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Abstract. In this paper we study the dynamics and topology of the isoperiodic foliation
defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves.

1. Introduction

Let ΩMg be the moduli space of abelian differentials on compact genus g ≥ 2 smooth
curves. The period of an element (C, ω) ∈ ΩMg is the element ofH1(C,C) ≃ Hom(H1(C,Z),C)
that is defined by

(1) Per(C, ω) : γ ∈ H1(C,Z) 7→
∫

γ

ω ∈ C.

The periods of an abelian differential do not allow to recover the abelian differential itself,
even infinitesimally. Actually, it is always possible to find non trivial isoperiodic deforma-
tions of a given abelian differential, namely an immersed complex submanifold L ⊂ ΩMg

such that the period of a form (C, ω) ∈ L is a locally constant function, when we use the
local identifications of the H∗(C,C)’s given by the Gauss-Manin connection.

The case g = 2 is instructive: every genus two curve is a double cover of P1 ramified
over six distinct points, say 0, 1,∞, x1, x2, x3. An abelian differential on such a curve can
be written as the hyperelliptic integrand

(ax+ b)dx√
x(x− 1)(x− x1)(x− x2)(x− x3)

.

Picard-Fuchs theory tells us that isoperiodic deformations on ΩM2 are integral curves of
the following vector field

(2)
∑

j

xj(1− xj)

axj + b

∂

∂xj
− 1

2

∂

∂a
− 1

2

(
1 +

∑

j

b(xj − 1)

axj + b

) ∂

∂b
.

Apart from the invariant closed subsets characterized by topological properties of the image
of the periods, there is an interesting family {ΩED : D ∈ N∗,

√
D /∈ N, D ≡ 0, 1 mod 4} of

proper closed real analytic invariant submanifolds of the set of abelian differentials of fixed
positive volume in ΩM2. They were introduced by Calta in [3] and McMullen in [16, 17].

2010 Mathematics Subject Classification. 57M50, 30F30, 53A30, 14H15, 32G13.
Key words and phrases. Isoperiodic foliation, Hodge bundle, isoperiodic abelian differentials.

1



2 GABRIEL CALSAMIGLIA, BERTRAND DEROIN, AND STEFANO FRANCAVIGLIA

The image of each ΩED under the Torelli map corresponds to the set of principally polarized
abelian surfaces with real multiplication by the real quadratic order oD of discriminant
D; the abelian differential is an eigenform for the action of the order. Such a set is
diffeomorphic to a circle bundle over the Hilbert modular surface H×H/SL2(oD); we will
call them Hilbert modular invariant submanifolds.

In any genus, the collection of all maximal isoperiodic deformations defines a holomorphic
foliation Fg of ΩMg, called the isoperiodic foliation1 (see [19] for further examples). It has
dimension 2g − 3, and it is also algebraic: its leaves are solutions of a system of algebraic
equations analogous to (2) with respect to the Deligne-Mumford algebraic structure on
moduli space. Our main result is the following

Theorem 1.1 (Dynamics of isoperiodic foliations). Let g > 2 and (C, ω) ∈ ΩMg, V =
i
2

∫
ω ∧ω its volume, and Λ the closure of the image of its periods. Then the closure of the

leaf L(C, ω) passing through (C, ω) is, up to the action of GL(2,R)

• (Λ is discrete) a connected component of the Hurwitz space of ramified coverings of
the elliptic differential (C/Λ, dz) of volume V ,

• (Λ is R + iZ) the set of abelian differentials with periods contained in Λ, with
primitive imaginary part, and with volume V ,

• (Λ = C) the subset of ΩMg consisting of abelian differentials of volume V ,

If g = 2 the same statement holds, with an extra possibility occurring when ω is an eigen-
form for real multiplication by a real quadratic order oD of discriminant D > 0. In this
case the closure is the Hilbert modular invariant submanifold ΩED.

Moreover, the restriction of Fg to any of these analytic subsets of ΩMg is ergodic with
respect to the Lebesgue class.

The ergodicity part of this result was obtained independently by Hamenstädt in [7]. An
example of application of Theorem 1.1 is the existence of an infinite number of abelian
differentials with fixed non-discrete periods and only one zero. In the case of the periods
of a form associated to a regular polygon these are called fake polygons (see [17]). This
statement was our original motivation. We thank P. Hubert and E. Lanneau for having
discussed this problem with us.

Theorem 1.1 is proven by applying Ratner’s theory (resp. Moore ergodicity theorem) to
the linear action of the integer symplectic group Sp(2g,Z) on the subset of C2g correspond-
ing to periods of abelian differentials. This latter set has been characterized by Haupt [8].
It consists of periods p ∈ C2g such that ℜp · ℑp > 0 with respect to the usual symplectic
product on R2g, that do not correspond to a collapse of g − 1 handles (see Section 2 for
more details). We denote it by Hg. To apply these results in our setting, one needs to
study topological properties of the period map

(3) Per : ΩSg → Hg ⊂ C2g,

defined at the level of the Torelli covering ΩSg
π→ ΩMg. We prove

1In the literature, this foliation is also called the kernel foliation, or the absolute period foliation.
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Theorem 1.2 (Transfer principle). The fibers of the period map (3) are connected.

This statement allows to transfer dynamical properties of the action of Sp(2g,Z) on Hg

to properties satisfied by the isoperiodic foliation on moduli space. Indeed, Theorem 1.2 is
equivalent to the fact that Sp(2g,Z)-invariant subsets ofHg are in bijective correspondance
with Fg-saturated subsets of ΩMg under the map

(4) A ⊂ Hg ↔ B = π(Per−1(A)) ⊂ ΩMg.

As a consequence of Theorem 1.2, we deduce Theorem 1.1 by applying Ratner’s theory
to the action of Sp(2g,Z) on Hg. The analysis of Ratner’s results in this particular case
was carried by M. Kapovich (see [9]) who had the original idea of using Ratner’s theory
in this setting. After classifying the closed Sp(2g,Z)-invariant subsets of Hg he gave an
alternative proof of Haupt’s theorem for genus g ≥ 3. We review Kapovich’s argument
in the Appendix 8, and in particular prove Theorem 1.1 assuming the transfer principle
following Theorem 1.2.

Theorem 1.2 answers a problem posed by McMullen in [14, p. 2282] for genus g ≥ 4.
For genus g = 2, 3, he gave a proof by showing that a fiber of the period map on ΩSg

is a slice of the Schottky locus in the Siegel space hg of symmetric g × g matrices with
positive definite imaginary part, by a linear copy of the Siegel space hg−1 inside hg (modulo
partially compactifying the fibers by adding nodal abelian differentials of compact type).
In genus g = 2, 3 the Schottky locus is the whole of Siegel space and for higher genera it
is a proper analytic set. Since the slice is not contained in the divisors corresponding to
curves with nodes, this proves Theorem 1.2 for genus g = 2 or 3. However, Schottky’s
problem - the description of the Schottky locus- is still open for g > 5 and the argument
seems difficult to generalize for higher genera. Even if we knew the solution of the Schottky
problem, determining the components of the intersection with the linear slices does not
seem an easy task.

Our road to Theorem 1.2 is different. It is based on an induction argument on the genus
(assuming the genus two and three cases) involving degeneration of abelian differentials, i.e.
the boundary of ΩMg in its Deligne-Mumford compactification. We partially compactify
Per−1(p) by adding marked stable forms with a simple node and periods p. The added
forms can be constructed by using stable forms of lower genus. The inductive hypothesis
allows to show that the partial compactification is connected. On the other hand we will
prove that the added boundary points do not disconnect the partial compactification. This
follows mainly from the fact that at each added point in the boundary of ΩMg there is a
unique irreducible separatrix of the isoperiodic foliation, that is, a germ of analytic invariant
set containing only points of the boundary and points of one leaf. A more detailed account
of the difficulties and results used along the proof can be found in subsection 2.10. The
full proof takes up most of sections 3 to 7.

Theorem 1.2 is also valid for the restriction of Per to the generic stratum. A question
that arises naturally is the description of the connected components of the intersection
of the fibers of Per with the other strata. Kontsevich and Zorich gave a description of
the connected components of strata of abelian differentials without any condition on the
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periods in [10]. They found cases with up to three components, so it is plausible too
that, when we impose further conditions on the abelian differentials, there are also several
components. An example is given in genus g = 2: the intersection of the non-generic
stratum of ΩM2 with a leaf of the isoperiodic foliation that does not correspond to discrete
periods forms an infinite discrete set (see [14]). A first problem that arises is determining
the image of the period map on each such component. Already in the minimal strata there
are further restrictions on the periods: if they are discrete, the degree of the associated
covering is at least 2g − 1 where g is the genus of the underlying curve. Therefore the
periods associated to a collapse of any number of handles onto a connected sum of two
copies of an elliptic curve do not occur as periods of such an abelian differential. We shall
not pursue this subject further here.

The connectedness of the fibers of the lift of Per to the universal cover of ΩMg fails
in general, so the transfer principle does not work at that level. For example, in genus
g = 3 there are fibers of Per that do not cross the boundary components formed by curves
of compact type (see example 5.12). Such a fiber is biholomorphic to a Siegel space,
which is simply connected. Thus at the level of the fundamental groups the inclusion
Per−1(p) → ΩMg is trivial. Therefore there are infinitely many components of the lift
of this fiber to the universal cover of ΩMg. In fact in genus g = 2, Mess showed in [18]
that a set of free generators for π1(M2) can be constructed with the use of the Torelli
map: in Siegel space h2 they appear as loops around the components of divisors formed
by curves of compact type with nodes. We will see that for every p ∈ Hg we can find an
infinite number of such components that are not crossed by the image of the natural map
Per−1(p) → hg. For g = 2 this allows to prove that at the level of the fundamental group
the map is not surjective. We thus deduce that there are several connected components in
the lift of Per−1(p) to the universal cover of ΩMg. We expect the same to be true for all
genera g ≥ 3.

Another application of Theorem 1.2 is a correspondence between certain classes of integer
valued periods and certain classes of representations of fundamental groups of punctured
torus to the group of permutations Sd of d letters. This correspondence comes from the
analysis of the transfer principle at the level of the closed leaves of the isoperiodic foliation.
Namely, the Hurwitz spaces, i.e. moduli spaces of holomorphic coverings of degree d over
an elliptic curve ramifying over 2g − 2 points counted with multiplicity. We do not know
whether this correspondence is already known, but it gives an alternative point of view on
the irreducible components of Hurwitz spaces.

Theorem 1.3. For any integers g ≥ 2 and d ≥ 2, there is a bijective correspondence
between, on one side, the sets of integer periods α+iβ ∈ Z2g+iZ2g such that α·β = d modulo
precomposition by Sp(2g,Z) and, on the other side, the set of representations ρ : π → Sd of a
2g−2-punctured torus group π sending peripherals to transpositions, modulo precomposition
by the braid group of the torus on 2g − 2 braids, and post-conjugation by Sd.

The paper is organized as follows: in Section 2 we introduce the partial compactification
and give the outline the proof of Theorem 1.2. The complete proof takes up Sections 3
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to 7; in the Appendix 8 we review Kapovich’s results on the dynamical properties of the
integer symplectic group on the set of Haupt periods.

We thank U. Hamenstädt, P. Hubert, M. Kapovich, E. Lanneau, F. Loray, M. Möller,
G. Mondello, H. Movasati and A. Wright for useful conversations. This paper was partially
supported by the France-Brazil agreement in Mathematics. G. Calsamiglia was partially
supported by Faperj/CNPq/CAPES and B. Deroin by ANR project LAMBDA ANR-13-
BS01-0002. It was mainly developed at Universidade Federal Fluminense, DMA/ENS/Paris
and Dipartimento di Matematica at Università de Bologna, to whom we thank the nice
working conditions provided.

2. Marked stable forms of genus g and their periods

2.1. Stable curves and forms.

Definition 2.1. A connected complex curve C is said to be stable if its singularities are
nodes, and the closure Ci of each component of C∗ := C \Sing(C) is a smooth curve whose
group of automorphisms that fix the punctures is finite. The normalization of C is the
smooth curve Ĉ = ⊔Ci. A stable curve C is said of compact type if every node separates
C in two components. Otherwise C is said to be of non-compact type.

Definition 2.2. Let C be a stable nodal curve. A stable one-form on C is a holomorphic
1-form on C∗ that has at worst simple poles at the nodes and satisfies that the sums of the
residues of the branches meeting at each node is zero. Ω(C) denotes the space of stable
forms on C. A stable one form will be sometimes referred to as an abelian differential.

If C has genus g then the dimension of Ω(C) is g. By the residue theorem if C is of
compact type, then all residues of all branches at the nodes have to be zero, and thus the
forms have no residues at the nodes.

Of course a stable form is holomorphic and closed outside the nodes and can thus be
integrated along paths in C∗. For closed paths the value of the integral does only depend
on the homology class in H1(C

∗,Z) and it is called the period of the class. If the residues
at nodes are all zero, we can also integrate along paths passing through the nodes, and the
integral along a closed path depends only on its class in H1(C,Z).

We are interested in isoperiodic sets of stable forms, that is, sets for which the set of
periods around closed curves do not vary, and that coincide with the periods of some
abelian differential on a smooth curve. Since for the latter C∗ = C, it is natural to restrict
ourselves to the space of stable forms without residues at the nodes. Thus, the restriction
of such a form to any component of the normalization is also an abelian differential. If
none of the restrictions is the zero form, we say that the abelian differential has no zero
components.

By Riemann-Roch’s theorem applied to each component Ci of the normalization of C
we have that for an abelian differential ω ∈ Ω(C) with no zero components the degree of
its associated divisor (ω) is

∑
2gi − 2 where gi is the genus of Ci. In particular, if the

restriction of ω to a connected component has no zeroes the component is an elliptic curve.
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Remark that if the points of Ci where the components are glued coincide with zeroes of
the restrictions, then the original form ω has all its zeroes ”in the nodes”.

Definition 2.3. The order of a stable form (C, ω) at a node q is defined to be

ordq(ω) = 2 + ordq(ω1) + ordq(ω2)

where ωi denotes the restriction of ω to a branch of C through q. We always have ordq(ω) ≥
0. A node q ∈ C is simple for ω if ordq(ω) = 2.

Note that the order of the node cannot be 1. With this definition, given a stable form
ω ∈ Ω(C) of genus g without zero components we have

deg(ω) =
∑

q∈C

ordq(ω) = 2g − 2

2.2. Flat singular metric associated to a stable form. A stable form (C, ω) induces
a flat metric ω ⊗ ω on C \ {q ∈ C : ordq(ω) > 0}. At a zero of ω that is not a node of
C, the metric has a a singularity of angle 2π(ordq(ω) + 1). We will sometimes call such a
singularity a saddle, because of the structure of the geodesics of a given direction at the
point. At a simple node the metric extends regularly to each branch of the node and a
small neighbourhood of the node is isometric to two flat discs identified at a point.

The volume of a stable form ω ∈ Ω(C) is defined as the volume of this singular metric

vol(ω) =
i

2

∫

C

ω ∧ ω.

In particular, 0 ≤ vol(ω) ≤ ∞ and it is finite if and only if all the residues of ω at the
nodes of C are zero.

2.3. Marked stable forms. In order to compare periods of abelian differentials of the
same genus but not necessarily defined on the same curve, we use a model to compare them,
so denote by Σg a fixed model of a topological closed oriented surface of genus g. The inter-
section of two elements a, b ∈ H1(Σg,Z) is denoted by a · b and the associated intersection
form defines an integral unimodular symplectic structure on H1(Σg) := H1(Σg,Z).

Definition 2.4. A marking of a genus g ≥ 1 nodal curve C (maybe with empty set
of nodes) is a surjective map m : H1(Σg) → H1(C) induced by the isotopy class of a
pinching map Σg → C that pinches a simple closed curve of Σg for each node and is a
homeomorphism on the complement.

If a node is separating the class of the associated simple closed curve in H1(Σg) is zero.
Otherwise it is necessarily a primitive element.

Each separating node in a marked nodal curve (C,m) of genus g induces, via m, a
splitting of H1(Σg) into an orthogonal direct sum of two proper submodules

H1(Σg) = V ⊕ V ⊥
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satisfying that the restriction of the intersection product to each factor is still a symplectic
unimodular form.

Definition 2.5. A submodule of a symplectic (unimodular) module is said to be symplectic
if the restriction of the symplectic product is still unimodular.

On the other hand, each non-separating node of (C,m) defines a cyclic module generated
by a primitive element in H1(Σg), namely Za where a is the (primitive) class that is
effectively pinched on the node.

Two marked nodal curves (Ci, mi) for i = 1, 2 of genus g are said to share a separating
node if for each i = 1, 2 there exists a separating node qi ∈ Ci that induces the same
splitting V ⊕ V ⊥ of H1(Σg). Equivalently, we say that they share a non-separating node
if there exist non-separating nodes qi ∈ Ci whose associated cyclic submodules of H1(Σg)
coincide.

Remark that if (C,m) is a marked nodal curve of compact type then m is an isomor-
phism and H1(C) = ⊕iH1(Ci) where Ci denote the components of the normalization. This
decomposition induces, via m, a decomposition of H1(Σg) = ⊕im

−1(H1(Ci)). By con-
struction it is a splitting of H1(Σg) into orthogonal submodules with the property that the
restriction of the symplectic product to each factor is still unimodular. Up to a choice of
a marking mi of each Ci we get a decomposition

H1(Σg) = ⊕iH1(Σgi) where m = ⊕imi.

In the case of a marked curve (C,m) of non-compact type the marking is not an isomor-
phism anymore, and the homology groups taken into consideration, namely H1(Σg), H1(C)

and H1(Ĉ) are pairwise non-isomorphic. In fact we have that Ker(m) is isotropic in H1(Σg)
and m induces an isomorphism

Ker(m)⊥/Ker(m) → H1(Ĉ).

Definition 2.6. A marked stable form of genus g ≥ 1 is a triple (C,m, ω) where ω is
a stable one-form on a marked nodal curve (C,m) of genus g. We say that ω pinches
a ∈ H1(Σg) \ 0 if a is primitive and m(a) = 0.

2.4. Periods of marked stable forms and Haupt’s conditions. For any marked
abelian differential (C,m, ω) of genus g without residues at the nodes we have a well
defined notion of period homomorphism Per(ω) : H1(Σg) → C defined by

(5) Per(ω)(γ) =

∫

m(γ)

ω for γ ∈ H1(Σg).

Any homologically non-trivial curve a in Σg pinched by the marking, belongs to Ker(m)
and thus also to Ker(Per(ω)). Remark that if Per(ω) is injective then the marking is an
isomorphism, and thus the curve C must be of compact type.

If ω is an abelian differential without residues or zero components on a marked stable
curve (C,m) of genus g ≥ 1, then the character p = Per(ω) ∈ H1(Σg,C) has the following
two properties (see Haupt’s paper [8]):
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(H1) vol(p) := ℜp · ℑp > 0 and
(H2) If g ≥ 2 and L = p(H1(Σg)) ⊂ C is a lattice, then p = π∗ ◦m where π : C → C/L

is a map of degree > 1, namely π(z) =
∫ z

z0
ω.

The positivity of the volume (condition (H1)) comes from the fact that, by Riemann’s
relations, for any symplectic basis {a1, b1, . . . , ag, bg} of H1(Σg) we have

(6) vol(ω) =
i

2

∫

C

ω ∧ ω =
−1

2i

g∑

j=1

∫

aj

ω

∫

bj

ω −
∫

aj

ω

∫

bj

ω =
∑

j

ℑ(p(aj)p(bj)) = vol(p)

The left hand side of the equation is positive. By the right hand side of the equation, the
volume of the metric depends only on the absolute periods of ω.

The second condition is obvious. It has other equivalent statements that we proceed to
introduce.

Proposition 2.7. If g ≥ 2 and p ∈ H1(Σg,C) satisfies vol(p) > 0 and L = p(H1(Σg)) ⊂ C
is a lattice, then the following are equivalent

(1) p does not satisfy condition (H2)
(2) Ker(p) is a symplectic submodule of rank 2g − 2.
(3) vol(p) = vol(C/L)
(4) p factors by a collapse Σg → C/L of g − 1 handles.

Proof. The rank of Ker(p) is already 2g−2. To see that (2) implies (1), suppose vol(p) > 0
and Ker(p) is a rank 2g − 2 symplectic submodule. By definition vol(p) = vol(E) where
E = C/L. On the other hand, the integration of ω produces a branched cover C∗ → E
of positive degree. The pull back of the euclidean metric on E to C coincides with that
induced by ω on C∗ and thus vol(p) > vol(E), reaching a contradiction. Therefore Ker(p)
cannot be a symplectic module of rank 2g − 2. The rest of equivalences are easy. �

As we will see in Example 5.12 there abelian differentials without residues or zero com-
ponents of genus g ≥ 3 whose period map has kernel of rank 2g− 2, so we cannot drop the
condition of being symplectic in item (2). Remark that (H2) is not necessary if we allow
marked abelian differentials to be equal to zero on some component of C∗. In this case,
integration of ω would be constant on the components annihilated by ω thus producing
collapsing maps, instead of branched covers. In this way we can construct abelian differen-
tials that are zero on some components whose periods factor through a collapsing of g− 1
handles.

Definition 2.8. A character p ∈ H1(Σg,C) is said to be Haupt if vol(p) > 0 and if g ≥ 2,
Ker(p) ⊂ H1(Σg,Z) is not a rank 2g−2 symplectic submodule. The set of Haupt characters
in H1(Σg,C) will be denoted by Hg.

For example, an injective homomorphism p : H1(Σg) → C defines a Haupt character if
and only if vol(p) > 0.
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2.5. Symmetries of the periods. A last property of the period map p of a marked
abelian differential (C,m, ω) without residues at the nodes is that the isotopy class of a
Dehn twist around any primitive element a ∈ ker p \ 0, induces a non-trivial symmetry Da

of p, that is, a non-trivial element in the group

Aut(p) = {h ∈ Sp(H1(Σg)) : p ◦ h = p}.
Hence the marked curves (C,m, ω) and (C,m◦Da, ω) share the same periods. If a /∈ kerm
they are distinct as marked stable forms; otherwise m ◦Da = m and they are equal.

2.6. The period map. For g ≥ 1 denote by Sg the set of marked compact smooth curves
of genus g. It is the covering of Mg associated to the Torelli group, i.e. the subgroup of
the modular group Mod(Σg) ≃ π1(Mg) formed by elements that act trivially on homology.
An element in ΩSg can be thought as a marked abelian differential (C,m, ω) on a smooth
curve C of genus g.

The natural map ΩSg → ΩMg that forgets the marking is a covering. The pull-back of
the isoperiodic foliation Fg is a holomorphic regular foliation on ΩSg that admits a global
holomorphic first integral

Per : ΩSg → Hg ⊂ H1(Σg,C)

that is equivariant with respect to the natural actions of the modular group on ΩSg and
on H1(Σg,C). The map Per is a submersion. The leaves of the foliation underlying Per
correspond to connected components of fibers of Per.

2.7. Topology in the space of marked stable curves. Let Mg denote the Deligne-
Mumford compactification of the moduli space Mg of genus g smooth curves by adding
marked stable curves of genus g. It admits a structure of complex orbifold of dimension
3g − 3. Let Sg denote the set of marked stable curves of genus g with at most one node.
As is shown in [1] and the references therein, there is a topology in the space of marked
stable curves of genus g that turns the natural forgetful map Sg → Mg into a continuous

map and extends the covering Sg → Mg. The sets Sg \ Sg and Mg \Mg are referred to as

the boundary of Sg and Mg respectively.

In a small neighbourhood U of a point (C0, m0) ∈ Sg with kerm0 = 0 (i.e. C0 is of
compact type) the forgetful map is a homeomorphism. If C0 has a non-separating node
(i.e. kerm0 = Za 6= 0), the forgetful map is a branched cover onto its image. The branching
occurs on the boundary. Indeed, let Da denote the map induced by the Dehn twist around
the pinched class a in the homology group H1(Σg). If (C,m) ∈ U , then the fiber of the
forgetful map containing (C,m), i.e.

{(C,m ◦Dn
a ) : n ∈ Z}

is contained in U . On the other hand we know kerm ⊂ kerm0 is a primitive submodule,
so either kerm = 0 and the fiber is infinite or kerm = kerm0 = Za and the fiber is a single
point.
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By Picard-Lefchetz formula applied to the universal curve bundle C → Mg around C0

we deduce that there exists a basis of connected neighbourhoods U of (C0, m0) such that
U ∩ Sg is connected.

The restriction of the forgetful map to the boundary Sg \ Sg is a local homeomorphism

onto its image in Mg \ Mg. The latter is a normal crossing divisor whose regular points
correspond to curves with a single node. The vanishing cycle defined for curves in a
neighbourhood in Mg of a regular point of the boundary divisor allows to prove that in the

neighbourhood of a boundary point Sg there are only curves that are either non-singular
or that share the node with the given point. This allows to parametrize the boundary
components of Sg as follows. Consider the set Z formed by

(1) symplectic submodules V ⊂ H1(Σg) of positive rank and corank and
(2) cyclic primitive submodules V ⊂ H1(Σg).

To a symplectic submodule of type 1) we associate the subset of marked stable curves
with one separating node whose associated deocomposition of H1(Σg) is V ⊕ V ⊥, i. e.
curves of compact type. We will say that V ∈ Z is of compact type. To a cyclic module
V ∈ Z of type 2) we associate the set of marked stable curves with one non-separating
node (C,m) such that m(V ) = 0. It corresponds to curves of non-compact type and we
will sometimes say that V is of non-compact type.

In either case the associated boundary set is connected. This can be showed by using
attaching maps and the connectedness of the spaces Mg,n for all (g, n) ∈ N2. Given two
V,W ∈ Z we have that the corresponding boundary sets are either equal (if W = V or V ⊥)
or disjoint. Therefore, each such boundary set is a connected component of the boundary.
On the other hand every element in the boundary of Sg belongs to at least one of the
defined connected components.

By abuse of language we define V to be the boundary component of Sg associated to
V ∈ Z. Depending on the context it will be clear when V is a submodule of H1(Σg) or a

boundary component of Sg.

2.8. Topology in the space of marked stable forms. The topologies on Mg and Sg

induce topologies on the fiber bundles ΩMg and ΩSg. Their boundaries correspond to
abelian differentials over nodal curves with some node, and they are still normal crossing
divisors whose regular part corresponds to curves with a single node. Each boundary
component of ΩSg can be identified with a boundary compnent of Sg and again, by abuse
of language we will denote the boundary component and a module V ∈ Z that defines it
with the same name V .

The forgetful map

ΩSg → ΩMg

is still a branched cover onto its image with branching divisor on the components of the
boundary that have a single non-separating node. Around any point in ΩSg there is a
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connected neighbourhood U such that U ∩ ΩSg is connected. Any subset of one of those
bundles is given the induced topology.

2.9. Notations. We introduce the following notational conventions: given a set of marked
stable curves C ⊂ Sg of genus g we denote by

• ΩC the set of marked stable forms over curves in C;
• A point in C or ΩC is said to be in the boundary if the underlying curve has some
node;

• Ω0C ⊂ ΩC the subset where the forms have zero residues at the branches of the
nodes;

• Ω′C ⊂ ΩC formed by marked stable forms in ΩC that have at most simple nodes.
In particular elements in Ω′C have no zero components or residues at the nodes.

If apart from C ⊂ Sg we are given a Haupt period p ∈ Hg ⊂ H1(Σg,C) we consider

• C(p) ⊂ Ω0C formed by stable forms over curves in C that have no residues at the
nodes and periods p;

• C′(p) := C(p) ∩ Ω′C.

The genus of the curves is already present in the periods, so we will often not introduce
a subindex for it.

Some examples of subsets adapted to these notations are particularly important in the
arguments that follow:

• S(p) = Sg(p) = Per−1(p)

• S
′
(p) is the set of abelian differentials with at worst a simple node and periods p

• For V ∈ Z, we consider its corresponding boundary component V in ΩSg. Then

V ′(p) = S
′
(p) ∩ V

is the set of abelian differentials on V that have a simple node and periods p.
• Zp = {V ∈ Z : V ′(p) 6= ∅} corresponds to the set of boundary components having
a form of periods p.

• Vp = {V ∈ Zp : rankV = 2} corresponds to the set of boundary components of
compact type whose underlying forms have a genus one component and periods p.

2.10. Outline of the proof of Theorem 1.2. We first compactify S(p) ⊂ ΩSg partially
by adding stable abelian differentials of genus g having a simple node and periods p. This

union is precisely the previously defined set S
′
(p). As we will see in Section 4.6, for any

sufficiently small neighbourhood U around a point in S
′
(p), U ∩ S(p) is non-empty and

connected. This implies that S(p) is connected if and only if S
′
(p) is.

This said, we proceed to prove Theorem 1.2 by induction. The cases g = 2, 3 are true by
[14]. Suppose g ≥ 4 and that the fibers of Per are connected for every genus up to g − 1.

Let p ∈ Hg be given. We claim that S
′
(p) is connected.
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In Section 3 we use the inductive hypothesis of Theorem 1.2, attaching maps and Simp-

son’s theorem in [23] to prove that the intersection of S
′
(p) with a component of the

boundary of ΩS is connected. This implies that the boundary of S
′
(p) is the disjoint union

of connected sets ⊔

V ∈Z

V ′(p).

In Section 4 we prove that each component of S
′
(p) has some point in the boundary.

This is true for a component determined by an abelian differential ω on a smooth curve
with simple zeroes whose underlying metric ω⊗ω has a couple of saddle connections γε, γ

′
ε

that are parallel geodesics with common endpoints and length ε > 0. Indeed, cutting
the surface along them and gluing them in the other possible orientable way, we obtain a
(possibly disconnected) stable curve endowed with a flat metric and two disjoint geodesic
slits of the same length connecting regular points for the metric.

Figure 1. Collapse of two simple zeroes to a simple node

By continuously changing the length of the slits and gluing them back together, we
construct a continuous deformation of flat metrics on a genus g surface. By using the
existing dictionary between flat surfaces and nonzero abelian differentials (see section 4)
we get a path of abelian differentials. When the slit degenerates to a point we obtain a
flat metric with isolated singularities on a genus g nodal curve with a single simple node.

Along these local surgeries the periods remain constant, so the path is contained in S
′
(p).

Remark that the last construction can be reversed to show that any stable one form with
a simple node and periods p ∈ Hg lies in the boundary of S(p). This reversed construction
will be referred to as a smoothing of a simple node. In fact we will go further and
show that every abelian differential in S(p) sufficiently close to a nodal abelian differential

in S
′
(p) occurs in this way (see 4.5).

It remains to prove that any component of S
′
(p) contains a form ω as before. By

an inductive argument starting with saddle connections of minimal length in any given
element in a component of S(p) and applying Schiffer variations we find an ω in the same
component in S(p) that either has the desired couple of saddle connections, or that has a
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single zero. In the second case we can apply further Schiffer variations to fall in the first
case. Indeed, Masur’s theorem in [13] on the existence of periodic annuli for ω provides a
family of parallel saddle connections described by the boundary components of the annulus.
Their combinatorial information allows to describe a Schiffer variation that produces an
abelian differential with a couple of parallel saddle connections between disctinct simple
zeroes (see Section 4 for the details). This proves that the correesponding component of
S(p) has a point in the boundary. Another Schiffer variation argument will imply that the

corresponding connected component of S
′
(p) also contains some point in the boundary.

The rest of the proof relies in finding paths in S
′
(p) with endpoints in any given pair

of boundary components of S
′
(p). The main tool that we will use to construct paths of

isoperiodic abelian differentials that join different boundary components is to construct
abelian differentials on stable curves with several simple nodes. Indeed, by smoothing all
the simple nodes we obtain an abelian differential ω on a smooth curve with the same
periods as the initial form. By undoing the surgery but only at one of the nodes, we
connect this element with one on a curve with a single simple node. Thus several abelian
differentials on nodal curves with a single simple node and period p can be connected to
ω (see Section 6 for details).

To construct stable forms with several simple nodes and prescribed periods p ∈ Hg ⊂
H1(Σg,C) we will analyze the algebraic and topological properties of Haupt characters. A
special role will be played by splittings V1 ⊕ · · · ⊕ Vn of H1(Σg) into pairwise orthogonal
symplectic submodules for which p|Vi

is either a Haupt homomorphism or a non-injective
morphism defined on a rank two submodule. They correspond to periods of certain abelian
differentials with simple nodes. The existence of such splittings for any Haupt period can
be proven by purely algebraic methods when p is non-injective or g ≥ 3. This argument
will allow to give an algebraic characterization of the modules V ∈ Z for which the corre-
sponding boundary component V ′(p) is nonempty (in Section 5). Along the proof of this
result we give an inductive proof in the spirit of the original proof (see [8]) of

Theorem 2.9 (Haupt). A character p ∈ H1(Σg,C) is the period of some marked abelian
differential on a compact genus g smooth curve if and only if it is a Haupt character.

The case of genus g = 1 is trivial and the case of genus g = 2 is proven by the use of the
Torelli map and the solution of Schottky’s problem in [14]. Given an injective p ∈ H2, the
existence of elements V ∈ Z such that p|V and p|V ⊥ are Haupt characters can be proven

by taking a form on the boundary of a connected component in S
′
(p) 6= ∅.

We will sometimes call a Haupt character a Haupt period. For a modern proof of this
result for genus g ≥ 3 using ergodic theory see [9].

3. Connectedness of the isoperiodic set in each boundary component

Proposition 3.1 (Isoperiodic forms on a boundary component). Let g ≥ 4 and p ∈ Hg.
Suppose that the fibers of Per are connected for any genus up to g − 1. Then, for any
V ∈ Z, V ′(p) is connected.
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Proof. If V ′(p) = ∅ the claim is obvious. Otherwise, take (C,m, ω) ∈ V ′(p). There are two
cases, depending on wether ω has a separating or non-separating node.

Case 1: The node of ω is separating. Then ω = ω1 ∨ ω2 and its associated splitting is
V ⊕V ⊥. By construction p1 = p|V and p2 = p|V ⊥ correspond to the periods of some abelian
differential of genus < g, namely ω1 and ω2 respectively.

For each g ≥ 1 consider the universal curve bundle Cg → Sg whose fibre over a marked
curve (C,m) ∈ Sg is the curve C. This bundle allows to define another curve bundle
Π : ΩCg → ΩSg whose fibre over a marked abelian differential (C,m, ω) is still the curve
C. Given p ∈ Hg, we define

C∗(p) = {(C,m, ω, q) ∈ ΩCg : Per(ω) = p and ω(q) 6= 0}.
When it is non-empty, the restriction of Π to C∗(p) defines a topological fibre bundle

C∗(p) → Per−1(p)

with connected fibers. Hence if Per−1(p) is connected, then so is C∗(p).

When (C,m, ω) ∈ V ′(p), we can write it as (C,m, ω) = (C1 ∨q1=q2 C2, m1 ⊕ m2, ω =
ω1 ∨ω2) where ωi is an abelian differential on a curve Ci of genus 0 < gi < g that does not
vanish at qi ∈ Ci, and mi is a marking of Ci. Write pi = Per(ωi). By hypothesis Per−1(pi)
is connected and non-empty, and therefore so is C∗(pi).

The natural attaching map

C
∗(p1)× C

∗(p2) → V ′(p)

that sends a pair
(
(C1, m1, η1, q1), (C2, m2, η2, q2)

)
to the nodal abelian differential

(C1 ∨q1=q2 C2, m1 ⊕m2, η1 ∨ η2)

is continuous and therefore its image V ′(p) is connected.

Case 2: The node of ω is non-separating. In this case V ⊂ H1(Σg) is a cyclic submodule.

Let Sg,2 denote the space of (homologically) marked smooth curves of genus g with two
marked points and Γg → Sg,2 the fiber bundle whose fibre over a point (C,m, q1, q2) ∈ Sg,2

is the set of homotopy classes relative to {q1, q2} of paths with endpoints at q1, q2. Consider
the composition Π : ΩΓg → ΩSg,2 → ΩSg where the second arrow is the map that forgets
the marked points. Fix p ∈ Hg and a complex number c ∈ C. Define

Γ∗(p, c) = {(C, q1, q2, m, ω, [γ]) ∈ ΩΓg : Per(ω) = p, ω(qi) 6= 0,

∫

γ

ω = c}.

When it is non-empty, the restriction of Π to Γ∗(p, c) gives a continuous surjective map

Π(p,c) : Γ
∗(p, c) → Per−1(p)

that has the path lifting property.

Lemma 3.2. The fibers of Π(p,c) are connected. In other words, let ω be an abelian differ-
ential on a smooth curve C and b0 and b1 be arcs in C such that

∫
b0
ω =

∫
b1
ω. Then, there

is an homotopy bt between b0 and b1 such that
∫
bt
ω =

∫
b0
ω for any t ∈ [0, 1].
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Proof. Let Y be the covering of X = C ×C defined as the set of relative homotopy classes
of maps γ : [0, 1] → C (relative to {0, 1}). The covering map is π(γ) = (γ(0), γ(1)). There
is a well-defined map g : Y → C

g(γ) =

∫

γ

ω

and the claim is that g has connected fibers. Let π0 and π1 be the two projections from
X = C × C → C and define α = π∗

1ω − π∗
0ω. Clearly

dg = π∗α.

By [23, Theorem 1] either the fibers of g are connected or there is an algebraic curve E, a
holomorphic 1-form β on E, and a morphism f : X → E with connected fibers such that
α = f ∗β. Therefore, we only need to show that under our hypotheses, also in the latter
case, the fibers of g are connected.

First, we prove that E is an elliptic curve. Let F be the foliation on X defined by
{α = 0}. The singularities of F are at those pairs of points (x, y) such that ω vanishes at
both x and y. In particular, the singularities of F are isolated. We redefine our notion of
leaf. Two (usual) leaves of the foliation that accumulate on the same singular point are
considered to be part of the same leaf of F, and we also include the singular point in the
leaf. Since F admits local first integrals, every singular point is contained in a leaf. On
the other hand the fibers of f are connected, and clearly α = 0 on the fibers, we have
E = X/F. Since every leaf has a transversal where α does not vanish, β has no zeroes,
whence E is elliptic. Thus E = C/Λ for a lattice Λ and we have the commutative diagram:

Y
g=

∫
γ
ω

//

π

��

C

��

X = C × C
f=

∫ y

x
ω

// X/F = E = C/Λ

Consider the foliation π∗F on Y , defined by {π∗α = 0}, and let Ĉ = Y/π∗F with

ϕ : Y → Ê the quotient map. Let π′ = f ◦ π ◦ ϕ−1 : Ê → E. We will see below that Ê
is Hausdorff, which implies that Ê is in fact a Riemann surface, and that π′ is a covering
map.

Since dg = π∗α, g is constant on the leaves of π∗F. Therefore there is a map h : Ê → C
such that g = h ◦ ϕ. Thus we have the following commutative diagram:

Y
ϕ

//

π

��

g

##

Ê

π′

��

h
// C

����
�
�
�
�
�
�

X
f

// E
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In particular, h : Ĉ → C is a lift of π′. This implies that Ĉ is simply connected. If follows
that Ê = C is the universal covering of E, and h is a biholomorphism. Since h is injective
and ϕ has connected fibers by definition, then g = h ◦ ϕ has connected fibers.

Let us show that Ê is Hausdorff and π′ is a covering. Since E is Hausdorff, two points
that cannot be separated must have the same image under π′.

Let F1 and F2 be two leaves of π∗F that project on the same leaf of F. We make use of
an auxiliary Riemannian metric on X . For each leaf L of F and for any ε > 0 let Nε(L)
be the ε-neighborhood of L. Since F has isolated singularities and compact leaves any two
distinct lifts of L to π∗F are disjoint in Y . Moreover, by the same reason and since the
leaves of F are compact, if xn → x ∈ L and Ln is the leaf through xn, then Ln converges to a
sub-set of L in the Gromov-Hausdorff sense. It follows that any Nε(L) contains a saturated
neighborhood Uε(L). Thus that F1 and F2 can be separated by saturated neighborhoods.

In particular, this implies that Ê is Hausdorff and that π′ is a covering map. �

Corollary 3.3. If Per−1(p) is connected, so is Γ∗(p, c) for any c ∈ C.

Let us proceed to the proof of the connectedness of V ′(p). Write V = Za1 for a primitive
a1 ∈ V . Complete a1 to a symplectic basis a1, b1, . . . , ag, bg of H1(Σg). Denote W =

Za1 ⊕ Zb1. Then up to identifying W⊥ with H1(Ĉ), p1 = p|V ⊥ is the period of an abelian
differential, thus a Haupt character inH1(Σg−1,C) and Γ∗(p1, p(b1)) is non-empty. Consider
the continuous attaching map

Γ∗(p1, p(b1)) → V ′(p)

that associates to an element (C, q1, q2, m1, ω, [γ]) (of genus g − 1) the abelian differential
on a nodal curve of genus g obtained by gluing q1 and q2, marked by m1 on W⊥, pinching
a1 to the node and associating b1 to the homology class of the cycle γ in the nodal curve.
It is a surjective map: it suffices to construct a representative of the class corresponding
to b1 in the nodal curve that touches the node to find a preimage by normalizing the node.
By hypothesis and Corollary 3.3 the source is connected, and therefore so is its image
V ′(p). �

4. Surgeries on abelian differentials and models of degeneracy

In this section we introduce a surgery that allows to move points locally in ΩSg without
changing the periods on cycles of the homology. As a consequence we will prove that every
component of S(p) has boundary points that belong to the boundary of Ω′S. We also study
the local topological properties of the boundary components; this technical part will be
crucial in our argument.

4.1. Stable one forms and singular translation structures. On each component Ci

where a stable form (C, ω) is not identically zero it defines naturally a singular translation
structure. Indeed, since ω is a closed form, around a point p ∈ C∗

i we can locally define a
holomorphic function φp(z) =

∫ z

p
ω that is a branched cover of degree ordp(ω)+ 1 ramified
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over 0 if the degree is at least two. At the intersection of domains two such maps φp and
φq satisfy

φp = φq + const.

Thus any object invariant by translations in C can be pulled back to C∗
i \ |(ω)| with

singularities at the points of |(ω)| and the nodes. In particular ω induces a singular flat
metric on Ci of finite volume, which is defined by ω ⊗ ω. At a branch Ci of C around a
point p ∈ C the metric has total angle 2π(ordp(ωCi

)+1). This is also true if ω has non-zero
residue at p. In particular, if ω has no zero components we obtain a branched atlas whose
transition functions are translations.

The oriented geodesic directional foliation of C given by an angle θ ∈ S1 is also invariant
by translations, so we can also lift it to a singular directional foliation Gθ on Ci. At a zero
p of ω the foliation has a saddle with 2(ordp(ω) + 1) separatrices, that alternatively enter
and leave the singularity by forming an angle of π. At any other point the foliation is
regular.

Reciprocally if we are given a cover Uα of a compact (possibly disconnected) topological
surface Σ, and finite branched covers φα : Uα → Vα ⊂ C satisfying φα = φβ + const at
the intersections Uα ∩ Uβ, we can define a complex structure on Σ by declaring that the
φα’s are holomorphic. The abelian differential ω defined locally by dφα is well defined on
the obtained Riemann surface Ĉ. By identifying pairs of points in Ĉ, we obtain all nodal
curves C that are normalized by Ĉ.

4.2. Schiffer variations. A Schiffer variation is a sugery that can be defined for arbitrary
CP 1-structures with some branch point on surfaces. It changes the CP 1 structure without
varying the underlying topological surface nor the holonomy representation. They were
first considered by Schiffer in [22]. A detailed discussion can be found in [2]. We will
introduce it only for the case of branched translation structures.

Let ω be a marked abelian differential on a nodal curve C and q be point where ordq(ω) ≥
1. Remark that the chart φ = φq defined by ω around q can be analytically continued along
any path in C. Let γ1 and γ2 be two embedded paths in C∗ starting at q parametrized by
[0, 1] that are disjoint (we allow q to be a node). We say that γ1 and γ2 are twin paths

if the continuation φi of φ along γi satisfies that φ1 ◦ γ1(t) = φ2 ◦ γ2(t) ∈ C for all t and
t 7→ φi ◦ γi(t) is an embedded path in C.

Given a pair of twin paths γ1, γ2 for (C,m, ω) we can consider a path t 7→ (Ct, mt, ωt)
of marked abelian differentials associated to it called the Schiffer variation of ω along
γ1, γ2. To describe the abelian differential at time t, we use the equivalence between abelian
differentials and atlas formed by branched covers over open sets in C and with transitions
in the set of translations z 7→ z + const. Indeed, cut C along the segments γ1|[0,t] and
γ2|[0,t] and glue the boundary on the left (resp. on the right) of γ1 to the boundary on
the right (resp. on the left) of γ2 by identifying points that have the same image for φi.
By construction we get a new orientable (nodal) surface of the same genus equipped with
a family of local branched covers. Indeed, on the complement of some topological disc U
around γ1 ∪ γ2 we consider the family of branched coverings given by ω. On the disc U we
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consider the branched covering defined after the identification. Obviously the critical value
has changed: it is at the point φi ◦ γi(t). The associated abelian one form ωt has the same
genus. As we can choose the initial covering of C by open sets not to have intersections on
γ1 ∪ γ2 and generators a1, b1, . . . , ag, bg for the homology that are contained in C \ γ1 ∪ γ2,
the transition functions of the new marked abelian forms are the same and

Per(ωt) = Per(ω) for all t.

A Schiffer variation along a short pair of twins based at a simple node describes the
smoothing of a simple node as in Figure 1. A Schiffer variation along a short pair of twins
at a multiple zero of a stable form splits the saddle into two distinct saddles.

4.3. Dynamics of directional foliations. The dynamics of each oriented directional
foliation Gθ induced by an abelian differential ω without residues or zero components on
the underlying curve C is well known. Indeed, by Maier’s Theorem (see [11] or [24]) there
exist a finite number of saddle connections, that is, leaves γ1, . . . , γn with the property that
both the α and ω limit are singular points. Each component of C \ ∪γi is saturated by F

and is either a periodic annulus, i.e. an annulus formed of closed leaves, or minimal ,
i.e. each leaf in the component is dense in the component.

Remark that the length of all leaves in a periodic annulus is the same and coincides with
the length of each of its boundary components. On the other hand the saddle structure of
the singularities implies that the angle of two leaves at a singular point of the boundary of
a periodic annulus is π.

Remark 4.1. If for some directional foliation associated to an abelian differential of genus
g ≥ 2, we can find a periodic annulus whose boundary is formed precisely by a singular
point ∗ and two leaves that have ∗ as α and ω limit, then the leaves form a pair of twin
geodesics. If we perform a very small Schiffer variation along the same pair of twins,
we obtain a form with a pair of twin saddle connections between two distinct zeroes. In

Figure 2. Abelian differential slit at a couple of twins

Figure 2 we represent the abelian differential slit at a couple of twins from point of angle
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2π(k + 2). Gluing the boundary components in the other orientable way, the obtained
abelian differential has one or two extra saddles (depending on whether k = 1 or k > 1)
and there exists a pair of twins connecting two distinct saddles. Thus, after this surgery
we fall in the picture of Figure 1. As can be readily seen, in this situation the Schiffer
variation along the pair of saddle conections produces a curve of compact type with a genus
one component that is obtained from the periodic annulus. We will use this construction
in the next paragraph. The local surgery of splitting a multiple zero into some simpler
zeroes will be referred to as a splitting of a multiple zero.

4.4. Twin saddle connections between distinct simple zeroes. In the next Lemma
we show that any abelian differential on a non-singular curve can be connected via Schiffer
variations to one having some pair of twins as in Figure 1.

Lemma 4.2. Given a marked abelian differential (C,m, ω) on a non-singular curve C, we
can perform a finite number of Schiffer variations so that the resulting abelian differential
(C ′, m′, ω′) has no nodes, only simple zeroes and a pair of twin saddle connections between
distinct zeroes of ω′.

Proof. First notice that it suffices to perform a finite number of Schiffer variations so that
the resulting form (C ′′, m′′, ω′′) has no nodes, and a pair of twin saddle connections between
distinct zeroes of ω′′. Indeed, if the form contains multiple zeroes, or if the interior of the
twins contain zeroes of ω′′, then performing small Schiffer variations at these zeroes or
splitting the zeroes furnishes our desired form (C ′, m′, ω′).

This said, our statement is analogous to [2, Proposition 8.1], and the proof is basically
the same. The idea is to inductively try to gather the zeroes of the form ω, by performing
Schiffer variations, in order to get a form with one multiple zero. If we succeed, then an
application of a theorem of Masur and some further Schiffer variations imply that we fall
in the case of Remark 4.1. It may likely happen that along the induction, we already find
the desired twin saddle connections before getting to a form with a single zero. For some
particular periods it will be forcedly the case. Indeed, if we reach an abelian differential
as in Remark 4.1, then there is an abelian differential with the same periods on a curve
of compact type. However, as was already mentioned, there are examples of periods that
occur on abelian differentials on non-singular curves that cannot be attained on stable
forms of compact type with at least a node (see Example 5.12)

Up to small Schiffer variations, we can suppose that the integral of ω between any pair
of zeroes is not R-colinear to the integral of ω between any other pair of zeroes, nor to any
period of ω. Let x, y be a pair of distinct zeroes that minimizes the distance. It follows
that any shortest geodesic γ between them is smooth. By our assumption on the position
of the zeroes of ω, any twin γ′ of γ at x is a geodesic segment starting from x that does not
meet any singular point other than y. Moreover, γ′ does not meet y in the time interval
[0, d(x, y)). If γ′(d(x, y)) = y then the pair γ, γ′ gives the solution to the lemma, up to
small Schiffer variations as we explained in the first paragraph. Otherwise we succeed in
joining y to x by performing the Schiffer variation along the pair of twins γ, γ′ starting
from x, hence decreasing the total number of zeroes of ω.
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Repeating this procedure inductively, we either find a pair of twin saddle connections
on the road with common starting and endpoints as before, or we end up with an abelian
differential on a non-singular curve of genus g with a unique zero of order 2g − 2.

In the latter case, we appeal to a theorem of Masur [13, Theorem 2], stating that our
abelian differential has a maximal cylinder formed by parallel geodesics. Each boundary
component of this cylinder is a union of saddle connections through the (unique) saddle
point.

If there exists a saddle connection that has the cylinder on both sides, we claim that we
can find another periodic annulus in some other directional foliation whose boundary com-
ponents are two disjoint saddle connections as in Remark 4.1. Indeed, first remark that the
length of the saddle connection is strictly smaller than the length of the closed geodesic in
the annulus, since otherwise the curve would have genus one. Therefore, in both boundary
components of a parallelogram forming a fundamental domain of the universal cover of the
initial periodic annulus, we have a segment corresponding to the saddle connection. Then
choose a geodesic between the initial points of the segments and a geodesic between the
endpoints of the segments. They form a pair of disjoint parallel geodesics that bound a par-
allelogram inside the fundamental domain of the initial annulus. In the compact surface,
this parallelogram defines a periodic annulus for the direction of the constructed geodesic.
Its boundary components form a pair of distinct saddle connections of the same length as
in Remark 4.1. Remark that the same argument applies whenever in the boundary of an
annulus formed by closed geodesics, there is a closed saddle connection having the annulus
on both sides.

If no saddle connection has the cylinder on both sides, we claim that we can reduce to
the previous case. We focus on the combinatorial information of the saddle connections
at the saddle point. At a neighborhood of the saddle point, the Masur annulus is formed
by a certain number of angular domains of angle π, each of them corresponding to one
boundary component of the annulus. Using the cyclic orientation induced by the curve
on these angular domains, one can find two consecutive domains that belong to different
boundary component of the annulus.

Up to changing the orientation of the geodesic in the annulus, we can suppose that the
adjacent sides of this pair of domains are oriented in the direction of leaving the saddle
point. Each determines a saddle connection.

If they have different lengths, choose the shortest and call it γ. Its twin leaving from
the adjacent pair does not pass through the saddle. A Schiffer variation along γ and its
adjacent twin produces an isoperiodic abelian differential with two saddles. The original
cylinder has a saddle connection that has the cylinder on both sides: it is the saddle
corresponding to γ.

If they have the same length, a Schiffer variation along a short segment in the pair of
twins provides the desired pair of twin saddle connections between distinct zeroes.

�
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4.5. Degeneracy.

Proposition 4.3. Every connected component of S
′
(p) intersects S(p) and the boundary.

Proof. Suppose first that the chosen connected component has an element (C,m, ω) on a
smooth curve C. Then, up to applying Lemma 4.2 we can suppose ω admits a pair of twin
saddle connections γ, γ′ between two distinct simple zeroes. The closed curve σ = γ′ ⋆ γ−1

satisfies
∫
σ
ω = 0. The Schiffer variation along this pair of twins produces a marked stable

form with a single simple node that pinches [σ] and has the same periods p = Per(ω). If
the homology class [σ] ∈ H1(Σg) is trivial, the node is separating. If it is non-trivial, then

the node is non-separating. In either case it determines a boundary point in S
′
(p).

If (C,m, ω) has a node, it is simple, and we can apply a smoothing of simple node as in
Figure 1 to obtain an abelian differential on a smooth curve that has the same periods.

4.6. Local topology around boundary points. The next Lemma tells us that any pair

of points in S(p) that are close to some boundary point of S
′
(p) lie in the same connected

component of S(p).

Lemma 4.4. Let (C,m, ω) be a marked stable form of genus g ≥ 2 with a single simple

node and periods p ∈ Hg. Then there exists a basis of connected neighbourhoods U ⊂ S
′

g(p)
of (C,m, ω), such that U ∩ S(p) is nonempty and connected.

Proof. Let U be a connected neighbourhood of (C,m, ω) in Ω′Sg and consider its projection

V = {(C, ω) ∈ ΩMg : (C,m, ω) ∈ U}. First we construct a holomorphic map

G : W → ΩMg

defined on a trivial horizontal foliation of W = D2g−3 × D2g such that G(0) = (C, ω),
V ⊂ G(W ), each horizontal leaf in W is mapped onto an isoperiodic set and ∆ = {w ∈
W : G(w) has a node } forms a divisor transverse to the leaves.

The construction of the map G depends on the type of node.

Case 1: The node of ω is separating.

Then ω = ω1 ∨ ω2 where ωi is an abelian differential on a smooth curve Ci of genus
gi with a marked point qi ∈ Ci that is not a zero of ωi. Let Ui be a flow box of the
isoperiodic foliation Fi around (Ci, ωi, qi) in the space ΩMgi,1 of abelian differentials with
a marked point. Define W = U1 × U2 × (D, 0) and for (η1, η2, ε) ∈ W define G(η1, η2, ε)
to be the abelian differential constructed by attaching η1 and η2 in the following way: slit
each ηi following the number ε from the marked point qi and glue the slit forms together
in the orientable way. Call it η1 ⊔ε η2. When ε = 0 we obtain a nodal abelian differential
η1∨ η2 with a simple node. Otherwise it is an abelian differential on a non-singular surface
of genus g having a pair of twin saddle connections between two distinct zeroes obtained
from the glued slits. The map G is holomorphic and by construction, if Li is a plaque
Fi on Ui, the image of L1 × L2 × (D, 0) \ 0 by G is contained in a leaf of the isoperioic
foliation Fg. On the other hand the stable forms in the image of L1 × L2 × 0 have all the
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same periods. Remark that by construction G|U1×U2×0 is a foliated biholomorphism onto
its image.

Case 2: The node of ω is non-separating.

Let (C1, ω1) be the normalization of ω marked at two distinct points q1 and q2 where
ω1 does not vanish. Choose a flow box U1 of the isoperiodic foliation Fg−1 on ΩMg−1,2

around (C1, ω1, q1, q2). Define W = U1 × (D, 0) and for each (η, ε) ∈ W define G(η, ε) as
the abelian differential defined by slitting η on the segment of length and direction ε at the
marked points q1, q2 and gluing the two slits together in the orientable way. Again, for any
plaque L of Fg−1, the image of L × D \ 0 is contained in a leaf of the isoperiodic foliation
and L× 0 is sent to a family of isoperiodic nodal abelian differentials with non-separating
simple nodes. Again, G|U1×0 is a foliated biholomorphism onto its image.

The points of W corresponding to boundary points via G form a divisor ∆ ⊂ W . The
product of the horizontal foliations of the Ui’s in W \∆ is mapped by G to the isoperiodic
foliation. By construction it extends to a regular foliation in W that is transverse to ∆.
The intersection of a leaf with this divisor is a regular proper analytic set in the divisor
and in the leaf. Therefore, it is locally connected and does not locally disconnect. Taking
out the nodal forms to a leaf in W does not disconnect the leaf.

Remark that all points in the image of G that have non-singular underlying curves have
a pair of twin geodesics that join two simple zeroes. The following lemma shows that
the image of G contains all leaves of the isoperiodic foliation on ΩMg that accumulate on
(C, ω).

Lemma 4.5. Let r > 0 and (C, ω) ∈ ΩMg be a stable form with a single simple node. Then
there exists a sufficiently small neighbourhood U of (C, ω) such that every form (C ′, ω′) ∈ U
satisfies one, and only one, of the following properties:

• vol(ω′) = ∞
• C ′ has a simple node on a vanishing cycle
• C ′ is non-singular and there exists a unique couple of geodesics γ, γ′ of length < r
forming a pair of twin saddle connections between two distinct simple zeroes of ω′

and such that γ′ ⋆ γ−1 is a vanishing cycle (see Figure 1).

Proof. See the proof of Proposition 5.5 in [1]. �

By construction, all the points that belong to the image of G have finite volume. On the
other hand, the leaves of the isoperiodic foliation are also contained in the part of finite
volume. Therefore, only one leaf of the isoperiodic foliation accumulates on (C, ω). It is
the one containing the image L = G(L0) of the leaf L0 ⊂ W \∆ whose closure contains the
origin. For any neighbourhood U of (C, ω), U ∩ L is the image of a connected set under
the map G.

If C has a separating node then there are no elements in the neighbourhood of (C, ω) with
infinite volume. Hence G is surjective onto a neighbourhood of (C, ω). Therefore we have a
holomorphic extension of the isoperiodic foliation to a regular holomorphic foliation around
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(C, ω) that is transverse to the boundary component containing (C, ω). The forgetful map
πg : ΩSg → ΩMg is a local homeomorphism around (C,m, ω), so the topological properties

of L0 describe those of S
′
(p) at (C,m, ω).

The case of C with a non-separating node is more delicate. There are elements in any
neighbourhood of ω that have infinite volume, namely those with non-zero residues at the
branches of the nodes. However, the image of G is contained in the set of forms whose
integral on the vanishing cycle is zero, and its image covers a neighbourhood of (C, ω) in this
set. The isoperiodic foliation cannot be extended topologically to a non-singular foliation
in the neighbourhood of the point (C, ω). A local picture of the isoperiodic foliation around
(C, ω) can be found in Figure 3. The main point here is that the infinite volume part of
the boundary component Za that contains (C, ω) can be also foliated by a foliation of
dimension 2g − 3 defined by the equivalence relation of having the same periods along all
cycles. Its leaves are formed by isoperiodic sets that can be obtained by applying small
Schiffer variations to the 2g− 3 zeroes of the forms (recall that when there is some residue
at the node there are 2g − 2 zeroes of the forms that we can move to change the abelian
differential without changing the periods on cycles). Since in any neighbourhood of (C, ω)
there are leaves of this foliation in Za and leaves of the isoperiodic foliation that go across
the boundary component, we deduce that the isoperiodic foliation cannot be extended as
a regular foliation to (C, ω). Nevertheless, the previous argument shows that there is only
one leaf of the isoperiodic foliation on ΩMg that accumulates on (C, ω). It is not difficult to
see that the union of the local leaf with its accumulation forms a germ of invariant analytic
set in ΩMg. In the language of singular holomorphic foliation theory, such a subset is
called a separatrix of the singularity.

To deduce the result of the Proposition in the case where C has a non-separating node,
we need to show that π−1

g (L) is still connected.

We need just to check that there is a closed path in L0 that is mapped by G to a loop
in ΩMg that, when lifted to ΩSg, joins a point (C0, m0, ω0) to (C0, m0 ◦Da, ω0), where Da

denotes the action of the Dehn twist around the pinched class a on homology. Given a
sufficiently small r > 0, the path

t 7→ G(ω1, re
2πit) for t ∈ [0, 1]

does the job. This can be shown directly by marking the surface and following the marking
or by using Picard-Lefschetz theory to the tautological curve bundle over the disc G(ω1,D).

�

�

5. Boundary components containing stable forms of periods p ∈ Hg

Given p ∈ Hg we define

Zp = {V ∈ Z : V ′(p) 6= ∅}.
It corresponds to the boundary components that cut S

′
(p).



24 GABRIEL CALSAMIGLIA, BERTRAND DEROIN, AND STEFANO FRANCAVIGLIA

Figure 3. Local structure of F around (C, ω) with a non-separating node

By Proposition 4.3 we already know that S(p) 6= ∅ implies that Zp 6= ∅.
In this section we will show that S(p) 6= ∅ whenever p ∈ Hg, i.e. Theorem 2.9. This will

allow us to give an algebraic characterization of the elements V ∈ Z that belong to Zp.

Given an abelian differential (C, ω) without residues or zero components on a nodal

curve, its restriction ωj = ω|Cj
to each component Cj of its normalization Ĉ defines a

nonzero ωj ∈ Ω(Cj) without residues that satisfy

(7) vol(Per(ω)) = vol(ω) =
∑

vol(ωj) =
∑

vol(Per(ωj))

Suppose H1(Σg) = V1 ⊕ · · · ⊕ Vk where Vj are pairwise orthogonal symplectic modules

and there exists a marking m : H1(Σg) → H1(C) → H1(Ĉ) satisfying m(Vj) = H1(Cj).
The periods of ωj marked by Vj via m|Vj

coincide with p|Vj
by construction. Hence, up to

identifying Vj with H1(Σgj), the homomorphism p|Vj
is a Haupt homomorphism for every

j. This motivates the following algebraic definitions:

Definition 5.1. A homomorphism h : V → C from a symplectic Z-module V of rank 2g
to C is said to be Haupt if under some symplectic identification V ≃ H1(Σg) it is a Haupt
character in H1(Σg,C).

Definition 5.2. Given p ∈ H1(Σg,C) with vol(p) > 0, a decomposition V1 ⊕ . . .⊕ Vk of a
submodule V ⊂ H1(Σg) into orthogonal pairwise symplectic submodules is p-admissible if
each p|Vj

is a Haupt homomorphism.
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Definition 5.3. If V is a symplectic Z-module and h : V → C is a homomorphism we
define vol(h) = ℜh · ℑh.

To calculate volumes effectively we use the following

Lemma 5.4. Let V be a symplectic Z-module and h : V → C a homomorphism. Then
for any symplectic basis {ai, bi} of V , that is a basis where all pairwise products are zero
except for ai · bi = 1 and bi · ai = −1, we have

vol(h) =
∑

ℑ(h(ai)h(bi)).

Lemma 5.5. Suppose V1 is a symplectic module of rank ≥ 4, and V2 one of rank ≥ 2. Let
pi : Vi → C be a homomorphism for i = 1, 2. Suppose p1 is Haupt and vol(p2) ≥ 0. Then
p = p1 ⊕ p2 : V1 ⊕ V2 → C is a Haupt homomorphism.

Proof. We already have vol(p) = vol(p1)+vol(p2) ≥ vol(p1) > 0. If p were not Haupt, then
vol(p) = vol(C/Im(p)). On the other hand Im(p1) ⊂ Im(p) are discrete and therefore

vol(C/Im(p)) ≤ vol(C/Im(p1)) < vol(p1) ≤ vol(p)

where the strict inequality comes from the Haupt condition for p1.

�

Since the second condition of a Haupt homomorphism is automatically satisfied for in-
jective homomorphisms, we have that for an injective p ∈ Hg every symplectic submodule
V ⊂ H1(Σg) of intermediate volume 0 < volp(V ) < vol(p) induces a p-admissible decom-
position V ⊕ V ⊥.

In ΩS we have only forms with at most one node we analyze the boundary components
that correspond to a single node.

5.1. Boundary components with a separating node. Given a marked abelian dif-
ferential ω with a single separating node and periods p ∈ Hg we have a well defined p-
admissible decomposition H1(Σg) = V ⊕V ⊥ that corresponds to the boundary component
V ′(p) containing ω.

In this subsection we will analyze the possibilites of the volumes for rank two submodules
from an algebraic point of view.

Lemma 5.6. Let W be a unimodular symplectic module of rank 2g ≥ 4 and p : W → C
a non-trivial homomorphism. Let a ∈ W \ ker p. Then if one of the following conditions
hold:

(1) rank(a⊥ ∩ p−1(Rp(a))) ≤ 2g − 3 or
(2) if ℓ 6= Rp(a) is a real line in C satisfying rank(p(W ) ∩ ℓ) > 2,

then for every ε1 < ε2 there exists a symplectic submodule V ⊂ W of rank 2 such that
a ∈ V and ε1 < volp(V ) < ε2.
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Proof. Let b ∈ W be such that a·b = 1, e ∈ a⊥ and b′ = b+e and denote α = p(a), β = p(b).
The volume of V = Za + Zb′ is given by

(8) volp(V ) = ℑ(βα) + ℑ(p(e)α).

If 1) holds, the form e ∈ a⊥ 7→ ℑ(p(e)α) ∈ R has image a submodule of R of rank

rank a⊥ − rank(a⊥ ∩ p−1(Rα)) ≥ 2g − 1− (2g − 3)) ≥ 2.

Therefore its image is dense in R and we can find the desired e for any given ε’s. On the
other hand, 2) implies 1) so the same conclusion holds. �

Proposition 5.7. Let W be a unimodular symplectic module of rank 2g ≥ 4, and p : W →
C be a homomorphism whose image is not contained in a real line. Suppose that either p
is injective or rank(p) ≥ 5. Then at least one of the following possibilities occur

(1) there exists an element a ∈ W \ker p such that for any pair of real numbers ε1 < ε2,
there exists a rank two symplectic submodule V ⊂ W containing a such that

ε1 < volp(V ) < ε2

.
(2) g = 2, and for every real line l ⊂ C, the preimage p−1(l) is either {0} or a La-

grangian submodule of W .

Moreover, if g ≥ 3 there exists a proper submodule ker p ⊂ I ⊂ W such that the conclusion
is true for every primitive a ∈ W \ I. If I = ker p does not have the property, then there
exists a unique real line ℓ ⊂ C such that rank(p(W ) ∩ ℓ) > 2. In this case, the module
I = p−1(ℓ) does the job.

Proof. We first treat the case g ≥ 3. Assume that for every real line l ⊂ C, p(W ) ∩ l has
rank ≤ 2. Take a ∈ W \ ker p. Then
rank(a⊥∩p−1(Rp(a)) ≤ rank p1(Rp(a)) ≤ rank ker p+rank(p(W )∩Rp(a)) ≤ 2g−5+2 = 2g−3

and we conclude by Lemma 5.6. Therefore in this case the conclusion with I = ker p is
valid. If there exists a real line l ⊂ C such that p(W )∩l has rank > 2 the conclusion follows
by Lemma 5.6. In this case the submodule I = p−1(l) does the job. For the uniqueness of
the module I as defined: suppose that there exists a ∈ W \ ker p and an interval (ε1, ε2)
in R such that no symplectic submodule V ⊂ W containing a satisfies ε1 < volp(V ) < ε2.
Then there exists a real line l ⊂ C, p(W )∩ l has rank > 2. On the other hand, no real line
l 6= Rp(a) can have this property, since otherwise a would belong to rank two submodules
of W of arbitrary volume. Hence the only possibility is that l = Rp(a). The submodule
I = p−1(l) is the only of this type that has the desired property.

Next suppose g = 2. Then p is injective by assumption. If there exists a real line
l = Rp(w) ⊂ C with rank(a⊥ ∩ p−1(l)) = 1 or rank(p−1(l)) > 2, we can use Lemma 5.6 to
find the desired element a ∈ W \ 0. Otherwise we have that for every a ∈ W \ 0

rank(a⊥ ∩ p−1(Rp(a))) = 2 and rank p−1(Rp(a)) ≤ 2.
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By injectivity of p this means that p−1(Rp(a)) ⊂ a⊥ for every a, so p−1(Rp(a)) is a La-
grangian.

�

Example 5.8. In H2 there are examples of injective homomorphisms for wich the volume
of symplectic submodules can only take discrete values. They necessarily correspond to
case (2) in Proposition 5.7. These examples correspond precisely to the periods of forms
belonging to Hilbert modular invariant submanifolds. Assume W is of rank 4, and that
the homomorphism p : W → C is given on a symplectic basis a1, b1, a2, b2 by

α1 = 1, β1 = i
√
D, α2 =

√
D, β2 = i,

where D ≥ 2 is an integer. Then, we claim that for any symplectic submodule V of W we
have

(9) volp(V ) ∈
√
D + Z.

Indeed, taking a symplectic pair a, b of W , and writing

a =
∑

miai +mibi, b =
∑

i

m′
iai + n′

ibi,

we have
a · b = m1n

′
1 − n1m

′
1 +m2n

′
2 − n2m

′
2 = 1.

A straightforward computation shows that the volume of V = Za + Zb is

volp(V ) = n′
2m1 −m′

1n2 +D(n′
1m2 −m′

2n1) +
√
D,

which ends the proof of equation (9). Even if the possible volumes of symplectic submodules
forms a discrete set, there are an infinite number of elements in Vp, all having volumes in a
finite set of values. In the given example with D = 2 the only possibilities for the volume
of a module in Vp are

√
2 or

√
2 + 1.

The previous results will be used to show the existence of p-admissible decompositions
with a factor of rank two. They will play an important role in the sequel.

Definition 5.9. Given p ∈ H1(Σg,C) with vol(p) > 0 we define Vp ⊂ Z to be the set
of rank two symplectic submodules V ⊂ H1(Σg) satisfying that p|V and p|V ⊥ are Haupt

homomorphisms. In other words, V ⊕ V ⊥ is a p-admissible decomposition. A primitive
element a ∈ H1(Σg) \ 0 is said to be p-admissible if it belongs to some V ∈ Vp.

The role played by the rank of p on lines in Lemma 5.6 makes it useful to introduce

Definition 5.10. Given a homomorphism p : W → C from a Z-module W we define its
line rank as

r(p) = max
a∈S1

rankZ(p
−1(aR)).

Remark that if W is symplectic and vol(p) > 0 then r(p) < 2g. Also, if p is injective
and r(p) > g, then the maximum is attained by a unique real line ℓmax ⊂ C containing 0.
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Corollary 5.11. Let g ≥ 2. If p ∈ Hg is injective, then the sets Vp and Z\Vp are infinite.
If there exists a primitive element a ∈ H1(Σg)\0 that is not p-admissible, then r(p) ≥ 2g−2.
If moreover g ≥ 3, every real line l 6= ℓmax = Rp(a) satisfies rank p−1(l) ≤ 2 < r(p).

Proof. If p falls into case (2) of Proposition 5.7 we appeal [14, Theorem 1.2, p. 2274]. Oth-
erwise it suffices to make distinct choices of intervals (ε1, ε2) in (0, vol(p)) or R \ [0, vol(p)]
to construct examples of modules in Vp or Z \ Vp close to any given volume. By choosing
different volumes all the constructed submodules are different. The rest of the statements
are direct applications of Lemma 5.6. �

In genus g ≥ 3 there exist examples of p ∈ Hg with big kernel that do not admit any
p-admissible decompositions. Hence Vp = ∅.
Example 5.12. Take W a symplectic module of rank 2g ≥ 6 and a homomorphism p
defined on a symplectic basis {ai, bi} by p(a1) = p(a2) = 1, p(b1) = p(b2) = i and zero
elsewhere. In this case vol(p) = 2 and rank(Ker(p)) = 2g − 2, but it is not a symplectic
submodule, so p is a Haupt homomorphism. The volume of any symplectic submodule of
W is an integer. Suppose there exists a p-admissible decomposition V1⊕V2 of H1(Σg). The
volume of each component is a positive integer. Hence, the only possibility is that each
component has volume one and thus vol(Vi) = vol(C/Im(p)). One of both factors, say V1,
has even rank ≥ 4 so p|V1

is not a Haupt homomorphism.

In the next subsection we will see that in the case of non-injective p ∈ Hg we can always
find cyclic submodules in Z.

5.2. Boundary components with a non-separating node. Let (C,m, ω) be an abelian
differential having a single non-separating node that has zero residues. Let p ∈ Hg be its

periods. Then the normalization Ĉ of C is a genus g − 1 smooth curve. The module
Ker(m) = Za 6= 0 belongs to Z and the unimodular symplectic form on H1(Σg) induces a

unimodular symplectic form on a⊥/Za. The latter is naturally isomorphic to H1(Ĉ) via
the marking. The homomorphism

pa : a
⊥/Za → C

induced by p corresponds to the periods of the form induced by ω on Ĉ, hence pa is a
Haupt homomorphism.

Remark 5.13. Given any symplectic submodule V of rank two containing a primitive
element a ∈ ker p, there is a natural symplectic isomorphism between V ⊥ and a⊥/Za.
Under this identification p|V ⊥ is equal to pa.

The next lemma describes the boundary components of ΩSg with a non-separating node
that are candidates to contain an abelian differential of periods p ∈ Hg.

Lemma 5.14. Let g ≥ 2 and p ∈ Hg be a Haupt character with ker p 6= 0. Then either
all primitive elements a ∈ ker p satisfy that pa is a Haupt homomorphism or g ≥ 3, ker p
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has rank ≥ 2g − 3 and contains a symplectic submodule W of rank 2g − 4. All primitive
a ∈ W satisfy that pa is a Haupt homomorphism.

Proof. Suppose that there exists a primitive element a ∈ ker p such that pa is not Haupt
and take a rank two sympelctic submodule V containing a. Hence pV ⊥ is of positive
volume. If V is contained in ker p, then p|V ⊥ must be Haupt, since otherwise ker p would
be a symplectic submodule of rank 2g − 2. So, the only possibility is p(V ) 6= 0.

If g = 2 then V ⊥ has rank two and must have positive volume, so pV ⊥ is Haupt. A
contradiction. Thus in genus g = 2 every a ∈ ker p satisfies that pa is Haupt.

If g ≥ 3, then p|V ⊥ is of positive volume and is not Haupt. Thus ker(p) contains a
symplectic submoduleW of rank 2g−4 and every element inW is contained in a symplectic
submodule of ker p of rank 2. �

5.3. Haupt’s Theorem, Realization of p-admissible decompositions and pinch-

able classes. In this subsection we will give a proof of Theorem 2.9 in the spirit of
Haupt’s original proof by using p-admissible decompositions and pinchable elements. The
proof goes by induction.

For genus g = 1 the condition vol(p) > 0 implies that p is injective and the image of p
is a lattice Λ ⊂ C. Therefore the abelian differential dz on C/Λ has periods p.

For g = 2 the argument in Proposition 2.3 of [14] shows that any character p ∈ H1(Σ2,C)
of positive volume is the period map of an abelian differential ω on a nodal curve of compact
type of genus two 2. If ω does not have a zero component we can smooth out the node to
obtain an abelian differential on a smooth curve. Otherwise p is a pinching of a handle,
contrary to assumption.

Suppose g ≥ 3 and that every Haupt period of genus up to g − 1 is the period of some
abelian differential on a marked smooth curve. Let p ∈ Hg.

Case 1: If p is injective. By Lemma 5.7 there exists a p-admissible decomposition V1⊕V2

of H1(Σg) where V1 has rank two. The homomorphism pi = pVi
satisfies Haupt’conditions.

By inductive hypothesis, for i = 1, 2 take an abelian differential ωi of periods pi, choose
points qi where ωi(qi) 6= 0 and consider the stable form ω1 ∨ ω2. By smoothing the node
we obtain an abelian differential on a smooth curve with periods p = p1 ⊕ p2.

Case 2: Suppose ker p 6= 0. By Lemma 5.14 there exists a class a for which pa is a Haupt
homomorphism.

To prove that the candidate classes to be pinched are effectively pinched by some abelian
differential we will use the following

Lemma 5.15. Let (C, ω) be an abelian differential on a smooth curve of genus g ≥ 1. For
any z ∈ C there is an immersed arc β in C so that

∫
β
ω = z. Moreover, if g ≥ 2, the arc

β can be chosen to be embedded with distinct endpoints.

2This argument uses that any marked principally polarized abelian variety of dimension two is in the
Schottky locus, i.e. the image of the Torelli map. Haupt uses a different argument for the case g = 2
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Proof. Let C̃ be the universal cover of C and ω̃ the lift of ω to C̃. The map I : C̃ → C
defined by x 7→

∫ x

x0

ω̃ is onto. Therefore there exists an immersed arc β in C, starting

from x0, such that
∫
β
ω = z. If g ≥ 2 we can require x0 to be a zero of ω. In this case

the map I is a branched covering of degree > 1 near x0. Thus, if the endpoints of both β
coincide with x0, we can move them a little so that

∫
β
ω does not change and they become

distinct. Now, since β is an arc, via an homotopy relative to endpoints we can eliminate
all self-intersections so that β becomes embedded. �

Lemma 5.16. Suppose Theorem 2.9 is true up to genus g − 1 and let p ∈ Hg. Then a
primitive element a ∈ ker p is pinched by some abelian differential of periods p if and only
if pa is Haupt.

Proof. Let a ∈ ker p be a primitive element such that pa is Haupt. Choose b such that
a · b = 1, define V1 = Za ⊕ Zb, V2 = V ⊥

1 , and pi = p|Vi
. By construction V2

∼= a⊥/Za
as symplectic modules and p2 = pa under this equivalence, meaning that p2 is a Haupt
homomorphism.

Suppose first that g = 2. Then p2 is of positive volume and V2 being of rank two, this
implies that p2(V2) is a lattice. On the other hand p(b1) does not belong to the lattice Λ,
since otherwise vol(p) = vol(C/Λ) and p would not be a Haupt homomorphism. Therefore
p(b1) ∈ C describes a path with distinct endpoints in (C/Λ, dz) that we can glue to obtain
a nodal curve of genus 2. We leave it to the reader to describe the appropriate marking to
guarantee that its periods are given by p and a is collapsed to the node.

Next suppose by induction that for some g ≥ 3 we have proved the Lemma for all genera
up to g − 1. In particular, p2 is the period of a marked abelian differential ω2 on a genus
g − 1 ≥ 2 smooth curve. By Lemma 5.15 we can find an embedded arc β with distinct
endpoints in ω2 of length p(b1). Glue the endpoints and mark the obtained nodal curve to
guarantee that the period character of the stable form is p and the class a is pinched to
the node. This finishes the proof of the Lemma. �

By smoothing the non-separating node of the form obtained in Lemma 5.16 we obtain
a form of periods p on a smooth curve. This finishes the proof of the inductive step in
Theorem 2.9.

Lemma 5.16 motivates the following

Definition 5.17. Let V be a symplectic module and p : V → C be a Haupt homomor-
phism. We say that a primitive element a ∈ V is pinched by p if a ∈ Ker(p) and pa is a
Haupt homomorphism.

Corollary 5.18. Let p : H1(Σg) → C be a Haupt homomorphism, H1(Σg) = V1 ⊕ . . .⊕ Vk

a p-admissible decomposition. Then there exists an abelian differential with periods p and
k − 1 separating nodes such that each p|Vj

corresponds to the periods of a component of its
normalization.

Proof. We have 0 < volp(Vj) < vol(p) for each factor Vj of the decomposition. Denote
2gj the rank of Vj and choose isomorophisms mj : H1(Σgj )

∼= Vj . For each j an abelian



A TRANSFER PRINCIPLE: FROM PERIODS TO ISOPERIODIC FOLIATIONS 31

differential ωj on a curve Cj of genus gj and periods p ◦mj ∈ H1(Σgj ,C). Any form of the
type ω = ω1 ∨ · · · ∨ ωk on C1 ∨ · · · ∨ Ck marked by m = m1 ⊕ · · · ⊕mk has periods p. By
construction all those forms ω share the k − 1 separating nodes we have introduced. �

Corollary 5.19. Let g ≥ 2, p ∈ Hg. Then Zp is non-empty. An element V ∈ Z belongs to
Zp if and only if V ⊕ V ⊥ is a p-admissible decomposition or V = Za where a is pinchable
for p.

Proof. By Theorem 2.9, S(p) is nonempty. By proposition 4.3 there exists some element

in the boundary of S
′
(p), so Zp 6= ∅. For the characterization part, apply Lemma 5.16 for

pinchable classes or Corollary 5.18 for p-admissible decompositions. �

Corollary 5.19 shows in particular that there are many components of the boundary
of ΩMg that are not accumulated by leaves of the isoperiodic foliation: for instance, any
symplectic V ∈ Z such that volp(V ) < 0 is not accumulated by the leaf associated to
p ∈ Hg.

6. Connecting different isoperiodic boundary components

In this section we prove that the different boundary components of S
′
(p) can be connected

by paths in S
′
(p).

Proposition 6.1 (Connecting different boundary components). Let g ≥ 2 and p ∈ Hg.
Suppose that for all V ∈ Z, V ′(p) is connected. Then every pair V1, V2 ∈ Zp lie in the same

connected component of S
′
(p).

Remark that if S
′
(p) is connected then the claim is obvious. In particular there is nothing

to prove if g = 2 or 3. For the proof we introduce some notation:

Definition 6.2. Let p ∈ Hg with g ≥ 4. Given two connected V1, V2 ∈ Zp, we say that
V1 and V2 are equivalent and write V1 ∼ V2 if V ′

1(p) and V ′
2(p) lie in the same connected

component of S
′
(p).

To prove Proposition 6.1 we need to show that there is only one equivalence class in Zp.
Remark that if V2 = V ⊥

1 we have V ′
1(p) = V ′

2(p) and hence V1 ∼ V2. More generally, if
V1, V2 ∈ Zp are factors appearing in the same p-admissible decomposition, say V1 ⊕ V ⊕ V2

of H1(Σg) we can construct a form ω12 of periods p with two simple nodes by Corollary
5.18, that shares a node with an element of V ′

1(p) and another with an element of V ′
2(p).

By smoothing the nodes of ω12 we obtain an abelian differential ω on a smooth curve that
is connected to a point of V ′

1(p) and also to a point in V ′
2(p). This implies V1 ∼ V2.

In particular, if two p-admissible decompositions share a factor, then all factors appearing
in any of the decompositions are equivalent.
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6.1. Proof of Proposition 6.1 in the injective case. Let g ≥ 4 and p ∈ Hg be
injective. Then there are no abelian differentials with non-separating nodes having periods
p. Therefore in Zp there are only symplectic submodules. Thanks to the results in Section
5 the proof is purely algebraic. Along this subsection the primes will be used to distinguish
submodules, not to denote forms with simple nodes.

We first prove that every element V ∈ Zp is equivalent to another V1 ∈ Zp of rank two.
Indeed, if V is of rank strictly between 2 and 2g−2 then p|V is a Haupt homomorphism and
by Corollary 5.19 there exists a p|V -admissible decomposition V1 ⊕ V2 of V with a factor
V1 of rank 2. Therefore V1 ⊕ V2 ⊕ V ⊥ is a p-admissible decomposition and V ∼ V ⊥ ∼ V1.

Recall that by Corollary 5.19, Vp is precisely the set of modules V ∈ Zp of rank two.

Proposition 6.3. If g ≥ 4, p ∈ Hg is injective and V, V ′ ∈ Vp, we have V ∼ V ′.

We will prove it in several Lemmas :

Lemma 6.4. Let g ≥ 2 and p ∈ Hg be injective. If V, V ′ ∈ Vp satisfy V ∩ V ′ 6= 0, then

V ∼ V ′.

Proof. The cases g = 2, 3 are evident by the connectedness of S
′
(p).

Let g ≥ 4. If V = V ′ we are done. Suppose that V 6= V ′

First step: there is a symplectic basis a1, b1, . . . , ag, bg such that V = Za1 + Zb1 and
V ′ = Za1 + Z(b1 +m′

2a2) for a certain integer m′
2.

Proof. The intersection V ∩ V ′ is a primitive submodule of H1, since both V and V ′ are
primitive. Being of rank 1, we have V ∩ V ′ = Za1 with a1 primitive. Let b1 ∈ V (resp.
b′1 ∈ V ′) such that a1 · b1 = 1 (resp. a1 · b′1 = 1). These elements exist since V and V ′

are unimodular. The element b′1 − b1 belongs to a⊥1 . For a certain integer n, the element
b′1 + na1 − b1 is also orthogonal to b1. Change b1 to b1 + na1 if necessary. We then have
that b′1 − b1 is orthogonal to V = Za1 + Zb1. Write b1 − b1 = m′

2a2 where a2 is a primitive
element of V ⊥. Completing a2 into a symplectic basis a2, b2, . . . , ag, bg of V ⊥ gives the
desired statement. �

Second step: If the periods of (V + V ′)⊥ do not lie in a real line of C, there exists a
symplectic rank two submodule W ⊂ H1 such that V ⊥ W , V ′ ⊥ W and

(10) 0 < volp(W ) < inf(vol(p|V ⊥), vol(p|(V ′)⊥)).

In particular, V ∼ W ∼ V ′.

Proof. In the coordinates of the first step, we have (V + V ′)⊥ = Za2 + X where X :=∑
k≥3 Zak + Zbk. We apply Proposition 5.7 to p|X . If the restriction of p to X belongs to

case (1) of that proposition, we are done. If it belongs to case (2), we use the
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Proposition 6.5. Let X be a unimodular symplectic module of rank 4. For every La-
grangian subspace L ⊂ X, there exists a symplectic rank two submodule Y ⊂ X such that
L ∩ Y = {0}.

Proof. We can assume that L = Za + Za′ is primitive. Let a1 = a and b1 be an element
of X such that a1 · b1 = 1. We have a′ = m1a1 + c where c ∈ (Za1 + Zb1)⊥ and m1 ∈ Z.
Up to replacing a′ by a′ −m1a1, we can assume that m1 = 0. Since L is primitive, so is c,
so that we can extend the family a1, b1, a2 = c to a symplectic basis of X . The symplectic
submodule Y = Z(a1 + b2) + Zb1 has the desired properties. �

From now on a greek letter will denote the period of the corresponding latin letter. Let
l = Rα2, and L = X ∩p−1(l). This space is either {0} or a Lagrangian subspace of X since
we assume the restriction of p to X is in case (2). By the preceding proposition, there
exists a symplectic rank two submodule Y ⊂ X such that Y ∩ p−1(l) = {0}. Let a′, b′ be
a symplectic basis of Y , and let

a = a′ + Aa2, b = b′ +Ba2,

for some A,B ∈ Z. We have a · b = a′ · b′ = 1, and the volume of W = Za+Zb is given by

volp(W ) = ℑ((β ′ +Bα2)(α′ + Aα2)) = ℑ(β ′α′) + ℑ((Aβ ′ − Bα′)α2).

By construction none of the cycles of Y are mapped by p to an element of the line l = Rα2,
so the linear form (A,B) ∈ Z2 7→ ℑ(Aβ ′ − Bα′)α2) ∈ R is injective, and thus the volume
of W can approximate any real value. Since W is orthogonal to both V and V ′, this gives
the solution to step 2.

�

Step 3. Assume that the periods of (V + V ′)⊥ lie on a real line l ⊂ C. Then V ∼ V ′.

Proof. We can suppose that l = R for simplicity. Recall that X =
∑

i≥3 Zai + Zbi ⊂
(V + V ′)⊥. Let c ∈ X and let V ′′ = Za1 + Z(b1 + c). The volume of V ′′ is given by

volp(V
′′) = volp(V ) + ℑ(γα1).

So V ′′ is admissible as soon as

−volp(V ) < ℑ(γα1) < vol(p)− volp(V ).

This equation has an infinite number of solutions c ∈ X \ {0}. We fix one of them.

We claim that V ′′ ∼ V . Indeed, the space (V + V ′′)⊥ contains the element b2. Observe
that the period β2 of b2 is not real, since otherwise all the periods of V ⊥ would be real,
and so we would have volp(V ) = vol(p) which contradicts V ∈ Vp. On the other hand, the
submodule c⊥ ∩X has rank ≥ 3 and is contained in (V + V ′)⊥. Since the periods of X are



34 GABRIEL CALSAMIGLIA, BERTRAND DEROIN, AND STEFANO FRANCAVIGLIA

real, this proves that some periods of (V +V ′′)⊥ are real. We can thus apply Step 2 to the
couple (V, V ′′) to infer V ′′ ∼ V .

To prove that V ′′ ∼ V ′, we observe similarly that b2 +m′
2a1 belongs to (V ′ + V ′′)⊥ and

that β2 + m′
2α1 is not real, since otherwise all the periods of (V ′)⊥ would be real. Then

the same argument as before shows that we can apply step 2 to the couple (V ′, V ′′). �

�

Lemma 6.4, allows to reduce the equivalence relation ∼ on submodules in Vp to an
equivalence relation on the elements that belong to those submodules.

Definition 6.6. Let p ∈ Hg. A primitive element w ∈ H1(Σg) is said to be p-admissible
if it is contained in some module V ∈ Vp. Two p-admissible elements w,w′ are equivalent
and denoted w ∼ w′ if there exist V, V ′ ∈ Vp containing w and w′ respectively such that
V ∼ V ′.

The transitivity of this relation is proven by the use of Lemma 6.4.

In particular, we already know that if V ∩ V ′ 6= 0 then any pair of primitive elements in
V ∪ V ′ are equivalent.

If V and W belong to Vp and there exists some elements v ∈ V and w ∈ W such that
v ∼ w, then V ∼ W . Indeed, we can find V ′,W ′ ∈ Vp such that v ∈ V ′, w ∈ W ′ and
V ′ ∼ W ′. By Lemma 6.4 V ∼ V ′ and W ∼ W ′, so V ∼ W .

Let us analyze the p-admissible elements.

Lemma 6.7. Given w1, w2, w3 ∈ H1(Σg) such that

(1) wi · wi+1 = 1 for i = 1, 2,
(2) p(w3) /∈ Rp(w1) and
(3) for every real line ℓ ⊂ C containing 0

rank(p−1(ℓ) ∩ w⊥
1 ∩ w⊥

3 ) < 2g − 3.

Then there exists w′
2 ∈ H1(Σg) such that w1 ·w′

2 = w′
2 ·w3 = 1 and Zw1⊕Zw′

2 and Zw′
2⊕Zw3

belong to Vp. Therefore w1 and w3 are p-admissible and w1 ∼ w3.

Proof. Write w′
2 = w2 + z where z ∈ w⊥

1 ∩ w⊥
3 . If we show that the image of the map

w⊥
1 ∩ w⊥

3 → R2

defined by z 7→ (volp(Zw1 ⊕ Z(w2 + z)), volp(Z(w2 + z)⊕ Zw3)) has a point in the square
(0, vol(p))× (0, vol(p)) we will be done. The previous map is affine, with linear part

ϕ(z) = (ℑ(p(z)p(w1)),ℑ(p(z)p(w3))).

Since p(w1) and p(w3) are not R-collinear, Ker(ϕ) = 0 and therefore rank(Imϕ) = 2g − 2.
The topological closure of Imϕ in R2 is either R, Z×R or R2. Suppose it is not R2. Then
there exists a submodule H ⊂ w⊥

1 ∩w⊥
3 such that ϕ(H) ⊂ ℓ ⊂ R2 for some real line ℓ passing
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through the origin and rankH ≥ (2g − 2)− 1 = 2g − 3. Write ℓ = {(x, y) : αx+ βy = 0}
and then for each z ∈ H ,

ℑ(p(z)(αp(w1) + βp(w3)) = 0.

Hence p(H) ⊂ R(αp(w1) + βp(w3)) is a submodule of rank at least 2g − 3 and we reach a
contradiction with the rank hypothesis. �

Remark that the rank condition of Lemma 6.7 is automatically satisfied if r(p) < 2g−3.
Also, for g ≥ 4 and r(p) ≥ 2g − 3 we have to check the rank condition only for ℓmax. In
case r(p) = 2g − 1 we cannot apply the lemma directly.

Lemma 6.8. For g ≥ 2, given primitive w1, w4 ∈ H1(Σg) such that w1 · w4 = 0, there
exists w2, w3 ∈ H1(Σg) such that

wi · wi+1 = 1 for i = 1, . . . , 3

Proof. Let b1 satisfy w1 · b1 = 1 and b4 satisfy b4 ·w4 = 1. Since w1 ∈ w⊥
4 for any k we have

(b4 + kw1) ·w4 = 1. Choose k as to have (b4 + kw1) · b1 = 0 and define w3 = b4 + kw1. It is
primitive and we can take b3 satisfying b3 · w3 = 1. Since b1 ∈ w⊥

3 there exists l such that
w2 = (b3 + lb1) satisfies w1 · w2 = 1. �

Lemma 6.9. If g ≥ 4, p : H1(Σg) → C is an injective homomorphims of positive volume
and r(p) < 2g − 2, for any pair of primitive v, w we can find V,W ∈ Vp such that V ∼ W
and v ∈ V , w ∈ W .

Proof. By taking z ∈ v⊥ ∩ w⊥ and applying twice Lemma 6.8 we can consider a sequence
w0, w1, . . . , w6 ∈ H1(Σg) such that wi·wi+1 = 1 for i = 0, . . . , 5, w0 = v, w3 = z and w6 = w.
We claim that there exist c2 ∈ w⊥

1 ∩w⊥
3 and c4 ∈ w⊥

3 ∩w⊥
5 such that for w′

2 = w2 + c2 and
w′

4 = w4 + c4 we have

(11) ℑ(p(w′
2)p(w0)) 6= 0, ℑ(p(w′

4)p(w
′
2)) 6= 0, ℑ(p(w′

6)p(w
′
4)) 6= 0

Suppose the first of the inequalities is false for all c2 ∈ w⊥
1 ∩ w⊥

3 . It means that all the
periods of the submodule w⊥

1 ∩w⊥
3 of rank ≥ 2g−2 are contained in a line, contradicting the

line rank hypothesis on p. Hence we can already take a solution w′
2 to the first inequality.

On the other hand if the other pair of inequalities do not hold always, the map

w⊥
3 ∩ w⊥

5 → R2

defined by c4 7→ (ℑ(p(c4)p(w′
2)),ℑ(p(w6)p(c4))) has its image – a submodule of R2 of rank

2g − 2 – contained in the pair of real axis x = 0 and y = 0 where (x, y) are coordinates of
R2. Hence it is contained in a single axis and we reach a contradiction with the hypothesis
on the line rank of p.

Since r(p) < 2g − 2 and the elements p(w2i) and p(w2(i+1)) are not alligned, all the
hypotheses of Lemma 6.7 are satisfied for each of the triples wi, wi+1, wi+2 for i = 0, 2, 4.
Therefore w0 ∼ w6.

�
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The proof of Proposition 6.3 is done for the case of r(p) < 2g − 2. For the other cases
we use the next lemmas:

Lemma 6.10. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 2. Write I = p−1(ℓmax) and suppose v, w ∈ H1(Σg) \ I are primitive elements
such that v · w = 0 and [w] ∈ v⊥/Zv is also primitive. Then v ∼ w.

Proof. Without loss of generality we can suppose ℓmax = R. Choose b ∈ w⊥ such that
v · b = 1. We claim that, up to changing b by b+e for some e ∈ I ∩w⊥∩v⊥ we can suppose
that V = Zv ⊕ Zb belongs to Vp. Indeed, since p(e) ∈ R,

vol(Zv ⊕ Z(b+ e)) = vol(Zv ⊕ Zb) + p(e)ℑ(p(v)).
By hypothesis the rank of p(I ∩ w⊥ ∩ v⊥) is at least 2g − 4 ≥ 4 for g ≥ 4, so the value of
the volume of V can be chosen arbitrarily close to any desired value.

Next take c ∈ V ⊥ such that w · c = 1. Given f ∈ w⊥ ∩ V ⊥ ∩ I, we have

vol(Zw ⊕ Z(c + f)) = vol(Zw ⊕ Zc) + p(f)ℑ(p(w)).
Again, since the rank of w⊥ ∩ V ⊥ ∩ I is at least 2g − 5 ≥ 3 for g ≥ 4, we can suppose
that c is chosen so that W = Zw ⊕ Zc belongs to Vp

|V ⊥
. By construction V ⊥ W and

0 < vol(V ) + vol(W ) < vol(p). Therefore V ∼ W and also v ∼ w. �

Lemma 6.11. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 2. Define I = p−1(ℓmax). If v, w ∈ H1(Σg) \ I are primitive such that

v⊥ ∩ w⊥ * I

then v ∼ w.

Proof. Take a symplectic basis ai, bi of H1(Σg) such that a1 = v and

w = m1a1 + n1b1 +m2a2.

Let X := Za3 ⊕ Zb3 ⊕ · · · ⊕ Zag ⊕ Zbg. If X * I then choose z ∈ X \ I ∩X primitive. By
Lemma 6.10 v ∼ z and w ∼ z therefore v ∼ w. If X ⊂ I take c ∈ (v⊥ ∩ w⊥) \ I and write
c = cX + c⊥ where c⊥ ∈ X⊥. Then c⊥ /∈ I and c⊥ · v = c⊥ · w = 0. By changing X by
X ′ = Z(a3 + c⊥)⊕ Zb3 ⊕ · · · ⊕Zag ⊕ Zbg and choosing an appropriate basis of X ′⊥ we fall
in one of the previous cases. �

Lemma 6.12. Under the same hypothesis and notation of Lemma 6.11. Let v ∈ H1(Σg)\I
and define

Iv = {z ∈ H1(Σg) : z
⊥ ∩ v⊥ ⊂ I}.

Then there exists a proper submodule J * H1(Σg) such that Iv ⊂ J .

Proof. If Iv = ∅, the module J = 0 does the job. Otherwise take z ∈ Iv. Then z⊥ ∩ v⊥ ⊂
v⊥ ∩ I. We also have

2g − 2 ≤ rank(v⊥ ∩ I) < rank(v⊥) = 2g − 1
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where the strict inequality comes from the fact that v /∈ I and I is a primitive module.
Therefore rank(v⊥ ∩ I) = 2g − 2. Its primitive submodule z⊥ ∩ v⊥ has also rank 2g − 2 so
the only possibility is that z⊥ ∩ v⊥ = v⊥ ∩ I. Therefore z ∈ (v⊥ ∩ I)⊥ =: J �

Lemma 6.13. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 2. Then for any V,W ∈ Vp we have V ∼ W .

Proof. Again we suppose ℓmax = R and define I = p−1(R). Since V and W are of positive
volume we can find primitive elements v ∈ V ∩ Ic and w ∈ W ∩ Ic. If w⊥∩ v⊥ * I we have
v ∼ w by Lemma 6.11. Therefore V ∼ W .

If w⊥ ∩ v⊥ ⊂ I we can consider the union I ∪ Iv ∪ Iw. Since by Lemma 6.12 it is
contained in a union of proper submodules, it cannot cover the whole of H1(Σg). Take
z ∈ H1(Σg) \ (I ∪ Iv ∪ Iw). Then by Lemma 6.11 v ∼ z ∼ w, which as before implies that
V ∼ W . �

Proposition 6.3 is now proven for all possible ranks of p. This finishes the proof of
Proposition 6.1 for injective periods.

6.2. Proof of Proposition 6.1 in the non-injective case. For non-injective Haupt
homomorphism there are examples of periods that do not occur on curves of compact
type (see Example 5.12). However there are always abelian differentials of non-compact
type and non-injective periods p ∈ Hg (they correspond to modules V ∈ Zp of rank one).
The idea in the non injective case is to use degenerations of an abelian differential in the
isoperiodic set to nodal forms of non-compact type, i.e. that pinch some primitive cycle
a ∈ ker p \ 0. From Proposition 4.3 we know that there are always nodal curves on the

boundary of a connected component of S
′
(p). The next result is crucial for this approach:

it shows that in the boundary of any component of S
′
(p) there are abelian differentials that

pinch a non-trivial cycle in H1(Σg), i.e. on curves of non-compact type.

Proposition 6.14. Let g ≥ 2 and p ∈ Hg with ker p 6= 0. Given V ∈ Zp, there exists a
pinchable a ∈ ker p such that V ∼ Za.

Proof. By Lemma 5.14 there exist pinchable classes a ∈ ker p \ 0. The claim is obvious for

g = 2, 3, since there is only one connected component of S
′
(p).

Let V1 ∈ Zp be of rank > 1 and define V2 = V ⊥ and pi = p|Vi
. Then V1 ⊕ V2 is a

p-admissible decomposition and V1 ∼ V2.

If one of the restrictions, say p1, is not injective, there exists a form η with a non-
separating simple node that pinches a ∈ V1 and periods p1. On the other hand we can
consider a form ω with periods p2. By smoothing the nodes, the form with two simple
nodes η ∨ ω allows to connect a point of V ′(p) to a point having a non-separating node
contained in the boundary component associated to Za.

If both p1 and p2 are injective, we can find p-admissible decompositions of V1 and V2

whose factors are of rank 2. Thus, up to changing V1 by some equivalent element in Zp we
can suppose V1 has rank 2, and both p1 and p2 are injective.
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Next take a primitive element a ∈ ker p and write a = m1a1 + m2a2 for primitive
ai ∈ Vi and coprime m1, m2 ∈ N∗. If a2 ∈ V2 is contained in a factor of a p-admissible
decomposition V2 = V ⊕V ⊥ of V2, say a2 ∈ V , then there exists a form with two separating
nodes and associated decomposition V1 ⊕ V ⊕ V ⊥. On the other hand the factor V1 ⊕ V
has nontrivial kernel, since a ∈ V1 ⊕ V . By smoothing the initial separating node to the
last form, we are reduced to the case where one of the pi’s has some element in the kernel.
In particular this argument works if a2 is p2-admissible.

The remaining case is when p2 is injective and a2 6= 0 is not p2-admissible. Then by
Lemma 5.6 applied to p2, the rank of p−1

2 (Rp(a2))∩a⊥2 ) is at least 2g−4. Completing a2 into
a symplectic basis a2, b2, a3, b3, . . . , ag, bg of V2, and denoting V3 = Za3+Zb3+. . .+Zag+Zbg,
we conclude that H = p−1(Rp(a2)) ∩ V3 is either V3 or a corank one primitive submodule
of V3.

In the latter case, by considering an element w ∈ V3 such that p(w) does not belong to
ℓ := Rp(a2), we apply Lemma 5.6 to ℓ and V3 to construct a symplectic rank two submodule
W ⊂ V3 containing w with 0 < volp(W ) < volp(V2). Since p2 is injective, this implies that
W ∈ Vp2 . The splitting V1⊕W ⊕ (W⊥ ∩V2) of H1(Σg) is p-admissible. On the other hand
a ∈ W⊥ ∩ ker p so the restriction p|W⊥ is non-injective and we are done.

It remains to treat the case where H = V3, namely p(V3) ⊂ Rp(a2). Up to composing p
with a R-linear equivalence from C to C, we can assume that

p(a1) = n2, ℑp(b1) = 1, p(a2) = −n1, ℑp(b2) < 0,

and that
p(ak) = αk ∈ R, p(bk) = βk ∈ R for k ≥ 3.

Also, since the period p2 is injective, the numbers α3, . . . , αg, β3, . . . , βg are linearly in-
dependent over Q. The strategy in that case is to find a p2-admissible decomposition
V2 = V ′

1 ⊕ V ′
2 of V2 such that V ′

1 falls in one of the previous cases. Then, V1 ⊕ V ′
1 ⊕ V2

is a p-admissible decomposition and V1 ∼ V ′
1 ∼ Za for some pinchable a ∈ ker p. Such

submodules V ′
1 satisfy 0 < volp(V

′
1) < volp(V2). In such a situation, one can write the

decomposition of a as a sum a = n′′
1a

′′
1 + n′′

2a
′′
2 with a′′1 ∈ V ′

1 and a′′2 ∈ V ′
2 = (V ′

1)
⊥ (the

reason for this notation a′′i instead of a′i will become clear hereafter), and we claim that it
is possible to find V ′

1 so that either a′′2 is pV ′
2
-admissible or p′2 is not injective. We already

explained that this would conclude the proof.

We are going to look for the module V ′
1 as being generated by the elements a′1 and b′1,

where
a′1 = a2 +

∑

k≥3

mkak + nkbk, b′1 = b2, a′2 = a1, b′2 = b1

and for k ≥ 3
a′k = ak + nkb2, b′k = bk −mkb2.

Here mk, nk are integers that have to be determined for k ≥ 3. We have

volp(V
′
1) = −ℑ(p(b2))(n1 −

∑

k≥3

mkαk + nkβk).
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Observe also that volp(V2) = −n1ℑ(p(b2)). We will choose mk, nk multiple of n1, so we
write mk = m′

kn1, nk = n′
kn1 with m′

k, n
′
k integers. We then have

volp(V
′
1) = εvolp(V2) with ε = 1−

∑

k≥3

m′
kαk + n′

kβk.

Since p2 is injective, V
′
1 is p2-admissible iff 0 < ε < 1. Because of the rational independence

of the αk, βl’s we make a choice of mk, nk’s so that ε belongs to (0, 1). Further conditions
will be imposed later on ε.

Now it remains to understand how the class a decomposes according to the decomposition
V ′
1 + (V ′

1)
⊥: it is given by a = n2a

′′
1 + n1a

′′
2 with a′′1 = a′1 and

a′′2 = a′2 − n2

∑

k≥3

m′
ka

′
k + n′

kb
′
k.

Hence, it suffices to see that either a′′2 is p
′
2-admissible, or p′2 is not injective, where p

′
2 = p|V ′

2

and V ′
2 = (V ′

1)
⊥. Assuming p′2 to be injective, the volume of the symplectic rank two

submodule Za′′2 + Zb′2 ⊂ V ′
2 (containing a′′2) is

volp(Za
′′
2 + Zb′2) = (ℑ(p(b′2)p(a′′2)) = n2

(
1−

∑

k≥3

m′
kαk + n′

kβk

)
= n2ε,

while

volp(V
′
2) = volp − volp(V

′
1) = volp − εvolp(V2).

Hence, as soon as 0 < ε < volp
n2+volp(V2)

one concludes that a′′2 is p′2-admissible. The proof

of the proposition is complete since by rational independance of the αk, βl’s one can make
choices of m′

k, n
′
l’s such that ε satisfies this condition.

�

Given a unimodular symplectic module V of rank 2g and a Haupt homomorphism p :
V → C we say that a primitive a ∈ ker p is pinched by p if the map induced by p on a⊥/Za
is Haupt. Equivalently, up to identifying V with H1(Σg) there exists an abelian differential
of periods p that pinches a (see Lemma 5.16).

Remark 6.15. Let p : V → C be a Haupt homomorphism and W ⊂ ker p a symplectic
submodule. Then

(1) All primitive elements in W are pinched by p;
(2) p is a Haupt homomorphism if and only if p|W⊥ is a Haupt homomorphsim;

(3) a ∈ ker(p) ∩W⊥ is pinched by p if and only if it is pinched by p|W⊥.

Next we prove that abelian differentials that pinch distinct classes in ker p are equivalent.

Proposition 6.16. Let g ≥ 4 and p ∈ Hg with ker p 6= 0. Then for every pair of pinchable
a, a1 ∈ ker p, we have Za ∼ Za1.
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Proof. To abridge notations, we say that two pinchable classes a, a1 are equivalent and
denote it by a ∼ a1 if Za ∼ Za1.

The next lemma will be useful for the proof.

Lemma 6.17. Let g ≥ 4 and p ∈ Hg with ker(p) 6= 0.

(1) If W ⊂ ker p is a symplectic submodule of rank 2, all pinchable elements in W ∪W⊥

are equivalent.
(2) If a1, a2 ∈ ker p are pinchable elements that belong to a symplectic basis and a1 ·a2 =

0, then all pinchable elements in Za1 ⊕ Za2 are equivalent.
(3) Suppose H1(Σg) = V1 ⊕ V2 is a p-admissible decomposition. Pinchable elements of

p|Vi
are pinchable for p. All elements pinchable by p|V1

or p|V2
are equivalent.

Proof. (1) The restriction pW⊥ is a Haupt homomorphism. Fix an abelian differential
ω of periods p|W⊥ with a node and a simple zero elsewhere (we use g − 1 ≥ 3 here).
Take a pair of embedded twins with distinct endpoints and glue the endpoints. Given
any primitive a ∈ W Choose b ∈ W such that a · b = 1. Mark the obtained form by
pinching a and associating b to the loop obtained from the twins. Any pair of such marked
abelian differentials share a node: the node of ω. This shows that all elements in W are
equivalent. Next suppose a1 ∈ W⊥ is pinchable. Then, since W ⊂ ker p is symplectic, a1
is also pinchable for p|W⊥. It thus suffices to take the form ω in the previous argument
pinching a1 to conclude that a1 is equivalent to any primitive element a ∈ W .

(2) Let ai, bi i = 1, . . . , g denote a symplectic basis, Wi = Zai⊕Zbi and V = W3⊕· · ·⊕Wg.

If p|V is not Haupt, without loss of generality we can suppose vol(W3) > 0 and W4 ⊕
· · · ⊕ Wg ⊂ ker p. By (1) the pinchable elements of W4 ∪ W⊥

4 are all equivalent. Since
W1 ⊕W2 ⊂ W⊥

4 , all pinchable elements in W1 ⊕W2 are equivalent.

Since a1, a2 ∈ ker p, we have vol(p|V ) = vol p > 0. If p|V is a Haupt homomorphism, then
any primitive element in Za1 ⊕ Za2 is pinchable (see Lemma 5.5). Take a form ω with
periods p|V and two simple zeroes. In ω choose embedded paths with distinct endpoints
of lengths p(b1) and p(b2) respectively that do not intersect. This can always be done if
p(b1) = p(b2) = 0 by taking pairs of short twins at distinct zeroes of ω. If only one of
them is non-zero, we can take a very short pair of twins to realize the zero period so as
to avoid the path of non-zero length. If both are non-zero and we have initially taken two
paths that intersect, we change one of the paths in its homotopy class with fixed endpoints
to avoid the intersections. Gluing the endpoints of the said paths and marking the form
by pinching a1 and a2 and associating bi to the corresponding loop we obtain a form that
pinches a1 and a2. Therefore a1 ∼ a2.

In the module W1 ⊕W2 we can consider the new symplectic basis

a′1 = a1 − a2, b
′
1 = b1, a

′
2 = a2, b

′
2 = b1 + b2.

Since a′1 is pinchable, we have already shown that a′1 ∼ a′2 and thus a1 − a2 ∼ a2. We
can equivalently show that a1 + a2 ∼ a1. Therefore in the set of ordered basis (v1, v2)
of Za1 ⊕ Za2 the transformations (u, v) 7→ (v, u) and (u, v) 7→ (u ± v, v) send a basis
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of equivalent elements to another basis of equivalent elements, preserving the equivalence
class. By Gauss algorithm any primitive element a ∈ Za1 ⊕ Za2 can be obtained as a
member of such a pair after a finite number of applications of these transformations to the
pair (a1, a2). Hence a ∼ a1.

(3) Let ai ∈ Vi a p|Vi
pinchable element. Let ωi denote a form of periods p|Vi

that pinches
ai. Then ω1 ∨ ω2 pinches a1 and a2 and therefore a1 ∼ a2. If a1, a2 ∈ V1, we can consider
ω1, ω2 of periods p|V1

pinching a1 and a2 respectively and a form η of periods p|V2
. The

forms ω1 ∨ η and ω2 ∨ η share a separating node. Therefore a1 ∼ a2. �

Case 1: There exists a symplectic submodule W ⊂ ker p containing one of a1 or a.

Without loss of generality we can suppose W has rank 2 and a1 ∈ W . Write a =
m1a

′
1 +m2a2 where a′1 ∈ W , a2 ∈ W⊥ is a primitive element. If m2 = 0, Lemma 6.17 item

(1) gives a ∼ a1. Next suppose m2 6= 0. Since a, a1 ∈ ker p we have a2 ∈ ker p. We also
have p|W⊥ is a Haupt homomorphism by item (2) in Remark 6.15.

If a2 is pinchable for p|W⊥, then it is pinchable for p by item (3) in Remark 6.15. Item
(2) in Lemma 6.17 guarantees that a ∈ Za1 ⊕ Za2 is equivalent to a1. Otherwise p|W⊥ is
not Haupt and by Proposition 2.7 has as kernel a symplectic submodule of rank 2g − 4.
Take W3 ⊂ a⊥2 ∩W⊥ ∩ ker p a symplectic submodule of rank 2. By Lemma 6.17 item (1)
the elements of W3 ∪W⊥

3 are equivalent. Hence a ∼ a1.

Case 2: Neither a1 nor a belong to any symplectic submodule W ⊂ ker p.

Remark that if a symplectic submodule V ⊂ H1(Σg) satisfies vol(V ) > 0 and contains a
or a1, then by Proposition 2.7, p|V is a Haupt homomorphism.

Choose b1 such that a1 · b1 = 1. Since a1 is pinchable, the symplectic submodule W1 =
Za1 ⊕ Zb1 satisfies that p1 = p|W⊥

1

is a Haupt homomorphism. By hypothesis p(b1) 6= 0.
Write

(12) a = m1a1 + n1b1 +m2a2

where a2 ∈ W⊥
1 is primitive.

Subcase 2.1:If a · a1 = 0.

Then n1 = 0, a = m1a1 +m2a2 where m1 and m2 are coprime. We have p(a2) = 0. If
a2 is p1-pinchable, by Remark 5.13 there exists a symplectic decomposition W⊥

1 = W2⊕V
where p|V is a Haupt homomorphism and a2 ∈ W2. In particular volp(W1 ⊕ V ) > 0 and
a1 ∈ W1⊕V . Therefore pW1⊕V is a Haupt homomorphism and sinceW⊥

2 = W1⊕V , a2 ∈ W2

is pinchable for p. By item (2) in Lemma 6.17 a ∼ a1. If a2 is not p1-pinchable, then there
exists a rank two symplectic submodule W3 ⊂ a⊥2 ∩W⊥

1 ∩ ker p such that a1, a ∈ W⊥
3 and

we conclude by item (1) in Lemma 6.17.

Remark that with this last argument we have treated all the cases where a · a1 = 0.

Subcase 2.2 If a · a1 6= 0.

Then n1 6= 0, p(a2) 6= 0 and Rp(a2) = Rp(b1). Remark that W⊥
1 has rank at least 6.

There are two subcases

Subsubcase 2.2.1: rank(ker p1) ≥ 2.
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This implies that ker p ∩ W⊥
1 has rank at least two and hence there exists a primitive

element a3 ∈ a⊥2 ∩ker p∩W⊥
1 . If a3 is p1-pinchable, then for every symplectic decomposition

W⊥
1 = W3 ⊕ V where W3 is a rank two symplectic module containing a3, p|V is Haupt.

Since W1⊕V is of positive volume and contains a1, p|W1⊕V is a Haupt homomorphism and
thus a3 is also pinchable for p. Since a3 · a1 = a3 · a = 0 we have a ∼ a3 ∼ a1.

Subsubcase 2.2.2: rank(ker p1) ≤ 1.

If a2 is p1-admissible, i.e., it belongs to a symplectic module V2 ∈ Vp1, there exists a
p-admissible decomposition W⊥

1 = V2 ⊕ V3. Then a1, a ∈ V4 := W1 ⊕ V2 and volp(V4) =
volp(V2) > 0. Since a1 ∈ V4, p|V4

is a Haupt homomorphism on a rank four symplectic
module. By Lemma 5.14 applied for g = 2, all elements in ker p|V4

are pinchable. The
decomposition H1(Σg) = V4 ⊕ V3 is p-admissible. By item (3) in Lemma 6.17, a ∼ a1.

By Lemma 5.7 applied to W⊥
1 , there exists a proper submodule I ⊂ W⊥

1 containing all
elements that are not p1-admissible, i.e. that do not belong to some symplectic module
V2 ∈ Vp1. So if a2 /∈ I we are done. If a2 ∈ I denote ℓ = Rp(a2). We know by Lemma 5.6
that I = p−1(ℓ) ∩W⊥

1 has rank at least 2g − 4 and for every other real line ℓ′, ℓ′ ∩ p(W⊥
1 )

has rank at most 2. Since p(a1), p(b1) ∈ ℓ, p−1(ℓ) has rank at least 2g − 2 ≥ 6. On the
other hand, for every other real line ℓ′ ⊂ C containing 0 we have rank(p−1(ℓ′) ∩ W⊥

1 ) ≤
2 + rank(ker p1) ≤ 3. Therefore p−1(ℓ′) has rank at most 5. If we manage to find a
decomposition as in equation (12) where the image of the a2 is outside ℓ we will be done.
We are going to show that, up to changing the initial b1, we can suppose that we fall in
this case or one of the previous cases.

Given w ∈ a⊥1 define b′1 = b1 + w and W ′
1 = Za1 ⊕ Zb′1. Then

a = m1a1 + n1b
′
1 +m′

2a
′
2

where m′
2a

′
2 = m2a2 − n1w. If we manage to guarantee that

• a′2 ∈ W ′⊥
1 , or equivalently 0 = −n1(b1 · w) +m2(w · a2)

• p(a′2) /∈ ℓ = Rp(a2) or equivalently p(w) /∈ ℓ,

we will be done: a′2 ∈ W ′⊥
1 will be p|W ′⊥

1

-admissible.

If there exists w ∈ a⊥2 ∩ W⊥
1 \ p−1(ℓ), it constitutes a solution. Otherwise a⊥2 ∩W⊥

1 ⊂
p−1(ℓ)∩W⊥

1 , and since W⊥
1 has positive volume, any b2 ∈ W⊥

1 satisfying a2 ·b2 = 1 satisfies
p(b2) /∈ ℓ. In this case the element w = m2a1 + n1b2 provides a solution. �

6.3. End of proof of the inductive step of Theorem 1.2. We fix some g ≥ 4 and
suppose that all the fibers of Per of genus up to g − 1 are connected. Take p ∈ Hg. By

Proposition 4.3 every connected component of S
′
(p) has points in the boundary and points

in S(p). By Proposition 3.1 each boundary set V ′(p) defined by some V ∈ Z is connected.
By Proposition 6.1 every pair of distinct non-empty boundary components V ′

1(p) and V ′
2(p)

lie in the same connected component of S
′
(p). Therefore S

′
(p) is connected. By Lemma

4.5 this implies S(p) is connected.
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7. Proof of theorem 1.3

Given any integer period α+ iβ as in Theorem 1.3 the set of marked abelian differentials
having periods α + iβ is a smooth connected complex manifold, by our Theorem 1.2. A
form of this subset is the pull-back of the form dz on the Gaussian elliptic curve C/Z+ iZ
by a degree d ramified covering. The set of those forms whose associated ramified covering
has distinct critical values, is still connected, since it is Zariski dense. The monodromy
representations ρ : π → Sd of these branched coverings of the torus, send peripherals to
transpositions, and are well-defined up to precomposition by an element of the braid group
of the torus on 2g − 2 braids. Observe that this class of representations does not depend
on the class of α + iβ modulo precomposition by an element of Sp(2g,Z).

The inverse operation is clear: having a representation ρ from a 2g − 2-punctured torus
group as in Theorem 1.3, we can equip the torus with the structure of the Gaussian elliptic
curve, and define α + iβ as the periods of the pull-back of dz on the branched degree d
covering having monodromy ρ, equipped with any marking.

8. Appendix: dynamics of the action of Sp(2g,Z) on Hg

In this section, we review Misha Kapovich’s remarkable note [9], which unfortunately
remains unpublished. This will enable us to prove Theorem 1.1 assuming the transfer
principle, namely assuming Theorem 1.2. To this end, we need to understand the dynamics
of the linear action of Γ = Sp(2g,Z) on C2g, or, more precisely on the set of periods
p ∈ C2g of positive volume. The volume of p ∈ C2g is by definition the number V (p) :=∑

1≤k≤g ℑ(p2k+1p2k).

If we introduce the symplectic form ω on R2g defined by ω(x, y) =
∑

1≤k≤g x2ky2k+1 −
x2k+1y2k, the volume of a period can be expressed as V (p) = ω(ℜp,ℑp). In particular,
the subspace W = Rℜp + Rℑp ⊂ R2g is symplectic. In the sequel, we denote by Λ(p)
the Z-submodule of C generated by the entries of p. Notice that it is invariant under the
action of Sp(2g,Z).

Proposition 8.1. Assume g > 2. For any p ∈ C2g of positive volume, we have the
trichotomy

• W is defined over Q. In this case, Λ(p) is discrete and p is the period of a ramified
cover of the abelian differential (C/Λ, dz).

• W is not rational but contains a rational line. In this case, up to the action of
GL(2,R), the set Λ(p) is R + iZ, and Γ · p is the set of periods q ∈ C2g of volume
V (q) = V (p) whose imaginary part are integer valued and primitive.

• W does not contain any rational subspace of positive dimension. In this case,
Λ(p) = C, and Γ · p is the set of periods q ∈ C2g such that V (q) = V (p).

In genus g = 2, another case shows up, the one associated to the Hilbert modular manifolds
(see [3] and [16, Case 3. of Theorem 5.1]):
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• W is defined over a quadratic field K, and W⊥ = W σ, where σ is the Galois
involution of K. In this case Γ · p is the set of periods q which differ from p by
post-composition by an element of GL(2,R), and by pre-composition by an element
of Sp(4,Z).

Proof. Since the action of Γ is linear, and that the volume is multiplicative, namely V (λp) =
|λ|V (p) for every λ ∈ C and p ∈ C2g, we can restrict our attention to the action of
Γ on the subset X ⊂ C2g whose elements have volume 1. Recall that this means that
ω(ℜp,ℑp) = 1. Since the simple real Lie group G = Sp(2g,R) acts transitively on the
set of couples (x, y) ∈ (R2g)2 such that ω(x, y) = 1, and that the stabilizer of the couple(
(1, 0, . . . , 0), (0, 1, 0, . . . , 0)

)
is the group




1
1

Sp(2g − 2,R)




that we will denote by U in the sequel, our set X is isomorphic to the homogeneous space
G/U . The linear action of Γ on X is under the isomorphism X ≃ G/U given by left
multiplication on G/U .

Since the group G is simple, that U is generated by unipotent elements, and that Γ is
a lattice in G, Ratner’s theorem [21] tells us that the closure of the Γ-orbits on X are
homogeneous in the following sense

Theorem 8.2 (Ratner). For every p ∈ X of the form p = gU , there exists a closed
subgroup H of G containing Ug = gUg−1, such that Γ∩H is a lattice in H, and such that
Γ · p = ΓHp.

Notice that Ug = I|W ⊕ Sp(W⊥) ≃ Sp(2g − 2,R). Let H0 be the connected component
of H containing the identity: then Γ ∩ H0 is still a lattice in H0, and Ug is contained in
H0. If H0 = G then Γ · p = G and we deduce that the orbit closure is dense in X . If H0 is
a proper subgroup of G, Kapovich observes that it falls into two categories

• (Semi-simple case) H0 is of the form S ⊕ Sp(W⊥), where S is a Lie subgroup of
Sp(W ).

• (Non semi-simple case) H0 preserves a line L ⊂ W .

The proof of this dichotomy can be found in [9, p. 12], and is based on Dynkin’s clas-
sification of maximal connected complex Lie subgroups of Sp(2g,C), see [4]. Let L be a
maximal complex Lie subgroup of Sp(2g,C) which contains H0. If H0 6= Sp(2g,R), its
Zariski closure in the complex domain is a strict subgroup of Sp(2g,C), so it is contained
in a maximal complex Lie (strict) subgroup of Sp(2g,C). It satisfies one of the following
properties (see [6, Ch. 6, Thm 3.1, 3.2]):

(1) L = Sp(V )⊕ Sp(V ⊥) for some complex symplectic subspace V ⊂ C2g,
(2) L is conjugated to Sp(s,C)⊗ SO(t,C) where 2g = st, s ≥ 2, t ≥ 3, t 6= 4 or t = 4

and s = 2,
(3) L preserves a line of C2g.
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Since H0 contains Ug, L contains the complexification of Ug, which is nothing but IdWC
⊕

Sp(W⊥
C ), where WC denotes the complexification W ⊗R C of W . In case (1), the only

possibility is that up to permutation of V and V ⊥, we have WC = V . In particular, H0 is
a subgroup of Sp(W )⊕ Sp(W⊥). Since it contains Id|W ⊕ Sp(W⊥), it must be of the form
S ⊕ Sp(W⊥), where S is a Lie subgroup of Sp(W ). Case (2) cannot occur. In case (3),
observe that the line L needs to be in WC, since the group Id|WC

⊕ Sp(W⊥
C ) preserves this

line. If L is defined over the reals, we are done. If not, both L and L (the image of L by the
complex conjugation) are preserved by H0, and thus H0 is a subgroup of Sp(W )⊕Sp(W⊥).
As before, because it contains IdW ⊕ Sp(W⊥), it must be of the form S ⊕ Sp(W⊥), where
S is a Lie subgroup of Sp(W ).

Semi-simple case. Since the group H0 = S ⊕ Sp(W⊥) contains a lattice, it must be
unimodular. In particular, either S is the trivial group, or a 1-parameter subgroup, or the
whole Sp(W ).

If S is trivial, then ΓW = Γ ∩ (IdW ⊕ Sp(W⊥)) is a lattice in IdW ⊕ Sp(W⊥). Then,
ΓW would also act by the identity on W σ for every Galois automorphism σ. The Zariski
closure of ΓW being IdW ⊕ Sp(W⊥) (by Borel density theorem, see [26]), IdW ⊕ Sp(W⊥)
would act by the identity on W σ as well. This implies that W σ = W for every σ, and so
W is rational. So we are done in this case.

If S is 1-dimensional, S ⊕ IdW⊥ would be the radical of H0, and a theorem of Wolf
and Raghunathan, see [20], shows that it would intersect Γ in a lattice. In particular, the
intersection of Γ with IdW ⊕ Sp(W⊥) is also a lattice. Reasoning as above, this implies
that W is rational, so we are done in this case as well.

Finally, it remains to treat the case where S = Sp(W ). This case splits into two subcases,
depending on the lattice Γ ∩ Sp(W ) ⊕ Sp(W⊥) being reducible or irreducible. If it is
reducible, this implies that Γ∩ (IdW ⊕ Sp(W⊥)) is a lattice, and then W must be rational
by the above considerations. Assume now that we are in the irreducible case. Then g = 2,
by a theorem of Margulis [12]. Assume W is not rational, otherwise we are done. Let σ be
a Galois automorphism such that W σ 6= W . The group Γ ∩ Sp(W ) ⊕ Sp(W⊥) preserves
the decomposition W σ ⊕ (W σ)⊥, since Γ and the symplectic form are defined over the
rationals. Borel density theorem applied to the lattice Γ ∩ Sp(W ) ⊕ Sp(W⊥) shows that
Sp(W )⊕Sp(W⊥) preserves the decomposition W σ ⊕ (W σ)⊥. This implies that W σ = W⊥

and (W σ)σ = W . This being true for every Galois automorphism, this means that W is
defined over a totally real quadratic field K, and we have W σ = W⊥ where σ is the Galois
automorphism of K.

Non semi-simple case. We prove in this case that the periods p satisfies the second case
of the proposition.

For this, we will first need to understand in detail the subgroup B of Sp(2g,R) formed
by all elements that stabilize the line L, see [9, p. 10]. To unscrew the structure of B,
notice that any element of B stabilizes both L and L⊥ so that we have an exact sequence

CH2g → B → Sp(L⊥/L) ≃ Sp(2g − 2).
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The group CH2g is then the set of elements M ∈ Sp(2g) which induce the identity map on
L⊥/L.

We now have another exact sequence

(13) H2g−1 → CH2g → GL(L) ≃ R∗,

the last arrow being given by the restriction of an element M ∈ CH2g to the line L. Hence
the subgroup H2g−1 ⊂ CH2g is the group of elements M ∈ Sp(2g) which act as the identity
on L and on L⊥/L. Such M are easily seen to be of the form Mϕ,α, for some ϕ ∈ (L⊥/L)∗

and α ∈ R, where

• the restriction of Mϕ,α to L⊥ equals id|L⊥ + ϕa1
• Mϕ,α(b1) = αa1 + b1 +

∑
k≥2 ϕ(bk)ak − ϕ(ak)bk,

where a1, b1, . . . , ag, bg is a symplectic basis such that L = Ra1. The group structure on
H2g−1 is then given by the following relation

(14) Mϕ,αMϕ′,α′ = Mϕ+ϕ′,α+α′+ω(ϕ,ϕ′),

where ω(ϕ, ϕ′) is the natural symplectic product induced by ω on (L⊥/L)∗, namely

ω(ϕ, ϕ′) =
∑

k≥2

ϕ(ak)ϕ
′(bk)− ϕ′(ak)ϕ(bk).

Equation (14) is a straighforward computation. An equivalent formulation is that H2g−1

is the central extension
R → H2g−1 → (L⊥/L)∗,

defined by the 2-cocyle (ϕ, ϕ′) 7→ ω(ϕ, ϕ′). The group H3 is isomorphic to the classical
Heisenberg group of upper triangular real matrices of size 3× 3 with 1’s on the diagonal.

Now CH2g is a semi-direct product of R∗ by H2g−1, see (13). To understand its structure,
we introduce for every λ, one of its lift Sλ ∈ CH2g defined by

Sλ(a1) = λa1, Sλ(b1) =
1

λ
b1, Sλ(ak) = ak, Sλ(bk) = bk for k ≥ 2.

A trivial computation shows that for any λ ∈ R∗, every ϕ ∈ (L⊥/L)∗ and every α ∈ R, we
have

SλMϕ,αS
−1
λ = Mλϕ,λ2α.

This shows that CH2g is not unimodular, and consequently does not contain any lattice.

We are now in a position to treat the non semi-simple case. By construction, our group
H0 is contained in B. We have an exact sequence CH2g → B → Sp(L⊥/L, ω). The image
of H0 by the right arrow is onto since H0 contains Ug, so that H0 itself splits as an exact
sequence CH2g ∩H0 → H0 → Sp(L⊥/L, ω). The group CH2g ∩H0 is invariant under the
action by conjugation of Sp(L⊥/L, ω), so this implies that one of the following possibilities
occur

• CH2g ∩H0 = CH2g, namely H0 = B
• CH2g ∩H0 = H2g−1, namely H0 is a semi-direct product of Sp(L⊥/L, ω) by H2g−1.
• CH2g ∩H0 = A where A is a subgroup of the affine group.
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The first and last case are impossible since CH2g and A are not unimodular. It remains
to treat the second one, namely the case CH2g ∩H0 = H2g−1. In this latter, the theorem
of Raghunathan and Wolf cited above tells us that Γ ∩ H2g−1 is a lattice in H2g−1. As a
consequence, we have that L =

⋂
γ∈Γ∩H2g−1

Ker(γ − I), and this shows that L is a rational

subspace of R2g, since all the spaces appearing in the intersection are rational. Up to an
real affine change of coordinates on C, we can assume that the imaginary part of p generates
L, and that it is a primitive element of Z2g. Since the group H2g−1 acts transitively on the
set of vectors v ∈ R2g such that v · ℑp = 1, while fixing the period ℑp fixed, we see that
H ·p already contains all the periods q such that ℑq = ℑp and such that V (q) = V (p) = 1.
Since, Γ acts transitively on the set of primitive elements of Z2g, we infer that ΓHp = Γ · p
contains all the periods q with volume V (p) = 1 and with a primitive integer imaginary
part. Since any periods of Γ · p is of this form, we deduce that this situation is exactly the
second case of the proposition. The proof of this latter is now complete. �
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