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Abstract

We consider the problem of extending germs of plane holomorphic
foliations to foliations of compact surfaces. We show that the germs
that become regular after a single blow up and admit meromorphic
first integrals can be extended, after local changes of coordinates, to fo-
liations of compact surfaces. We also show that the simplest elements
in this class can be defined by polynomial equations. On the other
hand we prove that, in the absence of meromorphic first integrals there
are uncountably many elements without polynomial representations.1

On considère le problème d’extension de germes de feuilletages
holomorphes. On montre qu’un germe régulier après un éclatement,
admettant une intégrale première méromorphe, peut être étendu le long
d’une surface algébrique. On montre que les éléments topologiquement
les plus simples dans cette classe peuvent être définis par des champs
polynomiaux. Par ailleurs, en absence d’intégrale première, on mon-
tre qu’il existe une quantité non dénombrable d’élements dans cette
classe n’admettant pas de modèles polinomiaux.

1 Introduction

In this paper we treat the following problem: let Fol(C2, 0) be the set of
germs of holomorphic foliations defined in a neighborhood of 0 ∈ C2 which
are singular at the origin; we consider two such foliations to be equivalent
when they are conjugated by a local holomorphic diffeomorphism of C2 at
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0 ∈ C2. We select some family L ⊂ Fol(C2, 0) and ask if an equivalence class
contains a foliation that is defined by polynomial differential equations. Any
member of such a class admits an extension to a foliation of the complex
projective plane after a suitable local change of coordinates.

A very simple example is given by the set of hyperbolic singularities in
the Poincaré domain, namely, foliations defined 1-forms of type

(x+ A(x, y)) dy − (λy +B(x, y)) dx = 0,

where λ /∈ R and A and B are holomorphic functions such that A(0, 0) =
B(0, 0) = 0 and whose derivatives at (0, 0) ∈ C2 vanish. By the theorem
of linearization of Poincaré ([11]), we have a holomorphic equivalence to the
linear part

x dy − λy dx = 0.

It is interesting to notice that when λ ≤ 0 but λ /∈ Q it is not known if any
equivalence class contains a foliation defined by polynomial equation (see
[10]).

There are other instances where we can always find a local model defined
by polynomial equations. For example, let f : (C2, 0) → (C, 0) be a holo-
morphic germ having an isolated singularity at 0. By a theorem of Mather,
f is of finite determinacy: there exists k ∈ N such that the k-jet fk of f at
0 ∈ C2 is conjugated to f by means of a holomorphic diffeomorphism ϕ, i.e.,
f = fk ◦ ϕ. It follows that the foliation defined by d f = 0 is conjugated
by ϕ to the foliation defined by d fk = 0. The question of whether a similar
statement holds true for foliations defined by meromorphic functions arises:
is a foliation in (C2, 0) defined by a meromorphic function equivalent to a fo-
liation defined by a polynomial differential equation? A theorem by Cerveau
and Mattei ([3]) gives sufficient conditions on the function to conclude that
it is the case: let f/g be a germ at 0 ∈ C2 of meromorphic function (f and
g are supposed to be relatively prime germs of holomorphic functions) such
that the 1-form fd g− gd f defines a foliation with an isolated singularity at
0 ∈ C2. Then f/g has finite determinacy, that is, f/g is conjugated to fk/gk
for some k ∈ N, where fk and gk are the k-jets of f and g at 0 ∈ C2. One of
the simplest examples of a meromorphic function that does not satisfy the
hypothesis of Cerveau and Mattei’s result is the germ of foliation F defined

by y2−x3ϕ(x)
x2 = const at (0, 0) (ϕ is a germ of holomorphic function at 0 ∈ C).

Let D be the family of germs of foliations that are regular after a sin-
gle blow-up at the origin, so that all leaves are transverse to the exceptional
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divisor, except for a finite number which are tangent to it. Our first result
analyzes the question of the existence of algebraic models for the elements of
D which have a meromorphic first integral. In [2] this problem is studied for
the case of just one tangent leaf with a simple tangency point. It is proven
that the presence of a meromorphic first integral implies holomorphic equiv-
alence with a germ of a foliation which extends to some algebraic surface.
Using the results in [1] we are able to extend the conclusion to all foliations
in D which admit a meromorphic first integral (see Theorem 1, Section 3).

We remark that the elements in D belong to a wider class: the M-simple
foliations, those which are topologically equivalent to foliations defined by a
meromorphic first integral (but not necessarily admit such an integral); see
[8].

A good point in the previous discussion is whether we can replace ”al-
gebraic surface” by ”projective plane” Let us go back to the situation in [2]
and denote by D1 the subset of foliations of D which have just one simple
point of tangency with the exceptional divisor. In Theorem 2, Section 3 we
improve the result of [2]: any foliation in D1 which admits a meromorphic
first integral is equivalent to a foliation defined in the projective plane (or
equivalently, defined by polynomial equations).

The idea behind the proofs of the previous theorems is to transform the
problem of extending the germ of foliation to that of extending a germ of
curve in a convenient space of rational functions. In the second case the germ
of curve is contained in a rational curve, producing a foliation on a rational
surface; in the first, after an appropriate local change of coordinates, it is
contained in some algebraic curve, whose genus is not known in general.

Using completely different techniques, we prove that a ”polynomial-like”
statement is not true for all foliations in D: in each topological class (that
is, with a given number of tangencies and with a given choice of orders
of tangency) there are foliations that are not holomorphically equivalent to
foliations defined by polynomial equations.

In order to simplify the exposition, we will carry the proof of this state-
ment (Theorem 3, Section 4) for the class D1, but the proof extends quid pro
quo to the other classes. It follows the lines of [5], where a tool that allows
to treat the problem from an analytic point of view is introduced. Let us
give an outline of the method: given a family L ⊂ Fol(C2, 0), a surjective
map ψ from the set [L] of equivalence clases in L to a space I of invariants
is defined; it is assumed that there are appropriate topologies to turn ψ into
an ”analytic” map. The image of the equivalence classes of polynomially
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defined foliations is then a countable union of analytic manifolds (of finite
dimension!) and cannot be the whole of I provided I is a ”huge” space. This
is a sort of analytic Baire property. As an application, the authors consider
the family L of saddle-node singularities of Milnor number 2 (in fact the
choice of the Milnor number is not relevant). Those singularities are defined
by forms

[y(1 + µx) +R(x, y)] dx− x2 dy = 0

where ord(0,0)(R) ≥ 3. According to [9], these singularities can be obtained
by applying a convenient gluing procedure to normal forms of type

y(1 + µx) dx− x2 dy = 0 ;

in this gluing process, non trivial local holomorphic diffeomorphisms h(z) =
z + . . . are used and become elements of the space of invariants I. The
conclusion is that there are uncountably many saddle-nodes which are not
equivalent to saddle-nodes defined by polynomial equations.

In the present paper we apply these ideas to the family D1. The space
of invariants in this situation contains the local germs of finite order at the
tangency points defined as follows: if f is a primitive local holomorphic first
integral at a tangency point of order n between a regular foliation and a
non-invariant regular curve C (in our case it will be the exceptional divisor,
or some rational curve), each fiber of the germ f |C describes the intersection
between a local leaf and C. Since f |C is a holomorphic germ in one variable,
it is locally conjugated to z 7→ zn+1, whose fibers are described by the orbits
of the rotation of angle 2π/(n + 1). Thus, the fibers of f |C are described
by the orbits of a cyclic group of order n + 1 generated by a holomorphic
germ of diffeomorphism whose linear part is the corresponding rotation (an
involution if n = 1).

This paper is organized as follows: in Section 2 we reproduce a basic
construction introduced in [6]; Section 3 is devoted to Theorems 1 and 2,
and Section 4 to Theorem 3. Section 4 is completely independent of the rest
and can be read separately.

We thank G. Smith for useful conversations and especially for the exam-
ple of the quintic in section 3.3. We also thank the referee for the useful
suggestions.
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2 A Model

In this section we will carry our first step towards compactifying a holo-
morphic germ of foliation. We explain why, up to birational equivalence, a
holomorphic germ of foliation in D (see the Introduction) is equivalent to a
holomorphic foliation on (C, 0)× P1.

Let us consider a holomorphic foliation G ′ ∈ D; We will now conjugate
G ′ to a special model G.

• Step 1: we blow up at 0 ∈ C2; the exceptional divisor E ′
1 is not

invariant for the blown-up foliation G̃ ′
1. We select a point p ∈ E ′

1 where
G̃ ′
1 is transverse to E ′

1 and take a neighborhood V1 of this point where
G̃ ′
1 is trivial. In parallel, we blow up at 0 ∈ C2 the trivial foliation
d y = 0 to a foliation G̃ ′

2 which now has the exceptional divisor E ′
2 as

an invariant set (with one singularity). We take a regular point of G̃ ′
2

in E ′
2 and a neighborhood V2 of this point where G̃ ′

2 is trivial. We then
glue G̃ ′

1 to G̃ ′
2 by a holomorphic diffeomorphism from V1 to V2 which

sends G̃ ′
1|V1 to G̃ ′

2|V2 . We get a surface which contains two divisors, still
denoted by E ′

1 and E ′
2, with E

′
1 · E ′

1 = E ′
2 · E ′

2 = −1 and E ′
1 · E ′

2 = 1,
and a foliation G̃ ′ conjugated to G̃ ′

1 and G̃ ′
2 in neighborhoods of E ′

1 and
E ′

2 respectively.

• Step 2: we consider now the surface obtained after blowing up D×P1

at some point of {0}×P1; we have inside it two divisors E1 and E2 such
that E1 · E1 = E2 · E2 = −1 and E1 · E2 = 1. Since a neighborhood of
E1 ∪ E2 is biholomorphically equivalent to a neighborhood of E ′

1 ∪ E ′
2

by a diffeomorphism that takes E1 to E
′
1 and E2 to E

′
2, we may define a

foliation G̃ in a neighborhood of E1∪E2 as the image of G̃ ′. We restrict
G̃ to a neighborhood of E1 and blow-down E1 to get the model G we
look for. If we blow-down E2 we get a foliation G1 defined in a surface
diffeomorphic to D× P1.

In other words, modulo holomorphic equivalence, a foliation in D is obtained
by blowing-up a foliation defined in D × P1 at some point of transversality
with {0}×P1, then taking the restriction of this foliation to a neighborhood
of the strict transform of D × P1 and finally blowing-down this restriction.
There are many choices involved in the construction and the model obtained
in the product is not unique. A strategy to find a holomorphic equivalence
with an algebraic foliation is to try to “extend” such a foliation in D × P1
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to C × P1 where C is a compact Riemann surface; we will succeed in the
presence of a first integral.

Let us remark that if G ∈ D, then G1 is regular along {0} × P1 as well.
Furthermore, if G has a meromorphic first integral then the same is true
for G1 (notice that the first integral has no indeterminacy points since G1 is
regular); in particular a first integral R(x, t) can be seen as a holomorphic
family of rational functions x ∈ D 7→ Rx(t) = R(x, t) ∈ P1 of some degree d.
It is not difficult to show that x ∈ D 7→ Rx is locally injective at x = 0.

3 Algebraic Case

In order to state our first theorem along the same lines of [2], we use the
notion of algebraic-like foliation: we say that a germ of holomorphic foliation
G is an algebraic-like foliation when there exists a holomorphic foliation of
an algebraic surface which is equivalent to G in a neighborhood of some
singularity.

Theorem 1. Any foliation in D admitting a meromorphic first integral is
an algebraic-like foliation.

It generalizes the main Theorem in [2], which refers to foliations in the
subset D1 ⊂ D of germs having only one leaf with a simple tangency with
the exceptional divisor. On the other hand in the case of D1 we can improve
the result to prove that the singularity occurs as the germ at a singularity of
a foliation of the complex projective plane:

Theorem 2. Any foliation in D1 admitting a meromorphic first integral is
equivalent to a foliation defined by polynomial equations.

What we are going to do to prove Theorem 1 is to use the model in-
troduced above (we keep the same notation). Starting from a foliation G1

defined in D×P1 which is regular along {0}×P1 and possesses a first integral
R(x, t), we will approximate the corresponding family of rational functions
Rx(t) by another one which goes through R0(t) and whose parameter space
is a compact Riemann surface C. The associated foliation on C × P1 –an
algebraic surface– will be close enough to G1 along {0}× P1 to allow the use
of the conjugation theorem of [1].
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As for Theorem 2, we will show that, up to reparametrizing the x-
variable, the (local) family of rational functions can be extended to a family
parametrized by P1. The induced foliation will then define an extension of
G1 to P1 × P1.

3.1 Critical Points

Let us consider a foliation G1 defined in D×P1 which is regular along {0}×P1

and possesses a first integral R(x, t).
We will assume that there exists a fixed neighborhood U (independent of

x) of ∞ ∈ P1 such that no critical point of Rx(t) is inside this neighborhood.
We may assume also that Rx(t) is holomorphic at t = ∞, that its poles are
simple (so that they are not critical points) and the lines of poles of R are
leaves of G1 transversal to {0}×P1, say Aj(x, t) = t−cj(x) = 0 for 1 ≤ j ≤ d.
The 1-form dR has its poles along the same lines (with order 2); therefore
A2 dR, where A(x, t) = A1(x, t) . . . Ad(x, t), is a holomorphic 1-form that
defines G1, possibly with lines of zeroes; these lines are necessarily contained
in the curves of critical points of x 7→ Rx(t).

Let us discuss how to eliminate these zeroes in the expression of the 1-
form defining G1. We start then by analysing the curves of critical points of
x 7→ Rx(t); the zeroes of dR are inside the zeroes of ∂R

∂t
= 0. We have the

following possibilities:

(i) the leaf of G1 that passes through a critical point of R0(t) (of order
m ∈ N) is transversal to {0} × P1; we parametrise the leaf as x 7→
(x, f(x)). Since the first integral assumes a constant value along each
nearby leaf, we see that each point (x, f(x)) is also a critical point of
order m of Rx(t). Consequently the curve t− f(x) = 0 is contained in
the singular set of the foliation defined by dR = 0; we call such a curve
of critical points (or singular points) a level type curve. We may write
locally (assuming t0 = 0 for simplicity) that

R(x, t) = a+ (t− f(x))m+1h(x, t)

where a ∈ C, h(0, 0) ̸= 0. Therefore

dR = [(m+ 1)(t− f(x))mh+ (t− f(x))m+1∂h

∂x
]d x

+[−(m+ 1)(t− f(x))mhf ′ + (t− f(x))m+1∂h

∂t
]d t
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The 1-form dR = 0 has (t− f(x))m = 0 as its equation of zeroes.

(ii) the critical point (0, t0) is a point of tangency of G1 with {0} × P1; it
gives rise to a curve of critical points of Rx(t), or points of tangency
between G1 and the vertical lines x = const, which crosses {0} × P1 at
the point (0, t0) (we put again t0 = 0). The foliation G1 is obtained in
a neighborhood of (0, 0) once we divide dR = 0 by the equation of its
zeroes. If a component of the curve of critical points is invariant by
F1, it necessarily coincides with the leaf which is tangent to {0} × P1

at (0, 0); we call it also a level type curve of critical points (of some
order M). It has as equation x − g(t) = 0, where g(t) = tl+1g̃(t) with
l ≥ 1 and g̃(0) ̸= 0. We apply the same argument as in case (i) to a
neighborhood of a point of this curve for which x ̸= 0 and conclude
that (x − g(t))M = 0 is inside the set of zeroes of dR (a fortiori in a
neighborhood of (0, 0) as well).

Now let us analyse the case of a component of a non-invariant curve
of critical points, that is, one that is not G1-invariant. We observe that
the zeroes of dR are inside the zeroes of ∂R

∂t
= 0. Locally at a point

where x ̸= 0 we have

R(x, t) = a(x) + (t− u(x))l+1h(x, t)

where a(x) is not constant (otherwise we would have case (i)), h(0, 0) ̸=
0, l ≥ 1 and t − u(x) = 0 is the local equation of the component. It
follows from

dR = [a′(x)− (l + 1)(t− u(x))lu′(x)h+ (t− u(x))l+1∂h

∂x
]d x

+[(l + 1)(t− u(x))lh+ (t− u(x))l+1∂h

∂t
]d t

that the coefficients of d x and d t have no common factors; therefore
there is no new curve of zeroes arising from the type of curve of critical
points under consideration. We conclude that in a neighborhood of
(0, 0) we only have to take (x− g(t)M = 0 in order to define the zeroes
of dR. Of course it may happen that the leaf of G1 which is tangent to
{0} × P1 is not a level type curve of critical points.

We may summarise this information about the zeroes of dR as follows:
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• there are curves of level type x 7→ f1(x), . . . , fk(x) which correspond
to critical points of orders m1, . . . ,mk ; these curves are transversal to
{0} × P1, and locally R(x, t) = aj + (t− fj(x))

mj+1hj(x, t). Locally at
each of these critical points the zeroes of dR are given by the equation
(t− fj(x))

mj = 0.

• there are curves P1, . . . , Ps of critical points of ordersM1, . . . ,Ms which
are curves of level type (for x ̸= 0); each curve Pj is tangent to {0}×P1

in order lj ≥ 1 at a critical point tj of R0, so that it has as equation
x − gj(t) = 0 with gj(t) = (t − tj)

lj+1hj(t) and hj(tj) ̸= 0. We have
R ≡ Aj along Pj. Each curve Pj has (lj+1) points pj,1(x), . . . , pj,lj+1(x)
corresponding to the coordinate x.

The zeroes of dR are then described by the curve

P (x, t) = (

j=k∏
j=1

(t− fj(x))
mj .(

j=s∏
j=1

[(t− pj,1(x)) . . . (t− pj,lj+1)(x)]
Mj) = 0

and G1 may be defined by the non vanishing holomorphic 1-form A2P−1 dR.

3.2 Proof of Theorem 1

Let us consider, as before, a foliation G1 defined in D × P1 which is regular
along {0} × P1 and possesses a first integral R(x, t). After blowing-up at
some non tangency point of {0}×P1, we will get a foliation whose restriction
to a neighborhood of the strict transform of {0}× P1 has to be proven to be
holomorphically equivalent to the restriction of a foliation of some algebraic
surface to a neighborhood of a projective line of selfintersection −1. We take
the algebraic variety which is the closure of the space of degree d rational
functions of P1 which have the configuration of critical points we presented,
namely:

* the rational function has values a1, . . . , ak at critical points which have
orders m1, . . . ,mk respectively.

** the rational function has values A1, . . . , As at (l1+1), . . . , (ls+1) critical
points which have orders M1, . . . ,Ms respectively.
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Let us denote also by R the germ of curve in this variety parametrized as
R(x) = Rx; it belongs to a smooth stratum B for x ̸= 0 small and R(0)
belongs to B̄, which is also an algebraic variety. Let π be a desingularisation
of B̄ and of R at the point R(0). The strict transform R̃ of R crosses the
boundary of π−1(B) at a smooth point r ∈ π−1(B̄). We have a foliation R in
R̃×P1 given by the level curves of the meromorphic function (p̃, t) 7→ Rπ(p̃)(t),
which is conjugated to the foliation in D × P1 defined by dR = 0 (because
x ∈ D 7→ Rx is injective).

Next we take an algebraic curve S̃ in π−1(B̄) which passes through the
point r smoothly with order of tangency N as big as we wish with R̃; the
choice of N will depend on the statements which will follow. Consequently in
B̄ we have the algebraic family S = π(S̃) of rational functions and in S̃ ×P1

we have the foliation S given by the level curves of the meromorphic function
(q̃, t) 7→ Sπ(q̃)(t). In the sequel we describe S and compare it to R.

The first thing to notice is that the curves R and S can be parametrized
in a neighborhood of R(0) as

Rx(t) =
∑i=d

i=0 ai(x)t
i/
∑i=d

i=0 bi(x)t
i and Sx(t) =

∑i=d
i=0 âi(x)t

i/
∑i=d

i=0 b̂i(x)t
i

in such a way that ai(x) = âi(x) and bi(x) = b̂i(x) up to some order as
large as we want (depending on N). In the coordinates (x, t) the foliations
R and S are given as the level curves of R(x, t) = Rx(t) and S(x, t) = Sx(t)
respectively.

We have seen before how to eliminate poles and zeroes of dR with the
expression A2P−1dR = 0 (A = 0 is the set of poles and P = 0 is the set
of zeroes of dR). We start by eliminating poles of dS multiplying by a
holomorphic function Â2 where Â = 0 defines the set of poles of dS. Writing
A(x, t) =

∑j=∞
j=0 cj(x)t

j and Â(x, t) =
∑j=∞

j=0 ĉj(x)t
j, it can be assumed that

cj(x) = ĉj(x) up to some order as large as we want (depending again on N).
Consequently in B̄ we may choose an algebraic family S = π(S̃) of ratio-

nal functions parametrized by a map of x ∈ D near the point S(0) = R(0)
such that both associated foliations dR = 0 and dS = 0 are as close as we
wish in D×P1 (in fact, we need to cover D×P1 by two coordinates systems;
in the chart that contains {0} × {∞} we use R = const and S = const to
define the associated foliations, which are both regular ones; in the chart
that contains {0} × {0} the foliations dR = 0 and dS = 0 are singular).
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Next we need to prove that after eliminating the singularities of Â2dS = 0
we obtain a foliation which is regular and has the same type of tangencies
with {0} × P1 as G1.

Let us fix a family of disjoint polydiscs, one for each critical point of
R0 = S0. If (0, tj) is a critical point, we take ∆j = {(x, t); |x| ≤ ϵ, |t−tj| ≤ ϵ}.
If Sx is sufficiently close to Rx and ϵ is small, the configuration of critical
points of Sx in each set Kj = {(x, t); ϵ

2
≤ |x| ≤ ϵ, |t− tj| ≤ ϵ} is the same as

the configuration of Rx. This means that for Sx we have in K1 ∪ . . . Kj:

• new connected curves of level type x 7→ f̂1(x), . . . , f̂k(x) (close to
x 7→ f1(x), . . . , fk(x)) which correspond to critical point of orders
m1, . . . ,mk; S takes the values a1, . . . , ak along these curves.

• new connected curves P̂1, . . . P̂s (close to P1, . . . , Ps) which are curves
of level type corresponding to critical points of orders M1, . . . ,Ms; S
takes the values A1, . . . , As along these curves. Above each x ∈ D, ϵ

2
≤

|x| ≤ ϵ, P̂j has lj + 1 points p̂j,1(x), . . . , p̂j,lj+1(x) in ∆j.

Since the set of critical points of Sx inside each ∆j is an analytic curve, we
conclude that the critical curve of level type that lies in ∆j has an extension

(still denoted by x 7→ f̂j(x) or P̂j) which passes through the point (0, tj) and
reproduces the same type of the corresponding critical curve of Rx. Each pair
fj(x), f̂j agree up to an order as large as we want (depending on N) . Since

P̂j can be defined by the equation x− ĝj(t) = 0 with ĝj(t) = (t− tj)
lj+1ĥj(t)

and ĥj(tj) ̸= 0, we have that hj(t) and ĥj(t) agree up to an order as large as
we want (depending on N).

In other words, the critical set of the families Rx and Sx are tangent at
each point (0, tj) at an order as large as we want (depending onN). Therefore
we conclude that the polynomial equations in t

P̂ (x, t) = (

j=k∏
j=1

(t− f̂j(x))
mj .(

j=s∏
j=1

[(t− p̂j,1(x)) . . . (t− p̂j,lj+1)(x)]
Mj) = 0

and

P (x, t) = (

j=k∏
j=1

(t− fj(x))
mj .(

j=s∏
j=1

[(t− pj,1(x)) . . . (t− pj,lj+1)(x)]
Mj) = 0
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have coefficients that agree to an order as large as we want (depending
on N).

The singular sets of the 1-forms AdR and Âd S are exactly the curves
of critical points of level type because of condition (**), therefore they are
also given by the previous equations. We finally conclude that the 1-forms
A2P−1dR and Â2P̂−1dS agree along {0}×P1 at an order as large as we want
(depending on N).

Notice that the equality R0 = S0 implies that the germs of periodic maps
associted to the points of tangency of the foliations with {0} × P1 coincide.

Now we blow-up the point (r,∞) ∈ {r} × P1 first as a point of R̃ × P1

and afterwords as a point of S̃ × P1; we obtain two foliations (one is the
blow-up of R̃ and the other one is the blow-up of S̃). We claim that they are
conjugated in neighborhoods of the strict transforms of {r}×P1. It is enough
to consider both foliations in the coordinates (x, t) with their expressions
A2P−1dR and Â2P̂−1dS; we blow up at the point (0,∞). The blown-up
foliations have the same germs of periodic maps at the points of tangency
with the strict transform of {0} × P1 since R(0) = S(0). Furthermore, they
may be assumed to coincide to an order as large as we want along the strict
transform of {0} × P1. We may then apply [1] to get a conjugation between
the foliations in neighborhoods of the strict transforms of {0} × P1. This
ends the proof of Theorem 1.

We point out that the foliations defined by the 1-forms A2P−1dR and
Â2P̂−1dS are not necessarily conjugated in D× P1.

3.3 Proof of Theorem 2

The proof of Theorem 2 does not use approximation and can be done after
a suitable change of the first integral and of the coordinates on the product
D×P1. In this subsection we suppose that G is a foliation in D1 admitting a
meromorphic first integral and consider its model G1. The idea of the proof
of Theorem 2 is to exploit the equivalence between meromorphic funtions
and branched ramified coverings of the sphere onto itself. We will show
that by appropriately choosing a meromorphic first integral R = R(x, t) for
G1, the map defined by x 7→ Rx for x ̸= 0 close to 0 can be thought as a
holomorphic map from D∗ into a suitable Hurwitz space of branched covers
over the sphere. To be able to extend this map to a holomorphic map defined
on some punctured sphere P1 \ {v1, . . . , vk} we will need to control how the
critical fibers of Rx (and not only the critical points!) develop along the
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parameter x, even when x is far from 0. In particular we will choose the
meromorphic first integral to guarantee that every collapse of points in these
fibers along the parameter occurs in the domain of the original foliation,
and precisely around the tangency point between the foliation and the curve
x = 0.

Let R : D × P1 → P1 be a meromorphic first integral of G1. If we post-
compose it with a non-constant rational function Q of P1, the level sets of
Q ◦ R still define the same foliation. Its fibers are unions of fibers of R,
and its critical fibers contain the critical fibers of R and the fibers of R over
critical points of Q. By choosing Q and the x coordinate appropriately we
claim that we can suppose that the first integral R for G1 satisfies

1. For any critical value v ̸= 0 of R0 except possibly for one of them, there
is a connected component of R−1(v) that is not critical for R, intersect-
ing 0× P1 in two points q, h(q) where h is the involution associated to
G1 at (0, 0).

2. (x, 0) ∈ D× P1 is a critical point of Rx(t) = R(x, t) with critical value
Rx(0) = xn where ord0(R0) = 2n.

Remark that condition 1. does not make sense for the germ of G1 around
x = 0. It is a global condition that tells us that collapses of points in
critical fibers occur in the domain of the foliation and precisely around (0, 0).
To prove that it can be attained, take a domain D where h : D → D is
conjugated to a rotation and each leaf cutting D \ 0 is a disc intersecting D
on two points. Take a round disc Dr ⊂ R0(D) containing 0. By composing
R0 with a Moebius transformation we can suppose that Dr = H, the upper
half plane in C, and the critical values v1, . . . , vk ∈ C \ R0(D) of R0 belong
to a small neighbourhood of ∞.

Next take a polynomial Q(z) = z5 + a4z
4 + . . . + a1z + a0 with real

coefficients ai ∈ R satisfying that its four critical points c1 < c2 < c3 < c4
in C lie in R, and the equation Q(z) = Q(ci) has precisely two distinct real
roots for each i = 1, . . . , 4. By construction the other two roots of each such
equation are complex conjugate. In particular all finite critical values of Q
are attained at regular points in H. To show that the finite critical values of
Q ◦ R0 are also attained in D it suffices to remark that in a neighbourhood
Uρ = {z ∈ H : |z| > ρ} for ρ sufficiently big p acts like z 7→ z5 and thus
Q(Uρ) covers a pointed neighbourhood of infinity. As Q(vi) are close to ∞
we have that Q(vi) ⊂ Q(H).

13



Once condition 1. is satisfied, condition 2. can be obtained by a change of
variables. Indeed, if R already satisfies 1 then in some connected and simply
connected neighbourhood U ⊂ 0×P1 where the involution associated to G1 is
defined, we can define two branched coverings: on the one hand R|U , which
is branched at 0 and a 2n : 1 covering map around 0, and the projection
π : U → V ⊂ {t = 0} along the leaves of the foliation from U onto an open
set V ⊂ {t = 0}. It is branched at 0 and 2 : 1 around it. By construction
R(x, 0) = R0 ◦ π−1(x, 0) for any (x, 0) ∈ V and it is a n : 1 branched cover
V → R0(U). Up to composing R with a Moebius map, we can suppose
R0(U) is the unit disc D. Let Pn(x) = xn for x ∈ D denote the branched
cover D → D. By construction there exists an injective holomorphic map
φ : D → V such that Pn(x) = R ◦ φ(x). The map R̂(x, t) := Rφ(x)(t) for
(x, t) ∈ D× P1 satisifies both conditions 1 and 2.

Let C = {v1, . . . , vk} ⊂ P1 \ 0 be the set of critical values of R0 different

from 0 and C̃ = P−1
n (C) where Pn : P1 → P1 is defined by Pn(x) = xn. By

construction, for each x ∈ D \ (C̃ ∩ D) the rational function Rx has degree
d and has critical values at {xn} ∪ C. Indeed, since the tangency point
between G1 and x = 0 is simple and unique, there is a unique component of
the tangency divisor between G1 and the vertical fibration, and it corresponds
to the set t = 0 by construction. Each other critical value of R0 produces
a critical value of Rx having a critical point at the point of intersection of
the corresponding leaf with the fibre {x} × P1. The restriction of Rx to
R−1

x (P1 \C ∪{x}) defines a topological degree d covernig having monodromy
in a conjugacy class of a subgroupGx of the symmetric subgroup in d symbols.
By continuity the class ofGx is constantG for all x ∈ D\C. By connectedness
of the covering we know that G acts transitively on each fibre.

Let H be the Hurwitz space associated to the triple (d, k+1, G), that is,
the space of isomorphism classes of topological coverings of the sphere minus
k+1 points having degree d and monodromy conjugated to G. Two coverings
X,X ′ are isomorphic if there exists a homeomorphism between the covering
spaces H : X → X ′ such that π = π′ ◦ H, where π, π′ denote the covering
projections. In particular for two coverings to be equivalent they need to
omit the same set of values on the sphere. Let V be the set of unordered
(k + 1)-uples of distinct points in P1. Hurwitz (see [7] or [4]) showed that
the projection P : H → V , defined by associating to any class of coverings
the set of values it omits on the sphere, is itself a topological covering map.
We have a natural, continuous, non-constant map f : D \ C̃ → V defined by
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f(x) = P ([Rx]). If we take the coordinates in P1 we took before it can be
written as f(x) = [{xn, v1, . . . , vk}] ∈ V and it extends naturally to a map

f : P1\C̃ → V that is actually holomorphic. To lift f to a map F : P1\C → H
continuously it suffices to guarantee that at the fundamental group level we
have the inclusion Imf∗ ⊂ ImP∗. This condition is satisfied since we can find
generators γ1, . . . , γk−1 of the fundamental group of P1 \ C̃ whose images lie

in D \ (C̃ ∩D), and thus the loops t 7→ f(γi(t)) in V lift to loops t 7→ [Rγi(t)]
in H. The resulting F has finite fibers and is holomorphic when we consider
the unique complex structure on H for which P is holomorphic (recall that
V already carries a holomorphic structure).

For each x ∈ P1 \ C̃, by pulling back the complex structure from P1

through the branched covering, we can consider F (x) as a degree d mero-
morphic function defined on P1, hence rational of degree d. Since F is holo-
morphic, we get a new holomorphic map P1 \ C̃ → Rat≤d. By construction
it has finite fibres. Hence it has no essential singularity and it extends to a
holomorphic map F : P1 → Rat≤d.

By construction and uniqueness of complex structure on the sphere, there
exists for each x ∈ D \ C̃ a Moebius transformation Hx such that Rx ◦Hx =
F (x). In particular, by pulling R back by the change of coordinates (x, t) 7→
(x,Hx(t)) defined in a neighbourhood of x = 0 we have that the the germ
of x 7→ F(x) at 0 describes the pull back of the foliation G1. This foliation
extends to P1 × P1 by the level sets of F (x, t) = F(x)(t). By blowing up a
point of transversality of the foliation and the central fibre and contracting
the strict transform of the fibre we obtain a foliation in P1 × P1 having a
singularity in D1 with the same holonomy involution as G modulo conjuga-
tion by the Moebius transforamtion H0. As will be seen in Section 4.2 two
foliations in D1 having the same involution modulo conjugation by a Moebius
transformation are analytically equivalent. Hence we have that the germ G is
equivalent to the germ of that singularity. The obtained foliation is obviously
defined by polynomial equations.

This proof cannot be extended to other foliations in D in general because
there appear many components of the tangency divisor between G1 and the
vertical foliation and there is no way of finding a coordinate where all the
curves of critical values can be extended in the same parametrization to P1.
Even if the extension existed there would be intersections of the parametrized
curves of critical values and we would have no control over the monodromies
around those intersection points. It is for this reason that instead of trying
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to extend the germ of curve x 7→ Rx, we have approximated it in Section 3.2
by another one which has a global extension.

4 The general case

In the previous sections we always worked under the hypothesis of the exis-
tence of a first integral for the foliation in D. In the general case we cannot
hope to get extensions of Theorem 2. :

Theorem 3. In any topological class in D there exist uncountably many
elements that are not holomorphically equivalent to foliations defined by
polynomial equations.

We will give the proof of Theorem 3 only in the simplest topological class
D1 of foliations with a single simple tangency with the exceptional divisor.
The other cases are covered by an equivalent argument, but for simplicity of
exposition we restrict ourselves to D1.

By considering some coordinates (x, y) ∈ (C2, 0), every element in D1

is equivalent to some germ of holomorphic foliation defined by a germ of
differential 1-form of type

(1)
∑
j≥2

bj(x, y)dx−
∑
j≥2

aj(x, y)dy = 0

where a2(x, y) = xy, b2(x, y) = y2 and xb3(x, y)− ya3(x, y) = βx4, β ̸= 0.

After one blow-up (x, t) 7→ (x, tx), the foliation is regular, with only one
point of tangency of order 1 with the exceptional divisor (the equation is
normalized as to have the tangency point given by t = 0).

To each F ∈ D1 we can associate a local involution iF(t) defined for t ∈ C
close to 0 ∈ C; moreover, it can be easily seen that for a holomorphic family
α ∈ U ⊂ Cm 7→ Fα ∈ D1, the function (α, t) 7→ iFα(t) is holomorphic.

Let Inv := {i(t) =
∑

j≥1 ajt
j ∈ C{t}, a1 = −1, i◦i(t) = t}; we consider in

C{t} the norm ||
∑

j≥0 cjt
j|| :=

∑
j≥0

|cj|
j!

, which induces a distance d. Since
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(2) Invk := {i(t) ∈ C{t}; i(0) = 0, i′(0) = −1 and i ◦ i(t) = t mod tk+1}

is closed in (C{t}, d) for each k ≥ 1, and Inv = ∩k≥1Invk, we conclude that
Inv is closed in (C{t}, d).

Now we take

(3) L1{t} := {
∑
j≥0

cjt
j ∈ C{t};

∑
j≥0

|cj| <∞}

Clearly L1{t} is a vector subspace of C{t}; any power series in L1{t} defines
a holomorphic function whose domain of definition contains the unit disc
D = {z ∈ C; |z| ≤ 1}. On the other hand, the Taylor series centered at
0 ∈ C of a holomorphic function defined in a neighborhood of D̄ belongs to
L1{t}.

We define ||
∑

j≥0 cjt
j||1 :=

∑
j≥0 |cj| for

∑
j≥0 cjt

j ∈ L1{t}; with this
norm L1{t} becomes a Banach space. Let d1 be the associated distance.

Lemma 1. The inclusion map from (L1{t}, d1) to (C{t}, d) is continuous.

Proof. It is enough to remark that

(4) ||
∑
j≥0

cjt
j|| =

∑
j≥0

|cj|
j!

≤
∑
j≥0

|cj| = ||
∑
j≥0

cjt
j||1

It follows that Inv∩L1{t} is closed in (L1{t}, d). Therefore, Inv∩L1{t},
endowed with the metric d1, becomes a complete metric space, in particular
a Baire space.

4.1 Realizing Involutions

We introduced in the last section a map i that takes foliations of D1 to
involutions of C{t}.

Lemma 2. The map i : D1 −→ Inv is surjective.
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Proof. 1) Given some i(t) ∈ Inv, we construct first a local foliation around
the disc D×{0} which has a tangency point at (0, 0) with this disc and whose
associated involution is i(t). We start by mapping D× 0 to C× 0 via some
holomorphic diffeomorphism ϕ which satisfies

• ϕ(0) = 0.

• ϕ conjugates t 7→ −t to i(t).

We then extend ϕ to some holomorphic diffeomorphism Φ in a neighborhood
of D × {0} and define the foliation H as the image by Φ of the foliation
defined as d(x− t2) = 0.
2) The next step consists in the following gluing process:

• we take the surface S obtained after blowing-up C2 at (0, 0), foliated

by dt = 0 ((x, y) are coordinates in C, (t =
y

x
, x) are coordinates in

S). In S we remove a disc D 1
2
× U , where U is a small neighborhood

of 0 ∈ C.

• the trivial foliation dt = 0 in (D \ D 1
2
)×U is equivalent to the restriction

of H to a region R given as a local saturation (along the leaves of H)
of some annulus A× {0} around (0, 0) ∈ D× {0}. This equivalence is
then used to glue G|S\{(D\D 1

2
)×U} with H; since it can be taken close to

the Identity, the resulting foliation is defined around a (−1)-curve and
is thus equivalent to the blow-up of an element of D1.

4.2 Adapting Genzmer-Teyssier

Our aim is to show that there are foliations in D1 which are not holomorphi-
cally equivalent to any foliation in D1 defined by a polynomial equation. In
order to do that, we need to change the map i. Let G be the group of Moe-
bius transformations of P1 which fix 0 ∈ C (in the t-coordinate associated to
the blow up). We consider the map

(5) I : G×D1 −→ Inv, I(g,F) = g−1 ◦ iF ◦ g.

Remark: In fact the map of Lemma 2 induces a bijection between [D1] and
Inv/G (see [1]).
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Let D(k)
1 denote the subset of elements of D1 defined by a polynomial

equation of degree k. The goal is therefore to prove that

(6) ∪kI(G×D(k)
1 ) ̸= Inv

We follow the procedure exposed in [5]. We have to prove that the image

of an embedding ξ : Dl −→ (Inv, d) leaves a trace in Inv ∩ L1{t} which has
empty interior in the topology defined by d1.

Let us consider then some f ∈ Im(ξ)∩L1{t} and 0 < λ < 1. Any power
series defined as fλ(t) = λ−1f(λt) belongs to L1{t} and d1(fλ, f) → 0 as
λ → 1; furthermore, the radius of convergence of fλ is greater than 1. If for
some sequence λm → 1 it happens that fλm /∈ Im(ξ), we are done; otherwise
we replace f by some d1-close fλ̄ and we still have fλ̄ ∈ Im(ξ) ∩ L1{t}. In
order to simplify the notation we use f instead of fλ̄.

We then have f = −t+
∑
cjt

j ∈ Im(ξ)∩L1{t}, with radius of convergence
greater than 1. The tangent space TfIm(ξ) has some finite dimension l. Any
element in TfIm(ξ) is a power series

∑
ajt

j ∈ C{t}; after truncating the
elements of TfIm(ξ) up to some sufficiently high order m0, we still have a
linear subspace of dimension l. Therefore, for each m ≥ m0, a power series
in TfIm(ξ) is completely determined once we know the first m coefficients.

Now we consider the path α(u) := h−1
u ◦ f ◦ hu, where hu(t) = t + utm

for m ≥ 0. Clearly h−1
u is well defined in some disc of radius greater than 1

for |u| small enough. This guarantees that α(u) is inside Inv ∩ L1{t}. The
tangent vector α′(0) (which we intend to prove that is transverse to TfIm(ξ))
has its (m−1)-jet equal to zero, therefore α′(0) = 0 if it belongs to TfIm(ξ).
But an easy computation shows that

(7) α(u)(t) = h−1
u ◦ f ◦ hu(t) = −t+

m−1∑
j=2

cjt
j + (cm − 2u)tm + · · ·

and then

(8) α′(0) = −2tm + · · ·

which is a contradiction that proves Theorem 3.
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équations différentielles, Journal Ec. Pol. 45, pg. 13-26 (1878).

20



G. Calsamiglia
Instituto de Matemática e Estat́ıstica
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