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Abstract

Let G be a finite simple graph. Let S ⊆ V (G), its closed interval I[S] is the
set of all vertices lying on a shortest path between any pair of vertices of S.
The set S is convex if I[S] = S. In this work we define the concept of convex
partition of graphs. If there exists a partition of V (G) into p convex sets we
say that G is p-convex. We prove that is NP -complete to decide whether a
graph G is p-convex for a fixed integer p ≥ 2. We show that every connected
chordal graph is p-convex, for 1 ≤ p ≤ n. We also establish conditions on
n and k to decide if a power of cycle is p-convex. Finally, we develop a
linear-time algorithm to decide if a cograph is p-convex.

Key words: Chordal graphs, cographs, convex partition, convexity, powers
of cycles.

1. Introduction

In recent years, many papers have appeared which, in some sense, extend
concepts and methods from continuous mathematics to graph theory. The
concept of convex sets is one of these topics of interest. The analogy between
the concept of convex set in continuous and discrete mathematics can be
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made by considering the vertex set of a connected graph and the distance
between two vertices (number of edges in a shortest path between them) as
a metric space. Thus, a vertex subset S of V (G) is said to be convex if it
contains the vertices of all shortest paths connecting any pair of vertices in S.
Other definitions of convexity have been studied just by considering different
path types such as chordless paths [14, 18, 19] or triangle paths [7].

Some of the early articles that generalized the Euclidean concepts of con-
vex sets to graph theory are [8, 9, 16, 17, 18, 21]. But, convexity in graphs
was also studied under different aspects like geodetic sets, geodetic, hull and
convexity numbers [4, 12, 13, 15].

The concept of convex p-partition in a graph was defined in [1], as a
partition of the vertex set of a graph into p convex sets. If G has a convex
p-partition, then G is p-convex. In this paper we show that is NP -complete
to decide if a graph is p-convex, for a fixed p ≥ 2. So, a natural question is
to study the complexity of determining if a graph is p-convex for different
classes of graphs.

In the work [3], the authors have studied the class of powers of chordal
graphs. The class of powers of cycles has been studied on the domain of total
coloring by [6], and its coloring by [5, 23]. Characterizations and recognitions
problems were developed in [20, 22].

In this paper, we prove that all chordal graphs are p-convex for any value
of p. We show that it can be verified in linear-time if a cograph is p-convex
for any value of p. For the class of powers of cycles we determine the cases
where the graph is biconvex. Also, we prove that any power of cycle is p-
convex, for p ≥ 3. Finally, we examine convex p-partitions of disconnected
graphs.

2. Preliminaries

In this work, we denote by G a simple graph with vertex set V (G) and
edge set E(G), where |V (G)| = n and |E(G)| = m. Let S ⊆ V (G). We
say that G[S] is the subgraph of G induced by S. We denote by G the
complement of the graph G.

A geodesic between v and w in G is a minimum path between v and w
in the graph. The closed interval I[v, w] is the set of all vertices lying on a
geodesic between v and w. Given a set S, I[S] =

⋃

u,v∈S

I[u, v]. If I[S] = S,

then S is a convex set. The convex hull of S, denoted Ih[S], is the smallest
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convex set containing S. If Ih[S] = V , then S is a hull set.
The length of a path P between two vertices v and w, denoted by |P|, is

the number of edges in P. The distance in G between v and w, denoted by
dG(v, w), is the length of a geodesic between v and w in G.

We define NG(v) = {w ∈ V | dG(v, w) = 1} and NG[v] = {w ∈ V | dG(v, w)
≤ 1}. Generalizing this concept, if S ⊆ V , then NG(S) = {w ∈ V \ S|
dG(v, w) = 1, ∀v ∈ S} and NG[S] = {w ∈ V | dG(v, w) ≤ 1, ∀v ∈ S}.

A set S ⊆ V (G) is an independent set if no two vertices of S are adjacent
in G. A set K ⊆ V (G) is a clique if every two vertices of S are adjacent in
G.

We say that v ∈ V (G) is a simplicial vertex of G if NG(v) is a clique. We
say that v ∈ V (G) is a universal vertex of G if NG[v] = V .

A graph Cn is a cycle, with length n, if it is a finite sequence v0, v1, . . . , vn

of vertices, n ≥ 3, such that {vi−1, vi} ∈ E(Cn), 1 ≤ i ≤ n and v0 = vn.
A graph G is p-colorable if there exists an assignment of p colors, to the

vertices of V (G), such that no two distinct adjacent vertices have the same
color. The chromatic number of G, χ(G), is the minimum p for which G is
p-colorable. See [2].

Let V = (V1, . . . , Vp), 1 ≤ p ≤ n, be a partition of V (G). If V contains
only cliques we say that V is a clique partition of V (G). Denote by Θ(G)
the minimum size of a clique partition of V (G). If V contains at most one
non-clique, then V is a quasi-clique partition of V (G). If V contains only
convex sets, then V is a convex partition of V (G). Finally, if V contains only
convex sets and is a quasi-clique partition then we say that V is a quasi-clique

convex partition of V (G). The latter concept appears naturally in the study
of the convex partitions of cographs.

Given a graph G, a convex p-partition of V (G) is a convex partition of
V (G) into p sets. Clearly, every graph is 1-convex. So, we consider p ≥ 2.
We say that G is p-convex if V (G) has a convex p-partition. In particular, if
p = 2, then V (G) has a convex bipartition and G is biconvex.

The convex partition number of a graph G, Θc(G), is the least integer
p ≥ 2 for which G is p-convex. Denote by Θ′

c(G) the minimum integer p ≥ 2
for which G has a quasi-clique convex p-partition. A graph G is strong p-
convex if G is p-convex and every convex p-partition of G is a quasi-clique
partition. Denote by Θ′′

c (G) the minimum integer p ≥ 2 for which G is strong
p-convex.

It is clear that, for any graph G, we have Θc(G) ≤ Θ′
c(G) ≤ Θ′′

c (G) ≤
|V (G)|. An example where the equality holds is the complete bipartite graph,
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that is, Θc(G) = Θ′
c(G) = Θ′′

c (G) = q, for G = Kq,q. We also have Θc(G) ≤
Θ′

c(G) ≤ Θ(G) ≤ |V (G)|.

3. NP -completeness

In this section we discuss the complexity of the convex p-partition

problem, i.e., the problem of deciding if a graph has a convex p-partition for
a fixed p, 2 ≤ p ≤ n.

convex p-partition

Instance: Graph G.

Question: Can V (G) be partitioned into p disjoint convex sets?

The clique p-partition problem is defined as follows:

clique p-partition

Instance: Graph G.

Question: Can V (G) be partitioned into p disjoint cliques?

Note that, unlike the clique p-partition problem, the fact that G is p-
convex does not imply that G is (p+1)-convex, for p < |V (G)|. For example,
Figures 1(a) and 1(b) show a convex 2-partition and a convex 4-partition of
a graph. However, this graph has not a convex 3-partition.

Observation 1. A clique K of a graph G is a convex set of G, consequently
every clique partition of V (G) is a convex partition of G.

Observation 2. If G is a p-colorable graph, for p ≥ 2, then G is p-convex.
Furthermore, there is a convex partition of V (G) formed by p cliques.

Now we prove that deciding whether a graph is p-convex, for a fixed p ≥ 3,
is NP -complete.

Theorem 3. The convex p-partition problem is NP -complete, for a fixed

p ≥ 3.
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(b)(a)

Figure 1: (a) Convex 2-partition and (b) Convex 4-partition of a graph that admits no
convex 3-partition.

Proof. The problem is in NP because verifying if a subset of V (G) is convex
can be done in polynomial-time [12]. The hardness proof is a reduction from
the clique p-partition problem. Without loss of generality, let G be a
graph with |V (G)| ≥ 2, such that V (G) is not a clique. Let G′ be the
graph obtained from G by adding two non-adjacent vertices u and v with
N(u) = N(v) = V (G).

First, we show that any proper convex set of G′ is a clique. Suppose that
C is a proper convex set of G′ which is not a clique. In this case, u, v ∈ C.
But, since I[u, v] = V (G′), we have that C = V (G′), a contradiction.

If V (G) has a partition V into p cliques, p ≥ 3, then we can form a convex
p-partition V ′ of V (G′) adding u, v in different sets of V.

Conversely, a convex p-partition V ′ of V (G′), p ≥ 3, induces a partition
of V (G) into ℓ cliques, where p−2 ≤ ℓ ≤ p. If ℓ 6= p, we divide a clique of V ′

into two cliques in order to obtain a partition of V (G) into ℓ + 1 cliques. If
ℓ + 1 6= p, then we repeat this argument until obtaining a clique p-partition
of V (G).

Since clique 2-partition could be decided in polynomial-time, the
above reduction is not valid when p = 2. The complexity of this case is
proved by reducing the NP -complete 1-in-3 3sat problem to convex 2-

partition problem.
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1-in-3 3sat

Instance: Set X = {x1, . . . , xn} of variables, collection C = {c1, . . . , cm} of
clauses over X such that each clause c ∈ C has |c| = 3 and no negative
literals.

Question: Is there a truth assignment for X such that each clause in C has
exactly one true literal?

We say that C is satisfiable if there exists a truth assignment for X such
that C is satisfiable and each clause in C has exactly one true variable.

Theorem 4. The convex 2-partition problem is NP -complete.

Proof. The problem is in NP , again, because verifying if a set is convex can
be done in polynomial-time [12]. In order to reduce 1-in-3 3sat to convex

2-partition we construct a particular instance G of convex 2-partition

from a generic instance (X, C) of 1-in-3 3sat, such that C is satisfiable if
and only if G is biconvex. First we describe the construction of a particular
instance G of convex 2-partition; second we prove in Lemma 5 that a
convex 2-partition of V (G) defines a truth assignment that satisfies (X, C);
third we prove in Lemma 6 that a truth assignment that satisfies (X, C)
defines a graph G which is biconvex. These steps are explained in detail
below.

The construction of a particular instance of convex 2-partition problem.

The vertex set V (G) contains: for every variable xi ∈ X, one vertex xi in
G; for every clause cj in C eleven vertices: fj , l

1
j , l

2
j , l

3
j , ℓ

1
j , ℓ

2
j , ℓ3

j , q1
j , q

2
j , q

3
j , tj ;

and two auxiliary vertices: f and t.
We denote by F = {fj |1 ≤ j ≤ m}, L = {lij|1 ≤ j ≤ m, 1 ≤ i ≤ 3}, X =

{x1, . . . , xn}, Q = {qi
j|1 ≤ j ≤ m, 1 ≤ i ≤ 3}, L = {ℓi

j|1 ≤ j ≤ m, 1 ≤ i ≤ 3}
and T = {tj |1 ≤ j ≤ m}.

The edge set E(G) is such that: X ∪ Q is a clique; f is a universal
vertex to F ∪ X ∪ Q, and t is universal to X ∪ Q ∪ T ; moreover, for ev-
ery clause cj = {xb, xc, xd}, we add the edges {l1j , xb}, {l2j , xc}, {l3j , xd},
{fj, l

1
j}, {fj, l

2
j}, {fj, l

3
j}, {tj, ℓ

1
j}, {tj, ℓ

2
j}, {tj, ℓ

3
j}, {q1

j , ℓ
1
j}, {q2

j , ℓ
2
j}, {q3

j , ℓ
3
j}

and {l1j , ℓ
2
j}, {l

1
j , ℓ3

j}, {l
2
j , ℓ

1
j}, {l

2
j , ℓ

3
j}, {l

3
j , ℓ

1
j}, {l

3
j , ℓ

2
j}. The construction of

G is finished.
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Lemmas 5 and 6 prove the required equivalence for establishing Theo-
rem 4. We exhibit in Figure 2 an example of a particular instance (X, C) =
({x1, x2, x3, x4, x5}, {(x1, x2, x3), (x3, x4, x5)}).

f1

f

f2

l1
1

l2
1

l3
1

l1
2

l2
2

l3
2

x1

x2

x3

x4

x5

ℓ1
1

ℓ2
1

ℓ3
1

q1

1

t1

t2

t

F L X LQ T

ℓ1
2

ℓ2
2

ℓ3
2

q2

1

q3

1

q1

2

q2

2

q3

2

Figure 2: The graph G for the instance (X, C) = ({x1, x2, x3, x4, x5}, {(x1, x2, x3),
(x3, x4, x5)}). We omit all edges between L and L. The rectangle represents a clique,
white vertices belong to Vt and black vertices belong to Vf . White vertices of X represent
the variables of X set to true.

Lemma 5. If G is biconvex, then C is satisfiable.

Proof. Let V = (Vf , Vt) be a convex bipartition of V (G). First, we claim
that f and t do not belong to the same set of V. Suppose that f, t ∈ Vf ,
then X ∪ Q ⊆ Vf . Let v, w be two vertices of F ∪ L ∪ L ∪ T generated
by distinct clauses of C. The vertices v and w do not belong to Vt since
I[v, w]∩Vf 6= ∅. Hence, Vt is formed by at most eight vertices, the vertices of
S = {fj, l

1
j , l

2
j , l

3
j , ℓ

1
j , ℓ

2
j , ℓ

3
j , tj} generated by a unique clause cj of C. Observe

that S is not a convex set, because there exists a geodesic between l1j and
ℓ1
j that uses vertices of X ∪ Q. Hence Vt ⊂ S. It is easy to see that, if one

vertex of S ′ = {fj, l
1
j , l

2
j , l

3
j} belongs to Vf , then all vertices of S ′ belong to

Vf . Therefore, we conclude that either Vt = S ′ or Vt = S\S ′. Without loss
of generality, suppose that Vt = S ′. Since ℓ3

j ∈ I[l1j , l
2
j ], Vt is not a convex set.

Hence, V is not a convex bipartition and we conclude that f and t belong to
distinct sets of V. Let f ∈ Vf and t ∈ Vt.

Since f ∈ I[fj , t], then fj ∈ Vf for all 1 ≤ j ≤ m. Analogously, tj ∈ Vt

for all 1 ≤ j ≤ m.
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Now we prove that V defines a satisfiable truth assignment for (X, C).
First, we observe that if vertex xi belongs to Vf , then NG[L∪xi](xi) ⊆ Vf .
Let v ∈ NG[L∪xi](xi), this property holds because there exists a geodesic
between v and t using xi. Analogously, if vertex xi belongs to Vt, then
NG[L∪xi](xi) ⊆ Vt. Consequently, we could associate the set X with X and
L with C and V would represent a truth assignment for the set of variables,
where the variable xi is true if and only if the vertex xi ∈ Vt. We refer to
Figure 2, where white vertices belong to Vt and black vertices belong to Vf . It
remains to prove that for each set Lj = {l1j , l

2
j , l

3
j}, 1 ≤ j ≤ m, exactly one of

the vertices belongs to Vt. If at least two vertices v, w of Lj belong to Vt, then
fj ∈ I[v, w], which is a contradiction. If Lj ⊆ Vf , then {ℓ1

j , ℓ
2
j , ℓ

3
j} ⊆ Vf , and

consequently tj ∈ Vf , which is a contradiction. This concludes the proof.

The converse of Lemma 5 is given next by Lemma 6.

Lemma 6. If C is satisfiable, then G is biconvex.

Proof. Suppose that there exists a truth assignment which satisfies (X, C).
We construct a bipartition (Vf , Vt) of V (G) as follows. First add to Vt the
vertices t, t1, . . . , tm, the vertices xi and lij ∈ NG[L∪xi](xi) such that the vari-
able xi is true; and the vertices qi

j, ℓ
i
j such that lij has not been added to Vt,

for all 1 ≤ j ≤ m and 1 ≤ i ≤ 3. Define Vf = V (G)\Vt. We complete the
proof showing that Vf and Vt are convex sets.

Fact 1. Vertex lij ∈ Vf if and only if NG[X∪lij ]
(lij) ∈ Vf , for all 1 ≤ j ≤ m and

1 ≤ i ≤ 3.

Fact 2. Vertex lij ∈ Vf if and only if ℓi
j ∈ Vt, for all 1 ≤ j ≤ m and 1 ≤ i ≤ 3.

Fact 3. Vertex lij ∈ Vf if and only if qi
j ∈ Vt, for all 1 ≤ j ≤ m and 1 ≤ i ≤ 3.

Fact 4. For all lij ∈ L, if lij ∈ Vf , then NG(lij) ⊆ Vf . Hence, if for some w ∈ Vf

I[lij, w] 6⊆ Vf , then there exists a vertex v ∈ NG(lij) such that I[v, w] 6⊆ Vf .

We prove that Vf is convex by showing that there does not exist a vertex in
Vt lying in a geodesic between two non-adjacent vertices v, w ∈ Vf . Consider
the following cases:

Let v = f . Case w ∈ L: by Fact 4 we do not need to analyze this case.
Case w ∈ L: d(v, w) = 2 using a vertex z of Q and by Fact 3, z ∈ Vf .
Let v ∈ F . Case w ∈ F : trivial. Case w ∈ L: fact 4. Case w ∈ X ∪ Q:
trivial. Case w ∈ L: let P be a geodesic between v and w. If |P| = 2, then
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V (P) ⊆ Vf by Fact 2; if |P| = 3, then V (P) ⊆ Vf by Fact 3. Let v ∈ L. By
Fact 4 it is not necessary to analyze this case. Let v ∈ X ∪ Q ∪ L, trivial.

The argument to prove that Vt is convex is analogous. Hence, we conclude
that if C is satisfiable, then V (G) has a convex bipartition.

4. Chordal graphs

In this section, we examine convex partitions of chordal graphs. A graph
is chordal if every cycle of length at least 4 has a chord.

Theorem 7. If G is a connected chordal graph, then G is p-convex for all 1

≤ p ≤ n.

Proof. Since G is chordal it admits a perfect elimination ordering L of its
set of vertices V (G). We will prove that, given p, if we divide V (G) into p
sets, where p− 1 are unitary sets containing the first p− 1 vertices of L, and
the other set S is formed by the remaining vertices of V (G), this partition is
a convex p-partition of V (G). Clearly, the unitary sets are convex, we just
need to prove that S is convex.

Suppose that S is not a convex set. Therefore, there exists a geodesic P
between two vertices u, v of S using vertices outside S. Let P = w0, w1, ...,
wd−1, wd, where w0 = u and wd = v. Let wq be the first vertex of L which
belongs to P, for some 1 ≤ q ≤ d−1. Since G is chordal, we know that wq is
a simplicial vertex in the graph induced by wq and all vertices greater than
wq in L. Hence wq−1 and wq+1 are adjacent in G. In this case, there exists a
path P ′ = u, ..., wq−1, wq+1, ..., v shorter than P, a contradiction. Then S is
convex.

Corollary 8. If G is a connected chordal graph, then G has a convex quasi-

clique p-partition, for all 1 ≤ p ≤ n.

5. Powers of cycles

A power of cycle Ck
n, 1 ≤ k ≤ n, is a graph such that V (Ck

n) = V (Cn) and
E(Ck

n) = {{vi, vj}| vi, vj ∈ V (Ck
n) and dCn

(vi, vj) ≤ k}. The reach of an
edge {vi, vj} in Ck

n is the distance from vi to vj in Cn. Let {u, v} ∈ E(Ck
n),

we say that {u, v} is an edge of maximum reach in Ck
n if dCn

(u, v) = k. We
denote the vertices of Ck

n by v0, . . . , vn, where vi−1 and vi are consecutive in
Cn and vn = v0, for 1 ≤ i ≤ n.
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Next result states conditions to determine whether Ck
n is p-convex, for

p ≥ 2.

Theorem 9. Ck
n is p-convex if and only if p ≥ 3 or n ≤ 2k + 2 or n ≡

0, 1, 2 (mod 2k).

Proof. It follows directly from Lemma 13 and Corollaries 11, 15 and 17.

Lemma 10 establishes bounds for p such that Ck
n has a partition into p

cliques.

Lemma 10. Ck
n is p-convex for

⌈

n
k+1

⌉

≤ p ≤ n.

Proof. Let {v0, vk} be an edge of maximum reach in Ck
n. The set {v0, v1,

. . . , vk} is a clique in Ck
n. By similarity, every edge of maximum reach in Ck

n

defines a clique of size k+1. Hence Ck
n has a partition into

⌈

n
k+1

⌉

cliques.

Corollary 11. If n ≤ 2k + 2, then Ck
n is p-convex, for all 1 ≤ p ≤ n.

Let v, w be a pair of vertices of Ck
n and V1, V2 be the sets of vertices of

the two different paths from v to w in Cn. In the following observation we
prove that the geodesics between v and w in Ck

n are the geodesics between v
and w either in Ck

n[V1] or Ck
n[V2].

Observation 12. Let S = {v1, v2, . . . , v|S|} be a subset of V (Ck
n). Then

for every geodesic between v1 and v|S|, P(v1, v|S|) = u1, u2, . . . , u|P|, where
u1 = v1 and u|P| = v|S| either U = {u2, . . . , u|P|−1} ⊆ S or U ⊆ (V (Ck

n)\S).

Proof. Suppose that there exists a geodesic P(v1, v|S|) = u1, u2, . . . , u|P| such
that U ∩ S 6= ∅ and U ∩ V (Ck

n)\S 6= ∅. Then there exists a vertex ui,
2 ≤ i ≤ |P| − 1, such that either {u2, . . . , ui} ⊆ S and ui+1 ∈ V (Ck

n)\S, or
{u2, . . . , ui} ⊆ V (Ck

n)\S and ui+1 ∈ S.
Let {u2, . . . , ui} ⊆ S and ui+1 ∈ V (Ck

n)\S. Since ui ∈ S, ui+1 ∈ V (Ck
n)\S

and dCn
(ui, ui+1) ≤ k, either {v1, ui} ∈ E(Ck

n) or {ui, v|S|} ∈ E(Ck
n). Then

P is not a geodesic. The case {u2, . . . , ui} ⊆ V (Ck
n)\S and ui+1 ∈ S is

analogous.

Now we show that all powers of cycles are p-convex for 3 ≤ p <
⌈

n
k+1

⌉

.
The idea is to divide V (G) into p sets of consecutive vertices of Cn such that

each set is formed by at most
⌈

n
p

⌉

vertices, and then we prove that these sets
are convex.
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Lemma 13. Ck
n is p-convex for p ≥ 3.

Proof. First let p = 3 and V = (V1, V2, V3) be a partition of V (Ck
n), such that,

|V1| =
⌈

n
3

⌉

, |V2| =
⌈

n
3

⌉

, |V3| = n − 2
⌈

n
3

⌉

, and each Vi contains consecutive
vertices of Cn. We assume that k ≤

⌈

n
3

⌉

, otherwise V is a clique partition. Let
V1 = {v1, . . . , v|V1|} and vr, vs ∈ V1 two vertices such that 1 < r < s ≤ |V1|.
We want to show that if a pair of vertices of V1 has a geodesic using vertices
outside V1, then v1 and v|V1| has also one. Define U = {vr, vr+1, . . . , vs}, U ′ =
{vs, vs+1, . . . , vr} and V ′

1 = {v|V1|, v|V1|+1, . . . , v1}. Suppose that there exists
a geodesic P(r, s) between r and s such that V (P) ⊆ U ′. Since |V ′

1 | < |U ′|,
|U | < |V1| and by Observation 12, we conclude that there exists a geodesic
P ′(v1, v|V1|) such that V (P ′) ⊆ V ′

1 . Then it is sufficient to show that there
does not exist a geodesic between v1 and v|V1| containing vertices outside V1.

Suppose that there exist geodesics between u and v, P(u, v) ⊆ Ck
n[V1]

and P ′(u, v) ⊆ Ck
n[(V \V1) ∪ {v1, v|V1|}], in Ck

n. Then |P| = ⌈
⌈n

3
⌉−1

k
⌉ and

|P ′| = ⌈
n−⌈n

3
⌉+1

k
⌉.

Since k ≤ ⌊n
3
⌋ and n −

⌈

n
3

⌉

≥ 2
⌊

n
3

⌋

, we have that |P| < |P ′|. Hence
P ′(u, v) is not a geodesic, a contradiction. It is clear that a similar argument
holds for p > 3.

For case p = 2 there exist values of n and k such that Ck
n is not biconvex.

Lemma 14. If n ≡ 0, 1, 2 (mod 2k), then a subset S ⊆ V (Ck
n) formed by

⌈

n
2

⌉

consecutive vertices of Ck
n is convex.

Proof. We prove that there does not exist a geodesic between each pair of
vertices of S using vertices outside S.

Without loss of generality, let S = {v1, . . . , v⌈n
2 ⌉
}. Similarly to the proof

of Lemma 13, we restrict our attention to vertices v1 and v⌈n
2
⌉. Since n =

2kq + r, where q and r are positive integers and 0 ≤ r ≤ 2, then |S| is at

most qk + 1. Hence, |PCk
n[S](v1, v⌈n

2
⌉)| =

⌈

|S|−1
2

⌉

= q, for some geodesic P

between v1 and v⌈n
2
⌉ in Ck

n[S].

Analogously, let S ′ = (V (Ck
n)\S) ∪ {v1, v⌈n

2
⌉}. Clearly, |S ′| is at least

qk + 2, consequently |PCk
n[S′](v1, v⌈n

2 ⌉
)| = q + 1, for some geodesic P between

v1 and v⌈n
2
⌉ in Ck

n[S ′]. Therefore, by Observation 12, S is convex.

Corollary 15. Ck
n is biconvex for n ≡ 0, 1, 2 (mod 2k).

11



Lemma 16. Let S ⊂ V (Ck
n) be a non-clique convex set of Ck

n, n > 2k + 2
and n 6≡ 0, 1, 2 (mod 2k). Then |S| <

⌈

n
2

⌉

.

Proof. Suppose that there exists a non-clique convex set S ⊂ V (Ck
n) such

that |S| ≥
⌈

n
2

⌉

. We show that |S| ≥
⌈

n
2

⌉

implies that S contains a pair of
vertices u, w such that Ih[u, w] = V (Ck

n).
First, we claim that S has a pair of vertices u and w such that

⌈

n
2

⌉

−
1 ≤ dCn

(u, w) ≤
⌈

n
2

⌉

. We denote a + b (mod n) by a + b. We denote
by B(vi) the vertex vi+D, such that either D =

⌈

n
2

⌉

− 1 or D =
⌈

n
2

⌉

, and
B(S) = {B(v) ∈ V (Cn)|v ∈ S}. Clearly, |B(S)| = |S|. We analyze two
cases: n odd and n even. If n is odd, let D =

⌈

n
2

⌉

− 1. Suppose that the
claim is false, then S ∩ B(S) = ∅. Since n is odd, |S| + |B(S)| > n, which
is a contradiction. If n is even, let D = n

2
. We define S ′ = {v1, . . . , vq} as a

maximal subset of consecutive vertices of S in Cn, 1 ≤ q ≤ |S|. Since S ′ is
maximal, v0, vq+1 /∈ S, which implies that vD, vq+1+D /∈ B(S) . But vD and
vq+1+D have distance n

2
− 1 from v1 and vq, respectively. Suppose that the

claim is false. Analogously to the odd case, |S|+ |B(S)∪ {vD, vq+1+D}| > n,
a contradiction.

Let u, w ∈ S and
⌈

n
2

⌉

− 1 ≤ dCn
(u, w) ≤

⌈

n
2

⌉

. Now we prove that
Ih[u, w] = V (Ck

n). Let dCn
(u, w) =

⌈

n
2

⌉

− 1, and without loss of generality,
u = v0 and w = v⌈n

2 ⌉−1. We denote by R = {v0, v1, . . . , v⌈n
2 ⌉−1} and

R′ = {v⌈n
2
⌉−1, v⌈n

2
⌉, . . . , v0}. Analogously to the proof of Lemma 14, since

n = 2kq + r, 3 ≤ r < 2k, dCk
n[R](v0, v⌈n

2
⌉−1) = dCk

n[R′](v0, v⌈n
2
⌉−1) = q +1. We

remark that, since n > 2k + 2, dCk
n
(v0, v⌈n

2 ⌉−1) ≥ 2. Moreover, a geodesic

between v0 and v⌈n
2 ⌉−1 in Ck

n[R] is not only formed by edges of maximum

reach, which implies that there exist at least two geodesics between v0 and
v⌈n

2 ⌉−1 in Ck
n[R], P and P ′.

Let P(v0, v⌈n
2
⌉−1) be a geodesic constructed using edges of maximum

reach until it is possible, then V (P) = {v0, vk, v2k, . . . , vqk, v⌈n
2
⌉−1}. Clearly,

if V (P ′) = {v0, vk−1, v2k−1, . . . , vqk−1, v⌈n
2 ⌉−1}, then P ′(v0, v⌈n

2 ⌉−1) is also a

geodesic.
Since vik−1 and v(i+1)k belong to I[v0, v⌈n

2
⌉−1], for 1 ≤ i ≤ q − 1, we

have that X =
⋃

1≤i≤q−1

I[vik−1, v(i+1)k] =
⋃

1≤i≤q−1

{vik−1, vik, . . . , v(i+1)k} ⊆

Ih[v0, v⌈n
2
⌉−1]. There also exist geodesics between v0 and v⌈n

2
⌉−1 using ver-

tices of R′. Therefore, X ′ = {v⌈n
2
⌉−1+k

, v⌈n
2
⌉−1+2k

, . . . , v⌈n
2
⌉−1+(q−1)k} ⊆

12



I[v0, v⌈n
2
⌉−1]. Consequently, {vqk, vqk+1, . . . , v⌈n

2
⌉−1+k

} ⊆ Ih[X ∪ {v⌈n
2
⌉−1,

v⌈n
2 ⌉−1+k

}] ⊆ Ih[v0, v⌈n
2 ⌉−1]. Similarly, we conclude that Ih[v0, v⌈n

2 ⌉−1] =

Ih[X ∪X ′∪{v0, v⌈n
2 ⌉−1}] = V (Ck

n), which is a contradiction. The case where

the distance between u and w is
⌈

n
2

⌉

is analogous to this one.

Corollary 17. Ck
n is not biconvex, for n > 2k + 2 and n 6≡ 0, 1, 2 (mod 2k).

Proof. Follows from Corollary 11 and Lemma 16.

6. Disconnected graphs

In this section, we describe a method for reducing the problem of deciding
whether a disconnected graph admits a convex p-partition into a similar
problem for a connected graph.

Note that if a disconnected graph contains ω connected components then
it is trivially p-convex, for any p ≤ ω.

Theorem 18. Let G be a graph with connected components G1, . . . , Gω.

Graph G is p-convex if and only if for each Gi there exists pi, 1 ≤ i ≤ ω,

such that:

(i) Gi is pi-convex;

(ii) Σ
1≤i≤ω

pi ≥ p, and each pi ≤ p.

Proof. Let V = (V1, . . . , Vp) be a convex p-partition of V (G). We define Vi

= (V1 ∩ Gi, . . . , Vp ∩ Gi) by only considering cases Vj ∩ Gi 6= ∅, 1 ≤ j ≤ p
and 1 ≤ i ≤ ω. Note that Vi is a convex pi-partition of V (Gi), where pi ≤ p.
Furthermore, since each set Vj has vertices of one or more partitions Vi, we
have Σ

1≤i≤ω
pi ≥ p.

Conversely, let Gi be pi-convex, 1 ≤ i ≤ ω, and Σ
1≤i≤ω

pi ≥ p. The convex

sets which form the convex pi-partitions of graphs Gi is a convex ℓ-partition
of G, where ℓ = Σ

1≤i≤ω
pi ≥ p. If ℓ > p, we construct a convex (ℓ−1)-partition

of G performing the union between a convex set of a connected component
Gi and one convex set of Gj , where i 6= j. We note that the union of convex
sets of distinct connected components is also convex, and the union of convex
sets of the same connected component could not be convex. So, we repeat
this process until obtaining partitions with less than ℓ−1 convex sets. Then,
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by the pigeonhole principle, max{pi| 1 ≤ i ≤ ω} is the lower bound for the
minimum number of sets in a convex partition obtained in this way. Since
each pi ≤ p, with this procedure we have a convex p-partition for G.

Theorem 18 reduces the problem of deciding whether a disconnected
graph G, with connected components G1, . . . , Gω, is p-convex, to the prob-
lem of deciding whether its connected components Gi are pi-convex, for
1 ≤ p ≤ n. This theorem leads to Algorithm 1.

Algorithm 1 Algorithm for convex p-partition of a disconnected graph.

(i) For each i, 1 ≤ i ≤ ω, determine the largest pi ≤ p such that Gi is
pi-convex;

(ii) If Σ
1≤i≤ω

pi ≥ p, then G is p-convex; otherwise G is not p-convex.

We remark that using Algorithm 1, we can determine in polynomial-time
if a disconnected graph is p-convex, for graph classes for which there exist
a polynomial-time algorithm to determine if a connected graph is p-convex.
The complexity of a brute force algorithm based on Algorithm 1 is O(pωX),
where O(X) is the complexity to test if the connected graph, Gi, is pi-convex.

7. Cographs

Finally we examine convex partitions of cographs. A graph is a cograph

if it does not contain P4 as an induced subgraph. We note that G is a
non-trivial connected cograph if and only if G is a disconnected cograph.

Theorem 19. Let p ≥ 2, the following sentences are equivalent for a con-

nected cograph G:

(i) G is p-convex;

(ii) G is strong p-convex;

(iii) Either G is p-colorable or G contains exactly one non-trivial connected

component H, such that H = G[V (H)] has a quasi-clique convex p-
partition.

Proof. (i) ⇒ (ii) Let G be a convex graph and consider any convex p-partition
V = (V1, . . . , Vp) of G. Suppose that V contains two sets that are not cliques,
for instance V1 and V2. This implies that two non-adjacent vertices v, v′ ∈ V1
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belong to a same connected component of G. Similarly for two non-adjacent
vertices u, u′ ∈ V2. Suppose that these four vertices are in distinct connected
components of G then v ∈ I[u, u′] ⊆ V2, which is a contradiction. Hence,
these four vertices belong to the same connected component of G. But this
implies that a vertex which is not in this connected component belongs to
both V1 and V2, another contradiction.

(ii) ⇒ (iii) Let G be a strong p-convex graph. If G has only trivial
connected components, then V (G) is a clique and G is p-colorable.

Suppose that G has exactly one non-trivial connected component H .
Clearly, if V (H) ≤ p, then G is p-colorable. From now on we consider
|V (H)| > p. Let V = (V1, . . . , Vp) be a quasi-clique convex p-partition of
G. If V only contains cliques, then G is p-colorable. If V contains exactly
one non-clique, then let v, v′ be two non-adjacent vertices of V1. All trivial
connected components of G belong to I[v, v′] ⊆ V1. Hence the sets V2, . . . , Vp

are formed by vertices of H . Consequently, V ′ = (V1 ∩ H, V2, . . . , Vp) is a
quasi-clique convex p-partition of H .

Now consider that G has at least two non-trivial connected components
and suppose by contradiction that G is not p-colorable. Let V = (V1, . . . , Vp)
be a quasi-clique convex p-partition of G. Then there exists a set of V,
for instance V1, with non-adjacent vertices u, u′, otherwise G would be p-
colorable. Hence, u and u′ belong to the same connected component of G,
say H1. This implies that any vertex of any other connected component of
G must belong to V1. But, since G has at least two non-trivial connected
components, there exists a connected component H2 with two non-adjacent
vertices v, v′ ∈ V1. Since H1 ⊆ I[v, v′], we conclude that V1 = V (G), a
contradiction.

(iii) ⇒ (i) If G is p-colorable then G is p-convex. If G is not p-colorable and
has exactly one non-trivial connected component H , such that H contains
a quasi-clique convex p-partition V = (V1, . . . , Vp). Then we can obtain a
convex p-partition for G by adding the vertices V (G)\V (H) to the set of V
that is not a clique.

The previous theorem gives conditions to develop an algorithm to decide
if a connected cograph G is p-convex. This algorithm uses the cotree of the
graph G [11]. The cotree TG of G is a tree rooted at G such that the children
of each node of TG are the connected components of its complement. The
leaves of TG are the vertices of G.

In Figure 3, we schematically exhibit the first levels of the cotree of G.
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Figure 3: Scheme of the cotree of cograph G. White vertices are non-trivial connected
components and the black vertices are trivial connected components.

The black vertices represent trivial connected components and the white ones
are non-trivial. By Theorem 19, to decide if G is p-convex we need to check
the number of non-trivial connected components of G. Since G has just
one non-trivial connected component G′, we need to verify if G[V (G′)] is p-
convex. Since G[V (G′)] is disconnected we can not use an algorithm based on
Theorem 19. By Theorem 18, it is important to determine the largest p′i, less
than or equal to p, such that G′

i is p′i-convex for all connected components of
the graph G[V (G′)]. Therefore, we use Theorem 19 to determine p′i, for all
G′

i. First we note that G′
3 is trivial, since |V (G′

3)| ≤ p, then p′3 = |V (G′
3)| = 1;

suppose that |V (G′
1)| > p and |V (G′

2)| > p, to G′
1 and G′

2 we need to apply
Theorem 19. Since G′

1 has two non-trivial connected components, then we
need to examine if G′

1 is p-colorable. Since G′
2 does not have a non-trivial

connected component, then G′
2 is p-convex. Although the cotree TG has more

vertices, we do not need to analyze all the vertices of TG to answer whether
G is p-convex.

We describe Algorithm 2 based on Theorems 18 and 19. Let G be a
connected cograph. The algorithm decides the largest pG ≤ p, such that G
is pG-convex by analyzing the children of G in the cotree TG. If it is not
possible to determine pG, we recursively repeat the process to the children of
G in TG (possibly, not all of them). We modify Algorithm 1 for disconnected
cographs. We also use the linear-time algorithm to determine the cotree [11]
of a cograph.

Before presenting the algorithm, we need some definitions. Let H be
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a connected cograph, ω(H) is the number of connected components of H ,
while ω′(H) denotes the number of non-trivial connected components of H .
If H has just one non-trivial connected component we denote this component
by H ′; the connected components of a cograph H are called H1, . . . , Hω(H);
f(H, p) ≤ p is the largest integer such that H is f(H, p)-convex.

Algorithm 2 Algorithm for computing f(H, p).

Input: Connected cograph H .

function f(H, p)

If |V (H)| ≤ p, then return |V (H)|;
otherwise

If H is in an odd level of TG:

• If ω′(H) = 0, then return p;

• If ω′(H) = 1, then return f(H ′, p);

• If ω′(H) ≥ 2, then determine χ(H). If χ(H) ≤ p, then return p,
otherwise G is not p-convex;

otherwise

return min{p, Σ
1≤i≤ω(H)

f(Hi, p)}.

The Algorithm 2 determines f(H, p) for a cograph H in TG. Hence, to
determine if a connected cograph G is p-convex we determine the cotree TG

and check if f(G, p) = p.

Theorem 20. If G is a cograph, then we can decide in time O(n + m) if G
is p-convex.

Proof. The complexity of determining the cotree is O(n + m) and the cotree
has O(n) nodes [11]. At each visited node H the algorithm can: (i) determine
in O(1) time the value of f(H, p); (ii) visit the children of H ; (iii) decide
if χ(H) ≤ p. In steps (i) and (iii), Algorithm 2 does not make recursive
calls to the children of H . In (iii), if we determine χ(H1) and χ(H2), for
two different nodes H1 and H2 of TG, then V (H1) and V (H2) are disjoints.
We know, by [10, 11], that χ(H) can be calculated in O(V (H) + E(H))
time, for any node H of TG. Hence the complexity of the Algorithm 2 is
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Figure 4: Graph which has a cover into 2 convex sets and it is not 2-convex.

O(n + m). By Theorem 18, for a disconnected cograph G, we need to verify
if Σ

1≤i≤ω(G)
f(Gi, p) ≥ p. Hence, it is easy to see that the Algorithm 2 could

be extended to disconnected cographs.

8. Conclusion

We have considered the problem of the partition of V (G) into p convex
sets. We have proved that the problem is NP -complete for fixed values of
p ≥ 2.

We also have shown that chordal graphs are p-convex, for 1 ≤ p ≤ n, and
described a linear-time algorithm to decide whether a cograph is p-convex.
We have shown that powers of cycles Ck

n are p-convex, for p ≥ 3. We also
have determined conditions on n and k, which determine whether a power of
cycle is biconvex.

Finally, we mention that we have also considered the problem of deciding
whether a graph has a cover into p convex sets. We define the convex cover
of a graph G as a family of convex subsets of V (G), such that the union of
these sets is equal to V (G) and none of this sets is contained in the union of
other sets of the family. The concepts of convex partitions and convex covers
are distinct. Figure 4 shows an example of a graph that has a cover into 2
convex sets but no partition into 2 convex sets. The results presented in this
article are directly extensible for the convex cover problem. However, we do
not know if there exists a linear-time algorithm to decide if a cograph has a
cover into p convex sets.
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