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Abstract

A new method to predict ephemerides for binary stars is presented. Instead of solving the conventional
Kepler’s equation for mean anomaly, is solved a transcendental equation based on z/a relation. This equation
present a well determined interval of variation and is solved numerically by Bisection Method.

1 Introduction

Many years ago I started binary star observation and studies with ephemerides calculation in mind. By that
early time I was in close correspondence with a friend, Eng. Roberto Frangetto, who patiently introduced me to
all this fascinating area of Astronomy. At that time we wrote a couple of articles which can be found in [2].

The method described herein was developed in 1980 and since then some improvements have been made. The
basic idea, however, is due to Eng. Roberto Frangetto who regretfully passed away some years ago.

The main characteristic of our method is to avoid Kepler’s equation for mean anomaly. Kepler himself realized
how difficult it was to solve this equation, and Small [5] tells us as follow: “ but, with respect to the direct solution of
the problem from the mean anomaly given to find the true anomaly (Kepler) tells us that he found it impracticable,
and that he did not believe there was any geometrical or rigorous method of attaining it’. Everyone knows that
Kepler’s equation is time consuming when solved by an ordinary numerical iterative process.

In the present method some difficulties are overcome by the use of a transcendental equation based on the
relation z/a, that is derived from geometrical considerations and it has a determined interval of variation and is
less complicated to be solved. This unusual relation applied to orbit ephemerides calculation is solved very easily
by Bisection’s Method [3], which locates a zero of a continuous function in a given interval [a,b]. Such numerical
algorithm has been shown to be very robust and accurate in this specific application.

The intent of this paper is to show all important parts that concern to the derivation of each equation and
gives a procedure of solution for a numerical algorithm. In section 2 is presented some aspects of the geometrical
relations that concern to a typical visual binary system. In section 3 the orbital elements are introduced and
discussed. In section 4 the area relations involving the secondary position in each quadrant is formulated. In
section 5 Kepler’s second law is introduced as a basis to obtain a full relation involving the secondary position
at any ephemerides time. In section 6 a logical analysis is carried out to bring in the clear way of how to
define for any ephemerides time, in what quadrant the secondary is. In section 7 a numerical procedure to solve
the transcendental equation applying the Bisection Method is presented, and finally in section 8 examples of
application are given for some binary star systems in order to show the accuracy of the present method when
compared with other results.
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2 Geometrical Relations

Figure(1) shows the appearance of a true and projected binary star orbit in geometrical terms. In this figure
A is the primary and is located at the ellipse focus. B the companion or secondary and it orbits A. The line of
nodes is the observers meridian through A. The direction given by A-North defines the North direction. Define
position angle 6 as the angle measured Eastwards which gives the position for the line joining A to B. The
distance between A and B is defined by the length p that is called separation angle. If the elements of the binary
orbit are known, is then possible to calculate the position angle and separation. Hence is possible to predict the
apparent orbit of any binary star systems.
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Figure 1: Binary Star True and Projected orbit

Now let consider Figure(2), where the primary star A is located at the focus and its secondary B’ is left free
to describe an orbit which is shown by the ellipse.

e A = primary.

e B = secondary.

e B’ = projection of secondary in the orbital plane.
o II = periastron.

o II'= projection of periastron in the orbital plane.

North = the place of North direction as in Figure(1).
e () = projection of ascending node.

e [ = projection of descending node

LQ = line of nodes

e { = inclination of the orbit to the plane of the Sky

# = position angle for the secondary.



Figure 2: Apparent Orbit Elements

e () = position angle of the ascending node.
e w = longitude of the periastron.

Is need to define the longitudes which are reckoned from the ascending node @, and the true anomaly 9 which
is the angle between the secondary B’ and the periastron IT | see Figure(2).

3 Orbital Elemets

The orbit of a visual pair can be described if the seven so called orbital elements are known. This orbit is
related with the relative motion of the secondary B’ to the primary star A. The apparent orbit, or observed
orbit is in general not identical to the true orbit as shown in the Figure(2). This happens because, the true orbit
is projected into the celestial sphere. As an example, the major axis of the true orbit can be defined by the
maximum and minimum true distance between the components (termed apoastron and periastron, respectively).
In general they do not project onto the axis of the apparent orbit due to the angle which the orbit is inclined
against the plane of sky, angle ¢ [1].

A set of four elements that specify the true orbit and motion is described as follows:
. P = period of revolution in mean solar years.
. T = time of periastron passage, in years and fractions thereof.

a = major semi axis, expressed in seconds of arc.
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e = numerical eccentricity of the orbit.

The remaining three elements determine the projection of the true orbit onto the apparent orbit as shown in
Figure(2). These orbital elements which are all angles, depend on the orbit orientation relative to the observer.
The following definitions specify how these angles elements are defined.



i = inclination of the orbit plane; its value lies between 0° and 180°, direct motion of the companion (position
angle increasing) is indicated by 0° < i < 90°, retrograde motion (position angles decreasing) by 90° < ¢ < 180°,
and projected entirely onto the line of nodes if i = 90°.

Q = position of the nodal point which lies between 0° and 180°, it is defined by the line of intersection between
the projected orbit plane into the celestial sphere and the plane of sky. There are two nodes which differ by 180°.
The node where the orbital motion is directed away from the observer is called the ascending node. The other
one in which the orbital motion is directed towards the observer is called the descending node. €2 is measured
with respect to the North pole at a specified epoch; therefore, it is exposed to precession and will change slowly
with time.

w = angle in the plane of the orbit between the line of nodes and the major axis, measured from the nodal
point € to the point of periastron passage in the direction of companion’s motion. It ranges from 0° to 360°, and
is sometimes called the longitude of periastron. If e = 0 the periastron is undefined and w = 0° is then chosen so
that T gives the time of nodal passage.

The orbital elements are exposed to changes caused by precession, tangential and radial motion and some
aspects of these phenomena can be found in [1].

4 Ellipse Area Relation By Quadrants

Use to define the ellipse and some geometrical values as shown in Figure(3). Lets consider the coordinates
transformation by an axis translation from the system (z',y') located at centre of the circle M to (x,y) system
located at ellipse focus A.
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Figure 3: Ellipse geometrical relations

e E = eccentric anomaly.

e ) = true anomaly.



A = ellipse focus.

e (z,y) = cartesian coordinates system.

(z',y") = cartesian coordinates system.
e p = separation (distance between A and B').
b=+v1—e2 = minor axis.

® @ => major axis.

e e = eccentricity.

The geometrical relation that describes the z and y coordinates for any point on the ellipse curve, in clockwise
sense, is given by

a cos(E) —ae
b sin(E) (1)
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Applying Green-Riemann’s theorem for area, which is given by

1 oy Ox

The area for each quadrant can then be determined as:

1. first quadrant.

A:%b g—arcsing—e I—Z—z (3)
2. second quadrant. i i

A:%b g+arcsin§—e I—Z—z (4)
3. third quadrant. i i

A:%b 3g—arcsin§+e 1—2—2 (5)
4. fourth quadrant. i i

A:%b 3g+arcsin§+e I—Z—z (6)

5 Kepler’s Second Law

Kepler’s second law is needed in this study because is necessary to know the relation between the secondary
position star anywhere on the ellipse for any time interval, and also the position for the last periastron passage.

Kepler’s second law is stated as follow:

“The line joining the secondary to the primary sweeps out equal areas in equal times’. Then is possible to
write the following relation:



AA = KAT (7)

and if in P time units the area swept is 7 % a % b, then the constant K will be equal to 7 %2,

P
This equation can be rewritten in a more easy form as:
axb
AA=n AT (8)
and
AT =Ta-T (9)

where T'a — ephemerides time, must be > T and AT must be in same units as 7. Then, the relation of AT
for each quadrant can be derived as follow:

1. First quadrant.

1 _AT 2
ﬂ[i—Q?}:arcsin§+e I—Z— (10)
2. Second quadrant.
1 AT §
ﬂ'{i—Q?]:—arcsingﬁ—e 1—2— (11)
3. Third quadrant.
AT 3 oz a?
w{2?—§]_—arcsmg+e l_a_ (12)
4. Fourth quadrant.
AT 3 o z?
W[27—5}_arcsmg+e 1—; (13)

The above equations give the relation between AT and the secondary star position given by z/a. Such equations
are transcendental equations and the solution of those equations will be discussed in the following sections.

6 Quadrant Localization

To carry out the solution of the transcendental equations given in Equations(10) through (13) some relations
must be presented. It is necessary to know, for any AT the quadrant in which the secondary is, in order to solve
the correct equation for the respective quadrant. This can be done by substituting z = a, 0, —a and 0 respectively
in the Equations (10) through (13) which will give the following relations:

1. Periastron passage, © = a into Equation(10).
AT'1 =0 (14)

2. Passage from the first to the second quadrant, z = 0 into Equation(11).

_pli_e
ATg_PL 5 (15)



3. Passage from the second to the third quadrant, z = —a into Equation(12).
AT's = — (16)
4. Passage from the third to the fourth quadrant, z = 0 into Equation(13).

1 e
AT'y,=P—-P |- — 1
. [4 %] (17)

The following logical relations will help to determine in which quadrant the secondary is

AT < ATy = fristquadrant

AT < ATj = second quadrant
AT < AT, = thirdquadrant (18)
AT > AT, = fourthquadrant

AT = AT = periastron

7 Procedure For Ephemerides Calculation

For any given time T'a, the coordinates p and 8 or x and y can be calculated from the known orbital elements.
Some steps will be presented in order to guide the ephemerides calculation.

1. Determination of the quadrant where the secondary is, by one of the relations given in Equations(18).

2. Resolution of the transcendental equations (given by Equation(10) to Equation(13)) by iterative process,
which will give the numerical result for z/a for any given AT.

3. Projection of the real orbit to apparent orbit in the sky plane of sight.

The first step “1” is quite immediate. No difficulties are present, because it involves only a few easy numerical
operations. But the second step “2” demand more elaborate work, and will be treated as follow. The last item
will be treated following that.

For example, lets consider the Equation(10) which can be rewritten as:

F(A)ZWF—QE} —arcsin (A\) —ey/1 — A2 (19)

where A = z/a.

But, it is known and also it is easy to verify that A = z/a range from —1 to +1. Then, using the Bisection
Method [3] for calculation of the root of this equation, the following iterative algorithm can be written. It is
written using FORTRAN language, however can be easily rewritten in any other language.

Making use of F' function as defined before is possible to write:
F(\) =...Equation(19)

XL=0.0
XR= 1.0
DO 100 I=1,50



XM=(XL + XR)/2.0
IF (F(XM)*F (XL)) 20,30,40

20 XR=XM
GOTO 50

30 XR=XM

40 XL=XM

50 IF(XL - XR) 100,200,100
100  CONTINUE
200  WRITE(*,*) XM =========> RQOOTS, x/a

The above algorithm remains the same when applied to the other equations, except the function F'(\) must be
changed for the respective function for each quadrant considered and the intervals of existence of the roots for
F(N).

The last step “3” is the real calculation for the position angle and separation which is now shown. Is necessary
to determine the true anomaly which is given by the following expression in function of A = z/a

V(1 —eX?) — (e — \?)

tan(d¥) = + )

(20)

if AT belong to first or second quadrant, then use signal (+)
if AT belong to third or fourth quadrant, then use signal (—)
to ¥ in the first or second quadrant, then if ¥ if > 0° add 0°, if ¥ < 0° add 180o.
to 9 in the third or fourth quadrant, then if 1 > 0° add 180°, if ¥ < 0° add 360°.

Such conditions must be respected to eliminate singularities that can arise from the tangent function of the
true anomaly given by Equation(20).

The position angle can be calculated by [1]

tan(f — Q) = tan(¢ + w) cos(4) (21)
and finally the separation is given by

cos( + w)

p:a(l—e)\)m

if 8 > 360° subtract 360°.
if § < 0° add 360°.
if p < 0 change signal and add 180° in 6.

The mathematical relations for the position angle and separation can be found in [1] where much more infor-
mation is given. Some comments are necessaries about these expressions. Problems of numerical instability apart
of those from iterative process can also arise when some special situation eventually occurs, as for example:

e when z/a = e = tan(¥) = oo
e when 0 — Q = 90° = cos(f — Q) =0

These ideas must be kept in mind, and should be implemented in any program to avoid sudden stops or any
other problems which can lead the program blow up due to under or overflow errors.



8 Practical Applications and comments

In order to test the present method some ephemerides calculations for # and p are carried out for some binary
star systems. The orbital elements are given in the Tables 1, 2 as shown, and also can be found in [4], except for
the last case herein presented.

Name ADS P ahm | 6§ deg min | Vis. Mag.
v Vir 8630 60 12 39 —1 11 3.6 3.6
44 Boo 9494 1903 15 02 +47 51 6.0 6.8
36 Oph | 10417 | SH243 | 17 12 —26 32 5.3 5.3
a Scox 10074 XXXX 16 23 —26 13 var 5.5

Table 1: Orbital Elements part 1

Name a e i T P Q w Calculator
v Vir 3.6 877 148. 1836. 171. 29.3 250. ‘W. Wolf 1949
44 Boo 4.1 .360 84.5 2042. 246. 237. 228. ‘W.D.Heintz 1963

36 Oph 13.9 | .900 | 99.1 1643. 548. | 93.6 | 90.0 | P. Brosche 1960
o Scox 3.27 | .000 | 89.3 1888. 853. | 95.1 177. | J. Hopman 1957

Table 2: Orbital Elements part 2

ADS = number in R.G. Aitken’s double star catalogue.
¥ = Wilhelm Struve catalogue.

SH = Jones South, John Herschel catalogue.

*x = source from Doppelsterm Ephemeriden.

Right ascension a and Declination ¢ are for 1950.

The results of calculation are shown in the tables 3 to 6 as following

v Vir
J. Meeus Calculated

Year | p 0 p 0

1970 | 4.57 | 303.6 | 4.57 | 303.6
1975 | 4.26 | 300.7 | 4.26 | 300.7
1980 | 3.91 | 297.2 | 3.91 | 297.2
1985 3.51 293.1 3.51 293.1
1990 3.05 287.8 3.05 287.8
1995 2.51 280.4 2.51 280.4
2000 1.87 268.4 1.87 268.4

Table 3: Results for vy Vir

The results obtained for v Vir, 44 Boo and 36 Oph are in complete agreement with the ones presented by Jean
Meeus [4]. But, in case of @ Sco some discrepancy is noted. Actually, the orbital elements for this calculation
are not the same used by DE-Doppelsterm Ephemeriden catalogue. So, the calculation even considering this fact
shows quite good agreement. Also, such orbital elements are quite uncertain for this particular binary system.

9 Conclusion

A new approach for ephemerides calculation applied to visual binary stars has been presented. The numerical
Bisection Method for root search is shown to be a very good choice for the transcendental equation as derivated



44 Boo

J. Meeus Calculated
Year | p [4 p 0
1970 0.47 324.1 0.47 | 324.1
1975 XXXXX XXXXX 0.59 27.6
1980 0.90 28.8 0.90 28.8
1985 XXXXX XXXXX 1.25 38.8
1990 1.61 44.2 1.61 44.2
1995 XXXXX XXXXX 1.95 47.7
2000 2.26 50.2 2.26 50.2

Table 4: Results for 44 Boo

36 Oph
J. Meeus Calculated

Year | p 0 p [

1970 4.52 158.9 4.52 158.9
1975 XXXXX XXXXX 4.58 156.8
1980 4.64 154.7 4.64 154.7
1985 XXXXX XXXXX 4.70 152.7
1990 4.77 150.7 4.77 | 150.7
1995 XXXXX XXXXX 4.84 148.8
2000 4.91 147.0 4.91 147.0

Table 5: Results for 36 Oph

in the present method. As consequence a very robust and accurate method is designed which is able to predict
ephemerides for any given time for any visual binary systems. This approach can also be applied to any other
situation where involves orbital ephemerides prediction solving the presented transcendental equations instead of
Kepler’s equation for mean anomaly.
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a Sco
J. Meeus Calculated

Year | p [4 p 0

1970 XXXXX XXXXX 2.66 275.6
1975 | 2.65 275.2 2.59 | 275.6
1980 | 2.59 275.2 2.51 | 275.7
1985 | 2.52 275.6 2.43 | 275.7
1990 2.45 275.9 2.35 275.8
1995 2.37 276.1 2.27 275.8
2000 2.30 276.3 2.18 275.9

Table 6: Results for v Sco



