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Overview

In this report we examine in detail the continuum mechanical issues necessary for ri
specification of large deformation problems in solid mechanics. The discussion will 
provide a bridge between the generic problem statement given at the close of Formulation 
of Nonlinear Problems and the in-depth presentation of constitutive theory to be 
discussed in Constitutive Modeling. At the close of the latter report, we will be in a 
position to turn attention to numerical methods as applied to large deformation solid
mechanics.

The current report’s presentation is organized as follows. We begin with a discussio
large deformation kinematics, including consideration of velocity and acceleration 
measures and the quantification of deformation and deformation rates in a general c
We then discuss the various measures of stress that are frequently encountered in 
deformation analysis. With these preliminaries in hand, we will then be in a position
state the relevant balance laws in notation appropriate for large deformation problem
will also at this point discuss the important concept of material frame indifference, w
demands that material laws be unaltered by rigid body motions. We will see that thi
concept places important restrictions on the kinematic and stress measures that are
suitable for prescription of constitutive laws, providing important background informa
for a subsequent report.

The above information will be presented in a three-dimensional notational framewo
assuming that the solids of interest are likewise fully three-dimensional continua. 
Formulations appropriate for two-dimensional problems and for structural entities in 
/22/98) Nonlinear Continuum Mechanics - Introduction - Overview 2
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dimensions can be readily deduced from these equations. Accordingly, we will briefl
present the modifications necessary to adapt our theory to two-dimensional geome
and to problems possessing axial symmetry. Also we will discuss how continuum 
mechanical descriptions of structural elements, including shells and beams, can be
deduced from the three-dimensional formalism. We will also briefly examine how rig
bodies can be incorporated into the notational structure we propose.

It should be emphasized that although many of the concepts to be discussed in this 
are applicable to Eulerian formulations, the presentation is targeted primarily toward
Lagrangian description of boundary value problems. Furthermore, for notational 
simplicity we work almost exclusively in Cartesian coordinate systems rather than in
general curvilinear coordinates (some deviation from this is obviously necessary wh
axisymmetry is discussed). The interested reader may care to consult [Fung, Y.C., 1965] 
for discussion of such curvilinear formulations in a small-strain context, and [Marsden, 
J.E. and Hughes, T.J.R., 1983] for their rigorous extension to large deformation 
problems.
/22/98) Nonlinear Continuum Mechanics - Introduction - Overview 3
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Measures of Deformation

We continue using the notation from the last report (Formulation of Nonlinear 
Problems) that was presented schematically in Figure 1.7. We restrict our attention to 

some time , and consider the corresponding configuration mapping , w

can be mathematically represented via . The deformation gradient  is 

given by the gradient of this transformation, i.e.:

, (2.1)

or in indices:

. (2.2)

In (2.2) one may notice a notational feature we will use unless otherwise noted: lowe
indices are to be associated with coordinates in the spatial frame, while upper case 
are associated with material coordinates. Repeated indices in expressions will cont
imply summation.

The deformation gradient is the most basic object used to quantify the local deforma
a point in a solid. Most kinematic measures and concepts we will discuss rely on it 
explicitly or implicitly for their definitions. For example, we can use our knowledge o

t 0 T,( )∈ ϕ t

ϕ t :Ω ℜ 3→ F

F
X∂

∂ϕ t=

FiJ XJ∂
∂ϕ ti=
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 2
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elementary calculus to give an interpretation of the determinant of . Consider a cu
material in the reference configuration (see Figure 2.1) whose sides can be assume

aligned with the coordinate axes , . The initial differential volume  o

this cube is given by

. (2.3)

If we now consider the condition of this cube of material after the deformation  is

applied, we notice that its volume in the current configuration  is that of the 

parallelepiped spanned by the three vectors , where the notation  is us

indicate a reference vector in coordinate direction J  with magnitude . This volume 

can be written in terms of the vector triple product:

. (2.4)

Figure 2.1 Concept of volume change: deformation of a volume element as described by the 
configuration mapping .

F

XI I 1 2 3, ,= Vd

Vd X1 X2 X3ddd=

ϕ t

vd

ϕ t XJd( ) XJd

XJd

vd ϕ t X1d( ) ϕ t X2d( ) ϕ t X3d( )×( )⋅=

ϕ t

dX
2

dX1

dX3

dV

ℜ 3
ϕ t

1–

dv

ϕ t
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 3
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If we consider any differential vector  in the reference configuration, the calculus

differentials tells us that application of the mapping  will produce a differential vec

 whose coordinates are given via

. (2.5)

Application of this logic to the particular differential vectors  leads one to conclu

. (2.6)

We can write (2.4) in indicial notation by first noting that the cross product of two vect
a and b is written as

, (2.7)

where , the permutation symbol, has the following interpretation:

Rd

ϕ t

rd ϕ t Rd( )=

rd( )i XK∂
∂ϕ ti Rd( )K=

XJd

ϕ t XJd( )( )i

Fi 1 X1d J  = 1,

Fi 2 X2d J  = 2,

Fi 3 X3d J  = 3,








=

a b×( )i e ijk a j bk=

eijk
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 4
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. (2.8)

Equation (2.4) is then reexpressed via

, (2.9)

where we have used Eq. (2.3) and the fact that  (which can b

verified through actual trial). Introducing the notation , we conclude

. (2.10)

Equation (2.10) tells us that the deformation  converts reference differential volum

 to current volumes  according to the determinant of the deformation gradient

this mapping to make physical sense, the current volume  should be positive wh
then places a physical restriction upon F that must be obeyed pointwise throughout the
medium:

. (2.11)

eijk

1 if i j k, ,( ) = (1,2,3) or (2,3,1) or (3,1,2)

1–  if i j k, ,( ) = (3,2,1) or (2,1,3) or (1,3,2)

0 otherwise





=

vd Fi 1 X1 eijk Fj 2 X2Fk3 X3dd( )d=

 eijk F
i 1

Fj 2Fk3 X1 X2 X3ddd det F( ) Vd= =

det F( ) eijk F
i 1

Fj 2Fk 3=

J det F( )=

vd J Vd=

ϕ t

Vd vd

vd

J det F( ) det
X∂

∂ϕ
 
  0>= =
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 5
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This physical restriction has important mathematical consequences as well. Accord
the inverse function theorem of multivariate calculus, a smooth function whose grad
has a nonzero determinant possesses a smooth and differentiable inverse. Since w

assumed  to be smooth and physical restrictions demand that , we can con

that a function  exists that is differentiable; in fact, the gradient of this function is

given by

. (2.12)

We will assume throughout the remainder of our discussion that , so that such
inverse is guaranteed to exist.

With the definition of F in hand, we turn our attention to the quantification of local 
deformation in a body. For any matrix, such as F, whose determinant is positive, the 
following decompositions can always be made:

. (2.13)

In (2.13)  is a proper orthogonal tensor (right-handed rotation), while  and  are
positive definite and symmetric tensors. One can show that under the conditions sta
decompositions in (2.13) can always be made and that, in fact, they are unique. Th
interested reader should consult [Gurtin, M.E., 1981], Chapter 1 for details. The 
decompositions in (2.13) are called right and left polar decompositions of F, respectively. 

ϕ t J 0≠

ϕ t
1–

x∂
∂ϕ t

1–

F
1–

=

J 0>

F RU VR= =

R U V
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 6
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 is often called the rotation tensor, while  and  are sometimes referred to as th
and left stretches.

The significance of the polar decomposition is made more clear in Figure 2.2, where we 

consider the deformation of a neighborhood of material surrounding a point . 
Equation (2.5) shows us that the full deformation gradient maps arbitrary reference 

differentials into their current positions at time ; this idea also applies to neighborh
of material having infinitesimal extent. By considering the polar decomposition, we s
that this deformation of material neighborhoods can always be conceived as consis

two parts. Considering the right polar decomposition as an example,  contains all 

information necessary to describe the distortion of a neighborhood of material, whil
then maps this distorted volume into the current configuration through pure (right-ha

rotation. In consideration of the left decomposition, the rotation  is considered first

followed by the distortion . In developing measures of local deformation, we can th

concentrate our attention on either  or . The choice of which decomposition to u

typically based on the coordinates in which we wish to write strains: the right stretch

most naturally takes reference coordinates as arguments, while the left stretch  is
ordinarily written in terms of spatial coordinates. We might indicate this explicitly via

. (2.14)

In characterizing large deformations, it is convenient also to define the right and left
Cauchy-Green tensors via

(2.15)

R U V

X Ω∈

t

U

R

R

V

U V

U

V

F X( ) R X( )U X( ) V ϕ X( )( )R X( )= =

C F
T
F=
/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 7
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and

. (2.16)

Figure 2.2 Physical interpretation of the polar decomposition. (Dotted outline indicates a 
neighborhood of point X.)

The right Cauchy-Green tensor is ordinarily considered to be a material object (i.e.,

), while the left Cauchy-Green tensor is a spatial object ( . Since  is 

orthogonal, one can write

, (2.17)

where  is the 3x3 identity tensor. Using this fact and manipulating Eqs. (2.14)-(2.16) 
also reveals that

(2.18)

and

B FF
T

=

ℜ 3

R

U

F

X

x ϕt X( )=

C X( ) B ϕ t X( )( ) R

R
T
R RR

T
I= =

I

U C

1
2
---

=

/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 8
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One can see the point of connection with the small strain theory by considering the Green 
strain tensor , defined with respect to the reference configuration:

. (2.20)

Let us define a reference configuration displacement field , such that

. (2.21)

Working in indicial notation, let us attempt to write  in terms of :

. (2.22)

V B

1
2
---

=

E

E
1
2
--- C I–( )=

u

u X( ) ϕ X( ) X–=

E u

EIJ
1
2
--- CIJ δIJ–( ) 1

2
--- FiI FiJ δIJ–( )= =

1
2
---

XI∂
∂

ui Xi+( )
XJ∂
∂

ui Xi+( ) δIJ– 
 =

1
2
---

XI∂
∂ui δiI+

 
 
 

XJ∂
∂ui δiJ+

 
 
 

δIJ–+
 
 
 

=

1
2
--- δiI XJ∂

∂
ui( ) δiJ XI∂

∂
ui( )

XI∂
∂ui

XJ∂
∂ui+ +

 
 
 

=

/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 9
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In the case where the displacement gradients are small, i.e., , the quadrati

in (2.22) will be much smaller than the terms linear in the displacement gradients. If

addition, the displacement components  are very small when compared with the 

the body, then the distinction between reference and spatial coordinates becomes 
unnecessary and Eq. (2.22) simplifies to

, (2.23)

which is recognized as being identical with the infinitesimal case (c.f. Eq. (1.56)).

XJ∂
∂Ui 1«

ui

EIJ
1
2
---

XJ∂
∂uI

XI∂
∂uJ+

 
 
 

≈

/22/98) Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 10
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Introduction

The development of the last section fixed our attention on an instant , and
proposed some measurements of material deformation in terms of the configuration

mapping . We now allow time to vary and consider two questions: 1) how velociti

and accelerations are quantified in both the spatial and reference frames; and 2) ho
derivatives of deformation measures are properly considered in a large deformation
framework. The former topic is obviously crucial in the formulation of dynamics 
problems, while the latter is necessary, for example, in rate-dependent materials wh
quantities, such as strain rate, must be quantified.

t 0 T,( )∈

ϕ t
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Introduction 2
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Material and Spatial Velocity and 
Acceleration

One obtains the material velocity V and the material acceleration A by fixing attention 
on a particular material particle (i.e., fixing the reference coordinate X), and then 

considering successive (partial) time derivatives of the motion . This can be 
written mathematically as

(2.24)

and

. (2.25)

Note in Eqs. (2.24) and (2.25) that V and A take X as their first argument; hence their 
designation as material quantities. A Lagrangian description of motion, in which refe
coordinates are the independent variables, would most naturally use these measure
velocity and acceleration.

An Eulerian description, on the other hand, would, in general, require measures wri
terms of points x , without requiring explicit knowledge of material points X. The spatial 
velocity v  and the spatial acceleration a are obtained from (2.24) and (2.25) through a
change of variables:

ϕ X t,( )

V X t,( )
t∂
∂ ϕ X t,( )=

A X t,( )
t∂
∂

V X t,( )
t 2

2

∂
∂= ϕ X t,( )( )=
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Material and Spatial Velocity and Acceleration 3
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(2.26)

and

. (2.27)

The expression given in (2.27) for the spatial acceleration may be unfamiliar to thos
readers versed in fluid mechanics who may be more accustomed to thinking of 
acceleration as the total time derivative of the spatial velocity v . We reconcile these 
different viewpoints here through the introduction of the equivalent concept of the 
material time derivative, defined, in general, as the time derivative of any object, spa
or material, taken so that the identity of the material particle is held fixed. Applying t
concept to the spatial velocity gives:

. (2.28)

v x t,( ) V ϕ t
1–

x( ) t,( ) Vt ϕ t
1–

x( )•= =

a x t,( ) A ϕ t
1–

x( ) t,( ) At ϕ t
1–• x( )= =

a x t,( ) v̇ x t,( )
x ϕ X t,( )=

=

td
d

X fixed

v ϕ X t,( ) t,( )( )=

x∂
∂v

x t,( )
t∂

∂ϕ ϕ t
1–

x( ) t,( )⋅
t∂

∂v ϕ t
1–

x( ) t,( )+ 
 =

t∂
∂v

v∇ v⋅+ 
 =
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Material and Spatial Velocity and Acceleration 4
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This may be recognized as the so-called “total time derivative” of the spatial velocity
Exercising the concept of a material time derivative a little further, we can see from (2.24) 
that the material velocity is the material time derivative of the motion, so that

. (2.29)

Comparing Eqs. (2.25) and (2.28), we can also conclude that A and a are, in fact, the same
physical entity expressed in different coordinates. The former is most naturally writt
terms of V, while the latter is conveniently expressed in terms of v .

One may see in (2.28) the superposed dot notation for the time derivative of . Such 
superposed dots will always imply a material time derivative in this text, whether ap
to material quantities or, as in this case, spatial ones. It is further emphasized that t

gradient  is taken with respect to spatial coordinates and is, therefore, called the
spatial velocity gradient. It is used often enough to warrant a special symbol which w
denote as L:

. (2.30)

v

V ϕ̇=

v

∇ v

L v∇=
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Material and Spatial Velocity and Acceleration 5
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Rate of Deformation Tensors

From the spatial gradient L defined in (2.30), we can define two spatial tensors  and 
known respectively as the spatial rate of deformation tensor and the spatial spin tensor:

, (2.31)

and

. (2.32)

It is clear that  is merely the symmetric part of the velocity gradient, while  is the
antisymmetric, or skew, portion.

The quantities  and  are spatial measures of deformation.  is effectively a meas

strain rate suitable for large deformations, while  provides a local measure of the r
rotation of the material. In fact, it is readily verified that in small deformations, Eq. (2
amounts to nothing more that the time derivative of the infinitesimal strain tensor de
in (1.56). It is of interest at this point to discuss whether appropriate material counte
of these objects exist. Toward this end let us calculate the material time derivative o
deformation gradient F, noting in so doing that if F is an analytic function, then the orde
of partial differentiation can be reversed:

D W

D ∇ sv
1
2
--- L L

T
+[ ]= =

W ∇ av
1
2
---= L L

T
–[ ]=

D W

D W D

W

/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 6



Theory Manuals (9

< Go Back

Rates of 
Deformation

Nonlinear 
Continuum 
Mechanics

SEACAS 
Library

Theory 
Manuals

e 
. (2.33)

From (2.33) we conclude that the material time derivative  is nothing more than th
material velocity gradient. Manipulating this quantity further we find

. (2.34)

Examination of (2.33) and (2.34) reveals that

. (2.35)

Recalling the definition for the right Cauchy-Green strain tensor C in Eq. (2.15), we 
compute its material time derivative via:

, (2.36)

which in view of (2.31), leads us to conclude

. (2.37)

Ḟ
t∂
∂

X∂
∂ ϕ X t,( )

X∂
∂

t∂
∂ ϕ X t,( )

X∂
∂V= = =

Ḟ

X∂
∂V

X∂
∂

v °ϕ t( ) v∇ ϕ t X( )( )
X∂
∂ ϕ t X( )( )= =

L ϕ t X( )( )F X( )=

L Ḟ°ϕ t
1–( )F 1–

=

Ċ
t∂
∂

FTF[ ] ḞTF FTḞ+= =

 LF( )TF FT LF( )+ FT L L
T

+( )F= =

Ċ X t,( ) 2FT X t,( )D ϕ t X( ) t,( )F X t,( )=
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 7
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In view of (2.37)  is sometimes called the material rate of deformation tensor.

Noting that  is the Jacobian of the transformation , readers with a background i

differential geometry will recognize  as the pull-back of the spatial tensor field  

defined on . Conversely,  is the push-forward of the material tensor field  

defined on . The concepts of pull-back and push-forward are outside the scope o
present investigation, but the basic physical principle they embody in the current con
perhaps useful. Loosely speaking, the push-forward (or pull-back) of a tensor with re
to a given transformation produces a tensor in the new frame of reference that we, 
observers, would observe as identical to the original tensor if we were embedded in
material during the transformation. Thus the same physical principle is represented

both  and , but they are very different objects mathematically since the 

transformation that interrelates them is the deformation itself. Recalling the definitio

Green’s strain  given in Eq. (2.20), we can easily see that

. (2.38)

This further substantiates the interpretation of  as a strain rate as suggested earlie

1
2
---Ċ

F ϕ t

1
2
---Ċ D

ϕ t Ω( ) D
1
2
---Ċ

Ω

1
2
---Ċ D

E

Ė
1
2
---Ċ FTDF= =

D

/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 8
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lating 
We have thus far developed measures of strain and strain rate appropriate for both 
spatial and reference configurations. Although it is not clear at this point why other 
measures may be needed, let us consider appropriate definitions of these quantities
rotated configuration defined according to the polar decomposition and depicted 
schematically in Figure 2.2. This can be readily done by extending the idea of pull-ba

and push-forward as discussed above, by applying to the linear transformation  re
the rotated configuration to the spatial one.

The rotated rate of deformation tensor  is, therefore, defined via: 

. (2.39)

Noting that

, (2.40)

we find

. (2.41)

In connection with the rotated reference frame, another tensor, , is sometimes 
introduced:

. (2.42)

R

D 

D X t,( ) RT X t,( ) D ϕ X t,( ) t,( ) R X t,( )⋅ ⋅=

RT D°ϕ( )R=

Ċ 2FT D°ϕ( )F 2UTRT D°ϕ( )RU 2UTD U= = =

D
1
2
---U 1– ĊU 1– 1

2
---C 1 2/– ĊC 1 2/–= =

L  

L ṘRT=
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 9
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As shown below, note that  is skew:

. (2.43)

We will return later in this report to the various measures associated with the rotate
configuration. They have particular importance in the study of material frame indiffer

L  

L L T+ ṘRT RṘT+
t∂
∂

RRT( )
t∂

∂I 0= = = =
/22/98) Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 10
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Stress Measures

In this section we discuss the quantification of force intensity, or stress, within a bod
undergoing potentially large amounts of deformation. We begin with the Cauchy stre
tensor T, and note that provided we associate this object with the spatial configuration
object can be interpreted exactly as in the infinitesimal case outlined in Linear Elastic 
IBVP . In the current notational framework, we interpret the components of T, which we 

shall denote as , as representing forces per unit areas in the spatial configuratio

given spatial point .

It will be necessary in our study to consider related measures of stress defined in te
the other configurations we have discussed, particularly the reference and rotated 
configurations. To motivate this discussion, let us reconsider the concept of traction
discussed previously in the context of the infinitesimal elastic system. The reader m
recall that given a plane passing through the point of interest x , the traction, or force per 
unit area acting on this plane, is given by the formula

, (2.44)

where  is the unit normal vector to the plane in question.

Let us consider two differential vectors,  and , in such a plane passing throug

spatial point x , as indicated in Figure 2.3. We assume that  and  are linearly 

independent from one another and that both differential vectors have x  as their base point.

Tij

x ϕ t Ω( )∈

t i Tij n j=

nj

r 1d r 2d

r 1d r 2d
/22/98) Nonlinear Continuum Mechanics - Stress Measures - Stress Measures 2
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We further assume that their orientations are such that the following relation from b
geometry holds:

, (2.45)

where  is the (differential) area of the parallelogram encompassed by  and 

Figure 2.3 Notation for derivation of Nanson’s formula.

As in the discussion in Measures of Deformation (see Eq. (2.5)), we can think of the 

differential vectors  and  as the current positions of reference differential ve

 and , which are based at . In indicial notation we can relate these

sets of differential vectors using the deformation gradient via:

, (2.46)

and

r 1d r 2d× n ad=

ad r 1d r 2d

R1d

R2d
m

Ad

ϕ t

da

n

r 1d

r 2d

r 1d r 2d

R1d R2d X ϕ= t
1–

x( )

r 1d( )
i

FiI R1d( )
I

=

/22/98) Nonlinear Continuum Mechanics - Stress Measures - Stress Measures 3
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. (2.47)

We now seek to reexpress (2.45) in terms of reference quantities. Working in indicial 
notation we can write

. (2.48)

Let us extract and work with a particular product in the last line of Eq. (2.48), namel

. One can show by a case-by-case examination that the following 

relation holds:

. (2.49)

The reader may recall from Measures of Deformation that  has the following
representation in indicial notation:

. (2.50)

Combination of Eqs. (2.48), (2.49), and (2.50) yields the following result:

. (2.51)

r 2d( )
i

FiI R2d( )
I

=

ni ad e ijk FjJ R1d( )
J
FkK R2d( )

K
=

eljk δli FjJ R1d( )
J
FkK R2d( )

K
=

eljk FlL FLi
1–

FjJ R1d( )
J
FkK R2d( )

K
=

eljk FlL FjJ FkK

eljk FlL FjJ FkK eLJKeljk Fl 1Fj 2Fk3=

J det F( )=

J det F( ) eljk Fl 1Fj 2Fk 3= =

ni ad Je LJKFLi
1–

R1d( )
J

R2d( )
K

=

JF Li
1–

mL Ad=
/22/98) Nonlinear Continuum Mechanics - Stress Measures - Stress Measures 4
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In Eq. (2.51)  is the differential reference area spanned by  and , and m is the 

reference unit normal to this area.

In direct notation we can express this result as

. (2.52)

Equation (2.52) is sometimes referred to as Nanson’s formula and it is important, am
other reasons, because it provides the appropriate change-of-variables formula for 
integrals in the reference and current configurations. In the current context we are m
interested in computing the product of the traction acting on our plane at x  and the 
differential area under consideration. Denoting this differential force by df , we may write

. (2.53)

In examining (2.53) we find that the following definition is useful

, (2.54)

which then allows us to write

. (2.55)

In examining Eq. (2.55), we note that the product  represents a traction, with the
physical interpretation of current force divided by reference area. The stress P is called the 

(First ) Piola-Kirchhoff Stress, and like the associated Piola traction, , measures s
by referencing the force acting on areas to the magnitude of those areas in their 

Ad R1d R2d

n ad J F
T–
m Ad=

fd t ad Tn ad J TF
T–
m Ad= = =

P X( ) J X( )T ϕ t X( )( )F T– ϕ t X( )( )=

fd Pm Ad=

Pm

Pm
/22/98) Nonlinear Continuum Mechanics - Stress Measures - Stress Measures 5



Theory Manuals (9

< Go Back

Stress 
Measures

Nonlinear 
Continuum 
Mechanics

SEACAS 
Library

Theory 
Manuals

ure is 

g a 

t. 

tated 

:

t 
undeformed configurations. The one-dimensional manifestation of this stress meas

the engineering stress, , originally defined in Eq. (1.3).

in the sense discussed in Rates of Deformation, it is worthy to note that P is neither a 
pure spatial nor a reference object. Such an object can be constructed by performin
pull-back of the spatial Cauchy stress tensor T to the reference configuration:

. (2.56)

 is called the Second Piola-Kirchhoff stress tensor and it is a purely reference objec

We note in particular that  is a symmetric tensor, while P is not symmetric, in general.

This same concept of pull-back can be employed to define a stress tensor in the ro

configuration, which we shall denote as . This rotated stress tensor is defined via

. (2.57)

As was the case with the rotated configuration quantities introduced in Rate of 
Deformation Tensors, this definition will be of particular importance in the subsequen
examination of frame indifference.

σE

S X( ) J F 1– ϕ t X( )( )T ϕ t X( )( )F T– ϕ t X( )( )=

F 1– ϕ t X( )( )P X( )=

S

S

T  

T  ϕ t X( )( ) R
T ϕ t X( )( )T ϕ t X( )( )R ϕ t X( )( )=
/22/98) Nonlinear Continuum Mechanics - Stress Measures - Stress Measures 6
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Introduction

In this section we examine the local forms of the various conservations laws as exp
in the various reference frames (spatial, reference, and rotated) we have introduced
expedite our development, we first discuss how integral representations of balances
converted to pointwise conservation principles, a process known as localization.
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Introduction 2
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Localization

Suppose we consider an arbitrary volume of material, , in the reference 
configuration of a solid body, as depicted in Figure 2.4. Suppose further that we can 
establish the following generic integral relation over this volume:

, (2.58)

where  is some reference function, be it scalar, vector, or tensor-valued, defined o

of . Suppose now that (2.58) holds true for each and every subvolume  of . Th
localization theorem then states that

. (2.59)

The interested reader should consult [Gurtin, M.E., 1981], Section 5 for elaboration on 
this principle. It should be noted that the same procedure can be applied spatially. In

words, if we are working with a spatial object, we might consider arbitrary volumes 

the spatial domain, and if the following holds for a spatial object  for all :

, (2.60)

then  throughout . 

V Ω⊂

f X( ) Vd
V
∫ 0=

f

Ω V Ω

f 0 pointwise in Ω=

v

g v

g x( ) vd
v
∫ 0=

g x( ) 0= ϕ t Ω( )
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Localization 3
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Our primary interest in these localization principles will be to take the well-known 
conservation laws for control volumes and convert them to their local counterparts v
pointwise throughout the medium.

Figure 2.4 Notation for localization concept.

Ω

V

V∂
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Localization 4
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Conservation of Mass

In consideration of the conservation of mass, let us consider a fixed control volume
the spatial domain, completely filled with our solid body at the instant in question as
body moves through it. We may write a conservation of mass for this control volume

, (2.61)

where the term on the left can be interpreted as the net mass influx to the control vo
and the right-hand side is the rate of mass accumulation inside the control volume. 
Applying the divergence theorem to the left-hand side gives

. (2.62)

This can be further rearranged to yield

, (2.63)

which can be established for any arbitrary spatial volume . Applying the localizatio
theorem gives the local expression of continuity, which may be familiar to those vers
fluid mechanics:

v

ρv n ad⋅
v∂
∫–

t∂
∂ρ

vd
v
∫=

∇ ρ v( ) vd⋅
v
∫–

t∂
∂ρ

vd
v
∫=

t∂
∂ρ ∇ρ v ρ ∇ v⋅( )+⋅+ 

  vd
v
∫ 0=

v

/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass 5
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, (2.64)

where the concept of the material time derivative has been employed (cf. Eq. (2.28)). 

A reference configuration representation of continuity is also highly desirable, espe
in the study of solid mechanics. Therefore, we convert (2.63) to a reference configuration
integral and obtain:

, (2.65)

where the transformation between  and  is accomplished using (2.10); and the 

chain rule is used to convert  via

, (2.66)

which the reader will recognize as the indicial notation form of . Applying the 
localization theorem in the reference configuration gives

t∂
∂ρ ∇ρ v ρ ∇ v⋅( )+⋅+ ρ̇ ρ ∇ v⋅( )+ 0= =

ρ̇ ρḞ:F
T–

+( )J Vd

V ϕ= t
1–

v( )
∫ 0=

dv dV

∇ v⋅

v i i, x( )
x i∂
∂

Vi ϕ t
1–

x( )( )=

XI∂
∂

Vi ϕ t
1–

x( )( )
x i∂

∂XI ϕ t
1–

x( )( )=

ḞiI ϕ t
1–

x( )( )FIi
1– ϕ t

1–
x( )( )=

Ḟ:F
T–
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass 6
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, (2.67)

which holds pointwise in .

Working in indicial notation we can work further to simplify (2.67) by concentrating o

the term . Let us compute the material time derivative of  as follows:

. (2.68)

Calculation of  is achieved via

, (2.69)

which can be further simplified to yield

ρ̇J ρJ Ḟ:F
T–

+ 0=

Ω

J Ḟ:F
T–

J

J̇
FmM∂

∂J
ḞmM=

FmM∂
∂J

FmM∂
∂J

FmM∂
∂

eijk Fi 1Fj 2Fk3( )=

eijk δim δM1Fj 2Fk 3=

 eijk δjm δM2Fi 1Fk 3 eijk δkmδM3Fi 1F
j 2

+ +

eijk FiN FNm
1– δM1Fj 2Fk3=

 eijk FjN FNm
1– δM2Fi 1Fk3+

 eijk FkNFNm
1– δM3Fi 1F

j 2
+

/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass 7
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. (2.70)

Substitution into (2.68) gives

, (2.71)

which is nothing more than the indicial form of

. (2.72)

Substitution into (2.67) gives

. (2.73)

Equation (2.73) is the reference configuration version of the continuity equation and
us that the product of the density and deformation gradient determinant must be inv
with time for all material points. This is commonly enforced in practice by assigning

reference density  to all material points. If the current density  is always comput

, (2.74)

FmM∂
∂J

JF 1m
1– δM1 JF 2m

1– δM2 JF 3m
1– δM3+ +=

JF Im
1– δMI JF Mm

1–
==

J̇ JF Mm
1–

ḞmM=

J̇ J F
T–
:Ḟ=

ρ̇J ρJ̇+
td
d ρJ( ) 0= =

ρ0 ρ

ρ 1
J
---ρ0=
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass 8
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then Eq. (2.73) is automatically satisfied (recall that the Jacobian  is unity in the 
reference configuration).

J

/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Mass 9
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Conservation of Linear Momentum

Considering once more a fixed control volume , the control volume balance of line
momentum can be expressed as

. (2.75)

The first term on the left expresses the momentum outflux, while the second represe
rate of accumulation inside the control volume. This net change of momentum is pro

by the total resultant force on the system, equal to the sum effect of the body force 

the surface tractions .

Applying the divergence theorem to both surface integrals, we find

, (2.76)

and

. (2.77)

Substituting (2.76) and (2.77) into (2.75) and rearranging gives

v

ρv( )v n ad⋅
v∂
∫ t∂

∂ ρv( ) vd
v
∫+ f v t ad

v∂
∫+d

v
∫=

F

t

ρv( )v n ad⋅
v∂
∫ ∇ ρ v( )v ρ ∇ v( )v+⋅[ ] vd

v
∫=

t ad
v∂
∫ Tn ad

v∂
∫ ∇ T⋅ vd

v
∫= =
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Linear Momentum 10
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. (2.78)

Employing the spatial form of the continuity equation (Eq.(2.63)) and recalling the 
formula for the material time derivative (Eq. (2.28)) gives

. (2.79)

By the localization theorem this implies

(2.80)

pointwise, which is recognized as the same statement of linear momentum balance 
in our earlier treatment of linear elasticity.

In large deformation problems it is desirable to also have a reference configuration fo
(2.80). Converting (2.79) to its indicial form we have

. (2.81)

Working with the stress divergence term first we write

∇ T⋅ f ρ
t∂

∂v
– ρ ∇ v( )v–+

t∂
∂ρ

v– ∇ρ v⋅( )v– ρ ∇ v⋅( )v–

vd
v
∫ 0=

∇ T⋅ f ρv̇–+[ ] vd
v
∫ 0=

∇ T⋅ f ρ= v̇+

Tij j, f i ρv̇ i–+[ ] vd
v
∫ 0=
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Linear Momentum 11
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 fact 
. (2.82)

Using Eq. (2.54) we can write

. (2.83)

Using Eq. (2.70) we can simplify (2.83) and postmultiply by  to obtain:

. (2.84)

The first and last terms on the right-hand side of (2.84) cancel each other due to the

that . Therefore, we have

. (2.85)

Using this result and applying a change of variables to (2.81) gives

Tij j, XJ∂
∂Tij

x j∂
∂XJ

XJ∂
∂Tij

˙
FJj

1–
= =

XJ∂
∂Tij

XJ∂
∂ 1

J
---PiI FjI 

 =

1–

J
2

------
FkK∂

∂J
XJ∂

∂FkKPiI FjI
1
J
---

XJ∂
∂

PiI FjI( )+=

FJj
1–

XJ∂
∂Tij FJj

1– 1–
J
------FKk

1–

XJ∂
∂FkKPiJ

1
J
---

XI∂
∂PiI 1

J
---FJj

1–

XJ∂
∂FjI PiI+ +=

XJ∂
∂FjI

XI∂
∂FjJ=

XJ∂
∂Tij FJj

1– 1
J
---

XI∂
∂PiI=
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Linear Momentum 12
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, (2.86)

where , the prescribed body force per unit reference volume. Employing 

localization theorem gives

(2.87)

pointwise in , which expresses the balance of linear momentum in terms of refere

coordinates. In (2.87) we have used the notation  to indicate the divergence op
applied in reference coordinates.

PiI I, Fi ρ0V̇i–+( ) Vd
V
∫ 0=

Fi Jf i=

DIV P F+ ρ0V̇=

Ω
DIV
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Linear Momentum 13
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Conservation of Angular Momentum

Considering once more an arbitrary control volume in the spatial frame, we can writ
balance of angular momentum via

, (2.88)

where the terms on the left-hand side are the outflux and accumulation terms, while
terms on the right-hand side represent the total resultant torque.

Working this time in indicial notation, we apply the divergence theory to the surface 
integrals as follows:

, (2.89)

and

. (2.90)

Substituting (2.89) and (2.90) into (2.88) and rearranging terms reveals that:

x ρv×( )v n ad⋅
v∂
∫ t∂

∂
x ρv×( ) vd

v
∫+ x f×( ) v x t× ad

v∂
∫+d

v
∫=

eijk ρx j v kv l n l ad
v∂
∫

ρ,l e ijk x j v kv l e ijk+ ρδjl v kv l

e ijk ρx j v k l, v l e ijk ρx j v kv l l,+ 
 
 

vd
v
∫=

eijk x
j
Tkl n l ad

v∂
∫ eijk x

j
Tkl l, eijk Tkj+( ) vd

v
∫=
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Angular Momentum 14
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e 
ct, a 
 frame.
. (2.91)

Using Eqs. (2.81) and (2.64) and noting that the cross product of a vector with itself is
zero, we can simplify Eq. (2.91) and apply the localization theorem to conclude

, (2.92)

which, in turn, implies the following three equations:

. (2.93)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence o
conservation of angular momentum. Use of Eqs. (2.56) and (2.57), respectively, easily 

reveals that the Second Piola Kirchhoff stress  and the rotated stress tensor  ar
likewise symmetric. The First Piola Kirchhoff stress is not symmetric and is not, in fa
tensor in the purest sense since it does not fully live in either the spatial or reference

eijk x j Tkl l, f k ρ
t∂

∂v k– ρ
x l∂

∂v k–+ v l 
 
 

eijk x j v k t∂
∂ρ

x l∂
∂ρ

v l ρv l l,+ + 
 –

 eijk Tkj ρeijk v j v k–+ 
 
 
 
 
 
 
 
 

vd
v
∫ 0=

eijk Tkj 0=

T23 T32, T13 T31, T21= T12= =

S T  
/22/98) Nonlinear Continuum Mechanics - Balance Laws - Conservation of Angular Momentum 15
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Stress Power

Finally, we examine the consequences of a control volume expression of energy ba
We assume herein a purely mechanical description and assume, to begin, that ther
mechanical dissipation, so that the system we consider conserves energy exactly. I
words, all work put into the system through the applied loads goes either into stored
internal elastic energy or into kinetic energy.

With this in mind the conservation of energy for a spatial control volume is written a

, (2.94)

where  is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integr

e
1
2
---ρv v⋅+ 

  v n a
t∂
∂

e
1
2
---ρv v⋅+ 

  vd
v
∫+d⋅

v∂
∫

f
v
∫ v vd⋅ Tn( ) v ad⋅

v∂
∫+ 

 =

e

/22/98) Nonlinear Continuum Mechanics - Balance Laws - Stress Power 16
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, (2.95)

and

. (2.96)

Substituting (2.95) and (2.96) into (2.94) and rearranging gives

. (2.97)

Using Eqs. (2.81) and (2.64) we find

. (2.98)

Splitting (2.98) into two integrals we have

e
1
2
---ρv v⋅+ 

  v n ad⋅
v∂
∫

∇ v e
1
2
---ρv v⋅+ 

  ∇ e v⋅+⋅

 
1
2
--- ∇ρ v v v⋅( ) ρv ∇ v( )v⋅+⋅+

vd
v
∫=

t v ad⋅
v∂
∫ T:∇ v ∇ T⋅( ) v⋅+[ ] vd

v
∫=

0

∇( T f ρ
t∂

∂v
– ρ ∇ v( )v )–+⋅ v⋅

1
2
---v v

t∂
∂ρ ρ ∇ v⋅( ) ∇ρ v⋅+ + 

 ⋅–

 T:∇ v e ∇ v⋅( )– ė–+

vd
v
∫=

0 T:∇ v e ∇ v⋅( )– ė–[ ] vd
v
∫=
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. (2.99)

We now wish to convert (2.99) to the reference configuration and apply localization.
doing we recognize that the second integral in (2.99) can be treated directly analogo

that of Eq. (2.63), with the density in (2.63) being replaced by the energy  in the curre
case. The result of this manipulation will lead to a term form identical to the result (2.73), 
with  substituted for . In other words, we have

. (2.100)

Concentrating on the first integral and using Eqs. (2.35) and (2.68) to aid in the 
calculation, we find

. (2.101)

Combining these results and employing the localization theorem, we conclude that

(2.102)

0 T:∇ v v e(
v
∫ ∇ v⋅( )–d ė )– vd

v
∫=

e

e ρ

e(
v
∫ ∇ v⋅( ) ė )– vd

td
d

eJ( ) Vd
V
∫=

T:∇ v vd
v
∫ T°ϕ 1–( ): L°ϕ 1–( )J Vd

V
∫=

T°ϕ 1–( ): ḞF
1–( )J Vd

V
∫ P:Ḟ Vd

V
∫==

td
d

eJ( ) Ė P:Ḟ= =
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pointwise in , where  is the stored elastic energy per unit reference volume. Ther

 represents the rate of energy input into the material by the stress (per unit volu
commonly known as the stress power. Taking into account the various measures of str
and deformation rate we have considered, it can be shown that for a given material
the stress power can be written in the following alternative forms:

. (2.103)

It should be noted that this definition can be used also for dissipative (i.e., 
nonconservative) materials but that the interpretation becomes different: the stress 
in this case is the sum of the rate of increase of stored energy and the rate of energ
dissipation by the solid.

Ω E

P:Ḟ

Stress power P= :Ḟ
1
2
---SĊ 

 = J T:D J T  :D  = =
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Frame Indifference

An important concept to be considered in the formulation of constitutive theories in 
deformations is that of frame indifference, alternatively referred to as objectivity. 
Although somewhat mathematically involved, the concept of objectivity is fairly simp
understand physically.

When we write constitutive laws in their most general forms, we seek to express ten
quantities, such as stress and stress rate, in terms of kinematic tensoral quantities,
commonly strain and strain rate. The basic physical idea behind frame indifference 
this constitutive relationship should be unaffected by any rigid body motions the ma
may be undergoing at the instant in question. Mathematically we describe this situat
defining an alternative reference frame that is rotating and translating with respect t
coordinate system in which we pose the problem. For our constitutive description to
sense, the tensoral quantities we use in it (stress, stress rate, strain, and strain rate
simply transform according to the laws of tensor calculus when subjected to this 
transformation. If a given quantity does this we say it is material frame indifferent, an
does not we say it is not properly invariant.

Consider now a motion, . We imagine ourselves to be viewing this motion fro
another reference frame, denoted in the following by *, which can be related to the 
original spatial frame via

, (2.104)

ϕ X t,( )

x ∗ c t( ) Q t( )x+=
/22/98) Nonlinear Continuum Mechanics - Frame Indifference - Frame Indifference 2
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where . In (2.104)  is a relative rigid body translation between the 
original frame and observer *, while a relative rotation is produced by the proper 

orthogonal tensor . To observer * the motion appears as defined by

. (2.105)

Then for the * frame, we can define an appropriate deformation gradient:

(2.106)

and a spatial velocity gradient :

, (2.107)

which can be simplified to

. (2.108)

For  to be objective, it would transform according to the laws of tensor 
transformation between the two frames, so that only the first term on the right-hand s

(2.108) would be present. Clearly  is not objective.

Examining the rate of deformation tensor, on the other hand, one finds:

x ϕ X t,( )= c t( )

Q t( )

x ∗ ϕ∗ X t,( ) c t( ) Q t( )ϕ X t,( )+= =

F*
X∂
∂ ϕ t

∗ Q
X∂
∂ ϕ t X( ) QF= = =

L*

L* ∇ ∗ v ∗ Ḟ∗ F∗( ) 1–

td
d

QF( ) QF( ) 1–
= = =

Q̇FF
1–
QT Q∇ vFF

1–
QT+( )=

L* QLQT Q̇QT+=

L v∇=

L v∇=
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. (2.109)

One can also show that

, (2.110)

so substituting this result into (2.109) gives

, (2.111)

which shows us that  is objective. 

Therefore, we have a spatial rate-of-strain object, , that is objective. The question
about whether corresponding reference measures of rate are objective. It turns out 
such material rates are automatically objective, since they do not change when 
superimposed rotations occur spatially. Consider, for example, the right Cauchy-Gr

tensor :

. (2.112)

In view of (2.112) it is obvious that

. (2.113)

D∗ 1
2
- L * L*( )T+( )=

1
2
- QLQT Q̇QT Q L( )TQT QQ̇T+ + +[ ]=

Q̇QT QQT˙+
td
d

QQT[ ]
td
d

I[ ] 0= = =

D∗ 1
2
-Q L L T+[ ] QT QDQT= =

D

D

C

C∗ F∗( )T F∗( ) FTQTQF C= = =

Ċ∗ Ċ=
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Turning our attention to stress rates, let us examine the material time derivative of t

Cauchy stress :

. (2.114)

Now  is itself objective by its very definition as a tensoral quantity. Thus we can w

. (2.115)

Computing the material time derivative of (2.115) we find

. (2.116)

Since the first and third terms on the right-hand side of (2.116) do not, in general, c

we see that the material time derivative of the Cauchy stress  is not objective.

It, therefore, becomes critical, when a constitutive description requiring a stress rate
be formulated, to consider a frame indifferent measure of stress rate. A multitude of
rates have been contrived; the interested reader is encouraged to consult [Marsden, J.E. 
and Hughes, T.J.R., 1983] for a highly theoretical treatment. For our discussion here 
consider two such rates, especially prevalent in the literature: the Jaumann rate and
Green-Naghdi rate. Both rates rely on roughly the same physical idea: rather than t
the derivative of the Cauchy stress itself, we rotate the object from the spatial frame 
taking the time derivative, so that the reference frame in which the time derivative is 
is the same for all frames related by the transformation (2.104).

T

Ṫ
td
d

T°ϕ t( ) ϕ t
1–•

t∂
∂T

v T∇⋅+ 
 = =

T

T∗ QTQT=

T *̇ Q̇TQT QṪQT QTQ̇T+ +=

T
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For example, let us consider the Jaumann rate of stress, which we denote here as 
definition is given as follows:

. (2.117)

We can verify that this rate of stress is truly objective by direct calculation, by consid
the object as it would appear to observer *:

. (2.118)

The quantity  is given by (2.116),  is given by (2.115), and  can be computed 
with the aid of (2.108) and (2.111):

. (2.119)

Substituting these quantities into (2.118) we find

. (2.120)

Canceling terms and using the fact that , we can simplify (2.120) to

, (2.121)

T̂

T̂ Ṫ WT– TW+=

T̂* T *̇ W* T*– T* W*+=

T *̇ T* W*

W* L* D– * QLQ
T

= Q̇Q
T

QDQ
T

–+=

T̂* Q̇TQT QṪQT QTQ̇T+ +=

QLQ
T

Q̇Q
T

QDQ
T

–+( )QTQT–

 QTQT QLQ
T

Q̇Q
T

QDQ
T

–+( )+

Q̇Q
T

QQ̇
T

–=

T̂* Q Ṫ WT– TW+[ ] Q
T

QT̂Q
T

= =
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which ensures us that, indeed,  is objective.

In consideration of the Green-Naghdi rate we, perhaps, gain more insight into how 
objective rates can be designed. The Green-Naghdi rate of Cauchy stress is define

, (2.122)

where  is the rotation tensor from the polar decomposition of , and  is the rota
Cauchy stress defined in (2.57). 

Let us examine how the rotation tensor  transforms. Recalling Eq. (2.106) we can write

. (2.123)

We now note two things: first, that the product  is itself a proper orthogonal tenso
second, that the polar decomposition is unique for a given deformation gradient. 
Therefore, comparing the second and fourth terms of (2.123), we must conclude:

, (2.124)

and

. (2.125)

Using Eqs. (2.125) and (2.122) we can compute:

. (2.126)

T̂

T̃ RT  ˙ R
T

=

R F T  

R

F*= R* U* QF QRU= =

QR

U* U=

R* QR=

T *̃ R* T *˙ R*
T

QRT *˙ R
T
Q

T
= =
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Returning to the definition of  in Eq. (2.57) and incorporating Eqs. (2.115) and (2.125), 
we can write

. (2.127)

Therefore, the rotated stress tensor appears exactly the same in both frames of refe
follows that

, (2.128)

which, when substituted into (2.126), gives

, (2.129)

which is recognized as nothing more than the properly objective transformation of 

One may note that result (2.128) gives considerable insight into how objective rates 
constructed. In the current case we transform the stress into the rotated configurati
before computing its time derivative, and then transform the result back to the spati
configuration. Since the rotated stress is exactly the same for all reference frames r
by (2.104), taking the time derivative of it and then transforming produces an objecti
object. This idea can be generalized as follows: construction of an objective rate of 
is achieved by considering the time derivative of a stress measure defined in a coor
system that is rotating about some set of axes. In fact, one can show that the Jaum
stress rate can be similarly interpreted.

T  

T *= R*
T
T* R*= R

T
Q

T
QTQ

T( )QR R
T
TR T  = =

T *˙ Ṫ  =

T *̃ =QRṪ  R
T
Q

T
QT̃Q

T
=

T̃
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Finally, the Green-Naghdi rate can be manipulated further to a form resembling mo
closely the form given for the Jaumann rate (Eq. (2.117)). We may write

, (2.130)

where we have used Eq. (2.42) to define , recalling also that this object is skew.

T̃ R
td
d

R
T
TR( )RT

=

RṘ
T
T Ṫ TṘR

T
+ +=

Ṫ L
T
T TL+ +=

Ṫ TL L T–+=

L  
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Introduction

In this section we very briefly discuss the adaptation of the three-dimensional frame
to two-dimensional problems. We consider three cases of primary interest: plane st
plane stress, and axisymmetry.
/22/98) Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Introduction 2
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Plane Strain

The so-called plane strain assumption is appropriate when the following conditions 
1) the object of interest can be geometrically described in a two-dimensional manne
example, by considering a cross section of a very long object); 2) once so idealized
loads on the structure act in the direction normal to the two-dimensional plane selec
no significant displacement occurs normal to this plane; and 4) the variation of any 
quantity (stress, strain, displacement, etc.) in the direction normal to the plane can 
neglected. Conditions 3) and 4) require that all out-of-plane strain components be z
giving rise to the name plane strain.

The reader should refer to Figure 2.5 for the notational framework we will use. We 

associate the third index, , (i.e., the z-coordinate) with the out-of-plane direct
All of the continuum mechanical concepts we have developed for the three-dimensi
case can then be straightforwardly applied to the current situation. We note that in t
dimensions, one simply considers the large deformation boundary value problem 
summarized in Large Deformation Problems to be defined over a two-dimensional 

domain with the unknown motion  having two components rather than three.

Note that, in general, it is necessary, however, to keep track of some stress compon
associated with the third dimension. This comes about due to the coupling between
plane strains and the out-of-plane stresses. For example, considering infinitesimal 
elasticity for a moment, we have the following strain components equal to zero:

. (2.131)

i 3=

ϕ

E13 E23 E33 0= = =
/22/98) Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Plane Strain 3
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If the elastic response is isotropic, we can use Eqs. (1.59) and (1.62) to conclude that

, (2.132)

but also that

. (2.133)

Figure 2.5 Two-dimensional notation for plane stress and plane strain cases.

T13 T23 0= =

T33 λ E11 E22+( ) 0≠=

x 1

x 2

ϕ

Ω
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Plane Stress

The plane stress assumption is appropriate when the following set of circumstances
1) the object of interest can be geometrically described in a two-dimensional manne
once so idealized, no loads on the structure act in the direction normal to the two-
dimensional plane selected; 3) no significant internal stress is generated in the dire
normal to this plane; and 4) the variation of stress, strain, and in-plane displacemen
direction normal to the plane can be neglected. Condition 3), in particular, makes th
idealization most appropriate for thin, flat objects subject to in-plane loads. The fact
nonzero stresses are assumed to lie within the plane gives rise to the name plane stress.

The notation given in Figure 2.5 is appropriate for this class of problems, and as was 
case in plane strain, we simply specify the problem as a two-dimensional boundary

problem solving for the two-vector . Again, however, in describing the constitutive 
relations some knowledge of the third dimension must be maintained. Considering 
the linear elastic case for simplicity, we have

, (2.134)

from which we can conclude (for isotropy) that

, (2.135)

but also that

ϕ

T13 T23 T33 0= = =

E13 E23 0= =
/22/98) Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Plane Stress 5
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, (2.136)

in general. Particularly when formulating plasticity problems, the out-of-plane straini
important to include as we shall see in later work.

E33

λ– E11 E22+( )
λ 2µ+

----------------------------------- 0≠=
/22/98) Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Plane Stress 6



Theory Manuals (9

< Go Back

Two-
Dimensional 

Nonlinear 
Continuum 
Mechanics

SEACAS 
Library

Theory 
Manuals

ry, and 
otation 
e 

. The 
ear. 

 vector, 
Axisymmetry

An axisymmetric formulation is useful when an object possesses an axis of symmet
when the loading, boundary conditions, and response are invariant with respect to r
about this axis. Under these circumstances it is convenient to construct a coordinat

system, , as shown in Figure 2.6.

Figure 2.6 Notation for an axisymmetric problem (z is the axis of symmetry). The actual three-
dimensional object is obtained by rotating the above cross sections 360 degrees about 
the z-axis.

An in-depth treatment of axisymmetry is beyond the scope of our current treatment
main idea is that our coordinate system is no longer Cartesian but is instead curvilin
For reference we consider again the infinitesimal case. We consider a displacement

, (2.137)

r z,( )

r

z

ϕ

Ω

u
ur

uz

=

/22/98) Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Axisymmetry 7
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and find that the appropriate expressions of strain are now

. (2.138)

The stress-strain relations are still as given by Eq. (1.59), i.e.

. (2.139)

The differential equations of equilibrium do need to be rewritten, however, due to th
special form of the stress divergence resulting from the curvilinear coordinate system
finds the following to be the appropriate expressions of linear momentum balance fo
axisymmetric problems:

. (2.140)

Err r∂
∂ur  ,= Er θ 0  ,= Erz z∂

∂ur

r∂
∂uz+=

Eθθ
ur

r
------  ,= Eθz 0  ,= Ezz z∂

∂uz=

T C:E=

r∂
∂Trr

z∂
∂Trz Trr Tθθ+

r
------------------------ f r+ + + ρur

˙̇=

r∂
∂Trz

z∂
∂Tzz Trz

r
--------- f z+ + + ρuz

˙̇=
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Introduction

Most discussion in this report has been primarily concerned with the description of 
deformation and stress in fully three-dimensional bodies. It is frequently desirable in
mechanics to describe entities that are comparatively thin in at least one spatial dire
and perhaps in two. The former case is commonly referred to as a shell or plate (dep
on whether the entity is initially curved or flat), and the second case is referred to as
beam or truss (depending upon whether bending is to be considered). In this sectio
briefly discuss how the continuum mechanical framework we have constructed can 
adapted to these situations.
/22/98) Nonlinear Continuum Mechanics - Structural Components - Introduction 2
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The Degenerated Solid Approach

We consider initially a thin plate- or shell-like object, described schematically as sho
Figure 2.7. We consider that there is one spatial dimension, the through-the-thickne
direction, that is much smaller than the characteristic in-plane dimensions of the ob

Figure 2.7 Schematic of a generic plate or shell object shown in the reference configuration.

One could consider the ordinary three-dimensional formalism to apply pointwise wit
this solid, leading to a boundary value problem written in terms of all three displace

components . When analyzing shells, however, we become interested in writing 

equations in terms of only the midsurface position, denoted as  in the figure, and 

rotations of unit vectors  that are normal to this surface in the reference configura

ℜ 3

P

E3

ui

P

E3
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We can, therefore, express any reference point  in the shell in terms of the midsur

position  and the unit vector:

, (2.141)

where  is a through-the-thickness coordinate ranging between  and . The qua

 is the local thickness of the shell referenced by . 

As readers familiar with solid mechanics will be aware, the equations governing stru
objects are conveniently written in terms of so-called stress resultants, or net mome
torques, and forces, acting across cross sections. In the degenerated solid approac
takes the fully three-dimensional equations of motion and performs through-the-thic

integration in terms of the appropriate coordinate (in this case ) to obtain governin

equations in terms of the midsurface displacements of points  and rotations of vec

.

If the deformation is infinitesimal, so that reference and current coordinates are the

and changes in the thickness  are insignificant, we obtain the shell equations of 
equilibrium by calculating

. (2.142)

X

P

X P ZE3+=

Z
t
2
---–

t
2
---

t P

Z

P

E3

t

∇ T f+⋅ ρ–
t

2

2

∂

∂ u
+

 
 
 

Zd

t
2
---–

t
2
---

∫ 0=
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The result will be a boundary value problem written in terms of midsurface displacem
rotations, and stress resultants. We will return to this approach in more detail when 
discussing finite element procedures for treating the shell and plate equations in a 
companion report.
/22/98) Nonlinear Continuum Mechanics - Structural Components - The Degenerated Solid Approach 5
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Plates and Shells

In addition to the concept of a degenerated solid, another important aspect of plate
shell formulations is the specific kinematic description used to quantify displacemen
Referring again to Figure 2.7, we describe the configuration mapping for any point in 

shell in terms of the midsurface displacement  and the normal vector rotation :

(2.143)

where we have actually made two kinematic assumptions: first, that the through-the

thickness deformation is negligible so that  is the same coordinate as in (2.141); and 

second, that normals to the midsurface (i.e., ) remain straight, although not nece

normal. This assumption leads to Mindlin plate theory where the rotation of vectors 

with respect to the reference surface gives rise to transverse shear strains and stre
the material.

Examining Eq. (2.143) we see that there are three dependent variables associated 

mapping  and three, in general, associated with the rotation . However, we gene

discard the component of  producing rotation about . Thus, in general, there ar

dependent variables we seek to find in a plate or shell boundary value problem.

Φ q

ϕ X( ) Φ P( ) Zq E3×+=

Z

E3

E3

Φ q

q E3
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Beams

Beams can be considered within this framework also by considering two transverse
dimensions to be small when compared to the remaining one (i.e., beam length). Th
rather than degenerating in one spatial dimension to obtain the resultant-based equi
equations (as in (2.142)), we integrate in two. The result is usually a system with six 
dependent variables, described in terms of a one-dimensional object (a reference li
rather than surface, in this case). Three of these correspond to the x , y , and z -components 
of the reference line displacement, and the other three correspond to rotations. 
/22/98) Nonlinear Continuum Mechanics - Structural Components - Beams 7
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Finally, it will be desirable in some problems to be able to incorporate the equations
motion into a system in which some bodies or entities are rigid (i.e., no deformation

allowed to occur within some reference domain ). In this case, one has the follow
of governing equations from rigid body dynamics:

, (2.144)

where the subscripts x , y , and z  refer to global (reference) coordinates, and subscripts1, 
2, and 3 refer to the principal directions of the inertia tensor fixed to the solid. The 

quantities , , and  are the principal values of the inertia tensor, and the ’s a

components of angular velocity in the principle directions. We will return to the 
implementation of these equations when discussing finite element methods in a 
companion report.

Ω

Fx∑ Max=

Fy∑ May=

Fz∑ Maz=

M1∑ I 1ω̇1 I 2 I 3–( )ω2ω3–=

M2∑ I 2ω̇2 I 3 I 1–( )ω3ω1–=

M3∑ I 3ω̇3 I 1 I 2–( )ω1ω2–=

I 1 I 2 I 3 ω
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