fall1.f
c<html>
c<body>
c<pre>
module constants
integer, parameter :: np=2000, dbl=selected_real_kind(14,100)
real(dbl) :: g=9.807,dtmin=.001
end module constants
c
program fall
use constants
implicit none
c
c Program to calculate the dynamics of a falling body
c
c John Mahaffy 4/15/95
c
c Arrays:
c v - velocity at each time integration step
c z - height at each time integration step
c t - time for each corresponding v and z
c zreal - Actual height at time t(i) for comparison with computed z
c
c In this program, I am using allocatate just to save space in the
c executable program file (a.out). No attempt is made to estimate a size.
c Module "constants" communicates between subroutines.
c
c<a name="alable"><font color="FF0000">
real(dbl), allocatable :: v(:),z(:),t(:), zreal(:)
c</font></a>
real(dbl) dt
integer nsteps
c<a name="all"><font color="FF0000">
allocate (v(np),z(np),t(np),zreal(np))
c</font></a>
call input(z,dt)
call odesolve(v,z,t,dt,nsteps)
call realans(t,z,nsteps,zreal)
call output (t,z,zreal,v,nsteps)
stop
end
c
subroutine input (z,dt)
use constants
implicit none
c
c Obtain user input for initial height and time step
c
c John Mahaffy 4/15/95
c
c Output Arguments:
c z(1) - initial height
c dt - integration time step
c
real(dbl) z(*),dt
c
write(6,'(a)',advance='no') ' Initial height (meters): '
read *, z(1)
write(6,'(a)',advance='no') 'Time step size (seconds): '
read *, dt
if(dt.le.0.) dt=dtmin
return
end
c
subroutine odesolve(v,z,t,dt,nsteps)
use constants
c
c Solve the Ordinary Differential Equation of motion for the body
c
c John Mahaffy 4/15/95
c
c Arguments:
c Input
c dt - timestep size
c Output:
c v - velocity
c z - height
c t - time
c nsteps - last step in the integration
c
real (dbl) v(*),z(*),t(*),dt
integer i, nsteps
c
c Solve the equation for a falling body
c
c d v d z
c --- = - g --- = v
c d t d t
c
c Set remaining initial conditions:
c
t(1)=0.
v(1)=0.
c
c Now loop through time steps until z goes negative or we run out of space
c
do 100 i=2,np
v(i)= v(i-1)-dt*g
z(i)= z(i-1)+dt*.5*(v(i)+v(i-1))
t(i)=t(i-1)+dt
if(z(i).lt.0.) go to 200
c<a name="con"><font color="FF0000">
100 continue
c</font></a>
write(6,*) 'Ran out of space to continue integration'
write(6,*) ' Last height was ',z(np),' meters'
i=np
200 nsteps=i
c return
end
c
subroutine realans(t,z,nsteps,zreal)
use constants
c
c Get the values of the analytic solution to the differential equation
c for each time point to check the numerical accuracy.
c
c John Mahaffy 4/15/95
c
real(dbl) t(*),z(*),zreal(*)
integer i,nsteps
c
do 10 i=1,nsteps
10 zreal(i)=z(1)-.5*g*t(i)**2
return
end
c
subroutine output(t,z,zreal,v,nsteps)
use constants, only : dbl
implicit none
c
c Outputs the full results of the time integration
c
c John Mahaffy 4/15/95
c
real(dbl) v(*),z(*),t(*), zreal(*)
integer nsteps,i
print *, 'Results are in fall.output'
open (11,file='fall.output')
write(11,2000)
do 300 i=1,nsteps
write(11,2001) t(i),v(i),z(i),zreal(i)
300 continue
2000 format (33x,'Computed',8x,'Actual',/,
& 6x,'Time',9x,'Velocity', 8x,'Height',8x,'Height')
2001 format (1x,1p,4e15.7)
return
end
c</pre>
c</body>
c</html>