
LECTURE NOTES ON

INTERMEDIATE FLUID MECHANICS

Mihir Sen

Department of Aerospace and Mechanical Engineering

University of Notre Dame

Notre Dame, IN 46556

December 1996



Contents

1 Mathematical preliminaries 7

1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Cross product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Di�erential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.6 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Special theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Green's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Gauss's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Green's identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Stokes's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Gradient of a scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Divergence of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Curl of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Orthogonal curvilinear coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Cylindrical polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Spherical polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Index notation for Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Cartesian tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Symmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.2 Anti-symmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Complex numbers and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7.1 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7.2 Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7.3 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Flow, rate of deformation and stress 31

2.1 Flow lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.1 Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Pathlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Streaklines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



2.1.4 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Rate of deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Vortex lines and tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Eulerian and Lagrangian descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Material derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Di�erential equations of motion 39

3.1 Approaches to balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Di�erential element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Integral element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Elemental control volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Elemental control mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3 Integral control volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Integral control mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Linear momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Linear momentum equation in a non-inertial frame . . . . . . . . . . . . . . . . . . . 45

3.5 Angular momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Entropy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Additional relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.1 Equations of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.2 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Governing equations for special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9.1 Mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9.2 Linear momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 Molecular approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Special theorems 59

4.1 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Kelvin's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Vorticity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Helmholtz's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Bernoulli's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Steady 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2 Irrotational 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2



5 Ideal 
ow 65

5.1 Two-dimensional 
ows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Complex representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Summary of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Simple 
ows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.1 Uniform 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.2 Source or sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.3 Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.4 Sector with angle �=n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Combined 
ows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7.1 Doublet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7.2 Cylinder without circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7.3 Cylinder with circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Forces on a submerged body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8.1 Cylinder with circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Conformal transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9.1 Joukowski transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.10 Three-dimensional axisymmetric 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10.1 Cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10.2 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Incompressible viscous 
ow: exact solutions 79

6.1 Flow between 
at plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Alternative derivation of governing equations . . . . . . . . . . . . . . . . . . 79

6.1.2 Velocity and temperature pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.3 Couette 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.4 Poiseuille 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.5 Heat generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Flow between coaxial rotating cylinders . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Flow in a circular pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Isothermal wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Flow over a porous wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Natural convection between vertical 
at plates . . . . . . . . . . . . . . . . . . . . . 89

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Incompressible viscous 
ow: negligible inertia 93

7.1 Stokes's 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Uniform 
ow past a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Lubrication theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Flow in porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3



8 Incompressible viscous 
ow: 
at plate boundary layer 99

8.1 Prandtl boundary layer equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Blasius solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Momentum integral method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4 Vertical plate natural convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9 Hydrodynamic stability and turbulence 107

9.1 Hydrodynamic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10 Compressible 
ow in gases 111

10.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.1.1 Equations of state for real gases . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.1.2 Thermodynamics of perfect gases . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.2 One-dimensional steady 
ow equations . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.2.1 Di�erential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.2.2 Constant area without friction, heat or work transfer . . . . . . . . . . . . . . 114

10.3 Speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.4 Stagnation and critical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.5 Normal shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.6 Oblique shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.7 Flow in ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.7.1 Adiabatic, frictionless 
ow in variable area ducts . . . . . . . . . . . . . . . . 121
10.7.2 Frictionless 
ow with heat transfer in constant area ducts . . . . . . . . . . . 123
10.7.3 Adiabatic 
ow with friction in constant area ducts . . . . . . . . . . . . . . . 126

10.8 Multi-dimensional 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.8.1 Stagnation enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.8.2 Crocco's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.8.3 Irrotational 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.8.4 Small-perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.8.5 Subsonic 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.8.6 Supersonic 
ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11 Compressible e�ects in liquids and two-phase 
ow 137

11.1 Waterhammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.2 Two-phase systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.2.1 Homogeneous two-phase mixture . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.2.2 Two-phase 
ows in horizontal pipes . . . . . . . . . . . . . . . . . . . . . . . 140

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12 Numerical methods 143

12.1 Ordinary di�erential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
12.1.1 Fourth-order Runge-Kutta integration . . . . . . . . . . . . . . . . . . . . . . 143

12.2 Partial di�erential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.2.1 Primitive variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
12.2.2 Stream function-vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4



12.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
12.3.1 Finite di�erences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Governing equations 149

A.1 Integral form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Di�erential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.3 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.4 Cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.5 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B Use of MATLAB 153

B.1 Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 Plotting streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C Use of MAPLE 157

Bibliography 159

5



6



Chapter 1

Mathematical preliminaries

1.1 Vectors

This is a short introduction to the algebra and calculus of scalar, vector and tensor �elds. The
scalar, vector or tensor quantity is considered to be a function of position r in three-dimensional
space.

A scalar �eld is one in which a scalar �(r) varies with position. In most areas of mechanics,
including 
uid mechanics, it is also common to talk of vectors which are quantities which have both
magnitude as well as direction. Examples are velocities, accelerations and forces. Here we will
represent vectors using bold-faced letters such as a. Other commonly used notations are ~a, a, and
�!a . A unit vector n is sometimes indicated as n̂. If a vector f is a function of where it is evaluated,
i.e. f(r) where r is the position vector of the location, f is referred to as a vector �eld.

Vectors in three-dimensional physical space have three components. The Cartesian components
a1, a2 and a3 of the vector a can be indicated explicitly in one of various ways:

a =

2
4 a1
a2
a3

3
5

= [a1 a2 a3]
T

= (a1; a2; a3)

= a1e1 + a2e2 + a3e3

Unit vectors in the x1, x2, and x3 directions are e1, e2, and e3. It is also common to use x; y; z
for x1; x2; x3 and i,j,k for e1,e2,e3.

1.1.1 Dot product

The scalar (also dot or inner) product of a and b is written as a�b. and is de�ned by

a � b = a1b1 + a2b2 + a3b3 (1.1)

=

3X
i=1

aibi (1.2)
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Figure 1.1: Vector a with its Cartesian components a1; a2; a3.

The dot product is also equivalent to

a � b = ab cos � (1.3)

where a and b are the magnitudes of a and b respectively, and � is the angle between them. The
vectors a and b are orthogonal if a � b = 0.

1.1.2 Cross product

The cross (or vector) product c of a and b is written as c = a�b. The magnitude of c is ab sin �; it
is normal to both a and b in the direction given by the right-hand rule. The cross product is also
equivalent to

a� b =

������
e1 e2 e3
a1 a2 a3
b1 b2 b3

������ (1.4)

1.1.3 Line integrals

A line integral is of the form

I =

Z
C

f � dl (1.5)

where f is a vector �eld, and dl is an element of curve C.
In general the value of a line integral depends on the path. If, however, we take f = r�, where

� is a scalar �eld (see below for the gradient operator), then the integral I is independent of path.
f is then called a conservative �eld, and � is its potential.
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Figure 1.2: Arbitrary vectors a and b

1.1.4 Surface integrals

A surface integral is of the form

I =

Z
A

f � n dA (1.6)

where f is a vector �eld, A is an open or closed surface, dA is an element of this surface, and n is a
unit vector normal to this element.

1.1.5 Di�erential operators

Surface integrals can be used for coordinate-independent de�nitions of the gradient, divergence and
curl operators. Thus

r� = lim
V!0

1

V

Z
A

n� dA (1.7)

r � f = lim
V!0

1

V

Z
A

n � f dA (1.8)

r� f = lim
V!0

1

V

Z
A

n� f dA (1.9)

where �(r) is a scalar �eld, and f(r) is a vector �eld. V is the region enclosed within a closed surface
S, and n is the unit normal to an element of the surface dA. The operators r, r� and r� are to
be read as gradient of, divergence of, and curl of, respectively. The notation grad, div, and curl is
also used for these operators.

A related operator is the Laplacian, r2, where

r2 = r � r (1.10)

For a vector, the identity (1.21) below is often used. The Laplacian should not be confused with the
operator rr� which is also possible for a vector, but is a di�erent operator.

The directional derivative of �(r) along a unit vector a is

@�

@a
= r� � a (1.11)

where a is the coordinate in that direction. In the special case of a being any tangent to the surface
� = constant, we have @�=@a = 0. Thus r� is orthogonal to a and must be normal to the surface.
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1.1.6 Identities

a� (b� c) = b(a � c)� c(a � b) (1.12)

(a� b) � (c � d) = (a � c)(b � d)� (a � d)(b � c) (1.13)

r� (r�) = 0 (1.14)

r � (r� f) = 0 (1.15)

r � (�f) = �r � f +r� � f (1.16)

r� (�f) = �r� f +r� � f (1.17)

r � (f � g) = g � (r� f)� f � (r� g) (1.18)

r� (f � g) = (g � r)f � (f � r)g + f(r � g)� g(r � f) (1.19)

r(f � g) = (f � r)g + (g � r)f + f � (r� g) + g � (r� f) (1.20)

r� (r� f) = r(r � f)�r2f (1.21)

d

dt
(f � g) = f � dg

dt
+
df

dt
� g (1.22)

d

dt
(f � g) = f � dg

dt
+
df

dt
� g (1.23)

Example 1.1
Prove by expanding into components that

(a� b) � (c� d) = (a � c)(b � d)� (a � d)(b � c)

LHS =

�����
e1 e2 e3
a1 a2 a3
b1 b2 b3

����� �
�����
e1 e2 e3
c1 c2 c3
d1 d2 d3

�����
= (a2b3 � a3b2)(c2d3 � c3d2) + (a3b1 � a1b3)(c3d1 � c1d3) + (a1b2 � a2b1)(c1d2 � c2d1)
= a2b3c2d3 + a3b2c3d2 � a2b3c3d2 � a3b2c2d3 + a3b1c3d1 + a1b3c1d3

�a3b1c1d3 � a1b3c3d1 + a1b2c1d2 + a2b1c2d1 � a1b2c2d1 � a2b1c1d2

RHS = (a1c1 + a2c2 + a3c3)(b1d1 + b2d2 + b3d3)� (a1d1 + a2d2 + a3d3)(b1c1 + b2c2 + b3c3)

= (a1c1b1d1 + a1c1b2d2 + a1c1b3d3 + a2c2b1d1 + a2c2b2d2 + a2c2b3d3

+a3c3b1d1 + a3c3b2d2 + a3c3b3d3)

�(a1d1b1c1 + a1d1b2c2 + a1d1b3c3 + a2d2b1c1 + a2d2b2c2 + a2d2b3c3

+a3d3b1c1 + a3d3b2c2 + a3d3b3c3)

= LHS

1.2 Special theorems

1.2.1 Green's theorem

Let f = fx(x; y) i+ fy(x; y) j be a vector �eld, C a closed curve, and A the region enclosed by C, all
in the x-y plane. Then I

C

f � dl =
Z Z

A

(
@fy
@x

� @fx
@y

) dx dy (1.24)
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1.2.2 Gauss's theorem

Let S be a closed surface, and V the region enclosed within it, thenZ
A

f � n dA =

Z
V

r � f dV (1.25)

where dV an element of volume, dA is an element of the surface, and n is the outward unit normal
to it.

1.2.3 Green's identities

Applying Gauss's theorem to the vector f = �r , we getZ
A

�r � n dA =

Z
V

r � (�r ) dV

From this we get Green's �rst identityZ
A

�r � n dA =

Z
V

(�r2 +r� � r ) dV (1.26)

Interchanging � and  in the above and subtracting, we get Green's second identityZ
A

(�r �  r�) � n dA =

Z
V

(�r2 �  r2�) dV (1.27)

1.2.4 Stokes's theorem

Let S be an open surface, and the curve C its boundary. ThenZ
A

(r� f) � n dA =

I
C

f � dl (1.28)

where n is the unit vector normal to the element dA, and dl an element of curve C.

1.3 Cartesian coordinates

Consider the element of volume in Cartesian coordinates shown in Figure 1.3. The di�erential
operations in this coordinate system can be deduced from the de�nitions. The r operator is seen
to have the Cartesian de�nition

e1
@

@x1
+ e2

@

@x2
+ e3

@

@x3
(1.29)

1.3.1 Gradient of a scalar

We take the reference value of � to be at the center of the element P . At the center of the two faces
which are a distance � dx1=2 away from P in the x1-direction, it is (� � @�=@x1)dx1=2. Writing
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Figure 1.3: Element of volume in Cartesian coordinates

V = dx1 dx2 dx3, equation (1.7) gives

r� = lim
V!0

1

V

�
(�+

@�

@x1

dx1
2

)e1 dx2 dx3 � (�� @�

@x1

dx1
2

)e1 dx2 dx3

+ similar terms from the x2 and x3 faces

�

=
@�

@x1
e1 +

@�

@x2
e2 +

@�

@x3
e3 (1.30)

1.3.2 Divergence of a vector

Equation (1.8) becomes

r � f = lim
V!0

1

V

�
(f1 +

@f1
@x1

dx1
2

) dx2 dx3 � (f1 � @f1
@x1

dx1
2

) dx2 dx3

+ similar terms from the x2 and x3 faces

�

=
@f1
@x1

+
@f2
@x2

+
@f3
@x3

(1.31)

1.3.3 Curl of a vector

From equation (1.9), we have

r� f = lim
V!0

1

V

�
(f2 +

@f2
@x1

dx1
2

)e3 dx2 dx3 � (f3 +
@f3
@x1

dx1
2

)e2 dx2 dx3
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�(f2 � @f2
@x1

dx1
2

)e3 dx2 dx3 + (f3 � @f3
@x1

dx1
2

)e2 dx2 dx3

+ similar terms from the x2 and x3 faces

�

=

������
e1 e2 e3
@
@x1

@
@x2

@
@x3

f1 f2 f3

������ (1.32)

1.3.4 Laplacian

The Laplacian of a scalar is

r2� =
@2�

@x21
+
@2�

@x22
+
@2�

@x23
(1.33)

and that of a vector

r2f =
@2f

@x21
+
@2f

@x22
+
@2f

@x23
(1.34)

is similar.

1.4 Orthogonal curvilinear coordinates

Let the orthogonal curvilinear coordinates of a point be (q1; q2; q3), where qi = qi(x1; x2; x3), the xis
being the Cartesian coordinates of the point. We can de�ne scale factors h1; h2; h3 such that

hi =

s�
@x1
@qi

�2

+

�
@x2
@qi

�2

+

�
@x3
@qi

�2

(1.35)

The di�erential operators can be written using these scale factors.

Let �(r) be a scalar �eld and f(r) a vector �eld, both being functions of the position vector r. It
turns out that:

r� =
1

h1

@�

@q1
eq1 +

1

h2

@�

@q2
eq2 +

1

h3

@�

@q3
eq3 (1.36)

r � f =
1

h1h2h3

"
@

@q1
(f1h2h3) +

@

@q2
(f2h3h1) +

@

@q3
(f3h1h2)

#
(1.37)

r� f =
1

h1h2h3

������
h1eq1 h2eq2 h3eq3
@
@q1

@
@q2

@
@q3

f1h1 f2h2 f3h3

������ (1.38)

r2� =
1

h1h2h3

"
@

@q1

 
h2h3
h1

@�

@q1

!
+

@

@q2

 
h3h1
h2

@�

@q2

!
+

@

@q3

 
h1h2
h3

@�

@q3

!#
(1.39)

where f1; f2; f3 are the components of f in the q1; q2; q3 directions respectively, and eq1 ; eq2 ; eq3 are
the unit vectors in these directions.
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Figure 1.4: Cylindrical polar coordinates (R; �; z) of point P .

1.4.1 Cylindrical polar coordinates

Coordinates:

q1 = R

q2 = �

q3 = z

Relation to Cartesian coordinates:

x1 = R cos �

x2 = R sin �

x3 = z

Scale factors:

h1 = 1

h2 = R

h3 = 1

1.4.2 Spherical polar coordinates

Coordinates:

q1 = r

q2 = �

q3 = '
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Figure 1.5: Spherical polar coordinates (r; �; ') of point P .

Relation to Cartesian coordinates:

x1 = r sin � cos'

x2 = r sin � sin'

x3 = r cos �

Scale factors:

h1 = 1

h2 = r

h3 = r sin �

Example 1.2
Find expressions for the gradient, divergence, and curl in cylindrical coordinates (r; �; z) where

x1 = r cos �

x2 = r sin �

x3 = z

The 1,2 and 3 directions are associated with r, �, and z, respectively. From equation (1.35) the scale factors are

hr =

r
(
@x1

@r
)2 + (

@x2

@r
)2 + (

@x3

@r
)2

=
p

cos2 � + sin2 �

= 1

h� =

r
(
@x1

@�
)2 + (

@x2

@�
)2 + (

@x3

@�
)2
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=
p
r2 sin2 � + r2 cos2 �

= r

hz =

r
(
@x1

@z
)2 + (

@x2

@z
)2 + (

@x3

@z
)2

= 1

so that

r� =
@�

@r
er +

1

r

@�

@�
e� +

@�

@z
ez

r � f =
1

r
[
@

@r
(frr) +

@

@�
(f�) +

@

@z
(fzr)]

r� f =
1

r

�����
er re� ez
@
@r

@
@�

@
@z

fr f�r fz

�����

1.5 Index notation for Cartesian coordinates

Some of the vector relations can be written in a compact form by using the index notation. Let
x1; x2; x3 represent the three coordinate directions and e1; e2; e3 the unit vectors in those directions.
Then a vector a may be written as

a =

3X
i=1

aiei (1.40)

where a1, a2, and a3 are the three Cartesian components of a. According to the Einstein summation
convention, repetition of indices indicates summation, so that the � symbol can be left out. One
has to take care that an index does not appear more than twice in a given product. Thus we can
simply write

a = aiei (1.41)

It is also common to write a = ai, the single free index on the right side indicating that an ei is
assumed.

Two additional symbols are needed for later use. They are the Kronecker delta

Æij =

�
0 if i 6= j
1 if i = j

(1.42)

and the substitution symbol (or Levi-Civita density)

�ijk =

8<
:

1 if indices are in cyclical order 1,2,3,1,2,� � �
�1 if indices are not in cyclical order
0 if two or more indices are the same

(1.43)

The identity

�ijk�lmn = ÆilÆjmÆkn + ÆimÆjnÆkl + ÆinÆjlÆkm � ÆilÆjnÆkm � ÆimÆjlÆkn � ÆinÆjmÆkl (1.44)
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relates the two. The following identities are also easily shown:

Æii = 3 (1.45)

Æij = Æji (1.46)

ÆijÆjk = Æik (1.47)

�ijk�lmk = ÆilÆjm � ÆimÆjl (1.48)

�ijk�ljk = 2Æil (1.49)

�ijk�ijk = 6 (1.50)

In this notation the scalar and vectors products can be written as

a � b = aibi (1.51)

and
a� b = �ijkaibjek (1.52)

Furthermore

r� =
@�

@xi
ei (1.53)

r � f =
@fi
@xi

(1.54)

r� f = �ijk
@fj
@xi

ek (1.55)

r2� =
@2�

@xi@xi
(1.56)

r2fj =
@2fj
@xi@xi

(1.57)

Gauss's theorem, equation (1.25), can be written asZ
A

fini dA =

Z
V

@fi
@xi

dV (1.58)

The index notation sometimes can greatly simplify the demonstration of vector relations, as in
the example below.

Example 1.3
Prove using the index notation that

(a� b) � (c� d) = (a � c)(b � d)� (a � d)(b � c)

LHS = (�ijkaibj)(�lmkcldm)

= (ÆilÆjm � ÆimÆjl)aibjcldm
= albmcldm � amblcldm
= RHS
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Figure 1.6: Cartesian coordinate systems S and S 0

1.6 Cartesian tensors

Consider the two right-handed Cartesian coordinate systems, S with coordinates x1; x2; x3 and S0

with x01; x
0
2; x

0
3, shown in Figure 1.6. A scalar � at the common origin O has the same value for either

of the two systems. But now let us look at a vector a represented by the arrow. It has components
a1; a2; a3 in S and a01; a

0
2; a

0
3 in S

0. It is easy to show that the components are related by

aj = Aija
0
i (1.59)

where Aij = cos(x0i; xj) is a transformation array. We may adopt the de�nition that a quantity with
components that are transformed in this manner is a vector. The inverse transformation is

a0j = Ajiai (1.60)

The transformation array Aij satis�es

AkiAkj = Æij (1.61)

This may shown from xi = Akix
0
k and x0k = Akjxj , di�erentiating the �rst with respect to xj and

then substituting the second. The matrix with elements Aij is orthogonal.
A quantity T with components Tij is called a tensor of second order if the components transform

under the relations

Tij = AkiAljT
0
kl (1.62)

T 0ij = AikAjlTkl (1.63)

Matrices are often used to represent vectors and tensors; a vector may be represented by a 3� 1
column vector, and a tensor by a 3� 3 matrix. For example the Kronecker delta, Æij , is the identity
matrix I. If a matrix A is Aij , its transpose A

T is Aji.
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The tensor product ab of two vectors a and b is the tensor aibj . The multiplication Aa of a
3 � 3 matrix A and a 3 � 1 column vector a is a vector that is represented in index notation as
Aijaj . Similerly the product AB of two 3� 3 matrices A and B is AijBjk.

Equation (1.61) is equivalent to
ATA = I (1.64)

which means that A is an orthogonal matrix with

A�1 = A (1.65)

where A�1 is the inverse of A. Thus
AAT = I (1.66)

which can also be written as
AikAjk = Æij (1.67)

The transformation equations can also be written as

a = ATa0 (1.68)

a0 = Aa (1.69)

T = ATT0A (1.70)

T0 = ATAT (1.71)

Example 1.4
Consider two Cartesian coordinate systems: S with unit vectors (i; j;k), and S0 with (i0; j0;k0), where i0 = i,

j0 = (j� k)=
p
2, k0 = (j+ k)=

p
2. The tensor T has the following components in S: 

1 0 0
0 �1 0
0 0 3

!

Find its components in S0.
The transformation matrix is

A =

 
1 0 0

0 1=
p
2 �1=p2

0 1=
p
2 1=

p
2

!

From equation (1.71) we get,

T0 =

 
1 0 0
0 1 �2
0 �2 1

!

Tensors of higher order may be similarly de�ned. The components of a tensor of order three,
Sijk , transform as

Sijk = AliAmjAnkS
0
lmn (1.72)

and so on.
In summary, the order of a tensor is de�ned by the transformation rule of its components if the

coordinate system is rotated.
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Transformation Quantity

� = � � is a tensor of order zero, or scalar
a0i = Aijaj ai are components of a tensor of order one, or vector)

T 0ij = AikAjlTkl Tij are components of a tensor of order two

S0ijk = AilAjmAknSlmn Sijk are components of a tensor of order three

If there is no risk of confusion, we will refer to a tensor of order two as simply a tensor. We may
also say that fi is a vector and Tij is a tensor, instead of being components of a vector and a tensor.

It can be shown that a tensor of order two T is an operator which transforms a vector a into
another b. Thus

bi = Tijaj (1.73)

where ai and bi are the components of a and b respectively.

Example 1.5
If Tij and aj are the components of a second order tensor and vector, respectively, show that bi = Tijaj

are the components of a vector.
In the system S0, the components are

b0i = T 0ija
0
j

=
�
AikAjlTkl

��
Ajmfm

�
= AikÆlmTklam

= AikTklal

= Aikbk

proving that gi are the components of a vector.

Similarly it can be shown that Tij = aibj are the components of a tensor of order two if ai and
bj are the components of vectors. This product of vectors a and b is called a dyad and written as a

b. A linear combination of dyads,
Pk
n=1 Cn an bn is a dyadic.

Notice that aibi is a scalar while aibj is a tensor. The process of equating indices is called a
contraction, also indicated by a dot, so that the contraction of ab is a � b. For two second order
tensors, a single contractionR�S = RijSjk will give a tensor and a double contractionR : S = RijSji
a scalar.

The gradient operator increases the order of the tensor. Thus, for example, the gradient of
a vector fi is the second-order tensor @fi=@xj . The divergence operator decreases the order of a
tensor (for this reason it cannot be applied to a scalar). The divergence of a tensor Tij is the vector
@Tij=@xi. The tensor version of Gauss's theorem, equation (1.58), isZ

A

Tijni dA =

Z
V

@Tij
@xi

dV (1.74)

An isotropic tensor is one that is invariant to rotation of the coordinate system.

Example 1.6
Show that the tensor represented by Æij is isotropic.
The tensor has components Æij in S. In S0, the components of this tensor will be AikAjlÆkl = AilAjl = Æij .

Thus this tensor has the same form in the rotated coordinate system.
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A symmetric tensor is one for which Tij = Tji, while for an anti-symmetric tensor Tij = �Tji.
Since

Tij =
1

2
(Tij + Tji)| {z }
symmetric

+
1

2
(Tij � Tji)| {z }

anti�symmetric

(1.75)

any tensor can be written as the sum of two tensors, one symmetric and the other anti-symmetric.

1.6.1 Symmetric tensors

For a any tensor or matrix T an eigenvalue � is obtained from the equation

Tz = �z (1.76)

where z is a non-zero vector called eigenvector, and � is an eigenvalue. There can be more than
one eigenvalue and eigenvector for a given tensor. For a symmetric tensor the eigenvalues are real
numbers. Taking z = [a b c]T , the scalar equations corresponding to the vector equation above are

(T11 � �)a+ T12b+ T13c = 0

T21a+ (T22 � �)b+ T23c = 0 (1.77)

T31a+ T32b+ (T33 � �)c = 0

For a nontrivial solution for a, b, and c, we must have������
T11 � � T12 T13
T21 T22 � � T23
T31 T32 T33 � �

������ = 0 (1.78)

The cubic equation in � thus obtained is called a secular equation, and its three solutions give the
eigenvalues �1; �2; �3. For each �i equations (1.77) provide a nonunique eigenvector zi.

The three eigenvectors z1; z2; z3 form an orthogonal coordinate system that is rotated with
respect to the original. With unit vectors along these directions (called principal axes), the original
tensor becomes diagonal 2

4 �1 0 0
0 �2 0
0 0 �3

3
5 (1.79)

There is thus considerable simpli�cation obtained as a result of using principal axes as coordinate
directions. For instance, the equation

Tijxixj = 1 (1.80)

describing a quadric surface, is really equivalent to

T11x
2
1 + T12x1x2 + T13x1x3 + T21x2x1 + T22x

2
2 + T23x2x3 + T31x3x1 + T32x3x2 + T33x

2
3 = 1 (1.81)

with a number of cross terms xixj (i 6= j). For a symmetric Tij , one can change to new coordinates
along its principal directions to get an equation for the surface of the form

�1x
2
1 + �2x

2
2 + �3x

2
3 = 1 (1.82)
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which can be interpreted geometrically as an ellipsoid, a paraboloid, or a hyperboloid.

Example 1.7
Find the eigenvalues and eigenvectors of "

1 0 0
0 1 2
0 2 1

#

Eigenvalues are solutions of the equation�����
1� � 0 0
0 1� � 2
0 2 1� �

����� = 0

which gives

(1 � �)(�3 + �)(1 + �) = 0

so that �1 = �1; �2 = 1; �3 = 3.

Equations (1.77) become

(1� �i)ai = 0

(1 � �i)bi + 2ci = 0

2bi + (1� �i)ci = 0

For �1 = �1: 2a1 = 0; 2b1 + 2c1 = 0; 2b1 + 2c1 = 0. This gives a1 = 0; b1 = �c1. Choose b1 = 1
arbitrarily. The eigenvector is e2 � e3. To make it a unit vector, and remove some arbitrariness, we divide by
its magnitude

p
2. So the unit eigenvector corresponding to this eigenvalue is (e2 � e3)=

p
2.

For �2 = 1: 2c2 = 0; 2b2 = 0. This gives b2 = c2 = 0, while a1 is arbitrary. Choose a1 = 1 to make it a
unit vector. Then the eigenvector corresponding to this eigenvalue is e1.

For �3 = 3: �2a3 = 0; �2b3 + 2c3 = 0; 2b3 � 2c3 = 0. This gives a3 = 0; b3 = c3. Choose b3 = 1. Then
the eigenvector is e2 + e3. To make it a unit vector, we divide by its magnitude

p
2. So the unit eigenvector

corresponding to this eigenvalue is (e2 + e3)=
p
2).

Vectors in directions opposite to the ones chosen here would also be unit eigenvectors.

1.6.2 Anti-symmetric tensors

The diagonal terms of an anti-symmetric tensor Tij are zero and it has only three independent terms
as shown:

T =

2
4 0 �T21 T13

T21 0 �T32
�T13 T32 0

3
5 (1.83)

The three terms can be made to constitute a vector. Thus, we can let

a = T32e1 + T13e2 + T21e3 (1.84)

This vector has the property that

T b = a� b (1.85)

where b is any vector.
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Figure 1.7: Complex number z = x+ iy in Argand plane.

1.7 Complex numbers and functions

A complex number z has the form

z = x+ iy (1.86)

where u and v are real, and i =
p�1. x is the real part of z and y is its imaginary part. Keeping the

de�nition of i in mind, these numbers can be added, subtracted, multiplied, and divided as usual.
Two complex numbers are equal only if their real parts are equal and the imaginary parts are also
equal.

A complex number can be geometrically represented in a plane (called the Argand plane) as
shown in Fig. 1.7. The real part of z is plotted on the abscissa and the imaginary part on the
ordinate.

The modulus or absolute value of the complex number is

jzj = +
p
x2 + y2 (1.87)

which is the distance r in the �gure.
The conjugate of this number, �z, is de�ned by

�z = x� iy (1.88)

so that

jzj2 = z�z (1.89)

1.7.1 Analytic functions

A real function f(x) is said to be analytic at x = x0 if f and all its derivatives exist at this point.
An analytic function can be expanded in a Taylor series in the neighborhood of the point at which
it is analytic.

A function of a complex variable, or complex function for short, de�ned in some domain is of
the form f(z) where z is a complex number. A derivative of a complex function, f(z), at z = z0 is
de�ned as

df

dz
= lim
z!z0

f(z)� f(z0)

z � z0
(1.90)
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In contrast to the case of real functions, in this limiting process the approach z ! z0 can be in
di�erent ways and the derivative exists only if all of these give the same value. A complex function
is analytic at a point if its derivative exists at that point.

Let us suppose that the function f(z) is analytic at z = z0. Writing z = x + iy, we have f as a
complex function of the real variables x and y. Thus

f 0 =
df

dz
(1.91)

=
df

d(x + iy)
(1.92)

As a special case the approach z ! z0 can be by changing x only, which gives

f 0 =
@f

@x
(1.93)

On the other hand we can approach z0 by changing y only, giving

f 0 = �i@f
@y

(1.94)

If we separate f into its real and imaginary parts

f = u+ iv (1.95)

we get from the above that

@u

@x
=

@v

@y
(1.96)

@u

@y
= �@v

@x
(1.97)

These are the Cauchy-Riemann equations. If the partial derivatives exist, these are necessary and
suÆcient conditions for a complex function to be analytic at a point. For a complex function it can
be shown that if f 0(z) exists, then so do all other derivatives.

From the above relations we can show that

@2u

@x2
+
@2u

@y2
= 0 (1.98)

@2v

@x2
+
@2v

@y2
= 0 (1.99)

The real and imaginary parts of a complex function are harmonic, i.e. they satisfy Laplace's equation.
It can happen that a function is analytic in a neighborhood of point z0, but not at z0 itself. A

singular point is one at which the function is not analytic.

1.7.2 Polar form

A complex number may also be written in polar form using Euler's formula

z = rei� (1.100)
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from which we can see that
�z = re�i� (1.101)

From Fig. 1.7 the relation between the Cartesian and polar forms is

x = r cos � (1.102)

y = r sin � (1.103)

Thus, we have Euler's relation
ei� = cos � + i sin � (1.104)

and de Moivre's theorem
ein� = cosn� + i sinn� (1.105)

Examples of use of the polar form include the following:
(a) Write ei(A+B) = eiAeiB and expand both sides. The real and imaginary parts give the trigono-
metric relations for cos(A+B) and sin(A+B).
(b) The relation zn = rnein� can be used to �nd the roots of complex numbers.
(c) The real and imaginary parts of the logarithm of a complex number may be found by using
ln z = ln r + i�.

To �nd the Cauchy-Riemann conditions in polar coordinates, we write the derivative of a complex
function as

f 0 =
df

d(rei�)
(1.106)

Moving in the radial direction, this becomes

f 0 = e�i�
@f

@r

and in the circumferential direction it is

f 0 = � ie
�i�

r

@f

@�

For a complex function of the form f = u+ iv, we get

@u

@r
=

1

r

@v

@�
(1.107)

1

r

@u

@�
= �@v

@r
(1.108)

1.7.3 Integrals

If the function f(z) is analytic inside and on a closed contour C, then according to Cauchy-Goursat's
theorem Z

C

f(z) dz = 0 (1.109)

Furthermore, by Cauchy's theorem

dnf

dzn
(z0) =

n!

2�i

Z
C

f(z)

(z � z0)n+1
dz for n � 1 (1.110)

and

f(z0) =
1

2�i

Z
C

f(z)

(z � z0)
dz (1.111)
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Problems

1. Using the identity

�ijk�lmn = ÆilÆjmÆkn + ÆimÆjnÆkl + ÆinÆjlÆkm � ÆilÆjnÆkm � ÆimÆjlÆkn � ÆinÆjmÆkl

derive

�ijk�lmk = ÆilÆjm � ÆimÆjl

�ijk�ljk = 2Æil

�ijk�ijk = 6

2. Prove by expanding into components that

(a) a� (b� c) = b(a � c)� c(a � b)
(b) r�r� = 0

3. Using a� (b� c) = b(a � c) � c(a � b) show that �ijk�lmk = ÆilÆjm � ÆimÆjl.

4. Show that
r� (r� f) = r (r � f)�r2f

5. Find the principal axes of the symmetric tensor"
2 4 �6
4 2 �6
�6 �6 �15

#

Con�rm using MAPLE.

6. Show that equation (1.85) holds for any vector b, where T and a are given by equations (1.83) and (1.84)
respectively.

7. Write the expressions for r�, r � f , and r � f in (a) cylindrical polar coordinates, and (b) spherical polar
coordinates.

8. Find the principal axes of the tensor "
3 0 0
0 3 4
0 4 3

#

9. Apply Stokes's theorem to the plane vector �eld f(x; y) = fx(x; y)i + fy(x; y)j and a closed curve enclosing a

plane region. What is the result called? Use this result to �nd
H
C
f � dl, where f = �yi+xj and the integration

is counterclockwise along the sides C of the parallelogram with corners at (0,0), (1,0), (2,1), and (1,1).

10. Two-dimensional bipolar coordinates (�; �) are de�ned by

x =
� sinh �

cosh � � cos �

y =
� sin �

cosh � � cos �

Find expressions for the gradient and divergence operators. Also computer generate some constant � and
constant � lines.

11. Using the index notation, show that

r� (f � g) = (g � r)f � (f � r)g + f(r � g)� g(r � f)
where f and g are vector �elds.

12. Consider two Cartesian coordinate systems: S with unit vectors (i; j;k), and S0 with (i0; j0;k0), where i0 = i,
j0 = (j� k)=

p
2, k0 = (j+ k)=

p
2. The tensor T has the following components in S: 

1 0 0
0 �1 0
0 0 3

!

Find its components in S0.
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13. Find the matrix A that operates on any vector of unit length in the x-y plane and turns it through an angle �
around the z-axis without changing its length.

14. Prove the following identities using index notation:

(a) (a� b) � c = a � (b� c)

(b) a� (b� c) = b(a � c)� c(a � b)
(c) (a� b) � (c� d) = (a� b)� c � d

15. The position of a point is given by R = ia cos!t + jb sin!t. Show that the path of the point is an ellipse.
Find its velocity V and show that R�V = constant. Show also that the acceleration of the point is directed
towards the origin and its magnitude is proportional to the distance from the origin.

16. Use Green's theorem to calculate
H
C
f � dl, where f = x2i+ 2xyj, and C is the counterclockwise path around a

rectangle with vertices at (0,0), (6,0), (0,4) and (6,4).

17. Derive an expression for the divergence of a vector in orthogonal paraboloidal coordinates

x = uv cos �

y = uv sin �

z =
1

2
(u2 � v2)

Determine the scale factors. Find r�, r � f , r� f , and r2� in this coordinate system.

18. Derive an expression for the gradient, divergence, curl and Laplacian operators in orthogonal parabolic cylin-
drical coordinates (u; v; w) where

x = uv

y =
1

2
(u2 � v2)

z = w

where 0 � u <1, �1 < v <1, and �1 < w <1.

19. Orthogonal elliptic cylindrical coordinates (u; v; z) are related to Cartesian coordinates (x; y; z) by

x = a cosh u cos v

y = a sinhu sin v

z = z

where 0 � u <1, 0 � v < 2� and �1 < z <1: Determine r�; r � f ; r� f and r2� in this system , where
� is a scalar �eld and f is a vector �eld.

20. Determine the unit vector normal to the surface x3 � xyz + z3 = 1 at the point (1,1,1).

21. Show using indicial notation that

r�r� = = 0

r � r � f = 0

r(f � g) = (f � r)g + (g � r)f + f � (r� g) + g� (r� f)

1

2
r(f � f) = (f � r)f + f � (r� f)

r � (f � g) = g � r � f � f � r � g

r� (r� f) = r(r � f)�r2f

r� (f � g) = (g � r)f � (f � r)g + f(r � g)� g(r � f)

22. Show that the Laplacian operator @2=@xi@xi has the same form in S and S0.

23. Show the identities (1.45)-(1.50).

24. For potential 
ow the velocity �eld is given by u = r�, where � is the velocity potential. Consider the velocity
potential

�(x; y; z) = x2 + y2 � 2z2

(a) Show that it satis�es Laplace's equation r2� = 0.

27



(b) Find the velocity �eld u.

(c) Show that u has zero divergence.

25. Show that the following scalar �eld in cylindrical coordinates (which represents the stream function for 
ow
around cylinders)

 = UR

�
1� a2

R2

�
sin �

where U and a are constants, satis�es Laplace's equation.

26. Show that the following scalar �eld in spherical coordinates (which represents the velocity potential for 
ow
around spheres)

� = Ur

�
1� 1

2

a3

r3

�
cos �

where U and a are constants, satis�es Laplace's equation.

27. Show that the Cartesian vector �eld

u = (y + z)i+ (z + x)j+ (x+ y)k

is divergence free and irrotational. Also �nd its gradient.

28. Find expressions for the gradient, divergence and curl operators in spherical coordinates.

29. Find expressions for the gradient, divergence and curl operators in cylindrical coordinates.

30. Show that the sum of two analytic functions is also analytic.

31. Determine the integral Z
C

z2 dz

where C is the path from (0,0) to (1,1) in the three di�erent ways:

(a) straight lines from (0,0) to (1,0) to (1,1)

(b) straight line from (0,0) to (1,1)

(c) straight lines from (0,0) to (0,1) to (1,1).

32. If z and z0 are the same complex number but in the unprimed and primed coordinate system, respectively,
show that

z = z0ei�

33. Prove Cauchy-Goursat's theorem1.

34. Show that

�(r; �) = a0 + a1 ln r + a2� + a3� ln r +

1X
n=1

h�
Anr

n +
Bn

rn

�
cosn� +

�
Cnr

n +
Dn

rn

�
sinn�

i
in polar coordinates is a harmonic function.

1Consult your favorite book on complex variable theory.
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Chapter 2

Flow, rate of deformation and

stress

2.1 Flow lines

2.1.1 Streamlines

These are lines the tangents to which are in the direction of the velocity vector. Thus, in Cartesian
coordinates

dx

u
=
dy

v
=
dz

w
(2.1)

is the equation of the streamlines, where u = uex + vey + wez.

2.1.2 Pathlines

These are lines traced out by the 
uid particles. Thus

dx

dt
= u (2.2)

dy

dt
= v (2.3)

dz

dt
= w (2.4)

where (x; y; z) is the position of a 
uid particle at time t.

2.1.3 Streaklines

These are lines traced out by particles that have all passed through a given point at some previous
time.

2.1.4 Timeline

This is the locus of a set of particles that initially de�nes a line.
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Example 2.1
For a 
ow with velocity �eld u = U cos!ti + U sin!tj, �nd (a) the streamline passing through the origin

at time t = � , (b) pathline of particle that is at the origin when t = 0, and (c) streakline at time t = � for a
source at the origin.
(a) The velocity �eld at time t = � is u = U cos!� i+U sin!� j. The equation for the streamline is a solution of

dx

U cos!�
=

dy

U sin!�

This gives
Ux sin!t = Uy cos!t+ a

Since x = 0 for y = 0, we get a = 0. Thus the required streamline is

y = x tan!�

(b) The pathline is a solution of

dx

dt
= U cos!t

dy

dt
= U sin!t

Thus

x =
U

!
sin!t+ x0

y = �U
!
cos!t + y0

Since the particle is at (0,0) when t = 0, we have x0 = 0, y0 = U=!. The parametric form of the pathline is

x =
U

!
sin!t

y =
U

!
(1� cos!t)

Eliminating t, we get the equation
!2

U2
x2 +

�
!

U
y � 1

�2
= 1

This is a circle of radius U=! and center (0; U=!).
(c) The particle position at time t = � is given by

x =
U

!
sin!� + x0

y = �U
!
cos!� + y0

Since the particles that compose the streakline have been at the origin at a time t = s (say), we have

0 =
U

!
sin!s+ x0

0 = �U
!
cos!s+ y0

Using these values of x0 and y0, we get the parametric equation of the streakline at time t = �

x =
U

!
(sin!� � sin!s)

y =
U

!
(cos!� + cos!s)

Eliminating s, we have �
!

U
x� sin!�

�2
+

�
!

U
y + cos!�

�2
= 1

which is a circle of radius U
!

and center (U
!
sin!�;�U

!
cos!�).
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Figure 2.1: Deformation of 
uid material

2.2 Rate of deformation

The gradient of the velocity vector is the deformation rate tensor D, where its components are

Dij =
@ui
@xj

(2.5)

We can split it up into the sum of an antisymmetric and a symmetric tensor, so that

Dij = 
ij + "ij (2.6)

where


ij =
1

2

 
@ui
@xj

� @uj
@xi

!
(2.7)

"ij =
1

2

 
@ui
@xj

+
@uj
@xi

!
(2.8)


ij and "ij are called the rotation rate and shear rate tensors respectively.

The vector corresponding to twice the anti-symmetric tensor 
ij is the vorticity given by


 = r� u (2.9)

A velocity �eld for which ! is zero everywhere is said to be irrotational. Physically, the vorticity
vector ! is twice the rotation rate of in�nitesimal 
uid elements and the symmetric shear rate tensor
"ij represents the rate at which these 
uid elements are being deformed. This is shown below.

33



Consider the 
uid in a material rectangle in Figure 2.1 of size dx1 � dx2 moving with the 
ow.
After an interval dt the points A, B, C, and D move to A0, B0, C 0, and D0. The instantaneous rates
of rotation of sides AB and AD are

d�

dt
=

@u2
@x1

(2.10)

d�

dt
=

@u1
@x2

(2.11)

Thus we have

Rotation rate =
1

2

 
@u2
@x1

� @u1
@x2

!
(2.12)

Shear rate =
1

2

 
@u2
@x1

+
@u1
@x2

!
(2.13)

The shear rate in all three coordinate planes are the o�-diagonal components of the shear rate
tensor 1

2 (@ui=@xj + @uj=@xi). The diagonal components of this tensor are the extensional strain
rates @u1=@x1, @u2=@x2, and @u3=@x3.

2.3 Vortex lines and tubes

Tangents to vortex lines are in the direction of the vorticity vector. Thus

dx

!x
=
dy

!y
=
dz

!z
(2.14)

is the equation of a vortex line, where

! = !xex + !yey + !zez (2.15)

2.4 Eulerian and Lagrangian descriptions

In the Eulerian approach, we describe the 
ow �eld by its properties as a function of space and
time. In the Lagrangian approach, however, we follow a 
uid \particle" and observe the change
of properties with time as it is swept through the 
ow. Newton's laws are usually formulated in
a Lagrangian sense, while the 
uid equations as well as measurements are easier handled with the
Eulerian description. Thus some relation between the two descriptions is necessary.

2.4.1 Material derivative

In this, as in other sections in this chapter, we will derive the appropriate expressions in Cartesian
coordinates, and then generalize to other coordinate systems. Consider a property �(x1; x2; x3; t),
scalar, vector or tensor, which is function of position expressed in Cartesian coordinates x1; x2; x3
and of time t. If we follow a 
uid particle, the change in this property after a time dt will be d�,
where

d� =
@�

@t
dt+

@�

@x1
dx1 +

@�

@x2
dx2 +

@�

@x3
dx3 (2.16)
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where dx1; dx2; dx3 are the components of the displacement of the particle in the coordinate
directions. Dividing by dt, we have

d�

dt
=
@�

@t
+ u1

@�

@x1
+ u2

@�

@x2
+ u3

@�

@x3
(2.17)

where

dx1
dt

= u1 (2.18)

dx2
dt

= u2 (2.19)

dx3
dt

= u3 (2.20)

Frequently, the symbolD=Dt is used instead of d=dt to emphasize the fact that the time derivative
is calculated following a 
uid particle. It is called a material, total, or substantial derivative. Thus

D

Dt
=

@

@t
+ ui

@

@xi
(2.21)

The �rst term on the right hand side is called the local derivative, and the second the convective
derivative. For other coordinates we can use

D

Dt
=

@

@t
+ u � r (2.22)

where u is the velocity vector.

2.5 Stress

The stress is de�ned as the force per unit area. It is a tensor since both force and area can be
considered to be vectors (an elemental area has orientation). Consider an elemental volume of 
uid
as shown in Figure 2.2. There is a force on each one of the six surfaces. Let the stress tensor at the
center of the element P be � , so that those on the two faces normal to the x1 direction are

�
� = � � @�

@x1

dx1
2

The components of the force per unit area on the face with normal in the +x1 direction are marked
as �+11, �

+
12, and �

+
13, while those on the face with normal in the �x1 direction are ��11, �

�
12 �

�
13. The

stresses on the + and � faces may, in general, be di�erent. �
� and �

+ tend to � as the size of
the element goes to zero. The components of the stress tensor at P can thus be represented as �ij ,
where the �rst index represents the face on which the force is acting, and the second the direction
of the force.

If � is the state of stress at a point in the 
uid, the force per unit area on an element of surface
with unit normal n, sometimes called the traction, is � � n, or �ijnj . If the area of the element is
dA, the force vector is � � n dA, or �ijnj dA.
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Figure 2.2: Forces per unit area on elemental volume

Problems

1. Find an expression for the acceleration of a particle Du=Dt for the two-dimensional velocity �eld

(a) u = x1e1 � x2e2 in Cartesian coordinates, and

(b) u = U(1 � a2=r2) cos �er � U(1 + a2=r2) sin �e� in cylindrical coordinates.

2. Show that 1
2
curl u is the vector corresponding to the anti-symmetric vorticity tensor 
ij .

3. For the velocity �eld u = x1e1 � x2e2, �nd the deformation-rate, vorticity, and strain-rate tensors.

4. For an axisymmetric 
ow in spherical coordinates (i.e. with u! = @=@! = 0) show that the only nonzero
component of the vorticity, �, is in the direction of the axis of symmetry, and that

� =
1

r

"
@(ru�)

@r
� @ur

@�

#

5. Find an expression for the acceleration of a particle in the two-dimensional velocity �eld u = x22e1 + x21e2.

6. For the two-dimensional velocity �eld u = x1e1 � x2e2, �nd (a) the shape of a portion of 
uid that is initially
a rectangle with corners at (a; b), (a + Æa; b), (a + Æa; b + Æb) and (a; b + Æb), where a, Æa, b and Æb are all
non-negative, after an interval of time Æt. Taking the appropriate limits, �nd (b) the rate of change in area,
(c) the rates of rotation of the two diagonals of the rectangle and their average. Repeat for the velocity �eld
u = x2i1.

7. For the velocity �eld u = (3x1+x2+2x3)e1+(�x1+3x2+7x3)e2+(�2x1+x2+3x3)e3 �nd the deformation
rate, vorticity, and shear rate tensors. Find the principal axes of the shear rate tensor. Check using Maple.

8. Show that
Du

Dt
=
@u

@t
+

1

2
r (u � u) + (r� u)� u

9. For the two-dimensional velocity �eld u = x1e1 � x2e2, �nd the time derivative of the velocity determined
by a relative-velocity sensor (i.e. the sensor measures the 
uid velocity relative to it) moving with velocity
v = te1 + t2e2. The sensor is at the origin at time t = 0.

10. For the velocity �eld u = x1e1 � x2e2, �nd the equations governing the motion of a skywriting airplane that
is required to produce a perfect circle of unit radius centered at (1,1) at time t = T . The plane moves at a
constant speed V and begins to write at t = 0 from the point (2e�T ; eT ).
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11. Find the force on an elemental area of size dA and unit normal n, if the stress tensor at that location is � .

12. A temperature sensor starts from the origin and moves with velocity us = ti + t2j, where t is time. Find its
reading, Ts(t), in a time-dependent temperature �eld T (x; y; t) = txy.

13. Find the shape of a material line at time t that is initially a circle with unit radius and center (2,2) moving
with the 
ow �eld u = xi� yj.

14. The surface �ijxixj = 1, where �ij is symmetric, is called the Cauchy stress quadric. Show that the normal
component of the stress on any plane is inversely proportional to the square of the distance from the center of
the quadric to its surface in the direction of the normal to the plane.
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Chapter 3

Di�erential equations of motion

3.1 Approaches to balance equations

There are di�erent ways in which the balance equations for 
uid mechanics may be derived. The
approach may be di�erential, i.e. applied to a element, or it may be integral, i.e. applied on a
larger scale. Furthermore, the application may be to a �xed mass of 
uid that is moving around
and changing its shape in space, or to a �xed region in space through which the 
uid 
ows in and
out. So there are at least four ways which must be somehow related.

Consider a (scalar, vector or tensor) property � that is to be balanced.

3.1.1 Di�erential element

Though the following may be easily carried out for any coordinate system, we will analyze the
situation in Cartesian coordinates. Consider the box-like element shown in Fig. 3.1.

Control volume

The box represents a region that is �xed in space and unchanging. Thus

d

dt
(�� dx1 dx2 dx3) =

@

@t
(��) dx1 dx2 dx3 (3.1)

Control mass

Now the box is an element of 
uid that is moving and changing its shape and volume. Thus we have

D

Dt
(�� dx1 dx2 dx3) =

D

Dt
(��) dx1 dx2 dx3 + ��

D

Dt
(dx1 dx2 dx3)

We also have

D

Dt
(dx1 dx2 dx3) = dx2 dx3

D

Dt
(dx1) + dx3 dx1

D

Dt
(dx2) + dx1 dx2

D

Dt
(dx3)

= dx2 dx3

�
@u1
@x1

dx1

�
+ dx3 dx1

�
@u2
@x2

dx2

�
+ dx1 dx2

�
@u3
@x3

dx3

�
= dx1 dx2 dx3r � u
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Figure 3.1: Element in Cartesian coordinates

from which
D

Dt
(�� dx1 dx2 dx3) =

�
D

Dt
(��) + ��r � u

�
dx1 dx2 dx3 (3.2)

3.1.2 Integral element

We consider now a volume V , not necessarily small.

Control volume

The volume is a �xed region in space. Thus

d

dt

Z
V

�� dV =

Z
V

@

@t
(��) dV (3.3)

is the rate of change of the total property within the volume.

Control mass

If V represents a 
uid material, its shape, volume and position will change with time. The Reynolds
transport theorem

D

Dt

Z
V

�� dV =

Z
V

�
D

Dt
(��) + ��r � u

�
dV (3.4)

describes the rate of change of the total property of this material as it moves around.

3.2 Mass balance

We will derive this equations in its di�erent forms and show that they are all equivalent.
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Figure 3.2: Mass 
ux in elemental volume

3.2.1 Elemental control volume

Consider an elemental control volume within the 
ow, Figure 3.2, of size dx1 � dx2 � dx3 centered
at P (x1; x2; x3) and aligned with the coordinate directions. There is mass 
ux through all six faces
of this volume. The mass 
ux through each face is equal to the product of the local 
uid density,
the velocity normal to the face, and the area of the face. The 
uxes in the two faces with normals
in the � x1 direction are

_m+
1 =

"
�u1 +

@(�u1)

@x1

dx1
2

+ : : :

#
dx2dx3 (3.5)

_m�
1 =

"
�u1 � @(�u1)

@x1

dx1
2
� : : :

#
dx2 dx3 (3.6)

where � is the 
uid density, and u1 is the velocity component at P . The net gain of mass per unit
time by the control volume due to 
ow in this direction is

_m�
1 � _m+

1 = �@(�u1)
@x1

dx1 dx2 dx3 + : : : (3.7)

There are similar gains due to 
ow in the other two directions. The total is

�
"
@(�u1)

@x1
+
@(�u2)

@x2
+
@(�u3)

@x3

#
dx1 dx2 dx3

On the other hand there is accumulation of mass within the control volume, the rate of which is

@�

@t
dx1 dx2 dx3
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The rate of accumulation of mass should be equal to the total gain due to 
ow. Thus,

@�

@t
dx1 dx2 dx3 = �

"
@(�u1)

@x1
+
@(�u2)

@x2
+
@(�u3)

@x3

#
dx1 dx2 dx3 (3.8)

from which
@�

@t
+
@(�u1)

@x1
+
@(�u2)

@x2
+
@(�u3)

@x3
= 0 (3.9)

In index notation
@�

@t
+
@(�ui)

@xi
= 0 (3.10)

For other coordinate systems

@�

@t
+r � (�u) = 0 (3.11)

Another way of writing this equation is

D�

Dt
+ �

@ui
@xi

= 0 (3.12)

or
D�

Dt
+ �r � u = 0 (3.13)

The equation of conservation of mass is often called the continuity equation.

3.2.2 Elemental control mass

Following a 
uid element that is initially dx1�dx2�dx3, the mass of this element must be constant.
Thus

D

Dt
(� dx1 dx2 dx3) = 0 (3.14)

3.2.3 Integral control volume

The rate of change of mass with a control volume V plus the net mass 
ow out of it must be zero.
Thus

d

dt

Z
V

� dV +

Z
A

�u � n dA = 0 (3.15)

3.2.4 Integral control mass

The rate of change of mass following a control mass of initial volume V is zero. So

D

Dt

Z
V

� dV = 0 (3.16)
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3.2.5 Equivalence

(a) Using equation (3.2) in (3.14), we get equation (3.13).
(b) Using the Stokes theorem on the second term of equation (3.15), we getZ

V

�
@�

@t
+r � (�u)

�
dV = 0 (3.17)

Since this equation holds for any V , the integrand must be zero everywhere. This gives equation
(3.11).
(c) Using the Reynolds transport theorem, equation (3.16) becomesZ

V

�
D�

Dt
+ �r � u

�
dV = 0 (3.18)

Again since this equation holds for any V , the integrand must be zero everywhere. This gives
equation (3.13).

3.3 Linear momentum equation

We will use only an elemental control mass instantaneously of size dx1 � dx2 � dx3. According to
Newton's second law in an inertial frame of reference, the product of its mass and its acceleration is
equal to the force on it. Let f be the force on the 
uid per unit volume. Then, writing this equation
per unit volume

�
Du

Dt
= f (3.19)

The force per unit volume on a 
uid element can be considered to be the sum of body forces fb (such
as gravity or electromagnetic forces) which act over the entire volume of the element, and surface
forces per unit volume fs (such as stress) which act through the surface.

A conservative body force is one for which

fb = rG (3.20)

where G is a scalar potential. If gravity is the only body force, then

fb = �g (3.21)

where g is the gravity force per unit mass.
The surface forces can be understood by considering a control mass shown in Figure 3.3. If

the components of � on the two faces with normals in the � x1 direction were the same, their net
contribution would be zero since they would be in opposite directions. So a uniform stress �eld
produces no force on the 
uid element. For an inhomogeneous stress �eld in which � is a function of
position, there is a net surface force. For the moment let us consider the forces in the � x1 direction
only. Each one of the six faces has a component in this direction. Thus

�+11 = �11 +
@�11
@x1

dx1
2

(3.22)

��11 = �11 � @�11
@x1

dx1
2

(3.23)

(3.24)
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Figure 3.3: Forces for linear and angular momentum equations

The pair of faces with normals in the � x1 direction contributes a force (@�11=@x1) dx1 dx2 dx3.
Similarly, on including also the contributions from the other two pairs of faces, we have the total
surface force in this direction. Per unit volume, we get

fs1 =
@�11
@x1

+
@�21
@x2

+
@�31
@x3

(3.25)

The linear momentum in the x1 direction gives

�
Du1
Dt

=
@�11
@x1

+
@�21
@x2

+
@�31
@x3

+ �f1 (3.26)

Generalizing this expression to include components of linear momentum in the other directions
also, we have

�
Duj
Dt

=
@�ij
@xi

+ �fj (3.27)

which, for other coordinate systems, is

�
Du

Dt
= r � � + �f (3.28)

As a reminder, the left hand side represents the product of the mass times the acceleration of an
element of 
uid, while the two terms on the right are the surface and body forces respectively on
this element, all per unit volume.

Multiplying the continuity equation, equation (3.10), by ui and adding to equation (3.27), we
get

@

@t
(�uj) +

@

@xi
(�uiuj) =

@�ij
@xi

+ �fj (3.29)
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or
@

@t
(�u) +r � (�uu) = r � � + �f (3.30)

which is another form of the momentum equation.
The linear momentum equation is also called the Cauchy equation.

3.4 Linear momentum equation in a non-inertial frame

If the coordinate system with respect to which the velocities and positions are measured is non-
inertial, i.e. rotating and/or linearly accelerating, other terms have to be included in the momentum
equation.

Consider a non-inertial frame characterized by r0, u0, and a0 which are the position, velocity,
and acceleration of its origin, and 
, and _
 which are its rotation rate, and angular acceleration, all
with respect to an inertial frame. The positions of a particle measured in the two frames are then
related by

r0 = r0 + r (3.31)

where r0 and r are in the inertial and non-inertial frames, respectively. Similarly velocities are related
by

u0 = u0 + u+
� r (3.32)

and accelerations by

a0 = a0 + a+ _
� r+ 2
� u+
� (
� r) (3.33)

The linear momentum equation is then

�

�
Dui
Dt

+ ai + �jki
jrk + 2�jki
juk + �lmi�njm
l
nrj

�
=
@�ij
@xi

+ �fj (3.34)

or

�

�
Du

Dt
+ a+ _
� r+ 2
� u+
� (
� r)

�
= r � � + �f (3.35)

2 _
� u is the Coriolis and 
� (
� r) the centripetal acceleration term.

3.5 Angular momentum equation

Consider an elemental control mass of instantaneous size dx1 � dx2 � dx3. Figure 3.3 shows the
stresses on a section of a 
uid element normal to the x3 axis. We can use Euler's equation which
govern the angular dynamics of a rigid body1. For the x3 axis

M3 = I3
d
3

dt
+ (I2 � I1)
1
2 (3.36)

where Mi; Ii; 
i are the total moment, the moment of inertia and angular velocity of rotation
about the principal axis xi. We will assume that the 
uid is non-polar, i.e. that there are no body
moments, so that the only contribution to the moment comes from the stresses.

1See, for instance, H. Goldstein, Classical Mechanics, Addison Wesley, Reading, MA, 1950.
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The moment of inertia about the x3 axis is

I3 =
1

12
(mass of 
uid element)(dx21 + dx22)

=
�

12
(dx1 dx2 dx3)(dx

2
1 + dx22) (3.37)

Similarly for I1 and I2. Equation (3.36) becomes

(�12 � @�12
@x1

dx1
2

) dx2 dx3
dx1
2

+ (�12 +
@�12
@x1

dx1
2

) dx2 dx3
dx1
2

� (�21 � @�21
@x2

dx2
2

) dx1 dx3
dx2
2
� (�21 +

@�21
@x2

dx2
2

) dx1 dx3
dx2
2

=
�

12
dx1 dx2 dx3(dx

2
1 + dx22)

d
3

dt

+
�

12
dx1 dx2 dx3[(dx

2
1 + dx23)� (dx22 + dx23)]
1
2 (3.38)

We divide by dx1 dx2 dx3 and take the limit as dx1, dx2, and dx3 go to zero, to obtain

�12 = �21 (3.39)

This can be repeated for the other two coordinate axes giving �13 = �31 and �32 = �23. Thus, the
conservation of angular momentum of a 
uid element implies that the stress tensor is symmetric:

�ij = �ji (3.40)

or
� = �

T (3.41)

3.6 Energy equation

We consider the elemental control mass shown in Figure 3.4. The total energy per unit mass of the

uid, et, is the sum of its internal and kinetic energy. Thus

et = e+
1

2
uiui (3.42)

where e is the speci�c internal energy. The rate of in
ow of energy in the form of heat and work is
equal to the rate of increase of total energy of the 
uid. Thus, per unit volume, we have

�
Det
Dt

= _Q+ _W (3.43)

where _Q and _W are the in
ow of heat and work respectively per unit volume, the sign convention
being that energy coming into the system is considered positive.

The heat in
ow is due to the spatial variation in the heat 
ux _q, which is a vector in the direction
of the heat 
ow with units of energy per unit time per unit area. Let _q�1 and _q+1 be the heat 
ux
components in the two faces which have normals in the � x1 direction. The 
ow of heat through
these faces are _q�1 dx2 dx3 and _q+1 dx2 dx3, respectively. Since

_q+1 = _q�1 +
@ _q1
@x1

dx1 + : : : (3.44)
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Figure 3.4: Energy 
uxes in elemental volume

the net energy gain due to heat 
ow in the x1-direction is

� @ _q1
@x1

dx1 dx2 dx3

Similarly, one can obtain the contributions from the heat 
ow in the other two directions. Summing
them up we get

_Q = � @ _qi
@xi

(3.45)

on a unit volume basis.
Now let us consider the rate of work in
ow _W . We know that the rate of work done by a force

is the dot product of the force and velocity of its point of application. Let us look at the work done
by the surface forces �rst. The rate of work done on the two � face in the x1-direction is

�(��11u�1 + ��12u
�
2 + ��13u

�
3 ) dx2 dx3 = ���1ju�j dx2 dx3

where the negative sign comes from the fact that the force and the velocity are in opposite directions.
The work done on the + face in the same direction is

(�+11u
+
1 + �+12u

+
2 + �+13u

+
3 ) dx2 dx3 = �+1ju

+
j dx2 dx3

Since

�+1ju
+
j = ��1ju

�
j +

@(�ijuj)

@x1
dx1

the work in
ow is
@(�1juj)

@x1
dx1 dx2 dx3
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On including the contributions from the other two pairs of faces also, we have the rate of work in
ow
due to the surface forces _Ws, where

_Ws =
@(�ijuj)

@xi
(3.46)

per unit volume. In addition the work done by the body force _Wb is

_Wb = �uifi (3.47)

per unit volume. So

_W = _Ws + _Wb (3.48)

Using equations (3.45){(3.48), equation (3.43) becomes

�
Det
Dt

= � @ _qi
@xi

+
@(�ijuj)

@xi
+ �uifi (3.49)

or

�
Det
Dt

= �r � _q+r � (� � u) + �u � f (3.50)

As a reminder, the left hand side represents the rate of change of total energy; the �rst term on
the right is the heat in
ow, the second is the work done by the surface forces, and the third the
work done by gravity, all per unit volume.

The above is the equation of conservation of total energy. It can be simpli�ed by subtracting
out the mechanical energy part. Take the dot product of the velocity and the momentum equation
(3.27)

�uj
Duj
Dt

= uj
@�ij
@xi

+ �ujfj (3.51)

This is the mechanical energy equation; subtract this from the total energy equation to get

�
De

Dt
= � @ _qi

@xi
+ �ij

@uj
@xi

(3.52)

or

�
De

Dt
= �r � _q+ � : ru (3.53)

This is the thermal energy equation, sometimes simply referred to as the energy equation.

3.7 Entropy equation

In one form the second law of thermodynamics states that the change in entropy of a system, ÆS, is
governed by

ÆS � ÆQ

T
(3.54)

where ÆQ is the heat input to the system, and T is its absolute temperature. The equality holds for
a reversible process.

Considering an elemental control mass of size dx1 � dx2 � dx3, we �nd that

�
Ds

Dt
� � @

@xi

�
_qi
T

�
(3.55)

48



or

�
Ds

Dt
� �r �

�
_q

T

�
(3.56)

per unit volume, where s is the speci�c entropy.

3.8 Additional relations

To complete the mathematical formulation of the problem, additional equations which involve prop-
erties speci�c to a particular 
uid material are needed.

3.8.1 Equations of state

Incompressible 
uid

In many occasions the density of 
uid following a particle is taken to be constant. In this case

D�

Dt
= 0 (3.57)

In general the density may be di�erent for di�erent particles, though the homogeneous 
uid is a
special case of this.

Ideal gas

This is a commonly used approximation for the behavior of gases:

p = �RT (3.58)

where R is the particular constant for the gas.

3.8.2 Constitutive equations

Inviscid 
uid

The constitutive relation for a zero viscosity 
uid is

�ij = �pÆij (3.59)

or
� = �pI (3.60)

The stress tensor is diagonal.

Newtonian 
uid

A constitutive relation for a 
uid is that which relates the stress and strain rate tensors. A Newtonian

uid has the following properties:

1. For a 
uid at rest the stress is hydrostatic, and the pressure is the thermodynamic pressure.

2. The stress tensor � is linearly related to the deformation-rate tensor D, and does not depend
on the rate of rotation tensor.
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3. There are no preferred directions in the 
uid properties.

Under these conditions the constitutive relation for a Newtonian 
uid can be shown to be

�ij =

�
�p+ �

@uk
@xk

�
Æij + �

�
@ui
@xj

+
@uj
@xi

�
(3.61)

or

� = (�p+ �r � u) I+ �
h
ru+ (ru)T

i
(3.62)

where � and � are the �rst and second coeÆcients of viscosity.

Non-Newtonian 
uids

A 
uid which does not have a shear stress{rate of deformation relation given by equation (3.61) is
non-Newtonian. In a broad sense, the behavior of non-magnetic continua can be divided into several
categories:

(I) Purely viscous 
uids: The shear rate depends only on the shear stress. The 
uid can be Newtonian
or non-Newtonian.

(II) Time-dependent 
uids: The shear rate depends not only on the shear stress but also on the
duration of the stress.

(III) Viscoelastic materials: The shear rate depends on the imposed stress as well as the strain.

(IV) Complex rheological bodies: Materials displaying combinations of the characteristics above.

Fourier's law

The heat 
ux due to conduction heat transfer in a 
uid is governed by the relation

_qi = �k @T
@xi

(3.63)

or

_q = �krT (3.64)

where T is the 
uid temperature, and k(T ) is the coeÆcient of thermal conductivity.

There are 
uids in which a heat 
ux is produced by a concentration gradient also (di�usion-
thermo or Dufour e�ect).

3.9 Governing equations for special cases

3.9.1 Mass balance

For an incompressible 
uid, equation (3.10) reduces to

@ui
@xi

= 0 (3.65)

or

r � u = 0 (3.66)
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3.9.2 Linear momentum equation

Inviscid 
uid

The momentum equation becomes

�
Duj
Dt

= � @p

@xj
+ �fj (3.67)

or

�
Du

Dt
= �rp+ �f (3.68)

This is called the Euler equation.

Newtonian 
uid

Substituting this into the momentum equation (3.27) gives the so-called Navier-Stokes equation

�
Duj
Dt

= � @p

@xj
+

@

@xj

�
�
@uk
@xk

�
+

@

@xi

�
�

�
@ui
@xj

+
@uj
@xi

��
+ �fj (3.69)

or

�
Du

Dt
= �rp+r (�r � u) +r �

h
�
n
ru+ (ru)T

oi
+ �f (3.70)

Because of the continuity equation (3.65), the constitutive relation for an incompressible Newto-
nian 
uid reduces to

�ij = �pÆij + �

�
@ui
@xj

+
@uj
@xi

�
(3.71)

or

� = �pI+ �
h
ru+ (ru)T

i
(3.72)

The second coeÆcient of viscosity does not play a role in the mechanics of incompressible 
uids.
Taking � to be constant, the Navier-Stokes equation, equation (3.69), becomes

�
Duj
Dt

= � @p

@xj
+ �

@2uj
@xixi

+ �fj (3.73)

or

�
Du

Dt
= �rp+ �r2u+ �f (3.74)

Often the equation is divided out by � and written as

Duj
Dt

= �1

�

@p

@xj
+ �

@2uj
@xixi

+ fj (3.75)

or
Du

Dt
= �1

�
rp+ �r2u+ f (3.76)

where

� =
�

�
(3.77)
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3.9.3 Energy equation

Inviscid 
uid

With Fourier's law the energy equation is

�
De

Dt
= k

@2T

@xixi
� p

@ui
@xi

(3.78)

or

�
De

Dt
= kr2T � pr � u (3.79)

where k has been taken to be constant. The last term on the right is the rate of work due to the
pressure.

Newtonian 
uid

For a Fourier-Newtonian 
uid with constant properties, we have

�
De

Dt
= k

@2T

@xi@xi
� p

@ui
@xi

+� (3.80)

or

�
De

Dt
= kr2T � pr � u+� (3.81)

where

� = �

�
@ui
@xi

�2

+ �

�
@ui
@xj

+
@uj
@xi

�
@uj
@xi

(3.82)

or
� = � (r � u)2 + �

h
ru+ (ru)T

i
: ru (3.83)

� is a positive quantity called the dissipation function; physically it represents the rate of change of
energy per unit volume from mechanical to thermal form.

For an incompressible 
uid, we can write

DT

Dt
= �r2T +

�

�c
(3.84)

where e = cT and � = k=�c, where c is the speci�c heat and � is the thermal di�usivity.

3.9.4 Boundary conditions

Hydrodynamic and thermal boundary conditions are needed for the di�erential equations.

� For a viscous 
uid the velocity at a solid wall is usually taken to be that of the wall itself. For
an inviscid 
uid only the normal velocities are equated.

� At a free surface the stress is continuous across the surface if surface tension is not considered.
Otherwise there is a pressure di�erential given by

�p = 


�
1

R1
+

1

R2

�
(3.85)

where R1 and R2 are the principal radii of curvature of the free surface, and 
 is the coeÆcient
of surface tension.
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� The temperature at the boundary is that of the wall itself. Sometimes, however, it is more
convenient to to prescribe the normal derivative of the temperature at the wall; for an adiabatic
wall it is zero, while for a wall with prescribed heat 
ux, it is a given quantity.

3.10 Nondimensionalization

The purpose of nondimensionalization is to normalize the variables and to bring out the relative
importance of the di�erent terms in the equations. Often the procedure depends on the problem
being considered. Careful use of a method based on the dimensions of the physical quantities being
considered will often provide considerable qualitative and quantitative information of the 
ow.

As an example of nondimensionalization let us look at incompressible Navier-Stokes and energy
equations. Using asterisks for nondimensional quantities, we can choose the following dimensionless
variables

t� = tU=L; x� = x=L; u� = u=U; p� = p=�U2; T � = (T � T0)=�T (3.86)

where U and L are characteristic velocity and length scales; T0 is a reference temperature and �T is
a characteristic temperature di�erence. Writing f = geg, where eg is the dimensionless unit vector
in the direction of gravity, the equations become

Du�

Dt�
= �r� p� + 1

Re
r�2u� + 1

Fr
eg (3.87)

DT �

Dt�
=

1

Re Pr
r�2T � + Ec

Re
�� (3.88)

where r� and r�2 are the nondimensional gradient and Laplacian operators respectively, and ��

is the nondimensional dissipation function. In this case the important parameters are Re, Pr, and
Ec. These and some other nondimensional groups that commonly occur in 
uid mechanics and heat
transfer are listed below along with their physical signi�cance.

Name Symbol De�nition Physical signi�cance

Biot number Bi hL=ks ratio of solid to 
uid thermal resistance
Eckert number Ec U2=c�T ratio of dissipation to internal energy change
Fourier number Fo �t=L2 dimensionless time
Grashof number Gr g��TL3=�2 ratio of buoyancy to viscous forces
Nusselt number Nu hL=k dimensionless heat transfer coeÆcient
Peclet number Pe �cUL=k ratio of convection to conduction heat transfer

Prandtl number Pr �c=k ratio of momentum to thermal di�usivities
Rayleigh number Ra g��TL3=�� = Gr Pr
Reynolds number Re �UL=� ratio of inertia to viscous forces

Additional nomenclature:

g acceleration due to gravity
h convective heat transfer coeÆcient
k thermal conductivity of 
uid
ks thermal conductivity of solid
� thermal di�usivity
� coeÆcient of thermal expansion
� kinematic viscosity = �=�
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3.11 Molecular approach

See I. Michelson, Molecular Basis of Fluid Mechanics.

Problems

1. Show that � = constant, u = x1e1 � x2e2 satisfy the continuity equation.

2. Show that the following velocity �eld in polar coordinates

u = U(1� a2

r2
) cos �er � U(1 + a2

r2
) sin �e�:

is incompressible and irrotational.

3. Show that the two-dimensional velocity �eld

u = � Kx2

x21 + x22
e1 +

Kx1

x21 + x22
e2

where K is a constant, is incompressible and irrotational.

4. From an elemental control volume in cylindrical coordinates, derive the continuity equation in cylindrical
coordinates.

5. Show that the continuity equation can also be written as

D�

Dt
+ �r � u = 0:

6. Using equations (2.21) and (3.10), show that the di�erence between equations (3.49) and (3.51) is (3.52).

7. Show that the dissipation function in equation (3.82) can also be written as

� = �

 
@ui

@xj
+
@uj

@xi

! 
@ui

@xj
+
@uj

@xi

!

8. Show that the continuity equation for axisymmetric 
ow in spherical coordinates can be satis�ed by the Stokes
stream function  (r; �), where

ur =
1

r2 sin �

@ 

@�
; u� = � 1

r sin �

@ 

@r

9. Coordinates (�; �; �) in an elliptic cylindrical coordinate system are related to the Cartesian coordinates (x; y; z)
through x = a cosh � cos �; y = a sinh � sin �; z = �. If u�, u� and u� are the 
uid velocities in the directions
of increasing �, �, and � respectively, write the continuity equation in elliptic cylindrical coordinates for an
incompressible 
uid.

10. For a Newtonian 
uid with velocity �eld u = x1e1 � x2e2, �nd the stress tensor and, by substituting into the
governing equations, the pressure distribution p(x; y).

11. Find the stress tensor for a Newtonian 
uid with the velocity �eld u = x22e1 + x21e2.

12. Neglecting viscous forces, �nd the diameter of a laminar water jet coming down from a faucet as a function of
the distance downstream.

13. Find the stress tensor for a Newtonian 
uid with velocity �eld u = x1e1 � x2e2 in Cartesian coordinates.

14. For the toroidal coordinates (r; �; �) in the �gure (the cross section has been enlarged to indicate r and �) show
that

x = (R + r cos�) cos �; y = (R + r cos �) sin �; z = r sin�

where (x; y; z) are suitably chosen Cartesian coordinates.

Find expressions for the gradient, divergence and curl in this coordinate system.

15. Given a two-dimensional velocity �eld (x1 + x2)e1 + (3x1 + 4x2)e2, show that the 
ow is compressible. Find
the strain rate and vorticity tensors, and (c) the principal axes of the strain rate tensor.

16. For steady 
ow and a divergence-free velocity �eld, show that the 
ow lines are also constant density lines.
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Figure 3.5: Toroidal coordinate system (r; �; �)

17. For the velocity �eld u = x1e1�x2e2, �nd (a) the acceleration of the elemental volume of size dx1�dx2�dx3
at (x1; x2; x3), and (b) from Newton's second law, the net force on the volume required to produce this
acceleration.

18. Derive the linear momentum equation in cylindrical coordinates.

19. Show that
@

@t
(�ui) =

@

@xi

�
�ji � �ujui

�
20. Show the theorem of stress means:Z

A

F�ijnj dA =

Z
V

�
�ij

@F

@xj
+ �F

�
Dui

Dt
� fi

��
dV

for any function F (xi; t).

21. Starting from an elemental control volume in Cartesian coordinates, prove the momentum equation.

22. For each one of the N chemical species in a 
uid mixture, mi is the mass of one mole, ni is the number of
moles per unit volume of 
uid, ui is the velocity, and _ri is the generation by chemical reaction per unit volume
per unit time, where i = 1; : : : ; N . Show that the mass balance equation for each species is

@�i

@t
+r � (�iui) = _ri

where �i = mini (no sum). Show also that

@�

@t
+r � (�u) = 0

where
PN

i=1
�i = � and �u =

PN

i=1
�iui.

23. Use the Reynolds's transport theorem to derive the mass, momentum and total energy equations.

24. The governing equations for mass, momentum and internal energy balance for any 
uid may be combined and
written in the form

@f

@t
+
@p

@x
+
@q

@y
+
@r

@z
= s

in Cartesian coordinates. Find the column matrices f, p, q, r, and s in terms of the density and components
of the velocity vector, stress tensor, and body force vector.

25. For a Newtonian 
uid with velocity �eld u = x1e1 � x2e2, �nd, by substituting into the governing equations,
the pressure distribution p(x1; x2) and the stress tensor.

26. Show that the tensors
Æij

and

�ÆijÆpq + �

�
ÆipÆjq + ÆiqÆjp

�
+ 


�
ÆipÆjq � ÆiqÆjp

�
are isotropic, where �, �, and 
 are arbitrary scalars.

27. Write down the parameters that might a�ect the period of a swinging pendulum and �nd, by dimensional
analysis, the period as a function of these parameters.
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28. If r' and r are the position vectors of a particle in an inertial and non-inertial frame of reference, show that

d2r0

dt2
=
d2r

dt2
+ a+

d


dt
� r+ 2
� dr

dt
+
� (
� r)

where a and 
 are the linear acceleration and rotation vectors of the non-inertial frame2.

29. The momentum equation for an incompressible, Newtonian 
uid in a coordinate system rotating at an angular
speed 
 is

@u

@t
+ u � ru+ 2
� u+
� (
� r) = �1

�
rp+ �r2u

where r is a position vector. Nondimensionalize this equation, �nd the nondimensional groups, and from
this determine if the rotation of the earth is important in the study of oceanographic phenomena? Choose
appropriate scales.

30. Show that for a steady 
ow, the no-slip condition at a �xed wall requires that r � u also vanish at the wall.

31. For an incompressible, Newtonian 
uid with constant properties in a closed container of volume V , show that
the rate of decrease of total kinetic energy of the 
uid is

�

Z
V

! � ! dV

where ! is the vorticity vector. The body force is conservative. In a similar way, �nd the rate of change of
total internal energy of the 
uid.

32. For steady, inviscid, barotropic 
ow show that Bernoulli's equation holds along a vortex line.

33. Using the vorticity equation for an inviscid 
uid, show that if the vorticity of a 
uid particle is once zero it is
always zero.

34. Find the stress tensor for a Newtonian 
uid corresponding to the velocity �eld u = x1e1 �x2e2. Find also the
components of the same tensor in a coordinate system that is rotated 45Æ about the x3-axis.

35. The momentum equation for an incompressible, Newtonian 
uid in a coordinate system rotating at a constant
angular speed 
 is

@u

@t
+ u � ru+ 2
� u+
� (
� r) = �1

�
rp+ �r2u

where r is a position vector. Show that the vorticity equation has an additional term 2(
 � r)u as compared
to the non-rotating case3.

36. Applying the momentum equation

d

dt

Z
CV

�u dV +

Z
CS

u (�u � n) dA = F

over an elemental control volume in Cartesian coordinates, derive the momentum equation in di�erential form.

37. Write the vorticity equation for an incompressible, Newtonian 
uid in component form using polar coordinates
(r; �) and the notation

u = urer + u�e�

! = !zez

38. (a) Show that the moment of the surface forces � (r) about a point O within an arbitrary volume V with surface
S is Z

S

�ijkrj�kmnm dA

where r is the position vector relative to O of an elemental surface area dA with normal n.

(b) Using Gauss's theorem write this asZ
V

�ijk
@(rj�km)

@xm
dV =

Z
V

�ijk

"
�0kj + rj

@�0km
@xm

#
dV

where �0 is the stress at O.

(c) As V ! 0, show that this reduces to �ijk�
0
kj

= 0, from which �0ij = �0ji.

2Consult your favorite book on classical mechanics.
3Hint: You may use Cartesian coordinates for some of the steps.

56



39. Show that the incompressible Navier-Stokes equation with constant properties can be written as

Du

Dt
= �1

�
rP � �r� (r� u)

where

P = p� �G

f = rG

40. Consider the incompressible Navier-Stokes equation for a 
uid in coordinates that are rotating at a rate 
 =

 k, where 
 is a constant. Neglect the body force. Use the following scalings: U for velocity, L for length, L=U
for time, and �U2 for pressure to non-dimensionlize the equation. Show that the Rossby number � = U=
L
and the Ekman number E = �=
L2 appear as nondimensional parameters.

41. For 
ow in a coordinate system �xed to the earth, �nd numerical values for the Rossby and Ekman numbers
for (a) 1 m/s water velocity on a scale of 30 cm and (b) 100 km/hr wind at a scale of 100 km. For each indicate
if the rotation of the earth is important.

42. Using the Gibbs relation

T ds = de+ p d

�
1

�

�
and the de�nition of enthalpy

h = e+
p

�

show that the energy equation for a Fourier-Newtonian 
uid can be written as

�T
Ds

Dt
= r � (krT ) + �

or

�
Dh

Dt
= r � (krT ) + Dp

Dt
+ �

where
� = � (r � u)2 + �

�
ru+ (ru)T

�
: ru

43. Show that the 2nd law of thermodynamics for a Fourier-Newtonian 
uid can be written as

� +
k

T
rT � rT � 0
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Chapter 4

Special theorems

4.1 Circulation

The circulation � around a closed curve C is de�ned as

� =

I
C

ui dli (4.1)

or

� =

I
C

u � dl (4.2)

From Stokes's theorem, we have I
u � dl =

Z
A

r� u � n dA (4.3)

so that

� =

Z
A

! � n dA (4.4)

where A is any surface with the boundary C.

4.2 Kelvin's theorem

We consider an inviscid, barotropic 
uid (one for which the pressure is only a function of density)
with a conservative body force. The circulation around a closed material curve C is

� =

I
C

uj dlj (4.5)

so that
D�

Dt
=

I
C

�
Duj
Dt

dlj + uj
D(dlj)

Dt

�
(4.6)

But I
C

uj
D(dlj)

Dt
=

I
C

uj duj
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=

I
C

d

�
1

2
ujuj

�
(4.7)

= 0 (4.8)

Also
Duj
Dt

= �1

�

@p

@xj
+
@G

@xj
(4.9)

Since I
C

1

�

@p

@xj
dxj =

I
C

dp

�
(4.10)

and I
C

@G

@xj
dxj =

I
C

dG

= 0 (4.11)

the only non-zero term is
D�

Dt
= �

I
C

dp

�
(4.12)

For a barotropic 
ow for which � and p are uniquely related, this is also zero. Thus

D�

Dt
= 0 (4.13)

4.3 Vorticity equation

For a Newtonian 
uid with constant density and properties and conservative body force, the mo-
mentum equation is

@u

@t
+ u � ru = �r

�
p

�

�
+ � +r2u+rG (4.14)

Because of the identity
r (u � u) = 2u � ru+ 2u�r� u (4.15)

it can be written as
@u

@t
+r

�
1

2
u � u

�
� u�! = �r

�
p

�

�
+ �r2u (4.16)

Since

r�r
�
1

2
u � u+ p

�
�G

�
= 0 (4.17)

r� (u� !) = ur � ! �!r � u� u � r! +! � ru (4.18)

= �u � r! + ! � ru (4.19)

the curl of the momentum equation gives us

@!

@t
+ u � r! = ! � ru+ �r2

! (4.20)
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Figure 4.1: Portion of vortex tube.

The term ! � ru represents stretching and tilting of the vortex lines.
For a two-dimensional 
ow in the x-y plane, the vorticity

! = �ez (4.21)

is in the z-direction, so that
@�

@t
+ u � r� = �r2� (4.22)

4.4 Helmholtz's theorem

Many of the ideas regarding vorticity, vortex lines and vortex tubes are summarized in the following
theorems. A portion of a vortex tube is shown in Fig. 4.1.

� Vortex lines move with the 
uid:

Consider a small area dA on the side of a vortex tube. Since the vorticity vector and the unit
normal to this area are perpendicular, the circulation around dA is zero. After an interval to
time, the 
uid forming this area has moved to a new position, but its circulation, by Kelvin's
theorem, is still zero. This can be said for all dA lying on the surface of the vortex tube so
that the 
uid elements forming the new tube also form a vortex tube. Thus vortex tubes move
with the 
uid. In the limit an in�nitesimal vortex tube is a line moving with the 
uid.

� Circulation around a vortex tube is constant:

The sides of a vortex tube are vortex lines. Since

! = r� u (4.23)

61



we have that

r � ! = 0 (4.24)

We integrate this over the volume of a vortex tubeZ
V

r �! dV = 0 (4.25)

Using Gauss's theorem, we have Z
A

! � n dA = 0 (4.26)

where n is the unit normal vector to the surface A. Since the integrand vanishes on the sides
of the vortex tube, we have thatZ

A1

! � n1 dA+

Z
A2

! � n2 dA = 0 (4.27)

from which

�1 = �2 (4.28)

� A vortex tube cannot end with a 
uid; it must end at a boundary or form a closed loop:

Since the circulation is constant along a vortex tube, the tube cannot end within a 
uid.

� Circulation around a vortex tube is constant in time:

This follows from Kelvin's theorem since the vortex tubes are made of material lines.

4.5 Bernoulli's theorem

For an inviscid 
uid with a conservative body force, the momentum equation is

@u

@t
+ u � ru =

1

�
rp+rG (4.29)

We have the identity

u � ru =
1

2
r (u � u)� u�r� u (4.30)

Furthermore, if the 
ow is barotropic

r
Z
dp

�
=

1

�
rp (4.31)

Thus
@u

@t
+r

�Z
dp

�
+

1

2
u � u�G

�
= u�! (4.32)

There are two special cases.
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4.5.1 Steady 
ow

De�ning

B =

Z
dp

�
+

1

2
u � u�G (4.33)

we see that
rB = u�! (4.34)

Since

DB

Dt
=

@B

@t
+ u � rB

= 0 (4.35)

B is a constant along a pathline which, for steady 
ow, is also a streamline. The constant may be
di�erent for di�erent streamlines.

4.5.2 Irrotational 
ow

Since ! = 0, we can take u = r�. Thus, from equation (4.32), we have

r
�
@�

@t
+B

�
= 0 (4.36)

Thus,
@�

@t
+

Z
dp

�
+

1

2
u � u�G (4.37)

is constant everywhere, though it may vary with time.

Problems

1. For an inviscid, barotropic 
uid with a conservative body force in a coordinate system rotating at a constant
rate 
, show that Kelvin's theorem is

D

Dt

�I
C

u � dl+ 2

Z
A


 � n dA

�
= 0

where A is an area bounded by the closed curve C. [Hint: Start with u0 = u+
� r, where u0 and u are the

uid velocities in non-rotating and rotating frames, and r is the position vector in the rotating frame.]

2. For steady, inviscid, barotropic 
ow show that Bernoulli's equation holds along a vortex line.

3. Using the vorticity equation for an inviscid 
uid, show that if the vorticity of a 
uid particle is once zero it is
always zero.

4. Derive the vorticity equation for a compressible Newtonian 
uid with constant properties and with a conser-
vative body force.
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Chapter 5

Ideal 
ow

In this chapter we will discuss the motion of an incompressible, inviscid 
uid without vorticity.
For an inviscid 
uid we know that a 
uid particle, once irrotational, is always irrotational. Thus

the vorticity ! = r� u is zero everywhere for such a 
ow, so that

r� u = 0 (5.1)

everywhere. This is satis�ed by
u = r� (5.2)

where � is called the velocity potential.
In addition let us consider the 
uid to be incompressible, so that the continuity equation is

r � u = 0 (5.3)

from which
r2� = 0 (5.4)

For an inviscid 
uid the normal velocity at a solid or impermeable boundary must be zero. Thus

@�

@n

�����
w

= 0 (5.5)

is the boundary condition for equation (5.4), where n is the coordinate normal to the wall.

5.1 Two-dimensional 
ows

Now, we will also, for simplicity, con�ne ourselves to plane, two-dimensional 
ow. Thus, we can
write the continuity equation as

@u

@x
+
@v

@y
= 0 (5.6)

This is satis�ed by

u =
@ 

@y
(5.7)

v = �@ 
@x

(5.8)
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where  (x; y) is the stream function.
In two dimensions the vorticity ! = !zk = �k, where

� =
@v

@x
� @u

@y
(5.9)

For an irrotational 
ow � = 0, so that we can write

u =
@�

@x
(5.10)

v =
@�

@y
(5.11)

which corresponds to equation (5.2).
The stream function and velocity potential both satisfy Laplace's equations

@2 

@x2
+
@2 

@y2
= 0 (5.12)

@2�

@x2
+
@2�

@y2
= 0 (5.13)

5.2 Properties

(a) Consider a line with  = constant. Along this line

0 = d (5.14)

=
@ 

@x
dx+

@ 

@y
dy (5.15)

= �v dx+ u dy (5.16)

from which
dx

u
=
dy

v
(5.17)

Since this is the equation of a streamline, it follows that the stream function is constant along a
stream line.

(b) Let Q be the volume 
ow rate per unit depth between two stream lines with stream functions
 1 and  2, respectively. Then

dQ = u dy � v dx (5.18)

=
@ 

@y
dy +

@ 

@x
dx (5.19)

= d (5.20)

so that we have

Q =  2 �  1 (5.21)
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(c) The  = constant lines have a slope �
dy

dx

�
 

=
v

u
(5.22)

On the other hand, the � = constant lines have a slope�
dy

dx

�
�

= �u
v

(5.23)

from which �
dy

dx

�
 

�
dy

dx

�
�

= �1 (5.24)

The constant  and constant � lines are thus orthogonal to each other.

5.3 Complex representation

Comparing equations (5.10) and (5.11) with (5.7) and (5.8), we have

@�

@x
=

@ 

@y
(5.25)

@�

@y
= �@ 

@y
(5.26)

These are the Cauchy-Riemann conditions for the complex function

F (z) = �(x; y) + i (x; y) (5.27)

to be analytic everywhere. z = x+ iy is the position coordinate, and F (z) is the complex potential.
The derivative of the complex potential is

W (z) =
dF

dz
(5.28)

where W is referred to as the complex velocity. Since F (z) is an analytic function, we can take its
derivative in any direction. Choosing the x-direction, we get

W (z) =
@�

@x
+ i

@ 

@x
= u� iv (5.29)

Furthermore
WW = u2 + v2 (5.30)

5.4 Polar form

We will frequently have to use polar coordinates (r; �), and their corresponding velocity components
(ur; u�) as shown in Fig. 5.1. The velocity vector can be written as

u = urer + u�e� (5.31)
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Figure 5.1: Velocity components ur and u� in polar coordinates.

The incompressibility condition is

1

r

@

@r
(rur) +

1

r

@u�
@�

(rur) = 0 (5.32)

so that we can de�ne the stream function as

ur =
1

r

@ 

@�
(5.33)

u� = �@ 
@r

(5.34)

(5.35)

The irrotationality condition is

� =
1

r

�
@

@r
(ru�)� @ur

@�

�
(5.36)

= 0 (5.37)

from which

ur =
@�

@r
(5.38)

u� =
1

r

@�

@�
(5.39)

(5.40)

Laplace's equations for  and � are

@

@r

�
r
@ 

@r

�
+

1

r

@2 

@�2
= 0 (5.41)

@

@r

�
r
@�

@r

�
+

1

r

@2�

@�2
= 0 (5.42)

Since F = �+ i , we have

W =
dF

dz
(5.43)
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= e�i�
�
@�

@r
+ i

@ 

@r

�
(5.44)

= (ur � iu�)e
�i� (5.45)

Referring to Fig.5.1 the relation between the Cartesian and polar components of the velocity is
found to be

u = ur cos � � u� sin � (5.46)

v = ur sin � + u� cos � (5.47)

and

ur = u cos � + v sin � (5.48)

u� = �u sin � + v cos � (5.49)

The polar unit vectors can be written in terms of the Cartesian unit vectors as

er = cos �i+ sin �j (5.50)

e� = � sin �i+ cos �j (5.51)

Notice that the polar unit vectors depend on �. Thus

@er
@�

= � sin �i+ cos �j (5.52)

= e� (5.53)

@e�
@�

= � cos �i� sin �j (5.54)

= �er (5.55)
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5.5 Summary of equations

Cartesian Polar

Incompressibility @u
@x +

@v
@y = 0 1

r

�
@
@r (rur) +

@u�
@�

�
= 0

Irrotationality @v
@x � @u

@y = 0 1
r

�
@
@r (ru�)� @ur

@�

�
= 0

Velocity potential u = @�
@x ur =

@�
@r

v = @�
@y u� =

1
r
@�
@�

Stream function u = @ 
@y ur =

1
r
@ 
@�

v = �@ 
@x u� = �@ 

@r

Cauchy-Riemann eqns. @�
@x = @ 

@y
@�
@r = 1

r
@ 
@�

@�
@y = �@ 

@x
1
r
@�
@� = �@ 

@r

Laplace's eqn. @2�
@x2 +

@2�
@y2 = 0 1

r
@
@r (r

@�
@r ) +

1
r2
@2�
@�2 = 0

@2 
@x2 + @2 

@y2 = 0 1
r
@
@r (r

@ 
@r ) +

1
r2
@2 
@�2 = 0

Complex potential F = �+ i F = �+ i 

Complex velocity W = u� iv W = (ur � iu�)e
�i�

5.6 Simple 
ows

5.6.1 Uniform 
ow

F = Uz (5.56)

 = Uy (5.57)

� = Ux (5.58)

W = U (5.59)

u = U (5.60)

v = 0 (5.61)

5.6.2 Source or sink

F =
m

2�
ln z (5.62)

 =
m

2�
� (5.63)

� =
m

2�
ln r (5.64)
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W =
m

2�z
(5.65)

ur =
m

2�
(5.66)

u� = 0 (5.67)

5.6.3 Vortex

F = �i �
2�

ln z (5.68)

 = � �

2�
ln r (5.69)

� =
�

2�
� (5.70)

W = �i �

2�z
(5.71)

ur = 0 (5.72)

u� =
�

2�r
(5.73)

5.6.4 Sector with angle �=n

F = Uzn (5.74)

 = Urn sinn� (5.75)

� = Urn cosn� (5.76)

W = nUzn�1 (5.77)

ur = nUrn�1 cosn� (5.78)

u� = �nUrn�1 sinn� (5.79)

5.7 Combined 
ows

Since the Laplace's equation is linear, solutions may be added together to produce other solutions.

5.7.1 Doublet

F =
�

z
(5.80)

 = �� sin �
r

(5.81)

� = �
cos �

r
(5.82)

W = � �

z2
(5.83)

ur = ��cos �
r2

(5.84)

u� = �� sin �
r2

(5.85)
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5.7.2 Cylinder without circulation

F = Uz

�
1 +

a2

z2

�
(5.86)

 = Ur

�
1� a2

r2

�
sin � (5.87)

� = Ur

�
1 +

a2

r2

�
cos � (5.88)

W = U

�
1� a2

z2

�
(5.89)

ur = U

�
1� a2

r2

�
cos � (5.90)

u� = �U
�
1 +

a2

r2

�
sin � (5.91)

5.7.3 Cylinder with circulation

F = Uz

�
1 +

a2

z2

�
+ i

�

2�
ln
z

a
(5.92)

 = Ur

�
1� a2

r2

�
sin � +

�

2�
ln
r

a
(5.93)

� = Ur

�
1 +

a2

r2

�
cos � � �

2�
� (5.94)

W = U

�
1� a2

z2

�
+ i

�

2�z
(5.95)

ur = U

�
1� a2

r2

�
cos � (5.96)

u� = �U
�
1 +

a2

r2

�
sin � � �

2�a
(5.97)

5.8 Forces on a submerged body

For steady, incompressible, irrotational 
ow we can use Bernoulli's equation

p

�
+

1

2
u � u = B (5.98)

to determine the pressure, where B is a constant.
On the surface of a body the only force is due to pressure. The total force on the body is given

by

F =

Z
A

pn dA (5.99)

where dA is an elemental area of the surface A with normal n.
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5.8.1 Cylinder with circulation

The pressure on the surface of the cylinder is given by

p = p1 +
1

2
�U2 � �

�
2U sin � +

�

2�a

�2

(5.100)

where p1 and U are the pressure and velocity of the 
ow far from the cylinder. The components of
the force on the cylinder are

Fx = �al
Z 2�

0

p cos d�

= 0 (5.101)

Fy = �al
Z 2�

0

p sin d�

= �U�l (5.102)

where l is the length of the cylinder. This is the Kutta-Joukowsky theorem.

5.9 Conformal transformation

An analytic function � = f(z) that maps the z-plane to the �-plane is called a conformal transfor-
mation. Let z = x+ iy and � = � + i�. Then it can be shown that if

@2�

@x2
+
@2�

@y2
= 0 (5.103)

then
@2�

@�2
+
@2�

@�2
= 0 (5.104)

also. We can also show that ratios of length and angles are preserved in the transformation. The
complex velocity in the two planes is related by

W (z) =
dF

dz

=
d�

dz

dF

d�

=
d�

dz
W (�) (5.105)

5.9.1 Joukowski transformation

This is

z = � +
c2

�
(5.106)

where c is a constant. The function is analytic for � 6= 0. The reverse mapping

� =
z

2
�
r
z2

4
� c2 (5.107)

is non-unique. As an example the Joukowski transformation can be applied to a uniform 
ow to
obtain 
ow around a cylinder.
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Figure 5.2: Mapping from a circle to an ellipse

Flow around an ellipse

Let c be real and positive. Then any point on a circle with center at the origin, of radius a where
a < c, in the �-plane can be written as � = aei� , or

� = a cos � (5.108)

� = a sin � (5.109)

Substituting in the transformation and separating the real and imaginary parts, we have

x =

�
a+

c2

a

�
cos � (5.110)

y =

�
a� c2

a

�
sin � (5.111)

Eliminating �, we have �
x

a+ c2=a

�2

+

�
y

a� c2=a

�2

= 1 (5.112)

which is the equation for an ellipse. Figure 5.2 shows the circle and its elliptic image.
The complex potential for a uniform 
ow at an angle � around a cylinder of radius a is

F (�) = U

�
�e�i� +

a2

�
ei�
�

(5.113)

Substituting equation (5.107), we get the complex function

F (z) = U

2
4 z

2
�
r
z2

4
� c2

!
e�i� +

0
@ a2

z
2 �

q
z2

4 � c2

1
A ei�

3
5 (5.114)
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for 
ow around an ellipse.

Flow around a 
at plate

For a body with sharp trailing edge, the rear stagnation point is at the trailing edge. This is the
Kutta condition. Consider a 
at plate �2a � x � 2a, where a = c. Add a circulation of strength

� = 4�Ua sin� (5.115)

and complex potential

F =
i�

2�
ln
z

a
(5.116)

to satisfy the Kutta condition. Thus

F (�) = U

�
�e�i� +

a2

�
ei�
�
+ i2Ua sin� ln

�

a
(5.117)

Substituting equation (5.107), we get the complex potential in the z-plane.

Determing the force on the 
at plate, we �nd that

Fy = �U�l

= 4��U2al sin� (5.118)

Interms of the area A = 4al, the coeÆcient of lift is

CL =
Fy

1
2�U

2A

= 2� sin� (5.119)

Flow around a symmetrical Joukowski airfoil

This is obtained by a transformation of a circle that has its center on the real axis but displaced
from the origin, as shown in Fig. 5.3.

Flow around a circular-arc airfoil

The circle is now on the imaginary axis, but not at the origin as shown in Fig. 5.4.

Flow around a Joukowski airfoil

This is shown in Fig. 5.5.

5.10 Three-dimensional axisymmetric 
ow

Either cylindrical or spherical coordinates may be used to deal with axisymmetric problems.
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�-plane

Figure 5.3: Mapping from a circle to a symmetrical airfoil

5.10.1 Cylindrical coordinates

5.10.2 Spherical coordinates

For axisymmetric 
ow there is zero velocity and dependence in the '-drection. The vorticity vector
is thus given by

! =
1

r

�
@

@r
(ru�)� @ur

@�

�
e' (5.120)

For irrotational 
ow this is zero, so that the velocity potential is de�ned by

ur =
@�

@r
(5.121)

u� =
1

r

@�

@�
(5.122)

The mass conservation equation is

1

r2
@

@r
(r2ur) +

1

r sin �

@

@�
(u� sin �) = 0 (5.123)

This can be satis�ed by the Stokes stream function

ur =
1

r2 sin �

@ s
@�

(5.124)

u� = � 1

r sin �

@ s
@r

(5.125)
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Figure 5.4: Mapping from a circle to a circular arc

Uniform 
ow

� = Ur cos � (5.126)

 s =
1

2
Ur2 sin2 � (5.127)

ur = U cos � (5.128)

u� = �U sin � (5.129)

Source and sink

� = � m

4�r
(5.130)

 s = �m

2�
(1 + cos �) (5.131)

ur =
m

4�r2
(5.132)

u� = 0 (5.133)

Doublet

� = � �

4�r
cos � (5.134)

 s = � �

4�r
sin2 � (5.135)

ur = � �

2�r3
cos � (5.136)

u� = � �

2�r3
sin2 � (5.137)
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�-plane

Figure 5.5: Mapping from a circle to a Joukowski airfoil

Flow around a sphere

� = Ur

�
1 +

a3

2r3

�
cos � (5.138)

 s =
1

2
Ur2

�
1� a3

r3

�
sin2 � (5.139)

ur = U

�
1� a3

r3

�
cos � (5.140)

u� = �U
�
1 +

a3

2r3

�
sin � (5.141)

Problems

1. Show that the complex potential, F (z), that satis�es z = c coshF represents 
ow through an aperture.

2. Computer generate plots of the 
ow around a symmetrical Joukowsky airfoil.

3. If F 2 = U2(z2 + c2), show that the stream function satis�es

y2 =
 2
�
U2(x2 + c2) +  2

�
U2(U2x2 +  2)

and that it represents a stream of velocity U past a thin obstacle of length c projecting perpendicularly from
a straight boundary.

4. State and prove the circle theorem.

5. A source is symmetrically placed near a corner. Find the force on the walls due to potential 
ow from the
source.

6. Find the velocity and pressure �elds for 
ow over a wedge of angle �.
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Chapter 6

Incompressible viscous 
ow: exact

solutions

6.1 Flow between 
at plates

Consider 
uid between two in�nite 
at plates separated by a distance L. The coordinate system is
as shown. The lower plate is stationary while the upper one is moving with a velocity U parallel
to itself. The plates are also maintained at di�erent temperatures. Neglect gravity and assume a
steady 
ow in the x-direction, with u = u(y); v = w = 0; T = T (y). Of the governing equations,
equation (A.1) is identically satis�ed. Equations (A.3) and (A.4) become

0 = �@p
@y

(6.1)

0 = �@p
@z

(6.2)

from which we know that the pressure is a function of x alone. Let us assume that a pressure
gradient is imposed externally so that dp=dx is a known constant. Equation (A.2) becomes

0 = � dp
dx

+ �
d2u

dy2
(6.3)

Equation (A.5) simpli�es to

0 = k
d2T

dy2
+ �

 
du

dy

!2

(6.4)

6.1.1 Alternative derivation of governing equations

Consider the forces in the x-direction on an element of 
uid of dimension dx � dy as shown. They
are due to pressure on each one of the vertical faces and to shear stress at the horizontal faces. These
forces will be calculated per unit length in the z-direction. The net force due to pressure is

Fp = �dp dy = � dp
dx

dx dy (6.5)
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x

y

6

?
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T = T1

T = T0

-U

Figure 6.1: Flow between 
at plates

dy

dx

-p dy � (p+ dp) dy

-
�(y + dy)

�
�(y)

Figure 6.2: Force balance in 
ow between 
at plates

The net force due to shear stress is

F� =

"
�(y + dy)� �(y)

#
dx =

d�

dy
dy dx (6.6)

Since the 
uid element is moving at constant velocity and not accelerating, the sum of the forces on
it must be zero. Thus

Fp + F� = 0 (6.7)

from which, on dividing by dx dy, we get the momentum equation

dp

dx
+
d�

dy
= 0 (6.8)

The constitutive relation for a Newtonian 
uid, equation (3.61), gives the stress �eld as2
4 �p �dudy 0

�dudy �p 0

0 0 �p

3
5

Thus, with the present notation

� = �
du

dy
(6.9)
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dy

dx

-Wp(x) � Wp(x + dx)

?

W� (y + dy)

6

Q(y + dy)

6

W� (y)

6

Q(y)

Figure 6.3: Energy balance in 
ow between 
at plates

so that

� dp
dx

+ �
d2u

dy2
= 0 (6.10)

This is the same as equation (6.3).
Let us now consider the rate at which energy is 
owing into the 
uid element, again per unit

length in the z-direction.
There is no heat conduction through the vertical faces since the temperature does not vary in

the x-direction. The pressure, however, does work on the 
uid element.

Wp(x) = pu dy (6.11)

Wp(x+ dx) = �
"
p+

dp

dx
dx

�
u dy (6.12)

remembering that u does not vary in the x-direction and that the pressure force and velocity are in
opposite directions for Wp(x + dx). W� (y) and W� (y + dy) are the work done by the shear forces.
Referring to Fig. 6.3, we have

W� (y) = �u dx (6.13)

W� (y + dy) =

"
�u+

d(�u)

dy
dy

#
dx (6.14)

The heat 
uxes are Q(y) and Q(y + dy) where

Q(y) = �k dT
dy

dx (6.15)

Q(y + dy) =

"
� k

dT

dy
+

d

dy

 
� k

dT

dy

!
dy

#
dx (6.16)

Summing up, conservation of energy gives the relation

Q(y)�Q(y + dy) +Wp(x) +Wp(x+ dx) +W� (y) +W� (y + dy) = 0 (6.17)
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Substituting for the di�erent terms and dividing by dx dy, we get

k
d2T

dy2
� u

dp

dx
+
d(�u)

dy
= 0 (6.18)

This is the total energy equation. If we subtract u times the momentum equation (6.1.1) from this,
we have

k
d2T

dy2
+ �

du

dy
= 0 (6.19)

which is the thermal energy equation. Using equation (6.9) for the shear stress, we obtain

k
d2T

dy2
+ �

 
du

dy

!2

= 0 (6.20)

which is equation (6.4).

6.1.2 Velocity and temperature pro�les

The solution to equation (6.3) is

u(y) =
1

�

dp

dx

 
y2

2
+Ay +B

!
(6.21)

where A and B are the constants of integration. The boundary conditions are

u = 0 at y = 0 (6.22)

u = U at y = L (6.23)

The �rst condition gives B = 0. From the second we have

A =
�U

L dp=dx
� L

2
(6.24)

The velocity pro�le is

u(y) =
y

L
U � L2

2�

dp

dx

y

L

 
1� y

L

!
(6.25)

Nondimensionally

u� = � + P�(1� �) (6.26)

where the dimensionless velocity, distance and pressure gradient are

u� =
u

U
(6.27)

� =
y

L
(6.28)

P =
L2

2�U

 
� dp

dx

!
(6.29)
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respectively. The velocity of the upper plate U can be used to scale the 
uid velocity only if it
is nonzero. Otherwise, it can be some other characteristic velocity, like the mean 
ow velocity for
instance.

Substituting the velocity pro�le from equation (6.25) into the energy equation (6.4), we have

d2T

dy2
= ��

k

" 
U

L

!2

� U

�

dp

dx

 
1� 2

y

L

!
+

L2

4�2

 
dp

dx

!2 
1� 2

y

L

!2#
(6.30)

the solution to which is

T = A+By � �

k

"
1

2

 
Uy

L

!2

� Uy2

2�

dp

dx

 
1� 2y

3L

!
+
L2y2

8�2

 
dp

dx

!2 
1� 4y

3L
+

2y2

3L2

!#
(6.31)

where A and B are constants. Introducing the boundary conditions

T = T0 at y = 0 (6.32)

T = T1 at y = L (6.33)

we can evaluate A and B and get the temperature pro�le

T = T0 + (T1 � T0)
y

L
+

�U2

2k

y

L

 
1� y

L

!
� UL2

6k

p

x

y

L

 
1� 3

y

L
+ 2

y2

L2

!

+
L4

24�k

 
dp

dx

!2
y

L

 
1� 3

y

L
+ 4

y2

L2
� 2

y3

L3

!
(6.34)

In terms of nondimensional temperature T � = (T � T0)=(T1 � T0) and distance � = y=L, this
can be written as

T � = � +Br

"
1

2
�(1� �)

1

3
P�(1� 3� + 2�2) +

1

6
P 2�(1� 3� + 4�2 � 2�3)

#
(6.35)

where the Brinkman number Br = Ec Pr, with

Eckert number Ec =
U2

c(T1 � T0)
(6.36)

Prandtl number Pr =
�c

k
(6.37)

The temperature di�erence T1 � T0 can be used as a scale only if it is nonzero.

6.1.3 Couette 
ow

If no pressure gradient is imposed on the 
ow, P = 0 and the dimensionless velocity and temperature
pro�les become

u� = � (6.38)

T � = � +
1

2
Ec Pr �(1� �) (6.39)
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The maximum temperature occurs within the 
ow at � = �m where

�m =
1

2
+

1

Ec Pr
(6.40)

if 0 � � � 1. Then the maximum temperature is

T �m =
1

2

 
1 +

1

Ec Pr
+

1

8
Ec Pr

!
(6.41)

6.1.4 Poiseuille 
ow

On the other hand, if the velocity of the upper plate is zero, the 
ow is driven solely by the pressure
gradient, U = 0. The velocity pro�le is then

u(y) = �L
2

2�

dp

dx

y

L

 
1� y

L

!
(6.42)

The maximum velocity is at the center y = L=2, so that

umax =
L2

8�

dp

dx
(6.43)

The mean velocity �U is de�ned by the volume 
ow rate per unit area. In this case it is given by

�U =
1

L

Z L

0

u(y) dy (6.44)

= � L2

12�

dp

dx
(6.45)

=
2

3
umax (6.46)

Using this to get a nondimensional velocity u�, we have

u� =
u
�U

(6.47)

= 6�(1� �) (6.48)

6.1.5 Heat generation

The heat 
ux through either of the plates is �k dT=dy per unit area. For simplicity, let us consider
the Couette 
ow problem with zero dp=dx. We can write a heat balance for the control volume
shown. Since

dT

dy
=
T1 � T0
L

+
�U2

2kL

 
1� 2

y

L

!
(6.49)

we have

Q0 = �kA
 
T1 � T0

L
+
�U2

2kL

!
(6.50)

Q1 = �kA
 
T1 � T0

L
� �U2

2kL

!
(6.51)
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Figure 6.4: Heat generation in 
ow between 
at plates

where A is the cross sectional area of the control volume. So the heat generated within the control
volume is

QG = Q1 �Q0 (6.52)

=
�U2A

L
(6.53)

This is due to the work done on the 
uid by the shear stress. There is no pressure work; also there
is no work done at the lower plate due to shear stress since the 
uid velocity there is zero. The rate
of work done at the upper plate is

W = AU�

�����
y=h

(6.54)

=
�U2A

L
(6.55)

which is converted into heat.

6.2 Flow between coaxial rotating cylinders

Fluid is contained within two in�nitely long cylinders as shown in Fig. 6.5. The inner and outer
cylinders have radii r0 and r1, rotate counterclockwise at angular speeds of !0 and !1, and are kept at
temperatures T0 and T1, respectively. We use cylindrical coordinates with the velocity components
ur = uz = 0; u� = u�(r), the pressure p = p(r), and the temperature T = T (r). Gravity is neglected.

The continuity equation (A.6) is identically satis�ed. Equations (A.6) - (A.6) give

�

 
� u2�

r

!
= �dp

dr
(6.56)

0 = �

"
1

r

@

@r

 
r
@u�
@r

!
u�
r2

#
(6.57)

0 = k

"
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(6.58)
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Equation (6.57) can be simpli�ed to

d2u�
dr2

+
d

dr

 
u�
r

!
= 0 (6.59)

On integrating twice, we have

u� = Ar +
B

r
(6.60)

where A and B are constants. The boundary conditions are

u� = !0r0 at r = r0 (6.61)

u� = !1r1 at r = r1 (6.62)

The constants can be determined to give the velocity pro�le

u� =
1

r21 � r20

"
(!2

1r
2
1 � !2

0r
2
0)r � (!1 � !0)

r20r
2
1

r

#
(6.63)

The pressure distribution from equation (6.56) is

p = p0 +
�

(r21 � r20)
2

"
(!2

1r
2
1 � !2

0r
2
0)

2 r
2

2
(6.64)

� 2(!1 � !0)(!
2
1r

2
1 � !2

0r
2
0) ln r � (!1 � !0)

2 r
4
0r

4
1

4r

#
(6.65)

where p0 is a constant of integration.
The temperature distribution

T � T0
T1 � T0

= Br
r41(1� !1=!0)

r41 � r40

 
1� r20

r2

!"
1� ln(r=r0)

ln(r1=r0)

#
+

ln(r=r0)

ln(r1=r0)
(6.66)
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is obtained by solving equation (6.58). The Brinkman number is given by

Br =
�r20!

2
0

k(T1 � T0)
(6.67)

6.3 Flow in a circular pipe

Flow is through a long pipe with a pressure gradient dp=dz as in Fig. 6.6. We neglect gravity and
let uz = uz(r); ur = u� = 0. The continuity equation (A.6) is identically satis�ed. Equations
(A.6){(A.6) reduce to

0 = �@p
@r

(6.68)

0 = �1

r

@p

@q
(6.69)

so that p = p(z) only. Equations (B.7) and (B.8) become

0 = �dp
dz

+ �

"
1

r

d

dr

 
r
duz
dr

!#
(6.70)

The solution of this equation is

uz =
R2

�

 
� dp

dz

!"
� 1

4

 
r

R

!2

+A ln

 
r

R

!
+B

#
(6.71)

At the centerline the velocity must be �nite, so that A = 0. The other condition is that

uz = 0 at r = R (6.72)

After calculating B, we obtain the velocity pro�le as

uz =
1

4�

 
� dp

dz

! 
R2 � r2

!
(6.73)
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The maximum velocity Umax is at the centerline r = 0, where

Umax =
R2

4�

 
� dp

dz

!
(6.74)

The mean velocity is

�U =
1

�R2

Z R

0

uz2�r dr (6.75)

=
R2

8�

 
� dp

dz

!
(6.76)

=
1

2
Umax (6.77)

so that

uz = 2�U

 
1� r2

R2

!
(6.78)

Equation (6.71) can be written as

k

"
1

r

@

@r

 
r
@T

@r

!#
= �16� �U2r2

R4
(6.79)

6.3.1 Isothermal wall

The wall is at a constant temperature T0. Since T = T (r), the energy equation becomes

0 = k

"
1

r

d

dr

 
r
dT

dr

!#
+ �

 
duz
dr

!2

(6.80)

Integrating, and using the conditions that T is �nite at r = 0, and T = T0 at r = R, we get

T = T0 +
� �U2

k

 
1� r4

R4

!
(6.81)

6.4 Flow over a porous wall

A uniform 
ow of velocity U exists over a porous wall as shown in Fig. 6.7. There is suction
through the porous wall resulting in a normal velocity of V . The pressure p is constant. The two-
dimensional velocity �eld is of the form u = u(y). From the continuity equation @v=@y = 0, so that
V is independent of y. Since v = �V at y = 0, it is v = �V everywhere. The x-momentum equation
is

��V du
dy

= �
d2u

dy2
(6.82)

with boundary conditions

u = 0 at y = 0 (6.83)

u = U at y !1 (6.84)
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Figure 6.7: Flow over a porous wall

The solution is
u = U(1� e�V y=�) (6.85)

where the kinematic viscosity � = �=�.

6.5 Natural convection between vertical 
at plates

In natural convection, body forces due to changes in density are taken into account. For a small
change in the temperature, the following linear relationship may be used

� = �0

"
1� �(T � T0)

#
(6.86)

where � is the coeÆcient of volumetric expansion, and �0 is the density at the reference temperature
T0. Under the Boussinesq approximation we keep the properties of the 
uid constant, but use a
variable density only in the body force term of the momentum equation. Viscous dissipation may
usually be neglected.

A simple solution is obtained for the case of fully developed 
ow between 
at plates at di�erent
temperatures as shown in Fig. 6.8. The reference temperature is taken to be the average of the two.
The pressure gradient is hydrostatic, i.e. dp=dx = �0g.

For u = u(y); v = w = 0; T = T (y), the governing equations are

0 = �
d2u

dy2
+ �0g�(T � T0) (6.87)

0 = k
d2T

dy2
(6.88)

with boundary conditions

u = 0; T = T0 ��T at y = �L (6.89)

u = 0; T = T0 +�T at = L (6.90)

Solutions are

u =
�0g��TL

2

6�

y

L

 
y2

L2
� 1

!
(6.91)

T = T0 +
y

L
�T (6.92)
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Nondimensionally, if

u� =
�0Lu

�
(6.93)

T � =
T � T0
�T

(6.94)

� =
y

L
(6.95)

then

u� =
Gr

6
�(�2 � 1) (6.96)

T � = � (6.97)

where the Grashof number is Gr = g��TL3=�2.

Problems

1. A 5 cm diameter shaft rotates at 3000 rpm within a bearing of length 5 cm. The clearance is 0.1 mm and �lled
with oil of viscosity 0.01 N s/m2. Approximating the 
ow of oil to be that between 
at plates, �nd the rate of
heat generation within the bearing.

2. For Poiseuille 
ow between 
at plates, �nd the principal axes of the stress tensor at one of the plates.

3. For Couette 
ow between 
at plates, we can de�ne the Nusselt number as Nu = hcL=k, where qwall =
hc(T1 � T0). Find the Nusselt numbers at the walls in terms of the Brinkman number.

4. Find the stress and strain rate tensors for the problem of 
ow between rotating cylinders.

5. Fluid of viscosity � is contained in the small gap of width Æ, between two cones. Find the torque necessary to
rotate the inner cone at an angular velocity 
, keeping the outer one stationary. Find also the heat generated
within the 
uid. Use a 
at plate approximation for the 
ow in the gap.
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6. An incompressible Newtonian liquid 
ows down an in�nite vertical plane in a �lm of constant thickness Æ under
the action of gravity. Determine the velocity pro�le, and write the simpli�ed di�erential equation governing
the temperature pro�le.

7. Using a force balance on the elemental volume shown, derive equation (6.70).

8. Two porous plates are separated by a distance 2L; the 
ow through each plate is as indicated. The 
ow is
driven by a constant pressure gradient dp=dx. Find the velocity �eld.

9. Show that the volume 
ow rate Q for laminar 
ow in a circular pipe is given by

Q =
�R4

8�

 
� dp

dx

!

10. The 
ow rate of glycerine through the apparatus shown is measured to be 0.66 cm3/min. Given that the
density of glycerine is 1260 kg/m3, determine its viscosity.

11. Determine the wall shear stress �w and the coeÆcient of friction corresponding to this, Cf = �w=
1
2
�U2, for


ow over an in�nite porous wall with suction.

12. SAE 30 motor oil (thermal conductivity = 0.145 W/m K) occupies the space between two parallel plates which
are kept at 20ÆC and 2 mm apart. One plate is stationary, while the other is moving parallel to itself at 20
m/s. What is the maximum temperature in the oil?

13. A 5 cm diameter shaft rotates at 3000 rpm within a bearing of length 5 cm. The clearance is 0.1 mm and
�lled with SAE 30 motor oil (thermal conductivity = 0.145 W/m K). Approximating the 
ow of oil to be that
between 
at plates, �nd the maximum temperature in the oil if the shaft and bearing are both kept at 20ÆC.

14. Show, by taking the curl of the two-dimensional momentum equation for an incompressible Newtonian 
uid,
that

D�

Dt
= �r2�

where � is the magnitude of the vorticity normal to the plane of the 
ow.

15. Determine the velocity and temperature pro�les in the pressure-driven 
ow in the annular space between two
long cylinders.

16. A viscous, incompressible liquid between two in�nite, parallel plates falls due to gravity alone. Find the velocity
pro�le.

91



17. Two vertical, porous plates are separated by a distance 2L; the 
ow through each plate, U , is to the right.
The left and right plates have temperatures T0 ��T and T0 +�T , respectively. The 
ow is driven by natural
convection. Neglect viscous dissipation.

(a) Find the simpli�ed equations for the velocity and temperature �elds.

(b) Solve the temperature �eld.

(c) Solve the velocity �eld in terms of constants of integration. Indicate how you would determine the constants.

18. An incompressible, viscous 
uid occupies the annular space between two in�nite concentric cylinders. The
inner cylinder of radius r1 is pulled in an axial direction with constant velocity U , while the outer one of radius
r2 is stationary. Find the velocity pro�le in the 
uid.

19. Find the velocity �eld in a layer of liquid of constant thickness 
owing down an inclined plane due to gravity.

20. Find the heat dissipation rate for a journal bearing carrying a 150 mm diameter shaft rotating at 720 rpm.
The bearing is 200 mm long and there is an average 0.15 mm clearance between the shaft and the bearing.
Lubrication is by turbine oil of viscosity 0.0012 Ns/m2. Assume Couette 
ow in the clearance.

21. Find the fully developed velocity �eld in an axisymmetric �lm of liquid 
owing down due to gravity outside a
vertical, circular rod. The radius of the rod is a, and the �lm thickness is Æ.
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Chapter 7

Incompressible viscous 
ow:

negligible inertia

7.1 Stokes's 
ow

At low Reynolds numbers, the inertia forces may be neglected. Under steady 
ow conditions then,
we have

div u = 0 (7.1)

� grad p+ �r2u = 0 (7.2)

This is a linear set of equations. On taking the divergence of the momentum equation, and using
the mass conservation equation, we have

r2p = 0 (7.3)

On taking the curl, however, we have

r2
! = 0 (7.4)

since the curl of any gradient is zero, and ! = curl u.

7.2 Uniform 
ow past a sphere

The governing equations (7.1) and (7.2) can be solved analytically for steady uniform 
ow around
a sphere, as shown in Fig. 7.1. In a mixture of spherical and Cartesian coordinates

u = U

�
3

4

ax2

r3

�
a2

r2
� 1

�
1

4

a

r

�
3 +

a2

r2

�
+ 1

�
(7.5)

v = U
3

4

axy

r3

�
a2

r2
� 1

�
(7.6)

w = U
3

4

axy

r3

�
a2

r2
� 1

�
(7.7)

p� p0 = �3

2

�Uax

r3
(7.8)

93



a

U
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where
r2 = x2 + y2 + z2 (7.9)

This velocity �eld is zero at r = a, and becomes u = U; v = w = 0 at r !1.
The drag due to the pressure is 2��aU , and that due to viscous stress is 4��aU . The total drag

force Fd on the sphere is thus
Fd = 6��aU (7.10)

This result is valid only for small Reynolds number Re = �U(2a)=� < 1.

7.3 Lubrication theory

Fluid is contained within the space between two surfaces sliding against each other as in Fig. 7.2.
The lower surface has a horizontal motion of velocity U ; the upper one which is slightly inclined is
stationary. The 
ow is mostly in the x-direction so that v � u. Since w = 0 from two-dimensionality,
the y- and z-momentum equations are negligible compared to the x-momentum equation. Thus,
p = p(x). The viscous terms in the x-momentum equation are of order �@2u=@y2 � �U=h2, the
other viscous terms being smaller since @2u=@x2 � @2u=@y2. The inertia term is of order �u@u=@x �
�U2=a. The ratio, called a reduced Reynolds number Re� = (�Ua=�)(h2=a2), is normally small in
lubrication problems so that inertia can be neglected altogether.

So the x-momentum equation becomes

dp

dx
= �

@2u

@y2
(7.11)
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Since the gradient dp=dx is a function of x, this can be integrated twice to give

u =
1

2�

dp

dx
y2 +A(x)y +B(x) (7.12)

The boundary conditions to be applied are

y = 0; u = U (7.13)

y = h(x); u = 0 (7.14)

so that we get

u = U

�
1� y

h(x)

�
� 1

2�

dp

dx
y (h(x) � y) (7.15)

The continuity equation can be written as

Q =

Z h(x)

0

u dy (7.16)

where Q, the volume 
ow rate per unit length, is a constant. From this

Q =
h

2

�
U � h2

6�

dp

dx

�
(7.17)

At both ends, x = 0 and x = a, the pressure must be atmospheric. Integrating this equation, and
using the �rst condition at x = 0, we have

p = p0 + 6�U

Z x

0

1

h(x)2
dx� 12�Q

Z x

0

1

h(x)3
dx (7.18)

The condition at the other end x = a gives

Q =
1

2
UH (7.19)

where the characteristic thickness H is given by

H =

R a
0

1
h(x)2 dxR a

0
1

h(x)3 dx
(7.20)

Per unit length the total force on the lower surface has the two components

Fx = �
Z a

0

�

�
@u

@y

������
y=0

dx (7.21)

Fy =

Z a

0

p(x) dx (7.22)

95



7.4 Flow in porous media

The continuity equation for incompressible 
ow in a porous medium is

div u = 0 (7.23)

For the momentum equation, the simplest model is that due to Darcy in which the 
ow velocity is
taken proportional to the imposed pressure gradient. Thus

u = �K
�
(grad p� �f) (7.24)

HereK is called the permeability of the medium. Thus, in the incompressible Navier-Stokes equation
with constant properties, the inertia terms are dropped and the viscous force per unit volume
is represented by �(�=K)u. The condition on the velocity is that of zero normal velocity at a
boundary, allowing for slip in the tangential direction.

From equations (7.23) and (7.24), we get

r2p = 0 (7.25)

from which the pressure distribution can be determined.
The energy equation is

�f cf

�
�
@T

@t
+ u � grad T

�
= ke�r2T (7.26)

where ke� is the e�ective thermal conductivity of the porous medium, and

� =
��f cf + (1� �)�scs

�f cf
(7.27)

Subscripts f and s refer to the 
uid and solid respectively, and � is the porosity of the material.

Problems

1. A 2 mm diameter stainless steel ball (density = 8000 kg/m3) is dropped in glycerine (viscosity = 0.8 Ns/m2).
Find the terminal velocity of the ball, i.e. the velocity reached after the initial transient has died down.

2. In the lubrication problem, �nd the components of the force on the moving lower plate if the gap is h(x) = b�cx
for 0 � x � a, where a < b=c, b > 0, c > 0.

3. For Stokes 
ow around a sphere, show that the drag coeÆcient is given by Cd = 24=Re, where Cd =
Fd=(�R

2 1
2
�U2); Re = 2�UR=�.

4. Find the terminal velocity of fall in air of a 10 mm diameter aluminum particle. Density of aluminum = 2700
kg/m3, density of air = 1.2 kg/m3, viscosity of air = 1:9 � 10�5 Ns/m2. Check that the Reynolds number is
small enough for Stokes 
ow.

5. Show that the velocity and pressure �elds given by equation (7.5){(7.8) are solutions of the governing equations
(7.1) and (7.2).

6. In the lubrication problem, show that the special case of a wedge-like shape with h(x) = b(c � x), gives

H = 2bc(c� a)=(2c � a). Find the force per unit length
R a
0
p(x) dx.

7. If the entrance and exit gap widths for the previous problem are h1 and h2 respectively, show that H =
2h1h2=(h1 + h2). Find the pressure distribution, the pressure and the viscous forces.

8. A glass-�ber porous �lter is placed within a duct with a square section 30 cm � 30 cm. If the permeability of
the �lter is 0:5� 10�9 m2, �nd the pressure drop for 0.2 m3/s of air 
ow through the �lter. Viscosity of air =
1:9� 10�5 N s/m2.
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9. Find the radial volume 
ow rate of 
uid through an annular porous material. The inner and outer pressures are
known. Find also the temperature distribution if the inner and outer surfaces are kept at di�erent temperatures.

10. Show that r2p = 0 for 
ow of an incompressible 
uid through a porous medium.

11. A viscous 
uid occupies the space between an upper plate of shape h(x) = a=(1 + bx) and a 
at lower plate
moving with velocity U , where a, b and U are constants. Given that U = 5 m/s, � = 0.01 Ns/m2 and the
distances h1 = 2 mm, h2 = 1 mm, L = 10 cm, �nd (a) the characteristic thickness, and (b) the pressure
distribution.

12. A cylindrical, compressed-air tank (inner radius a, outer radius b, length L) leaks air (viscosity �, density
�) through its cylindrical, porous walls to the atmosphere. If the permeability of the wall is K, �nd the air
pressure, p(t), in the tank as a function of time. Assume an ideal gas law for the air and isothermal conditions.

13. Estimate the net pressure force on a shaft rotating at speed ! in a journal bearing. The shaft radius is a, the
bearing radius is a+ Æ, and the distance between the shaft and bearing centers is �. Assume that Æ=a � 1, and
make any related approximations.
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Chapter 8

Incompressible viscous 
ow: 
at

plate boundary layer

8.1 Prandtl boundary layer equations

For high Reynolds number, the entire 
ow region can be divided into two parts for hydrodynamic
analysis: an outer region where the e�ect of viscosity is not important, and an inner region near
boundaries and solid walls where it is. This is shown in Fig. 8.1 The viscous region is called a
hydrodynamic boundary layer. A similar division can be made for thermal analysis, as shown in
Fig. 8.2. The region near a solid wall where temperature gradients are steep and conduction is
important is the thermal boundary layer. Outside this region conduction e�ects can be neglected.

We take the leading edge of the plate to be the origin of coordinates, with x being along and
y normal to the plate. The thicknesses of the layers Æ(x) and ÆT (x) have been exaggerated in the
�gure. For large Reynolds number, they are usually very thin, so that we can make the following
approximations within the boundary layers: v � u; @=@x � @=@y. Under these conditions, the
governing equations can be simpli�ed.

According to the y-momentum equation, the pressure does not depend on y. The pressure p(x)
is thus determined by the 
uid mechanics outside the boundary layer where viscous e�ects are not
important. Using the Bernoulli equation, we have

�1

�

@p

@x
= U

dU

dx
(8.1)

where U(x) is the free-stream velocity outside the boundary layer.
The boundary layer continuity, x-momentum, and energy equations are

@u

@x
+
@v

@y
= 0 (8.2)

u
@u

@x
+ v

@u

@y
= U

dU

dx
+ �

@2u

@y2
(8.3)

u
@T

@x
+ v

@T

@y
= �

@2T

@y2
(8.4)

Viscous dissipation has been neglected in the energy equation.
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Figure 8.2: Thermal boundary layer over a 
at plate

The boundary conditions for these equations are

u = v = 0; Tw at y = 0 (8.5)

u = U; T = T1 as y !1 (8.6)

These equations can be written in terms of a stream function  (x; y) where

u =
@ 

@y
(8.7)

v = �@ 
@x

(8.8)

satisfying the continuity equation (8.2). The x-momentum and energy equations, (8.3) and (8.4)
respectively, become

@ 

@y

@2 

@x@y
� @ 

@x

@2 

@y2
= U

dU

dx
+ �

@3 

@y3
(8.9)

@ 

@y

@T

@x
� @ 

@x

@T

@y
= �

@2T

@y2
(8.10)

with the boundary conditions

@ 

@x
=
@ 

@y
= 0; T = Tw at y = 0 (8.11)

@ 

@y
= U; T = T1 as y ! 0 (8.12)
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The thickness of the boundary layer can be de�ned in several ways. One of the most common is
Æ where u(Æ) = 0:99U . Another, the displacement thickness, is de�ned by

Æ� =

Z 1

0

�
1� u

U

�
dy (8.13)

The momentum thickness is

� =

Z 1

0

u

U

�
1� u

U

�
dy (8.14)

8.2 Blasius solution

Consider a 
at plate where the velocity U is a constant. We will have a zero pressure gradient
dp=dx = 0, so that the pressure is constant everywhere. Now let

� = y

r
U

�x
(8.15)

 =
p
�xUf(�) (8.16)

The momentum equation becomes the Blasius's equation

2f 000 + ff 00 = 0 (8.17)

with

f = f 0 = 0 at � = 0 (8.18)

f 0 = 1 as � !1 (8.19)

This problem can be integrated numerically; the results of f(�) and f 0(�) are shown in Fig. 8.3.
Since u = Uf 0, the f 0 curve also represents u=U .

According to the numerical solution u(�) = 0:99U at � = 5. Thus from equation (8.15) we have

5 = Æ

r
U

�x
(8.20)

This can be written as
Æ

x
=

5p
Rex

(8.21)

where the local Reynolds number Rex = Ux=�. The local shear stress at the wall

�wx = �
@u

@y

�����
y=0

(8.22)

can be written as

�wx = �

r
U3

�x
f 00(0) (8.23)

Since f 00(0) is numerically found to be 0.332, we can obtain the local coeÆcient of friction de�ned
by Cfx = �wx=

1
2�U

2 to be

Cfx =
0:664p
Rex

(8.24)
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Figure 8.3: Solution of Blasius's equation

Using the similarity variable �, and T = T (�), the energy equation becomes

T 00 +
1

2
Pr fT 0 = 0 (8.25)

To obtain simple boundary conditions, the temperature can be nondimensionalized as

T � =
T � Tw
T1 � Tw

(8.26)

The temperature pro�le is then given by

T �00 +
1

2
Pr fT �0 = 0 (8.27)

with the boundary conditions

T � = 0 at � = 0 (8.28)

T � = 1 as � !1 (8.29)

Again this problem can be solved numerically for a given Prandtl number. For Pr > 0:6, it is seen
that a good approximation for the slope of the temperature pro�le at the wall is

T �0(0) = 0:332 Pr1=3 for Pr > 0:6 (8.30)
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The local convective heat transfer coeÆcient may be expressed as

h(x) =
�k(@T=@y)y=0

Tw � T1
(8.31)

The local Nusselt number de�ned as Nux = h(x)x=k comes out to be

Nux = 0:332 Re1=2x Pr1=3 for Pr > 0:6 (8.32)

In addition it is found that
Æ

ÆT
= Pr1=3 for Pr > 0:6 (8.33)

8.3 Momentum integral method

Equation (8.3) can be written as
@(u2)

@x
+
@(uv)

@y
= �

@2u

@y2
(8.34)

which, on integrating across the boundary layer from y = 0 to y = Æ, becomesZ Æ

0

@(u2)

@x
dy + Uv(x; Æ) = �� @u

@y

�����
y=0

(8.35)

since u(x; Æ) = U; (@u=@y)y=Æ = 0. Integrating the continuity equation (8.2) within the same limits,
we get

v(x; Æ) = �
Z Æ

0

@u

@x
dy (8.36)

Applying the Leibnitz formula

d

dx

Z �(x)

�(x)

f(x; y) dy =

Z �(x)

�(x)

@f(x; y)

@x
dy + f(x; �)

d�

dx
� f(x; �)

d�

dx
(8.37)

we can write

d

dx

Z Æ

0

u(U � u) dy = U

"Z Æ

0

@u

@x
dy + U

dÆ

dx

#
�
"Z Æ

0

@(u2)

@x
dy + U2 dÆ

dx

#
(8.38)

Substituting equations (8.35) and (8.36) into the right hand side, we get the momentum integral
equation

d

dx

Z Æ

0

u(U � u) dy = �
@u

@y

�����
y=0

(8.39)

For an approximate solution, assume a cubic polynomial for the velocity pro�le

u

U
= a0 + a1

y

Æ
+ a2

�y
Æ

�2
(8.40)

Using the conditions

u(x; 0) = 0; u(x; Æ) = U and
@u

@y

�����
y=Æ

= 0 (8.41)
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the constants can be determined as

a0 = 0; a1 = 2 and a2 = �1 (8.42)

so that
u

U
= 2� � �2 (8.43)

where
� =

y

Æ
(8.44)

Substituting into the momentum integral equation (8.39) gives

d

dx

�
2

15
ÆU2

�
=

2�U

Æ
(8.45)

Using the initial condition Æ(0) = 0, the solution of this equation is

Æ =
p
30

r
�x

U
(8.46)

which in nondimensional form is
Æ

x
=

5:48p
Rex

(8.47)

The local coeÆcient of friction is found to be

Cfx =
0:73p
Rex

(8.48)

These can be compared with the numerical results of equations (8.21) and (8.24).

8.4 Vertical plate natural convection

Let us consider a 
at plate at temperature Tw which is higher than the temperature T1 of the
surroundings. Fluid 
ow is then upwards in the vicinity of the plate. The Boussinesq approximation
can be used for the governing equations. We make the usual boundary layer assumptions and take
u� v; @=@y� @=@x, where y is normal to the plate and x is upwards.

The boundary layer equations are

@u

@x
+
@v

@y
= 0 (8.49)

u
@u

@x
+ v

@u

@y
= �

@2u

@y2
+ g�(T � T0) (8.50)

u
@T

@x
+ v

@T

@y
= �

@2u

@y2
(8.51)

where � is the coeÆcient of thermal expansion (for example, for a perfect gas, � = 1=T , where T is
the absolute temperature.) The boundary conditions are

u = v = 0; T = Tw at y = 0 (8.52)

u = 0; T = T1 at y !1 (8.53)
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Similarity solutions can be obtained by using the variables

� =
1p
2
Gr1=4x

y

x
(8.54)

u = 2 Gr1=2x

�

x

df

d�
(8.55)

v =
1p
2
Gr1=4x

�

x

�
�
df

d�
� 3f

�
(8.56)

T � =
T � T1
Tw � T1

(8.57)

where the local Grashof number is

Grx =
�g(Tw � T1)x3

�2
(8.58)

The continuity equation (8.49) is satis�ed. The y-momentum equation (8.50) and the energy equa-
tion (8.51) become

d3f

d�3
+ 3f

d2f

d�2
� 2

�
df

d�

�2

+ T � = 0 (8.59)

d2T �

d�2
+ 3 Pr f

dT �

d�
= 0 (8.60)

The boundary conditions are

f = f 0 = 0; T � = 1 at � = 0 (8.61)

f 0 = T � = 0 as � !1 (8.62)

This problem can be numerically solved.
The local Nusselt number is

Nux = � x

Tw � T1

�
@T

@y

�
y=0

(8.63)

= � 1p
2
Gr1=4x

�
@T �

@�

�
�=0

(8.64)

Numerical computations show that the values approximate

Nux =

�
Grx Pr

2

2:435 + 4:884 Pr1=2 + 4:953 Pr

�1=4
(8.65)

Problems

1. Show that the total drag per unit length FD =
R L
0
�wx dx on a 
at plate of length L can be expressed as a

coeÆcient of drag CD = 1:328=
p
ReL.

2. Show that the average heat transfer coeÆcient h = 1
L

R L
0

h(x) dx on a 
at plate of length L can be expressed

as a Nusselt number NuL = 0:664Re
1=2
L Pr1=3 for Pr > 0:6.
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3. Using

u(x; y) = U(x)f 0(�)

v(x; y) = � @

@x

Z y

0

u(x; y) dy

where � = �(x; y) and U(x) is the inviscid x-velocity outside the boundary layer, show that the boundary layer
equations reduce to a form

f 000 + g1f
00 = g2ff

00 + g3(f
02 � ff 00 � 1)

Find g1, g2 and g3.

4. Use the momentum integral method with the velocity pro�le u = U sin(�y=2Æ) to determine Æ=x and Cfx.

5. A square 
at plate of side 30 cm, maintained at temperature 50ÆC, is exposed to a 
ow of air (density = 1.2
kg/m3, viscosity = 1:9 � 10�5 Ns/m2, Prandtl number = 0.71) at 20ÆC parallel to it. Find the drag force
on one side of the plate as well as the rate of heat transfer from it. Determine also the thicknesses of the
hydrodynamic and thermal boundary layers at the trailing edge of the plate.

6. Find the extra term in the 
at plate boundary layer problem with viscous dissipation.

7. Show that exp( 1
2
Pr
R
f(�) d�) is an integrating factor for equation (8.27). Solve for T � in terms of f(�).

8. Given T � = (T � T1)=(Tw � T1) and the similarity variables

� =
1p
2
Gr

1=4
x

y

x

f(�) =

p
2

4� Gr
1=4
x

 

where  (x; y) is the stream function, reduce the boundary layer equations (8.50){(8.53) for natural convection
in a vertical 
at plate to ordinary di�erential equations (8.59){(8.60). Transform also the boundary conditions.

9. Determine the extra term in the equation (8.60) corresponding to viscous dissipation, if it is included in the
vertical 
at plate natural convection analysis.

10. Show that the momentum integral equation corresponding to the vertical 
at plate natural convection problem
is

�g

Z Æ

0

(T � T1) dy � d

dx

Z Æ

0

u2 dy = �
@u

@y

�����
y=0

(8.66)

11. An incompressible 
uid enters the space between two 
at plates at velocity U . Estimate the distance down-
stream at which the two boundary layers meets. State your assumptions.

12. The one-seventh power law for the velocity pro�le u = U(y=Æ)1=7 is often used for a turbulent 
at plate
boundary layer. Find Æ=x and Cfx using the momentum integral. Wrong?

13. Using a cubic velocity pro�le for a laminar boundary layer over a 
at plate, �nd the boundary layer thickness.

14. In the 
at plate boundary layer problem, use the momentum integral method with a linear velocity pro�le
to determine the (a) boundary layer thickness Æ as a function of distance downstream x, and (b) the local
coeÆcient of friction.

15. Find the rate of heat transfer by natural convection from one side of a vertical 10 cm � 10 cm 
at plate which
is 10ÆC hotter than the ambient air. The coeÆcient of expansion of air � = 3:4� 10�3 K�1.
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Chapter 9

Hydrodynamic stability and

turbulence

9.1 Hydrodynamic stability

We will consider the stability of the parallel 
ow of an incompressible 
uid with constant properties.
The �eld velocity for this 
ow is u = u(y), v = w = 0, the pressure �eld is p = p(x), and the 
ow
domain is y > 0 with a wall at y = 0. For this the governing equations are

0 = �1

�

dp

dx
+ �

@2u

@y2
(9.1)

where the bars represent the basic 
ow. Let us apply small two-dimensional time-dependent pertur-
bations so that

u(x; y; t) = u(y) + u0(x; y; t) (9.2)

v(x; y; t) = v0(x; y; t) (9.3)

p(x; y; t) = p(x) + p0(x; y; t) (9.4)

where the primed quantities are small. Substitute in the governing equations, neglect terms with
products of primed terms, and use equation (9.1) to get

@u0

@x
+
@v0

@y
= 0 (9.5)

@u0

@t
+ u

@u0

@x
+ v0

du

dy
= �1

�

@p0

@x
+ �

�
@2u0

@x2
+
@2u0

@y2

�
(9.6)

@v0

@t
+ u

@v0

@x
= �1

�

@p0

@y
+ �

�
@2v0

@x2
+
@2v0

@y2

�
(9.7)

Boundary conditions on the velocity components are

u0 = v0 = 0 for y = 0 (9.8)

u0 = v0 ! 0 for y !1 (9.9)
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Using the perturbation stream function de�ned by

u0 =
@ 

@y
(9.10)

v0 = �@ 
@x

(9.11)

(9.12)

and eliminating p0, we get�
@

@t
+ u

@

@x

��
@2 

@x2
+
@2 

@y2

�
� d2u

dy2
@ 

@x
= �

�
@4 

@x4
+ 2

@4 

@x2@y2
+
@4 

@y4

�
(9.13)

We make a normal mode expansion of the form

 (x; y; t) = 	(y)ei�(x�ct) (9.14)

where � is real and c = cr + ici is complex quantity. Thus we can write

 (x; y; t) = 	(y)e�citei�(x�crt) (9.15)

Physically, 	 is the amplitude of the perturbation wave, ci is its temporal growth rate, � is its wave
number, and �cr is its frequency.

With these variables we get the Orr-Sommerfeld equation

(u� c)

�
d2	

dy2
� �2	

�
� d2u

dy2
	 =

�

i�

�
d4	

dy4
� 2�2

d2	

dy2
+ �4	

�
(9.16)

Boundary conditions are

	 =
d	

dy
= 0 for y = 0 (9.17)

	 =
d	

dy
! 0 for y !1 (9.18)

The problem can be nondimensionalized using

u� =
u

U
(9.19)

c� =
c

U
(9.20)

	� =
	

UL
(9.21)

�� = �L (9.22)

y� =
y

L
(9.23)

where the velocity scale is U and the length scale is L. The nondimensional Orr-Sommerfeld equation
is

(u� � c�)

�
d2	�

dy�2
� ��2	�

�
� d2u�

dy�2
	� =

1

i�Re

�
d4	�

dy�4
� 2��2

d2	�

dy�2
+ �4	�

�
(9.24)
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where

Re =
UL

�
(9.25)

and with

	� =
d	�

dy�
= 0 for y� = 0 (9.26)

	� =
d	�

dy�
! 0 for y� !1 (9.27)

From equation (9.15) we see that the imaginary part of c� determines the stability of the 
ow; if
the imaginary part is negative it is stable, but if it is positive it is unstable. For a given 
ow �eld
u�(y) and values of �� and Re, we have an eigenvalue problem for the determination of c� that will
satisfy the boundary conditions. This is usually done numerically.

9.2 Turbulence

At low Reynolds number a 
ow is usually laminar. As Re is increased, it becomes unstable and
disturbances whicha re naturally present begin to grow. For higher Re, the 
ow becomes turbulent
with \random" 
uctuations of the velocity and pressure �elds.

For fully turbulent 
ow we can write the velocty and pressure �elds as

ui = ui + u0i (9.28)

p = p+ p0 (9.29)

where the bars indicate the time-averaged value and the primes the 
uctuationg components. Note
that the time average of the primed quantities is zero.

Substituting into the governing equations for an incompressible 
uid with constant properties

@ui
@xi

= 0 (9.30)

�

�
@ui
@t

+ uj
@ui
@xj

�
= � @p

@xi
+ �

@2ui
@xj@xj

(9.31)

and averaging over time, we get

@ui
@xi

= 0 (9.32)

�

�
uj
@ui
@xj

�
= � @p

@xi
+

@

@xj

�
�
@ui
@xj

� �u0iu
0
j

�
(9.33)

which resemble the equations for steady laminar 
ow in the time-averaged quantities except for the
additional stress term ��u0iu0j due to turbulence which is called the Reynolds stress. Additional
equations must be introduced for these terms before the governing equations can be solved. One
common method is to model it as

�u0iu0j = �

�
@ui
@xj

+
@uj
@xi

�
(9.34)

where � is called the eddy viscosity.
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There are various turbulence models for determining �. For example, one of them is the mixing
length theory of von K�arm�an for 
ow next to a wall which proposes that

� = ��2y2
����dudy

���� (9.35)

where � = 0:41.

Problems

1. For turbulent 
ow of an incompressible 
uid with constant properties, show that the Navier-Stokes equation
becomes

�

�
uj
@ui

@xj

�
= � @p

@xi
+

@

@xj

�
�
@ui

@xj
� �u0iu0j

�
where the overbars indicate a time average.

2. Show the following for the problem of two-dimensional stability of inviscid parallel 
ow between 
at plates.

-
6

x

y

(a) For the velocity �eld u = U(y) +u0(x; y; t), v = v0(x; y; t), w = 0, neglect the products of primed quantities
and show from the governing equations that�

@

@t
+ U

@

@x

�
r2v0 � d2U

dy2
@v0

@x
= 0

with v0 = 0 at y = 0; 1, where 1 is the distance between the plates.

(b) Substitute

v0(x; y; t) = v̂(y)ei�(x�ct)

where � is real, and v̂ and c are complex. Show that

(U � c)

�
d2v̂

dy2
� �2v̂

�
� d2U

dy2
v̂ = 0

with v̂ = 0 at y = 0; 1.

(c) Divide by U�c, multiply by the complex conjugate v̂�, integrate by parts, and use the boundary conditions
to show that Z 1

0

����dv̂
dy

���2 + �2 jv̂j2
�

dy +

Z 1

0

d2U

dy2
jv̂j2
U � c

dy = 0

(d) Show that the imaginary part of this is

ci

Z 1

0

d2U

dy2
jv̂j2

(U � cr)2 + c2i
dy = 0

where c = cr + ici, which can only be satis�ed if d2U=dy2 changes sign in the interval y = 0; 1.
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Chapter 10

Compressible 
ow in gases

10.1 Basic equations

10.1.1 Equations of state for real gases

Perfect or ideal gas

p = �RT (10.1)

Van der Waals

p =
RT
1
� � b

� a�2 (10.2)

Redlich-Kwong

p =
RT
1
� � b

� a�2

(1 + b�)T 1=2
(10.3)

Virial equation

p = �RT + a(T )�2 + b(T )�3 + : : : (10.4)

Beattie-Bridgeman

p = �2RT

�
1

�
+ b

�
(1� �)�A�2 (10.5)

Berthelot

p =
�RT

1� b�
� a�2

T
(10.6)
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10.1.2 Thermodynamics of perfect gases

We will assume for the most part that the 
ow is that of a (thermally) perfect gas which satis�es
the relation

p = �RT (10.7)

where R is the particular gas constant.
The speci�c internal energy e and speci�c enthalpy h = e+ p=� are given by

de = cv dT (10.8)

dh = cp dT (10.9)

where cv and cp are the speci�c heats at constant volume and constant pressure respectively. The
di�erence is

cp � cv = R (10.10)

and the ratio is
cp
cv

= 
 (10.11)

From these

cp =

R


 � 1
(10.12)

cv =
R


 � 1
(10.13)

In this chapter the speci�c heats will be taken to be constant (i.e. calorically perfect gas). Thus the
integrated versions of equations (10.8) and (10.9) are

e2 � e1 = cv(T2 � T1) (10.14)

h2 � h1 = cp(T2 � T1) (10.15)

The thermodynamic properties are related by the Gibbs equations

T ds = de� p

�2
d� (10.16)

= dh� dp

�
(10.17)

Changes in speci�c entropy are determined from

ds = cv
dT

T
� R

d�

�
(10.18)

= cp
dT

T
�R

dp

p
(10.19)

which can be integrated to give

s2 � s1 = cv ln
T2
T1
�R ln

�2
�1

(10.20)

= cp ln
T2
T1
� R ln

p2
p1

(10.21)
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Figure 10.1: One-dimensional 
ow

For an isentropic process s2 � s1 = 0, from which

T2
T1

=

�
�2
�1

�
�1

(10.22)

T2
T1

=

�
p2
p1

�(
�1)=


(10.23)

p2
p1

=

�
�2
�1

�

(10.24)

10.2 One-dimensional steady 
ow equations

Consider the 
ow of a compressible 
uid through a variable area duct. Take a control volume
as indicated in Fig. 10.1 where the conditions upstream and downstream are shown. The one-
dimensional governing equations for steady 
ow conditions in a �nite control volume can be written
as follows.

Mass:

_m = �1u1A1 = �2u2A2 (10.25)

Momentum: X
F = _m(u2 � u1) (10.26)

Energy:

_Q+ _W + _m

�
h1 +

u21
2
� h2 � u22

2

�
= 0 (10.27)

where the subscripts 1 and 2 denote quantities at the inlet and outlet of the control volume, respec-
tively;

P
F is the sum of all forces on the control volume including pressure and frictional forces; _m

is the mass 
ow rate through the duct; _Q and _W are the heat 
ow rate and work 
ow rate to the
control volume.
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10.2.1 Di�erential form

Di�erential relations can also be written for an in�nitesimal control volume. In this case �1 = �,
u1 = u, p1 = p and A1 = A at section 1, and �2 = �+d�, u2 = u+du, p2 = p+dp and A2 = A+dA
at section 2.

The mass conservation equation is

uA d�+ �A du+ �u dA = 0 (10.28)

where products of di�erentials have been neglected. Dividing by �uA, we have

d�

�
+
du

u
+
dA

A
= 0 (10.29)

This could also have been obtained by taking the logarithm of �uA = constant, and di�erentiating.
In the momentum equation the forces areX

F = pA+ (p+
dp

2
) dA� (p+ dp)(A+ dA) � �wP dx (10.30)

P is the perimeter of the section and �w is the shear stress at the wall. The pressure on the lateral
surface is assumed to be p+ dp=2. The wall shear stress is often approximated by

�w =
1

8
f�u2 (10.31)

where f is the Darcy friction factor that is a function of the local Reynolds number and wall
roughness. Thus, the momentum equation is

dp+ �u du+ f
�u2

2Dh
dx = 0 (10.32)

where products of di�erentials have been neglected again. Dh is the hydraulic diameter of the duct
de�ned by Dh = 4A=P .

In the energy equation, we neglect work transfer _W and write the heat transfer rate as _Q = q0 dx,
where q0 is the heat in
ow per unit length. Thus

� q
0

_m
dx+ dh+ u du = 0 (10.33)

where _m = �uA.

10.2.2 Constant area without friction, heat or work transfer

If the area is constant, the mass conservation equation (10.25) is

�1u1 = �2u2 (10.34)

The constant area momentum equation (10.26) without friction at the wall becomes

p1 + �1u1 = p2 + �2u2 (10.35)

Without heat and work transfer the energy equation (10.27) reduces to

h1 +
u21
2

= h2 +
u22
2

(10.36)
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(a) Moving wave
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(b) Fixed wave

Figure 10.2: Pressure wave

10.3 Speed of sound

Consider the propagation of a small pressure, temperature, density, etc. disturbance with a velocity
c. The equations of conservation can be easily written if we consider the steady problem in a frame
moving with the wave as shown in Fig. 10.2.

The mass conservation equation (10.25) is

�cA = (�+ Æ�)(c� Æu)A (10.37)

where A is the cross-sectional area. Thus

Æu = c
Æ�

�+ Æ�
(10.38)

The momentum equation (10.26) is

pA� (p+ Æp)A = �Ac [(c� Æu)� c] (10.39)

from which
Æp = �c Æu (10.40)

Combining equations (10.38) and (10.40)

c2 =
Æp

Æ�

�
1 +

Æ�

�

�
(10.41)

As Æ�! 0, we have

c =

s
dp

d�
(10.42)
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(b) supersonic case

Figure 10.3: Propagation of sound

This is the speed of an in�nitesimal pressure wave, commonly termed an acoustic wave or sound.

For an isentropic process

p = constant �
 (10.43)

from which dp=d� = constant 
�
�1 = 
p=�. Thus

c =

r

p

�
(10.44)

=
p

RT (10.45)

For air at 20ÆC, c = 343:2 m/s. Equation (10.42) can be directly used for liquids or solids; typical
values are c = 1400 m/s for water, and c = 6000 m/s for steel.

A sound pattern from a moving source depends on whether it is moving faster (supersonic) or
slower than the speed of sound (subsonic). Figures 10.3 (a) and (b) represent the position at an
instant of time of the spherical wave fronts emitted when the source was at di�erent points along
its line of travel. A is the current position of the source, B its position a time �t ago, and BC the
radius of the wave front which grew from B. Thus, if U is the speed of the source, AB = U �t and
BC = c �t. In the supersonic case, the sound is kept con�ned to a Mach cone, the half angle of
which is � = 6 CAB, where

sin� =
c

U
(10.46)

=
1

M
(10.47)

where the Mach number M = U=c.
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10.4 Stagnation and critical properties

The thermodynamic properties obtained on reducing the velocity of a 
ow through a frictionless,
adiabatic process are de�ned as the stagnation properties (indicated by the subscript 0). Thus, in
the case of enthalpy

h0 = h+
u2

2
(10.48)

The stagnation temperature is given by

T0 = T +
u2

2cp
(10.49)

To write this in terms of the Mach number

T0
T

= 1 +

 � 1

2
M2 (10.50)

since u2=cpT = u2(
 � 1)=
RT = (
 � 1)u2=c2 = (
 � 1)M2.
In addition, because the process is isentropic

p0
p

=

�
T0
T

�
=(
�1)

=

�
1 +


 � 1

2
M2

�
=(
�1)

(10.51)

�0
�

=

�
T0
T

�1=(
�1)

=

�
1 +


 � 1

2
M2

�1=(
�1)

(10.52)

Critical properties (indicated by *) are those obtained when the 
ow is accelerated or decelerated
to sonic velocity in an isentropic manner. At M = 1, equations (10.50), (10.51) and (10.52) become

T0
T �

=

 + 1

2
(10.53)

p0
p�

=

�

 + 1

2

�
=(
�1)

(10.54)

�0
��

=

�

 + 1

2

�1=(
�1)

(10.55)

10.5 Normal shocks

Consider Fig. 10.2 (b) in which the wave is of large amplitude, i.e. Æp, Æ�, ÆT and Æu are not
necessarily small. In the absence of heat and work transfer, equations (10.27) and (10.48) indicate
that the stagnation enthalpy and hence stagnation temperature are the same on either side of the
shock. Thus

T01 = T02 (10.56)
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Using equation (10.50)
T2
T1

=
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

(10.57)

Since T2=T1 = (�1=�2)(p2=p1) = (u2=u1)(p2=p1) = (M2=M1)(p2=p1)
p
(T2=T1), we have

p2
p1

=
M1

M2

s
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

(10.58)

Also, since �2=�1 = (p2=p1)(T1=T2),

�2
�1

=
M1

M2

s
2 + (
 � 1)M2

2

2 + (
 � 1)M2
1

(10.59)

For the stagnation pressures
p02
p01

=

�
p02=p2
p01=p1

�
p2
p1

(10.60)

so that
p02
p01

=
M1

M2

�
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

�(
+1)=[2(
�1)]

(10.61)

Since �u2 = (p=RT )u2 = 
pu2=c2, the momentum equation (10.35) reduces to

p1 + 
p1M
2
1 = p2 + 
p2M

2
2 (10.62)

from which
p2
p1

=
1 + 
M2

1

1 + 
M2
2

(10.63)

Combining with equation (10.58)

M1

p
2 + (
 � 1)M2

1

1 + 
M2
1

=
M2

p
2 + (
 � 1)M2

2

1 + 
M2
2

(10.64)

This can be solved to give either M1 =M2 (no shock) or

M2 =

s
2 + (
 � 1)M2

1

2
M2
1 � (
 � 1)

(10.65)

Equation (10.65) can be substituted into equations (10.57){(10.61) to get T2=T1, p2=p1, �2=�1
and p02=p01 in terms of either M1 or M2. Thus, we have

p2
p1

= 1 +
2



 + 1

�
M2

1 � 1
�

(10.66)

�2
�1

=
(
 + 1)M2

1

(
 � 1)M2
1 + 2

(10.67)

The shock is a process with entropy change. Equations (10.20) and (10.21) can be reduced to

s2 � s1
R

=




 � 1
ln

�
2 + (
 � 1)M2

1

(
 + 1)M2
1

�
+

1


 � 1
ln

�
2
M2

1 � (
 � 1)


 + 1

�
(10.68)

Figure 10.4 shows that s2 � s1 < 0 if M1 < 1, which would violate the second law of thermody-
namics. So a subsonic to supersonic shock is not physically possible.
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Figure 10.4: Entropy change as function of incoming Mach number

10.6 Oblique shocks

Figure 10.5 shows an oblique shock in which the 
ow is de
ected through an angle Æ. The tangential
velocity is the same on either side of the shock, so that

u1 cos� = u2 cos(� � Æ) (10.69)

The normal velocity undergoes a shock as described in the previous section. We can use the normal
shock relations as long as we substitute M1 sin� for the Mach number on the upstream side and
M2 sin(� � Æ) on the downstream side. Thus

�2
�1

=
(
 + 1)M2

1 sin
2 �

(
 � 1)M2
1 sin

2 � + 2
(10.70)

From continuity
�1u1 sin� = �2u2 sin(� � Æ) (10.71)

and equation (10.69) we get
�2
�1

=
tan�

tan(� � Æ)
(10.72)

Equating the two expressions for �2=�1 and simplifying, we get

M2
1 =

2 cos(� � Æ)

sin� [sin(2� � Æ)� 
 sin Æ]
(10.73)
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Figure 10.5: Oblique stationary shock

For given M1 and Æ, two values of � are possible. One is called a strong shock and the other a
weak shock.

The downstream Mach number is

M2 =
1

sin(� � Æ)

s
2 + (
 � 1)M2

1 sin
2 �

2
M2
1 sin

2 � � (
 � 1)
(10.74)

The pressure, density, temperature, stagnation temperature and stagnation pressure ratios are
given by

p2
p1

= 1 +
2



 + 1

�
M2

1 sin
2 � � 1

�
(10.75)

�2
�1

=
(
 + 1)M2

1 sin
2 �

(
 � 1)M2
1 sin

2 � + 2
(10.76)

T2
T1

=
�
2 + (
 � 1)M2

1 sin
2 �
� 2
M2

1 sin
2 � � (
 � 1)

(
 + 1)2M2
1 sin

2 �
(10.77)

T02
T01

= 1 (10.78)

p02
p01

=

�
(
 + 1)M2

1 sin
2 �

2 + (
 � 1)M2
1 sin

2 �

�
=(
�1) �

 + 1

2
M2
1 sin

2 � � (
 � 1)

�1=(
�1)

(10.79)

10.7 Flow in ducts

The momentum equation (10.32), divided by p becomes

dp+ �u du+ f
�u2

2Dh
dx = 0 (10.80)

To summarize, the governing equations for a variable area duct with heat transfer and friction
are

p = �RT (10.81)
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d�

�
+
du

u
+
dA

A
= 0 (10.82)

dp+ �u du = �f �u
2

2Dh
dx (10.83)

d

�
h+

u2

2

�
=

q0 dx

_m
(10.84)

In addition we will use

c =
p

RT (10.85)

M =
u

c
(10.86)

cv =
R


 � 1
(10.87)

cp =

R


 � 1
(10.88)

10.7.1 Adiabatic, frictionless 
ow in variable area ducts

Thermodynamically, the process is isentropic. Since

du

u
+
dA

A
= �d�

�

= u
du

dp
d� from equation (10.83)

= u2
d�

dp

du

u

=
u2

c2
du

u

= M2 du

u

Thus
du

u
=

1

M2 � 1

dA

A
(10.89)

Also du=u = �dp=�u2, so that
dp

�u2
=

1

1�M2

dA

A
(10.90)

Furthermore, since dp=�u2 = (c2=u2)(d�=�) = (1=M2)(d�=�), we have

d�

�
=

M2

1�M2

dA

A
(10.91)

Similarly
dM

M
=

2 + (
 � 1)M2

2(M2 � 1)
dA (10.92)

From the equation of state
dT

T
=
dp

p
� d�

�
(10.93)
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M < 1 M > 1
(subsonic) (supersonic)

dA < 0 du > 0 du < 0
(converging) dM > 0 dM < 0

dp < 0 dp > 0
d� < 0 d� > 0
dT < 0 dT > 0
dp0 = 0 dp0 = 0
d�0 = 0 d�0 = 0
dT0 = 0 dT0 = 0
ds = 0 ds = 0

dA > 0 du < 0 du > 0
(diverging) dM < 0 dM > 0

dp > 0 dp < 0
d� > 0 d� < 0
dT > 0 dT < 0
dp0 = 0 dp0 = 0
d�0 = 0 d�0 = 0
dT0 = 0 dT0 = 0
ds = 0 ds = 0

Table 10.1: Duct 
ow with variable area

Since �u2=p = �
RTM2=p = 
M2, we have

dT

T
= (
 � 1)

M2

1�M2

dA

A
(10.94)

Table 10.1 shows the changes in velocity, pressure, density and Mach number which take place in
converging (dA < 0) and diverging (dA > 0) ducts. The behavior of subsonic and supersonic 
ows
is seen to be di�erent. A duct that decreases the 
uid velocity is called a di�user and that which
increases it is a nozzle.

Equating the mass 
ow rate to that at critical conditions, �uA = ��u�A�, so that

A

A�
=

��

�

u�

u
=
��

�0

�0
�

u�

u

=
��

�0

�0
�

p

RT �

u

=
��

�0

�0
�

p

RT �

u

r
T �

T0

r
T0
T

=
1

M

�
2


 + 1

�
1 +


 � 1

2
M2

��(
+1)=[2(
�1)]

(10.95)

where we have used equations (10.50), (10.52), (10.55), and (10.53). As shown in Fig. 10.6 this has
a minimum at M = 1 where Amin = A�.
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Figure 10.6: Variation of area with Mach number

From

_m = �uA =
p

RT

u

c

p

RTA = pM

r



RT
A

= p0

r



RT0

�
2


 + 1

�(
+1)=[2(
�1)]

A� (10.96)

we get

_mmax =

s



�
2


 + 1

�(
+1)=(
�1)

A��0
p
RT0 (10.97)

10.7.2 Frictionless 
ow with heat transfer in constant area ducts

1 and 2 are two sections along the length of a duct that is frictionless, but with heating. The
momentum equation gives

p1 + �1u
2
1 = p2 + �2u

2
2 (10.98)

Since �u2 = (p=RT )u2 = 
pM2, we have

p2
p1

=
1 + 
M2

1

1 + 
M2
2

(10.99)
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Using equation (10.51) for the stagnation pressure, we have

p02
p01

=

�
1 + 
M2

1

1 + 
M2
2

� 
1 + 
�1

2 M2
2

1 + 
�1
2 M2

1

!
=(
�1)

(10.100)

Similarly, it can be shown that

T2
T1

=

�
1 + 
M2

1

1 + 
M2
2

�2�
M2

M1

�2

(10.101)

T02
T01

=

�
1 + 
M2

1

1 + 
M2
2

�2�
M2

M1

�2�
2 + (
 � 1)M2

2

2 + (
 � 1)M2
1

�
(10.102)

�2
�1

=

�
1 + 
M2

2

1 + 
M2
1

��
M1

M2

�2

(10.103)

u2
u1

=

�
1 + 
M2

1

1 + 
M2
2

�2�
M2

M1

�3

(10.104)

s2 � s1
R

= ln

"�
1 + 
M2

1

1 + 
M2
2

�(
+1)=(
�1)�
M2

M1

�2
=(
�1)
#

(10.105)

Table 10.2 shows the changes in 
ow variables for subsonic or supersonic 
ow with either heating
or cooling.

The energy equation is

h1 +
u21
2
+ _Q = h2 +

u22
2

(10.106)

from which
h02 � h01 = _Q (10.107)

and
cp(T02 � T01) = _Q (10.108)

Thus

_Q

cpT1
=

T01
T1

�
T02
T01

� 1

�
(10.109)

=

�
1 +


 � 1

2
M2

1

�"�
M2

2

M2
1

��
1 + 
M2

1

1 + 
M2
2

�2�
2 + (
 � 1)M2

2

2 + (
 � 1)M2
1

�
� 1

#
(10.110)

The maximum heat is transferred when M2 = 1. Thus

_Qmax
cpTin

=
(M2

in � 1)2

2M2
in(
 + 1)

(10.111)

where Tin andMin are the inlet temperature and Mach number. respectively. A T (s) graph is called
the Rayleigh line.

Example 10.1
Air 
ows along a frictionless duct of diameter 5 cm with heat transfer. The mass 
ow rate and the inlet

temperature are 1 kg/s and 300 K, respectively. The duct is long enough for the 
ow to reach sonic velocity at
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M < 1 M > 1
(subsonic) (supersonic)

_Q < 0 du < 0 du > 0
(cooling) dM < 0 dM > 0

dp > 0 dp < 0
d� > 0 d� < 0
� dT < 0

dp0 > 0 dp0 > 0
d�0 > 0 d�0 > 0
dT0 < 0 dT0 < 0
ds < 0 ds < 0

_Q > 0 du > 0 du < 0
(heating) dM > 0 dM < 0

dp < 0 dp > 0
d� < 0 d� > 0
** dT > 0

dp0 < 0 dp0 < 0
d�0 < 0 d�0 < 0
dT0 > 0 dT0 > 0
ds > 0 ds > 0

Table 10.2: Duct 
ow with heat transfer; * dT < 0 for M < 
�1=2, dT > 0 for M > 
�1=2; **
dT > 0 for M < 
�1=2, dT < 0 for M > 
�1=2

its end. The heat rate in is 1000 W/m. Find the Mach number, velocity, temperature, pressure, density and
entropy at di�erent distances along the duct, if (a) Min = 0:1, and (b) Min = 2. Take sin as the reference
entropy. Also draw the Rayleigh line.

We march from M =Min to M = 1 in steps of 0.1, using the following equations:

T = Tin

�
1 + 
M2

in

1 + 
M2

��
M

Min

�2
T0;in = Tin

�
1 +


 � 1

2
M2
in

�
T0 = T0;in

�
1 + 
M2

in

1 + 
M2

�2 �
M

Min

�2� 2 + (
 � 1)M2

2 + (
 � 1)M2
in

�
u = M

p

RT

� =
4 _m

�D2
h
u

p = �RT

x =

R

(
 � 1)q0
(T0 � T0;in)

s� sin = R ln

"�
1 + 
M2

in

1 + 
M2

�(
+1)=(
�1) �
M

Min

�2
=(
�1)

#

where Dh = 0:05 m, _m = 1 kg/s, Tin = 300 K, q0 = 1000 W. For air, R = 287 J/kg s, and 
 = 1:4.

(a) Subsonic case: Min = 0:2. See Table 10.3.
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x M u T p � s� sin
(m) (m/s) (K) (Pa) (kg/m3) (J/kg K)
0 .2 69.43774 300 631506.8 7.334573 0

303.3285 .3 146.5223 593.6832 592247.9 3.475897 704.0557
622.1643 .4 239.6283 893.1949 544829.3 2.125359 1138.304
906.2821 .5 339.4734 1147.259 493978.7 1.500254 1417.877
1129.551 .6 438.7874 1331.055 443398.4 1.16069 1598.144
1286.332 .7 532.7679 1441.684 395534.5 .9559439 1711.128
1383.38 .8 618.787 1488.992 351725.3 .8230557 1777.251
1432.606 .9 695.8091 1487.597 312498.2 .7319481 1810.247
1446.48 1 763.8152 1452 277863 .6667794 1819.632

Table 10.3: Subsonic case

x M u T p � s� sin
(m) (m/s) (K) (Pa) (kg/m3) (J/kg K)
0 2 694.3774 300 63150.68 .7334573 0

14.18464 1.9 683.1945 321.7892 68846.13 .745463 45.64732
29.32387 1.8 670.5458 345.3839 75288.03 .7595249 91.05396
45.34278 1.7 656.1908 370.8109 82598.99 .7761405 135.8114
62.07742 1.6 639.8452 398.0154 90923.75 .7959679 179.3697
79.23067 1.5 621.1749 426.8109 100432.4 .8198918 220.9881
96.30785 1.4 599.7907 456.8078 111323.3 .8491232 259.6678
112.5285 1.3 575.244 487.3127 123824.9 .8853568 294.0566
126.7066 1.2 547.0294 517.1887 138194.5 .9310216 322.3155
137.1034 1.1 514.597 544.6774 154712.2 .9896992 341.9308
141.258 1 477.3844 567.1876 173664.4 1.066847 349.4442

Table 10.4: Supersonic case

(b) Supersonic case: Min = 2. See Table 10.4.

Figure 10.7 is the Rayleigh line. Notice that for the supersonic part the curve has been shifted to the right
so that the entropy for M < 1 and M > 1 match at the maximum point.

10.7.3 Adiabatic 
ow with friction in constant area ducts

Let 1 and 2 be two sections along the length of a duct that with frictionless, but adiabatic. The
energy equation is

h1 +
u21
2

= h2 +
u22
2

(10.112)

so that
T02
T01

= 1 (10.113)

Thus

T2
T1

=
T01=T1
T02=T2
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Figure 10.7: Rayleigh line

=
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

(10.114)

on using equation (10.50).
Similarly, we can derive

p2
p1

=

�
M1

M2

��
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

�1=2

(10.115)

p02
p01

=

�
M1

M2

��
2 + (
 � 1)M2

2

2 + (
 � 1)M2
1

�(
+1)=[2(
�1))]

(10.116)

�2
�1

=

�
M1

M2

��
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

��1=2

(10.117)

s2 � s1
R

= ln

"�
M2

M1

��
2 + (
 � 1)M2

1

2 + (
 � 1)M2
2

�(
+1)=[2(
�1)]
#

(10.118)

Table 10.5 shows the changes in 
ow variables in the 
ow direction in subsonic or supersonic

ow. The change in Mach number with distance x from the inlet is given by

f dx

Dh
=

4


M2

1�M2

2 + (
 � 1)M2

dM

M
(10.119)

which can be integrated to give

�f x

Dh
=

�
� 1


M2
� 
 + 1

2

ln

�
2M2

2 + (
 � 1)M2

��M
Min

(10.120)

127



M < 1 M > 1
(subsonic) (supersonic)
du > 0 du < 0
dM > 0 dM < 0
dp < 0 dp > 0
d� < 0 d� > 0
dT < 0 dT > 0
dp0 < 0 dp0 < 0
d�0 < 0 d�0 < 0
dT0 = 0 dT0 = 0
ds > 0 ds > 0

Table 10.5: Duct 
ow with friction

where �f is the average value of f , and M = Min at x = 0. If Lmax is the length to reach sonic
velocity, then

�fLmax
Dh

=
1�M2

in


M2
in

+

 + 1

2

ln

(
 + 1)M2
in

2 + (
 � 1)M2
in

(10.121)

The T (s) graph is called the Fanno line.

Example 10.2
Air 
ows along an adiabatic duct of diameter 5 cm. The mass 
ow rate and the inlet temperature are 1 kg/s

and 300 K, respectively. The duct is long enough for the 
ow to reach sonic velocity at its end. The average
friction factor is 0.02. Find the Mach number, velocity, temperature, pressure, density and entropy at di�erent
distances along the duct, if (a) Min = 0:1, and (b) Min = 2. Take sin as the reference entropy. Also draw the
Fanno line.

We march from M =Min to M = 1 in steps of 0.1, using the following equations:

T = Tin

�
2 + (
 � 1)M2

in

2 + (
 � 1)M2

�
u = M

p

RT

� =
4 _m

�D2
h
u

p = �RT

x =
Dh

�f

�
� 1


M2
� 
 + 1

2

ln

�
2M2

2 + (
 � 1)M2

��M
Min

s� sin = R ln

"�
M

Min

��
2 + (
 � 1)M2

in

2 + (
 � 1)M2

�(
+1)=[2(
�1)]
#

where Dh = 0:05 m, _m = 1 kg/s, Tin = 300 K, �f = 0:02. For air, R = 287 J/kg s, and 
 = 1:4.

(a) Subsonic case: Min = 0:2. See Table 10.6.

(b) Supersonic case: Min = 2. See Table 10.7.

Figure 10.8 is the Fanno line. Notice that for the supersonic part the curve has been shifted to the right so
that the entropy for M < 1 and M > 1 match at the maximum point.
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x M u T p � s� sin
(m) (m/s) (K) (Pa) (kg/m3) (J/kg K)
0 .2 69.43774 300 631506.8 7.334573 0

23.08504 .3 103.6438 297.053 418931.6 4.91391 107.869
30.56193 .4 137.2511 293.0233 312060.3 3.710688 178.6735
33.66051 .5 170.087 288 247499.1 2.994327 227.8277
35.10611 .6 201.9992 282.0895 204121.9 2.521278 262.3004
35.81282 .7 232.8589 275.4098 172877.7 2.187145 285.9084
36.15244 .8 262.5617 268.0851 149242.9 1.93972 301.0229
36.29688 .9 291.0284 260.2409 130705.1 1.749988 309.258
36.33316 1 318.2037 252 115757.1 1.600535 311.7904

Table 10.6: Subsonic case

x M u T p � s� sin
(m) (m/s) (K) (Pa) (kg/m3) (J/kg K)
0 2 694.3774 300 63150.68 .7334573 0

.0766702 1.9 674.4331 313.5889 67963.24 .7551471 23.42138

.1577754 1.8 653.1241 327.6699 73331.94 .7797847 45.72262

.2429831 1.7 630.3724 342.2053 79349.09 .8079291 66.6891

.3315991 1.6 606.1022 357.1429 86128.81 .8402811 86.07614
.422366 1.5 580.2419 372.4138 93814.3 .8777308 103.6034
.5131462 1.4 552.7264 387.9311 102588 .9214255 118.9502
.6004115 1.3 523.5005 403.5875 112686.8 .9728668 131.7471
.6783964 1.2 492.5214 419.2547 124424.3 1.034059 141.5664
.737654 1.1 459.7626 434.7827 138226.4 1.107737 147.9067
.7624915 1 425.2175 450 154687 1.197731 150.1722

Table 10.7: Supersonic case

10.8 Multi-dimensional 
ow

10.8.1 Stagnation enthalpy

Taking the dot product of the momentum equation

�
Du

Dt
= �rp (10.122)

by the vector u we get

�
D

Dt

�
1

2
u � u

�
= �u � rp (10.123)

The energy equation without heat conduction is

�
Dh

Dt
=
Dp

Dt
(10.124)
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Figure 10.8: Fanno line

Adding the two, we get

�
D

Dt

�
h+

1

2
u � u

�
=
Dp

Dt
� u � rp (10.125)

which is equivalent to

�
Dh0
Dt

=
@p

@t
(10.126)

For steady 
ow, we have
Dh0
Dt

= 0 (10.127)

which means that h0 is constant along a streamline.

10.8.2 Crocco's theorem

Equation (10.122) is

@u

@t
+r

�
1

2
u � u

�
� u�! = �1

�
rp (10.128)

since

u � ru = r
�
1

2
u � u

�
� u� ! (10.129)

Using the Gibbs relation

T ds = dh� 1

�
dp (10.130)
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which is equivalent to

T rs = rh� 1

�
rp (10.131)

we get Crocco's equation

u�! + T rs = r
�
h+

1

2
u � u

�
+
@u

@t
(10.132)

For steady 
ow this becomes
u�! + T rs = 0 (10.133)

Thus irrotationality implies that the entropy is constant everywhere, and vice-versa.

10.8.3 Irrotational 
ow

If ! = r� u = 0, we have
u = r� (10.134)

It can be shown from the governing equations that

r � u =
1

c2

�
u � [(u � r)u] + @

@t

�
@�

@t
+ u � u

��
(10.135)

from which

r2� =
1

c2

�
r� � [(r� � r)r�] + @

@t

�
@�

@t
+r� � r�

��
(10.136)

The pressure, obtained from the energy equation, is

p = p1

�
1 +


 � 1

2c21

�
U2 � u � u��
=(
�1)

(10.137)

where at in�nity the pressure and velocity are p1 and U . The pressure coeÆcient de�ned by

Cp =
p� p1
1
2�1U

2
(10.138)

becomes

Cp =
2


M2
1

(�
1 +


 � 1

2c21

�
U2 � u � u��
=(
�1)

� 1

)
(10.139)

10.8.4 Small-perturbation theory

For steady 
ow over a slender body, we can write

u = Uex + u0 (10.140)

or
� = Ux+� (10.141)

where u0 = r�. Equation (10.136) becomes

r2� =
1

c2
(Uex +r�) � [(Uex +r�) � r] (Uex +r�) (10.142)
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ow past wall

We assume that the devation from uniform 
ow is small, so that ju0j � U . Under this condition,
we get

r2� =
U2

c2
@2�

@x2
(10.143)

This can be further approximated by

r2� =
U2

c21

@2�

@x2
(10.144)

which gives �
1�M2

1

� @2�
@x2

+
@2�

@y2
+
@2�

@z2
= 0 (10.145)

In the small-perturbation approximation, the pressure coeÆcient becomes

Cp = �2u
0

U

= � 2

U

@�

@x
(10.146)

where u0 is the x-component of u0.

10.8.5 Subsonic 
ow

Consider two-dimensional 
ow next to a wall of shape y = �(x) as in Fig. 10.9. The small-
perturbation approximation gives �

1�M2
1

� @2�
@x2

+
@2�

@y2
= 0 (10.147)

with boundary conditions

@�

@y
= U

d�

dx
at wall

@�

@x
= �nite as y !1
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Figure 10.10: Airfoil in supersonic 
ow

With new variables de�ned by

�0 =
p
1�M2

1�

y0 =
p
1�M2

1 y

we have
@2�0

@x2
+
@2�0

@y02
= 0 (10.148)

with boundary conditions

@�0

@y0
= U

d�

dx
at wall

@�0

@x
= �nite as y0 !1

Thus

Cp
C 0p

=
@�=@x

@�0=@x
(10.149)

=
1p

1�M2
1

(10.150)

which is the Prandtl-Glauert rule; Cp is the coeÆcient of pressure in the compressible 
ow, and C 0p
is the corresponding value for incompressible 
ow.

10.8.6 Supersonic 
ow

Consider 
ow around an airfoil with upper and lower surfaces y = �u(x) and y = �l(x), respectively,
as shown in Fig. 10.10. Thus

@2�

@x2
� 1

M2
1 � 1

@2�

@y2
= 0 (10.151)

with

@�

@y
= U

d�u;l
dx

at wall

@�

@x
= �nite as y !1

This is a wave equation with a solution of the type

� = f(x�
p
M2
1 � 1 y) (10.152)
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The solutions for the upper and lower parts of the 
ow �eld are di�erent, so that

� =

�
fu(x�

p
M2
1 � 1 y) upper

fl(x+
p
M2
1 � 1 y) lower

(10.153)

The boundary condition at the wall gives

�
p
M2
1 � 1 f 0u = U

d�u
dx

upper surfacep
M2
1 � 1 f 0l = U

d�l
dx

lower surface

Thus, from equation (10.146), we get

Cp = � 2

U
f 0u;l (10.154)

which gives

Cp =

8<
:

2p
M2
1
�1

d�u
dx upper surface

� 2p
M2
1
�1

d�l
dx lower surface

(10.155)

Lift coeÆcient

The coeÆcient of lift is

CL =
1

1
2�1U

2L

Z L

0

(pl � pu) dx (10.156)

where L is the chord and pu and pl are the pressures at the upper and lower surfaces. Substituting

p = p1 +
1

2
�1U

2Cp (10.157)

we get

CL = � 2p
M2
1 � 1

[�l + �u]
x=L
x=0 (10.158)

Taking �l(L) = �u(L) = 0 and �l(0) = �u(0) = �L, where � is the angle of attack

CL =
4�p

M2
1 � 1

(10.159)

Drag coeÆcient

The coeÆcient of drag is

CL =
1

1
2�1U

2L

Z �L

0

(pl � pu) dy (10.160)

which becomes

CD =
2p

M2
1 � 1

1

L

Z L

0

"�
d�l
dx

�2

+

�
d�u
dx

�2
#
dx (10.161)
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Problems

1. An airplane is 
ying at a height of 5 km at a Mach number of 1.5. Find L.

2. Show that for M � 1, the equation

p0

p
=

�
1 +


 � 1

2
M2
�
=(
�1)

can be expanded to

p0 = p+
1

2
�u2 + : : :

3. For a normal shock wave, show that (s2 � s1)=R = � ln(p02=p01).

4. An air stream with temperature 300 K undergoes a normal shock. The downstream Mach number is half that
upstream. Determine the air velocities upstream and downstream of the shock.

5. Show from equation (10.95) that A=A� is a minimum at M = 1.

6. A converging-diverging air nozzle has a throat area of 1 cm2. Find the inlet and exit areas if the Mach numbers
there are 0.1 and 2, respectively.

7. A large pressurized tank containing air at 1 MPa pressure, 100 K temperature 
oating in space develops a
small leak through a hole of area 0.01 mm2. Find the mass 
ow rate through the leak.

8. A stationary normal shock exists in a 
ow of a gas for which the ratio of speci�c heats is 1.3. If the upstream
Mach number is very large, �nd (a) the downstream Mach number, and (b) the density ratio.

9. Conditions upstream of a shock in a 
ow of air are M1 = 3, T1 = 300 K, and p1 = 100 kPa. The downstream
pressure is 1 MPa. Find if the shock is normal or oblique and the downstream temperature and Mach number.

10. Air 
ows at 60 m/s into an adiabatic commercial steel pipe of diameter 5 cm at a temperature and pressure of
100ÆC and 1 MPa. Determine (a) the Mach number at a distance of 50 m down the pipe, and (b) the length
of the pipe for choked 
ow. Take the average friction factor to be 0.02.

11. Air at a stagnation pressure and stagnation temperature of 300 kPa, 400 K 
ows isentropically through a
converging nozzle from an inlet area of 100 cm2 to an exit area of 50 cm2. Find the mass 
ow rate for a back
pressure of 100 kPa.

12. Air enters a heated, frictionless duct of square cross-section at a pressure of 100 kPa, temperature 300 K, and
Mach number 0.2. Find the amount of heat added per unit mass necessary to choke the 
ow.

13. A supersonic wind tunnel is formed at the divergent section of a CD nozzle. The 
ow in a 15 cm � 15 cm
square test section of such a tunnel is at a Mach number of 3 at temperature �20ÆC and pressure 50 kPa.
Calculate the mass 
ow rate.

14. The inlet to a frictional, adiabatic, 10 cm diameter, 8.2 m long pipe is air at 100 kPa, 300 K, and Mach number
of 2.5. If the friction factor is 0.002, �nd the temperature at the outlet.

15. Air at a stagnation pressure of 150 kPa 
ows isentropically through a converging nozzle. Find the back pressure
for which the nozzle is just choked.

16. Air 
ows through a diverging duct. Inlet conditions are: T = 500 K, p = 1000 kPa, A = 0:01 m2, u = 1000 m/s;
outlet conditions are T = 1000 K, p = 100 kPa, A = 0:08 m2. There is heat transfer between the surroundings
and the air in the pipe. Determine (a) the velocity at the outlet, (b) the mass 
ow rate, (c) direction and
magnitude of the heat transfer, and (d) change in speci�c entropy between inlet and outlet.

17. Find the speed of travel of a shock wave in air given that the pressure and temperature ahead are 0.1 MPa,
300 K, respectively, and the pressure behind is 0.5 MPa.

18. Air 
ows without friction through a duct. At the inlet the temperature is 300 K, the pressure is 105 Pa, and
the velocity is 120 m/s. At the outlet the pressure is 0:5� 105 Pa. Determine the change in Mach number and
entropy from the inlet to the outlet.

19. Using

�uA = _m

h+
u2

2
= h0

p = �RT

h = cpT

s� s1 = cv log

h
p

p1

�
�1

�

�
i
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show that the equation of the Fanno line is

s� s1

cv
= log

�
h(h0 � h)(
�1)=2

�
+ log

"
�
1
p1

R

cp

�
2A2

_m2

�(
�1)=2
#

where the subscript 1 refers to inlet conditions.

20. Using

�uA = _m

h+
u2

2
= h0

p = �RT

h = cpT

s� s1 = cv log

h
p

p1

�
�1

�

�
i
show that the equation of the Fanno line is

s� s1

cv
= log

�
h(h0 � h)(
�1)=2

�
+ log

"
�
1
p1

R

cp

�
2A2

_m2

�(
�1)=2
#

where the subscript 1 refers to inlet conditions.

21. Air 
ow steadily through a round tube of diameter D with both friction and heat transfer. Conditions T1, p1,
and M1 at the inlet and p2 and M2 at the outlet are known. Calculate the heat added per unit mass and the
friction force exerted by the gas on the tube.

22. Find the drag coeÆcient for the double-wedge airfoil in supersonic 
ow at zero angle of attack using the slender
body approximation.
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Chapter 11

Compressible e�ects in liquids and

two-phase 
ow

11.1 Waterhammer

Compressibility in liquids leads to the e�ect known as waterhammer which is due to the rapid rapid
opening or closing of valves or other changes in a liquid pipeline. The e�ect is due to the �nite
speed of sound resulting from �nite compressibility. The bulk modulus K represents the ratio of the
pressure change on a given material and the relative density change that it produces. Thus we have

K = �
dp

d�
(11.1)

The speed of sound c in any material is given by

c =

s
K

�
(11.2)

For an ideal incompressible 
uid, K !1, so that c!1. Another factor that is important is that
the material of which the wall of the pipe carrying liquid is not absolutely rigid. As an acoustic
wave travels through it, the high and low pressures cause not only a compression and expansion
of the liquid but also deformation of the pipe wall. This a�ects the overall compressibility of the
liquid-pipe system, and must be taken into account in the speed of sound. In a thin-walled pipe the
speed of sound is

c =

s
K

�(1 + K�
E )

(11.3)

where E is the Young's modulus of the material of the wall, and a is a constant which depends on
the kind of restraints on the pipe. As a special case E ! 1 for a rigid pipe material, which gives
equation (11.2). Table 11.1 gives the values of a for speci�c cases of pipe restraints.

where D and e are the diameter and wall thickness of the pipe, and � is the Poisson's ratio of
the material of the wall.

Consider now a long pipe of length L with a constant pressure liquid inlet at one end and a valve
at the other. Liquid 
ows through the pipe at velocity U and approximately uniform pressure p0. At
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Restraint �

Anchored against longitudinal movement D
e (1� �2)

Anchored at upper end D
e

With frequent expansion joints D
e (1:25� �)

Table 11.1: � for speci�c restraints

time t = 0, the valve is suddenly closed leading to the progression of events schematically indicated
in Fig. 11.1; liquid velocity and pressure and pipe diameter are shown at di�erent instants of time.
The liquid that is coming towards the valve builds up a pressure which compresses the liquid near
the valve and expands a portion of the pipe. The time for this compression to travel the length of
the pipe as a wave is L=c so that we will look at time intervals of L=2c. At t = L=2c, the valve half
of the pipe has expanded and the liquid has come to a stop there. The liquid in the inlet half is still
coming in. At t = L=c, the wave has reached the inlet; the entire pipe is expanded and the liquid
velocity is zero. The compression wave re
ects back from the inlet; at t = 3L=2c the inlet half of
the pipe contracts to its normal size squeezing the liquid towards the inlet. At t = 2L=c, the entire
pipe is at normal size with liquid velocity towards the inlet. This liquid motion reduces the pipe
diameter so that at t = 5L=2c the valve half of the pipe is at less than normal size. In other words
the compression wave coming from the inlet has re
ected from the valve as an expansion wave. At
t = 3L=c, this wave reaches the inlet and the entire pipe is at reduced area with zero liquid velocity.
At 7L=2c the expansion wave has re
ected from the inlet. At t = 4L=c it reaches the valve. This
completes the cycle, with the whole process repeating itself until damped out.

The frequency of the pressure wave set up by the sudden closing of the valve in this example is
c=4L. Since 2L=c is the time taken for the compression wave to start from the valve and return, any
valve closing time smaller than this would cause waterhammer e�ects to be felt in the pipe. The
peak pressure rise is due to the conversion of the entire kinetic energy of the 
uid, i.e. �p = �U2=2.

11.2 Two-phase systems

Multiphase 
ows in pipelines involving solids, liquids or gases are fairly common. Here we will look
at some aspects of two-phase liquid-gas 
ows.

11.2.1 Homogeneous two-phase mixture

Consider a homogeneous dispersion of liquid droplets in a gas, or gas bubbles in a liquid as shown
in Fig. 11.2. The speed of sound is given by equation (11.2) where the bulk modulus K is that of
the mixture. This has to be determined in terms of those of the pure liquid Kl and pure gas Kg. If
� is the volume fraction of gas, and 1� � is that of the liquid, then the density � is given by

Since �V = V�p=K = �V�p=Kg + (1� �)V�p=Kl we have

K =
1

�
Kg

+ 1��
Kl

(?) (11.4)

c2 =
1

�
Kg

+ 1��
Kl

1

��g + (1� �)�l
(11.5)
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Figure 11.1: Sequence of events in waterhammer

=
1

�
�gc2g

+ 1��
�lc2l

1

��g + (1� �)�l
(11.6)

where

c2g =
Kg

�g
(11.7)

c2l =
Kl

�l
(11.8)

In the limit of � ! 1, c2 ! c2g, and for � ! 0, c2 ! c2l . We can take Kl � Kg, �l � �g as
approximations, so that

c2 =
Kg

�l

1

�(1� �)
(11.9)

� = ��g + (1� �)�l (11.10)
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Figure 11.2: Homogeneous two-phase 
ow

The minimum value is at � = 1=2

c2min = 2�
Kg

�l
(11.11)

11.2.2 Two-phase 
ows in horizontal pipes

The following are patterns in a horizontal pipe:

Bubble of froth 
ow dispersed bubbles of gas throughout liquid
Plug 
ow alternate plugs of liquid and gas along upper part of pipe

Strati�ed 
ow liquid at bottom, gas on top with smooth interface
Wavy 
ow strati�ed with interfacial waves
Slug 
ow frothy slug moves at velocity larger than liquid velocity

Annular 
ow liquid �lm, gas core
Spray or dispersed 
ow liquid as �ne droplets

Flow pattern prediction

This can be done from the accompanying diagram (not yet included) where
l = (�G=�air )(�L=�water )
y = (�water=�L)[(�L=�water )]

1=3(�water=�L)
2=3

G = _m=A is a mass velocity
Air and water properties are at 20ÆC, 101.3 kPa.

Lockhart-Martinelli pressure drop prediction

To determine the pressure drop in a horizontal pipe, �nd

1. Reynolds numbers ReL, ReG and 
ow regime (laminar or turbulent) for each single-phase

uid.

2. Pressure drops �pL, �pG for each phase using �pi = f(L=D)

�
1
2�iU

2
i

�
.

3. X =
p
�pL=�pG.

4. YL or YG from graph

5. �pTP = YL�pL = YG�pG
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Critical condition in 
ashing 
ow

As p decreases due to friction, the saturation temperature also decreases and the liquid vaporizes.
Below a certain backpressure pb the mass 
ow rate _m does not change, This is the critical mass 
ow
rate _mc and depends on the thermodynamics state of the 
uid and the 
ow regime. The critical or
maximum mass velocity is given in the graph1 (not yet included), where E = h01 + q = h02, pc =
pressure p2 inside tube at 2 at critical condition, and x = vapor weight fraction (quality) at 2.

Problems

1. Saturated water 
ows in a 2.5 cm diameter boiler tube where there is vaporization due to pressure drop and
heat addition. The outlet quality and pressure are 0.8 and 2 atmospheres, respectively. What is the maximum
mass 
ow rate?

2. Water is 
owing through a cast iron pipe of length 10 m anchored against longitudinal movement. The wall
thickness is 1 mm and the pipe diameter is 1 cm. A valve at the end of the pipe is suddenly closed. How fast
must the pipe be closed for waterhammer e�ects to be felt? What is the frequency of the pressure wave? Use
a thin wall approximation.

3. Water 
ows at 5 m/s through a 30 cm diameter PVC pipe of length 50 m and thickness 5mm. The modulus
of elasticity and Poisson's ratio of PVC are 2:8� 109 Pa and 0.45, respectively. The bulk modulus of water is
2:19 � 109 Pa. The pipe can be assumed to be anchored against longitudinal movement. There is a valve at
the end of the pipe that is being closed. (a) How slowly must this valve be closed so that waterhammer e�ects
are not produced? If the valve were closed suddenly, �nd (b) the time it takes for the pressure wave to travel
upstream to the inlet of the pipe, (c) the frequency of oscillation of the pressure within the pipe, and (d) an
estimate of the pressure rise within the pipe.

4. A mixture of gaseous CO2 and liquid gasoline 
ows along a horizontal pipe of 100 m length, inner diameter 20
cm, and roughness 0.2 mm. The mass velocity of the CO2 is 10 kg/sm2, and that of the gasoline is 250 kg/sm2.
Find (a) the 
ow pattern of the two-phase 
ow, and (b) the pressure drop. Use the following property values:

Fluid Density Viscosity Surface tension

(kg/m3) (Ns/m2) (N/m)
Gasoline 680 2:92� 10�4 2:16� 10�2

Water (at 20ÆC,1 atm) 998 10�3 7:28� 10�2

Air (at 20ÆC, 1 atm) 1.2 1:8� 10�5

CO2 1.82 1:48� 10�5

5. Air and water 
ow in a 50 cm diameter horizontal pipe at mass 
ow rates of 0.1 and 0.2 kg/s respectively.
determine the 
ow pattern.

6. Water under saturated conditions enters a long 10 cm diameter tube. Find the critical mass 
ow rate if the
exit quality and pressure are 0.4 and 700 kPa.

7. Crude oil (density 800 kg/m3, viscosity 60 � 10�5 Ns/m2) and natural gas (density 0.8 kg/m3, viscosity
1:4� 10�5 Ns/m2) 
ow along a 5 cm diameter, 300 m long pipe with roughness 0.15 mm. Find the pressure
drop for crude oil and natural gas 
ow rates of 0.64 kg/s and 0.04 kg/s.

1Hodge, B.K., Analysis and Design of Energy Systems, Prentice-Hall, Englewood Cli�s, NJ, 1990.
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Chapter 12

Numerical methods

In this chapter we discuss some of the basic ideas regarding numerical methods as they relate to the
solution of the ordinary and partial di�erential equations which occur in 
uid dynamics.

12.1 Ordinary di�erential equations

If x(t), y(t) and z(t) are the Cartesian coordinates of a 
uid particle moving in a velocity �eld
ui+ vj+ wj, then

dx

dt
= u(x; y; t) (12.1)

dy

dt
= v(x; y; t) (12.2)

dz

dt
= w(x; y; t) (12.3)

These equations can be integrated using any numerical procedure to determine the 
ow lines.

12.1.1 Fourth-order Runge-Kutta integration

This is a popular integration technique for ordinary di�erential equations with given initial values.
Choose an appropriately small time step �t, for example �t = 0:01. Let

xi = x(i �t)

yi = y(i �t)

Then x0; y0 is the initial condition which is known. Knowing any xn; yn we can �nd xn+1; yn+1 in
the following manner. First determine the six numbers

p0 = �t u(xn; yn; t)

q0 = �t v(xn; yn; t)

p1 = �t u(xn +
1

2
p0; yn +

1

2
q0; t+

1

2
�t)
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q1 = �t v(xn +
1

2
p0; yn +

1

2
q0; t+

1

2
�t)

p2 = �t u(xn +
1

2
p1; yn +

1

2
q1; t+

1

2
�t)

q2 = �t v(xn +
1

2
p1; yn +

1

2
q1; t+

1

2
�t)

p3 = �t u(xn + p2; yn + q2; t+�t)

q3 = �t v(xn + p2; yn + q2; t+�t)

In the right-hand sides, the functions u(x; y; t) and v(x; y; t) are evaluated at the values of x, y and
t indicated in each expression.

Then

xn+1 = xn +
1

6
(p0 + 2p1 + 2p2 + p3)

yn+1 = yn +
1

6
(q0 + 2q1 + 2q2 + q3)

From x0; y0 get x1; y1, then x2; y2, and so on as long as necessary.

12.2 Partial di�erential equations

There are di�erent ways in which the incompressible 
ow problem in two dimensions with constant
properties may be written. As an example we will consider the problem of incompressible, two-
dimensional 
ow without body force.

12.2.1 Primitive variables

In nondimensional terms, we have

@u

@x
+
@v

@y
= 0 (12.4)"

@u

@t
+ u

@u

@x
+ v

@u

@y

#
= �@p

@x
+

1

Re

�
@2u

@x2
+
@2u

@y2

#
(12.5)

"
@v

@t
+ u

@v

@x
+ v

@v

@y

#
= �@p

@y
+

1

Re

�
@2v

@x2
+
@2v

@y2

#
(12.6)

"
@T

@t
+ u

@T

@x
+ v

@T

@y

#
=

1

Re Pr

�
@2T

@x2
+
@2T

@y2

#
+
Ec

Re
� (12.7)

where

� =
1

Re

"
2

�
@u

@x

�2

+ 2

�
@v

@y

�2

+

�
@u

@y
+
@v

@x

�2
#

12.2.2 Stream function-vorticity

The stream function  (x; y) de�ned by

u =
@ 

@y
(12.8)
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Figure 12.1: Boundary condition on vorticity

v = �@ 
@x

(12.9)

satis�es the continuity equation (12.4). The vorticity, !, has only the z-component, �, which is
de�ned by

� =
@v

@x
� @u

@y
(12.10)

and which satis�es
@2 

@x2
+
@2 

@y2
+ � = 0 (12.11)

The vorticity equation

@�

@t
+
@ 

@y

@�

@x
� @ 

@x

@�

@y
=

1

Re

�
@2�

@x2
+
@2�

@y2

#
(12.12)

is obtained by taking the curl of the momentum equation.

Boundary conditions

At a solid boundary the value of  may be speci�ed. In Fig. 12.1 the value of � at a solid boundary,
for example �w at the point w, can be related to the  at an interior point,  i, in the following way.
At the boundary, let s and n be the coordinates along and normal to it, respectively. Then, from a
Taylor series expansion, we have

 i =  w +
@ 

@n

�����
w

�n+
1

2

@2 

@n2

�����
w

(�n)2 + : : : (12.13)

where �n is the distance between w and i along the coordinate n normal to the wall. The normal
and tangential velocity components at the wall must vanish. The �rst of these gives

@ 

@s

�����
w

= 0 (12.14)

indicating that  w must be a constant along the wall. The other velocity component gives

@ 

@n

�����
w

= 0 (12.15)
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Figure 12.2: Computational mesh

Since

�w = �@
2 

@s2

�����
w

� @2 

@n2

�����
w

(12.16)

and  w is constant along the wall, we get from equation (12.13) that

�w = 2
 w �  i
(�n)2

(12.17)

12.3 Numerical methods

There are many numerical methods that have been developed for the governing equations of 
uid
mechanics: �nite-di�erence, �nite-element, boundary-element, spectral methods, among others. At
this point we will describe only the �rst.

12.3.1 Finite di�erences

There are several variations of the �nite di�erence method, the following being one of them. With
reference to Fig. 12.2 he x-derivatives of a function �(x; y) are written in the approximate forms
shown:

@�

@x
=
�i;j � �i�1;j

�x
backward di�erence (12.18)

@�

@x
=
�i+1;j � �i�1;j

2�x
central di�erence (12.19)

@2�

@x2
=
�i+1;j � 2�i;j + �i�1;j

(�x)2
central di�erence (12.20)

The derivatives in the y-direction may be similarly written.
The steady state may be obtained by starting from certain initial conditions and integrating

forward in time. One way of doing this with the vorticity-stream function formulation is to �rst
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change equation (12.11) to a �ctitious form

@ 

@t
=
@2 

@x2
+
@2 

@y2
+ � (12.21)

which reduces to the correct form under steady-state conditions. The time derivatives in this and
equation (12.12) are then approximated by

@�i;j
@t

=
�k+1
i;j � �ki;j

�t
(12.22)

where k+1 and k refer to instants in time t+�t and t, respectively. The rest of the terms in these
equations are assumed to be at time t and are hence known. The integration process is halted when
the dependent variables are seen not to change very much with time.

Example 12.1
Compute the developing 
ow in a plane channel with uniform in
ow.

x

y 6

?

1

� -`

Figure 12.3: Flow between 
at plates

The characteristic velocity and length are taken to be the uniform inlet velocity and the channel width,
respectively. In nondimensional terms they are both unity, while the length of the channel is `. Suitable
boundary conditions are

u = 1; v = 0 at x = 0 (12.23)

u = v = 0 at y = �1

2
(12.24)

@u

@x
=
@v

@x
= 0 at x = ` (12.25)

The �rst condition refers to the uniform inlet velocity, the second to no slip at the walls, and the third to the
fully developed nature of the 
ow �eld at the exit section.

Finite di�erencing may be applied on a regular mesh that is obtained by dividing the region into N and
M parts in the x and y-directions, respectively, so that �x = `=N and �y = 1=M . Either the primitive or the
vorticity-stream function formulation may be employed. Symmetry around the y = 0 plane may be used, in
which case @u=@y = v = 0 at y = 0, instead of condition (12.24) at y = �1=2.
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Problems

1. By numerical integration, determine where the 
uid particles originally within a rectangle of size 0:1 � 0:1
centered at (1,1) are after 50 time units. The velocity �eld is two-dimensional:

u = y

v = x� x3 + 
 cos t

Take (a) 
 = 0, and (b) 
 = 1.

2. Solve the following problem numerically. A viscous 
uid enters a channel with a uniform velocity pro�le. The
channel is long enough for the 
ow to become fully developed. Using suitable geometrical and 
ow parameters,
compute the velocity �eld.

Your report should be comprehensive; include details of how you set up the problem, description of the numerical
method that you used, graphs of the results that you obtained, and comparisons with available analytical
solutions.

3. In the problem above, determine the temperature �eld if the entering 
uid and the walls of the channel are all
at di�erent temperatures.

4. For the two-dimensional, unsteady velocity �eld ui+ vj, where

u = y

v = x� x3 + 
 cos t

determine, by numerical integration, where the 
uid particles originally within a square of size 0:1�0:1 centered
at (1,1) are after 50 time units. Consider two cases: (a) 
 = 0, and (b) 
 = 1. Take as initial conditions a
large number of di�erent points within the square, say for example 100 evenly-spaced points, and integrate up
to t = 50. Store the �nal coordinates in a �le. Plot the initial as well as the �nal states of all the points. The
particles should end up well-mixed (chaotically) for 
 = 1, but not for 
 = 0.
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Appendix A

Governing equations

A.1 Integral form

Assumptions: nondeformable, inertial control volume

Conservation of mass

d

dt

Z
CV

� dV +

Z
CS

�V � n dA = 0

Newton second law for linear momentum

d

dt

Z
CV

�V dV +

Z
CS

V (�V � n) dA = F

Newton second law for angular momentum

d

dt

Z
CV

� (r�V) dV +

Z
CS

(r�V) (�V � n) dA = T

First law of thermodynamics

d

dt

Z
CV

�e dV +

Z
CS

�
e+

p

�

�
(�V � n) dA = _Q+ _Ws

Second law of thermodynamics

d

dt

Z
CV

�s dV +

Z
CS

s (�V � n) dA �
Z
CS

1

T

 
_Q

A

!
dA
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A.2 Di�erential form

Conservation of mass

@�

@t
+r � (�u) = 0

@�

@t
+
@(�ui)

@xi
= 0

or

D�

Dt
+ �r � u = 0

D�

Dt
+ �

@ui
@xi

= 0

Newton second law for linear momentum

�
Du

Dt
= r � � + �f

�
Duj
Dt

=
@�ij
@xi

+ �fj

Newton second law for angular momentum

� = �
T

�ij = �ji

First law of thermodynamics

�
De

Dt
= �r � _q+ � : ru

�
De

Dt
= � @ _qi

@xi
+ �ij

@uj
@xi

Second law of thermodynamics

�
Ds

Dt
� � @

@xi

�
_qi
T

�

�
Ds

Dt
� �r �

�
_q

T

�
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A.3 Cartesian coordinates

Velocity vector

u = ui+ vj+ wk

Material derivative
D

Dt
=

@

@t
+ u

@

@x
+ v

@

@y
+ w

@

@z

Laplacian

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2

Equations of motion (incompressible, Newtonian 
uid with constant properties)

@u

@x
+
@v

@y
+
@w

@z
= 0 (A.1)

�

�
@u

@t
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z

�
= �@p

@x
+ �r2u+ �fx (A.2)

�

�
@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z

�
= �@p

@y
+ �r2v + �fy (A.3)

�

�
@w

@t
+ u

@w

@x
+ v

@w

@y
+ w

@w

@z

�
= �@p

@z
+ �r2w + �fz (A.4)

�c

�
@T

@t
+ u

@T

@x
+ v

@T

@y
+ w

@T

@z

�
= kr2T +� (A.5)

where

� = 2�

"�
@u

@x

�2

+

�
@v

@y

�2

+

�
@w

@z

�2
#
+ �

"�
@u

@y
+
@v

@x

�2

+

�
@u

@z
+
@w

@x

�2

+

�
@v

@z
+
@w

@y

�2
#

A.4 Cylindrical coordinates

Velocity vector
u = urer + u�e� + uzez

Material derivative
D

Dt
=

@

@t
+ ur

@

@r
+
u�
r

@

@�
+ uz

@

@z

Laplacian

r2 =
1

r

@

@r

�
r
@

@r

�
+

1

r2
@2

@�2
+

@2

@z2

Equations of motion (incompressible, Newtonian 
uid with constant properties)

1

r

@

@r
(rur) +

1

r

@u�
@�

+
@uz
@z

= 0

�

�
@ur
@t

+ ur
@ur
@r

+
u�
r

@ur
@�

� u2�
r
+ uz

@ur
@z

�
= �@p

@r
+ �

�
r2ur � ur

r2
� 2

r2
@u�
@�

�
+ �fr
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�

�
@u�
@t

+ ur
@u�
@r

+
u�
r

@u�
@�

+
uru�
r

+ uz
@u�
@z

�
= �1

r

@p

@�
+ �

�
r2u� � u�

r2
+

2

r2
@ur
@�

�
+ �f�

�

�
@uz
@t

+ ur
@uz
@r

+
u�
r

@uz
@�

+ uz
@uz
@z

�
= �@p

@z
+ �r2uz + �fz

�c

�
@T

@t
+ ur

@T

@r
+
u�
r

@T

@�
+ uz

@T

@z

�
= kr2T +�

where

� = 2�

"�
@ur
@r

�2

+
1

r2

�
@u�
@�

+ ur

�2

+

�
@uz
@z

�2
#

+ �

"�
@u�
@z

+
1

r

@uz
@�

�2

+

�
@uz
@r

+
@ur
@z

�2

+

�
1

r

@ur
@�

+ r
@

@r

�u�
r

��2
#

A.5 Spherical coordinates

Velocity vector
u = urer + u�e� + u�e�

Material derivative
D

Dt
=

@

@t
+ ur

@

@r
+
u�
r

@

@�
+

u�
r sin �

@

@�

Laplacian

r2 =
1

r2
@

@r

�
r2
@

@r

�
+

1

r2 sin �

@

@�

�
sin �

@

@�

�
+

1

r2 sin2 �

@2

@�2

Equations of motion (incompressible, Newtonian 
uid with constant properties)

1

r2
@

@r

�
r2ur

�
+

1

r sin �

@

@�
(u� sin �) +

1

r sin �

@u�
@�

= 0

�

"
@ur
@t

+ ur
@ur
@r

+
u�
r

@ur
@�

+
u�

r sin �

@ur
@�

� u2� + u2�
r

#
= �@p

@r
+ �

 
r2ur � 2ur

r2
� 2

r2
@u�
@�

�2u� cot �

r2
� 2

r2 sin�

@u�
@�

!
+ �fr

�

�
@u�
@t

+ ur
@u�
@r

+
u�
r

@u�
@�

+
uru�
r

+ uz
@u�
@z

�
= �1

r

@p

@�
+ �

�
r2u� � u�

r2
+

2

r2
@ur
@�

�
+ �f�

�

�
@uz
@t

+ ur
@uz
@r

+
u�
r

@uz
@�

+ uz
@uz
@z

�
= �@p

@z
+ �r2uz + �fz

�c

�
@T

@t
+ ur

@T

@r
+
u�
r

@T

@�
+ uz

@T

@z

�
= kr2T +�

where

� = 2�

"�
@ur
@r

�2

+
1

r2

�
@u�
@�

+ ur

�2

+

�
@uz
@z

�2
#

+ �

"�
@u�
@z

+
1

r

@uz
@�

�2

+

�
@uz
@r

+
@ur
@z

�2

+

�
1

r

@ur
@�

+ r
@

@r

�u�
r

��2
#
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Appendix B

Use of MATLAB

Matrix manipulation and plotting can be done using MATLAB1 which is available for several ma-
chines including Macintosh and UNIX systems. In a SPARCstation, enter MATLAB by typing

matlab

on the command line. The MATLAB prompt

>>

will be displayed.

B.1 Graphing

The following steps will enable you to read and plot a data �le of points.

� To load data the command is

>> load nameofdata�le

where nameofdata�le is a �le containing your data.

� To plot the data as points the command is

>> plot(nameofdatafile(:,1),nameofdatafile(:,2),'c')

The values in column one of your data will be plotted against the corresponding values in
column two. The character c speci�es which character you will use to mark points with, and
must be between single quotes. Choices are

.

o

x

+

*

If this character is not included in the plot command, the points will be connected by a line.

1See University of Notre Dame document number U4910, Using MATLAB 4.2 on the SPARCstations.
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� The commands to title your graph are

>> title('Your title')

>> xlabel('Your x-axis label')

>> ylabel('Your y-axis label')

� To add more data to your graph you must �rst type

>> hold

Otherwise a new graph will be made.

B.2 Plotting streamlines

As an example of stremline plotting we will consider 
ow around a Joukowski airfoil. The Joukowski
tranformation is given by

z = � +
c2

�
;

where the �-plane corresponds to the tranformed space. Once the solution is obtained in this space,
the inverse mapping is required to obtain the solution in the z-plane. To this end, the above equation
can be solved for � to give

� =
z

2
�
r�z

2

�2
� c2:

Since it is desired to have � ! z for large values of z, the positive root of the inverse mappling must
be chosen. This conclusion is valid for z expressed in polar form (i.e., z = exp i�); however, care
must be taken when expressing z in Cartesian form (i.e., z = x+ iy). For instance, for z = �b where
b is a large real number, the above inverse mapping (with + root taken) predicts that � � 0; thus
the negative root should be used to preserve the desired mapping.

Therefore, when plotting the streamlines for the Joukowski airfoil in which z = x + iy, it is
necessary to change from the positive to the negative root in the above inverse transform for x < 0
in order to assure that � � z for large z.

The following are hints for plotting the streamlines in MATLAB.

� Generate a computational grid in the z-plane:

>> x = xmin : dx : xmax;

>> y = ymin : dy : ymax;

>> [X,Y] = meshgrid(x,y);

>> Z = X + i*Y;

� Use the FOR and IF commands to create a loop in which � at each z = x+ i � y location can
be computed. Remember to specify the (�) root of the inverse transform for x < 0. (also,
type \help for" or \help if" at MATLAB prompt for information on how to create a loop).

� Compute the complex potential F (z).

� Determine the values of the stream function at each (x; y) location:

>> psi = imag(F);
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� Contour plot the stream function values to obtain the streamlines (type \help contour" to get
online help information concerning this plot procedure):

>> contour(X,Y,psi,50)
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Appendix C

Use of MAPLE

On the Sparcstations, type
maple;

to load MAPLE,
with(linalg);

to include the linear algebra packet, and
help(topic);

to get help on topic and examples.
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