

be chosen to have zero measure;2 thus, this r(p) exists for almost every p ∈ T2.

(ii) Every point p ∈ T2 is in some Bi, hence ξ0(p) ⊆W u
R(p).

(iii) Since this R is the same for every point, it follows that

f−nξ0(f
np) ⊆ f−nW u

R(f
np) ⊆W u

λ−nR(p)
n→+∞−→ {p}

Thus
∨+∞
n=0 f

−nξ0 is the point partition of T2.

There is, however, no certainty about the fourth condition. Instead of conditions (i),(ii) and (iii) which

require either a static or long-term behavior, condition (iv) is a first-time condition. I.e. it requires that the

first (backwards) iterate of an atom to already be contained in another. This is, of course, very restrictive.

However, is essential for the construction of Leafwise measures on section 4.3. To obtain this property,

1This should seem intuitive, but by no means it is obvious. At least not until section 4.3, where we prove the Superposition
Property. There we see that nested partitions have proportional conditional measures. Hence the equivalence.

2This follows because there are uncountably many possible radius which give rise to uncountably many disjoint shells. Since
a measure is additive, it cannot be positive at each one of those shells.
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there is a clever trick: If we want every atom to already fall on another, then, just force it to happen!

Define

ξ
def.
=

+∞∨
n=0

fnξ0

This partition ξ is thinner than ξ0, hence it also satisfies (ii) and (iii). Now we also made it satisfy (iv),

because

f−1ξ = f−1

(
+∞∨
n=0

fnξ0

)
=

+∞∨
n=0

fn−1ξ0 = f−1ξ0 ∨
+∞∨
n=0

fnξ0 = f−1ξ0 ∨ ξ ≻ ξ

But this came with a price. Property (i) is not necessarily true anymore. The problem is, we iterated so

much that we lost track of the boundaries we had to avoid before. The heart of the proof is that it can be

fixed by a suitable choice of the previously stated radius R(p).

A Borel-Cantelli Argument

For every p ∈ T2, let 0 < R0(p) < R be so that, for any choice of radius 0 < R(p) < R0(p), the foliated

ball BR(p)(p) is well defined. When defining ξ0, we used a simple cardinality argument to achieve a

R(p) such that µ(∂BR(p)(p)) = 0. But now, since we are iterating, we don’t just want the measure of

∂BR(p)(p) to be zero, we want that points remains far from it while we iterate them. Lemma 4.1.4 is a

refinement of this argument and says that we can always find a such R(p) that keeps points uniformly

away from ∂BR(p)(p). But before we prove it, we need a technical lemma which is a particular case of

Besicovitch’s Covering Theorem that we prove here for completeness:

Lemma 4.1.3. If Y is a non-empty bounded subset of R then, for any α > 0 we can cover Y with finitely

many intervals Ir(α)
def.
= (r − α, r + α) with r ∈ Y and such that no point is in more than two of them.

Proof. Let I be a compact interval in R that contains Y . Being compact, we can cover I by finitely many

intervals Ir1(α/10), . . . , Irl(α/10). For each i = 1, . . . , l take a r′i ∈ Iri ∩ Y if this intersection is non

empty. For all those with non empty intersection we have Iri(α/10) ⊆ Ir′i(α). Thus

Y ⊆
l⋃

i=1

Iri(α/10) ⊆
⋃

Iri∩Y ̸=∅

Iri(α/10) ⊆
⋃

Iri∩Y ̸=∅

Ir′i(α)

Thus, these intervals Ir′i(α) with r′i ∈ Y covers Y . Rearrange these points r′i so that r′i < r′i+1. If a point

r ∈ Y is in three or more intervals Ir′i1
(α), . . . , Ir′ik

(α), i1 ≤ · · · ik. Then the extremal intervals Ir′i1
(α)

and Ir′ik
(α) covers all the other Ir′i(α), i1 < i < ik. Hence these intervals in the middle are redundant

and can be discarded from our cover. Now this point r is in only two intervals of our cover. Each time we

do this process we discard at least one of the intervals in our cover, thus, since it is finite, in the worst case

we would eventually have only two intervals covering Y and at this point there can’t be a point in three or

more intervals. So, this process eventually ends leaving us with a finite cover covering at most two times

a point, as desired.

With this little result, we can proceed on our context: Recall the exponent λ > 1 given in definition

2.1.1.
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Lemma 4.1.4. For p ∈ T2, we can find a R(p) ∈ [R0(p)/2, R0(p)] such that for µ-almost every q ∈ T2,

for all n ∈ N sufficiently big we have that d(f−n(q), ∂BR(p)(p)) > λ−n.

Proof. For a set A ⊆ T2, let Bδ(A) denote the set of points δ close to A. The conclusion of the lemma is

equivalent to “almost every point q ∈ T2 is only in finitely many of the sets f j(Bλ−j (∂BR(p)(p)))". By

Borel-Cantelli’s lemma it would suffice to have

+∞∑
j=0

µ
(
f j(Bλ−j (∂BR(p)(p)))

)
< +∞

Define an auxiliary measure η on the interval [0, R(p)] by

η([a, b])
def.
= µ

(
{q ∈ T2|a ≤ d(p, q) ≤ b}

)
This measure measures the boundaries of balls around p. In particular, if for r ∈ [0, R0(p)] the intervals

Ijr
def.
= [r − λ−j , r + λ−j ] are in [0, R0(p)], we have

η(Ijr ) = µ
(
Bλ−j (∂BR(p)(p))

)
Since µ is f -invariant, this means that

η(Ijr ) = µ
(
f j(Bλ−j (∂BR(p)(p)))

)
Thus, our problem is reduced to show that

+∞∑
j=0

η(Ijr ) < +∞

This series would converge if η(Ijr ) ≤ 1/j2. Thus, let’s track the r’s that don’t satisfy it. Define

Yj
def.
= {r ∈ [0, R0(p)]|η(Ijr ) > 1/j2}

These sets Yj are a subset of the compact interval [0, R0(p)], thus bounded. By lemma 4.1.3 we can find a

finite cover of Yj by intervals Ij
rj1
, . . . , Ij

rjlj

with rji ∈ Yj that covers Yj intersecting each point no more

than twice. Hence

Leb(Yj) ≤
lj∑
i=1

Leb(Ijri) =

lj∑
i=1

2λ−j = lj · 2λ−j

Also, using the definition of Yj we have

lj ·
1

j2
=

lj∑
i=1

1

j2
≤

lj∑
i=1

η(Ijri) ≤ 2η([0, R0(p)])

Which implies that lj ≤ 2j2. Thus Leb(Yj) ≤ 4j2λ−j and
∑

j Leb(Yj) < +∞. By Borel-Cantelli’s

lemma, Lebesgue almost every point r ∈ [0, R0(p)] is in only finitely many Yj’s. Taking a R(p) ∈
[R0(p)/2, R0(p)] satisfying it we conclude the lemma.

An immediate consequence of this lemma, is that for this choice of R(p) almost no point falls in

∂BR(p)(p). In particular, if ∂B denotes the union of the boundaries of the finite cover B1, . . . , Bκ, then
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Lemma 4.1.5. For µ-almost every point q ∈ T2 we have that fn(q) /∈ ∂B for all n ∈ Z

Proof. We want to show that the sets fn(∂BR(p)(p)) have zero measure. But since µ is f -invariant, it

suffices to show it for n = 0. In particular, since ∂BR(p)(p) ⊆ Bλ−j (∂BR(p)(p)), we have

+∞∑
j=0

µ
(
∂BR(p)(p)

)
≤

+∞∑
j=0

µ
(
Bλ−j (∂BR(p)(p))

)
This last sum was shown to be finite in the previous lemma, and the first sum can only be finite if

µ
(
∂BR(p)(p)

)
= 0.

Finally, we have everything ready to prove their existence:

Proof of Theorem 4.1.2

Let ξ be as above, where R(p) was given by lemma 4.1.4 and R was chosen smaller than 1. Conditions

(ii), (iii) and (iv) were already verified. We need only to verify condition (i). For it, take q ∈ T2 satisfying

lemma 4.1.4 and 4.1.5. Let n0 be the number given by lemma 4.1.4 such that d(f−n(q), ∂B) > λ−n for

all n ≥ n0. By lemma 4.1.5, each atom ξ0(f
−kq), k ∈ N contains an open interval of unstable manifold.

Thus each iterate fk(ξ0(f−kq)) also have. Hence, there is a r(q) > 0 such that

W u
r(q)(q) ⊆

n0⋂
k=0

fk(ξ0(f
−kq)) =

(
n0∨
k=0

fkξ0

)
(q)

I claim that for n ≥ n0 we have (
∨n
k=0 f

kξ0)(q) = (
∨n0
k=0 f

kξ0)(q). If this claim is right, them

ξ(q) =

(
+∞∨
k=0

fkξ0

)
(q) =

(
n0∨
k=0

fkξ0

)
(q) ⊇W u

r(q)(q)

and the theorem will be proven. To prove the claim, suppose it was not true. Them, there would be a

m > n0 such that
m⋂
k=0

fk(ξ0(f
−kq)) ⊊

n0⋂
k=0

fk(ξ0(f
−kq))

In particular, this means that for some m0 > n0 the interval
⋂n0
k=0 f

k(ξ0(f
−kq)) is not properly contained

in fm0(ξ0(f
−m0q)). Thus, there is a point q0 in the boundary of fm0(ξ0(f

−m0q)) that crosses it. That is,

there is a point q0 ∈ fm0(∂B) ∩
⋂n0
k=0 f

k(ξ0(f
−kq)). Since

⋂n0
k=0 f

k(ξ0(f
−kq)) is contained in W u

R(q)

we have d(q, fm0(∂B)) < R < 1. Iterating and using that q and q0 are in the same unstable leaf we get

that d(f−m0q, ∂B) < λ−m0 , which contradicts the definition of n0 and concludes the proof.

4.2 Affine Structures

In this section we develop once again another tool towards the understanding of the global structure of

the unstable and stable foliations. Here we construct the so called normal forms (or Affine Structures)

which are a collection of parameterizations of unstable leaves that behave very well under the dynamics.

Precisely, we prove the following:
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Proposition 4.2.1. If f ∈ Diff2
µ(T2) is an Anosov diffeomorphism, then there exists an unique continuous

family of C1+α-diffeomorphisms Hp :W
u(p) → Eu(p) for p ∈ T2 such that:

(i) Hp depends C0 on p restricted to unstable leaves in the C1+α topology.

(ii) Hp(p) = 0 and dpHp is the identity

(iii) Hq ◦H−1
p for q ∈W s(p) is affine

(iv) Hf(p) ◦ f = dpf ·Hp

These parameters do an incredible job in simplifying many arguments. If you simply interpret Eu(p)

as an ordinary copy of R, them these parameters behave just like a linearization of the dynamics. In

fact, condition (iv) precisely says that the action of the dynamics under these coordinates is given by its

derivative.

There is, of course, a technicality here: The parameter Hp depends on the base point p. This may

seem to diminish the effectiveness of this family, however, it is not expected that we would be able to

linearize it for an arbitrary f . In fact, it already is a miracle that it is possible to do this non stationary

linearization and even though it depends on the base point, items (ii) and (iii) says that they vary very

well. Even more, if we apply the dynamics in an unstable neighborhood of a fixed (or periodic) point, you

can track the exact length of expansion/contraction of the leaves to be just a multiplication by the unstable

eigen value.

As a proof of their usefulness, if their essential role on the next section isn’t enough, in the end of this

section I show how they can be used to prove the regularity of stable Holonomies. This will be used in the

construction of the Margulis family in the next chapter.

Proof of Proposition 4.2.1

The main reference we follow here is [KK06].

To simplify the exposition I will assume the existence of a unitary vector field tangent to the unstable

distribution p ∈ T2 7→ vu(p) ∈ Eu(p). We can identify the unstable direction Eu(p) with R via the

relation avu(p) ∈ Eu(p) ∼ a ∈ R. If ρ : T2 × T2 → R is continuous, then for every p ∈ T2 we can

define a map Hp :W
u(p) → Eu(p) by

Hp(q)
def.
=

∫ q

p
ρ(p, r)dr

where the integral above is taken in a path connecting p to q contained in W u(p) and with sign given by

the field vu. Our job now is to find an appropriate ρ which gives us the desired properties of Hp. First,

if we had chosen ρ Hölder continuous, we would have that Hp is the integral of a Hölder continuous

function, hence C1+α. If we also happens to choose ρ positively bounded from bellow, then dHp is

always invertible, and being it one dimensional, we get that Hp would be a diffeomorphism. In fact, by

the fundamental theorem of calculus, we have dqHp = ρ(p, q), thus if we have ρ(p, p) = 1 then dpHp is

the identity.

All these properties above are very loose and would only give us properties (i) and (ii). Thankfully,

property (iv) is way more enlightening. To see it, suppose for a moment that item (iv) holds. Them, for all
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p ∈ T2 and q ∈W u(p) we would have that

Hf(p) ◦ f(q) = dpf ◦Hp(q) ⇐⇒
∫ f(q)

f(p)
ρ(f(p), r)dr = λup

∫ q

p
ρ(p, r)dr

⇐⇒
∫ q

p
Juf(r)ρ(f(p), f(r))dr =

∫ q

p
λupρ(p, r)dr

Since q ∈W u(p) was arbitrary, the integrands must coincide. I.e.

Juf(q)ρ(f(p), f(q)) = λupρ(p, q)

Also, since W u(p) is one dimensional, we have that Juf(q) = λuq . Rearranging and using induction we

see that for any n ∈ N:

ρ(f(p), f(q)) =
λup
λuq

· ρ(p, q) =
λup
λuq

·
λuf−1p

λu
f−1q

· ρ(f−1p, f−1q) = · · · =
n∏
i=0

λu
f−ip

λu
f−iq

· ρ(f−np, f−nq)

Since q ∈W u(p), we have that d(f−np, f−nq) → 0. Hence, since we choose ρ(r, r) = 1 for any r ∈ T2,

it makes sense to suppose that ρ(f−np, f−nq) → 1. In this case, the formula above gives an explicit

expression for our candidate ρ:

ρ(p, q) =

+∞∏
i=1

λu
f−ip

λu
f−iq

, for q ∈W u(p)

All we have to do now is to prove that it is well defined and satisfies the previous hypothesis.

Lemma 4.2.2 (Distortion Lemma). For p ∈ T2, the function q ∈W u(p) 7→ ρp(q)
def.
= ρ(p, q) ∈ R where

ρ(p, q) is defined as above is a well defined Hölder continuous function.

Proof. Fix a p ∈ T2. Define a sequence of functions ρn :W u(p) → R by

ρn(q)
def.
=

n−1∏
i=1

λu
f−ip

λu
f−iq

These ρn are well defined because λur > 0. Also, since f is C2 and Eu is Hölder continuous, we have that

λur is Hölder continuous. The manifold T2 is compact and λur > 0 is continuous on it, thus it is bounded

away from zero and ρn is also Hölder continuous. Notice that

log(ρn(q)) =

n−1∑
i=1

log(λuf−ip)− log(λuf−iq)

Hence, using that the logarithm is Lipschitz when restricted to an interval bounded away from zero, we

see that

| log(ρn(q))| ≤
n−1∑
i=1

∣∣∣log(λuf−ip)− log(λuf−iq)
∣∣∣ ≤

n−1∑
i=1

C
∣∣∣λuf−ip − λuf−iq

∣∣∣
≤

n−1∑
i=1

CC ′d(f−ip, f−iq)α
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The series above converges when n→ +∞ because p and q are exponentially asymptotic. In particular,

for m > n:

| log(ρm(q))− log(ρn(q))| ≤
m−1∑
i=n

CC ′d(f−ip, f−iq)α

So log(ρn(q)) is Cauchy and it converges to a function g(x). Thus the sequence ρn converges to the

function ρp(q) = eg(x) which is Hölder with the same exponent of the ρn’s.

These ρp are what we’ll use to define our Hp in place of that hypothetical ρ of before. The lemma

above says it is well defined and by construction Hp already satisfies property (iv). It is also clear from

their definition that ρp(p) = 1 and Hp(p) = 0, thus property (ii) is also done. Now, for item (i), notice

that

Lemma 4.2.3. For p′, q ∈W u(p) we have ρp(q) = ρp(p
′)ρp′(q).

Proof. It follows from a direct computation:

ρp(q) =
+∞∏
i=1

λu
f−ip

λu
f−iq

=
+∞∏
i=1

λu
f−ip

λu
f−ip′

λu
f−ip′

λu
f−iq

=
+∞∏
i=1

λu
f−ip

λu
f−ip′

+∞∏
i=1

λu
f−ip′

λu
f−iq

= ρp(p
′)ρp′(q)

Thus Hp(q) = ρp(p
′)Hp′(q) and dHp = ρp(p

′)dHp′ . Hence Hp depends continuously on p restricted

to unstable leaves in the C1+α topology. Finally, it remains to show property (iii):

Lemma 4.2.4. For q ∈W u(p), the map Hq ◦H−1
p is affine.

Proof. To show that a map is affine is equivalent to show that its derivative is constant. In fact, let r ∈ R
and put p′ def.

= H−1
p (r). With that, we have

dr(Hq ◦H−1
p ) = dp′Hq · drH−1

p = dp′Hq · [dp′Hp]
−1 =

ρq(p
′)

ρp(p′)

Taking q = p′ in Lemma 4.2.3, we see that 1/ρp(p′) = ρp′(p). Thus, by the same Lemma, the expression

above is equals to ρq(p′)ρp′(p) = ρq(p) which does not depends on r.

Here, we finished the proof of the existence of this family. The ρp’s we defined looks like they are

uniquely defined (up to zero measure), thus the family {Hp}p∈T2 seems to be unique. However, we made

some assumptions before we had the expression for the ρp’s. Thus the unicity is not obvious and we must

properly check it:

Lemma 4.2.5. This family {Hp}p∈T2 is unique.

Proof. Suppose that {H̃p}p∈T2 is another family satisfying the conclusions of Proposition 4.2.1. For each

p ∈ T2, define a transition map Gp : R → R by G(t) def.
= Hp ◦ H̃−1

p (t). It follows from property (iv) that

for any n ∈ Z we have that

Hp = df−n ·Hfn(p) ◦ fn and H̃p = df−n · H̃fn(p) ◦ fn

Hence

Gp(t) = dfn ·Gf−np ◦ df−n · t =
Gfnp(λ

u
fnp(−n)t)

λufnp(−n)
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By property (ii) we have Gp(0) = 0 and G′
p(0) = 1, thus since λufnp(−n)t→ 0 as n→ +∞, we obtain

that

Gp(t) =
Gfnp(λ

u
fnp(−n)t)−Gf−np(0)

λufnp(−n)− 0
= lim

n→∞
t
Gfnp(λ

u
fnp(−n)t)−Gf−np(0)

λufnp(−n)t− 0
= t

Thus Gp is the identity and Hp = H̃p.

Regularity of Holonomies

In this subsection we use these affine parameters to increase the regularity of our Holonomy maps.

Recall that in 2.2, we saw that Holonomies are, locally, translations along the stable direction: If you

have an holonomy between p and q, then take a thin (but maybe long) foliated neighborhood containing p

and q, what the holonomy does is to take the segment of unstable leaf at p at move it along the stable lines

connecting it to an unstable segment at q (in the local chart this is precisely a translation. See 2.2.1). This

means that holonomies are unique, in the sense that if they have the same base point then they agree. This,

in turn, reveal another feature that make holonomies enjoyable; They commute with the dynamics:

Lemma 4.2.6. If Hp→q and Hfnp→fnq are Holonomies from p to q and from fnp to fnq respectively,

then fn ◦ Hp→q = Hfnp→fnq ◦ fn when booth sides are well defined.

Proof. Define the map H′
p→q(r) = f−n ◦ Hfnp→fnq ◦ fn(r). We have H′

p→q(p) = q and

H′
p→q(r) ∈ f−n(W s(fnr) ∩W u(fnq)) =W s(r) ∩W u(q)

Thus H′
p→q is an holonomy from p to q. By unicity H′

p→q = Hp→q in their respective domains and the

lemma is proven.

Now, as said, Holonomies are translations of peaces of unstable manifolds (which are as smooth as f )

along stable manifolds (which are as smooth as f ). However, we only required them to be continuous. It

may seem plausible that they also are as smooth as f . Sadly, this isn’t always the case. Even thought the

leaves are smooth, the foliation as a whole is only Hölder. Different sections of leaves are moving away at

different rates, and this may hamper the smoothness. Haply, in our case, they do are smooth, for, they are

linear in these affine charts we just defined:

Proposition 4.2.7. If Hp→q is an holonomy and we define the map H
def.
= Hq ◦ Hp→q ◦H−1

p , where Hp

and Hq are the affine parameters at p and q respectively. Then, this map is C1+α.

Proof. We already know that the maps Hp and Hq are C1+α, thus the proposition is all about Hp→q

being C1+α. Notice that the base point of an holonomy map is only for intuition convenience, i.e. if

r ∈ Dom(Hp→q) is another point on the domain of Hp→q, then, the map H̃r→Hp→q(r)(z)
def.
= Hp→q(z) is

an actual holonomy between r and Hp→q(r). Thus, if we assumed that every holonomy is differentiable

at its base point, we obtain that

drHp→q = drHr→Hp→q

so that the holonomies are actually differentiable everywhere. Since H−1
p (0) = p, it means that, to prove

the proposition, we need only show that H is differentiable at 0 and obtain a value that is Hölder on p

and q.
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For n ∈ N and t ∈ R, lemma 4.2.6 says that

H (t) = λufnq(−n)Hfnq ◦ Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t)

Since Hfnq is C1, and H (0) = 0, by the mean value theorem we have

|H (t)| = |H (t)− H (0)| ≤ λufnq(−n)∥dHfnq∥n,t · |J(n, t)|

where

|J(n, t)| def.
= du(Hfnp→fnq ◦H−1

fnp(λ
u
p(n)t), f

nq)

is the length of the interval of unstable manifold J connecting the point Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t) to

fn(q) = Hfnp→fnq ◦H−1
fnp(0) and ∥dHfnq∥n,t

def.
= suph∈J ∥dhHfnq∥ is the maximum of the norm of

the derivative of Hfnq along this interval. Actually, since ∥dhHfnq∥ is Hölder in h, with Hölder constants

independent of the base point and ∥dfnqHfnq∥ = 1, we have that

∥dHfnq∥n,t ≤ 1 + ε1(|J(n, t)|)

where ε1(|J(n, t)|) → 0 as |J(n, t)| → 0. Now, we need to control the term |J(n, t)|. Notice that

Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t) → fn(q) as t→ 0

Thus, given n ∈ N, we can find a tn > 0, such that for t < tn, the points Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t) and

fn(q) are in a same product neighborhood. Since the unstable manifold is C1, in this neighborhood, the

distances along unstable leaves du and the distance in the entire manifold d are equivalent. In particular,

there is a C > 0 such that,

du(Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t), f

nq) ≤ Cd(Hfnp→fnq ◦H−1
fnp(λ

u
p(n)t), f

nq)

by compactness, this C > 0 can be chosen uniform. Now, for t ≤ tn we can use the triangle inequality to

obtain that

|J(n, t)| ≤ C

(
d(Hfnp→fnq ◦H−1

fnp(λ
u
p(n)t), H

−1
fnp(λ

u
p(n)t))

+d(H−1
fnp(λ

u
p(n)t), f

np)

+d(fnp, fnq)

)
Let ε2(n) be the sum of the first and last terms above. Since they are the distance between two points in

the same stable manifold, they go to 0 exponentially fast in n, i.e. ε2(n)
exp→ 0 as n→ +∞. For the term

in the middle, we have

d(H−1
fnp(λ

u
p(n)t), f

np) ≤ du(H−1
fnp(λ

u
p(n)t), f

np)

= du(H−1
fnp(λ

u
p(n)t), H

−1
fnp(0))

≤ sup|s|≤λup (n)t ∥dsH
−1
fnp∥ · |λ

u
p(n)t|

Similarly to before, we can write

sup
|s|≤λup (n)t

∥dsH−1
fnp∥ ≤ 1 + ε3(λ

u
p(n)|t|)
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where ε3(λup(n)t) → 0 as λup(n)t→ 0. Gathering all those estimates we conclude that,

|H (t)| ≤ Cλufnq(−n)
(
1 + ε1(|J(n, t)|)

)(
ε2(n) +

[
1 + ε3(λ

u
p(n)|t|)

]
λup(n)|t|

)
Dividing by |t| and making the limit n→ +∞, t→ 0 while also making λup(n)|t| → 0 we obtain that

lim sup
t→0

|H (t)|
|t|

≤ C lim
n

λup(n)

λuq (n)
= Cρsp(q)

where, analogously to lemma 4.2.2, the limit above converges to a Hölder function ρsp(q). Using infimums

instead of the supremums above, we obtain the same estimate but for the lim inf . Thus concluding the

proposition.

4.3 Leafwise Measures

In the last sections we made some general results, now we fix µ as the SRB measure of f and use those

results to construct the Leafwise measures, which are a family of measures defined on W u which locally

gives a disintegration of µ in product neighborhoods that scales with the unstable Lyapunov exponent λu

of f .

The outline of the proof is that we start with a subordinated partition and we iterate it. These iterates

form a sequence of partitions whose atoms gets bigger and bigger. By proving a superposition principle,

we show that the disintegrations of our measure in these partitions converges (in some sense) to measures

in entire unstable leaves. Using the affine parameters we constructed, we can obtain that their pullback

is precisely 0.5 times the Lebesgue measure in R. With that, using the linearity of the dynamics under

normal forms, we can return this estimate to the manifolds and conclude the Theorem.

The superposition Property

Let ξ0 < W u be a subordinated partition. Since atoms of ξ0 are intervals of unstable leaves, the dynamics

dilates each ξ0(p) so that by iterating ξ0 we can define a family of wider and wider subordinated partitions:

Definition 4.3.1. For n ∈ N we set ξn
def.
= fnξ0

In fact, by property (iv) of definition 4.1.1 we have that ξn+1 ≺ ξn. Also, each one of these partitions

is measurable, so by Rokhlin’s Theorem, we can disintegrate µ with respect to ξn to obtain a family of

conditional measures {µξnp }p∈T2 . Their domain, ξn(p), grows with n in the following sense:

Lemma 4.3.2. For µ-almost every point p ∈ T2 and R > 0, ∃n0 ∈ N such that

W u
R(p) ⊆ ξn(p)

for all n > n0.

Proof. For ε > 0 define the set

A(ε)
def.
= {p ∈ T2|W u

ε (p) ⊆ ξ(p)}
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If p ∈ T2 is such that f−n(p) ∈ A( 1k ), then, by the uniform expansion of f we have

fnW u
1
k

(f−n(p)) ⊆ fn(ξ(f−n(p))) =⇒ W u
λn

k

(p) ⊆ ξn(p)

where λ > 1 is as in definition 2.1.1. Hence, if n > logλu(kR) we have W u
R(p) ⊆ ξn(p) and the lemma

is true for this p. Thus, it suffices to prove that the set⋃
k∈N

n>logλ(kR)

fnA( 1k ) (*)

has full measure. For it notice that, by item (i) of 4.1.1, the set
⋃
k∈NA(

1
k ) has full measure. So, by the

f -invariance of µ, so does (*).

Using this lemma, we see that for a given R > 0, almost every measure µξnn with n sufficiently big is

well defined in W u
R(p). We will show that, modulo a normalization, they all agree on W u

R. For it, use the

fact that the family (µξnp )p∈T2 is measurable to define an auxiliary measure ηξmp,n on ξm(p) by:

Definition 4.3.3. If m > n and A ⊆ ξm(p), put

ηξmp,n(A) =

∫
ξm(p)

[∫
ξn(q)

1Adµ
ξn
q

]
dµξmp (q)

Remark 4.3.4. It will be convenient for later to notice that if A ⊆ ξn(p), the expression above greatly

simplifies. This happens because if A ⊆ ξn(q) then the inner integral is 0 for all q /∈ ξn(p) and constant

for q ∈ ξn(p) (item 2 of 3.1.21). Thus it can be rewritten as

ηξmp,n(A) =

∫
ξm(p)

[
1ξn(p)(q)

∫
ξn(q)

1Adµ
ξn
q

]
dµξmp (q) = µξnp (A)µξmp (ξn(p))

Lemma 4.3.5. For µ-almost every p ∈ T2 we have

ηξmp,n = µξmp

Proof. Let φ : T2 → R be integrable. Then, using that both {µξmp }p∈T2 and {µξnp }p∈T2 are disintegrations

of µ we have:

∫ [∫
ξm(p)

φdηξmp,n

]
dµ(p) =

∫ [∫
ξm(p)

[∫
ξn(q)

φdµξnq

]
dµξmp (q)

]
dµ(p)

=

∫ [∫
ξn(p)

φdµξnq

]
dµ(p)

=

∫
φdµ

Thus {ηξmp,n}p∈T2 is a disintegration of µ in ξm. The lemma follows by the a.e. unicity of disintegrations.
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The appearance of ηξmp,n combined with this lemma may suggest that {µξnp }p∈ξm(p) is a disintegration

of µξmp in the partition {ξn(p)}p∈ξm(p) of ξm(p). This suggestion is true: By item (i) of definition 4.1.1,

almost every atom ξn(p) contains an open interval, thus, since ξm(p) is second countable, it contains at

most enumerably many atoms of ξn. Hence, the partition of ξm(p) by atoms of ξn is measurable and the

lemma above precisely describes the disintegration of µξmp as {µξnp }p∈ξm(p).

Lemma 4.3.6. For µ-almost every p ∈ T2 we have µξmp (ξn(p)) > 0 for m > n.

Proof. Define Y def.
= {p ∈ T2|µξmp (ξn(p)) = 0}. We want to show that µ(Y ) = 0. For it, notice that

µ(Y ) =

∫
χY dµ =

∫
µξmp (Y )dµ

By the remark above, we can write ξm(p) = ∪p∈ξm(p)ξn(p) where this union is atmost countable. Then

µξmp (Y ) =
∑

p∈ξm(p)

1−per atom

µξmp (ξn(p) ∩ Y )

It suffices to show that the right side is 0. If ξn(p) ∩ Y = ∅ we are done. If this is not empty, let

q ∈ ξn(p) ∩ Y . By definition we have µξmq (ξn(p)) = 0. However, ξn(p) ⊆ ξm(p), so q ∈ ξm(p) and by

item (ii) of Theorem 3.1.21 we have µξmp (ξn(p)) = µξmq (ξn(p)) and consequently µξmp (ξn(p) ∩ Y ) = 0

as wanted.

With this lemma we can normalize these measures as follows: Consider the collection of normal

forms {Hp : W
u(p) → R}p∈T2 and notice that since they are C1 there is a C > 0 such that W u

C(p) ⊆
H−1
p ([−1, 1]) for every p ∈ T2. Notice that, by the proof of Theorem 4.1.2, we can choose 0 < R < C

in the definition 4.1.1 so that ξ(p) ⊆ H−1
p ([−1, 1]) for almost every p. Then by the lemma above

µξmp (H−1
p ([−1, 1])) > 0 and we can set

Definition 4.3.7.

µ̂ξmp
def.
=

µξmp

Hp ∗µ
ξm
p ([−1, 1])

With this definition we have the following stability property:

Proposition 4.3.8. For µ-almost every p ∈ T2, ∀K ⊆W u(p) compact, there is a n0 ∈ N such that for

all m,n > n0 we have

µ̂ξmp (K) = µ̂ξnp (K)

Proof. Let p ∈ T2 be generic. Since K ⊆ W u(p) is compact, there is a R > 0 such that K ⊆ W u
R(p).

We can use lemma 4.3.2 to obtain a n0 ∈ N such that for all n0 < n < m we have K ⊆ ξn(p) ⊆ ξm(p).

Using lemma 4.3.5 and the remark above it, we have

µξmp (K) = µξnp (K)µξmp (ξn(p))

By lemma 4.3.6 µξmp (ξn(p)) > 0 generically, thus

µξnp (K) =
µξmp (K)

µξmp (ξn(p))
(1)
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The only condition to obtain this equality was that K was bounded in W u, in particular, this is also the

case of H−1
p ([−1, 1]), hence, applying everything above to it we obtain

Hp ∗µ
ξn
p ([−1, 1]) =

Hp ∗µ
ξm
p ([−1, 1])

µξmp (ξn(p))
(2)

Dividing (1) by (2), the term µξmp (ξn(p)) cancels and we obtain µ̂ξmp (K) = µ̂ξnp (K).

One simple corollary, obtained in the proof above, which is interesting by itself to have a name:

Corollary 4.3.9. (Superposition Property) µξnp =
µξmp |ξn(p)

µξmp (ξn(p))
for µ-a.e. p ∈ T2 if n < m.

By the above proposition, we now see that the family of measures {µ̂ξnp }p∈T2 are stationary, in the

sense that they (almost everywhere) eventually agree. With that, and the fact that the domain of each µ̂ξnp
converges to the entire unstable leaf W u(p), we can define “pre”-measure µ̂p on W u(p) by setting:

Definition 4.3.10. µ̂p(K)
def.
= limn→+∞ µ̂ξnp (K), for K ⊆W u(p) compact.

Here, we are in a standard setting of measure theory: There is a pre-measure defined on all compacts

of a Borel Space. So, by Carathéodory’s Theorem (see Theorem 1.14 of [Fol99]) we can extend µp
to a Borel measure µp in W u(p) such that they agree in compacts, i.e. µ̂p(K) = µp(K). This family

{µp}p∈T2 is the leafwise measures. To see in which sense they give a local disintegration of µ we first

need a general lemma:

Lemma 4.3.11. For µ-a.e. p ∈ T2 and n ∈ N we have

µξnp = fn∗ µ
ξ
f−n(p)

Proof. It follows from a direct computation and unicity: Let φ : T2 → R be integrable, then, by the

invariance of µ and the fact that {µξnp }p∈T2 is a disintegration of µ, we have

∫
φdµ =

∫
φ ◦ fndµ =

∫ [∫
ξ(p)

φ ◦ fndµξp

]
dµ

=

∫ [∫
ξ(f−n(p))

φ ◦ fndµξ
f−n(p)

]
dµ

=

∫ [∫
fn(ξ(f−n(p)))

φdfn∗ µ
ξ
f−n(p)

]
dµ

=

∫ [∫
ξn

φdfn∗ µ
ξ
f−n(p)

]
dµ

Hence, {fn∗ µf−n(p)}p∈T2 is a disintegration of µ with respect to ξn. By unicity, fn∗ µf−n(p) = µξnp for

µ-a.e. p ∈ T2.

With this result, we can show the following universal property of this family:
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Lemma 4.3.12. There is an almost everywhere defined family {µp}p∈T2 of measures in unstable leaves

such that for all partition ξ subordinated to W u we have

µξp =
µp|ξ(p)
µp(ξ(p))

Proof. Let {µp}p∈T2 be the family described after Lemma 4.3.10. If ξ is thinner than some ξn used in the

above construction, i.e. if ξn ≺ ξ then the claimed property follows from the superposition property (Cor.

4.3.9) and the definition of µp:

µξp =
µξnp |ξ(p)
µξnp (ξ(p))

=
Hp ∗µ

ξn
p ([−1, 1])

Hp ∗µ
ξn
p ([−1, 1])

µ̂ξnp |ξ(p)
µ̂ξnp (ξ(p))

=
µp|ξ(p)
µp(ξ(p))

There is, however, no guarantee that we can find such a n ∈ N. To overcome this problem, lets use that

the inferior bound r(p) > 0 for the atoms of ξ0 given in def. 4.1.2 is measurable. Thus, we can find an

increasing family of subsets K1 ⊆ K2 ⊆ · · ·Kn ⊆ · · · ⊆ T2 such that µ(Ki) → 1 and for each i ∈ N
there is a εi > 0 such that r(p) > εi.

Since atoms of ξ are uniformly bounded by some constant R, let ni ∈ N be big enough so that

λ−nR < εi. With that choice, for every p ∈ Ki the atom f−nξ(p) of f−nξ is contained in the atom ξ0(p)

of ξ0. Hence, if we restrict f−nξ and ξ0 to partitions f−nξ|Ki and ξ0|Ki of Ki, the superposition property

gives us that

µ
f−nξ|Ki
p =

µ
ξ0|Ki
p |f−nξ|Ki

µ
ξ0|Ki
p (f−nξ|Ki(p))

for almost every p ∈ Ki. By lemma 4.3.11, we have

µ
f−nξ|Ki
p = f−n∗ µ

ξ|Ki
fnp

and

µ
ξ0|Ki
p = f−n∗ µ

ξn|Ki
fnp

Thus

f−n∗ µ
ξ|Ki
fnp =

f−n∗ µ
ξn|Ki
fnp |f−nξ|Ki

f−n∗ µ
ξn|Ki
fnp (f−nξ|Ki(p))

Since f−nξ|Ki(p)) = f−n(ξ|ki(fnp)) and f−n∗ µ(A) = µ(fnA), this denominator on the right is just

µ
ξn|Ki
fnp (ξ|Ki(fnp)). Hence, applying fn∗ , we obtain that

µ
ξ|Ki
p =

µ
ξn|Ki
p |ξ|Ki

µ
ξn|Ki
p (ξ|Ki(p))

=
µp|Ki∩ξ(p)

µp(Ki ∩ ξ(p))

for every p ∈ fnKi. Since
⋃
iKi covers almost every point, the above equality actually holds for the

entire atom of ξ almost everywhere and the lemma is proven.

Scaling Property

Until now, all we used was the properties of a subordinated partition ξ and the fact that µ is f -invariant.

We now use the fact it is SRB to verify that these leaf-wise measures {µp}p∈T2 constructed above have a

great scaling property under the dynamics.
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For it, recall definition 4.3.1 and notice that there is nothing bad by setting ξ−1
def.
= f−1ξ. This, once

again, defines a subordinated partition verifying ξ ≺ ξ−1 and we can obtain a decomposition {µξ−1
p }p∈T2

of µ with respect to that. Comparing that with the disintegration given by Lemma 4.3.11 allow us to

obtain an exclusive property of SRB measures: It’s densities are dynamically determined.

For it, recall that by definition of being SRB we have

µξp = ρLebu

for some measurable function ρ : T2 → R. Thus, we have the following:

Lemma 4.3.13. For µ-a.e. p ∈ T2 and µξp-a.e. q ∈ ξ(p) we have

ρ(q) = ρ(f−1(q))(λuf−1(q))
−1(µξp(ξ−1(p)))

−1

Proof. Let A ⊆ T2 be measurable. Since ξ ≺ ξ−1, the superposition property 4.3.9 says that for µ-a.e.

p ∈ T2 we can write

µξ−1
p (A) =

µξp(A ∩ ξ−1(p))

µξp(ξ−1(p))
= (µξp(ξ−1(p)))

−1

∫
A∩ξ−1(p)

ρ(z)d Lebu(z)

Also, by lemma 4.3.11

µξ−1
p (A) = f−1

∗ µξf(p)(A) = µξf(p)(f(A)) =

∫
f(A)∩ξ(f(p))

dµξf(p)

=

∫
f(A)∩ξ(f(p))

ρ(z)d Lebu(z)

=

∫
A∩f−1(ξ(f(p)))

ρ ◦ f(z) λuzdLebu(z)

=

∫
A∩ξ−1(p)

ρ ◦ f(z) λuzdLebu(z)

Thus, comparing those expressions:

(µξp(ξ−1(p)))
−1

∫
A∩ξ−1(p)

ρdLebu =

∫
A∩ξ−1(p)

ρ ◦ f(z) λuzdLebu(z)

Since A was arbitrary, we must have

(µξp(ξ−1(p)))
−1ρ(z) = ρ ◦ f(z) λuz

for µξp-a.e. z ∈ ξ−1(p). Finally, since f(ξ−1(p)) = ξ(f(p)), every q ∈ ξ(f(p)) can be written as q = f(r)

for some r ∈ ξ−1(p). Using it, and rearranging the expression above, we get

ρ(q) = ρ(f−1(q))(λuf−1(q))
−1(µξp(ξ−1(p)))

−1

for µξf(p)-a.e. q ∈ ξ(f(p)). By changing f(p) to p we have proven the lemma.

That’s a curious property, but the term (µξp(ξ−1(p)))
−1 makes it a little clumsy to say that it ‘dynam-

ically defines’ the density. Well, with a little rearrangement we can get rid of this term and obtain an

expression that is so more visually appealing that I will state it as a lemma on it’s own:
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Lemma 4.3.14. For µ-a.e. p ∈ T2 and µξp-a.e. q ∈ ξ(p) we have

ρ(q)

ρ(p)
=

+∞∏
i=1

λu
f−l(p)

λu
f−l(q)

Proof. By lemma 4.3.13 we have

ρ(q)

ρ(p)
=
λuf−1(p)ρ(f

−1(q))

λu
f−1(q)

ρ(f−1(p))
=
λuf−2(p)λ

u
f−1(p)ρ(f

−2(q))

λu
f−2(q)

λu
f−1(q)

ρ(f−2(p))
= · · · =

n∏
i=1

λu
f−l(p)

λu
f−l(q)

ρ(f−n(q))

ρ(f−n(p))

By lemma 4.2.2, the limit of this product converges. Hence

ρ(q)

ρ(p)
=

+∞∏
i=1

λu
f−l(p)

λu
f−l(q)

· lim
n→+∞

ρ(f−n(q))

ρ(f−n(p))

Since q ∈ W u(p) and almost every p is recurrent, we get a set of full measure such that this limit is 1.

Proving the lemma.

This lemma says that if you know the value of ρ at a point p, then you know its value at every point of

ξ(p). If you compare this infinity product with the Jacobian ρp of the normal forms {Hp}p∈T2 introduced

in subsection 4.2 you will see that they are the same thing! It is not a coincidence, of course this was

made to be like that. With this, we have that ρ(q) = CdqHp where C is constant on atoms. That very

convenient expression invites us to explore the behavior of µξp in these affine coordinate charts. For it,

define the following

Definition 4.3.15. For p ∈ T2 and I ⊆ R, put µp(I)
def.
= (Hp)∗µp(I)

Those µp are a collection of measures in R and they reveal the following amazing regularity of µp

Lemma 4.3.16. For µ-a.e. p ∈ T2 we have µp = 0.5LebR.

Proof. Let I ⊆ R be compact and find n ∈ N big enough so that H−1
p (I) ⊆ ξn(p) then, by lemma 4.3.12,

for all J ⊆ I we have µp(H−1
p (J)) = C0µ

ξn
p (H−1

p (J)) where C0 = µp(ξn(p)) is constant. Then

µp(J) =

∫
J
dµp =

∫
J
d(Hp)∗µp =

∫
H−1
p (J)

dµp

= C0

∫
H−1
p (J)

dµξnp

= C0

∫
H−1
p (J)

ρ(z)d Lebu(z)

= C0

∫
J
dzH

−1
p (z)ρ ◦H−1

p (z)d LebR(z)

By the remark above definition 4.3.15, we have ρ◦H−1
p (z) = CdH−1

p (z)Hp. Also, by the inverse function

theorem we have dzH−1
p = (dH−1

p (z)Hp)
−1, thus

dzH
−1
p (z)ρ ◦H−1

p (z) = C

Hence

µp(J) = C0C

∫
J
dLebR(z)
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Since J ⊆ I was arbitrary, the measures coincides minus a constant in I . And since I was an arbitrary

compact in R, the measures coincides in R minus a constant. To determine the constant, just notice that

by definitions 4.3.10 and 4.3.7, for n ∈ N sufficiently big we have

µp(Hp([−1, 1]) =
µξnp (Hp([−1, 1])

µξnp (Hp([−1, 1])
= 1

Thus

1 = C0C LebR(Hp([−1, 1]) = 2C0C

so that C0C = 0.5 and µp = 0.5LebR.

The fact the leaf-wise measures are exactly (0.5)Lebesgue under the normal forms reparameterization

is really strong. In particular, since in normal forms f acts on a set by multiplying it by it’s derivative, we

can recover this property to the manifold:

Lemma 4.3.17. For µ-a.e. p ∈ T2 and n ∈ N we have fn∗ µp = λufnp(−n)µfn(p)

Proof. It follows from a direct calculation: Let A ⊆ T2 and define B def.
= Hfn(p)(A) ⊆ R. Then, by the

item (iv) of Prop. 4.2.1 we have

fn∗ µp(A) = µp(f
−n ◦H−1

fn(p)(B)) = µp(H
−1
p λufnp(−n)B) = µp(λ

u
fnp(−n)B)

= 0.5LebR(λ
u
fnp(−n)B) = λufnp(−n)0.5LebR(B) = λufnp(−n)µp(B)

= λufnp(−n)µp(H−1
p (B)) = λufnp(−n)µp(A).
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CHAPTER 5

The Margulis Family

In the previous chapter we focused on the SRB measure and constructed a family of measures defined on

entire unstable leaves that behaved very well under the dynamics. Now it’s the turn of the measure of

maximal entropy ν. Here we construct a family of measures defined on W u and W s which locally gives a

disintegration of ν in product neighborhoods that scales with the topological entropy htop of f .

This family is called the Margulis Family and their applicability in fact holds for equilibrium states in

general and not just the maximal entropy measure. Since the effort to construct them for the general case

is similar to our case, we present general one. The outline of the proof is to define a linear operator of

functions on leaves and use the Riez Representation Theorem to obtain a measure on each leaf. For these

measures to behave well we will construct them as to be a fixed point of a good action.

The main reference for this chapter is [Alv13]

5.1 A fixed point for an action

When we write A ⊆ W σ we mean A ⊆ W σ(p) for some p ∈ M , σ = s, u. Also, for A,B ⊆ W u we

denote an Holonomy from A to B by HA→B , i.e. we are just dropping the base point of the holonomy

and denoting it by its domain and codomain (HA→B(A) ⊆ B). In particular, if you interpret a point as a

singleton we have H{p}→{q} = Hp→q and this notation agree with the definition 2.2.5.

Definition 5.1.1. Given A,B ⊆W u, we say A and B are ε-equivalent if there is a well defined surjective

Holonomy map HA→B : A→ B such that d(H(x), x) < ε, ∀x ∈ B.

Consider the set of continuous functions over unstable leaves with compact support

Cc(W
u)

def.
= {φ :M → R| supp(φ) ⊆W u is compact and φ|supp(φ) is continuous}

Definition 5.1.2. We say φ1, φ2 ∈ Cc(W
u) are ε-equivalent if supp(φ1) and supp(φ2) are ε-equivalent

via an Holonomy H and φ1 = φ2 ◦ H.

It is a curious feature of transitive systems that for any open A ⊆W u, all sufficiently small unstable

balls are ε-equivalent to A. We see it in Proposition 5.1.4, just after a little definition.

Definition 5.1.3. A disk of radius ε and center in p ∈M is the set
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Dε(p)
def.
=

⋃
q∈W s

ε (p)

W u
ε (q)

Φ∼= (−1, 1)2 ⊆ R2

when well defined via a foliated chart Φ : Dε(p) → (−1, 1)2. A disk can be endowed with an

analogue of the sum metric in Rn: d+(p, q) def.
= ds(p, r) + du(r, q), where r ∈W u

ε (q) ∩W s
ε (p).

Proposition 5.1.4. For any A ⊆W u open, there exists r, ε > 0 such that ∀p ∈M , Bu
r (p) is ε-equivalent

to a subset of A.

Proof. Let p ∈M and q ∈ A. Find r > 0 such that there are well defined product neighborhoods D2r(p)

and D2r(q). By theorem 2.3.5, W s(p) is dense. Thus there exists ε > 0 such that W s
ε (p)

⋂
D2r(q) ̸= ∅.

In fact, since W s and W u are continuously transverse, ε can be chosen so that for a small enough r,

W s
ε (z) intersects W u

2r(q) in a single point for each z ∈W u
2r(p). Thus there is a well defined map

H : D2r(p) → D2r(q)

which in restriction to any unstable plaque W u∩D2r(p) gives an Holonomy map. If needed, diminish

r so that D2r(q) is above A. Now, if z ∈ Dr(p) we have Bu
r (z) ⊆ D2r(p) thus H|Bur (z) is an Holonomy

and

d(H|Bur (z)(x), x) < ε , ∀x ∈ Bu
r (z)

so it establish an ε-equivalence between Bu
r (z) and a subset of A for every z ∈ Dr(p). To finish,

cover M by finitely many such neighborhoods Dri(pi), take r to be the minimum of such r′is and ε the

maximum of each associated εi.

Let ψ :M → R be a Hölder observable. We define densities kψn by

kψn (p)
def.
= exp

(
n−1∑
l=0

ψ ◦ f−l(p)

)

Thoose satisfies the following cocycle relation: ∀n1, n2 ∈ N and p ∈M

kψn1+n2
(p) = kψn2

(p)kψn1
(f−n2(p)) (5.1)

We will be interested in the action on Cc(W u) of the functionals

Lψn(φ)
def.
=

∫
kψnφ ◦ f−ndLebu (5.2)

As we explore it, we will see that they behave very well as the time n advances. In fact, fixing one

observable, it is possible to compare all the others with its value. To achieve those comparisons we need

many more lemmas and some very numericals as the one below

Lemma 5.1.5. If n ∈ N and (al)
n
l=1, (bl)

n
l=1 ⊆ R are finite sequences with bl > 0 then
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n∑
l=1

al

n∑
l=1

bl

≤ max
1≤l≤n

(
al
bl

)

Proof. Let S =
∑n
l=1 al∑n
l=1 bl

and suppose the Lemma is false. Then, for all 0 ≤ l ≤ n we have

al
bl
< S =⇒ al < blS

Thus

S =

n∑
l=1

an

n∑
l=1

bn

<

n∑
l=1

blS

n∑
l=1

bl

= S

a contradiction.

Lemma 5.1.6. If M and N are manifolds endowed with the Lebesgue measure Leb, g : M → N is a

local diffeomorphism and φ1 :M → R, φ2 : N → R>0 are continuous and integrable, we have

∫
M
φ1dLeb∫

g(M)
φ2dLeb

≤ sup
p∈M

(
φ1(p)

φ2 ◦ g(p) Jac g(p)

)

Proof. By the Change of Variables Theorem

∫
g(M)

φ2dLeb =

∫
M
φ2 ◦ g Jac g dLeb

Since φ1 and φ2 are continuous and integrable, their Lebesgue integral can be taken as a limit of

Riemann sums. In particular, if we take a partition Pn = {X1,n, . . . , Xn,n} such that Leb(Xi,n) =

Leb(M)/n and xi,n ∈ Xi,n then using lemma 5.1.5
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∫
M
φ1dLeb∫

g(M)
φ2dLeb

= lim
n→+∞

n∑
l=1

φ1(xl,n) Leb(Xl,n)

n∑
l=1

φ2(g(xl,n)) Jac g(xl,n) Leb(Xl,n)

= lim
n→+∞

n∑
l=1

φ1(xl,n)

n∑
l=1

φ2(g(xl,n)) Jac g(xl,n)

≤ lim
n→+∞

max
1≤l≤n

φ1(xl,n)

φ2(g(xl,n)) Jac g(xl,n)

≤ sup
p∈M

(
φ1(p)

φ2(g(p)) Jac g(p)

)
.

Lemma 5.1.7. If A ⊆W u is open with compact closure. Then, ∃C = C(A) > 0 such that ∀p ∈M and

n ∈ N: ∫
fn(Bu

r(A)
(p))

kψndLeb
u ≤ C

∫
fn(A)

kψndLeb
u

Proof. Let p ∈ M and B = Hp→A(B
u
r (p)) be the subset of A ε-equivalent to Bu

r (p) given by the

Proposition 5.1.4 .By lemma 5.1.6 we have

∫
fn(Bu

r(A)
(p))

kψndLeb
u

∫
fn(B)

kψndLeb
u

≤ sup
q∈Bur (p)

(
kψn (fn(q))

kψn (fn ◦ Hp→A(q))

)
sup

q∈Bur (p)

(
1

JacHfn(p)→fn(B)(q)

)

Denote q̂ def.
= Hp→A(q) and notice that

log
(
kψn (f

n(q))

kψn (fn(q̂))

)
=

n−1∑
l=0

ψ(fn−l(q))− ψ(fn−l(q̂)) ≤
n∑
l=1

Höl(ψ)d(f l(q), f l(q̂))α

≤ Höl(ψ)εα
n∑
l=1

(λs)αl

≤ Höl(ψ)εα
+∞∑
l=1

(λs)αl

which is bounded independently of p.

Also, Proposition 4.2.7 gives us that JacHfn(p)→fn(B)(q) is uniformly close to 1, hence the second

term is also bounded. Finally, fn(B) ⊆ fn(A) and kψn is positive, so∫
fn(B)

kψndLeb
u ≤

∫
fn(A)

kψndLeb
u

Gathering all those estimates and applying to the first equation, finishes the demonstration.
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Lemma 5.1.8. Let φ0 ∈ Cc(W
u) be positive and non-null. Then, for all φ ∈ Cc(W

u) non-negative,

there exists a C = C(φ) > 0 such that ∀n ∈ N:

Lψn(φ) ≤ CLψn(φ0)

Proof. Let ε > 0 be small enough so that A def.
= {x ∈ M |φ0(x) > ε} is non-empty. In particular, A is

open with compact closure, so we can obtain a constant r(A) > 0 given by Proposition 2.2.4.

Let K ⊆W u be a compact such that supp(φ) ⊆ K and cover K by a finite number N of u-balls of

radius r(A). By lemma 5.1.7 we have:

∫
kψnφ ◦ f−ndLebu ≤ ∥φ∥∞

∫
fn(K)

kψndLeb
u ≤ ∥φ∥∞NC(A)

∫
fn(A)

kψndLeb
u

≤ ∥φ∥∞NC(A)
ε

∫
kψnφ0 ◦ f−ndLebu

= C(φ)Lψn(φ0) , C(φ)
def.
=

∥φ∥∞NC(A)
ε

Now, consider the set L of functions L on Cc(W u) that restrained to each unstable leaf is linear:

L def.
= {L : Cc(W

u) → R| ∀p ∈M , L|Cc(Wu(p)) is linear}

L is a vector space and can be endowed with the product topology via the identification:

L ∈ L 7→ (L(φ))φ∈Cc(Wu) ∈
∏

φ∈Cc(Wu)

Rφ (5.3)

The dynamics naturally acts in L by the action Fψ given by

Fψn L(φ)
def.
= L(kψnφ ◦ f−n)

We fix a φ0 ∈ Cc(W
u) positive with φ0 ≥ 1 for an open A ⊆W u and set a renormalized action F̂ψ

by

F̂ψn L
def.
=

Fψn L

Fψn L(φ0)

Lemma 5.1.9. The action of Fψn is continuous.

Proof. An open in the base of the product topology is given by taking a finite number of intervals

I1, . . . , IN and functions φ1, . . . , φN in Cc(W u) to obtain a set of the form:

U
def.
= {L ∈ L| L(φi) ∈ Ii i = 1, . . . , N}

The action simply gives
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(Fψn )
−1U = {L ∈ L| L(kψnφi ◦ f−n) ∈ Ii i = 1, . . . , N}

which is clearly open, since kψnφi ◦ f−n ∈ Cc(W
u).

The cocycle relations in (5.1) implies Fψ and F̂ψ satisfies the following properties

Fψn1
Fψn2

L(φ) = Fψn1
L(kψn2

φ ◦ f−n2) = L(kψn2+n1
φ ◦ f−(n2+n1)) = Fψn1+n2

L(φ)

F̂ψn1
F̂ψn2

L = F̂ψn1

Fψn2L

Fψn2L(φ0)
=
Fψn1

Fψn2L

Fψn2L(φ0)

Fψn1

Fψn2L(φ0)

Fψn2L(φ0)

=
Fψn1F

ψ
n2L

Fψn1F
ψ
n2L(φ0)

=
Fψn1+n2

L

Fψn1+n2
L(φ0)

= F̂ψn1+n2
L

and acting in the previously defined functionals (5.2) we have

Fψn1
Lψn2

(φ) = Lψn2
(kn1φ ◦ f−n1) =

∫
kψn1+n2

φ ◦ f−(n1+n2) = Lψn1+n2
(φ)

F̂ψn1

(
Lψn2

Lψn2(φ0)

)
=

Fψn1

(
Lψn2

Lψn2 (φ0)

)
Fψn1

(
Lψn2 (φ0)

Lψn2 (φ0)

) =
Fψn1L

ψ
n2

Fψn1L
ψ
n2(φ0)

=
Lψn1+n2

Lψn1+n2
(φ0)

The first two properties shows that Fψ and F̂ψ are in fact actions. And, the last property means

that F̂ψ preservers the space of functionals of the form Lψn
Lψn (φ0)

. We denote the closure of all the convex

combinations of thoose functionals by X0:

X0
def.
= convhull

({
Lψn

Lψn(φ0)
|n ≥ 0

})

Lemma 5.1.10. All L ∈ X0 are positive, i.e. if φ ∈ Cc(W
u) and φ ≥ 0 then L(φ) ≥ 0

Proof. Clearly each Lψn is positive and this property is maintained by either convex combinations and

limits.

Lemma 5.1.11. X0 is compact

Proof. Suppose φ ∈ Cc(W
u) is non-negative. Then by lemma 5.1.8 ∃C(φ) > 0 such that Lψn

Lψn (φ0)
≤

C(φ) ∀n ∈ N. This estimate is kept by convex combinations and limts, thus, it holds for every L ∈ X0.

Also, by taking positive and negative parts and by linearity, if φ ∈ Cc(W
u) is arbitrary, the same holds.

I.e. ∃C = C(φ) > 0 such that ∀L ∈ X0.

−C(φ) ≤ L(φ) ≤ C(φ)

By the identification 5.3, it means that X0 is contained in
∏
φ∈Cc(Wu)[−C(φ), C(φ)], which by

Tychonoff’s Theorem is compact. Since X0 is closed, it means that X0 is compact.
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For N ∈ N we can define the subset of X0 given by

XN
def.
= convhull

({
Lψn

Lψn(φ0)
|n ≥ N

})
and their intersection

X∞
def.
=
⋂
N≥0

XN

which by Lemma 5.1.11, being the intersection of decreasing compact sets, is non-empty.

Lemma 5.1.12. ∃m ∈ X∞ such that F̂ψnm = m ∀n ∈ N.

Proof. As we saw, F̂ψn is continuous and F̂ψn XN ⊆ XN . Thus, F̂ψn X∞ ⊆ X∞. Also, X∞ is compact

and convex. Thus, by Tychonoff’s fixed point theorem, ∃m ∈ X∞ such that F̂ψ1 m = m. Since F̂ψ is an

action, m is fixed for all n ∈ N.

5.2 Estimates on the fixed point

This fixed point satisfies some very special properties. To see it, given p ∈ M , for q ∈ W s(p) and

r ∈W u(p) define

ksψ(p, q)
def.
= exp

(
+∞∑
l=1

ψ ◦ f l(q)− ψ ◦ f l(p)

)

kuψ(p, r)
def.
= exp

(
+∞∑
l=1

ψ ◦ f−l(r)− ψ ◦ f−l(p)

)
Since ψ is Hölder and stable and unstable leaves are contracting for f and f−1 respectively; the sums

above converges. With that definition we have:

Lemma 5.2.1. If φ ∈ Cc(W
u), p ∈ supp(φ) and Hs

p→p′ : K → K ′ is a stable Holonomy between p and

p′ ∈W s(p) then

m(φ ◦ Hs
p′→p) = m(ksψ(·,Hs

p→p′(·))φ)

Proof. We’ll show that

mN

(
φ ◦ Hs

p′→p

ksψ(Hs
p′→p(·), ·)

)
−mN (φ)

N→+∞−→ 0

independently of mN ∈ X∞. This shows that

m∞

(
φ ◦ Hs

p′→p

ksψ(Hs
p′→p(·), ·)

)
= m∞(φ)

for any m∞ ∈ X∞. So, using the linearity of m∞ and arbitrariness of K ⊆ supp(φ), it concludes

the Lemma.
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Let N ≥ 0 and define

ϕ
def.
=

φ ◦ Hs
p′→p

ksψ(Hs
p′→p(·), ·)

Changing variables we have

Lψn(ϕ) =

∫
fN (K′)

kψN (q
′)φ ◦ Hs

p′→p(f
−n(q))

ksψ(Hs
p′→p(f

−N (q′), f−N (q′))
d Lebu(q′)

=

∫
fN (K)

kψN (Hs
fN (p)→fN (p′)

(q))

ksψ(f
−N (q),Hs

p→p′(f
−N (q))

φ ◦ f−N (q)JacHs
fN (p)→fN (p′)(q)d Leb

u(q)

For q ∈ fN (K) write q′ = Hs
fN (p)→fN (p′)

(q) and define

RN (q)
def.
=

kψN (q
′)

kψN (q)k
s
ψ(f

−N (q), f−N (q′))
JacHs

fN (p)→fN (p′)(q)

With this we see that

Lψn(ϕ) =

∫
fN (K)

RN (q)k
ψ
N (q)φ ◦ f−n(q)d Lebu(q)

Thus

LψN (ϕ)− LψN (φ) =

∫
fN (K)

(RN (q)− 1)kψN (q)φ ◦ f−N (q)d Lebu(q)

And ∣∣∣∣∣ LψN (ϕ)LψN (φ0)
−

LψN (φ)

LψN (φ0)

∣∣∣∣∣ ≤ sup
q∈fN (K)

|RN (q)− 1|
LψN (φ)

LψN (φ0)
(i)

By Lemma 5.1.8, LψN (φ)

LψN (φ0)
is bounded independently of N ≥ 0. Also, by Proposition 4.2.7 and the fact

that p′ ∈W s(p) we have JacHs
fN (p)→fN (p′)

→ 1. Finally

kψN (q
′)

kψN (q)k
s
ψ(f

−N (q), f−N (q′))
= exp

(
+∞∑
l=N

ψ ◦ f l(f−N (q))− ψ ◦ f l(f−N (q′))

)

which goes to zero since ψ is Hölder, d(f−N (q), f−N (q′)) ≤ d(K,K ′) is bounded and q′ ∈W s(q).

Thus RN (q) goes to 1 and so (i) goes to 0.

As any mN ∈ XN can be written as the limit of convex combinations of LψN
LψN (φ0)

, all the above

estimates holds for mN . I.e. |mN (ϕ)−mN (φ)| → 0. Thus m∞(ϕ) = m∞(φ) as we wanted.

Proposition 5.2.2. There exists Pψ ∈ R such that ∀φ ∈ Cc(W
u) and ∀n ∈ N:

m(φ ◦ fn) = e−NPψm(kψnφ)
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Proof. Let n ∈ N and write an = m(kψnφ0 ◦ f−n). Then, by 5.1 and the fact that m is a fixed point, we

have for m,n ∈ N

am+n = m(kψmk
ψ
n ◦ f−mφ0 ◦ f−n ◦ f−m) = m(kψmφ0 ◦ f−m)F̂ψmm(kψnφ0 ◦ f−n)

= m(kψmφ0 ◦ f−m)m(kψnφ0 ◦ f−n)

= aman

thus ∃Pψ ∈ R such that an = a0e
nPψ . Since a0 = m(φ0) = 1, we have an = enPψ .

Again, with more computations we get

m(φ ◦ fn) = F̂ψnm(φ ◦ fn) = m(kψnφ)

m(kψnφ0 ◦ f−n)
= e−nPψm(kψnφ)

Now, each leaf in W u is a locally compact Hausdorff space and in restriction to it, m is a positive

linear functional. Thus, by the Riez Representation Theorem, we obtain a measure νuψ,p in each leaf. In

fact, by re-constructing everything above for f−1, we also obtain a family of measures νsψ,p in the stable

leaves. Precisely:

Theorem 5.2.3. There exists two family of measures (νuψ,p)p∈M and (νsψ,p)p∈M in the unstables and stable

leaves respectively, such that

a) (Leafwise) If q ∈W u(p) then νuψ,q = νuψ,p. And if r ∈W s(p) then νsψ,r = νsψ,p.

b) (Holonomy deformation) For p′ ∈W s(p) and q in the domain of a stable Holonomy Hs
p→p′:

dHs
p′→p ∗ νuψ,p′
dνuψ,p

(q) = ksψ(q,Hs
p→p′(q))

For p′′ ∈W u(p) and r in the domain of an unstable Holonomy Hu
p→p′′:

dHu
p′′→p ∗ νsψ,p′′
dνsψ,p

(r) = kuψ(r,Hu
p→p′′(r))

c) (Dynamical deformation) There exists real numbers Pψ, P ′
ψ such that ∀p ∈M and n ∈ N we have:

dfn ∗ νuψ,f−n(p)
dνuψ,p

(p) = exp

(
n−1∑
l=0

(ψ ◦ f−n(p)− Pψ)

)

and
dfn ∗ νsψ,f−n(p)

dνsψ,p
(p) = exp

(
−
n−1∑
l=0

(ψ ◦ f−n(p)− P ′
ψ)

)

Proof. As said, the existence is just a consequence of the Riez representation Theorem. And to obtain

properties (b) and (c), apply Lemma 5.2.1 and Proposition 5.2.2.
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Property (b) shows that both measures varies continuously along the domain of the other. Thus we

can integrate one with respect to the other to obtain a measure in M .

Lemma 5.2.4. There exists a probability measure νψ in M that is locally given by the integration of

ρuψ,pν
u
ψ,p by νsψ,p0 . Where ρuψ,p(q)

def.
= kuψ(p, q).

Proof. The local existence of this measure is given by the continuity with respect to the holonomies as

discoursed in the remark above. The measure is finite because νuψ,p and νsψ,p0 are locally finite and T2 is

compact. Thus, up to a constant multiplication, we can say it is a probability.

What remains to prove is that these local expressions are coherent. I.e. the value measured does not

depend in which stable leaves you choose to integrate ρuψ,pν
u
ψ,p. But it is no problem, since the Holonomy

deforms νsψ,p0 as

ρuψ,p0
ρu
ψ,p′′0

= kuψ(p0, p
′′
0) =

dHu
p′′0→p0

∗ νsψ,p′′0
dνsψ,p0

(p0)

Thus the collage is well defined.

5.3 Passing to the measure

This measure νψ is an equilibrium state. To see it we need to pass these estimates on the fixed point to it.

Lets start by seeing that it is atleast invariant:

Lemma 5.3.1. We have Pψ = P ′
ψ, thus νψ is f -invariant.

Proof. By integrating A ⊆M and using how the dynamics deforms the measure (property (c)) we see

that νψ(fn(A)) = en(Pψ−P
′
ψ)νψ(A). Putting A =M we obtain Pψ = P ′

ψ. And thus, νψ is invariant.

To confirm that νψ is an equilibrium state is basically to show that Pψ is the pressure of f with respect

to ψ. For it we will need some computation. But before it, we need two more lemmas.

Lemma 5.3.2. There exists ε0 > 0 and C > 1 such that for all p ∈ T2 and ε < ε0

BC−1ε(p) ⊆ Dε(p) ⊆ BCε(p)

Proof. Since distances in leaves are surely atleast bigger that in the entire manifold, i.e. d(p, q) ≤ d+(p, q)

(when defined). We have

Dε(p) ⊆ B2ε(p)

Thus it remais to show that ∃C > 2 such that d+(p, q) ≤ Cd(p, q).

Let p ∈ T2 and ε0 > 0 be so that D3ε0(p) is well defined. Put U = Dε0(p), and notice that ∀q ∈ U

we have a well defined disk Dε0(q) ⊆ K
def.
= D2ε0(p). Consider a foliated chart

Φ : D3ε0(p) → (−1, 1)2 ⊆ R2
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and set M def.
= supx∈K{JacΦ(x), JacΦ−1(x)}. If p, q ∈ U and r = (p, q) we have

d+(p, q) =

∫
p→r

dls +

∫
r→q

dlu =

∫ Φ(r)

Φ(p)
JacΦdl +

∫ Φ(q)

Φ(r)
JacΦdl

≤M [d(Φ(p),Φ(r)) + d(Φ(r),Φ(q))]

=Md+R2(Φ(p),Φ(q))

But, in R2, the metrics dR2 and d+R2 are strongly equivalent, thus ∃C0 > 0 such that d+R2 ≤ C0dR2

and we obtain

d+(p, q) ≤Md+R2(Φ(p),Φ(q)) ≤MCdR2(Φ(p),Φ(q)) ≤M2C0d(p, q)

Setting C = max{2,MC0} concludes the lemma for q ∈ U . To extend it to the entire torus, cover

T2 by finite such U ’s, take the minimum of all ε0’s and the maximum of all C’s.

Lemma 5.3.3. ∀ε > 0, ∃Cε > 1 such that ∀p ∈ T2, C−1
ε < νψ(Bε(p)) < Cε.

Proof. Since νψ is a probability, the upper bound is given by Cε > 1. Also, we may just show the

lemma for sufficiently small ε. Let ε0 and C be the constants given by lemma 5.3.2. For 0 < ε < ε0,

let 0 < δ < C−1ε/2 be small enough so that Dδ(p) is well defined for all p ∈ T2. By compacity, cover

T2 by finite many disks Dδ(pi), i = 1, . . . , k. Notice that, with those choices, for every p ∈ T2, there is

an i ∈ {1, . . . , l} such that Dδ(pi) ⊆ Bε(p). Hence, it suffices to see that νψ(Dδ(pi)) > C−1
ε for some

Cε > 1. For it, let χi, i = 1, . . . , k be continuous bump functions satisfying

χi|Dδ/2(pi) ≡ 1 and χi|Dcδ(pi) ≡ 0

For every q ∈W s
δ/2(pi), χ

q
i

def.
= χi|Wu(qi) ∈ Cc(W

u) is positive and non-null. Thus, we are under the

hypothesis of lemma 5.1.8 and there exists Cuq > 0 such that, for all n ∈ N,

Cuq ≤
Ln(χ

q
i )

Ln(φ0)

Since the measures λuq are the limits of convex combinations of such quotients, we must have

λq(χ
q
i ) > Cuq > 0. Similarly, λspi(χi|W s

δ/2
(pi)) > 0. Now, the measure νψ, in a product disc, is given by

the product measure of λu and λs, which we have just shown are strictly positive at the subsets Dδ/2(pi)

of Dδ(pi). Thus νψ(Dδ(pi)) > 0 for i = 1, . . . , k and taking C−1
ε as the minimum of those values, the

lemma is proven.

We recall that the time n metric by f is given by

dn(p, q) = max
0≤l≤n−1

d(f l(p), f l(q))

and denote by Bε,n(p) the time n ball of radius ε at p. Restricting this metric to paths contained in

leaves, we can similarly to def 5.1.3 define Dε,n(p) =
⋃
q∈W s

ε,n(p)
W u
ε,n(q) as the time n disk of radius ε

at p, where W σ
ε,n(p) is the ε neighborhood of p in its W σ leaf with respect to this metric.
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Lemma 5.3.4. There exist ε0 > 0 such that for 0 < ε < ε0, ∃Eε > 0 such that ∀p ∈ T2 and n ≥ 0 we

have

E−1
ε ≤

νψ(Bε,n(p))

exp

(
n∑
l=1

ψ ◦ f l(p)− Pψ

) ≤ Eε

Proof. By lemma 5.3.2, it suffices to prove the lemma by replacing Bε(p) with Dε(p). Using a metric

adapted to f as in Prop. 2.1.2, the instantaneous contraction of W s and dilatation of W u gives us

W s
ε,n(p) =W s

ε (p) and W u
ε,n(p) = f−n(W u

ε (f
n(p))). Also, for q ∈W u

ε (p) we have

∣∣∣∣∣log
(
exp

(∑n
l=1 ψ ◦ f l(q)

)
exp (

∑n
l=1 ψ ◦ f l(p))

)∣∣∣∣∣ ≤
n∑
l=1

|ψ(f l(q))− ψ(f l(p))| ≤ εαHöl(ψ)
+∞∑
l=1

λlα < C

Thus exp
(∑n

l=1 ψ ◦ f l(q)
)
≤ eC exp

(∑n
l=1 ψ ◦ f l(p)

)
. Swapping p and q we get

e−C exp

(
n∑
l=1

ψ ◦ f l(p)

)
≤ exp

(
n∑
l=1

ψ ◦ f l(q)

)
≤ eC exp

(
n∑
l=1

ψ ◦ f l(p)

)
Let Eε = Cεe

C , where Cε is the constant given by lemma 5.3.3. Property c) of Theorem 5.2.3 then

gives

E−1
ε exp

(
n∑
l=1

ψ ◦ f l(p)− Pψ

)
≤ νψ(Dε,n(p)) ≤ Eε exp

(
n∑
l=1

ψ ◦ f l(p)− Pψ

)
as desired.

We say that a set E is (n, ε)-separated if dn(p, q) ≥ ε for all p, q ∈ E. We remember that the pressure

of an observable ψ with respect to f is given by the beautiful expression below

P (ψ) = lim
ε→0

lim sup
n→+∞

1

n
sup

log

∑
p∈E

exp

(
n−1∑
l=0

ψ ◦ f l(p)

)∣∣ E is (n, ε) separated


Lemma 5.3.5. Pψ is the pressure P (ψ).

Proof. LetE be a maximal (n, ε)-separated set. In particular, being maximal implies T2 =
⋃
p∈E Bε,n(p),

thus by the precedent lemma

1 ≤
∑
p∈E

νψ(Bε,n(p)) ≤ Eε
∑
p∈E

exp

(
n∑
l=1

ψ ◦ f l(p)− Pψ

)
so that Pψ ≤ P (ψ ◦ f). Now, E being (n, ε)-separated implies that the time n balls Bε/2,n(p) are all

mutually disjoint. Thus lemma 5.3.4 gives

1 ≥
∑
p∈E

νψ(Bε/2,n(p)) ≥ E−1
ε/2

∑
p∈E

exp

(
n∑
l=1

ψ ◦ f l(p)− Pψ

)
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so that P (ψ ◦ f) ≤ Pψ, hence Pψ = P (ψ ◦ f). By a theorem of Walters (Teo. 9.7 (vii))[Wal00]

P (ψ ◦ f) = P (ψ). So Pψ = P (ψ).

Lemma 5.3.6. The measure νψ is a Gibbs state for ψ with respect to f .

Proof. Using Birkov’s Ergodic Theorem, lemma 5.3.4 readily gives

lim
ε→0

lim sup
n→∞

− log νψ(Bε,n(p))

n
≤ Pψ −

∫
ψdνψ ≤ lim

ε→0
lim inf
n→∞

− log νψ(Bε,n(p))

n

So the limits above exists and are equal. A theorem by Brin & Katok [BK83] states that this limit is

the topological entropy htop(f) of f . Thus νψ is a measure maximizing the Variational Principle and the

lemma is proven.
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CHAPTER 6

Lyapunov Exponents Rigidity

Now, we have everything ready to prove the Main Theorem and its corollary. We will start by proving

lemma 6.1.1 which, if you recall that we are assuming htop(f) = hµ(f), is Ledrappier-Young’s formula

in out context. Then, after some technical lemmas, we use it to prove lemma 6.1.5 and show that the

conjugacy is Lipschitz along the unstable foliation.

To pass from Lipschitz continuity to C1+α regularity will only require absolutely continuity from h.

In the second section, we will prove the conservative case (corollary 1.0.2) which, will be reduced to

an application of Journé’s lemma.

6.1 Proof of The Main Theorem

Let f ∈ Diff2
µ(T2), µ be the SRB measure for f and suppose that hµ(f) = htop(f). Since µ is both a SRB

and a measure of maximal entropy, we have two associated family of measures: The leaf-wise measures

{µp}p∈T2 and the Margulis family {νup }p∈T2 associated to the zero potential ψ = 0. Let ξ < W u be a

subordinated partition. By the superposition property (Cor. 4.3.9) their mutual normalization must agree,

i.e.
µp

µp(ξ(p))
=

νup
νup (ξ(p))

This leads to the following equality:

Lemma 6.1.1. λuf (µ) = htop(f)

Proof. By the Poincaré Recurrence Theorem, we can find p ∈ T2 recurrent. For each n ∈ N let

An
def.
= H−1

fn(p)([−1, 1]). By Lemma 4.3.17 and Theo. 5.2.3 item (c) we have

µp(f
−n(An)) = λufnp(−n)µfn(p)(An) = λufnp(−n)0.5LebR([−1, 1]) = λufnp(−n)

and

νup (f
−n(An)) = e−nhtop(f)νufn(p)(An)

Thus, by the remark above and a little rearrangement, we have

λufnp(−n) =
µp(ξ(p))

νup (ξ(p))
νufn(p)(An)e

−nhtop(f) (∗)

Since p is recurrent we can take a subsequence (fnk(p))k∈N of (fn(p))n∈N such that fnk(p) → p.

Thus, since An are of uniformly bounded length, all Ank lies on a compact set of T2. Hence, because
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the measures νup are locally finite and varies continuously (Theorem 5.2.3 item (b)), we conclude that

νfn(p)(An) is bounded. Applying the logarithm, dividing by nk and taking the limit in the expression

above we have

lim
k→+∞

1

nk
log λufnp(−nk) = −htop(f)

Using that λufnp(−nk) = (λup(nk))
−1 we obtain exactly what we wanted.

Remark 6.1.2. By our hypothesis, the above lemma can be written as λuf (µ) = hµ(f). This in turn, is

Ledrappier-Young’s Theorem, which is true in a much wider setting. Here, we recovered this result in a

particular case by exploring pure geometrical properties of the system.

Let fA and h : T2 → T2 be as in the Franks-Newhouse Theorem 2.3.3. We already have that h is

Hölder, and we want to promote it to C1 in the unstable direction. For it, we first will promote it to

Lipschitz. And for that, we will need to measure some sets:

Definition 6.1.3. For J ⊆W u(p) measurable, we denote by |J |p it’s length in normal forms at p and |J |
it’s length in W u. I.e. |J |p

def.
= LebR(Hp(J)) and |J | def.

= Lebu(J). Also, if q, r ∈W u(p) we write [q, r]

to denote the shortest interval in W u(p) connecting q and r.

In particular, for q, r ∈ W u(p), we have |[q, r]| = du(q, r). And since normal forms are C1 along

unstable leaves and their Jacobian is 1 at the base point (Prop. 4.2.1 item (ii)), they are locally Lipschitz.

This means that if ε > 0, there exists a C > 1 such that for any set J ⊆W u
ε (p) we have

1

C
|J | ≤ |J |p ≤ C|J |

This is interesting, for the dynamics is really well behaved under normal forms, in the sense that

|fn(J)|fn(p) = λup(n)|J |p. And fortunately, even though the equivalence between lengths is only local,

the following lemma says that, somehow, to promote a Hölder function to Lipschitz is a local matter.

Lemma 6.1.4. If for a p ∈ T2 there exists a δ0 > 0 and a C > 0 such that for any interval J ⊆W u(p)

such that |J | < δ0 we have

|h(J)| ≤ C|J |

Then h|Wu(p) is Lipschitz.

Proof. Suppose that the conclusion is false. Then there exists sequences (qn)n∈N, (rn)n∈N ⊆ W u(p)

such that

du(h(qn), h(rn)) ≥ ndu(qn, rn)

I claim that du(qn, rn) → 0 as n → +∞. In fact, since h is Hölder along unstable leaves, we have a

C0 > 0 and α ∈ (0, 1) such that

du(h(qn), h(rn)) ≤ C0(d
u(qn, rn))

α

But, if the claim was false, there would be a δ > 0 such that du(h(qn), h(rn)) ≥ δ. However, the function

t ∈ R>δ 7→ tα ∈ R>0 is C1 bounded. Thus ∃C1 > 0 such that

tα < C1t
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Hence,

du(h(qn), h(rn)) ≤ C0C1d
u(qn, rn)

This contradicts the definition of these sequences and cannot happen. The claim is proved. Now, let

Jn = [qn, rn]. We have |Jn| → 0 but

|h(Jn)| = |h(qn), h(rn)| = d(h(qn), h(rn)) ≥ ndu(qn, rn) = n|Jn|

Which is a contradiction to the hypothesis and the lemma is proven.

To obtain the hypothesis of the lemma above, recall that the topological entropy htop(fA) of the linear

model fA is simply given by the logarithm log(λu(A)) ofA greatest eigen value λu(A). Since topological

entropy is a conjugacy invariant, we have htop(fA) = htop(f) and in particular htop(f) = log(λu(A)).

Together with this, we use equation (∗) of Lemma 6.1.1 to prove the following

Lemma 6.1.5. There exists constants δ0 > 0 and a C > 0 such that for µ-a.e. p ∈ T2 for all J ⊆W u(p)

with |J | < δ0 we have

|h(J)| ≤ C|J |

Proof. Consider the intervals Jn(p)
def.
= f−n(J0(p)) where J0(p) = H−1

p ([−1, 1]). Since all J0’s are the

image of the same set [−1, 1] by H−1
p , their length is bounded by an uniform constant. Furthermore, since

the dynamics contracts unstable intervals in the past we have that |Jn(p)| → 0 uniformly on p.

In particular, since they are all mutually bounded, |Jn(p)| is proportional to |Jn(p)|x. Thus it suffices

to show the lemma for | · |p instead of | · |. In fact, all we need to show is that |h(Jn(p))|p/|Jn(p)|p is

bounded. For convenience, will drop the base point of Jn(p) for the rest of the proof.

Using how the dynamics acts linearly under normal forms we have

|Jn|p = |f−n(J0)|p = λufnp(−n)|J0|p = 2λufnp(−n)

and by the commutativity of h with the dynamics,

|h(Jn)| = |h ◦ f−n(Jn)| = |f−nA ◦ h(J0)| = (λu(A))−n|h(J0)|

Since h is Hölder and the J0’s are bounded, we have h(J0) ≤ 2C0 for some constant. Also, using the

remark above the lemma, (λu(A))−n = e−nhtop(f). Thus, the above equation becomes

|h(Jn)| ≤ 2C0e
−nhtop(f)

Dividing both terms we get
|h(Jn)|
|Jn|

≤ C0
e−nhtop(f)

λufnp(−n)

By the equation (∗) of Lemma 6.1.1, we have

|h(Jn)|
|Jn|

≤ C0

νup (ξ(p))

µp(ξ(x))
(νufn(p)(An))

−1

where An = J0(f
np). Similarly to what was done there, we may suppose p is recurrent. So, An lies in a

compact product neighborhood of p, and since the An’s are all uniformly bounded bellow and νup varies

continuously, νufn(p)(An) is also bounded below. So the above expression is bounded and the lemma is

proven.
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An immediate consequence of the two lemmas above is

Corollary 6.1.6. For every p ∈ T2, h|Wu(p) is Lipschitz.

Now that h is Lipschitz, we can finally show that it is C1 in the unstable direction and with that we

finish the proof of the Theorem:

Lemma 6.1.7. For every p ∈ T2, h|Wu(p) is C1.

Proof. Since h|Wu(p) is Lipschitz, it is absolutely continuous. Thus, the pushback f∗ Leb, is also absolute

continuous on unstable leaves. In particular, since h is a conjugation and Leb is fA invariant, h∗ Leb is f

invariant. Thus, h∗ Leb is the SRB measure for f . Hence, we have h∗ Leb = µ. Consider a subordinated

partition ξ < W u. For p ∈ T2 and q ∈W u(p) we have

Lebuh(p)([h(p), h(q)]) = h∗ Lebup([p, q]) = µξp([p, q]) =

∫
[p,q]

ρdLebu

If we take smooth arc-length parameterizations of W u(p) and W u(h(p)) identifying them with R we

have

h(q)− h(p) =

∫ q

p
ρdLebR

Thus, h|Wu(p) is the integral of a continuous function, hence is C1.

6.2 The Conservative Case

For the conservative case, the result above implies that the conjugation is in fact C1. To see it, let

f ∈ DiffLebT2
(T2) and suppose that htop(f) = hLebT2 (f).

The Lebesgue measure LebT2 is, of course, the SRB measure for f . Thus, by the main theorem

1.0.1, the conjugacy h : M → M between f and its linear counterpart fA is C1 along unstable leaves.

However, LebT2 is also invariant for f−1, so it is the SRB measure of f−1 as well. Since f is invertible,

we have htop(f) = htop(f
−1) and hLebT2 (f) = hLebT2 (f

−1), hence htop(f
−1) = hLebT2 (f

−1) and it

also satisfies the hypothesis of the main theorem. Thus, the conjugacy h between f−1 and its linear

counterpart f−1
A is C1 along unstable leaves of f−1.

The unstable leaves of f−1 are the stable leaves of f . Hence we have obtained that h is C1 when

restricted to either the unstable or stable manifold. Since these manifolds form two continuous transverse

foliations, any real function that is C1 along them will be C1 in the entire manifold:

Lemma 6.2.1. If an observable φ ∈ C0(M) is C1 when restricted to the leaves of two continuously

transverse foliations W u and W s, then φ is C1

Proof. Since differentiability is a local matter, we may take coordinates around a point and treat φ as a

function in C0(Rn). Similarly, we may suppose that W s and W u have a global product structure. Since

φ is C1 along W u, there is map Lu : Rn → L(Rn,R) that for every x ∈ Rn associates the unique

linear transformation Lux : TxW
u → R that satisfies φ(y) − φ(x) = Lux(y − x) + Ru(y − x), where

Ru(y − x)/|y − x| goes to 0 as y → x as long as y − x ∈ TxW
u. The same for Ls. These maps are

continuous along their respective foliations.
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Now, I will define L : Rn → L(Rn,R) as the map that associates for ever x ∈ Rn the linear map

Lx = Lux ⊕ Lsx : TxW
u ⊕ TxW

s. I claim that this map L is continuous and is the derivative of φ at each

point. To prove it, take x, y ∈ Rn and let z be the unique element in W u(x) ∩W s(y). We have

φ(y)− φ(x) = φ(y)− φ(z) + φ(z)− φ(x)

= Lsz(y − z) +Rs(y − z) + Lux(z − x) +Ru(z − x)

As y → x, we have that z → x along a leaf of W s. Hence Lsz → Lsx, i.e. Lsz = Lsx + εz where the

operator norm of εz goes to 0 as z → x. Thus

φ(y)− φ(x) = Lsx(y − z) + Lux(z − x) +Rs(y − z) +Ru(z − x) + εz(y − z)

= Lx(y − x) +Rs(y − z) +Ru(z − x) + εz(y − z)

All terms other than Lx(y−x) above are of a higher order thanO(|y−x|), thus Lx is in fact the derivative

of φ at x. In particular, for z̃ ∈W u(y) ∩W s(x) we also have

φ(y)− φ(x) = Ly(y − x) +Rs(x− z̃) +Ru(z̃ − y) + εz̃(x− z̃)

so that Ly − Lx = R(y − x) where R(y − x) → 0 as y → 0, that is, L is continuous.

To use this lemma for h, we remember that a function h :M →M is C1 if and only if φ◦h :M → R
is C1 for every φ ∈ C1(M). Hence, since h being C1 restricted to stable and unstable leaves implies that

φ ◦ h also is, the lemma above gives that

Corollary 6.2.2. The conjugacy h is C1.

Which proves corollary 1.0.2 and concludes the text.
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APPENDIX A

Periodic Data Rigidity

Two systems f, g ∈ Diff(M) conjugated by a homeomorphism h : M → M are said to have the same

periodic data if for every point p ∈ Pern(f) you have

spec(dpf
n) = spec(dh(p)g

n)

In this appendix we prove the following

Theorem A.0.1. Let f, g : T2 → T2 be two Anosov diffeomorphisms of class C2 with the same periodic

data and let h : T2 → T2 be a conjugation between f and g. Then h is C1+α.

This theorem can be generalized for dimension 3. However its proof requires way more effort than for

the two dimensional case and it also requires more hyphothesis: you must either require f and g to be

C1 close to a linear automorphism or that one of them admits a partially hyperbolic invariant splitting

TT3 = Es ⊕ Ewu ⊕ Eu and the conjugacy h is homotopic to a linear automorphism (see [GG08]). In

fact, just like our main theorem, this is a low dimensional phenomena: there exists counterexamples for

dimension d ≥ 4.

To prove this theorem we will use the affine parameters 4.2.1, some properties of holonomies (as

lemma 4.2.6) and the density of the foliations (see theorem 2.3.5).

Proof of Theorem A.0.1

Lets first prove that h|Wu is Lipschitz.

Claim A.0.1.1. For all p ∈ T2, h|Wu(p) is Lipschitz.

Proof. Let p ∈ M and take an interval I ⊆ W u
f (p) in the unstable leaf of p. Write is image by h as

Î
def.
= h(I) and p̂ = f(p). Since h is a conjugacy between f and g we have Î ⊆W u

g (p̂).

In dimension 2, we know that the unstable leaves are one-dimensional. Thus, the length of an interval

is nothing more than the distance between its end points. With this observation, the task to show that

hWu(p) is Lipschitz becomes the task to bound the ratio |Î|/|I| from above. Also, since the normal forms

are an uniform family of diffeomorphisms, we can measure lengths under their linearized coordinates, i.e.

we only need to bound |Î|p/|I|p.
Also, since the conjugacy is Hölder, we may assume that |I|p < 1 (see lemma 6.1.4).

Let q ∈ Perk(f) be a periodic point for f . Since the stable leaves of f are dense (see Theorem 2.3.5),

we can find a stable holonomy map HI→J : I → J ⊆W u
f (q) where J def.

= HI→J(I). In particular, since
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holonomies commutes with the dynamics, it induces an Holonomy ĤÎ→Ĵ : Î → Ĵ ⊆ W u
g (q̂) where

Ĵ
def.
= ĤÎ→Ĵ(Î) and q̂ def.

= h(q).

Since the holonomies are uniformly C1, we can find a C > 1 such that

C|I|−1
p ≤ |J |q ≤ C|I|p and C|Î|−1

p̂ ≤ |Ĵ |q̂ ≤ C|Îp̂|

Thus
|Î|p̂
|I|p

≤ C2 |Ĵ |q̂
|J |q

Thus it suffices to bound |Ĵ |q̂/|J |q. For it, define Jnk ⊆W u
f (q) by Jnk

def.
= fnk(J) and let Ĵnk

def.
= h(Jnk).

Take n0 ∈ N big enough so that |Jn0k|q > 1. Since h is Hölder, this implies that |Ĵn0k|q̂/|Jn0k|q < C0

where C0 is the Hölder constant of h. However, by item (iv) of prop. 4.2.1, we have

|Jn0k|q = |dqfk|n0 |J |

Also, since h commutes with the dynamics, we have Ĵn0k = gn0k(Ĵ). Thus, using the same item

|Ĵn0k|q = |dq̂gk|n0 |Ĵ |

But, since they have the same periodic data, we have |dqfk|n0 = |dq̂gk|n0 , thus

|Ĵ |q
|J |q

=
|Ĵn0k|q̂
|Jn0k|q

< C0

which concludes the claim.

To pass from h|Wu Lipschitz to it being C1+α apply lemma 6.1.7. Also, since f and g have the

same periodic data, it follows that f−1 and g−1 also have the same periodic data. Thus, since h is also a

conjugacy between f−1 and g−1, all arguments above are symmetrical and can be used to prove that h|W s

is also C1. By lemma 6.2.1 (Journé’s lemma), it follows that h is C1+α and the theorem is proven.

88



Bibliography

[Alv+24] S. Alvarez et al. “Rigidity of U-Gibbs measures near conservative Anosov diffeomorphisms

on T3”. In: Journal of the European Mathematical Society (2024). DOI: https://doi.

org/10.4171/jems/1517. URL: https://ems.press/journals/jems/

articles/14298144.

[Alv13] S. Alvarez. “Mesures de Gibbs et mesures harmoniques pour les feuilletages aux feuilles

courbées négativement”. Theses. Université de Bourgogne, Dec. 2013. URL: https://

theses.hal.science/tel-00958080.

[BDV06] C. Bonatti, L. Díaz, and M. Viana. Dynamics Beyond Uniform Hyperbolicity: A Global

Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences. Springer

Berlin Heidelberg, 2006. ISBN: 9783540268444. URL: https://books.google.com.

na/books?id=FS57Tv3YHwYC.

[BK83] M. Brin and A. Katok. “On local entropy”. In: Geometric Dynamics. Ed. by J. Palis. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1983, pp. 30–38. ISBN: 978-3-540-40969-4.

[Bro+19] A. W. Brown et al. Entropy, Lyapunov exponents, and rigidity of group actions. 2019. arXiv:

1809.09192 [math.DS]. URL: https://arxiv.org/abs/1809.09192.

[CP24] J. Correa and H. de Paula. Flexibility of generalized entropy for wandering dynamics. 2024.

arXiv: 2303.14780 [math.DS]. URL: https://arxiv.org/abs/2303.14780.

[Fol99] G. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied Math-

ematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 1999. ISBN: 9780471317166.

URL: https://books.google.com.br/books?id=N8jVDwAAQBAJ.

[GG08] A. Gogolev and M. Guysinsky. C1-differentiable conjugacy of Anosov diffeomorphisms on

three dimensional torus. 2008. DOI: 10.3934/dcds.2008.22.183. URL: https:

//www.aimsciences.org/article/id/9ddf1e22- e38f- 4b67- 9315-

74903e250b3d.

[Gu23] R. Gu. “Smooth Stable Foliations of Anosov Diffeomorphisms”. In: arXiv preprint arXiv:2310.19088

(2023).

[KH95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.

Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.

89

https://doi.org/https://doi.org/10.4171/jems/1517
https://doi.org/https://doi.org/10.4171/jems/1517
https://ems.press/journals/jems/articles/14298144
https://ems.press/journals/jems/articles/14298144
https://theses.hal.science/tel-00958080
https://theses.hal.science/tel-00958080
https://books.google.com.na/books?id=FS57Tv3YHwYC
https://books.google.com.na/books?id=FS57Tv3YHwYC
https://arxiv.org/abs/1809.09192
https://arxiv.org/abs/1809.09192
https://arxiv.org/abs/2303.14780
https://arxiv.org/abs/2303.14780
https://books.google.com.br/books?id=N8jVDwAAQBAJ
https://doi.org/10.3934/dcds.2008.22.183
https://www.aimsciences.org/article/id/9ddf1e22-e38f-4b67-9315-74903e250b3d
https://www.aimsciences.org/article/id/9ddf1e22-e38f-4b67-9315-74903e250b3d
https://www.aimsciences.org/article/id/9ddf1e22-e38f-4b67-9315-74903e250b3d


[Khi57] A. I. Khinchin. Mathematical Foundations of Information Theory. New York, Dover Publica-

tions, 1957.

[KK06] B. Kalinin and A. Katok. “Measure rigidity beyond uniform hyperbolicity: invariant measures

for Cartan actions on tori”. In: arXiv preprint math/0602176 (2006).

[New70] S. E. Newhouse. “On Codimension One Anosov Diffeomorphisms”. In: American Journal of

Mathematics 92.3 (1970), pp. 761–770. ISSN: 00029327, 10806377. URL: http://www.

jstor.org/stable/2373372 (visited on 07/23/2025).

[Pot16] R. Potrie. Introduction to Non-Uniform and Partial Hyperbolicity. Publicaciones matemáticas

del Uruguay v. 16. Centro de Matemática de la Universidad de la República, 2016, pp. 127–

167. URL: https://pmu.uy/pmu16/pmu16-0127.pdf.

[PSW00] C. Pugh, M. Shub, and A. Wilkinson. “Holder foliations (vol 86, pg 517, 1997)”. In: Duke

Mathematical Journal 105 (Oct. 2000), pp. 105–106.

[SY19] R. Saghin and J. Yang. “Lyapunov exponents and rigidity of Anosov automorphisms and

skew products”. In: Advances in Mathematics 355 (2019), p. 106764. ISSN: 0001-8708. DOI:

https://doi.org/10.1016/j.aim.2019.106764. URL: https://www.

sciencedirect.com/science/article/pii/S0001870819303822.

[Wal00] P. Walters. An introduction to ergodic theory. Vol. 79. Springer Science & Business Media,

2000.

[Wen16] L. Wen. Differentiable Dynamical Systems. Graduate Studies in Mathematics. American

Mathematical Society, 2016. ISBN: 9781470427993. URL: https://books.google.

com.br/books?id=swG1DAAAQBAJ.

90

http://www.jstor.org/stable/2373372
http://www.jstor.org/stable/2373372
https://pmu.uy/pmu16/pmu16-0127.pdf
https://doi.org/https://doi.org/10.1016/j.aim.2019.106764
https://www.sciencedirect.com/science/article/pii/S0001870819303822
https://www.sciencedirect.com/science/article/pii/S0001870819303822
https://books.google.com.br/books?id=swG1DAAAQBAJ
https://books.google.com.br/books?id=swG1DAAAQBAJ

	Introduction
	Anosov Diffeomorphisms
	Invariant Manifolds
	Local Product Structure
	Topological Classification on Dimension Two

	The Ergodic Theory of Anosov Diffeomorphisms
	The Ergodic Theorem
	Entropy and Pressure
	Smooth Ergodic Theory

	Leafwise Measures
	Subordinated Partitions
	Affine Structures
	Leafwise Measures

	The Margulis Family
	A fixed point for an action
	Estimates on the fixed point
	Passing to the measure

	Lyapunov Exponents Rigidity
	Proof of The Main Theorem
	The Conservative Case

	Periodic Data Rigidity
	Bibliography

		2025-09-30T13:40:57-0300




