
On the Contour of Graphs✩

D. Artigasa,∗, S. Dantasc, M.C. Douradod, J.L. Szwarcfiterb,d,e,
S. Yamaguchif

aInstituto de Ciência e Tecnologia, Universidade Federal Fluminense, Brazil
bCOPPE-Sistemas, Universidade Federal do Rio de Janeiro, Brazil
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Abstract

Let G = (V,E) be a finite, simple and connected graph. Let S ⊆ V , its
closed interval I[S] is the set of all vertices lying on a shortest path between
any pair of vertices of S. The set S is geodetic if I[S] = V . The eccentricity
of a vertex v is the number of edges in the greatest shortest path between v
and any vertex w of G. The contour Ct(G) of G is the set formed by vertices
v such that no neighbor of v has an eccentricity greater than v. We consider
the problem of determining whether the contour of a graph class is geodetic.
The diameter diam(G) of G is the maximum eccentricity of the vertices in V .
In this work we establish a relation between the diameter and the geodeticity
of the contour of a graph. We prove that the contour is geodetic for graphs
with diameter k ≤ 4. Furthermore, for every k > 4, there is a graph with
diameter k and whose contour is not geodetic. We show that the contour is
geodetic for bipartite graphs with diameter k ≤ 7, and for any k > 7 there
is a bipartite graph with diameter k and non-geodetic contour. By applying
these results, we solve the open problems mentioned by Cáceres et al. [3, 5]
namely to decide whether the contour of cochordal graph, parity graph and
bipartite graphs are geodetic.
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1. Introduction

In the last decades many concepts of continuous mathematics were ap-
plied to discrete mathematics, particularly, to graph theory. In this article
we are interested in concepts related with the study of convexity in graphs.

Let G = (V,E) be a finite, simple and connected graph. A family C of
subsets of V is a graph convexity, or convexity, if it satisfies two properties:
(i) V, ∅ belongs to C; (ii) C is closed under intersections. The elements of
C are called convex sets. Some of the early works on convexity of graphs
are [14, 21, 23]. Afterwards, several papers on graph convexity have been
published, e.g. [6, 8, 11, 12, 13, 15, 16, 17, 18, 20].

Many of the graph convexities are defined using interval functions. A well
known convexity class is the geodesic convexity, where a set S is convex if it
is formed by all vertices lying on a shortest path between any pair of vertices
of S. Many authors considered geodesic convexity with different focus in
subjects as convex partitions, geodetic sets, geodetic number, hull number
and convexity number [1, 4, 9, 10]. For general information about convexity
see [22].

In [5], the authors have investigated if it is possible to determine any
convex set S of a graph using a subset of S, with a specific property, and
a simple operation on these vertices. In particular, they have defined the
contour Ct(G) of a graph G as a subset of vertices of G formed by vertices
with eccentricity greater than or equal its neighbors. They asked if Ct(G)
is always a geodetic set, i.e., if the shortest paths between vertices of Ct(G)
contain all vertices of G. It was exhibited a graph where this property is not
valid, and it was proved that the contour of a distance-hereditary graph is
geodetic. These results motivate the question posed in [5]: for which graph
classes the contour of a graph is a geodetic set? In [3], it was proved that
the contour of chordal graphs is geodetic and it was presented a scheme of
subclasses of perfect graphs for which the contour is a geodetic set. Partic-
ularly, this problem has been left open for three graph classes: cochordal,
parity and bipartite graphs.

The main contributions of this paper are the following results:

(i) Let G be any graph. If diam(G) ≤ 4 then the contour of G is geodetic.
Furthermore, for every k > 4, there is a graph having diameter k and
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whose contour is not geodetic.

(ii) Let G be a bipartite graph. If diam(G) ≤ 7 then the contour of G
is geodetic, otherwise for any k > 7, there is a bipartite graph having
diameter k and whose contour is not geodetic.

In special, these two results solve all open problems of [3]. We also con-
sider other graph classes and we prove that the contour of circulant graphs
is geodetic (see Remark 5) and that result (i) remains true for planar graphs
(see Corollary 17).

2. Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E, where |V | =
n and |E| = m. In this work, all graphs are finite, simple and connected.
We say that G[S] is the subgraph of G induced by S. We denote by G the
complement of the graph G.

A geodesic between v and w in G is a shortest path between v and w
in the graph. The closed interval I[v, w] is the set of all vertices lying on a
geodesic between v and w. Given a set S, I[S] =

⋃

u,v∈S

I[u, v]. If I[S] = S,

then S is a convex set. If I[S] = V , then S is geodetic.
The length of a path P between two vertices v and w, denoted by |P |,

is the number of edges in P . The distance in G = (V,E) between v and w,
denoted by dG(v, w), is the length of a geodesic between v and w in G. The
eccentricity of v ∈ V , denoted by eccG(v) is the largest distance from v to any
other vertex in G, i.e., ecc(v) = max{dG(v, w)|w ∈ V }. The diameter of G,
diam(G), is equal to max{dG(v, w)| v, w ∈ V }. The radius of G, rad(G), is
equal to min{eccG(v)| v ∈ V }. For simplicity, we omit G from the notation
above. For basic concepts in graph theory see [2].

First, we recall two properties:

Remark 1. Let G be a graph. Then rad(G) ≤ diam(G) ≤ 2rad(G).

Remark 2. Let G = (V,E) and v, u ∈ V . Then, | ecc(v)−ecc(u) |≤ d(v, u).
In particular, if v and w are adjacent vertices then |ecc(v)− ecc(w)| ≤ 1.

The following lemma is a direct consequence of the above remarks. It
guarantees the existence of a path of length rad(G) between any pair of
vertex u0, ur such that ecc(u0) = rad(G) and ecc(ur) = 2rad(G) = diam(G).
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Lemma 3. Let G be a connected graph with diam(G) = 2rad(G). Suppose
that ecc(u0) = rad(G) = r. Then, for any ur such that ecc(ur) = diam(G),
there exists a path P = u0, u1, · · · , ur such that ecc(u0) < ecc(u1) < · · · <
ecc(ur). Moreover, ecc(ui) = ecc(ui−1) + 1, 1 ≤ i ≤ r.

A vertex v is an eccentric vertex of w if d(w, v) = ecc(w). A vertex v
is an eccentric vertex of G if it is the eccentric vertex of some w ∈ V . The
eccentric set of G, Ecc(G), is the set of all eccentric vertices of G [7].

Ecc(G) = {v ∈ V (G)| ∃u ∈ V s.t. ecc(u) = d(u, v)}.

We define NG(v) = {w ∈ V | dG(v, w) = 1} and NG[v] = {v} ∪ NG(v).
Generalizing this concept, if S ⊆ V , then NG(S) = ∪v∈SNG(v) and NG[S] =
∪v∈SNG[v]. Moreover, N i

G(v) = {w ∈ V | dG(v, w) = i}.
A set S ⊆ V is an independent set if no two vertices of S are adjacent in

G. A set K ⊆ V is a clique if every two vertices of K are adjacent in G.
We say that v ∈ V is a simplicial vertex of G if NG[v] is a clique. We say

that v ∈ V is a universal vertex of G if NG[v] = V .
A vertex v is a contour vertex of G if no adjacent vertex of v has eccen-

tricity greater than ecc(v). The contour of G, Ct(G), is the set formed by all
contour vertices of G [5].

Ct(G) = {v ∈ V |ecc(u) ≤ ecc(v), ∀u ∈ N(v)}

Remark 4. Every simplicial vertex is a contour vertex.

Next, we analyze graphs with the property that all vertices have the same
eccentricity. Some relevant graph classes have this property, for example,
circulant graphs. Let n,m and a1, . . . , am be positive integers. A graph
G = (V,E) such that V = {0, . . . , n− 1} and E = {{i, i+ aj(mod n)}| 0 ≤
i ≤ n−1, 1 ≤ j ≤ m} is called circulant, and it is denoted by Cn(a1, . . . , am).

It is easy to see that, by symmetry, all vertices of a circulant graph have
the same eccentricity.

Remark 5. If G = Cn(a1, . . . , ak), then Ct(G) is geodetic.

Theorem 6. [19] If n is even and a1, . . . , ak are odd, then Cn(a1, . . . , ak) is
bipartite.

Consequently, the contour of the subclass of bipartite graphs defined by
Theorem 6 is geodetic.
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3. Graphs with diameter at most 4

The diameter of a graph G is a powerful parameter to decide whether
Ct(G) is geodetic. We start by showing basic properties.

The following remark establishes a relation between a vertex and its ec-
centric vertex.

Remark 7. Let G = (V,E) be a graph. If e(v) is an eccentric vertex of
v ∈ V , then ecc(e(v)) ≥ ecc(v).

Lemma 8 guarantees the existence of a geodesic, between a vertex ut ∈ V
and its eccentric vertex c, forming a sequence of vertices with increasing
eccentricity.

Lemma 8. [3] Let G = (V,E) be a graph and let u0 ∈ V . Suppose that
P = u0, u1, . . . , ut is a path in G such that ecc(ui+1) = ecc(ui) + 1, for each
i ∈ {0, 1, . . . , t − 1}. Then, for each eccentric vertex x of ut, there exists a
geodesic between x and ut that contains P .

Lemma 8 is the main tool employed in our results.

Remark 9. Let P be a geodesic between u0 and ut in G, formed by vertices
of increasing eccentricity; and x an eccentric vertex of ut. Then x is an
eccentric vertex of each vertex of P.

Let P be a geodesic between a contour vertex of a graph G and any of its
eccentric vertices. The next lemma identifies some vertices of P belonging
to I[Ct(G)]. It follows directly from Lemma 8.

Lemma 10. Let G = (V,E) be a graph, u0 ∈ V and P = u0, u1, · · · , ut be a
path in G such that ecc(ui+1) = ecc(ui)+1, for each i ∈ {0, 1, · · · , t−1}. Let
z ∈ V be an eccentric vertex of ut, and P a geodesic between z and ut that
contains P . Suppose that ut, z ∈ Ct(G), z ∈ P \ P . Then, for each ui ∈ P
we have that ui ∈ I[Ct(G)], i ∈ {0, 1, · · · , t− 1}.

Lemma 11 states a property of some vertices that cannot be in I[Ct(G)].

Lemma 11. Let G = (V,E) be a graph. If v ∈ V does not belong to I[Ct(G)],
then ecc(v) ≤ diam(G)− 2.
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Proof. Suppose that v 6∈ I[Ct(G)] and ecc(v) > diam(G) − 2. Clearly,
for any vertex v, if ecc(v) = diam(G), then v is a contour vertex. If
ecc(v) = diam(G) − 1, then either v is a contour vertex, or v is adjacent
to a vertex w such that ecc(w) = diam(G). So, w ∈ Ct(G). Consequently,
by Lemma 8, v lies in a geodesic between w and an eccentric vertex of w,
e(w). By Remark 7, e(w) is a contour vertex. Thus, v belongs to I[w, e(w)],
which is a contradiction.

The following results determine, for which integers k, the contour of every
graph with diameter k is necessarily geodetic.

Theorem 12. If G is a graph with diam(G) ≤ 4, then Ct(G) is geodetic.

Proof. Let G = (V,E) be a graph such that diam(G) = 4. Suppose that
there exists a vertex v0 ∈ V such that v0 /∈ I[Ct(G)]. By Remark 1 and
Lemma 11, we have that ecc(v0) = 2.

Since ecc(v0) = 2, by Lemma 3, for any vertex v2 ∈ V such that ecc(v2) =
4, there exists a path v0, v1, v2, such that ecc(v1) = 3. Let e(v2) be an ec-
centric vertex of v2. Since ecc(v2) = 4, by Remark 7, ecc(e(v2)) = 4 and,
consequently, e(v2) ∈ Ct(G). Hence, by Lemma 8 there exists a geodesic
between v2 and e(v2) which contains v0. Therefore, v0 ∈ I[Ct(G)], a contra-
diction.

The cases where diam(G) < 4 are trivial by Remark 1 and Lemma 11.

We denote by Pn the graph consisting of a path with n vertices.

Corollary 13. If G is P6-free, then Ct(G) is geodetic.

To end this section we show that Theorem 12 is best as possible in the
sense that, for each k ≥ 5, there is a graph with diameter k and whose
contour is not geodetic.

In fact, the work [3] describes the graph depicted in Figure 1, having
diameter 5 and with no geodetic contour. We generalize this result and
present a graph of arbitrary diameter greater than 5 and whose contour is
not geodetic. See Figure 2.

A graph G is chordal if every cycle of length at least 4 has a chord. A
graph G is cochordal if its complement is a chordal graph.

Corollary 14. If G is a cochordal graph, then Ct(G) is a geodetic set.
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a

b c

d

G

Figure 1: Graph G, with diameter 5, whose Ct(G) = {a, b, c} and d /∈ I[Ct(G)].

a

b c

d

G

. . .

k-3 vertices

. . .

. . .. . .
{

Figure 2: Graph G, with diameter k ≥ 5, whose contour is not geodetic.

Proof. The complement of a P5 has an induced cycle with 4 vertices. Hence,
a cochordal graph G is P5-free. Consequently, diam(G) ≤ 3.

Corollary 15. For any k ≥ 5, the graph of Figure 2 has diameter k and its
contour is not geodetic.

Proof. Let G be a graph of Figure 2. Then Ct(G) = {a, b, c} and d /∈
I[Ct(G)].

By Theorem 12 and Corollary 15 we conclude our first main result.

Theorem 16. Let G be any graph. If diam(G) ≤ 4 then the contour of G
is geodetic. Furthermore, for every k > 4, there is a graph having diameter
k and whose contour is not geodetic.

Using Theorem 16, and observing that the graph of Figure 2 is a planar
graph, we obtain the next corollary.

Corollary 17. If a planar graph has diameter ≤ 4 then its contour is geode-
tic. Furthermore, for every k > 4, there is a planar graph having diameter k
and whose contour is not geodetic.

In the next sections, we focus our attention on bipartite graphs.
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4. Bipartite graphs with diameter ≤ 7

In this section we consider bipartite graphs with diameter 5, 6 or 7. First,
we describe useful properties of bipartite graphs.

Remark 18. Let G = (V,E) be a bipartite graph with bipartition V = A∪B.
Then for any v ∈ V and for any positive integer i, either N i(v) ⊂ A, or
N i(v) ⊂ B.

Remark 19. Let G = (V,E) be a bipartite graph and u, w be two vertices of
G such that d(u, w) = k. If w′ is an adjacent vertex of w, then d(u, w′) = k−1
or d(u, w′) = k + 1. Particularly, if w is an eccentric vertex of u, then
d(u, w′) = k − 1.

Lemma 20. Let G = (V,E) be a graph and let u0 ∈ V . Suppose that P =
u0, u1, . . . , uk, where uk = u, is a path in G such that ecc(ui+1) = ecc(ui)+1,
for each i ∈ {0, 1, . . . , k − 1}. Let w be an eccentric vertex of uk and w′ an
adjacent vertex of w. Then, there exists a geodesic between w′ and uk that
contains P .

Proof. Since w is an eccentric vertex of all vertices in P we have that d(u0, w
′)

= ecc(u0) − 1 and d(uk, w
′) = ecc(uk) − 1. By Remark 2, P is a geodesic,

and this implies that d(u0, uk) = k. Since ecc(uk) = ecc(u0)+k, we conclude
that d(w′, uk) = d(w′, u0)+ d(u0, uk). Hence, there exists a geodesic between
w′ and u containing P .

We apply Remarks 18 and 19 and Lemma 20 in the following theorems.

Theorem 21. Let G = (V,E) be a bipartite graph. Then, diam(G) −
ecc(v) ≤ 2 implies that v ∈ I[Ct(G)], for any v ∈ V \ Ct(G).

Proof. The cases where diam(G)− ecc(v) < 2 follow from Lemma 11.
Let u0 ∈ V such that ecc(u0) = diam(G) − 2. Then, there exists a path

P = u0, u1, · · · , ut between u0 and ut ∈ Ct(G) such that ecc(u0) < ecc(u1) <
· · · < ecc(ut). Since ecc(v) ≤ diam(G), for any v ∈ V , we need to consider
two different cases: ecc(ut) = diam(G) and ecc(ut) = diam(G)− 1.

Suppose that ecc(ut) = diam(G). Then, ut ∈ Ct(G); every eccentric
vertex z of ut is such that ecc(z) = diam(G), by Remark 7. Consequently,
z ∈ Ct(G) and u0 ∈ I[z, ut] ⊆ I[Ct(G)], by Lemma 8.

Suppose that ecc(ut) = diam(G) − 1 and let z be an eccentric vertex of
ut. Then by Lemma 8, there exists a geodesic between ut and z through u0.
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Suppose that z ∈ Ct(G). Then, u0 ∈ I[Ct(G)], by an analogous argument
of that used in previous case. Suppose that z 6∈ Ct(G). Then, there exists
a vertex z′ such that {z, z′} ∈ E and ecc(z′) = diam(G). By Remark 18,
z′ ∈ N ecc(ut)−1(ut). Since d(u0, z) = diam(G) − 2 and ecc(u0) = diam(G) −
2, we have that d(u0, z

′) = diam(G) − 3. Consequently, since d(ut, z
′) =

diam(G)− 2, d(u0, z
′) = diam(G)− 3 and d(u0, ut) = 1, we have that there

exists a geodesic between ut and z′ through u0. Thus u0 ∈ I[Ct(G)].

Next result is a consequence of Remark 1, Lemma 3 and Theorem 21.

Corollary 22. The contour of every bipartite graph with diameter at most
6 is geodetic.

In the next theorem we consider bipartite graphs with diameter 7.

Theorem 23. Let G = (V,E) be a bipartite graph with diam(G) = 7. Then,
I[Ct(G)] = V .

Proof. Let u0 ∈ V \Ct(G). By Theorem 21, we may assume that ecc(u0) = 4.
Then, there exists a path P = u0, u1, · · ·ut between u0 and ut ∈ Ct(G) such
that ecc(u0) < ecc(u1) < · · · < ecc(ut). Let z be an eccentric vertex of ut.
By Lemma 8, there exists a shortest path P ′ between ut and z through u0.
We need to consider three different cases: ecc(ut) = diam(G); ecc(ut) =
diam(G)− 1; and ecc(ut) = diam(G)− 2.

Suppose that ecc(ut) = diam(G). Then, ut, z ∈ Ct(G) and u0 ∈ I[Ct(G)].
Suppose that ecc(ut) = diam(G) − 1 = 6. If z ∈ Ct(G), then u0 ∈

I[Ct(G)]. If z 6∈ Ct(G), then there exists a vertex z′ ∈ Ct(G) such that
{z, z′} ∈ E and ecc(z′) = diam(G). By Remark 18, vertex z′ belongs to
N5(ut) or N7(ut). Since ecc(ut) = 6, we have that z′ ∈ N5(ut). Since
d(u0, ut) = 2 and u0 lies on a geodesic between z and ut, we conclude that
d(u0, z) = 4. Consequently, by Remark 18 and since ecc(u0) = 4, we conclude
that d(u0, z

′) = 3. Hence, there exists a geodesic between ut and z′ through
u0, which implies that u0 ∈ I[Ct(G)].

Suppose that ecc(ut) = diam(G)− 2 = 5. Let z be an eccentric vertex of
ut. If z ∈ Ct(G), then u0 ∈ I[Ct(G)]. Hence we may assume that z 6∈ Ct(G).
Consequently, we need to consider two possible cases, either ecc(z) = 6 or
ecc(z) = 5.

Case 1: ecc(z) = 6.
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Since z 6∈ Ct(G) and ecc(z) = 6, there exists a vertex z′ ∈ Ct(G) such
that {z, z′} ∈ E and ecc(z′) = diam(G). By an analogous argument of
that used in the case where ecc(ut) = 6, we have z′ ∈ N4(ut). Since z
is an eccentric vertex of u0, we know that d(u0, z) = 4. Consequently,
using that G is bipartite and Remark 18, we conclude that d(u0, z

′) = 3.
Hence, there exists a geodesic between ut and z′ through u0, which
implies that u0 ∈ I[Ct(G)].

Case 2: ecc(z) = 5.

By a similar argument of that used in previous case, there exists a
vertex z′ ∈ N4(ut) such that {z, z′} ∈ E, ecc(z′) = diam(G) − 1 = 6
and d(u0, z

′) = 3. If z′ ∈ Ct(G), then u0 ∈ I[Ct(G)], by Lemma 10.
Suppose that z′ 6∈ Ct(G). Then, there exists a vertex z′′ such that
{z, z′′} ∈ E and ecc(z′′) = diam(G) = 7. Since G is bipartite, either
z′′ ∈ N5(ut) or z

′′ ∈ N3(ut). Following, we analyze these cases.

Case 2-1: z′′ ∈ N5(ut).

Since ecc(ut) = 5, vertex z′′ is an eccentric vertex of ut. Therefore, by
Lemma 8, u0 ∈ I[Ct(G)].

Case 2-2: z′′ ∈ N3(ut).

Let z′′′ be an eccentric vertex of z′′, which implies that d(z′′, z′′′) = 7.
By Remark 7, z′′′ ∈ Ct(G). Since G is bipartite and d(ut, z

′′) = 3 is
odd, the vertices ut and z′′ are in different parts of the partition of V .
The same is true for z′′ and z′′′. Hence, ut and z′′′ are in the same
part of the partition of V , which means that d(ut, z

′′′) is even. Since
ecc(ut) = 5, then z′′′ ∈ N4(ut) or z

′′′ ∈ N2(ut).

Case 2-2-1: z′′′ ∈ N4(ut).

Since u0 ∈ N(ut) and G is bipartite, d(u0, z
′′′) = 3. Clearly, u0 ∈

I[ut, z
′′′] ⊆ I[Ct(G)].

Case 2-2-2: z′′′ ∈ N2(ut).

Clearly, for some vertex w ∈ V such that ecc(w) = 6, there exists a
geodesic P = u0, ut, w, z

′′′ such that ecc(u0) < ecc(u1) < ecc(w) <
ecc(z′′′) = diam(G). Let x be an eccentric vertex of z′′′. By Remark 7,
ecc(x) = 7, which means that x ∈ Ct(G). By Lemma 8, we conclude
that u0 lies on a geodesic between z′′′ and x.
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5. Bipartite graphs with diameter > 7

In [3] the authors have mentioned that it is unknown if there exists a
bipartite graph such that the contour is not geodetic. The same question has
been asked for parity graphs. A graph is a parity graph if any two induced
paths, joining the same pair of vertices, have lengths of the same parity (odd
or even). In this section we answer these questions. In Figure 3, we show a
graph G together with the eccentricity of every vertex of G.

Proposition 24. The graph of Figure 3 is bipartite and its contour is not
geodetic.

Proof. In Figure 3, the vertices marked with a square are contour vertices of
G, but v is not in I[Ct(G)].

5

5

6

7

6 6
5

5 6 7
8

7

4 5 6 6
6

8

vu

z

x

w

Figure 3: Bipartite graph G, with diameter 8, whose contour is not geodetic.

Furthermore, we extend the example of Figure 3 to show that, for any
even k ≥ 8, there exists a graph H = (V,E) such that diam(H) = k and
I[Ct(H)] 6= V . The graph H in Figure 4 is a bipartite graph obtained
from graph G (see Figure 3). This graph has diameter 8 + 2s and a vertex
v 6∈ I[Ct(H)].

Next, we exhibit, in Figure 5, a graph J = (V,E) constructed from graph
H , of Figure 4, deleting the vertex w. The graph J is bipartite, Ct(J) is not
geodetic and diam(J) = 7 + 2s, for s ≥ 1. To verify that I[Ct(J)] 6= V , it is
sufficient to see that Ct(J) = {u, w′, x} and v 6∈ I[Ct(J)].
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8+2s

8+2ss vertices

6+s

5+s

5+s

5+s 4+s

6+s

5+s 6+2s 6+2s

7+2s

5+2s

w

v

6+s 7+s

7+s

z

u

x
{

Figure 4: Bipartite graph H , with diameter 8 + 2s, whose contour is not geodetic.

7+2s

7+2s

s vertices

6+s

5+s

5+s

5+s 4+s

6+s

4+s 5+2s 5+2s

6+2s

4+2s

w’

v

5+s 6+s

7+s s-1 vertices

u
z

x

5+s

{
{

Figure 5: Bipartite graph J , with diameter 7 + 2s, whose contour is not geodetic.

The above figures show that the contour of parity graphs is not geodetic
since parity graphs is a superclass of bipartite graphs.

By Corollary 22, Theorem 23, Proposition 24 and Figures 4 and 5 we
conclude our second main result.

Theorem 25. Let G be a bipartite graph. If diam(G) ≤ 7 then the contour
of G is geodetic, otherwise for any k > 7, there is a bipartite graph having
diameter k and whose contour is not geodetic.
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6. Conclusion

We have considered the problem of determining whether the contour of
a graph is a geodetic set. In [3], the authors showed that there exists a
graph for which the problem has answer NO. They left the problem open
for 3 classes: cochordal; bipartite; and parity graphs. We have solved the
problem for each of these classes. We have investigated the relation between
the contour and the diameter of a graph. We have proved that if G is a
graph such that diam(G) ≤ 4, then Ct(G) is geodetic, and shown that for
every k ≥ 5, there exists a graph G, with diameter k, such that the contour
is not geodetic. We have proved that if G is a bipartite graph such that
diam(G) ≤ 7, then Ct(G) is geodetic; and shown that for every k ≥ 8, there
exists a bipartite graph G with diam(G) = k such that the contour is not
geodetic.

We leave as one open question whether the contour of a bridged graph is
geodetic. Finally, we mention the problem of characterizing the graphs for
which the contour is geodetic.
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[4] J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas,
C. Seara, On geodetic sets formed by boundary vertices, Discrete Math-
ematics 306 (2006) 188–198.
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