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Abstract

In this paper we give complete analytic invariants for the set of germs of holo-
morphic foliations in (C2, 0) that become regular after a single blow-up. Some
of the invariants describe the holonomy pseudogroup of the germ and are called
transverse invariants. The other invariants lie in a finite dimensional complex
vector space. Such singularities admit separatrices tangent to any direction at the
origin. When enough separatrices are tangent to a radial foliation (a condition
that can always be attained if the mutiplicity of the germ at the origin is at most
four) we are able to describe and realize all the analytical invariants geometrically
and provide analytic normal forms. As a consequence we prove that any two such
germs sharing the same transverse invariants are conjugated by a very particular
type of birational transformations. We also provide explicit examples of univer-
sal equisingular unfoldings of foliations that cannot be produced by unfolding
functions. With these at hand we are able to explicitely parametrize families of
analytically distinct foliations that share the same transverse invariants.

1 Introduction

In this paper, we deal with analytic invariants, normal forms and unfoldings of germs
of holomorphic foliations in (C2, 0). Two such foliations are said to be analytically
equivalent if there exists a germ of biholomorphism of (C2, 0) sending leaves of one to
leaves of the other. There are two known invariants under this equivalence. On the
one hand, there are the analytic invariants of the holonomy pseudogroup formed by
holonomy maps associated to leafwise paths and transverse sections at the endpoints
that are realized on any neighbourhood of the origin. These maps are holomorphic as
soon as the foliation is. On the other hand, we know from [4] that there is a non-empty
set of separatrices through 0. These are leaves L such that L ∪ 0 is a germ of analytic
curve at 0. When the union of all separatrices is an analytic curve, there are instances
where the analytical class of these two objects determines the analytical class of the
foliation. For example, for generic homogeneous foliations, namely foliations whose
separatrix set is a homogeneous curve and whose singularities after one blow-up are
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2 Classification of regular dicritical foliations

of hyperbolic type, the analytical class of the curve and of the projective holonomy
representation determine the analytical type of the singularity (see [11] or [6]). In
particular, foliations defined by holomorphic vector fields whose multiplicity at the
origin is less than five and with generic first homogeneous term, fall in the previous
case. When the foliation admits an infinite number of separatrices a natural question
is to decide whether there exists some analytic subset contained in the separatrix set
whose analytical class together with the analytical class of the holonomy pseudogroup
determines the analytical class of the foliation.

A different approach to the problem of determining analytic invariants was taken by
J.-F. Mattei in the 80’s (see [12]). In the spririt of Kodaira and Spencer’s theory
of deformations of complex structures on manifolds, he proved that any germ F of
holomorphic foliation of (C2, 0) can be unfolded to a codimension one germ of foli-

ation F̃ on (C2+M(F), 0) in such a way that any other unfolding of F that preserves

the singularity type of F is equivalent to one obtained from F̃ in a unique manner
by pull back. He calculated the dimension M(F) of the base space of this universal
equisingular unfolding of F and concluded that it is always finite and almost always
positive. By construction, the deformation of F obtained by considering the foliations
{Fc : c ∈ (CM(F), 0)} of (C2, 0) obtained by restricting F̃ to the fibres of the projection
(C2+M(F), 0) → (CM(F), 0) has the same singularity type and holonomy pseudogroup for
all parameters (up to equivalence), but are not analytically equivalent. The moduli
of Mattei tell us in how many ways we can locally change the analytical class of the
foliation without changing the holonomy pseudo-group. In the case of homogeneous
foliations, these moduli are simply the relative position of the points in the tangent
cone of the set of separatrices: actually, they characterize the analytical class of the
separatrix set. In general, we are not able to interpret geometrically the other moduli
of Mattei. Indeed, the construction of the latter is not explicit, producing the folia-
tions by foliated surgery. To our knowledge, the only known explicit examples of such
non-trivial unfoldings were obtained by unfolding germs of functions. In fact, examples
of families of foliations with varying analytical class but constant analytical class of its
separatrix sets can be constructed by unfolding functions (see [7]). For example, the
foliation defined by the germ at zero of the function

f(x, y, z) = (1 + z)xy(x+ y)(x− y)(x+ 2y + y2)

defines a non-trivial unfolding of the foliation F = {f(x, y, 0) = const} having the
same separatrix set for all parameters z ∈ (C, 0).

Yet another approach has been taken in recent years by Ortiz-Rosales-Voronin (see
[14, 15, 16]). Their stragtegy is, on the one hand to find unique formal normal forms
(up to formal transformations tangent to the identity) for certain families of foliations,
and on the other to prove that formal analytical rigidity takes place in the generic
cases. Hence the coefficients of the formal normal form turn out to be analytical
invariants. This infinite number of parameters is then split into two subsets: one of
them is infinite and contains the information on the holonomy pseudo-group and the
other is finite and contains the rest of parameters. The number of parameters that is
not associated to the holonomy pseudo-group coincides with the number of Mattei’s
parameters although it is not clear how the formal deformations obtained in the formal
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normal forms correspond to unfoldings in the sense of Mattei. Again, it is not clear
what these parameters mean geometrically.

In this paper, we will give a description of a complete family of invariants, their ge-
ometric interpretation, analytic normal forms and unfoldings for a particular class of
germs of foliations admitting an infinite number of separatrices: homogeneous dicriti-
cal foliations. A germ of foliation F is said to be homogeneous dicritical if it is regular
after a single blow-up and there exists a germ of foliation G with radial linear part such
that Tang(F,G) is invariant. After one blow up F can be thought of as a local ver-
sion of regular Riccati foliations around the exceptional divisor, where the role of the
fibration is taken by G. In the simplest case where there exist non-trivial equisingular
unfoldings, i.e. when the algebraic multiplicity is three, we will provide a parametriza-
tion of the set of analytic equivalence classes. In its parameter space the equivalence
relation ”having the same transverse invariants” is described by the fibers of a natural
projection. Most of our arguments will be geometric in this part, that will take up
sections 2. and 4.

In section 3. we will apply formal methods to try to generalize the claims of the
homogeneous case to the set of regular dicritical foliations, that is, germs of foliations
that are regular after a single blow-up.

We are thankful to G. Casale, J-F. Mattei, L. Ortiz, E. Paul, E. Rosales, P. Sad, E.
Salem and L. Teyssier for useful conversations on the subject of the paper.

2 Homogeneous dicritical foliations

In this section we will introduce the basic properties of foliations that are regular after a
single blow-up and describe a complete family of geometric invariants for homogeneous
dicritical foliations. We will also provide analytic normal forms for the latter family.

2.1 Germs that are regular after a single blow-up

The set of all germs of foliations that are regular after a single blow up will be denoted
by D. For each n ∈ N we denote by D(n) the set of foliations in D whose algebraic
multiplicity is n + 1. In particular D(0) corresponds to foliations with radial linear
part, and will be called radial foliations. By Poincaré’s linearization theorem, every
radial foliation is holomorphically linearizable.

Given F ∈ D, the pull-back foliation by the blow-up map, denoted by F̃ must be
generically transverse to the exceptional divisor E by Camacho-Sad index theorem
([4]). Thus, the foliations in D are dicritical : they have an infinite number of invariant
curves. In fact, every leaf is a separatrix. We call them regular dicritical foliations.
We can define the tangency divisor T (F) := Tang(F, E) ∈ div(E) between F̃ and
E. It is an effective divisor defined on the curve E whose degree is n if and only if F
belongs toD(n). Klughertz showed in [9] that two foliations F,F′ ∈ D are topologically
equivalent if and only if there exists a homeomorphism from E to E sending T (F) to
T (F′) (i.e. they are topologically equivalent as divisors of E). Thus any partition of
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Figure 1: A foliation in D with three points in its divisor of tangency T (F).

n = n1 + . . . + nk defines a topological class in D(n) formed by foliations F having
T (F) = n1p1 + . . . nkpk for some pairwise distinct points pi in E.

The holonomy pseudogroup of such a foliation is quite simple: for any p ∈ |T (F)|, we
can consider a local primitive holomorphic first integral f of F̃ around p with connected
fibers. The levels of the restriction f|E describe sets of points that belong to the same
connected component of the fiber of f . Since f|E is a holomorphic germ in one complex
variable, it can be written as a power ψr+1, where r is the order of tangency between
F̃ and E at p, and ψ is a holomorphic germ of diffeomorphism. If θp denotes the
rotation of angle 2π/(r + 1), the germ H(F, p) := ψ−1 ◦ θp ◦ ψ and any of its powers
realizes a holonomy map around each point q sufficiently close to p: it is the holonomy
associated to a path in f−1(f(q)) joining q and H(F, p)(q) and tranverse section E at
both the starting point and the endpoint. Even if we reduce the neighbourhood where
the fibers of f are connected, we can still find points where the map is realized by the
holonomy of some leafwise path. Up to reducing the neighbourhood where F is defined,
two different H(F, p)’s cannot be composed so the only holonomy maps are powers of
elements of H(F, p)′s. Thus

H(F) =
⊔

p∈T (F)

H(F, p)

is the generating set of the holonomy pseudogroup of the germ F and we will call it the
holonomy of F. If T (F) is equal to n1p1 + . . .+ nkpk, the holonomy pseudogroup of F
is a disjoint union of finite cyclic groups of orders n1 + 1, . . . , nk + 1 and it determines
the topological class of F.

If F′ = ϕ(F) for a holomorphic equivalence ϕ, then by construction

H(F′) = ϕ|E ◦H(F) ◦ ϕ−1
|E

where ϕ|E is the global holomorphic automorphism of E ∼= P1 induced by ϕ. Thus the
class of H(F) modulo global automorphisms of E is an analytical invariant of F that
we will denote by H[F] and call the holonomy class of F. As we will see along this
section this invariant is not enough in general to determine the analytical class of the
foliation as soon as the algebraic multiplicity is bigger than two.



Classification of regular dicritical foliations 5

2.2 Invariants of homogeneous dicritical foliations

A foliation F ∈ D is said to be homogeneous dicritical if there exists a radial foliation
G such that Tang(F,G) is invariant by F (and therefore also by G). In this case, we say
that F is homogeneous with respect to G. In other words, up to a change of coordinates
(one that linearizes G) there exists a subset of separatrices that is a union of straight
lines and supports the tangency set of the foliation with the radial foliation. The subset
of D formed by homogeneous dicritical foliations will be denoted by Dh and its subset
Dh(n) = D(n) ∩ Dh is formed by those having multiplicity n + 1 at the origin. The
following are examples of elements in Dh(n) for n ≥ 1:

1. Consider homogenous polynomials R(x, y) and Q(x, y) of degrees n and n + 2
respectively such that R and xQ are coprime. The germ of foliation defined by a
holomorphic one form

ω(x, y) = (R(x, y) + · · · )(xdy − ydx) +Q(x, y)dx

in a neighbourhood of 0 ∈ (C2, 0) is homogeneous with respect to x∂x + y∂y and
is thus contained in Dh(n).

2. Consider a smooth rational curve C embedded in a complex surface S with self-
intersection (n+ 2). Suppose that S is bifoliated by a pair of regular transverse
holomorphic foliations F and G and that G is transverse to C at all points. Remark
that by Camacho-Sad’s theorem (see [4]), the regularity condition and C·C > 0, C
cannot be invariant by F. Then the blow up of S at n+3 points in C \Tang(F, C)
produces two foliations F̃ and G̃ around a (−1)-curve. By Grauert’s theorem the
contraction of this curve produces a regular point in a complex surface, endowed
with two singular foliations. By construction, the germ of foliation associated to
the initial F is homogeneous with respect to the radial foliation associated to G,
and thus belongs to Dh(n).

As we will see along this section and every homogeneous dicritical foliation can be
interpreted in the way described by these examples.

The holonomy class of a foliation in D does not characterize the analytical class of the
foliation in general, but in the homogeneous case it characterizes the class modulo a
very particular family of birational maps:

Theorem I. Any homogeneous dicritical foliation F is equivalent to one obtained by
blowing up a foliation FS on a surface S as in example 2. The analytical class of FS

in a neighbourhood of the rational curve is uniquely determined by H[F].

If we consider that a local birational tranformation stands for a map composed of
sucessive changes of coordinates, blow-ups and contractions of compactified regular
separatices as illustrated in Figure 2, we deduce directly

Corollary 1. Any pair of homogeneous dicritical foliations sharing the same holonomy
class are locally birationally conjugated.
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Figure 2: Local birational transformations in D

The proof is based on an idea of F. Loray (see [10]) of extending germs of foliations
along some separatrix by compactifying the leaf to a rational curve in some foliated
complex surface. The hypothesis on the homogeneity of the foliations will allow us to
make adequate choices for the extended foliations.

Given a holomorphic regular foliation F around a non-invariant embedded curve C in
a complex surface S, we define the tangency divisor T (F) = Tang(F, C), its holonomy
H(F) =

⊔
p∈|T (F)|H(F, p) and the holonomy class H[F] as the class of H(F) modulo

automorphisms of C. The main remark that we will exploit in this section is that if G is
another regular foliation around C such that Tang(F,G) is invariant, then the blow-up

of S at a point q ∈ C \{|T (F)|∪|T (G)|} produces a pair F̃, G̃ of (singular) foliations in a

complex surface S̃. Around the strict transform C̃ of C both foliations are regular and
still satisfy that Tang(F̃, G̃) is invariant. By construction the leaf corresponding to the
exceptional divisor lies in the tangency set between both foliations. This transformation
does not touch T (F) and T (G), and in particular the holonomies of F (resp. G) and F̃

(resp. G̃) coincide. By construction C̃ · C̃ = C · C − 1. Our strategy is to revert this
construction as illustrated in Figure 3: start with a pair of regular foliations around
a curve, extend the foliations along their (invariant) locus of tangencies, in such a
way that we can contract the invariant curve and obtain new pair of regular foliations
around a curve with bigger self-intersection. Iterating this process we end up with a
pair of regular transverse foliations around some curve with big selfintersection. In
a second instance we analyze the invariants of such pairs of transverse holomorphic
foliations around curves that are not invariant for any of the foliations.

Proof of Theorem I.

Given a foliation F ∈ Dh(n), we consider a radial foliation G such that

Tang(F,G) = r1Lp1 + . . . rkLpk

where Lpi is the leaf of F through the point pi ∈ E \ |T (F)|. By construction, we
can find local coordinates (u, y) around each point pi where pi = (0, 0), E = {y = 0},
G = {du = 0} and for some unit f , F = {du + urf(u, y)dy = 0}. The next lemma
shows that we can find local normalizing coordinates for the pair (F,G) around each
point pi.
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Figure 3: Key construction.

Lemma 2. Let us consider the germs at (0, 0) of the forms

ω1 = du+ urf (u, y) dy ω2 = du+ urdy

where n ≥ 1 and f is local unit. Then the induced germs of foliations are analytically
conjugated by a conjugacy of the form (u, y) 7→ (u, y (· · · )).

Proof. Since the two forms are smooth and locally transverse except along u = 0 and
since we require the conjugacy to preserve each leaf of the fibration π : (u, y) 7→ u, it is
uniquely determined on a neighborhood of (u, y) = (0, 0) deprived of u = 0. Thus, it is
enough to show that this conjugacy and its inverse are bounded near (0, 0) and apply
Riemann’s extension Theorem to conclude that the extension is a biholomorphism.

Let us describe the conjugacy on a neighborhood of (u, y) = (0, 0) deprived of u = 0.
To do so, we will interpret its restriction to a fibre as a composition of two holonomy
maps: the first ϕ−1

1 going from a fibre to y = 0 via ω1 and the second ϕ2 from y = 0
to the fibre via ω2. To get bounds, we consider a point (α, 0) and follow the leaf of
ω1 until one reaches the fiber π−1 (u) . Denote by (u, ϕ (α, u)) the reached point. To
compute ϕ, we consider the Cauchy system defined by{

y (0) = 0
y′ (t)u (t, α)r f (u (t, α) , y (t)) + u′ (t, α) = 0

where u (t, α) = (1− t)α + tu.
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Obviously, one has y (1) = ϕ (α, u) . By using bounds on the unit when integrating the
differential equation, it can be checked that there existM > 0 such that |ϕ2◦ϕ−1

1 (y)| ≤
M |y| for every |y| < ε. By using the same argument applied for the inverse we find
M > m > 0 such that

m|y| ≤ |ϕ2 ◦ ϕ−1
1 (y)| ≤M |y| for every |y| < ε

Notice that if r ̸= s then
du+ urdy du+ usdy

cannot be conjugated by a conjugacy that preserves the fibration (u, y) 7→ u.

Taking two germs of regular transverse foliations (R1,R2) at a point p, if we consider
the blow-up at p and denote by E1 the exceptional divisor and by R1

i the saturated
foliation around E1 obtained from Ri, then we create a locus of tangency

Tang(R1
1,R

1
2) = E1

Blowing-up again a point in E1 that is regular for both foliations, we obtain a second
divisor E2, two foliations R2

1, R
2
2 satisfying Tang(R2

1,R
2
2) = E1 + 2E2. Inductively, we

can produce a pair of foliations (Rr
1,R

r
2) in a neighbourhood of a chain of r rational

curves E1, . . . , Er satisfying

Tang(Rr
1,R

r
2) = E1 + 2E2 + . . .+ rEr.

By construction, around any regular point p ∈ Er of the Rr
i ’s we can find coordinates

(u, y) where p = (0, 0), Er = {u = 0}, Rr
1 is given by du = 0 and Rr

2 by du +
urg(u, v)dy = 0 for some unit g.

Coming back to our initial pair of foliations (F,G), thanks to Lemma 2, we can glue the
pair of foliations around each common separatrix Lpi to a germ of (Rri

1 ,R
ri
2 ) at a regular

point on Eri . We thus obtain a pair of foliations around a divisor with 1+ r1+ . . .+ rk
rational curves. The original foliation F is analytically equivalent to the restriction
of this foliation to the neighbourhood of the initial divisor E. The divisors that have
been added can be now contracted as a whole using inductively the classical result of
Castelnuovo ( see [2]). Remark that by construction, each chain contracts to a regular
point with a pair of regular transverse foliations. Since, at each step, we contract a
component that cuts the original divisor E, we get at the end of the contraction a
rational curve C embedded with self-intersection

−1 + (r1 + . . . rk) = −1 + (n+ 3) = n+ 2

in a complex surface S. In its neighbourhood, we get two regular foliations (FS,GS)
that are transverse at all points of E. By construction GS is also transverse to E at
all points. On the other hand, FS has tangency divisor T (FS) = T (F) and since the
contractions and blow ups are done outside |T (F)| the holonomy is preserved

H(FS) = H(F).
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This proves the first part of the claim in Theorem I: F is analytically equivalent to a
germ obtained from FS by a sequence of blow-ups, a restriction and a contraction. �

As for uniqueness of this model (FS,GS), we have the following

Lemma 3. If (F,G) is a pair of germs of regular foliations around a smooth rational
curve C embedded in a complex surface with C · C = n + 2 > 2, the degree of T (F) is
n and G is transverse to C, then the foliations F and G are transverse around C.

Given another pair (F′,G′) with the same properties around a rational curve C ′ in a
complex surface, there exists a biholomorphism between two neighbourhoods sending the
pair (F,G) to (F′,G′) if and only if H[F] = H[F′].

Proof. We choose an open covering {Ui} of C in the surface, holomorphic vector fields
vi on Ui generating F and holomorphic one forms ωi generating G in the neighborhood
of C. On the intersection Ui ∩ Uj, we have

vi = ϕijvj

ωi = ψijωj

where ϕij and ψij are cocycles representing respectively the line bundles T ∗
F and NG.

Therefore, the contraction ωi(vi) is a section of [T ∗
F ⊗NG]C since

ωi(vi) = ψijϕijωj(vj).

Now, this section vanishes along C at the point where, precisely, F and G are tangent,
thus

Tang(F,G) = deg [T ∗
F ⊗NG]C = −TF · C +NG · C

Using the formula of Brunella [2] yields to

Tang(F,G) = −C · C + Tang(F, C) + X(C) + Tang(G, C)

= −(n+ 2) + n+ 2 + 0 = 0.

Suppose Φ is a biholomorphism sending the pair (F,G) to the pair (F′,G′). Then the
restriction ϕ := Φ|C satisfies

ϕ∗T (F) = T (F′) and H(F′) = ϕ ◦H(F) ◦ ϕ−1. (1)

Reciprocally, suppose ϕ : C → C ′ is a biholomorphism satisfying (1). Then ϕ tells us
which leaf of F goes to which of F′. On the other hand ϕ also tells us which leaf of G
goes to which of G′. If a point p lies on the intersection of a leaf of F with a leaf of G,
then there is a unique point Φ(p) lying at the intersection of the corresponding leaves of
F′ and G′, provided p is sufficiently close to C. By holomorphicity and transversality of
the foliations this extenstion Φ of ϕ to a neighbourhood of C is a holomorphic bijection.
It sends the pair (F,G) to (F′,G′) by construction.

From the previous arguments, we prove Corollary 1 by finding a biholomorphism be-
tween the models we have just constructed. The resulting composition of biholomor-
phisms, contractions and blow-ups might have indeterminacies. They lie on an invariant
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set that contains the separatrices over points that are blown-up to obtain one of the
foliations, but not blown-up to obtain the other. When all those points coincide, the
birational map does not have indeterminacies and it extends to a biholomorphism.

To identify the analytical invariants other than the holonomy H[F], we proceed to
describe the possible ways of obtaining the foliation as in Theorem I. Recall that for
a homogeneous curve the projective class of the projectivized tangent cone determines
the analytical class of the curve. For a homogeneous dicritical foliation F ∈ Dh(n) we
define

divh(F) = {Tang(F,G)|E ∈ div(E) : G ∈ D(0),F is homogeneous with respect to G}.

Since F might be homogeneous with respect to different radial foliations, it is a non-
empty subset of the set of divisors in E. A straighforward calculation shows that all
of them are of degree n + 3. Each of them contains the information on the analytical
class of a divisor supported on a homogeneous set of separatrices of F.

Theorem II (Invariants in Dh)). Let F1 ∈ Dh(n) and F2 be a germ of holomorphic
foliation in (C2, 0). Then there exists φ ∈ Aut(C2, 0) such that φ∗(F1) = F2 if and
only if F2 ∈ Dh(n), and there exists ϕ = φ|E ∈ Aut(E) such that

• H(F2) = ϕ ◦H(F1) ◦ ϕ−1

• for some D ∈ divh(F1) (and a posteriori for all), ϕ∗(D) ∈ divh(F2).

Remark that in Dh, all the invariants can be read on the exceptional divisor E. Thus,
in the case of a homogeneous dicritical foliation, the equivalence class of the pair
(H(F), SD) where SD is the divisor of leaves over an element D ∈ divh(F) classifies the
analytical class of the foliation. It is worth remarking that the homogeneous separatrix
set |SD| is not enough to classify. The divisorial information is needed.

Proof of Theorem II. Suppose first that F1 ∈ Dh(n) and F2 are equivalent via
φ ∈ Aut(C2, 0). By blowing up source and target of φ once, we get that the lift of φ
extends to E as a biholomorphism in a neighbourhood of E that sends the saturation

of the pull-back foliation F̃1 to the pull back foliation F̃2. In particular, F2 has no
singular points. Denote by ϕ ∈ Aut(E) the restriction of this biholomorphism to E.
By construction, the holonomies satisfy

ϕ ◦H(F1) ◦ ϕ−1 = H(F2).

Moreover, if D ∈ div(F1), then there exists a radial foliation G1 such that Tang(F1,G1)
is invariant by F1 and D = Tang(F1,G1)|E. By applying φ on both sides, we get
Tang(φ∗(F1), φ∗(G1)) invariant by F2 = φ∗(F1) and ϕ∗(D) = Tang(φ∗(F1), φ∗(G1))|E
and since φ∗(G1) is a radial foliation, ϕ∗(D) ∈ div(F2).

Reciprocally, suppose ϕ exists as in the statement of the theorem. Let G1, G2 be radial
foliations such that Si = Tang(Fi,Gi) is invariant by Fi and

D = Tang(F1,G1)|E and ϕ∗(D) = Tang(F2,G2)|E. (2)
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The extension φ of ϕ to the neighborhood is uniquely defined and holomorphic if we
impose

φ∗(F1) = F2 and φ∗(G1) = G2.

Indeed, ϕ indicates which leaf of F1 goes to which of F2 and which leaf of G1 goes
to which of G2. If p ∈ E is a point where the germs of F and G are transverse
foliations, the projections πF, πG onto E along F and G respectively form a coordinate
chart Ψ(F,G) = (πF, πG) around p. Thus Ψ

−1
(F′,G′) ◦ (ϕ, ϕ) ◦Ψ(F,G) describes an equivalence

between (F,G) and (F′,G′) in the complement of S1. By construction, it extends ϕ.

It can then be extended holomorphically to S1 as a biholomorphism of a neighborhood
of the exceptional divisor by using Lemma 2 to both pairs (Fi,Gi) around Si. Thus
after contracting the exceptional divisor we get a biholomorphism in a neighbourhood
of 0 ∈ C2.

�
Remark that Theorem II is also true for F1 = F2 so that it also gives the structure of
the group of automorphisms of F ∈ Dh.

2.3 Normal forms of homogeneous dicritical foliations

Next we will use the previous results to construct normal forms in a geometric manner.
Recall that a Weierstrass polynomial is a monic polynomial in C{x}[y].

Theorem III. (Normal Forms in Dh) Let F ∈ Dh(n) and suppose D ∈ divh(F). Then
there exist coordinates (x, y) of (C2, 0) where F is represented by a form

W (x, y)(xdy − ydx) +Q(x, y)dx (3)

satisfying that W is a Weierstrass polynomial in y of degree and order n, Q is a
homogeneous polynomial of degree n + 2 such that xQ = 0 represents D, and Q(1, y)
is monic. With these conditions the form is unique up to a choice of affine coordinates
in E and local biholomorphisms tangent to a homothety.

Once the divisor D and the coordinate on E is fixed, the Weierstrass polynomial in
the normal form encodes the information on the holonomy of the associated foliation.

Proof of Theorem III.

Let F be in Dh(n). Let G be a radial foliation satisfying that Tang(F,G) is invariant
by F and Tang(F,G)|E = D. Consider coordinates (x, y) in which G is linear such that
the direction x = 0 corresponds to a point in the support of D. In this situation, the
foliations F and G are respectively given by 1-forms

A(x, y)(xdy − ydx) +B(x, y)dx and xdy − ydx

where B is a homogeneous polynomial of degree n+ 2 and A is holomorphic.

Now consider the blowing-up of the origin given in local charts by x = uv and y = v.
In a neighborhood of the leaf u = 0, we have G given by du = 0 and F given by
a(u, v)du + ukb(u, v)dv where a and b are some local units and k ≥ 1. As we did in
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Savelev's theorem

and normalisation.
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Figure 4: Construction of normal forms.

the proof of Theorem I, we will compactify the separatrix u = 0 for the pair (F,G)
around it with a convenient model by using Lemma 2. The convenient model is the
blow-up at the origin of the pair of germs of regular holomorphic foliations in two
variables (z, w) ∈ C2 defined by dw = 0 and dw + wk−1dz = 0 respectively. Indeed,
the exceptional divisor is then invariant for both foliations and the tangency order
between the foliations along it is k. By using Lemma 2, we can glue a neighbourhood
of a regular point for both foliations of this new (−1)-curve C to the pair (F,G) along
the chosen separatrix. In this way, we obtain a complex bifoliated surface that is a
neighbourhood of a union of two (−1)-curves that intersect transversely at a point.
This neighbourhood is well known. Indeed, let us consider the surface S obtained by
blowing-up once the point (z, x) = (0, 0) in CP(1) × D. We denote by U−1,−1 any
neighborhood of the union of the total transform of the divisor x = 0. Notice that
this divisor is the union of two smooth rational curves, each of self-intersection equal
to −1, i.e. two (−1)-curves intersecting at a point transversely.

Lemma 4. Let Ĉ be the union of two (−1)-curves embedded in a complex surface
that intersect transversely at one point. Then there exists a neighborhood of Ĉ that is
isomorphic to some U−1,−1.

Proof. Using a classical result of Castelnuovo (see [2]), one can contract one of the
(−1)-curves to a point. Since the (−1)-curves meet transversally the self-intersection
of the image of the other (−1)-curve by the contraction map is zero. Now, the Theorem
of Savelev [18, 19] ensures that there exists a biholomorphism from a neighbourhood
of this curve to CP(1)× D sending the curve to the divisor x = 0 and the contraction
point p to (0, 0). This isomorphism can be lifted to the blowing-up of the source at p
and that of the target at (0, 0) thus producing the desired isomorphism.

Using Lemma 4, the above situation is isomorphic to a couple of foliations defined in
the neighborhood surface of type U−1,−1. If we contract the image of the curve C, we

are led to a couple of foliations F̃ and G̃ defined on CP(1)×D such that G̃ is regular and

transverse to the divisor E0 = CP(1)× {0}. The foliation F̃ is regular and generically

transverse to E0. The divisor of tangency Tang(F̃, E0) coincides with T (F) and the
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tangency locus Tang(F̃, G̃) is invariant. We can choose coordinates (s, t) in (C, 0)× P1

such that G̃ is given by dt = 0 and (0,∞) is the point where the divisor was contracted.

Since Tang(F̃, G̃) is invariant by G̃ also, F̃ is given by a form

ω(s, t) = A(s, t)dt+Q(t)ds

where Q is a polynomial that has its roots precisely at the common leaves of F̃ and G̃.
Thus it has degree at most n+2. On the other hand the function A(s, t) is holomorphic
in (s, t) and polynomial when restricted to each fixed s. Since A(0, t) is a polynomial
of degree n, we have that for each s ∈ (C, 0) there exist a constant u(s) ∈ C∗ and a
unique monic polynomial of degree n, r(s, t) = tn + ân−1(s)t

n−1 + · · ·+ â0(s) such that
A(s, t) = u(s)r(s, t). Indeed, all the components of the divisor of tangency between

F̃ and the fibration ds = 0 pass through the points (0, ti) where ti is some root of

r(0, t) = 0. By defining a new variable x by the relation dx = ds
u(s)

, the foliation F̃ is

represented in the (x, t) variables of (C, 0)× P1 by

(tn + an−1(x)t
n−1 + . . .+ a0(x))dt+Q(t)dx (4)

for some holomorphic germs a0, . . . , an−1 ∈ C{x}. Blowing up the point (0,∞) and
contracting the strict transform of 0 × P1 which has self-intersection −1 corresponds
in this chart to setting t = y

x
. Multiplying the resulting expression by xn+2 gives a

holomorphic germ of one-form that has the desired form (3). This finishes the existence
part of the statement in Theorem III.

We next show the uniqueness statement of Theorem III. Thanks to Theorem II it
suffices to show that two forms as in equation (4) sharing the same component on dx
and the same holonomy have to be equal. We will prove this by a formal argument.

Let us denote by Î tiri+1 the set of formal series in (t− ti) that are formally conjugated
to the rotation of angle 2π/(ri + 1) around ti, that is to say, series

h(t) = e
2πi
ri+1 (t− ti) +

∑
j≥2

hij(t− ti)
j such that hri+1 = Id.

Let us consider a monic polynomial r of degree n, r(t) = (t− t1)
r1 · · · (t− tk)

rk where
ti ̸= tj if i ̸= j. Now, choose a polynomial function q(t, x) ∈ C[[t, x]] such that r(t) and
q(t, 0) have no common roots and define the set of formal one-forms

Ω̂r,q = {(r(t) + w(t, x))dt+ q(t, x)dx : w ∈ xC[[x]][t] satisfies degtw < n}.

For each ω ∈ Ω̂r,c and i = 1, . . . , k define hi ∈ Î tiri+1 to be the formal series in (t − ti)

satisfying f̂ ◦ h = f̂ for some local formal first integral f̂ of ω around ti. In the case of
convergent ω it coincides with the series of the generator of H(Fω, ti) and in general
we call it the formal holonomy of the formal foliation Fω.

Lemma 5. The map holr,q : Ω̂r,q → Î t1r1+1 × · · · × Î tkrk+1 defined by

holr,q(ω) = (h1, . . . , hk)

is a bijection.
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Proof. First observe that for each h ∈ Î t0r there exists a unique formal first integral,
that is a formal series f(t) such that f ◦ h = f of the form

f(t) = (t− t0)
r +

∑
j≥r+1

fj(t− t0)
j such that fj = 0 for all j ≡ 0 (mod r). (5)

that we will call normalized. Given (h1, . . . , hk) ∈ Î t1r1+1 × · · · × Î tkrk+1 we want to find a

unique ω ∈ Ω̂r,q satisfying holr,q(ω) = (h1, . . . , hk). If such ω exists, we can consider k
formal local first integrals f j =

∑
xif j

i (t) ∈ C[[x, t − tj]] for the foliation near t = tj
such that f j

0 (t) is normalized as defined above. Below, we are going to construct
inductively ω and its k formal first integrals. By definition, around the point tj we
have

0 ≡ ω ∧ df j =
(
r(t) + w(t, x)

)(∑
i≥1

if j
i (t)x

i
)
− q(t, x)

(∑
i≥0

df j
i

dt
(t)xi

)
(6)

Evaluating (6) on x = 0, we get r(t)f j
1 (t) = q(t, 0)

dfj
0

dt
(t). Since r(t) and

dfj
0

dt
(t) have the

same order at t = tj, f
j
1 is a power series satisfying

f j
1 (tj) ̸= 0.

The coefficient on x of (6) is

0 ≡ r(t)2f j
2 (t) + w1(t)f

j
1 (t)− . . . (7)

where the dots refer to terms depending only on f0, f1 and q. Now since (t−tj)rj divides
r and f j

1 (tj) ̸= 0, the values of w1(tj), . . . , (w1)
(rj−1)(tj) do not depend on f2, but only

on f0, f1 and q. Adding up all the conditions, we find a polynomial of degree at most
n − 1 determined by n =

∑
rj conditions. Thus, there exists a unique possibility for

w1. As a consequence, we can define f j
2 for all j by using (7). By induction, suppose

that {f j
1 , . . . , f

j
l } and {w1, . . . , wl−1} are defined. Let us construct f j

l+1 and wl. The
coefficient of xl in (6) is given by

0 ≡ r(l + 1)f j
l+1 + wlf

j
1 + . . . (8)

where the dots stands for an expression depending only on f j
a and wb with a ≤ l and

b ≤ l − 1. By considering equation (8) and its derivatives up to order rj evaluated
on tj, we obtain n conditions on wl that uniquely determine it. As a consequence, we
define f j

l+1 for all j by using (8). This proves the induction step of the induction and
thus the proposition. �
From this construction, it is clear that once we have chosen a divisor D and an
affine coordinate t in the exceptional divisor E such that t = ∞ corresponds to the
direction x = 0, we already get a unique polynomial Q provided we impose that
Q(1, t) is monic. Applying Proposition 5, two foliations defined by normal forms
Wj(x, y)(xdy − ydx) + Q(x, y)dx for j = 1, 2 have the same holonomy if and only
if they are equal. Hence the normal form with monic Q(1, t), is unique up to the
choices of D, the coordinate in E and equivalences that fix each point of E. This last
type of equivalence correspond precisely to the local biholomorphism having linear part
some multiple of the identity. �
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In Proposition 5 we do not know whether the preimage of a holomorphic k-uple
(h1, . . . , hk) by the map holr,c is convergent in full generality. For future reference
we state a particular case that will be useful.

Proposition 6. Let n ≥ 1, r(t) = tn and c(t) = t − 1. The restriction of holr,c to

the space Ωr,c of convergent elements in Ω̂r,c defines a bijection onto the space I0n+1of

convergent germs in Î0n+1.

Proof. Let h ∈ I0n+1 be given. First consider ω0 = tndt + c(t)dx ∈ Ωr,c. Since all
germs at 0 of order n + 1 are locally conjugated there exists a local diffeomeorphism
φ ∈ Diff(C, 0) such that h = φ−1 ◦ hol(ω0) ◦ φ. Next remark that ω0 can be extended
to a foliation around the (−1)-curve E1 = {x = 0}. On the chart (y, u) defined by
t = 1/u and x = yu the foliation is defined by

η0 = (−1 + uyc̃(u))du+ (u2c̃(u))dy (9)

where c̃(u) = un+1c(1/u) is a polynomial. This foliation is in its turn defined around
the curve E2 = {u = 0} and it can also be extended to a foliation around a (−1)-curve
containing u = 0. Indeed, it suffices to remark that η0 is the blow up at the regular
point of −du + uc̃(u)dv by the map v = yu. On the other hand the radial foliation
around E1 defined by dt and du on respective charts extends also to the neighbourhood
of the (−1)-curve E2. In this way we obtain a pair (F0,G0) defined around E1 ∪ E2.
The tangency locus between both foliations is invariant by F0 (and also by G0).

Remark that the change of coordinates between ω0 and η0 can be described geomet-
rically as follows. It is the only equivalence that acts like (0, t) 7→ (1/t, 0) = (u, y)
on a small annulus {0 < |t| < r} and sends the foliation pair (ω0, dt) to the foliation
pair (η0, du). If we choose a different gluing on the divisor, say (0, t) 7→ (1/φ(t), 0),
we can still extend to an equivalence defined on a neighbourhood of the annulus by
imposing that the pair (ω0, dt) is sent to the pair (η0, du). In this way we obtain a
pair of foliations (F,G) around a union of two (−1)-curves that we still call E1 and
E2 satisfying that Tang(F,G) is invariant by F and intersects E1 transversally at two
different points q1 = E2 ∩E1 and q2 ∈ E1. The divisor Tang(F, E1) has a unique point
p in its support. By construction, in the unique coordinate w : E1 → CP 1 for which
w(q1) = 0, w(q2) = 1 and w(p) = ∞ two points w1, w2 ∈ {w ∈ E1 : |w| >> 1} belong
to the same leaf of F if and only if they belong to the same orbit of 1/h(1/w). In
other words, the holonomy H(F) measured in the coordinate s = 1/w is precisely the
series h(s). Using the lemma 4, we get a pair of foliations (F1,G1) ≃ (F,G) defined on
a neighborhood of {0} × CP1 in D × CP1. Let (z, s) be some coordinates where the
foliation G1 is defined by ds. In these coordinates F1 is defined by a holomorphic 1-form
u(z)(sn + bn−1(z)s

n−1 + · · · + b0(z))ds + (s − 1)dz where u is a unit. After changing
the z-coordinate by x ∈ (C, 0) satisfying dx = dz

u(z)
, the foliation F1 is defined by a

holomorphic 1-form

ω1 = (sn + an−1(x)s
n−1 + · · ·+ a0(x))ds+ (s− 1)dx

for some a0, . . . , an−1 ∈ xC{x}. Blowing-up the point (0,∞) ∈ D × CP1 does not
change the expression of the normal form ω1 whose holonomy is the holonomy of F. �
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2.4 The spaces Dh(n).

In this section, we will analyze the sets divh(F) for foliations F ∈ D. The analysis
will lead us to a complete description of the moduli spaces of homogeneous dicritical
foliations of small algebraic multiplicity. We will provide analytic normal forms for
these cases by applying Theorem III with appropriate choices of the topological class
of the divisors D ∈ divh(F) and coordinates in E.

For any k ∈ N and A ⊂ E, let div(E \A)(k) denote the set of positive divisors in E \A
of degree k. If A = ∅, this space is equivalent to the projectivisation of the space of
homogeneous polynomials in two variables of degree k, which has the structure of Pk.
Given F ∈ D(n), define

div(F) = {Tang(F,G)|E ∈ divE(n+ 3) : G ∈ D(0)} (10)

A straightforward calculation shows that it is a four dimensional affine subvariety of
divE(n+3) regardless of the value of n. By definition it contains the (possibly empty)
set divh(F).

Theorem IV. The set Dh(n) is equal to D(n) if and only if n ≤ 3. Moreover,

1. if F ∈ D(1), then divh(F) = div(F) = div(E \ |T (F)|)(4).

2. if F ∈ D(2) then divh(F) = div(F). Let q(F) ⊂ divh(F) be the set of divisors
with a single point in its support.

• if T (F) = p1 + p2 , then |q(F)| = 5

• if T (F) = 2p1, then |q(F)| = 1.

3. if F ∈ D(3) then divh(F) is a quadric in div(F). The set q(F) of divisors in
divh(F) with a point of order at least 4 in its support is non-empty and contains
at most 24 elements.

• if T (F) = p1 + p2 + p3, then generically |q(F)| = 24;

• if T (F) = 2p1 + p2 then generically |q(F)| = 18

• if T (F) = 3p1, then generically |q(F)| = 6

4. The 1−form
y4(xdy − ydx) + x6dx+ y7dy

defines a foliation in D(4) \Dh(4).

5. for any n ≥ 5 the 1−form

yn(xdy − ydx) + xn+2dx+ y2xn+1dy

defines a foliation in D(n) \Dh(n).

In the case of D(1) we get a result of Cerveau (see [9]) as a consequence of Theorems
II and IV that improves the statement of Corollary 1:
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Corollary 7. Two foliations in D(1) are analytically equivalent if and only if they
share the same holonomy class.

Remark 8. From the Theorem IV we deduce that for F ∈ Dh(n) with n ≤ 3 ,
divh(F) ⊂ divE(n + 3) is an affine subvariety of positive dimension. The codimen-

sion of this subvariety is n(n−1)
2

, which is precisely the dimension M(F) of the base
space of the universal unfolding of F (see [12]). The deformation {Fc}c∈CM(F),0 under-
lying a universal equisingular unfolding of F will be formed by homogeneous dicritical
foliations. By using the argument in the proof with parameters it is possible to show
that there is a choice of divisors Dc ∈ divh(Fc) such that the germ of curve c 7→ Dc in
div(E)(n+ 3) at c = 0 is holomorphic and transverse to divh(F). In Section 4 we will
see how this information can be used to explicitely find one-forms defining unfoldings.
In the case n ≥ 4 we have that the base space of the universal equisingular unfolding
is already bigger than the dimension of divE(n + 3). This indicates that the universal
unfolding of an element in Dh(n) with n ≥ 4 needs to leave the locus of homogeneous
dicritical foliations.

Proof of Theorem IV. A germ of function h in C2 is quasi-homogeneous if and only
if there exists a vector field X such that X · h = h. In the same way, we obtain the
following criterion for a foliation F to be in Dh.

Lemma 9. Let ω be a convergent one form representing F ∈ D(n). Then F ∈ Dh(n)
if and only if there exist a formal vector field X̂ with radial linear part and a formal
unit û such that

X̂ · ω(X̂) = ûω(X̂). (11)

Proof. Suppose that there exist G ∈ D(0) such that Tang(F,G) is invariant by F. Then,
it is also invariant by G. Now, let us consider X and ω any vector field and form that
represent respectively G and F. The contraction ω(X) is an equation of the tangency
locus. Since it is invariant byX, the derivativeX ·ω(X) can be holomorphically divided
by ω(X) thus there exists a function u such that

X · ω(X) = uω(X).

Looking at the multiplicity at 0 of both components of the equality above ensures that
u is a unit, i.e., u(0) ̸= 0. Here, X and u are convergent, thus, also formal. Conversely,
if (11) has a formal solution, then ω(X̂) is the product of formal equations of convergent
separatrices of F. Thus, there exist a formal unit v̂ and a convergent equation F = 0
of separatrices of F such that

ω(X̂) = v̂F.

This last equation has a formal solution (X̂, v̂). We deduce the existence of a convergent
solution (X, v) to the above equation by Artin’s Theorem (see [1]) whose first jets
coincide with those of (X̂, v̂). The convergent vector field X then satisfies equation
(11) for some unit u.
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Lemma 10. Let ω be a 1-form representing F ∈ D(n). Suppose that there exist a
vector field X and a unit u such that

j2n+1 (X · ω(X)− uω(X)) = 0

then F ∈ Dh(n).

Proof. In the proof below, the notation �i stands for the homogeneous component of
degree i of the object �. Suppose that there exist a vector field X and a unit u as in
the Lemma. We are going to modify the component of degree k+3 of X and of degree
k + 1 of u so that

jn+3+k+1 (X · ω(X)− uω(X)) = 0.

That will ensure by induction the existence of a formal solution to the equation (11).
Now, a straightforward computation shows that

(X · ω(X)− uω(X))n+3+k+1 = ωn+1 (Xk+3 + uk+1X2) + uk+1ωn+2(X1) + (· · · ) (12)

Here the dots (· · · ) stand for terms which depends only of components of u of degree
strictly smaller than k+1 and of components of X of degree strictly smaller than k+3.
Let us denote by the component of degree k of X by Xk = Ak∂x + Bk∂y. From the
equation above and using the notation ω = Rn(xdy − ydx) + Pn+2dx+Qn+2dy + · · · ,
we obtain

(X · ω(X)− uω(X))n+3+k+1

= Rn (yAk+3 − xBk+3 + uk+1(yA2 − xB2)) + uk+1(xPn+2 + yQn+2) + (· · · )

This equation can always be made equal to 0 provided that n − 1 ≤ k + 1: indeed,
since Rn and xPn+2 + yQn+2 are relatively prime, applying the Bézout’s Theorem in
C[t] where t = y

x
to the relation above ensures the existence of a polynomial function ũ

of degree smaller than n− 1 and a polynomial function Ṽ of degree smaller than n+3
such that

R̃nṼ + ũ
(
P̃n+2 + tQ̃n+2

)
+ ˜(· · · ) = 0.

Since n − 1 ≤ k + 1 and n + 3 ≤ k + 4, it can be seen that one can find Ak+3, Bk+3

and uk+1 such that the equation (12) is satisfied.

Corollary 11. The subset divh(F) is an algebraic sub-variety of div(F).

Now, we can give the proof of the Theorem IV.

In what follows, we will use the notation introduced in the proof of the lemma (10)
and denote by Sn+3 the function xPn+2 + yQn+2.

• For n = 1, consider any radial vector field X. Since the multiplicity of ω(X) is
at least 4 then

j3(X · ω(X)− uω(X)) = 0

for any unity u. Moreover, setting u(0) = 4 yields

j4(X · ω(X)− uω(X)) = 0.
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Thus, according to the proof of lemma (10), for any radial vector field X, the
tangent cone of ω(X) belongs to divh(F). Now using the notation of the proof of
(10) one has

j4(ω(X)) = R1(yA2 − xB2) + xP3 + yQ3

whose projectivized tangent cone can be any element of div(E \ |T (F)|)(4) by
appropriately choosing A2 and B2. Therefore, one has

divh(F) = div(E \ |T (F)|)(4).

Notice also that one can argue the following way for n = 1: any 4-uple of smooth
invariant curves can be straightened to their tangent lines by a local biholomor-
phism. In the new coordinates, say (x, y), these four lines are invariant for the
radial vector field, R = x∂x + y∂y. Since the multiplicity of the tangency locus
is equal to 4, the tangency locus is exactly these four lines. Now according to the
above corollary, divh(F) is closed in div(F), which gives the property.

• For n = 2, setting u(0) = 5 yields

j5(X · ω(X)− uω(X)) = 0.

The same argument as above ensures that any divisor in div(F) which is the cone
tangent of some ω(X) = 0 for some radial vector field X, belongs actually to
divh(F). Now, the tangent cone of the tangency locus between F and G ∈ D(0)
is written

(ω(X)))5 = xP4 + yQ4︸ ︷︷ ︸
H5

+R2 (yA2 − xB2)︸ ︷︷ ︸
S3

= 0.

This tangent cone reduces to a single multiple point if and only if there exist a
unit u and α ∈ C such that

H5 +R2S3 = u (x+ αy)5

If |T (F)| is a single point, up to some linear change of coordinates we can suppose
that R2 = y2. Thus, the relation above implies that{

u = H5(1, 0)

α = (H5)4,1
5H5(1,0)

where (H5)4,1 is the coefficient of x4y in S5. If |T (F)| consists of two distinct
points, up to some change of coordinates we can suppose that R2 = y(y − 1). In
this case, the solutions are given by the system{

u = H5(1, 0)

(1 + α)5 = H5(1,1)
H5(1,0)

which has exactly five solutions for H5(1, 1) ̸= 0.
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• For n = 3, following the previous lemma, it is enough to show that there exists
a solution to

j7 (X · ω(X)− uω(X)) = 0. (13)

We consider the following notation

ω = R3(xdy − ydx) + P5dx+Q5dy + P6dx+Q6dy + · · · .

Below, we are only going to consider the generic case, that is, when R has three
distinct points in its tangent cone

R = (y − τ1x)(y − τ2x)(y − τ3x).

Notice that we can suppose that τ1 ̸= 0. Up to some multiplication by a unit, we
can furthermore suppose that the vector field X is written

X = x∂x+ y∂y + A2∂x+ δ4x
2∂y + A3∂x+B3∂y

where A2 is written in a Lagrange form

A2(x, y) = δ1
(y − τ2x)(y − τ3x)

(τ1 − τ2)(τ1 − τ3)
+ δ2

(y − τ1x)(y − τ3x)

(τ2 − τ1)(τ2 − τ3)
+ δ3

(y − τ1x)(y − τ2x)

(τ3 − τ1)(τ3 − τ2)
.

Finally, we set u = 6 + u1 + · · · where u1 = u10x + u01y. Here, the unknown
variables are the δ’s, the two coefficients of u1 and the coefficient of A3 and B3.
If we denote ω(X) = H6 +H7 + · · · , the initial equation (13) is written

H7 + u1H6 − A2∂xH6 − δ4x
2∂yH6 = 0. (14)

Now, since H7 is written

H7 = xP6 + yQ6 + P5A2 +Q5δ4x
2 +R3(yA3 − xB3)

and thus contains A3 and B3 as free and linear parameters, the equation (14) has
a solution if and only if the evaluation at each point (1, τi) of (14) which are the
roots of R3 yields 0. Thus, we are led to a system of three equations that are
written

δ2i
∂R3

∂x
(1, τi) + u10S6(1, τi) + u01τiS6(1, τi) + Li ({δj}j=1..4) = 0 i = 1, 2, 3

where the function Li are linear functions of δ1, δ2 and δ3 and quadratic in δ4.
The last two equations i = 2, 3 can be seen as a linear system in u10 and u01
whose determinant is∣∣∣∣ S6(1, τ2) τ2S6(1, τ2)

S6(1, τ3) τ3S6(1, τ3)

∣∣∣∣ = S6(1, τ2)S6(1, τ3)(τ2 − τ3)

which is not equal to 0 because S6 and R3 have no common root and τ2 ̸= τ3.
Thus, u10 and u01 can be substitute in the first equation which can be solved
because the coefficient of the quadratic term δ21 is equal to ∂R3

∂x
(1, τ1) ̸= 0. If R3

has for instance a double root, say τ1, then the second equation is replaced by
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the partial derivative of (14) with respect to y applied to (1, τ1) which has also
to be 0. Then, the computations are much the same as above. In any case, the
final equation is quadratic in the variables δi and thus divh(F) is a quadric.

Now, a point of coordinates (1, t) which is in the support of some divh(F) is of
multiplicity 4 if and only if

H
(i)
6 (1, t) = 0, i = 0, . . . , 3.

Let us write

H6(1, t) = S6(1, t) +R3(1, t)(α0 + α1t+ α2t
2 + α3t

3)

Notice that the coefficients αi can be linearly written in terms of δi’s. The
previous equations can be written

α0 + α1t+ α2t
2 + α3t

3 = −
(

S6

R3

)
(1, t)

α1 + 2α2t+ 3α3t
2 = −

(
S6

R3

)(1)
(1, t)

2α2 + 6α3t = −
(

S6

R3

)(2)
(1, t)

6α3 = −
(

S6

R3

)(3)
(1, t)

Solving the following linear system, we express each coefficient αi as a rational
function of the variable t which appear to be of degree 0, thus,

αi =
· · ·
R4

3

where the dots stand for some polynomial function of degree at most 12. Now, if
we substitute these expressions in the quadratic equation that defines divh(F), we
are led to a polynomial equation of degree at most 24. To check that generically
this polynomial function has degree 24 and 24 distinct solutions,it is enough to
exhibit an example satisfying these two conditions. Using some standard symbolic
computation program, we can verify that for

F : y(y2 − x2)(xdy − ydx) + (x5 + y5 + x4y)dx

the polynomial function is

10

3
t24 + 20 t22 − 20

3
t21 − 190

3
t20 − 5944

3
t19 − 5898t18 − 9472t17 − 22709

3
t16

− 3732t15 − 1008t14 − 5948

3
t13 − 2783t12 − 8224

3
t11 − 394t10 +

4616

3
t9

+ 207t8 − 2188

3
t7 − 40

3
t6 + 248t5 +

251

3
t4 +

32

3
t3 − 40

3
t2 − 32

3
t− 2

3
,

which has no common factor with t(t2 − 1) and has only simple zeros.

Now, the same argument can be performed when T (F) has a double or a triple
point. Generically, the degree of the polynomial function obtained has above will
be respectively 18 and 6.
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• For n ≥ 5, an obstruction to solve the equation (11) appears already for the
jet of order n + 4. Indeed, if we take R = yn, Pn+2 = xn+2, Qn+3 = y2xn+1,
Qn+2 = Pn+3 = 0 we have ∂xHn+3 = (n+2)xn+1+yn(. . .) and ∂yHn+3 = yn−1(. . .).
The equation on degree n+ 4 becomes

−y3xn+1 = A2x
n+2 + yn(. . .) + A2((n+ 2)xn+1 + yn(. . .))

+B2(y
n−1(. . .)) + u1(x

n+3 + yn(. . .))

which has no solution if n ≥ 5 since there is no term in y3xn+1 in the right term
of the above equality. Thus Dh(n) ̸= D(n) for n ≥ 5.

• For n = 4, we have also Dh(n) ̸= D(n) but to produce a counter-example, we
had to use again symbolic computer program . Indeed, the obstruction appears
only on the homogeneous term degree n+5 = 9 whereas it appears on the degree
n+ 4 for any n bigger than 5. Actually the following form

y4(xdy − ydx) + x6dx+ y7dy

does not belong to Dh(4) while it belongs to D(4). Although it is quite long, the
verification presents no special difficulty.

Finally, we conjecture that for n ≥ 4, the space Dh(n) has strictly positive codimension
in D(n). To support this claim, we remark that whether or not an element of F ∈ D(n)
belongs to Dh(n) relies on four parameters of the affine space div(F) which must satisfy
n(n−1)

2
equations as highlighted in [7]. For n ≥ 4, there are more conditions than

parameters.

�

For small values of n, we can give a precise finite list of normal forms by using the
choices of divisors of Theorem IV. This is the object of the following corollary.

We say that an element (a1(x), . . . , am(x)) in C{x}m is normalized if it is (0, . . . , 0) or
if the first ai(x) ̸= 0 with i as small as possible has its first non-zero monomial with
coefficient 1.

Corollary 12. For any F ∈ D(n) with n ≤ 3, there exists a finite number of convergent
normal forms characterizing the analytical class of F. They are resumed in the following
table.

T (F) Normal Form Nr.
p (y + x3a(x))(xdy − ydx) + x3dx, a ∈ C{x} is normalized 1
2p (y2 + b(x)x2y + a(x)x3)(xdy− ydx) + x4dx where (a, b) ∈ C{x}2 is

normalized
1

p1+ p2 (y(y−x)+ b(x)x2y+ a(x)x3)(xdy− ydx)+x4dx where a, b ∈ C{x} 10
3p (y3+c(x)x2y2+b(x)x3y+a(x)x5)(xdy−ydx)+(x+λ1y)(x+λ2y)x

3dx
where (a, b, c) ∈ C{x}3 is normalized and λ1, λ2 ∈ C

≤ 6

2p1 +
p2

(y2(y+x)+c(x)x2y2+b(x)x3y+a(x)x5)(xdy−ydx)+(x+λ1y)(x+
λ2y)x

3dx where a, b, c ∈ C{x} and λ1, λ2 ∈ C \ {1}
≤ 18

p1 +
p2+ p3

(y(y2−x2)+c(x)x2y2+b(x)x3y+a(x)x4)(xdy−ydx)+(x+λ1y)(x+
λ2y)(x+λ3y)

3d(x+λ3y) where a, b, c ∈ C{x} and {λi} ⊂ C\{1,−1}
≤ 144
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When a normal form is non-unique, we can deduce all the equivalent normal forms
from any one of them.

Proof. Recall that in Theorem III, the locus xQ (x, y) = 0 is Tang (F,R) and the locus
W (1, y) = 0 corresponds to T (F). For n ≤ 3, we are able to construct a finite family
of normal forms that characterizes the analytical class of a given F. The finite family
depends on a finite number of possible choices of the relative position of the points of
T (F), of the special (finite) choice of elements in divh (F) given in Theorem IV and,
when these are not enough, on some special choice of the series defining the holonomy.

1. If n = 1 then T (F) = p for some p in E. One can choose a coordinates (x, y) such
y = 0 corresponds to the direction defined by p and x = 0 to direction defined by
the point of order 4 in divh (F). In these coordinates, Theorem provides normal
forms that can be written(

y + x2a (x)
)
(xdy − ydx) + x3dx.

Now if we apply an scaling (x, y) → (λ2x, λ3y) then the form is written(
y + x2λa (λx)

)
(xdy − ydx) + x3dx

Thus either a = 0 and the form admits a meromorphic first integral which is
invariant by scaling or a ̸= 0 and one can normalize a. Having made all these
normalisations, the normal form is then unique up to E-equivalence.

2. If n = 2 and T (F) = 2p then, one can choose for point at ∞ the unique point of
order 4 in divh (F) whose existence is ensured by Theorem IV. As before, Theorem
III provides normal forms of type(

y2 + a (x)x3 + b (x)x2y
)
(xdy − ydx) + x4dx.

Finally, either a = b = 0 or one can suppose (a (x) , b (x)) is normalized by
scaling with (x, y) → (λ3x, λ4y) . Again, having made all these normalisations,
the normal form is then unique up to E-equivalence.

3. If n = 2 and T (F) = p1 + p2 then, there are five possible choice for a point of
order 4 in divh (F). Once one of this point is chosen for being at ∞, one can
choose the coordinates of T (F) to be {0, 1} and there are exactly two different
possibilities. Then Theorem 3 provides a normal form of type(

y (y − x) + a (x)x3 + b (x) x2y
)
(xdy − ydx) + x4dx.

Notice that, in that case, (a (x) , b (x)) cannot be a priori normalized since no
scaling leaves the configuration of the three points invariant. Thus, we obtain a
set of 10 normal forms which is unique up to E-equivalence.

4. If n = 3 and T (F) = p1 + p2 + p3 then there exist at most 24 divisors in divh (F)
with point of order 4 in its support. Let us choose one of this divisor and consider
a coordinates where the two points p1, p2 are sent to 0, 1 and the point of order
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4 at ∞. There are six such possible choices. Now Theorem III provides a normal
form that can be written(

y (y − x) (y + λ1x) + a (x) x4 + b (x) x3y + c (x) x2y2
)
(xdy − ydx)

+ (x+ αy) (x+ βy)x3d (x) .

where λ1 ̸= 0,−1 and α, β ̸= −1, λ1. Notice that (a, b, c) may not be normalized.
Thus, we obtain a classifying list of at most 6× 24 = 144 normal forms.

5. If n = 3 and T (F) = 2p1+p2 then there exists at most 18 divisors in divh (F) with
a point of order 4 in its support. Choosing one of this point and coordinates where
the latter is at ∞, the point point of order two in T (F) is 0, and the remaining
point 1, Theorem III provides a normal form of the same type as before(

y2 (y − x) + a (x)x4 + b (x)x3y + c (x)x2y2
)
(xdy − ydx)

+ (x+ αy) (x+ βy) x3d (x) .

and, thus, a classifying list of 18 normal forms.

6. If n = 3 and T (F) = 3p then there exists at most 6 divisors in divh (F) with a
point of order 4 in its support. Letting ∞ be one of these points and T (F) be 0
leads to a normal form of the form(
y3 + a (x)x4 + b (x)x3y + c (x)x2y2

)
(xdy − ydx) + (x+ αy) (x+ βy) x3d (x) .

Now using a scaling (x, y) → (λ4x, λ5y), one can suppose that (a, b, c) is normal-
ized. Finally, we obtain a classifying list of at most 6 normal forms.

The convergent normal forms we have obtained look quite similar to the formal normal
forms constructed by Ortiz, Rosales and Voronin in [14] and the convergent normal
forms in the case n = 1 ( see [15]). The main difference is that we first choose a radial
foliation with respect to which the given foliation is homogeneous. The convergence of
its linearization map gives us the convergence of the normal forms.

3 Classification in D.

As was seen in the previous section, the homogeneity hypothesis was a great help.
Having a radial foliation that is well related to a given foliation allowed in particular
to find good coordinates. In general, we do not have such an object but some formal
results based on the ideas coming from the homogeneous case can be used to determine
general formal normal forms.
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3.1 Formal normal forms in D(n).

We start by generalizing the results in [14] to all of D with a slight change in the type

of equivalences. Two formal vector fields V, Ṽ in (C2, 0) are said to be formally E-

equivalent V ∼0 Ṽ if there exist a formal pair of power series ϕ(x, y) = (λx+ . . . , λy+
. . .) and a formal unit u(x, y) = µ+ · · · such that

Ṽ = u · ϕ∗(V ).

If the vector fields converge, ϕ is a formal equivalence between the induced foliations.
If the equivalence ϕ converges it sends leaves of V to leaves of V ′ and fixes every point
of the exceptional divisor E. In this case we say that V and V ′ are E-equivalent and
denote it by V ∼E V

′.

Let n ≥ 1. For any W formal Weierstrass polynomial in y - a monic polynomial in

C[[x]][y] - of degree and order n and any family of complex numbers (cij) ∈ C
n(n−1)

2 ,
we consider the formal foliation given by

FW,(cij) := W (x, y)(xdy − ydx) +

xn−1 +
∑

0 ≤ i ≤ n − 2
0 ≤ j ≤ n − 1
i + j ≥ n − 1

cijx
iyj

 x3dx. (15)

Theorem V (Formal normal forms inD(n)). Consider three distinct points p0, p1, p∞ ∈
E and n ≥ 1. For any F ∈ D(n) such that p0 /∈ |T (F)|, there exist a formal conjugacy

Φ ∈ D̂iff(C2, 0) and a unique pair {W, (cij)} such that

• DΦ(p0) = 0, DΦ(p1) = 1 and DΦ(p∞) = ∞

• Φ∗F = FW,(cij)

As a consequence of the theorem above, two formal normal forms FW,(cij) and FW ′,(c′ij)

are formally E-equivalent if and only if they are equal. On the other hand we know from
[5] that formal/analytic rigidity takes place in D so the formal invariants determine
the analytic class.

The proof follows the lines of the proof of Theorem 4 in [14] with the appropriate
changes to generalize to foliations in D. In that paper the divisor T (F) is assumed to
have only simple points in its support, which is the generic case.

Proof. In the proof and whenever a system of coordinates (x, y) is given, the radial
vector field x∂x + y∂y will be denoted by R. Its dual form xdy − ydx is denoted by
ωR. For convenience, we are going to use the vector fields rather than the 1−forms.
Moreover, jm(�) and �m stand respectively for the jet of order m and the component
of homogeneous degree m of �. Moreover, a vector field V is said to have a normalized
homogeneous term of degree n+N ≥ n+ 2 that is written

Vn+N = P∂x +Q∂y
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if both P (1, t) and ωR(Vn+N)(1, t) have degree at most n− 1 and the second has order
at least N at 0.

Let (x, y) be coordinates such that x = 0, y = x and y = 0 define the points p0, p1 and
p∞ in E respectively and V = P∂x +Q∂y be the holomorphic vector field representing
F such that P is a Weierstrass polynomial in y. Then jn+1(V ) = RR for a unique
homogeneous polynomial R(x, y) of degree n ≥ 1 with R(0, y) = yn. The regularity of
the foliation after blow-up is equivalent to the fact that R has no common factors with
ωR(Vn+2) = yPn+2 − xQn+2.

After applying a transformation of type λId for some λ ∈ C∗ and multiplying by an
appropriate unit, we can suppose that R(0, y) = yn and Qn+2(x, 0) = xn+2. In what
follows, all changes of coordinates will be tangent to the identity and all units will be
equal to 1 at the origin. Thus R and Qn+2(x, 0) do not change along the next changes
of coordinates.

Next we are going to normalize recursively the homogeneous components of V . To do
so, we will use of two types of changes of coordinates. Below, we describe these changes
of coordinates and compute how they affect the homogeneous components of V .

• If ϕN = (α, β) is a homogeneous vector field of degree N ≥ 2, and we consider

the vector field Ṽ = P̃ ∂x + Q̃∂y obtained by pushing V by the transformation
ϕ = Id + ϕN + h.o.t. we have that

jn+N(P̃ ) = jn+N(P ) + (N − 1)Rα− x(α∂xR + β∂yR) (16)

jn+N+1(ωR(Ṽ )) = jn+N+1(ωR(V )) + (N − 1)RωR(ϕN) (17)

• Moreover, if ϕN preserves the radial foliation, i.e. there exists a homogeneous
polynomial γ of degree N − 1 such that α = xγ and β = yγ, then setting
Ṽ γ = (1− (N − 1− n)γ)Ṽ , we get

jn+N(P̃ γ) = jn+N(P ) (18)

jn+N+2(ωR(Ṽ
γ)) = jn+N+2(ωR(V ))−NγωR(Vn+2) (19)

In particular if V was normalized up to order n+N , so is Ṽ γ.

We will consider a sequence of equivalent vector fields V N , each normalized up to
order n + N . Start with V and find a homogeneous vector field of degree N = 2,
ϕ2 such that the right hand side of (17) becomes a polynomial of degree less than
n. By dehomogeneizing the equation there is a unique possibility for ωR(ϕ2) given by
euclidean division in the ring C[t]. The push forward of V by Id+ϕ2 gives a vector field

Ṽ satisfying ωR(Ṽ ) is normalized up to order n+2. Let η be the unique homogeneous

polynomial of degree N − 1 such that Q̃(1, t) + η(1, t)R(1, t) is of degree less than n.

Then V 2 = (1 − η)Ṽ is normalized up to order n + 2 and V 2 ∼0 V . Suppose for
induction that N ≥ 2, V N is normalized up to order n+N and V N ∼0 V . Let us find
a V N+1 ∼0 V

N normalized up to order n+N +1. The key ingredient for the induction
is
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Lemma 13. Given a homogeneous polynomial H of degree n + N + 2 in (x, y) there
exist a unique polynomial qn+N+2 in the C- vector space V generated by yjxn+2+N−j for
j = N . . . , n− 1, and homogeneous polynomials A and B of degrees N + 2 and N − 1
respectively such that

H = qn+N+2 + AR +BωR(Vn+2)

Set H = (ωR(V
N))n+N+2 and apply the previous lemma to obtain A,B and qn+N+2.

Define γ = B/N . Then defining Ṽ γ as before, we get jn+N+2(Ṽ γ) = qn+N+2 +AR and

jn+N(P̃ γ) = jn+N(P ). Next choose a homogeneous vector field ϕN of degree N such

that ωR(ϕN) = −A/(N + 1). After applying Id + ϕN to Ṽ γ we obtain a vector field
WN+1 with normalized

jn+N+2(ωR(W
N+1)).

It remains to normalize the homogeneous term P of degree n + N + 1 of the ∂x-
coordinate of WN+1. We claim that x divides P and thus P (1, t) has degree at most
n+N . Indeed, By construction x divides ωR(W

N+1))n+N+2 and

WN+1
n+N+2 −

(
(ωR(W

N+1))n+N+2

x

)
∂y and R are tangent vector fields.

Therefore x divides P . By using euclidean division in C[t] we can find a unique homo-
geneous polynomial PN+1(x, y) of degree N+1 such that PN+1(1, t) has degree at most
n−1, and a homogeneous polynomial C(x, y) of degree N such that P = PN+1+xRC.
The vector field V N+1 = (1 − C)WN+1 is normalized up to order n + N + 1 and still
in the same equivalence class.

The formal vector field V ∞ satisfying jN(V ∞) = jN(V N) for all N ≥ 1 is also formally
equivalent to V N and has all its homogenous terms normalized. Its dual form has
the properties stated in the statement of Theorem V. The uniqueness of the solutions
for the coefficients in the Taylor series of V∞ at each step of the normalization shows
that the normal form is unique. Nevertheless, the formal equivalence between the
vector field V and its normal form V∞ is non-unique since the group of automorphisms
of the foliation contains the exponential of uV for any unit u. This appears in the
normalization process as the lack of uniqueness for the coefficients in the normalizing
map.

In [14] the authors consider the case of foliations F ∈ D(n) for which T (F) has only
simple points in its support, i.e. all tangencies between the foliation and the excep-
tional divisor are simple. They provide unique formal normal forms modulo formal
conjugacies tangent to the identity. The unique normal forms they obtain can also be
written as W (x, y)(xdy− ydx)+H(x, y)dx where W ∈ C[[x][y] is a formal Weierstrass

polynomial and H is a polynomial whose coefficients lie in an open set of C
n(n−1)

2
+1. In

our case the coefficients of the polynomial H lie in an an open set in C
n(n−1)

2 . The differ-
ence in number of parameters comes from the fact that we are considering equivalences
that are tangent to a homothety λId and in [14] the authors consider equivalences
tangent to Id. In the case where T (F) = p the convergence of the normal form is
proven by the same authors in [15]. The difference between the normal form obtained
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in Theorem V and the normal forms of [15] lies in the choice of a radial foliation that
is used to normalize.

3.2 The ∼E-invariants.

Following Theorem V, we introduce an analytical invariant by extractring some infor-
mations from the formal normal forms of a foliation F. Given three distinct points
p0, p1, p∞ ∈ E and any class of E-equivalence [F] such that p0 /∈ |T (F)|, we define its
∼E-invariant as the data

c[F](p0, p1, p∞) := (cij) ∈ C
n(n−1)

2 .

This invariant together with the holonomy provides a complete system of invariants
for the E-equivalence in D. This is the meaning of the following

Theorem VI (∼E-invariants). F1 ∼E F2 ∈ D if and only if F1 ∈ D, H(F1) = H(F2)
and

c[F1](p0, p1, p∞) = c[F2](p0, p1, p∞)

for some (and hence for every) choice of three distinct points p0, p1, p∞ ∈ E.

As in the homogeneous case, Proposition 5 implies that the parameters (cij) are in-
dependent of the holonomy. If we knew that the normal form associated to a certain
(convergent) holonomy class is convergent, we would deduce the convergence of the
normal forms of Theorem V for holomorphic foliations.

Proof of Theorem VI. Consider two foliations F1 and F2 as in the statement of the
theorem. Their associated formal normal forms are written

F1∼̂E (R(x, y) + · · · )︸ ︷︷ ︸
W1

(xdy − ydx) +Q1x
3dx

F2∼̂E (R(x, y) + · · · )︸ ︷︷ ︸
W2

(xdy − ydx) +Q2x
3dx

Since c[F1](p0, p1, p∞) = c[F2](p0, p1, p∞), they share the same second factor, that is to
say

Q1 = Q2.

Denote r = R(1, t) and q = Q1(1, t). Lemma 5 ensures that the map holr,q is a bi-
jection. Therefore, the equality H(F1) = H(F2) implies that the terms W1 and W2

are also equal. Therefore, the foliations have the same normal forms and are formally
equivalent. Now, following [5], they are also analytically equivalent. �
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3.3 Realization of ∼E-invariants

By giving a geometric interpretation of the ∼E-invariants, we are able to proof a
realization-like theorem.

Recall that given F ∈ D(n), we defined

div(F) = {Tang(F,G)|E ∈ divE(n+ 3) : G ∈ D(0)}. (20)

By construction div(F) ⊂ div(E\|T (F)|). If F1 and F2 are E-equivalent then obviously
div(F1) = div(F2). There exists an equivalence relation ∼T (F) on divE(n+3) depending
only on T (F) whose classes correspond precisely to a subset of the form (20). Indeed,
given a divisor

D = r1p1 + · · ·+ rkpk ∈ divE(n)

we say that two divisors D1, D2 ∈ divE(n + 3) are D-equivalent, and we denote it
by D1 ∼D D2, if there exist homogeneous polynomials in two variables P1, P2 and R
defining D1, D2 and D respectively satisfying that P2 = P1+RQ for some homogenoeus
polynomial Q of degree 3. On the other hand, denote by Rot(D) the set of families
{h1, . . . , hk} where each hi : (E, pi) → (E, pi) is a holomorphic germ locally conjugated
to the rotation by angle 2π/(ri + 1) and

E =
∪

D∈divE

ED where ED =
div(E \ |D|)(deg(D) + 3)

∼D

× Rot(D)

with its natural projection E → divE. We get a natural map I : D/ ∼E→ E given by

I ([F]) = ([div(F)], H(F)) ∈ ET (F)

which is well defined since E-equivalences fix any point on E, where all invariants we
deal with are computed.

Theorem VII. The map I is onto. Its fiber over an element in ED is biholomorphic

to CM where M = max
(
0, (degD−2)(degD−1)

2

)
.

This theorem also proves that any invariant in Theorems II and VI are realized by
some foliation in D.

To describe the space D/ ∼ we just need to remark that there is a natural action of the
group GL(2,C) onD/ ∼E once we have chosen coordinates (x, y) in (C2, 0). The action
associates to each matrix the natural linear transformation in the two variables (x, y).
The quotient is precisely D/ ∼. This action preserves fibers of I, and actually the
map I is equivariant with respect to the natural homomorphism GL(2,C) → Aut(E).
Hence we can define a surjective map I : D/ ∼→ E/Aut(E) whose fibers are as in
Theorem VII.

Proof. To prove that I is onto, let D = r1p1 + . . .+ rkpk ∈ divE(n) and

([D1], {h1, . . . , hk}) ∈ ED
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be given. Consider an affine coordinate s ∈ C in E containing all the points in the sup-
port of D and D1. These divisors can be respectively represented by monic polynomials
r(s) and q(s) and the 1-form r(s)ds+ q(s)dx defines an element such that

T (F0) = D

div(F0) = [D1]

We are going to do a surgery on F0 which preserves the above relations but modify
the holonomies as expected. Consider the pair (F0,G) where G is the radial foliation
defined by ds = 0 in the given coordinates. On a small neighbourhood Ui of pi ∈ E,
following Lemma 2, there exists a local biholomorphism ϕi sending the pair (F0,G)|Ui

to
the germ at (0, 0) of the pair (ωi, dt) where ωi = tridt+ (t− 1)dx. Define φi = ϕi|E∩Ui

.
To keep track of the divisors D and D1 and change the holonomy we do not touch the
gluing on E ∩ Ui but we change the model foliation ωi by an appropriate holomorphic
model ω̃i ∈ Ωr=tri ,(t−1) obtained from Proposition 6 that satisfies

hi(s) = φ−1
i ◦ holr,t−1(ω̃i) ◦ φi(s).

Now, there exists a unique extension of φi to a saturated neighbourhood Vi of an
annulus Ai ⊂ Ui ∩ E that sends the pair (F,G)|Vi

to the pair of germs of foliations
at (0, 0) defined by (ω̃i, dt). After doing this at each point pi, we obtain a pair of
regular foliations (F,G) in a neighbourhood of a (−1)-curve. The contraction of this
curve produces a foliation F ∈ DR, G ∈ D(0), T (F) = D, div(F) = [D1] and H(F) =
(h1, . . . , hk). Thus the map I is onto.

It remains to prove that for each D = r1p1 + · · ·+ rkpk ∈ div(E)(n) and

e = ([D1], {h1, . . . , hk}) ∈ ED

the fibre I−1(e) is biholomorphic to CM whereM is as in the statement of the theorem.
Take coordinates (x, y) of (C2, 0) such that x = 0 does not define a point in the support
of D. By Theorem V we can assign to each class in I−1(e) a unique formal 1-form
W (x, y)(xdy− ydx) +Q(x, y)dx. The homogeneous part of degree n+ 2 of Q depends
only on [D1] and thus is invariant in I−1(e). Now, the polynomial Q−Qn+2 is written∑

0 ≤ i ≤ n − 2
0 ≤ j ≤ n − 1

i + j ≥ n

cijx
i+3yj

and thus defines a point (cij) in CM . This defines a map from I−1(e) to CM . Proposition
5 ensures that this map is injective.

Let us prove that it is also onto.

Let (cij) in CM be given. By construction, the family of complex numbers (cij), the
class of divisor [D1] and the set of holonomies h = {h1, . . . , hk} is,associated to a
formal normal form of Theorem V. However, we are looking for a convergent foliation.
The idea is basically the same as in Proposition 6. We are going to do a surgery
on a polynomial form that is tangent to the formal normal form with an order as
big as necessary. Indeed, using the construction of Theorem V it is easy to see that
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for any N >> 1 there exists a foliation F0 defined by a polynomial normal form
ω0 = W0(x, y)(xdy − ydx) +Q(x, y)dx satisfying that

jN(H(F0)) = jN(h).

After the blow-up y = tx, we consider the radial foliation G0 defined by dt = 0.
On a neighbourhood Ui of pi ∈ |D|, there exists a unique biholomorphism onto a
neighbourhood of (0, 0) in coordinates (z, t) sending (0, t) to (0, t) and the pair (F,G)|Ui

to the pair (ω0
i , dt) where ω0

i = (tri + a0ri−1(z)t
ri−1 + · · · + a00(z))dt + (t − 1)dz is

the convergent 1-form of Proposition 6 having the same holonomy h0i as F0 at pi.
The convergent 1-form ωi = (tri + ari−1(z)t

ri−1 + · · · + a0(z))dt + (t − 1)dz for which
H(Fωi

) = hi satisfies that

ωi − ω0
i = zN

′
f(z, t)dt

for some big N ′ ∈ N. In particular this means that for each 0 < εi < |t0| < ri for
some small εi and ri, the holonomy germs g0i , gi : ({t = t0}, 0) → (E, t0) of ω

0
i and ωi

respectively are tangent with an order as big as necessary. In particular, g−1
i ◦g0i (z)−z

has a zero of order N ′′ that is as big as necessary. The equivalence between Fω0
i
and

Fωi
in a neighbourhood of the annulus can be written as

(z, t) 7→ (z + zN
(3)

(· · · ), t). (21)

for a N (3) as big as necessary. We claim that the gluing of F
0|(C̃2,E)\U1∪···∪Uk

with the

models Fωi
via the given gluing (21) defines an element in F ∈ I−1(e) with the desired

invariants. After the gluing, we get a pair (F,G) of foliations around a rational curve
of self-intersection −1. Combining results from [3], [13] and [6], we have the following
lemma

Lemma 14. Let DiffN(E,G) be the sheaf over E of germs of automorphisms that are
locally written (z, t) 7→ (z+ zN(· · · ), t) where z = 0 is a local equation of E and dt = 0
is the radial foliation G. Then,

H1 (E,DiffN(E,G)) = 0.

Let us give a sketch of the proof of the above lemma

Proof. According to [13], it is enough to prove at a formal level that the following
equality holds

H1
(
E, D̂iffN (E,G)

)
= 0

Let us consider {ϕij}ij ∈ Z1
(
D̂iffN (E,G) , {Ui}i∈I

)
for some simply connected covering

{Ui}i∈I of E. Taking a finer covering if necessary, one can suppose that ϕij is the flow

at time 1 of some formal vector field X̂ij tangent to the radial foliation. Since ϕij is
tangent at order N to Id, one can write in adapted coordinates (z, t)

X̂ij = znAij (z, t)
∂

∂z
, ϕij = e[1]X̂ij
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where Aij is some formal function. Now, the cohomology group H1
(
E, Ô

)
vanishes

([3]), so there exists a family of functions such that Aij = Aj − Ai. As a consequence,

there exists a family of vector fields
{
X̂i

}
i∈I

vanishing at order N along E such that

X̂ij = X̂j − X̂i.

The Campbell-Hausdorff formula induces that

e[1]X̂i ◦ e[1]X̂ij ◦
(
e[1]X̂j

)−1

= e[1]Ẑij

where Ẑij is a formal vector field tanget to the radial foliation and vanishing at order
2n− 1 along E. Applying inductively this construction, we obtain a 0−cocycle {ϕi}i∈I
in D̂iffN (E,G) such that

ϕi ◦ e[1]X̂ij ◦ ϕ−1
j = ψij (22)

and ψij is tangent to Id at an order p as big as necessary. Finally following [6], for m
big enough, the image of the natural map

H1
(
E, D̂iffm (E,G)

)
→ H1

(
E, D̂iffN (E,G)

)
is trivial. Thus, one can write

ψij = ψ−1
i ψj (23)

where {ψi}i∈I is a 0-cocycle in D̂iffN (E,G). Combining the relations 22 and 23 yields
a trivialization of the initial cocycle.

This lemma implies in particular that one can choose a holomorphic 1-form ω repre-
senting F as tangent as necessary to ω0. In particular, one can choose this order of
tangency such that ω and ω0 coincides up to order 2n. Therefore, F has the desired
invariants (cij) ∈ CM and the map from I−1(e) to CM is onto.

4 Examples of unfoldings in Dh(n).

In the light of Theorem I, we have a natural way of unfolding a dicritical homogeneous
germ F ∈ Dh(n) in the space Dh(n) with base space of dimension n + 3. Indeed,
we can suppose F is obtained from FS of Theorem I by a blow up on some divisor
D = p1 + . . .+ pn+3 on the exceptional curve. When two points pi and pj coincide, we
interpret that we blow up twice at the same point. By considering an affine coordinate
z ∈ C in the rational curve where pi corresponds to zi ∈ C, and defining pi(c) = zi + ci
for c = (c1, . . . , cn+3) ∈ (Cn+3, 0), the foliations {Fc : c ∈ (Cn+3, 0)} defined by blowing
up FS on the divisor D(c) = p1(c) + . . . + pn+3(c) form an equisingular unfolding of
F. The knowledge of divh(F) and Theorem II allow to decide which of the directions
in this unfolding are non-trivial. For instance, in the cases n = 2, 3, this procedure
applied to the points of the special choices of topological class in divh(F) of Corollary
12 produce universal equisingular unfoldings.
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In fact, by this procedure we are able to give explicit examples of non-trivial unfoldings
of a foliation without any special integrability properties. To our knowledge they
constitute the first such examples.

4.1 Examples obtained by pulling-back foliations admitting a
meromorphic first integral.

We can provide some examples of universal equisingular unfoldings of elements in D.
Indeed, if r(t) is a polynomial of degree n, the universal unfolding of the germ of
foliation F ∈ Dh(n) defined by

ν = xn+2d
(
r
(y
x

)
+ x
)

(24)

is given by pull-back of ν via the rational map

Λ(x, y, (cij)) = (x, y) ·

(
1 +

n−1∑
j=1,i<j

cijx
i−jyj

)

where (cij) ∈ Cn(n−1)/2. Remark that for each fixed non-zero parameter (cij), Λ is an
automorphism of each leaf of the radial foliation x∂x+y∂y except for the leaf x = 0. To
see that the resulting unfolding is equisingular and non-trivial in any direction in the
parameter space, it suffices to remark that after blowing up via y = tx, the underlying
deformation is written in dual form as(

r(t) +
n−1∑

j=1,i<j

jcijx
i+1tj−1

)
dt+

(
1 +

n−1∑
j=1,i<j

(i+ 1)cijx
itj−1

)
dx.

Hence for any fixed parameter we have already one of the normal forms given in The-
orem V. By uniqueness of the normal form, any two elements in this family belong
to different classes of E-equivalence. Actually, the so constructed unfolding turns out
to be the universal unfolding of ν since the dimension of its space of unfoldings is
n(n − 1)/2. Notice that unfortunately, such a procedure fails when the initial form ν
is in normal form and has some other non-zero terms.

4.2 Examples without any special integrability property.

Consider an element of Dh(n) defined by the one-form

ω =

(
R(x, y) +

n−1∑
i=0

ai(x)y
ixn−i

)
︸ ︷︷ ︸

W (x,y)

(xdy − ydx) +Q(x, y)dx

as in the statement of Theorem III where R is homogeneous of degree n and ai ∈ C{x}
with ai(0) = 0. Then the one-form in (C2, 0)× Cn−1 defined by

Ω =

(
R(x, y) +

n−1∑
i=0

ai(x+ ⟨c, y⟩)yixn−i

)
(xdy − ydx) +Q(x, y)d(x+ ⟨c, y⟩)
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where ⟨c, y⟩ =
∑n−1

i=1 ciy
i, defines a non-trivial equisingular unfolding of any foliation

in D associated to Ω|c=c0
for some c0 ∈ Cn−1.

Notice that, if the initial 1−form ω is polynomial then the unfolding is also polynomial.
In this way, we provide non-trivial deformations of global foliations in CP2 of constant
topological type, a situation that is generically impossible (see [8]).

Let us consider the rational map

Λ (x, y, c) =

(
1 +

⟨c, y⟩
x

)
· (x, y)

where ⟨c, y⟩ =
∑n−1

i=1 ciy
i.

The 1-form Ω in C2×Cn−1 is the pull-back of Ω|c=0 = ω by Λ up to some multiplication
by a meromorphic unit u. In particular, Ω is an integrable 1−form since we have

u2Ω ∧ dΩ = Λ∗ (Ω|c=0 ∧ dΩ|c=0) = 0.

After the blow-up E of the singular locus {x = 0, y = 0}, Ω is written in the coordinates
of the blow-up y = xt

E∗Ω =

(
R (1, t) +

n−1∑
i=1

ai (x+ ⟨c, tx⟩) ti
)
dt+Q (1, t) d (x+ ⟨c, tx⟩) .

The induced foliation restricted to a fibre of (x, y, c) 7→ c over a point c = (c1, . . . , cn−1)
such that 1/c1 is not a root of R(1, t) = 0 lies in D(n). The tangency locus with the
exceptional divisor x = 0 is equal {x = 0, t = ti} where ti is a solution to of R (1, t) = 0.
Since the curves {x = 0, t = ti} = 0 are contained in a invariant hypersurface of E∗Ω,
the 1−form Ω defines an equireducible unfolding of Ω|c=c0

for any c0 lying in the Zariski
open set U = {c ∈ Cn−1 : c1ti ̸= 1,∀ti}
Suppose now that Ω is trivial along a certain smooth submanifold of the space of
parameter. Then, there exists a germ of application

c : t ∈ C → (c1 (t) , c2 (t) , · · · , cp (t))

with c (0) = 0 and c′ (0) ̸= (0, · · · , 0) such that Ω|c(t) is a trivial unfolding of one
variable. Now Ω|c(t) is written(

R (x, y) +
n−1∑
i=1

ai (x+ ⟨ci (t) , y⟩) yixn−i

)
ωR +Q (x, y) d (x+ ⟨ci (t) , y⟩) =

(· · · )ωR +Q (x, y) dx+Q (x, y)
n−1∑
i=1

ci (t) iy
i−1dy +

(
Q (x, y)

n−1∑
i=1

c′i (t) y
i

)
dt

Following [12], the triviality of Ω|c(t) implies that the coefficient of dt belongs to the
ideal generated by the coefficients of dx and dy. If there exists such a relation, we can
evaluate it for t = 0 and find polynomial functions A and B such that

PQ = A (Q− yW ) + xBW. (25)
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where P (y) =
∑n−1

i=1 c
′
i (0) y

i. Since, Q and W are relatively prime, then there exists
∆ such that xB − yA = ∆Q and thus A = P −W∆. Therefore, rewriting (25) yields

− yP −Q∆+ yW∆+ xB = 0 (26)

Since the orders of Q and W at 0 are n+ 2 and n, evaluating the jet of order n of the
above equality gives

−yP + xJetn(B) = 0

and thus P = 0 which is impossible. This proves that the unfolding is non-trivial for
c0 = 0. To prove it for c0 ∈ U , it suffices to remark that the jet n of equation (26)
remains exactly the same if we impose c(0) = c0 instead of c0(0) = 0.

For generic function ai’s, Ω does not admit any first integral that is multivalued and
holomorphic on the complement of a countable union of analytic sets. In particular it
does not admit meromorphic or Liouvillian first integrals.

Suppose that F belongs to D(1) and admits a Louvillian first integral. After the blow-
up and the restriction of this first integral to E, we can see that h = H(F) admits a
Louvillian first integral on E: that is a non-constant multivalued holomorphic function
f defined on the whole E such that for at least one determination of f ◦ h one has
f ◦h = f . We know that such a Liouvillian function admits at most a countable number
of singularities, that is, homotopy classes of paths along which the analytical extension
of the germ of function is impossible. Below, we produce an example of periodic map h
such that any first Louvllian integral has an uncountable number of singularities. Any
foliation admitting this germ h as holonomy will not admit a Liouvillian first integral.

Lemma 15. Let D ⊂ C be a region containing 0 and h : D → D a holomorphic
mapping, h(0) = 0 and the germ at 0 of h satisfies h◦n = Id for n ∈ N. Suppose
that the set of singularities of h in ∂D has an accumulation point p and there exists a
continuous extension of h to a neighbourhood of p in ∂D satisfying h(p) ∈ D. Then
any non-constant Louvillian first integral f of h that is defined and holomorphic on D
has a singularity at p.

Proof. Let γ : [0, 1] → D be a path that satisfies γ−1(D) = [0, 1), γ(0) = 0 and γ(1)
is a singularity of h. If a Louvillian first integral f admits analytic extension for some
of its determination, we denote its extension by fγ and limt→1 h(γ(t)) ∈ D, then part
of the graph of h is contained in the set

{(x, y) ∈ dom(fγ)×D : f(y) = fγ(x)}.

If f ′(h(γ(1)) ̸= 0, the implicit function theorem tells us that h extends analytically
to γ(1), which is not possible. Therefore, for every singularity q ∈ ∂D of h where h
extends continuously and f analytically, one has f ′(h(q)) = 0.

Finally, suppose that f extends analytically to p. There exists continuous extension of
h to a neighbourhood of p in ∂D. Thus, given a sequence pn of singularities of h that
accumulate on p, we have f ′(h(pn)) = 0. The convergence of h(pn) to h(p) ∈ D implies
f is constant which is impossible. Hence p is a singularity for f . �
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To finish let us provide an example of such an h with curves of singularities. Let D be a
simply connected plane region bounded by a Jordan curve of class C1. Suppose that ∂D
is not analytic. Moreover, suppose if θ is the rotation of angle 2π/n centered at p ∈ D,
the intersection points of ∂D and θ(∂D) are points of transversality between the curves.
Let Dp be the connected component of D∩ θ(D) containing p and A = ∂Dp∩h−1(Dp).
Now, if φ : D → D is the homeomorphic extension of Riemann’s mapping Theorem
between D, 0 and D, p to the boundaries given by Carathéodory’s Theorem, then the
continuous map h : D0 → D0 defined by h = φ−1 ◦ θ ◦φ on D0 = φ−1(Dp), has order n
at 0 and singularities at each of the points of ∂D0 (see [17], p. 628). By construction
the values of the extension on C = φ−1(A) belong to D0. Thus, Lemma 15 guarantees
that the points of C are singular for any germ of Louvillian first integral of h.

Actually, any non-constant Louvillian first integral of h will not be extendable to any
point in C. Hence, any foliation with holonomy h will not admit a Louvillian first
integral.

4.3 A parametrization of D(2)/ ∼.

The parameter space of the unfolding Ω of Subsection 4.2 is a Zariski open set of Cn−1.
We know from [12] that the base space of the universal unfolding of an element in D(n)
has dimension n(n− 1)/2, so the obtained unfolding is only part of it if n > 2. In the
case of n = 2, both dimensions coincide.

The form

Ω(x, y, c) =
(
y2 + a(x)y(x+ cy) + b(x)

)
(xdy − ydx) + (x+ cy)4dx

can be pulled back by the biholomorphism

(x, y, c) 7→ (x+ cy, y, c)

to obtain
[y2 + a(x− cy)yx+ b(x)](xdy − ydx) + x4d(x− cy).

Up to a sign on c, this form corresponds precisely to the one appearing in the previous
section. Hence it is a non-trivial equisingular unfolding around each fixed parameter

c ∈ C \ {t : t2 + a(0)t+ b(0) = 0}.

Since the dimension of the base space of the obtained unfolding coincides with the
dimension of the universal equisingular unfolding of Fc , they are equivalent.

Let us analyze the analytic invariants of Fc along the parameter space. By construction
H(Fc) = H(F0) for all admissible c’s. The position of the divisors q(Fc) defined in the
proof of Theorem IV depend on c by a holomorphic (possibly multivalued) non-constant
function that assumes any value in C \ |T (F0)|. By Theorems II and IV we cover all
analytic classes of foliations in D(2) having the same holonomy H(F0). Furthermore,
any choice of rotations around points in E is realized as the holonomy of a normal
form. Once we have a holomorphic germ in D(2) with given holonomy generators we
can consider the coefficients a and b of one of its normal forms in Corollary 12 as F0.



Classification of regular dicritical foliations 37

Remark that the foliation induced by the form Ω extends to a holomorphic foliation F̃

on (C2, 0) × P1. The germ of this foliation at each point (0, 0, c) ∈ C2 × C describes
the universal equisingular unfolding of Fc. Besides, all the analytic classes with fixed
holonomy are realized along the parameter space c ∈ C. We can think of F̃ as a
realization of all universal unfoldings of foliations with some fixed holonomy. The
intersection of F̃ with the fiber at c = ∞ is not and element in D, but it is still a germ
of foliation and it allows to compactify the germs of foliations along the parameter
space.

We deduce a parametrization of D(2)/ ∼ that is adapted to the equivalence relation
having the same holonomy class. By considering the parameters (a, b, c) ∈ C{x}2×P1,
the fibres of the projection (a, b, c) 7→ (a, b) parametrize equivalence classes. These
restrictions of the parametrization are locally injective in general but not globally
injective. As a consequence, up to changing coordinates, any two distinct germs in
D(2) sharing the same holonomy class can be joined by a deformation underlying a
non-trivial equisingular unfolding.

4.4 Unfoldings versus deformations in D.

In this section, we give some independent results which compare the unfoldings and
the deformations of a foliation in D. In general, it is very difficult to give a criterion
that recognizes deformations that underlie an unfolding. However, for the class D, it
can be read on the variation of the holonomy.

Proposition 16. Let {Fc}c∈(Ck,0) ⊂ D be an analytic germ of deformation of F0 sat-
isfying that H(Fc) = H(F0) for all c ∈ (Ck, 0). Then the given deformation underlies
an equisingular unfolding of F0 on (C2+k, 0).

Proof. Let us provide a couple of open neighborhoods of some open sets in E satisfying
that

• U1 ∪ U2 is a neighbourhood of E,

• on each Uj, there is an analytic family

ψj
c : Uj → Uj

of biholomorphisms fixing every point of E and sending F0|Uj
to Fc|Uj

.

Doing so, the initial deformation will be a product on each Uj × (Ck, 0), and as high-
lighted in [12], will be correspond to an unfolding.

Lemma 17. Given F ∈ D there exist two radial foliations G1,G2 ∈ D(0) such that

|Tang(F,G1)|E| ∩ |Tang(F,G2)|E| = ∅

Proof. Up to some change of coordinates, we can suppose that

ω(x, y) = R(x, y)(xdy − ydx) + Pn+2dx+Qn+2dy + . . .
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representing F satisfies that the degree of Pn+2(1, t)+tQn+2(1, t) is n+3. Since, R(1, t)
and Pn+2(1, t) + tQn+2(1, t) has no common roots, one can choose G1 = x∂x + y∂y and
G2 = x∂x + (y + x2)∂y.

Applying Lemma 17 to F0, find a Jordan curve γ in E that separates |Tang(F0,G1)|E|
from |Tang(F0,G2)|E| and take U1 a F0 saturated neighbourhood of the disc in E \ γ
with no point in |Tang(F0,G1)|E|, and U2 an F0 saturated neighbourhood of the com-
plementary disc. For sufficiently small c ∈ (Ck, 0), Fc and Gj are transverse on Uj. We
can define the equivalence ψj

c on Uj by simply imposing ψj
c|E = Id, (ψj

c)∗(F0) = Fc and

(ψj
c)∗(Gj) = Gj. The analytic dependence of Fc along the parameter guarantees that

the families ψj
c are analytic on c ∈ (Ck, 0). To prove that the unfolding is equisingular

we need to check that along the whole process of desingularization the leaves of the
unfolding are transverse to the parameter fibration (x, c) 7→ c. In the present case
remark that a leaf of the unfolding is formed by the union of leaves of the deformation
that sit over the same point in E, since we do not move the points in E along the
construction. Thus the trace of a leaf of the unfolding on the divisor E × (Ck, 0) is
p× (Ck, 0), which is regular and transverse to the fibration.
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