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29.2 René Descartes . . . . . . . . . . . . . . . . . . . . . . . . . . 359
29.3 Gottfried Wilhelm von Leibniz . . . . . . . . . . . . . . . . 360
29.4 George Boole . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



29.5 Gottlob Frege . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
29.6 Georg Cantor . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
29.7 David Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
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Chapter 1

Notation

Generally, we use the notation introduced by Householder [17]:

Capital letters A, B, C,∆, Λ for arrays

Capital bold letters A, B, C,∆,Λ for matrices

Subscripted lower case letters aij , bmn, ckl, δij , γij for matrix elements

Lower case letters x, y, z, v, h for 1D “vectors”

Lower case bold letters e1, e2, e3 for physical vectors

Subscripted lower case letters xi, bj , ck, δj , γj for vector elements

Lower case Greek letters α, β, δ, ε, ϕ for scalars

In reporting particular implementations of the algorithms discussed in this class
(we call these implementations computer codes), we use the following approach:

• All algorithms will be represented in MATLAB language as actual code
or, sometimes, as pseudocode.

• Comments begin with the % symbol.

• The values taken by an integer variable are described using the colon
notation: “i = 1:n” means the same as “i = 1, 2, 3, . . . , n− 1, n”.

• Arrays (matrices) and and subarrays (submatrices) are also represented
in the colon notation. For example A(p:q,r:s) denotes the subarray
(submatrix) of A formed by the intersection of rows p and q and columns
r and s.
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Chapter 2

Introduction to E77

In his brilliant little book, Roszak [29] states:

“The burden of my argument is to insist that there is a vital distinction
between what machines do when they process information and what minds do
when they think. At a time when computers are being intruded massively upon
the schools, that distinction needs to be kept plainly in view by teachers and
students alike. But thanks to the cult-like mystique that has come to surround
the computer, the line that divides mind from machine is being blurred. Accord-
ingly, the powers of reason and imagination, which the schools exist to celebrate
and strengthen, are in danger of being diluted with lowgrade mechanical coun-
terfeits.

If we wish to reclaim the true art of thinking from this crippling confusion,
we must begin by cutting our way through undergrowth of advertising hype,
media fictions, and commercial propaganda. But having done that much to
clear the ground, we come upon the hard philosophical core of the cult of in-
formation, which is as much the creation of the academies and laboratories as
of the marketplace. Gifted minds in the field of computer science have joined
the cult for reasons of power and profit. Because the hucksters have enlisted
so many scientists in their cause, there are tough intellectual questions as well
as political interests that need to be examined if we are to understand the full
influence of the computer in our society. In a very real sense, the powers and
purposes of the human mind are at issue. If the educators are also finally swept
into the cult, we may see the rising generation of students seriously hampered
in its capacity to think through the social and ethical questions that confront
us as we pass through the latest stage of the ongoing industrial revolution.”

2.1 What is E77?

E77 will introduce you to the principles of programming in the context of en-
gineering and scientific applications. MATLABr under MS Windows 2000r

Professional will be the high-level computing environment of choice.
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You simply cannot be a good engineer or scientist if you do not know what
a digital computer can or cannot do. To survive the onslaught of computer
propaganda and the software sales pitches, you must have good working knowl-
edge of basic computational algorithms, programming techniques, and inherent
limitations of finite computing machines.

It may come to you as surprise that computer science is not strictly a science1,
such as physics, astronomy or chemistry; it does not study natural phenom-
ena [12]. While it uses logic and mathematical concepts extensively, computer
science in not pure mathematics, as you might be tempted to think. Rather,
computer science is akin to engineering: its purpose is to get some device, or a
system of devices, to do something, rather than dealing with pure abstractions.
I am far from saying that computer science is all practical, like paving a road
or constructing a building; it is actually very far from it.

On the other hand, as a famous mathematician and one of the fathers of the
digital computer, John von Neumann, once said [15]: “The sciences do not
try to explain, they hardly even try to interpret, they mainly make models. By
a model is meant a mathematical construct which, with the addition of certain
verbal interpretation, describes observed phenomena. The justification of such
a mathematical construct is solely and precisely that it is expected to work
- that is, correctly describe phenomena from a reasonable wide area.” Von
Neumann’s definition provides a nice bridge among natural sciences, computer
science and the various branches of engineering.

After an initial period of exhilaration and unwarranted optimism2, we are
finding out that computer science and computer hardware have changed al-
most every detail of our lives for better or worse. In short computers have
become a mature technology: they create as many problems as they solve. Says
Roszak [29]: “The use of computers in the classroom raises several issues.
By far the strongest argument for going high tech in the schools has been the
promise of future employment; the computer literacy supposedly represents the
royal road to a good job. But, by a cruel irony, in the global economy that
surrounds our schools, the main effect of automation and computerization is to
deskill, disempower, and disemploy people from the assembly line up through
middle management. Computers have played a crucial role in the downsizing of
companies and in the creation of a part-time, temporary and low-paid workforce.
Our schools do not exist in vacuum. They are surrounded and permeated by
social and economic forces that pose more problems in the lives of our students
than any machine will ever solve.”

My goal in E77 is to provide you with a set of skills that are strong and
fundamental enough to guard you against becoming obsolete and downsized for
many years. I will not achieve this goal without your very active help. In the
future you will have to apply your new skills to everyday engineering practice,
or else they will atrophy and you will downsize yourself.

In E77, we shall immediately go down to the “salt mines,” while trying to

1From Latin scientia: having knowledge or to know. The scientific knowledge is concerned
with the physical world and its phenomena.

2Please read some of the more outrageous quotations at the end of this chapter.
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generalize whenever possible. It does no harm to concentrate on details first.
The accompanying computer laboratories will be all salt mines, while in the
lectures generalizations will occur quite often. The homework assignments will
be a go-between the labs and lectures.

Remark 1
Lectures, computer laboratories and homework assignments serve
different purposes and will not always overlap.

2.2 Subjects covered in E77

Many different corners of computer science and several computational tech-
niques will be visited3 in E77:

1. The rudiments of computer architecture and basic grammar of the new
MATLAB language you will have to learn to talk to the idiot computer.
Because you are much smarter than the computer, you will have to explain
very carefully what you want the dense machine to do. This will introduce
you to procedural thinking and simplest algorithms.

2. More details of the MATLAB language, problem solving and plotting tech-
niques.

3. The most versatile computer science tools to build long-lasting computer
programs: induction, recursion and iteration, and the many links between
recursion and iteration.

4. The representation of real numbers in binary form, the cost of arithmetic
operations, and the common sources of computation errors.

5. The big O notation to estimate the computational costs of different algo-
rithms.

6. The most versatile holders of MATLAB data, called structures and cell
arrays.

7. Solving systems of linear equations in the context of the least-square data
fits.

8. Interpolation, extrapolation and smoothing of data.

9. The numerical differentiation and integration, and how to integrate some
simple ordinary differential equations.

10. Trees and their relationships to computer algorithms.

3Grouped by theme, not by chapter. We will try to show you the more important subjects
in several different ways.
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11. Data sorting algorithms and their efficiencies.

12. Other data structures: linked lists, queues and stacks

13. Most general data structures: graphs, adjacency matrices and neighbor
lists

14. Introduction to the Object-Oriented-Programming, or the most fashion-
able OOP ideology.

2.3 The Nitty-Gritty of E77

Here are some useful tidbits about the course:

1. There will be 29 lecture topics in this course. The material covered in
both sections will be more less identical.

2. There will about 12 required computer laboratories.

3. Homework assignments will be due every two weeks and will include more
substantial problems.

4. Before each new lecture, you will be asked to read the Class Reader, as
well as the corresponding chapter(s) in Palm’s book [25]. The required
reading is listed in Table 2.1.

5. The chapters that are not required are denoted with an asterisk; read
them anyway.

6. You are encouraged to participate actively in the lectures by asking ques-
tions and requesting further explanations. In fact, the more active you
are the better off we all are.

7. You are highly encouraged to solve all exercises at the end of each chap-
ter. Some of them will end up as homework assignments. If you turn in
electronically a working solution, you will earn “brownie points.” More
importantly, you can learn computer science only by solving practical
problems of increasing complexity.

8. Inevitably, as in every large class, there will be a vocal and active minority
in the first two-three rows, and a silent majority behind. Some of you will
continue to wonder why are you here? I do hope that by end of the
semester you will find out. Others will try to avoid coming to lectures
altogether because (a) the lectures are a waste of time, or (b) you already
know everything that will be covered in this stupid course the college
requires you to take.
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9. It may come as a surprise to you “experts” that you will have to unlearn
some of your poor or downright harmful programming attitudes to achieve
success in this course. The non-experts will just have to learn the proper
techniques.

10. Both midterms and the final will be the same for the entire class.

2.3.1 Who Are You?

Your are mostly sophomores and older, see Figure 2.1, and mostly Mechanical,
Chemical, Undeclared, Civil, and Bio engineers, see Figure 2.2.
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Figure 2.1: The frequency distribution of the number of years, “Levels,” you
have been at Berkeley (Level 1 = Freshman,...), generated with MATLAB code
listed as function PlotLevels().

2.4 Exercises

1. Read the chapter quotes at the end. Please email me the funniest or
most outrageous quotation you can find and include its source. The best
quotations will make it to the future lectures with a reference to your
names.
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E77 Section 1, Spring 2006 Student Majors

Number of students

Figure 2.2: The frequency distribution of the majors you have declared.
This plot has been generated with the MATLAB code listed as function

PlotMajors(). Do not fear the apparent complexity of this code; soon you’ll
see how easy it actually is. I am not expecting you to write such code until
much later in the semester; still, check out the listing.
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2. Read, as much as you can, the two MATLAB code examples and try to
figure out what is going on there. You can download the source code from
fttp:\\petroleum.berkeley.edu, and play with it as much as you care.
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2.5 MATLAB Software

This book comes with many MATLAB programs which you might use to learn
the required material faster and develop your own programs better. To get you
into the mood, please go to the Introduction folder on fttp:\\petroleum.berkeley.edu,
where there are two files that contain two MATLAB functions :

PlotLevels.m to generate a fancy bar graph with the distribution of you by
the number of years at Cal: freshmen, sophomores, juniors, seniors.

PlotMajors.m to generate a bar graph with the deparements/programs you
are from.

NOTE: We do not expect you to know or even understand the code in these
two functions. Please just look it up, to see what you will be able to do
two months from today.

2.6 MATLAB code to generate Figure 2.1

function PlotLevels()

%--------------------------------------------------------

% Plot the frequency of student levels in Spring 2006

% E77, Section 1. Level 1 = Freshman, 2 = Sophomore,...

% Written by T.W. Patzek, January 16, 2006

% E77 Class Material, University of California, Berkeley

%--------------------------------------------------------

clc % = CLear Console = clear screen

%

% Column vector Levels (Levels are years of enrollment)

% The three dots allow me to continue in next line...

Levels = [...

1

2

3

4];

filename = ’Section1ClassInfo.xls’;

[Data] = xlsread(filename,’ClassInfo’,’c1:c150’);

%Bin the data using the MATLAB function hist

[Frequency,n] = hist(Data,Levels);

% Dump them on the screen

Levels

Frequency

% Transpose column vector Levels into a row vector

Levels = Levels’
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%

close all % Close all open figures

% Start a new plot

figure(99)

% Plot a bar graph

% Levels and Frequency must have the same sizes

% The third argument, 0.6, is the relative width of the bars:

% 1 is for the bars that touch

bar(Levels, Frequency, 0.6)

set(gca,’Fontsize’,12)

title(’E77 Section 1, Spring 2006’,’fontsize’, 14)

xlabel(’Number of Years at Berkeley’)

ylabel(’Number of Study’)

% Keep on adding features as needed...

colormap hsv %new color map

grid on % want a grid?

box on % want a bounding box for the plot?

% Print to string fn the desired eps file name

fn = sprintf(’E77N-Figure1.1.eps’);

% Print to a color eps file for handout

print( gcf, ’-depsc2’, fn );

2.7 MATLAB code to generate Figure 2.2

function PlotMajors()

%--------------------------------------------------------

% Plot major fields in Section 1 of Spring E77

% Written by T.W. Patzek, January 16, 2006

% E77 Class Material, University of California, Berkeley

% Modified by TWP, 01-16-2006

%--------------------------------------------------------

clc % Clear screen

close all % Close all open figures

filename = ’Section1ClassInfo.xls’;

[Data,Text] = xlsread(filename,’ClassInfo’,’d1:d150’)

% Find the unique names of majors in Text

Major = unique(Text)

[len,dummy] = size(Major);

% Initialize the number of students in each major to zero

Numbers = zeros(len,1);
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% Accumulate the Major frequencies

for ii =1:length(Text)

localmajor = Text(ii,:);

for jj=1:len

if strcmp(localmajor,Major(jj,:))

% Number of students in each major from the class roster

Numbers(jj)=Numbers(jj)+1;

end

end

end

% Sort the student numbers in descending order

[NS,I] = sort(Numbers);

% Sort the corresponding labels accordingly

MS = Major(I,:);

% Print the results tothe screen

fprintf(’\n\nList of majors\n\n’)

for ii =1:len

fprintf(’%s = %3d\n’,char(MS(ii,:)),NS(ii))

end

% Fictitious y-labels: 1,2,3,...

y = 1:1:len;

% Initialize a new figure object with generic properties...

%

% Get the current screen size and set the figure size

% so that it does not cover the bottom screen bar

SS = get(0, ’ScreenSize’)

% Initialize a new figure

figure(’Visible’,’on’,...

’Units’,’Pixels’,...

’Resize’,’on’,...

’Name’,’Major fields’,...

’Numbertitle’,’off’,...

’Position’,[1,1,SS(3),SS(4)-75],...

’BackingStore’, ’off’);

% Specify plot area

% xmin ymin dx dy

axes(’Units’,’Normalized’,’Position’,[0.28 0.15 0.55 0.80])

% Plot HORIZONTAL bars

barh(y,NS,0.5);

% Replace the y-labels with the strings in the array Major
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% gca = get current axes handle. h now points to a MATLAB

% object, which is full of properties which you can change

h = gca;

% Now change the y-labels by putting the strings from the

% sorted array Major at the y-coordinates dictated by vector y

set(h, ’YTickLabel’, MS, ’YTick’, y)

% Set the default font size as 12 for all objects inside h

set(h,’fontsize’,12)

% So there is no need to specify the font size here...

title(’E77 Section 1, Spring 2006 Student Majors’)

xlabel(’Number of students’)

% Keep on adding features as needed...

colormap hsv

grid on

box on

% Print to string fn the desired eps file name

fn = sprintf(’E77N-Figure1.2.eps’);

% Print to a color eps Level 2 file for handout

print( gcf, ’-depsc2’, fn );

Becoming computer-literate...is a chance to spend your life working

with devices smarter than you are, and yet have control over them. It’s like

carrying a six-gun to the old frontier.

Paul Kalghan, Dean of
Computer Science at the Northeastern University, New York Times, Jan. 13, 1985.

By 1985, computers will be in position to decide to keep us as pets.

The MIT Artificial Intelligence Agency, 1975.

Many people erroneously believe that, simply because the computer

uses fifteen significant digits, their answers will be accurate to fifteen

digits. However, the speed with which some computations can be rendered useless

by the cumulative effect of small errors is quite amazing....

Boggs.

Computers can only solve problems which are already

understood. Ad hoc numerical calculations are no substitute

for good theory supported by sound experiment.

Tad Patzek.

I honestly think you ought to calm down; take a stress pill and think

things over.

This mission is too important for me to allow you to

jeopardize it!
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HAL, the Supercomputer of Space Odyssey, 2001.

It takes twenty-one years to become an adult. We spend

most of those years in school, learning the culture, history, skills, and

knowledge we expect all citizens to have. After all that, it may still take

decades of training to become expert in a particular endeavor. Yet HAL was only

ten years old.

Donald A. Norman Hal’s Legacy, David G.
Stork, editor, MIT Press, London, 1997.

Looking into the distant future, I suppose it’s not

inconceivable that a semisentient robot-computer subculture could evolve that

might one day decide it no longer needed man. You’ve probably heard the story

about the ultimate computer of the future: For months scientists think of the

first question to pose to it, and finally they hit on the right one: ”Is there a

God?” After a moment of whirring and flashing lights, a card comes out, punched

with the words: There Is Now.

Stanley Kubrick, The Playboy Interview,

Playboy Magazine, HMH Publishing Co., Inc., 1968.
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Table 2.1: E77 Course Outline

# Date Subject Reading

1 1/18/2006 Introduction Palm∗, Chapter 1

2 1/23/2006 MATLAB Basics

3 1/25/2006 Arrays, Data Structures Chapter 2.1-2.5, Chapter 3.1-3.3

4 1/30/2006 Vector Operations

5 2/1/2006 I/O, if-then-else, Boolean operators Chapter 4.1-4.4

6 2/6/2006 Recursion 1 Class Notes

7 2/8/2006 Recursion 2 Class Notes

8 2/13/2006 Iteration 1 Chapter 4.5

9 2/15/2006 Iteration 2/Fractals/Graphics Class Notes

– 2/20/2006 President’s Day

10 2/22/2006 Midterm I

11 2/27/2006 Computational Errors/Loss of accuracy Class Notes

12 3/1/2006 Linear Equations Chapter 6

13 3/6/2006 Least squares regression Chapter 5.6

14 3/8/2006 Curve fitting, interpolation Chapter 5.7

15 3/13/2006 Numerical root finding - first order Class Notes

16 3/15/2006 Numerical root finding - second order Class Notes

17 3/20/2006 Numerical differentiation Chapter 8.1-8.3

18 3/22/2006 Numerical integration

– 3/27/2006 Spring Recess

– 3/29/2006 Spring Recess

19 4/3/2006 ODE Chapter 8.4-8.9

20 4/5/2006 ODE

21 4/10/2006 ODE

22 4/12/2006 Midterm II

23 4/17/2006 Sorting/search Class Notes

24 4/19/2006 Big(O) Class Notes

25 4/24/2006 Trees Class Notes

26 4/26/2006 PDF/Queues Class Notes

27 5/1/2006 Simulation Class Notes

28 5/3/2006 Special Topics (OOP) Class Notes

29 5/8/2006 Special Topics (OOP) Class Notes

(∗)Palm [25]
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Chapter 3

Getting Started

3.1 What Are You Going to Learn?

Your are going to learn how to:

1. Start a MATLAB session, change defaults in the MATLAB Command Win-
dow,

2. Start the MATLAB Editor, change defaults in the editor window,

3. Write your first script,

4. Save it to a MATLAB .m file in a work folder (directory) of your choice,

5. Execute the script in MATLAB command window,

6. Use MATLAB Help,

7. Restart MATLAB, change to your present work directory, open the script
you just saved and run it,

8. Convert a script into a MATLAB function,

9. Run the function with different input arguments (see the exercises).

3.2 Why Is It Important?

Before you can fly, you must walk. You cannot be serious about programming
in MATLAB if you do not have the rudimentary tools in your tool chest.

17
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3.3 Start MATLAB

From your computer desktop, click on the MATLAB icon, or go to the Start
button at the lower left corner of your screen, go to Programs, then go to
MATLAB (or MATLAB Release 12 or similar). At this stage, a new window
with MATLAB at its upper left corner should appear on your screen. If it
has not, please consult your favorite computer expert. Other windows may also
appear. Close them one-by-one by clicking on the x in the upper right corner
of each window.

3.3.1 Change MATLAB window appearance

To change your preferences in the MATLAB command window, click on the
menu bar File, Preferences, Command Window, Font and Colors. I
prefer black Background color and white Text color.

3.3.2 Set path to your work directory

I will assume that your local disk drive is labelled C:. On that drive you will
create a new folder, in which you will keep your MATLAB programs. You can
do it from the Windows Explorer. The new folder may be something like
C:\Smith\GettingStarted (here substitute your particular path). For exam-
ple, on my laptop the path to the programs used in this lecture is:

C:\MyFolders\E77N\Fall2002\Lectures\Code\GettingStarted

MATLAB has no idea where you keep your programs, so you must tell it every
time you begin your session. Alternatively, you may add your directory to
MATLAB’s path by clicking on the File pull down menu, then on Set Path,
Add Folder or Add with Subfolders. The first time around you may just
type at the MATLAB prompt:

>> cd C:\MyFolders\E77N\Fall2002\Lectures\Code\GettingStarted

Alternatively, in the middle of the top bar of the MATLAB widow, there is a
pull down menu Current directory, and there is a push-button with three
dots. Click on the three dots, . . . , and find your directory. Next time you start
the MATLAB session and you click on the pull down menu, your directory will
be there, so highlight it and, voilà, you are in it. Check where you are from the
MATLAB prompt by typing in:

>> pwd

ans =

C:\MyFolders\E77N\Fall2002\Lectures\Code\GettingStarted

pwd stands for Present Work Directory.
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Figure 3.1: MATLAB command window and the child window created by
clicking on the File pull down menu, and then on Preferences.

3.4 Start MATLAB Editor

The MATLAB editor allows you to record your work and store it in the present
work directory as the MATLAB .m text files. After your work has been saved
in a file, you can execute it by typing the name of the file without the .m. Please
follow this example:

1. Start the MATLAB editor by clicking on the File pull down menu in
the MATLAB command window, then on New, and M-file. Now a new
window appears. This is your very nice MATLAB Editor and Debugger.

2. In the Editor window, type in something like this:

% cylinderscript

%

% A MATLAB script to calculate cylinder volume
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% for a given height h and several radii r

h = 50;

r = [10, 20, 30];

A = pi*r.^2;

V = A.*h;

fprintf(’\n\nCylinder height h = %g cm\n’,h)

for i=1:length(r)

fprintf(’Radius r = %g cm, Volume V = %10g cc\n’,r(i), V(i))

end

Note that r is a vector with three elements. The exponentiation caret
operator is preceded by a dot to square each element of vector r separately,
i.e., element-by-element. Get used to this dot.

3. In the Editor window click on the File pull down menu, then on Save.
A new Save file: window will appear. In the File name field, type in
cylinderscript.m and press the Save button. You have now saved your
first MATLAB script file.

4. Go to the MATLAB command window and at the prompt >> type in
cylinderscript. This is what will happen:

>> cylinderscript

Cylinder height = 50 cm

Radius r = 10 cm, Volume V = 15708 cc

Radius r = 20 cm, Volume V = 62831.9 cc

Radius r = 30 cm, Volume V = 141372 cc

>>

3.5 Using MATLAB Help

Now is a good time to check what the mysterious fprintf(...) command1

does. To learn more about fprintf we will use the extensive and extremely
useful MATLAB Help. To invoke it, go to the MATLAB command window,
click on the Help pull down menu, then on MATLAB Help. A new Help
window will appear. In the Search index for: field type in fprintf. Then
double-click on the highlighted field. A lengthy description of fprintf will
appear. Near the bottom, the description will (almost) always have a working
example or two. You can cut the MATLAB code from the Help window, paste
it into the Editor or Command window and execute it.

Now please go to the MATLAB command window and either click on the x

in the upper right corner, or click on the File pull down menu, then on Exit.
This will close all open MATLAB windows.

1In reality fprintf is an internal MATLAB function, which may be called with many
different arguments. The MATLAB fprintf roughly follows the C-language function printf.
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3.6 Restart MATLAB

1. Restart the MATLAB command window as you did the first time around.
If the MATLAB Editor and Help windows were previously open, they will
open up again. You can close them separately as you wish.

2. Go to the Current Directory: pull down menu and highlight your work
directory. Double check in the MATLAB command window by typing in
pwd as before. If you are in the right directory, type cyliderscript into
the command window, and the script will be executed again.

3.7 MATLAB functions

You have just learned to create a MATLAB script and save it to a disk file.
There are many problems with this solution. Suppose, for example, that you
want to calculate the cylinder volume for an arbitrary height h and arbitrary
radius r. You could type in a new value of h and r into the cylinderscript.m
file, save it again and execute. A better solution will be to open a new M-file
window and write the following code:

function V=cylvol(h,r)

% A MATLAB function to calculate cylinder volume,V,

% given two inputs: height h and radius r

A = pi*r.^2;

V = A.*h;

fprintf(’\n\n’)

fprintf(’Cylinder height = %10g cm\n’,h)

fprintf(’Cylinder radius = %10g cm\n’,r)

fprintf(’Cylinder volume = %10g cc\n’,V)

Note that when you save the new file, MATLAB will propose a name for
it exactly as the name after the MATLAB keyword function. Adhere to this
suggestion.

In the MATLAB command window, type in

c>> cylvol(25.5,48.7)

Cylinder height = 25.5 cm

Cylinder radius = 48.7 cm

Cylinder volume = 189998 cc

ans =

1.899975389551056e+005

>>

The function cylvol, which has two input arguments, (h,r), and one output
argument, V, returns the value of V as the default MATLAB variable, ans, into
the MATLAB command window.



22 CHAPTER 3. GETTING STARTED

Remark 2
MATLAB will always identify a function with the name of the disk
file in which this function is stored.

Remark 3

You should use MATLAB functions to perform all repetitive tasks
(many values of many input arguments). You may use MATLAB
scripts (although I discourage the use of scripts) to call the re-
spective functions from one place. Each function should do just
one task, and do it well. Do not write very long functions; they
are difficult to maintain and modify. Put as many comment lines
as you can into each function you write.

3.8 Summary

Now, you can open the MATLAB command window and change its appearance.
You can open the MATLAB editor, write your own MATLAB script, save it to
a directory of your choice, execute it, and use MATLAB Help to guide you
further. Finally you have learned how to write a MATLAB function and use
it. You cannot progress further until you have mastered every step explained in
this chapter.

3.9 Exercises

1. In the script file cylinderscript.m, the MATLAB reserved word, or key-
word, for appears in blue. Use MATLAB Help to learn more about the
for loops.

2. Use MATLAB Help to find out what the built-in MATLAB function
length() does.

3. The word function is another MATLAB keyword. From MATLAB
Help learn more about the function syntax.

4. In MATLAB command window, type in the following:

>> clear all

>> cylinderscript

... ...

>> whos

What is the result? How many variables reside in MATLAB workspace?
(Go to MATLAB Help to learn more about whos).
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5. In MATLAB command window, type in the following:

>> clear all

>> V=cylvol(10,20)

... ...

>> whos

How many variables reside in MATLAB workspace now? What is the first
striking difference between a MATLAB script and function? Elaborate.

6. Type in the following:

>> clear all

>> h=[10,20,30];

>> r=[1,2,3];

>> V=cylvol(h,r)

... ...

>>whos

How many variables reside in MATLAB workspace? Note carefully the
size and values of each variable.

7. Type in the following:

>> clear all

>> h=[10,20,30];

>> r=[1,2,3];

>> cylinderscript

... ...

>> V=cylvol(h,r)

... ...

>>whos

What happened to the previous vectors h and r? Why is it so dangerous
to use scripts?
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Chapter 4

Basics of MATLAB

4.1 What Are You Going to Learn?

This chapter will teach you the most rudimentary tools you need to master in
order to implement the concepts and techniques of this course in the MATLAB
programming environment. The objective of this chapter is to provide a prac-
tical guide to the essentials of MATLAB and a (necessarily incomplete) list of
common mistakes you should avoid. You will see that the material is presented
in a brief and informal manner, mostly as examples, with the hope that this
will be more helpful than a definite, more general, exposition.

In particular, in this chapter you will learn how to:

1. Use MATLAB as a desktop calculator.

2. Create arrays, the most important concept in MATLAB.

3. Extract portions of arrays and perform operations on arrays.

4. Use predefined mathematical functions, and write your own (user-defined)
functions.

5. Use the fundamental constructs of traditional programming, which will
allow your code to make decisions and repeat calculations.

6. Present the final output, either in text or graphic format.

4.2 Why Is It Important?

As the course progresses, you will face sophisticated topics that, inevitably,
require that algorithms be implemented in the computer. The MATLAB envi-
ronment makes this step a relatively easy task. However, you will need to be
fluent in the MATLAB language from the onset, so that you can focus on the
problem at hand, rather than on the implementation.

25
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4.3 What Is MATLAB?

From the official MATLAB documentation: “MATLAB is a high-performance
language for technical computing. It integrates computation, visualization, and
programming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation. Typical uses include:

• Math and computation

• Algorithm development

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building.

MATLAB is an interactive system whose basic data element is an array that does
not require dimensioning. This allows you to solve many technical computing
problems, especially those with matrix and vector formulations, in a fraction of
the time it would take to write a program in a scalar noninteractive language
such as C or Fortran.

The name MATLAB stands for MATrix LABoratory. MATLAB was origi-
nally written to provide easy access to matrix software developed by the LIN-
PACK and EISPACK projects. Today, MATLAB uses software developed by
the LAPACK and ARPACK projects, which together represent the state-of-the-
art in software for matrix computation.”

4.3.1 MATLAB as an Interpreter

MATLAB is not a high-level language but, rather, an interpreter language.
High-level languages like Fortran or C consist of a set of commands and in-
structions which are easy for the programmer to code. The source code is then
translated by the compiler to machine language that the CPU can understand
and execute. An interpreter language, although it resembles a high-level lan-
guage, does not require the intermediate compilation process. This means that
one can write code and obtain an answer from the computer immediately. The
essential difference between a compiled and an interpreted language is expressed
schematically in Figures 4.1 and 4.2.

4.3.2 MATLAB as a Calculator

It is precisely because MATLAB is an interpreter language that one can use it as
a desktop calculator. This capability allows one to type an algebraic expression
and obtain an answer right away. For example:

>> 2 + 3

ans =

5



4.3. WHAT IS MATLAB? 27

source -compile
executable -execute

output

input

6

Figure 4.1: Flowchart of a program written in a high-level language, such as
Fortran or C

source -execute
output

input

6

Figure 4.2: Flowchart of a program written in an interpreted language, such as
MATLAB

Arithmetic operations with scalars

MATLAB uses the standard symbols for arithmetic operations with scalars:

+ - * / ^

There is one additional (nonconventional) symbol, \ , which denotes left division.
As you will learn later, it is particularly useful when applied to vectors and
matrices for solving systems of linear equations. Table 4.1 is a summary of the
scalar arithmetic operations.

The mathematical operations follow from left to right, with standard prece-
dence rules, which are common to virtually all programming languages:

Symbol Operation MATLAB form

^ Exponentiation: ab a^b

* Multiplication: ab a*b

/ Right division: a/b = a
b a/b

\ Left division: b\a = a
b b\a

+ Addition: a + b a+b

- Subtraction: a− b a-b

Table 4.1: Scalar arithmetic operations
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1. (Highest precedence) Parentheses; evaluated starting with the innermost
pair.

2. Exponentiation; evaluated from left to right.

3. Multiplication and division, with equal precedence; evaluated from left to
right.

4. (Lowest precedence) Addition and subtraction, with equal precedence;
evaluated from left to right.

Variables and the assignment operator

Values can be assigned to variables. As in many other languages, the symbol of
the assignment operator is = (the equal sign). For example, if we want to assign
the value 3 to the variable x, we type:

>> x = 3

It is very important to note that the symbol = is not the equal sign of mathe-
matical equations. Therefore, the following command is perfectly valid:

>> x = x + 2

which means that we take whatever value the variable x had, we increase it by 2,
and we assign the new value to the same variable x.

Remark: Variable names are case sensitive!
If the result of any command is not assigned to any variable explicitly, MAT-

LAB assigns it to the default variable ans. For example:

>> x = 3

x =

3

>> x + 2

ans =

5

All the variables (including ans) used in a MATLAB session are stored in the
so-called workspace. If a variable is reused or its value changes at any point, the
workspace of the MATLAB session will retain the latest value. The following
commands are the most important ones for managing the session workspace:

who lists all variables currently in memory

whos lists all variables currently in memory and their size

clear removes all variables from memory

Certain variables are considered “special” because they have predefined de-
fault values. These are:
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Inf Infinity, ∞ (e.g., 1/0)

NaN “Not a Number” (e.g., 0/0)

eps Accuracy of floating-point precision (≈ 2.2204× 10−16)

pi The number π = 3.1415926 . . .

i The imaginary unit
√
−1 (same as j)

To avoid confusion and to follow good programming practice, it is highly rec-
ommended not to update the value of these variables. Although syntactically
valid, commands like the ones below should never be used:

>> pi = 3 % never do this!

pi =

3

>> eps = 1e-10 % never do this!

eps =

1.0000e-010

Miscellaneous

By default, MATLAB prompts on the screen the result of any command. To
suppress the output, one only has to follow the command by a semicolon (MAT-
LAB still retains the variables’s value). For example:

>> x = 1 + 2

x =

3

>> y = 3 + 4; % issues no output

If the command is too long to be typed in a single line, it can be split into
several lines of code by using ... (ellipsis) as an indication that the command
continues on the following line. For example:

>> S = 1 + 1/2 + 1/3 + 1/4 ...

+ 1/5 + 1/6 + 1/7 + 1/8

S =

2.7179

The symbol % designates a comment, and whatever follows this symbol on
that line is ignored by MATLAB. For example:

>> % a full-line comment

>> x = 2 + 3 % and an in-line comment

x =

5
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4.4 Creating and Addressing Arrays

In this section we present the most basic use of arrays and vectors (one-dimensional
arrays). For more information, refer to Chapter 6: Arrays and Vectors and, in
particular, to Section 6.7, where useful array functions, special matrices and
matrix multiplication are discussed.

Definition. An array is a collection of elements, arranged in one or more
dimensions.

For our discussion here, we shall restrict our attention to the case when all
the elements of an array are numbers.

4.4.1 Creating Arrays

The simplest of all arrays are vectors, i.e., one-dimensional arrays. They can be
organized as rows or columns. A row vector is entered with its elements inside
square brackets, and separated by blank spaces or commas:

>> r = [1, 0, 6, -1]

r =

1 0 6 -1

To create a column vector, the elements are separated by semicolons:

>> c = [1; 0; 6; -1]

c =

1

0

6

-1

An “element” of a row (resp. column) vector can be another row (resp. column)
vector, which allows us to create new vectors by appending one vector to another.
For example:

>> r = [1, 0, 6, -1];

>> w = [4, 3, r, -2]

w =

4 3 1 0 6 -1 -2

A matrix is a rectangular (two-dimensional) array. To create a matrix in
MATLAB, we only have to follow the rules above, and separate elements in the
same row by spaces (or commas) and one row from another by semicolons:

>> M = [1, 0; 6, -1]

M =

1 0

6 -1
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An important operation is the transpose of an array (noted by an apostrophe
’ following the object to be transposed), which interchanges rows and columns.
For example:

>> T = M’

T =

1 6

0 -1

The transpose of a row vector generates a column vector, and vice versa:

>> c = [1, 0, 6, -1]’

c =

1

0

6

-1

4.4.2 Addressing Arrays and the Colon Notation

In many situations we need to extract or change individual elements elements
of an array. Consider the matrix

A =

(
6 9 4
1 5 7

)

We create this array as follows:

>> A = [6,9,4;1,5,7]

A =

6 9 4

1 5 7

We can address any element of this array through its indices, that is, its row
number and column number. For example, to extract the element positioned
on the first row and third column:

>> A(1,3)

ans =

4

If we want to replace the value of this element by a different one, we only have
to assign the new value:

>> A(1,3) = 8

A =

6 9 8

1 5 7
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Sometimes we need to address a group of elements, rather than individual
elements. This is done most effectively in MATLAB through the use of the colon
notation. The colon operator generates vectors with evenly spaced elements. Its
general form is

>> x = m:q:n

where x is the vector created, whose elements are spaced with an increment q,
and whose first value is m. The last value of the vector will be less or equal than
n. If the increment q is omitted, a default value of 1 is used. When addressing
elements of an array, a single colon (:) means “all the elements along this
direction”. Please study the following self-explanatory examples:

>> A(1,1:2)

ans =

6 9

>> A(:,2)

ans =

9

5

>> A(:,1:2:3)

ans =

6 8

1 7

4.4.3 Element-by-Element Operations

One of the most powerful features of MATLAB is that arithmetic operations can
be performed directly on entire arrays, rather than on their individual elements.

Scalar-Array Operations

The arithmetic operations + - * , acting between a scalar and an array, work
“element-by-element”, that is, they apply to all elements of the array. For
example:

>> M = [1, 0; 6, -1]

M =

1 0

6 -1

>> M + 2

ans =

3 2

8 1

>> 2*M

ans =

2 0

12 -2
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The same is true for the left and right division, / and \, if the scalar is in the
denominator. For example:

>> M/2

ans =

0.5000 0

3.0000 -0.5000

Array-Array Operations

Element-by-element operations can also be performed between arrays of ex-
actly the same size. To distinguish these element-by-element operations from
other operations of linear algebra (matrix multiplication, solution to a system of
equations, matrix exponentiation), the following new operators are introduced:

.* Array multiplication (instead of *, matrix multiplication)

./ Array right division (instead of /, right matrix division)

.\ Array left division (instead of \, solution of a system of equations)

.^ Array exponentiation (instead of ^, matrix power)

Here are a few examples:

>> A = [1, 0; 2, -3]

A =

1 0

2 -3

>> B = [4, -1; 2, 1]

B =

4 -1

2 1

>> A + B

ans =

5 -1

4 -2

>> A.*B

ans =

4 0

4 -3

>> B.^A

ans =

4 1

4 1
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4.5 Files and Functions

4.5.1 Files

There are three types of files which are of interest to us:

1. m-files (ASCII): script with MATLAB commands.

2. MAT-files (binary): file with variables from the workspace.

3. Data files (ASCII): file with data arranged in rows and columns, typically
including a header.

Please read the MATLAB help to learn how to save/load/import these files.

4.5.2 Mathematical Functions

These are your usual exponential, logarithmic, trigonometric and hyperbolic
functions you get in a calculator. The difference is that they apply element-by-
element to all components of an array, e.g.,

>> A

A =

1 2

3 4

>> log(A)

ans =

0 0.6931

1.0986 1.3863

>> log10(A)

ans =

0 0.3010

0.4771 0.6021

>> sqrt(A)

ans =

1.0000 1.4142

1.7321 2.0000

>> sin(A)

ans =

0.8415 0.9093

0.1411 -0.7568

Be careful with the following:

• Trigonometric functions operate in radian mode

• Decimal (base-10) logarithm is log10(x)
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4.5.3 User-Defined Functions

• A function file is a particular type of m-file. Unlike a script file, all the
variables are local.

• It is like subroutines in FORTRAN or BASIC, and functions in C.

• The first line looks as follows:

function [output vars] = function_name(input vars)

Example: The following function computes the volume of a cylinder:

% ----------------------------------------

% This function file (saved as cylinder.m)

% computes the volume of a cylinder.

%

% Input variables:

% r = radius [L]

% h = height [L]

%

% Output variables:

% V = volume [L^3]

%

% Author: R. Juanes

% Last modified: 2001.01.30

%

function [V] = cylinder(r,h)

%

A = pi*r*r; % A = area of base [L^2]

V = A*h;

% ----------------------------------------

Here is a common sequence of MATLAB commands:

>> clear all

>> radius = 2;

>> height = 3;

>> [volume] = cylinder(radius,height)

volume =

37.6991

>> whos

Name Size Bytes Class

height 1x1 8 double array

radius 1x1 8 double array

volume 1x1 8 double array
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Remarks:

• All the variables defined in the function file cannot be seen from outside.

• Variable names in the calling procedure do not need to match those defined
inside the function.

• Variables can be defined to be global, although this is not recommend-
able.

• Functions can be nested, i.e., a function may call another function.

4.6 Basic Programming Tools

4.6.1 Relational Operators

The six relational operators are:

< <= > >= == ~=

The result of a comparison between two variables is either 1 if the comparison is
true, or 0 if the comparison is false. When applied to arrays, relational operators
work element by element.

Example: Consider the price of the same list of books in two different
bookstores:

>> price1 = [80, 67, 45, 112];

>> price2 = [75, 67, 52, 99];

Study the results of the following commands:

>> price1 < price2

ans =

0 0 1 0

>> price1 >= price2

ans =

1 1 0 1

>> price1 ~= price2

ans =

1 0 1 1

4.6.2 Logical Operators

The three logical (Boolean) operators are:

& AND

| OR

~ NOT
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They are usually used together with relational operators.
Example: Consider the book prices above and the availability of the books

in both bookstores (1 if it is in stock, 0 otherwise):

>> stock1 = [1, 0, 0, 1];

>> stock2 = [1, 1, 1, 0];

Books available in both bookstores:

>> stock1 & stock2

ans =

1 0 0 0

Books available in any of the bookstores:

>> stock1 | stock2

ans =

1 1 1 1

Books available in bookstore #2 at a price lower or equal than that of book-
store #1:

>> stock2 & (price2 <= price1)

ans =

1 1 0 0

4.6.3 Decision-Making Structures

The if structure

The general form of the if structure is:

if (logical) condition 1
do this

elseif condition 2
do that

else
default option: do something else

end

The if structures may be nested.
Example: Consider the following two-dimensional function, which is shown

in Figure 4.3 for (x, y) ∈ [−1, 1]× [−1, 1]:

f(x, y) =







sin(πx) sin(πy) if x > 0, y > 0,

0 if x < 0, y > 0,

−|xy| if y < 0.

The following MATLAB function evaluates f(x, y) using if statements:
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Figure 4.3: Matlab plot of the function f(x, y)

function [f] = pwfun(x,y)

%

if y < 0

f = -abs(x*y);

else

if x > 0

f = sin(pi*x)*sin(pi*y);

else

f = 0;

end

end

The switch structure

The general form of the switch structure is:

switch variable
case value 1

do this
case value 2

do that
otherwise

default option: do something else
end

Example: The following function uses the switch construction to output
a variable with the name of the day of the week:
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function dayofweek = whatday(daynumber)

% Output = functionname(Input)

%

dayofweek = ’None of your business’;

switch daynumber

case 1

dayofweek = ’Monday’;

case 2

dayofweek = ’Tuesday’;

case 3

dayofweek = ’Wednesday’;

case 4

dayofweek = ’Thursday’;

case 5

dayofweek = ’Friday’;

case 6

dayofweek = ’Saturday’;

case 7

dayofweek = ’Sunday’;

otherwise

%dayofweek = ’’;

fprintf(’daynumber is invalid’)

end

The function produces the following output:

>> whatday(3)

ans =

Wednesday

>> whatday(8)

daynumber is invalid

ans =

’’

4.6.4 Loops

A loop is a structure for repeating a calculation a number of times. There are
two classes of loops in MATLAB:

for loop: when the number or iterations is known.

while loop: when the process terminates if a specified condition is satisfied.

for loop

Assume we want to compute the series

S =
1

12
+

1

22
+

1

32
+ · · · = π2

6
.
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Of course, only a sum with a finite number of terms can be calculated. The
following MATLAB function will compute it with a specified number of terms n:

function [S] = pi2over6(n)

%

% initialize sum

S = 0;

%

% loop

for i = 1:n

S = S + 1/i/i;

end

Compare the results for different values of n:

>> pi*pi/6

ans =

1.64493406684823

>> pi2over6(10)

ans =

1.54976773116654

>> pi2over6(100)

ans =

1.63498390018489

>> pi2over6(1000)

ans =

1.64393456668156

>> pi2over6(10000)

ans =

1.64483407184807

Remarks:

1. The increment of the iteration variable may be positive or negative.

2. It is highly recommended to use integers for the iteration variable.

while loop

Imagine that for the series above we want to specify a measure of the error (given
by the last computed term), rather than the number of terms. A while loop is
more convenient:

function [S,n] = pi2over6w(err)

%

% initialize sum and first term

S = 0; n = 1; term = 1;

%

% loop
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while term > err

term = 1/n/n;

S = S + term;

n = n+1;

end

Compare the output for different specified errors:

>> pi*pi/6

ans =

1.64493406684823

>> [S,n] = pi2over6w(1e-1)

S =

1.42361111111111

n =

5

>> [S,n] = pi2over6w(1e-3)

S =

1.61416726282792

n =

33

>> [S,n] = pi2over6w(1e-5)

S =

1.64178446315268

n =

318

>> [S,n] = pi2over6w(1e-7)

S =

1.64461796127160

n =

3164

Avoiding loops

In modern programming, one should avoid loop structures, by using the so-
called implied loops or vectorized code. Every time you remove a loop, your
code will be (often, but not always):

1. shorter,

2. easier to understand,

3. faster,

4. more object oriented.

Most MATLAB functions work for arrays, so you don’t have do your calculations
element by element (viz. matrix multiplication). Remember, almost everything
can be vectorized.
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Example: Here is a vectorized implementation of the approximate series
considered in the previous examples.

function [S,n] = pi2over6v(err)

%

% compute number of terms needed

n = ceil(sqrt(1/err));

%

% vector of terms

term = 1:n; term = 1./term./term;

%

% series

S = sum(term);

And here is the output:

>> pi*pi/6

ans =

1.64493406684823

>> [S,n] = pi2over6v(1e-7)

S =

1.64461796127160

n =

3163

Example: Recall the function in Figure 4.3. Here is the näıve way to
generate it (using the function pwfun.m and for loops):

x = -1:.1:1; y = x;

%

% loop to compute function

for ix = 1:length(x)

for iy = 1:length(y)

xx = x(ix);

yy = y(iy);

f(ix,iy) = pwfun(xx,yy);

end

end

%

% plot

figure;

surf(x,y,f’)

And here is the vectorized code using array operations, which runs orders of
magnitude faster. (Can you understand it?)

x = -1:.1:1; y = x;

%
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% compute function

f = pwfun2(x,y);

%

% plot

figure;

surf(x,y,f’)

% ----------------------------------------

function [f] = pwfun2(x,y)

%

f = - abs(x’*(y.*(y<0))) ...

+ sin(pi*x.*(x>0))’*sin(pi*y.*(y>0));

4.7 Output of Results

4.7.1 Formatted Text Output

The fprintf command allows one to control the output format. For a detailed
description of this command, please go to the online MATLAB help. The syntax
is:

fprintf(fid,format,A,...)

fid is an integer file identifier obtained from fopen. If omitted, the default
value of 1 is used, and the output is displayed on the screen.

format is a string with the output format specifications.

A,. . . are the variables to be displayed. They can be scalars, vectors or matri-
ces. If A is a matrix, its transpose will be displayed.

Example 1:

tol = 0.01;

maxiter = 200;

fprintf(’ Warning!\n’)

fprintf(’ Tolerance of %6.3f not met within %g iterations\n’,...

tol,maxiter)

will produce

Warning!

Tolerance of 0.010 not met within 200 iterations

Example 2:

x = 0:.1:1;

y = exp(x);

fprintf(’ x exp(x) \n’)

fprintf(’ ----- -----------\n’)

fprintf(’%6.2f %12.8f\n’,[x;y])
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will produce

x exp(x)

----- -----------

0.00 1.00000000

0.10 1.10517092

0.20 1.22140276

0.30 1.34985881

0.40 1.49182470

0.50 1.64872127

0.60 1.82211880

0.70 2.01375271

0.80 2.22554093

0.90 2.45960311

1.00 2.71828183

Example 3:

tolfrac = [0.01 0.05 0.1 0.2];

tolperc = tolfrac*100;

tolmat = [tolfrac;tolperc];

fprintf(’ Tolerance of %12.3e is equal to %4.0f%%\n’,tolmat)

will produce

Tolerance of 1.000e-002 is equal to 1%

Tolerance of 5.000e-002 is equal to 5%

Tolerance of 1.000e-001 is equal to 10%

Tolerance of 2.000e-001 is equal to 20%

4.7.2 Basic Plotting

Here is an example that shows the most basic features of plotting with MAT-
LAB. The code below generates Figure 4.4.

%------------------------------------------------------------

% bplot.m: the most basic plot in MATLAB

% Author: Ruben Juanes

% Date: 2/13/01

%------------------------------------------------------------

clear all

close all

%

% parameters

%

x_min = 0;

x_max = 5;

x_inc = 0.1;
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%

% vectors

%

x = [x_min:x_inc:x_max];

y = sin(x);

%

% plot

%

plot(x,y)

xlabel(’x’,’FontSize’,14)

ylabel(’y’,’FontSize’,14)

title(’y = sin(x)’,’FontSize’,18)

grid

%
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y = sin(x)

Figure 4.4: Matlab plot of the function y = sin(x)



46 CHAPTER 4. BASICS OF MATLAB



Chapter 5

Introduction to Computers

5.1 What Are You Going to Learn?

In its most rudimentary form a computer is a device that remembers what it
counts, counts what it remembers, and retrieves whatever is stored in it with
a push of a button or a click of a mouse. This chapter will be an introduction
to computers. First, you will refresh your high school knowledge of numbers,
powers and logarithms. Here I will follow closely the introduction by Donald E.
Knuth [20]. Second, you will learn what are the simplest means of instructing
a computer to do something, and how the computer executes your instructions.
To illustrate the principles of instructing the computer, I will use “the file clerk
model” of Richard P. Feynman [12].

Chapter 5 folder on fttp:\\petroleum.berkeley.edu has the following MATLAB
files:

Add.m Compare two strings

AddSales.m Add sales from several salesmen, by calling Add.m.

Each file contains a MATLAB function with the same name.

5.2 Why is it Important?

When you are an engineer or a scientist, you must know what a computer can
or cannot do. You must also know how to instruct a computer to do simple
things. MATLAB makes your instructions particularly simple.

5.3 What is Computer?

You often hear statements similar to this one: “The United States has become
an information society dependent on the creative use and communication of

47
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information for its economic and social well-being1”. The National Committee
on Excellence in Education agrees2 and recommends that all students in the
U.S. be put through at least half year of study in computer science. With all
this hoopla, you may start wondering what is so special about computers that
gives them such a central role in our society. Why are all people divided into
two categories, those who are fluent with computers and those who are not?

Computers can do many things. They add millions of numbers faster that
you can blink an eye. They guide smart bombs to their targets. They operate
pumps at gas stations. They reserve tickets to rock concerts and to movie
theaters. They check you out at a grocery store. They keep all your medical,
tax and financial records. They connect you to the “Information Highway”
or the World Wide Web. They allow me to type in this lecture. They allowed
Enron Corporation to reach in the year 2001 $100 billion in stock value, and their
misuse caused Enron’s instantaneous and catastrophic failure (yes, computers
operated by the crooks also work fast). Obviously computers are important to
every aspect of life in America. So if we are going to talk about computers, we
should decide which ones we are going to look at and how.

In fact, it makes no sense to concentrate on individual machines. The reason
is that once you get down to the guts of computers, you will find out that they
tend to be more or less alike. They can differ in their functions, and in the
nature of their inputs and outputs (I/O): one computer can produce music,
another one stunning graphics; while one can be run from a keyboard, another
one runs from a touch screen. In essence all these computers are very similar.
We will hence dwell on what their innards can or cannot do. Furthermore we
will not assume anything specific about their Input/Output, I/O, structure; all
we care is that however the input gets in, it is in digital form, and whatever
happens to the output, the last the innards see it, it is digital too. By digital
we will mean binary numbers: 1’s and 0’s.

MATLAB is very good at handling I/O, and producing very high quality
graphs on the fly. Because of the ease of outputting anything we will do, we
will have more time to concentrate on the code implementation details.

5.4 Numbers, Powers and Logarithms

Before we embark on the study of Matlabese3, the official language of E77N, a
short reminder of the numbers we will deal with is in order. Here, I will follow
almost literally Section 1.2 in Knuth’s monograph [20].

1The U.S., Congress Office of Technology Assessment, Information Technology and Its

Impact on American Education, Washington, D.C.: Government Printing Office, 1982.
2A Nation at Risk, Washington, D.C.: Government Printing Office, 1983.
3Or should we call it Matlabish?
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Figure 5.1: 1950: Not all computers have their programs in their memory.
ENIAC and Colossus, the first electronic computers, were programmed by plac-
ing patch wires into plugboards. The tangles of wires in the picture are the
program. (Only part of ENIAC is in the picture - it was 100 feet long.)

5.4.1 Numbers

1. An integer is the whole number, negative, zero, or positive:

. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . . (5.1)

2. A rational number is the ratio (quotient) of two integers:

p

q
, where q is positive. (5.2)

3. A real number, x, can always be expressed as a sum of an integer, n,
and a decimal expansion:

0.d1d2d3 . . . (5.3)

x = n + 0.d1d2d3 . . . (5.4)

where each digit di is an integer between 0 and 9, and the sequence of digits
does not end with infinitely many 9s. The representation (5.4) means that



50 CHAPTER 5. INTRODUCTION TO COMPUTERS

Figure 5.2: 1960: The IBM 360 was a revolutionary advance in computer system
architecture, enabling a family of computers covering a wide range of price and
performance.

Figure 5.3: 1990: Cray Y-MP/432, a four-processor supercomputer with 256
MB of central memory.

any real number can be bracketed by rational numbers:

n +
d1

10
+

d2

100
+ · · ·+ dk

10k
≤ x < n +

d1

10
+

d2

100
+ · · ·+ dk

10k
+

1

10k
(5.5)
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for all positive integers k. The bracketing procedure (5.5) will play an
important role in the finite computer representation of real numbers.

4. A complex number, z, has the form:

z = x + iy (5.6)

where x and y are real and i is a special number that satisfies the equation
i2 = −1. We call x and y the real and imaginary parts of z and we define
the absolute value of z as

|z| =
√

x2 + y2 (5.7)

The complex conjugate of z is z̄ = x − iy and, from the definition of i,
zz̄ = x2 + y2 = |z|2

Remark 4 A decimal, or base-10 ten, number is a series of powers of ten. For
example, 10 = 1× 101 + 0× 100, 0.1 = 0× 100 + 1× 10−1.

A binary, or base-2, number is a series of powers of two. For example, the binary
1 is 1× 20, the binary 11 = 1× 21 + 1× 20.

A decimal number can be converted in to a binary one and vice versa. However,
a nice rational number in one base may become a nasty real number in the
other one. The decimal 2 is 1 × 21 + 0 × 20, or the binary 10; the decimal 3 is
1× 21 + 1× 20, or the binary 11; the decimal 0.5 = 1/2 is 0 × 20 + 1× 2−1, or
the binary 0.1.

Question: What is the decimal 10 in binary? What is the binary equivalent of
the decimal 0.1? 2

5.4.2 Powers

If b is a positive real number and n is an integer, then bn is defined using the
old tried rules:

b0 = 1, bn = bn−1b if n > 0, bn = bn−1/b if n < 0. (5.8)

Soon we will be able to prove by induction that the laws of exponents hold:

bn+m = bnbm, (bn)
m

= bmn, (5.9)

where n and m are integers.
For rational numbers, r = p/q, we define:

br = bp/q =
q
√

bp. (5.10)

Finally, we define bx for real exponents x given by Eq. (5.4):

bn+d1/10+d2/100+···+dk/10k ≤ bx < bn+d1/10+d2/100+···+dk/10k+1/10k

(5.11)



52 CHAPTER 5. INTRODUCTION TO COMPUTERS

When b < 1, we define bx as

bx ≡ (1/b)−x

(1/2)2 = 2−2 = 1/4
(5.12)

When b = 1, bx = 1 for any x.

5.4.3 Logarithms

Now we come to an important question. Suppose that a positive real number y
is given; can we find a real number x such that y = bx, b 6= 1? The answer is yes,
for we simply use Eq. (5.11) in “reverse” to determine the decimal expansion
of x, i.e., n, d1, d2,...dk, when bx = y is given. The resulting number x is called
the logarithm of y to the base of b, and we write it as

x = logb y (5.13)

By this definition we have

x = blogb x = logb(b
x) (5.14)

For example,

100.3102999 = 1.9999999739 . . . , log10 2 = 0.3102999 . . . . (5.15)

From the laws of exponents it follows that

logb(xy) = logb x + logb y, if x > 0, y > 0 (5.16)

and
logb (cy) = y logb c. (5.17)

Equation (5.15) illustrates the so-called common or base-10 logarithm. This
is not the most convenient logarithm to work with. There is a real number
e = 2.718281828459 . . ., for which the logarithms have simpler properties. Log-
arithms to the base e are conventionally called natural logarithms, and denoted
as:

lnx = loge x. (5.18)

5.5 Talking to a Computer

For today’s computers to perform a complex task, they need a precise and
complete description of how to do that task in terms of a sequence of simple
procedures, called the “software,” and we need a machine to carry out these
procedures in a specifiable order, the “hardware.” Our instructions must be
exact and unambiguous. In real life we never tell each other exactly what we
want to say. Such excruciating exactness is never needed; the context, body
language, familiarity with the speaker allow us to fill in the gaps and resolve
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any ambiguities in what we said. Computers are really dumb and can never
guess what is being said, the way a person does. Our specific instructions are
communicated to a computer through a programming language. As there are
many human languages and alphabets, there are many computer languages.

Let us begin to examine how we might build complex instructions from
a set of simple elements. If an instruction set B (this abbreviation is just for
convenience) is very simple, then a complex instruction is going to take an awful
lot of description, and the resulting programs will be very long, complicated
and almost unreadable to anyone but the author. For example, we may want
to perform all sorts of numerical calculations on our computer, but we have at
our disposal only a set B which does not recognize multiplication. If we tell this
computer to multiply 3 by 33, it returns error. Suppose now that B does have
addition; if you think about it, you will see that we can emulate multiplication
by adding lots of times. In this example we add 33 to itself two more times. If
we need multiplication often, we can shorten the writing of B-programs if we
augment the set B with a separate “multiply” instruction, defined as a chunk
of basic B instructions that are required to preform multiplication. Then when
we want to perform multiplication, we say “computer, 3 times 33”, and it now
recognizes the word “times” and uses addition to accomplish this task. The
computer still breaks compound instructions into their basic components, but
from now on we avoid getting bogged in the low-level details all the time. A
very similar process takes place in everyday life when one replaces with one
word a set of ideas and the connections among them. From then on, referring
to these ideas we can use a single word and do not have to go back and work
through all the lower level concepts. For example, think how many concepts are
summarized with these two words, “derivative” and “integral.” We no longer
go to the lower level when we say the derivative of x2 is 2x or the integral of
cosx is sin x + C.

Remark 5

Computers are such complex machines that a simplification of
ideas, like the ones above, is usually necessary, and good design
is essential if you want to avoid getting completely lost in details.
In short, good programming practice is a must.

The word “computer” makes you think about arithmetic: add, subtract,
multiply, divide and so on, and it is easy to assume that this is all a computer
does. In fact this is not entirely true, but most conventional computers have
only one place do do arithmetic (their CPU) and the rest of the machine is for
the computer’s main task which is to shuffle bits of paper around, only in the
computer bits of paper are electronic signals. Most computers are reminiscent
of and army of file clerks, dashing back and forth to their file cabinets, taking
files out and putting them back, scribbling notes on pieces of paper and passing
them on; erasing their notes, and so on. The file clerk metaphor is a good place
to start to get to you some of the basic elements of computer structure.
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5.6 The File Clerk Model

This model was first used by Richard Feynman, the great physicist and Nobel
prize laureate, in his seminal lectures on computation [12]. Suppose that you
have a big company, employing lots of salesmen4. Lots of information about
these salesmen is stored in a big filing system, which is administered by a single
clerk. We begin with the idea that the clerk knows how get the information
from the filing system. The data are stored on cards, and each card has the
name of the salesman, his location in a given state, the sum total of sales he
has made, his salary, etc., see Figure 5.4.

Salesman: ...............

Sales: ...............

Salary: ...............

Location: ...............

.......: ...............

Figure 5.4: Records on a salesman data card.

Now suppose that we want to answer a specific question: What are the total
sales in California? This is a pretty simple question, and that is why we start
from it. To find the sales in California, our clerk could do the following:

Take out a card
I f the ‘ ‘ l o ca t i on ’ ’ says Ca l i f o r n i a , then

Add the number under ‘ ‘ s a l e s ’ ’ to a running counter
c a l l e d ‘ ‘ t o ta l ’ ’

Put ‘ ‘ s a l e s ’ ’ card back
Take next card and repeat

You have to keep repeating this procedure until you’ve gone through all the
cards.

No let’s suppose that we have hired a particularly stupid clerk, who can still
read, but does not know how to keep a running count. We need to help this
poor soul a little more by inventing the “total card for our clerk to use. He will
use our new procedure to keep a running total in the following way:

Take out a next ‘ ‘ s a l e s ’ ’ card
I f Ca l i f o r n i a , then

Take out ‘ ‘ t o ta l ’ ’ card
Add s a l e s number to number on card

4Or saleswomen, but this is irrelevant here.
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Put ‘ ‘ to ta l ’ ’ card back
Put ‘ ‘ s a l e s ’ ’ card back
Take next ‘ ‘ s a l e s ’ ’ card and repeat

Of course this is a very crude solution to a computer adding problem. Ob-
viously, the data would not be stored on cards, and the machine would not
have to “take out a card”. Instead it would read the stored information form
a register. It would also write from a register to a “card” without physically
putting something back.

In MATLAB, the latter procedure could be implemented as follows:

function [Total] = Add(Salesman, Sales, Salary, Location, Total)

% ^ ^ ^

% | Function name |

% Output Input variables: we cannot change their values

%

% Written by T.W. Patzek, January 15, 2002

% E77N Class Material, University of California, Berkeley

%-------------------------------------------------------------------

% Compare strings to one another

if strcmp(Location,’CA’) == 1

Total = Total+Sales;

end

The code fragment above requires some explanation.

• First of all, the whole procedure of finding the total of sales of all salesmen
located in California is gathered in one place, which in MATLAB has a
reserved keyword, function, and is stored in a file with the same name,
i.e., Add.m. To type in the contents of this file, we click on File, New,
and M-file in MATLAB command window. When done, we store our new
“m-file” Add.m in a directory of our choice. We change MATLAB path to
that directory, and we invoke the function by typing in, e.g., Total = 0 �

Total = Add(’Dick’, 400000, 40000, ’CA’, Total) �.

• Each field of every card corresponds to a single register, and is called a
variable because we can overwrite the contents of this register as needed.

• Each function may have a list of output variables or arguments, here a
single argument Total in square parentheses to the left of the function’s
unique name, here Add, and a list of input arguments in round parentheses,
here the fields of a single “sales” card, i.e.,, Salesman, Sales, Salary and
Location. The last input argument is the “total” card with the previous
value of the total sales, or the input variable Total.

• We can only look at the input variables, but we cannot change their values.

• We can change the values of the output variables, hence the variable Total
appears both as input and output.
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• Because strings are not numbers and have variable lengths, we must use
a special MATLAB function strcmp to compare them. If the first and
second argument of strcmp are identical, it returns 1, otherwise it returns
0. Note that the logical “=” is denoted as “==” to differentiate it from
the variable assignment “=”.

• In the statement Total=Total+Sales, we update the output register Total
by adding the contents of register Sales to a number already stored in it.
We follow here the “right-to-left” convention used in all standard computer
languages, i.e., the variables on the right must have values assigned to
them, and the result is stored to the left of the “=” sign5.

• Later on, you will learn that in fact MATLAB stores each variable in an
array of contiguous registers. This is because every variable in MATLAB
is treated as an array with some dimensions. So a single number is an
array with one element, and in that case it does fill a single register that
is 64 bits long.

To process many cards in MATLAB, we could proceed as follows:

function AddSales()

%-------------------------------------------------------------------

% Written by T.W. Patzek, January 15, 2002

% E77N Class Material, University of California, Berkeley

%

% Note that this function has no input or output arguments

% We use this function to isolate what we do from the outside

% world

%-------------------------------------------------------------------

% Card 1

Salesman1 = ’Dick’;

Sales1 = 120000;

Salary1 = 35000;

Location1 = ’CA’;

% Card 2

Salesman2 = ’Harry’;

Sales2 = 220000;

Salary2 = 45000;

Location2 = ’UT’;

% Card 3

Salesman3 = ’John’;

Sales3 = 820000;

5The assignment operator should be denoted by ←, i.e., the statement x ← n + 1 should
read: “the value of variable x is replaced by the current value of variable n and a constant
1 is added”. In computer languages this statement is written as x = n + 1, mostly because
there is no left arrow on our keyboards. A statement n ← n + 1 is read as “n gets n+1” or
“n is replaced by n + 1”.



5.7. EXERCISES 57

Salary3 = 95000;

Location3 = ’CA’;

% Prepare a register to hold the total sales in Califonia

Total = 0;

%Process first card

[Total] = Add(Salesman1, Sales1, Salary1, Location1, Total)

%Process second card

[Total] = Add(Salesman2, Sales2, Salary2, Location2, Total)

%Process third card

[Total] = Add(Salesman3, Sales3, Salary3, Location3, Total)

In practice, the individual cards will be stored in a relational database or
in a text file and will be read into an array of cells and then structures. In a
couple of lectures you will learn how to do it.

5.7 Exercises

1. What is the smallest positive rational number?

2. Is 1 + 0.239999999 . . . a decimal expansion?

3. What is (−3)−3?

4. What is (0.125)−2/3?

5. Using Eqs. (5.14) and (5.9), prove Eqs. (5.16) and (5.17).

6. We shall define lg x ≡ log2 x, following a suggestion of Edward M. Rein-
gold [20]. Show that

log10 x = (lg x)(log10 2), (5.19)

and in general that

logc x =
logb x

logb c
. (5.20)

7. (Knuth [20]) In Eq. (5.5) we defined real numbers in terms of decimal
expansion. Discuss how we could have defined these numbers in terms of
binary expansion and replace Eq. (5.5) with its binary equivalent.

8. Decimal fraction, 0.1[decimal], is approximated by the periodic binary
fraction 0.00011001100110011 · · · = 0.0(0011)[binary]. Open the MAT-
LAB window and by typing:

>> x = 2^(-4)+2^(-5)

x =

0.09375000000000
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etc., calculate the relative error, y = (x − 0.1)/0.1, between the 5-digit
and 10-digit binary expansions (not counting “0.”) of 0.1[decimal], and
0.1[decimal]. Then go back to Item 7 and think again if necessary.

9. Explain in words, what a MATLAB function does, what are the properties
of the input and output arguments, and how and where do we place them?

10. Type in the function Add.m, store it, and invoke it properly from the
MATLAB command window. Repeat with a couple of different input
arguments.

11. Suppose that we would like to pay a 5% commission on sales of all sales-
men in California. How would you expand function Add.m and its calling
function AddSales.m to accomplish this task?

12. As in the previous item, but now you want to pay a 7.5% commission to
salesmen from Utah.

5.8 Summary

In this chapter we already got a bit technical. We talked a little about the types
of numbers used in computer applications, and about the only numbers com-
puters understand: the binary numbers. Using the clerk analogy, we explained
how a computer processes simple instructions. Most importantly, we stressed
the importance of packaging your instructions in such a way that the next guy
does not have to go all the way to the lowest level to extend what you have
already done. You should strive to develop a good programming practice from
the very beginning. So, please, no MATLAB scripts, only MATLAB functions;
and no MATLAB do-loops, only vector operations!



Chapter 6

Arrays and Vectors

6.1 What Are You Going to Learn?

In this chapter, you are going to learn about multidimensional arrays and one-
dimensional arrays, loosely called “vectors,” and their geometrical counterparts,
matrices and true vectors. You will learn how to rotate a two-dimensional vector
and how to use matrix notation to shorten the lengthy algebra. We will also
revisit the standard notation used in this book.

The Chapter 6 folder on fttp:\\petroleum.berkeley.edu has the following MAT-
LAB programs:

threedarray.m generates a plot of a three-dimensional MATLAB array.

vectoralgebra.m defines a pair of two-dimensional vectors issuing from the
origin, plots them, calculates their scalar product, lengths, etc.

myarrow.m plots a a single vector with an arrow of variable shape. Uses
extensively vector translation and rotation two calculate the coordinates
of the vector elements

6.2 Why Is It Important?

Arrays and the operations on them are the essential building blocks of MAT-
LAB. You can’t learn MATLAB without mastering its arrays first.

6.3 Arrays and Vectors

We start from a definition of array, the most fundamental MATLAB object.

Definition 1 Array:

• An arrangement of elements in one or more dimensions.

59
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• In a programming language, an aggregate that consists of data objects
with identical attributes, each of which may be uniquely referenced by
subscripts. 2

Remark 6 A two-dimensional rectangular array has ordered rows and columns
of objects (e.g., numbers). An m-by-n array has m rows of n objects per row.
The first index, i = 1, 2, . . . , m denotes the row number, and the second one,
j = 1, 2, . . . , m, the column number in the array. 2

An m× n array, A, is written as

A =








a11 a12 . . . a1,n

a21 a22 . . . a2,n

...
... . . .

...
am1 am2 . . . amn








. (6.1)

Remark 7 A three-dimensional array is an orthogonal parallelepiped of or-
dered objects, whose ordered (e.g., horizontal) planes are two-dimensional ar-
rays, Figure 6.1. 2
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Figure 6.1: A 3×3×3 array, A = [aijk], whose elements are ordered as horizontal
arrays. In MATLAB, each element of this array can be (almost) anything: a
real number, a complex number, a string, a cell, a structure, or a user-defined
object. Isn’t this cool?!

So, in fact, a row “vector” is equivalent to a single-row array:

X = (x11, x12, . . . , x1n), (6.2)
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and a column “vector” is equivalent to a single-column array:

Y =








y11

y21

...
ym1








. (6.3)

An m×n array can be thought of as m row vectors of length n, or as n column
vectors of length m.

We often skip the constant first or second index and write:

X = (x1, x2, . . . , xn), (6.4)

and

Y =








y1

y2

...
ym








. (6.5)

Remark 8 Single-row or single-column arrays are loosely called vectors, but in
general they are not. 2

Definition 2 Physically, a vector is an object characterized by length (magni-
tude) and direction. Velocity, acceleration, force, etc., can all be visualized as
vectors. An algebraic aspect of a vector is suggested by the one-to-one corre-
spondence between the unique vectors (issuing from the origin of, say, a Carte-
sian coordinate system, Figure 6.2), and the coordinates of their terminal
points, the ordered pairs of numbers, (x, y), in two dimensions, or three num-
bers, (x, y, z) in three dimensions. In higher-dimensional Euclidean spaces, this
analogy is extended to an ordered n-tuple of numbers, (x1, x2, x3, . . . , xn). We
can no longer visualize these n-dimensional vectors, but the definition works.
Of course there is more to a vector than just n numbers. For these numbers to
represent a vector object, they must change appropriately (transform) when we
rotate the coordinate system. 2

We follow with the informal definition of a matrix:

Definition 3 Matrix is a two-dimensional rectangular table of ordered rows
and columns of numbers, and a transformation rule for every number when we
rotate the coordinate system. 2

For example, a row vector x, of length n, is written as

x = (x1, x2, . . . , xn), (6.6)

and a column vector y, of length m, as

y =








y1

y2

...
ym








. (6.7)
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Figure 6.2: Coordinates of two unique vectors in 2D. Note that a Cartesian
coordinate system is x1 and x2, not x and y.

The same vector can be written in the column and the row form; one is the
transpose of the other:

x = (x1, x2, . . . , xn)

xT =








x1

x2

...
xn








(6.8)

Remark 9 All vectors and matrices are arrays, but not all one- or two-dimensional
arrays are vectors or matrices. 2

6.4 Scalar product

The scalar or “inner” or “dot” product of two vectors is the real number defined
by the equation

x · y = |x||y| cos θ (6.9)

where θ is the angle between the two vectors measured from x to y. Geomet-
rically, the scalar product is equal to the length of vector x multiplied by the
length of projection of vector y onto vector x. Of course x · y = y · x. In
particular, the length of a vector x is:

x · x = |x||x|
|x| =

√
x · x

(6.10)
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Figure 6.3: Counterclockwise rotation in two dimensions. The vector x sits
passively as the basis with respect to which it is expressed is rotated beneath
it [3].

Example 1 Suppose that we resolve two arbitrary vectors issuing from the
origin, x and y, into Cartesian unit vectors, e1 and e2, such that e1 · e1 = 1,
e2 · e2 = 1, e1 · e2 = 0. Then

x = x1e1 + x2e2

y = y1e1 + y2e2

x · y = x1y1(e1 · e1) + x2y2(e2 · e2) + x1y2(e1 · e2) + x2y1(e2 · e1)

x · y = x1y1 + x2y2 + 0 + 0

|x| =
√

x2
1 + x2

2

|y| =
√

y2
1 + y2

2

(6.11)

2

A rudimentary MATLAB implementation of vector algebra is listed Section
6.9, see also Figure 6.4:

6.5 Rotation

As we said before, there is a relationship between the components of a vector
expressed with respect to two different Cartesian bases with the same origin. A
Cartesian base (e1, e2) is rotated counterclockwise by an angle φ, and denoted

as (eφ
1 , eφ

2 ), Figure 6.3. The same vector x can be resolved with respect to the
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Figure 6.4: Output of function vectoralgebra.m.

two bases:

x = x1e1 + x2e2 = (x · e1)e1 + (x · e2)e2

x = xφ
1e

φ
1 + xφ

2e
φ
2 = (xφ · eφ

1 )eφ
1 + (xφ · eφ

2 )eφ
2

(6.12)

In particular, we can resolve the rotated unit vectors e
φ
1 and e

φ
2 with respect to

the original unit vectors e1 and e2. To do so, set x = e
φ
1 and x = e

φ
2 , and use

Eq. (6.12)1 twice:

e
φ
1 = (eφ

1 · e1)e1 + (eφ
1 · e2)e2 = cos[∠(eφ

1 , e1)]e1 + cos[∠(eφ
1 , e2)]e2

e
φ
2 = (eφ

2 · e1)e1 + (eφ
2 · e2)e2 = cos[∠(eφ

2 , e1)]e1 + cos[∠(eφ
2 , e2)]e2

(6.13)

By looking at Figure 6.3, we can easily calculate the angles between the re-
spective pairs of unit vectors:

e
φ
1 = cos(φ)e1 + cos(π/2− φ)e2 = cos(φ)e1 + sin(φ)e2

e
φ
2 = cos(π/2 + φ)e1 + cos(φ)e2 = − sin(φ)e1 + cos(φ)e2

(6.14)

In matrix notation, the unit vectors of the rotated coordinate system can be
represented as the product of the two-dimensional rotation matrix :

R =

(
cosφ sin φ
− sinφ cosφ

)

, (6.15)
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and the original unit vectors:

(
e

φ
1

e
φ
2

)

=

(
cosφ sin φ
− sinφ cosφ

)(
e1

e2

)

Eφ = RE,

(6.16)

where E is a column array with unit vectors as its elements.
The coordinates of any vector x are expressed in the rotated coordinate

system as:

(
xφ

1

xφ
2

)

=

(
cosφ sin φ
− sinφ cosφ

)(
x1

x2

)

xφ = Rx,

(6.17)

The inverse transformation, Rinv, is obtained by a back-rotation, −φ:

(
x1

x2

)

=

(
cosφ − sinφ
sin φ cosφ

)(
xφ

1

xφ
2

)

x = Rinvx
φ,

(6.18)

A rudimentary MATLAB implementation of a vector drawing program uses
rotation and translation is listed in Section 6.10.

6.6 MATLAB Arrays

Remark 10

The MATrix LABoratory (MATLAB) language works with a sin-
gle object type: the MATLAB array. All MATLAB variables, in-
cluding scalars, vectors, matrices, strings, cells, structures, and
user-defined objects, are stored as MATLAB arrays.

6.7 Arrays

6.7.1 Some useful array functions

Consider the following array:

A =

(
6 9 4
1 5 7

)

>> A = [6,9,4;1,5,7]

You should be familiar with the array functions:
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• size(A) returns a row vector [m,n] with the dimensions m× n of array A

>> size(A)

ans =

2 3

• length(A) returns the largest dimension (m or n) of array A

>> length(A)

ans =

3

• sum(A) returns a row vector containing the sums over each column (along
rows) of array A

>> sum(A)

ans =

7 14 11

>> sum(sum(A))

ans =

32

>> sum(A’)’

ans =

19

13

• Other functions work in a similar way (max, min, sort)

>> max(A)

ans =

6 9 7

>> min(A’)’

ans =

4

1

>> sort(A)

ans =

1 5 4

6 9 7

6.7.2 Special matrices

• zeros(m,n) creates a m× n matrix of zeros

• ones(m,n) creates a m× n matrix of ones

• eye(n) creates a n× n identity matrix
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>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

6.7.3 Matrix multiplication

This topic is of particular relevance, since it shows up very often in engineering
calculations. General matrix multiplication is defined as follows. Let A =
[aik] be a m× p matrix, B = [bkj ] be a p×n matrix, we define matrix C = [cij ]
as the following m× n matrix:

C = A ∗B ⇐⇒ cij =

p
∑

k=1

aikbkj

For example, if

A =





6 −2
10 3
4 7



 , B =

(
9 8
−5 12

)

then

C
︸︷︷︸

(3×2)

= A
︸︷︷︸

(3×2)

∗ B
︸︷︷︸

(2×2)

=





(6)(9) + (−2)(−5) (6)(8) + (−2)(12)
(10)(9) + (3)(−5) (10)(8) + (3)(12)
(4)(9) + (7)(−5) (4)(8) + (7)(12)



 =





64 24
75 116
1 116





>> A = [6,-2;10,3;4,7]

A =

6 -2

10 3

4 7

>> B = [9,8;-5,12]

B =

9 8

-5 12

>> C = A*B

C =

64 24

75 116

1 116

Particular cases are:

• Matrix-vector multiplication

>> A = [2,7;6,-5]
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A =

2 7

6 -5

>> v = [3;9]

v =

3

9

>> A*v

ans =

69

-27

• Vector-vector multiplication: dot product

>> f = [7,-3,5]

f =

7 -3 5

>> r = [4,2,9]’

r =

4

2

9

>> f*r

ans =

67

6.7.4 Multidimensional arrays

Arrays are not restricted to be vectors or two-dimensional matrices with rows
and columns only. You can think of:

3D arrays as 2D matrices organized in a row vector, e.g.,

C =

((
1 2
3 4

) (
5 6
7 8

))

4D arrays as 2D matrices organized in rows and columns, e.g.,

D =









(
1 2
3 4

) (
5 6
7 8

)

(
9 10
11 12

) (
13 14
15 16

)









We can address portions of a multidimensional array as usual:
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>> A = [1,2;3,4]

A =

1 2

3 4

>> C = A

C =

1 2

3 4

>> C(:,:,2) = A+4

C(:,:,1) =

1 2

3 4

C(:,:,2) =

5 6

7 8

>> size(C)

ans =

2 2 2

>> C(1,1,:)

ans(:,:,1) =

1

ans(:,:,2) =

5

6.8 Exercises

1. In function vectoralgebra.m change the two unit vectors from row vectors
to column vectors. Check what happens. Did you expect it? How would
you change the code to use column unit vectors?

2. Derive in detail Eqs. (6.12).

3. Derive Eqs. (6.15) and (6.16).

4. Derive Eq. (6.17).
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6.9 MATLAB Code for Vector Algebra

.

function vectoralgebra()

%--------------------------------------------------------------

% Rudiments of vector algebra, TWP, 2002-02-02

% Define two 2d vectors, plot them, calculate theirt scalar

% product, lengths, etc.

%--------------------------------------------------------------

close all

clc

% Define Cartesian unit vectors

e_1 = [1,0];

e_2 = [0,1];

% Resolve two arbitrary vectors into the unit vectors

% I chose their coordinates to be (3,4,) and (-1,2)

vectorx = 3*e_1 + 4*e_2;

vectory = -1*e_1 + 2*e_2;

figHndl=figure;

hold on % otherwise only the last plotted object will show up

% Give espect ratio 1:1 to the axes. Otherwise, the vector arrow

% will be deformed. Comment the next line out and rerun

axis equal

% Turn off the axes

axis off

% Use my function myarrow.m to plot the vectors.

% To plot the arrow, this function uses rotation and translation

% of a Cartesian coordinate system in which the vector’s line is

% plotted.

myarrow([0,0],[vectorx(1),vectorx(2)],0.25);

myarrow([0,0],[vectory(1),vectory(2)],0.25);

%Scalar product of vectors x and y

sp=vectorx*vectory’;

sp1 = dot(vectorx,vectory);

% length of vector x

xlen= sqrt(vectorx*vectorx’);
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% length of vector y

ylen = sqrt(vectory*vectory’);

% Add coordinate lines

plot([min(vectorx(1),vectory(1)), max(vectorx(1),vectory(1))],...

[0,0], ’Color’, ’k’);

plot([0,0],[0, max(vectorx(2),vectory(2))],’Color’, ’k’);

% Print to string fn the desired eps file name

fn = sprintf(’E77N-Figure3.4.eps’);

% Print to a color eps Level 2 file for handout

% print( figHndl, ’-depsc2’, fn );

%print results to the screen

fprintf(’Vector x: x(1)=%g, x(2)=%g\n’,vectorx(1),vectorx(2))

fprintf(’Vector y: x(1)=%g, y(2)=%g\n’,vectory(1),vectory(2))

fprintf(’Scalar product x*y=%g or %g\n’,sp,sp1);

fprintf(’Length of vector x=%g\n’,xlen);

fprintf(’Length of vector y=%g\n’,ylen);

6.10 MATLAB Code to Draw Vectors

.

function [L_h,F_h]=arrowgen(Start,Stop,ALen,Base,SLen,Width,Color,BLineStyle);

%---------------------------------------------------------

% MYARROW plots a a single vector with an arrow

% plot an arrow with the following properties:

%

% A-D = SLen ^ A

% A-C = ALen / \

% A = Stop point / \

% B = Start point / \

% E-F = Base / ..D.. \

% E/.. |C ..\F

% |

% |B

% Input : - Start = point [X Y]

% - Stop = point [X Y]

% - Alen = arrow length (default is 0.05 of total length).

% - Base = length (default is 1/2 of Alen).

% - Slen = short length (default is Alen).

% - Width = line width (default is 1.5).

% - Color = plot color(default is ’k’).

% - BLineStyle = boundary line style (default is ’-’).

% Output : - Line handle.

% - Arrow (filled) handle.

%
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% By : Eran O. Ofek, October 1999

% Modified by TWP, 05-04-2002

%---------------------------------------------------------

% Set the defaults if the user does not specify them.

% nargin = Number of Arguments In. if nargin==8, means

% if there are eight input arguments.

%

if (nargin==8),

% no defaults left to set.

elseif (nargin==7)

BLineStyle = ’-’;

elseif (nargin==6)

Color = ’k’;

BLineStyle = ’-’;

elseif (nargin==5)

Width = 1.5; % changed, TWP

Color = ’k’; % changed, TWP

BLineStyle = ’-’; % changed, TWP

elseif (nargin==4)

SLen = ALen;

Width = 1.5;

Color = ’k’;

BLineStyle = ’-’;

elseif (nargin==3)

Base = 0.5*ALen;

SLen = ALen;

Width = 1.5;

Color = ’k’;

BLineStyle = ’-’;

elseif (nargin==2)

Length = sqrt((Stop(2)-Start(2)).^2+(Stop(1)-Start(1)).^2);

ALen = 0.05*Length;

Base = 0.5*ALen;

SLen = ALen;

Width = 1.5;

Color = ’k’;

BLineStyle = ’-’;

else

error(’illegal number of input arguments’);

end

% ATAN2 is the four quadrant inverse tangent (arc tangent)

Theta = atan2(Stop(2)-Start(2),Stop(1)-Start(1));

% Arrow angle (between the vector and arrow side)

Phi = atan(0.5*Base./ALen);

% Length of arrow side

BC = sqrt(ALen.^2 + (0.5*Base).^2);
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% Plot the line segment for the vector. Do not plot the

% last 0.15 of the line segment covered by the arrow.

% This avoids the ugly-looking blunt arrow tip

L_h=plot([Start(1),Stop(1)-0.85*ALen*cos(Theta)],...

[Start(2),Stop(2)-0.85*ALen*sin(Theta)],...

Color);

set(L_h,’LineWidth’,Width);

hold on;

%-----------------------------------------------------------

% Rewrote the rest completely, TWP

%-----------------------------------------------------------

% Coordinates of the upper and lower wing of the arrow in a

% basis whose x-axis is aligned with the vector,

% and whose origin is at the tip of the vector

E = BC*[cos(pi-Phi), sin(pi-Phi)]’;

F = BC*[cos(pi+Phi), sin(pi+Phi)]’;

% Go back to the original coordinate system, rotate by

% (-Theta), and shift left by adding X.

Rinv = [cos(Theta), -sin(Theta); sin(Theta), cos(Theta)];

X = [Stop(1), Stop(2)]’;

E = Rinv*E+X;

F = Rinv*F+X;

% Fill the arrow with Color

F_h=fill([Stop(1);E(1);F(1)],...

[Stop(2);E(2);F(2)],Color);

% Add line contour to the fill, to hide the flat tip of the

% vector line segment that otherwise shows up

set(F_h, ’LineWidth’,[0.5]);

set(F_h,’LineStyle’,BLineStyle);

%% end main program-------------------------------------------
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Chapter 7

How to Teach a Computer:
Binary Addition for Idiots

7.1 What Are You Going to Learn?

In this chapter you will learn how to instruct a very dumb computer on how to
perform addition. The material here has been strongly influenced by Richard
Feynman’s astounding book [12]. The addition will be carried out bit-by-bit
on binary, or base two numbers. A base two number, say, (110)2 (read binary
one-one-zero, not one hundred ten) is equal to 0× 20 + 1 × 21 + 1 × 22, or the
decimal (6)10. In particular, you will learn more about the MATLAB functions,
the logical instruction blocks if, elseif, else...end, the logical operators NOT (∼),
AND (&) and OR (|), and the for...end loops. As a byproduct, you will also
learn more about the formatted output, fprintf.

Chapter 7 folder on fttp:\\petroleum.berkeley.edu has the following MATLAB
files:

BinaryAdd.m performs binary addition of two input bits, given an input carry
bit from previous addition. The outputs are the new carry bit, if any, and
the result bit.

AddBits.m calls BinaryAdd with all bit combinations you will encounter in
binary addition. This is how you test a new function for implementation
errors.

AddNumbers.m is a rudimentary adder of arbitrary binary numbers of equal
length. If the two numbers have unequal lengths, the shorter one must be
padded with leading zeros. The binary numbers are input as they appear
in writing, i.e., they are un-flipped left-right.

binarray2dec.m converts a binary row array with the least significant bit first
(i.e., flipped left-right) into a decimal integer.

75
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decnum2bin.m converts a decimal integer to a row binary array with the
least significant bit first (i.e., flipped left-right).

7.2 Why Is It Important?

Computers are quite dumb; they will not understand plain English, but only
zeros (off) and ones (on). They require most exact instructions on what to do.
These instructions must have no ambiguities whatsoever and be restricted to
a particular vocabulary translated by appropriate software, here the MATLAB
interpreter, into finite sequences of zeros and ones. The logical instructions
and operators allow computers to perform conditional operations. The do-loops
instruct the computer to repeat the same operations a fixed number of times.
It is important to learn the most fundamental (key)words and sentences of any
computer language.

7.3 Binary addition

Computers work only with binary (base two) numbers that consist of zeros
and ones, Table 7.1 and 7.2. Let us depict a binary number as a strip of
plastic made of little compartments, just like an ice tray. Each compartment
corresponds to a digit; when the digit is 0, a compartment is empty, when the
digit is 1, we fill the compartment with water or put a pebble in it. Now let
us take two such strips and pretend that these are the numbers to be added,
or the “summands”. Underneath these two strips we put a third one that will
hold the answer. The basic rules of binary addition are:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 plus a carry bit or one in the next compartment

(7.1)

Now you can imagine giving instructions on how to move the pebbles to
someone who is a complete idiot, i.e., a computer: if you have two pebbles in
two aligned compartments of the summands, you put no pebble in the answer
compartment beneath, but you carry one pebble to the answer compartment
to the left, etc. The amazing thing is that with very specific rules the idiot
computer can add binary numbers of any size. With a slightly more detailed set
of rules our computer can even do multiplication. As we extend the rules the
computer can do very complicated calculations indeed. Because the machine is
very fast, we tend to forget how incredibly stupid it is. Once we forget, we be-
come the enchanted consumers of the “Information Society,” ready to purchase
the Brooklyn Bridge from a passer-by or Windows XPr from Microsoft a week
after their release.
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Table 7.1: An English oral numbering system using base 2 [19].

1 one 10 eightsome twosome

2 twosome 11 eightsome twosome-one

3 twosome-one 12 eightsome foursome

4 foursome 13 eightsome foursome-one

5 foursome-one 14 eightsome foursome-twosome

6 foursome twosome 15 eightsome foursome twosome-one

7 foursome twosome-one 16 sixteensome

8 eightsome 17 sixteensome-one

9 eightsome-one etc.

Table 7.2: Decimal integers and their binary equivalents

Decimal Binary Binary Expansion

1 1

2 10

3 11 1× 21 + 1× 20

4 100 1× 22 + 0× 21 + 0× 20

5 101 1× 22 + 0× 21 + 1× 20

6 110 1× 22 + 1× 21 + 0× 20

7 111 1× 22 + 1× 21 + 1× 20

8 1000 1× 23 + 0× 22 + 0× 21 + 0× 20

9 1001 1× 23 + 0× 22 + 0× 21 + 1× 20

10 1010 1× 23 + 0× 22 + 1× 21 + 0× 20

. . . . . . . . .

16 10000 1× 24 + 0× 23 + 0× 22 + 0× 21 + 0× 20
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Figure 7.1: Abacus is an ancient tool used for counting; it consists of a frame
with rods on which beads or balls get moved. The abacus has been in existence
in China since the second century BCE. The oldest abaci come from the fourth
century BCE and were found in Rome.

Of course, computers today1 do not move pebbles, they use high voltage for
1 and low voltage for 0. Each strip is a register and the number of compartments
is the register length in bits. So 64 bits correspond to 64 compartments. Thus
far we have been representing integers as binary numbers. Later on we will learn
how to approximate the floating-point decimals as 64 pebbles.

Our task is to design a binary adder in MATLAB using the rules in Eq.
7.1. The two strips along an ice tray will be one dimensional arrays. Each
compartment will contain a digit. So to represent 22 as a binary number, we

1The computers of yesterday, named abaci, actually used beads that slid along the rods,
see Figure 7.1.

Figure 7.2: Binary addition of pebbles in compartments of an ice tray. The first
two strips are summands, and the third strip is an accumulator or sum.
We are adding the binary equivalents of (13)10 and (22)10.

• • •

+

• • •

=

• • •
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will say s1=[1 0 1 1 0] or s1=[1, 0, 1, 1, 0].

The MATLAB response will be

>> s1=[1 0 1 1 0]

s1 =

1 0 1 1 0

>> s1(1)

ans =

1

>> s1(2)

ans =

0

>> s1(3)

ans =

1

>> s1(4)

ans =

1

>> s1(5)

ans =

0

Now, as you see the elements of an array are read from left to right, whereas
the actual numbers are the increasing powers of the base (20, 21, 22,...) from
right to left, so we flip the array left to right:

>> s1=fliplr(s1)

s1 =

0 1 1 0 1

Note that fliplr(Some array) is a built-in function of MATLAB. Now the first
element of the array is the lowest bit of the binary number, and the last element
is the highest bit.

7.3.1 Logical Instructions

Before implementing the adder, we need to remind you about the logical oper-
ators AND, OR , XOR and NOT, see Table 7.3:
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Table 7.3: The basic logical operators

Name Logic MATLAB

AND ∧ &

OR ∨ |
NOT ∼ ∼

eXclusive OR (XOR)
⊕

xor(a,b)

Logical AND operator : X = A ∧B

MATLAB AND operator : x = a & b (7.2)

Logical OR operator : X = A ∨B

MATLAB OR operator : x = a | b (7.3)

Logical eXclusive OR (XOR) operator : X = A⊕B

MATLAB XOR operator : x = xor(a, b) (7.4)

The logical Truth Tables for these three operators are listed in Tables 7.4-7.6.
For example, the first row of Table 7.4 reads as follows: if A is false and B is
false, then A ∧ B is false. The third row of Table 7.5 reads as follows: if A is
true and B is false, then A ∨B is true.

Remark 11 Note that the logical assignment is expressed in MATLAB with
a “==” operator, as opposed to a value assignment operator “=” discussed in
Chapter 5. So if x==0 is read if x is false. 2

Remark 12 The logical value of any positive number is true, while that of any
non-positive number is false. 2

Now let us implement a full binary adder. We start from planning the
number and types of inputs and outputs. We conclude that our adder should
have three inputs: the first bit to be added, the second bit to be added, and
the carry bit from the previous addition Figure 7.3. It should also have two
outputs: the sum and the carry bit if any. Here is how a binary adder might
look like:
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Table 7.4: The Truth Table for the logical AND operator

A B X

0 0 0

0 1 0

1 0 0

1 1 1

X = A ∧B

Table 7.5: The Truth Table for the logical OR operator

A B X

0 0 0

0 1 1

1 0 1

1 1 1

X = A ∨B

Table 7.6: The Truth Table for the logical XOR operator

A B X

0 0 0

0 1 1

1 0 1

1 1 0

X = A
⊕

B
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Binary Adder

-
Carry bit

-
Sum

-
Carry bit

-
Second bit

-
First bit

Figure 7.3: Block diagram of the binary addition function. The innards of this
function are hidden from the users. For the casual user, this function becomes
a black box.

function [cout,sum]=BinaryAdd(b1,b2,cin)

%-----------------------------------------------------------------------

% Function BinaryAdd performs binary addition of input bits,

% b1 and b2,

% given the input carry bit from previous addition,

% cin.

% The outputs are the new carry bit, cout, if any, and the binary

% result, sum.

%

% Written by T.W. Patzek, 12-30-2001

% U.C. Berkeley, patzek@patzek.berkeley.edu

% E77N Class Material, University of California, Berkeley

%

% Last revised, TWP, 01-01-2002

%-----------------------------------------------------------------------

% Assume that the previous carry bit is zero.

% The symbol ~ is read "not," e.g., if b1=0, ~b1=1.

if ~b1 & ~b2 % b1 = 0 and b2 = 0, i.e., both are false

sum = 0;

cout = 0;

elseif (~b1 & b2) | (b1 & ~b2) % b1 or b2 = 1, the other = 0

sum = 1;

cout = 0;

else % b1 and b2 = 1

sum = 0;

cout = 1;

end

% If the input carry bit is 1, flip the results, but only if

% b1 and b2 are NOT both ones. In the last case, we need to

% set both the sum and cout to one.
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if cin

if sum % sum = 1

sum = 0;

cout = 1;

else % sum = 0

if ~b1 & ~b2 % b1 and b2 = 0

sum = 1;

cout = 0;

else % b1 = 1 and b2 = 1

sum = 1;

cout = 1;

end

end

end

% A simpler way of writing the last logical instructions block is:

%if cin

% sum = 1;

% cout = 1;

% if sum % sum = 1

% sum = 0;

% else % sum = 0

% if ~b1 & ~b2 % b1 and b2 = 0

% cout = 0;

% end

% end

%end

The syntax of the if . . . elseif . . . else . . . end programming structures have
been described in Chapter 4.

We can test out new binary adder by writing the following function:

function AddBits()

%-------------------------------------------------------------------

% AddBits calls BinaryAdd with all bit combinations

% in binary addition. This is how you test a new function

% Written by T.W. Patzek, January 2, 2002

% E77N Class Material, University of California, Berkeley

%-------------------------------------------------------------------

clc; % Clear MATLAB window screen

s1 = 0;

s2 = 0;

cin = 0;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);
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s1 = 1;

s2 = 0;

cin = 0;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

s1 = 0;

s2 = 1;

cin = 0;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

s1 = 1;

s2 = 1;

cin = 0;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

fprintf(’\n\n’)

s1 = 0;

s2 = 0;

cin = 1;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

s1 = 1;

s2 = 0;

cin = 1;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

s1 = 0;

s2 = 1;

cin = 1;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

s1 = 1;

s2 = 1;



7.3. BINARY ADDITION 85

cin = 1;

[cout, s] = BinaryAdd(s1,s2,cin);

fprintf(’s1 =%d, s2 =%d, cin=%d\n’,s1,s2,cin);

fprintf(’sum=%d, cout=%d\n\n’, s,cout);

The features of the fprintf function have been described in Chapter 4.

7.3.2 For-Loops

In order to add two binary numbers of equal, but arbitrary length, we need to
call our single-bit adder repeatedly. In MATLAB this is done in a for loop, see
Chapter 4:

function AddNumbers()

%--------------------------------------------------------------------

% AddNumbers is the first adder of arbitrary binary numbers of EQUAL

% length. If the two numbers have unequal lengths, the shorter one

% must be padded with LEADING zeros

%

% Written by T.W. Patzek, 12-30-2001

% U.C. Berkeley, patzek@patzek.berkeley.edu

% E77N Class Material, University of California, Berkeley

%

% Last revised, TWP, 01-01-2002

%--------------------------------------------------------------------

clc

% Add the two rows of ice tray in Figure 3.1

% NOTE that each number is PREPADDED with a leading zero

% to make allowance for the carry bit in the sum<<<<<<<<<<<<<<<<

% |

% V

n1 = [0 0 1 1 0 1];

n1 = fliplr(n1); % flip the number lef-right

n2 = [0 1 0 1 1 0];

n2 = fliplr(n2);

len = length(n1); % find the commnon length of BOTH numbers

% This is how you declare an array of zeros with one row

% and len columns

sum = zeros(1,len) % prepare and empty tray for the results

c = 0; % set the first input carry bit to zero

% Repeat the same operation several times in a do-loop

% i is the loop running index, 1 is the starting value of i

% and len is the final value of i.

for i = 1:len

fprintf(’n1(%d)=%d, n2(%d)=%d, cin=%d\n’,i,n1(i), i,n2(i), c);



86
CHAPTER 7. HOW TO TEACH A COMPUTER:

BINARY ADDITION FOR IDIOTS

% Reuse our old-and-tried binary adder of single bits:

[c,sum(i)] = BinaryAdd(n1(i),n2(i),c);

fprintf(’sum(%d)=%d, cout=%d\n’,i,sum(i), c);

end

sum = fliplr(sum)

7.4 Computer Representation of Numbers

We represent numbers using the decimal system, i.e., powers of 10. For example:

N = 2× 102 + 5× 101 + 3× 100 = (253)10.

In a computer that uses the binary system, i.e., powers of 2, the same num-
ber 253 is represented as:

N = 1×27+1×26+1×25+1×24+1×23+1×22+0×21+1×20+ = (11111101)2.

We can also think of real numbers in both systems. For example:

(14.75)10 = 1× 101 + 4× 100 + 7× 10−1 + 5× 10−2

= 1× 23 + 1× 22 + 1× 21 + 0× 20 + 1× 2−1 + 1× 2−2

= (1110.11)2

MATLAB follows the IEEE Standard for floating-point arithmetic. The
IEEE floating-point format includes three components: the sign bit, the expo-
nent field, and the significand (mantissa) field. Single-precision floating-point
values consist of 32 bits, and the value is given by

value = (−1)sign
(
2exp−127

)
(1.significand)

± exp significand

- � -� -1 bit 8 bits 23 bits

Figure 7.4: Binary representation of a number with single precision (32 bits)

Double-precision floating-point values consist of 64 bits, and the value is
given by

value = (−1)sign
(
2exp−1023

)
(1.significand)
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± exp significand

- � -� -1 bit 11 bits 52 bits

Figure 7.5: Binary representation of a number with double precision (64 bits)

The significand is normalized if it has the form 1.f , where 1 is always the
leading bit (known and not stored), and f is the stored fraction with arbitrary
bits (0’s or 1’s in any combination.) A denormalized significand has 0 as the
leading bit.

The fixed number subtracted to the exponent allows an accurate representa-
tion of both small and big numbers. For the double-precision case, the minimum
value of the exponent is

(00000000000)2 = 0,

and the maximum value

(11111111111)2 = 211 − 1 = 2047.

Thus, (exp− 1023) ranges from −1023 to 1024.
For the largest IEEE normalized numbers, the least-significant bit of the

exponent is set to 0, and the largest value of the exponent is 1023. Conversely,
for the smallest normalized numbers the first bit is set to 1, and the smallest
value of the exponent is -1022:

(11111111110)2 − 1023 = 211 − 2− 1023 = 1023 Largest exponent of normalized number

(00000000001)2 − 1023 = 20 − 1023 = −1022 Smallest exponent of normalized number

The biggest normalized number (in absolute value) which can be represented
in MATLAB is

Rmax = (2− 2−52)× 21023 = 1.797693134862316× 10308,

i.e., all 52 bits of this number’s significand are set to 1.
The minimum denormalized number is degraded to the last significant digit

in the fraction (only the 52nd bit is set to 1):

Rmin = 2−52 × 2−1022 = 2−1074 = 4.940656458412465× 10−324

The floating point relative accuracy, i.e., the distance from 1.0 to the next larger
floating point number is

ǫ = 2−52 = 2.220446049250313× 10−016.
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Note that the extreme values occur (regardless of sign) when the exponent
is at the maximum value for finite numbers (2127 for single-precision, 21023 for
double-precision), and the significand is filled with 1s (including the normalizing
1 bit).

7.4.1 Putting it All Together

In summary:

1. The sign bit is 0 for positive, 1 for negative.

2. The exponent’s base is two. The exponent field contains -127 plus the true
exponent for single-precision numbers, or -1023 plus the true exponent for
double-precision numbers.

3. The significand (mantissa) is typically assumed to be normalized, 1.f , i.e.,
the first bit is always 1, and f is the field of fraction bits (23 in single
precision and 52 in double precision).

4. For the largest normalized numbers, the exponent is restricted to 2046-
1023, by setting its first bit to 0.

5. For the smallest normalized numbers the exponent is restricted to 1 −
1023 = −1022, by setting its first bit to 1.

Precision Denormalized Normalized Approximate Decimal

Single ±2−149 to ±2−126 to ∼ ±10−44.85 to

±(1 − 2−23) × 2−126
±(2 − 2−23) × 2127

∼ ±1038.53

Double ±2−1074 to ±2−1022 to ∼ ±10−323.3 to

±(1 − 2−52) × 2−1022
±(2 − 2−52) × 21023

∼ ±10308.25

The Chapter 7 function decnum2bin converts a decimal integer to its binary
representation with the least significant bit as the first element. To make the
binary number appear as written by hand do the following:

>> fliplr(decnum2bin(1000))

ans = 1111101000

7.4.2 Special Values

IEEE reserves exponent field values of all 0s and all 1s to denote special values
in the floating-point scheme.
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Zero

As mentioned above, zero is not directly representable in the straight format,
due to the assumption of a leading 1 (we’d need to specify a true zero mantissa
to yield a value of zero). Zero is a special value denoted with an exponent field
of zero and a fraction field of zero. Note that -0 and +0 are distinct values,
though they both compare as equal.

Denormalized Number

If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted
as zero), then the value is a denormalized number, which does not have an
assumed leading 1 before the binary point. Thus, this represents a number
(−1)s × 0.f × 2−126, where s is the sign bit and f is the fraction. For double
precision, denormalized numbers are of the form (−1)s × 0.f × 2−1022. From
this you can interpret zero as a special type of denormalized number.

Infinity

The values +infinity and -infinity are denoted with an exponent of all 1s and a
fraction of all 0s. The sign bit distinguishes between negative infinity and posi-
tive infinity. Being able to denote infinity as a specific value is useful because it
allows operations to continue past overflow situations. Operations with infinite
values are well defined in IEEE floating point.

Not A Number

The value NaN (Not a Number) is used to represent a value that does not repre-
sent a real number. NaN’s are represented by a bit pattern with an exponent of
all 1s and a non-zero fraction. There are two categories of NaN: QNaN (Quiet
NaN) and SNaN (Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN’s prop-
agate freely through most arithmetic operations. These values pop out of an
operation when the result is not mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is used to
signal an exception when used in operations. SNaN’s can be handy to assign to
uninitialized variables to trap premature usage.

Semantically, QNaN’s denote indeterminate operations, while SNaN’s denote
invalid operations.

7.5 Exercises

1. In MATLAB command window, go to Help → Matlab Help. Click on the
Index tab, and by typing “operator precedence,” find the precedence rules
for MATLAB operators. These are shown as a list, ordered from highest
precedence level to lowest precedence level. You need to memorize this
list.
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2. Now type fprintf into the Index tab, and familiarize yourself with the other
typical formatting strings, such as ’%e’, ’%12.4e’, ’%f’, ’%10.4f’, etc. Try
to use fprintf in your own code as soon as possible. It pays to communicate
your output clearly.

3. Simplify the BinaryAdd.m function using the eXclusive OR (XOR) oper-
ator, see Table 7.6, which in MATLAB is implemented as s=xor(b1,b2).

4. Write a function [d]=bin2dec(b) that converts an array representation of a
binary number to the corresponding decimal number. Use the fact that if
the left-right flipped binary form is b = [b1, b2, b3, . . . , bN ], the correspond-
ing decimal number, d, is

d =

N∑

i=1

b(i)2i−1 (7.5)

Use the for...end construct to perform the conversion and return the result
from the function.

Bonus: By using MATLAB help find out how MATLAB can do the
summation more efficiently. It can, but you must first convert the powers
of 2 in the sum to an array of length equal to b.

5. Bonus: Write a more sophisticated black-box function [sum] = AddNum-
bers2(n1,n2,flag), where n1 and n2 are the input bit arrays of arbitrary
lengths, and sum is the binary result. The flag tells the computer if the
inputs should be flipped.

Hint: Work with the flipped forms of the arrays. Suppose that n1 is
longer. Pre-pad n2: n2 = [zeros(1,length(n1)-length(n2),n2)]. Also allow
for n2 to be longer. Make sure that both n1 and n2 are row arrays. To
achieve this, put n1=n1(:)’, and the same for n2. Explain in words what
are the effects of this operation.

6. Bonus: Write a decimal-to-binary integer converter. The input is the pos-
itive decimal integer (e.g., 813), and the output is a row array of (flipped)
binary digits (e.g, [1 0 1 1 0 1 0 0 1 1]), see Table 7.7.

Hint: Use a while(number>0) ... end loop to divide the input number by
2 as many times as necessary. Each binary digit will be the remainder of
division by two (the MATLAB function rem: b(j)=rem(number,2)), and
the new input will be the smallest integer after the division (the MATLAB
function floor: number=floor(number,2)). The condition to stop the while
loop will be the next number equal to zero, see Table 7.7.

7. As in Problem 5, but add a second output argument that is the binary
sum array converted to a decimal number.

8. Double Bonus: Write a function that takes two decimal integers as
inputs, performs the binary addition and outputs the result in both binary
and decimal form.
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Table 7.7: Conversion of decimal 813 to a binary array through the iterated
division by 2. The binary array is already flipped left-right, with the least
significant bit as the first element.

Iteration Decimal (floor) Bit (rem)

1 813(start) 1

2 406 0

3 203 1

4 101 1

5 50 0

6 25 1

7 12 0

8 6 0

9 3 1

10 1(stop) 1

813
.
= [1 0 1 1 0 1 0 0 1 1]

Table 7.8: Conversion of decimal 0.1 to a binary array through the iterated
multiplication by 2. The binary array starts with the most significant bit as the
first element.

Iteration Decimal Bit from

multiplication integer part

0 0.1 0.(start)

1 0.2 0

2 0.4 0

3 0.8 0

4 1.6→ 0.6 1

5 1.2→ 0.2 1

6 0.4 0

7 0.8 0

8 1.6→ 0.6 1

9 1.2→ 0.2 1

10 etc. etc.

0.1
.
= 0.[0 0 0 1 1 0 0 1 1 0 0 1 1 . . . ]
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9. Double Bonus: Conversion of decimal fractions to binary fractions. Con-
version of decimal 0.1 to an infinite, periodic binary fraction is shown in
Table 7.8. Write a MATLAB function to perform the conversion from
an arbitrary decimal fraction as input to a binary fraction with a specified
number of digits.

10. Show that with all bits of the double-precision significand f set to 1,
1.f = 2− 2−52.



Chapter 8

Data Structures

8.1 What Are You Going To Learn?

In this chapter you will learn about more complicated data types in MATLAB,
structures and cell arrays. We shall proceed as follows:

• Review of data types in MATLAB

• Building structure arrays

• Accessing data in structure arrays

• Finding the size of structure arrays

• Adding fields to structures

• Deleting fields from structures

• Applying functions and operators

• Writing functions to operate on structures

• Organizing data in structure arrays

• Nesting structures

The Chapter 8 folder on fttp:\\petroleum.berkeley.edu has the following files:

cellarray.m creates cell arrays.

doubledatatype.m creates an array of complex numbers.

readdoubledata.m reads a complex array from a text file.

input.dat is a text file with the complex array elements.

sparsearray.m creates a sparse array.

93
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stringarray.m creates a string array.

structures.m creates structures and structure arrays.

In order to fully understand the material this chapter, please download the
code fragments above, add your lines and answer the questions.

8.2 Why Is It Important?

MATLAB now provides you with ways of organizing data that rival capabilities
of Java and C++. If you want to use the full power of MATLAB, you must be
fluent in data types used by it.

8.3 Useful Definitions

Definition 4 A class is defined as a generalization of objects [13]: “a group, set,
or kind marked by common attributes or a common attribute; a group division,
distinction, or rating based on quality, degree of competence, or condition”. In
the context of object-oriented-programming (OOP) a class is a set of objects that
share a common structure and a common behavior. A single object is simply
an instance of a class. 2

Definition 5 There are many definitions of an object, e.g., [13]: “An object has
state, behavior, and identity; the structure and behavior of similar objects are
defined in their common class; the terms instance and object are interchange-
able”. 2

8.4 Data Types in MATLAB

The MATLAB language works with only one object type: the MATLAB array.
All MATLAB variables, including scalars, vectors, matrices, strings, cell arrays,
structures, and objects are stored as MATLAB arrays.

There are five fundamental data types or classes in MATLAB. Each of these
data types resides of course in an array. An array can grow from 0-by-0 in
size and to an n-dimensional array of any size computer memory will permit.
One-dimensional arrays are loosely called vectors, and two-dimensional arrays
are loosely called matrices 1. The fundamental data types, or classes, are:

• Character (char): ’c’, ’e77n’

• Numeric: double and sparse

• Cell: N{1,1}=[1,2,3]

1For more precise definitions, see Chapter 6
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• Structure: struct phonebook (’number’,1234)

• Function handle: function handle = @myfunction;

MATLAB help will inform you that there are other classes, such as int8
(8-bit signed integer array), int16 (16-bit signed integer array), int32 (32-bit
signed integer array), single (single-precision floating-point array), uint8 (8-bit
unsigned integer array), uint16 (16-bit unsigned integer array), and uint32 (32-
bit unsigned integer array). You can create objects that belong to each of these
classes, but you cannot perform any operations on them without conversion to
double precision. Thus, for the purpose of this course, we shall ignore all these
additional classes.

When we define a particular array of one of these types, we create an object
that belongs to a class from which it was derived. For example, array A =
[‘Joe’, ‘Doe’, ‘Mow’] is an object of class char:

K = isa(obj, ’class name’)← Syntax

K = isa(A, ’char’)← Use

>> 1

The char data type holds characters in Unicode2 representation. A character
string of length n is merely a 1-by-n array of characters. You can use char to
hold an array of strings as long as each string in the array has the same length.
(This is because MATLAB arrays must be rectangular.) To hold an array of
strings of unequal length, use a cell array.

Numeric data types include double precision arrays that are full, or sparse
arrays that contain only a few nonzero elements. All MATLAB computations
are done in double-precision.

A cell array provides a storage mechanism for dissimilar kinds of data. You
can store arrays of different types and/or sizes within the cells of a cell array.
For example, you can store a 1-by-50 char array, a 7-by-13 double array, and a
1-by-1 uint32 (unsigned 32-bit integer) in cells of the same cell array. You access
data in a cell array using the same matrix indexing used on other MATLAB
matrices and arrays, but you cannot perform any operations on them.

The MATLAB structure data type is similar to the cell array in that it also
stores dissimilar kinds of data. But, in this case, it stores the data in named

2International character-encoding system designed to support the electronic interchange,
processing, and display of the written texts of the diverse languages of the modern and classical
world. The Unicode Worldwide Character Standard includes letters, digits, diacritics (marks
such as the ´ in ó), punctuation marks, and technical symbols for all the world’s principal
written languages, using a uniform encoding scheme. Originally introduced in 1991, the most
recent version contains almost 50,000 characters. Numerous encoding systems (incl. ASCII
and EBCDIC) predate Unicode. With Unicode (unlike earlier systems), the unique number
provided for each character remains the same on any system that supports Unicode.
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fields rather than in cells. This enables you to attach a name to the groups of
data stored within the structure. You access data in a structure using their field
names. Most importantly, on each field, you can perform all operations that are
legal for it. (For example, you can add, subtract, etc., all arithmetic fields.)

MATLAB data types are implemented as classes. You can also create MAT-
LAB classes of your own. These user-defined classes inherit from the MATLAB
structure class.

8.4.1 Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision, non-
sparse matrix. These matrices are of type double and have dimensions m-by-n,
where m is the number of rows and n is the number of columns, e.g.,

D(i, j), i = 1, . . . , m, j = 1, . . . , n.

The matrix elements are stored as two vectors of double-precision numbers
- one contains the real data and one contains the imaginary data. Now you
should try the first exercise, doubledatatype.m to understand how MATLAB
stores the double precision, real and complex numbers.

function doubledatatype()

%

% How to create an array of complex numbers

% T.W. Patzek, E77N, April 5, 2001

% Last modified TWP, 2002-02-06

%

clear all; clc

% Double array of complex numbers D:

ReD = [2,4,6;8,10,12;14,16,18];

ImD = [1,3,5;7, 9,11;13,15,17];

D=ReD+i*ImD;

D

fprintf(’%2g %2g %2g\n’,real(D)’);

fprintf(’\n’);

fprintf(’%2g %2g %2g\n’,imag(D)’);

fprintf(’\n’);

whos

% Questions for the students:

% 1. Input D as a single array of complex numbers.

% 2. How exactly are data stored in this array?

% 2a. Why did I put D’ in the fprintf statement?

% 3. By looking at output of whos, tell what is the

% number of bits (not bytes) per element of D?

% 3a. What about ReD and ImD?

% Input your code here, output the result:

% Put BRIEF comments below your code
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%-------------------------------------------

% Student code starts

% Student code ends

%-------------------------------------------

Using a text input data file input.dat

2 4 6

8 10 12

14 16 18

1 3 5

7 9 11

13 15 17

read in the real and imaginary part of D in the previous example.

function readdubledata()

%

% How to read a complex array from a text file

% T.W. Patzek, E77N, April 5, 2001

% Last modified TWP, 2002-02-06

%

clear all; clc

%

% Read real and imaginary parts of D:

fp = fopen(’input.dat’, ’r’);

[ReD]=fscanf(fp,’%f’,[3,3]);

[ImD]=fscanf(fp,’%f’,[3,3]);

fclose(fp);

D=ReD+i*ImD;

D

fprintf(’\nReal part of D\n’);

fprintf(’%2g %2g %2g\n’,real(D)’);

fprintf(’\nImaginary part of D\n’);

fprintf(’%2g %2g %2g\n’,imag(D)’);

fprintf(’\n’);

whos

% Questions for the students:

% 1. How are data read from input.dat into ReD and ImD?

% 2. Make D in this example look exactly as in Example 2

% Input your code here, output the result:

% Put BRIEF comments below your code

%-------------------------------------------

% Student code starts

% Student code ends

%-------------------------------------------
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8.4.2 Sparse Matrices

Sparse matrices have a different storage convention than full matrices in MAT-
LAB. Here is how a sparse matrix can be created from a full matrix.

With big full matrices, we do not have such a luxury and their sparse coun-
terparts must be created directly.

8.4.3 MATLAB Strings

MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers. Each character in the string is stored as 16-bit ASCII Unicode.
Unlike C, MATLAB strings are not null terminated. Here is an example of
inputting string arrays:

function stringarray()

% How to create a string array

% T.W. Patzek, E77N, April 5, 2001

% Last modified TWP, 2006-01-22

%

clear all; clc

%

s=[’I ’;

’want ’;

’to ’;

’learn’;

’all ’;

’I ’;

’can ’;

’in ’;

’E77N ’];

s

whos

% 1. How many bits per each character in s?

% 2. How to output just ’lear’ from s?

% 3. Can rows in s have different lengths?

s1=[];

s1 = strvcat(s1,’I’);

s1 = strvcat(s1,’want’);

s1 = strvcat(s1,’to’);

s1 = strvcat(s1,’learn’);

s1 = strvcat(s1,’even’);

s1 = strvcat(s1,’more’);

s1

whos

8.4.4 Cell Arrays

Cell arrays are a collection of MATLAB arrays where each array is referred to
as a cell. This allows MATLAB arrays of different types to be stored together.
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Each cell can be of any supported data type, even another cell array.

You can create cell arrays by:

• Using assignment statements

• Preallocating the array using the cell function, then assigning data to cells

Using Assignment Statements

You can build a cell array by assigning data to individual cells, one cell at a
time. MATLAB automatically builds the array as you go along. There are two
ways to assign data to cells:

• Cell indexing

Enclose the cell subscripts in parentheses using standard array notation.
Enclose the cell contents on the right side of the assignment statement in
curly braces,“{}”. For example, create a 2-by-2 cell array A.

• Content indexing

Enclose the cell subscripts in curly braces using standard array notation.
Specify the cell contents on the right side of the assignment statement:

function cellarray()

% How to create cell arrays

% T.W. Patzek, E77N, April 5, 2001

% Last modified TWP, 2006-01-22

%

clear all; close all; clc

%

%--------------------------------------------------------------

% Cell indexing (each element of an array is a cell):

%--------------------------------------------------------------

A(1,1) = {[1 2 3; 4 5 6; 7 8 9]};

A(1,2) = {’Tad Patzek’};

A(2,1) = {3+7i};

A(2,2) = {-pi:pi/10:pi};

A

A{1,1}

% See if we can print out a cell array element:

try

disp(’>>fprintf(’’%s\n’’,A(1,2));’)

fprintf(’%s\n’,A(1,2));

catch

% We could not, so we must clean up our mess:

err = lasterror;

mess = err.message;
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fprintf(’%s\n’,mess);

disp(’>>fprintf(’’%s\n’’,char(A(1,2)));’)

fprintf(’%s\n’,char(A(1,2)));

end

%

%--------------------------------------------------------------

% Content indexing (specify arbitrary elements of a cell array)

%--------------------------------------------------------------

B{1,1} = [1 2 3; 4 5 6; 7 8 9];

B{1,2} = ’Tad Patzek’;

B{2,1} = 3+7i;

B{2,2} = -pi:pi/10:pi;

B

B(2,2)

celldisp(B)

cellplot(B)

%set(gcf,’PaperPosition’,[1 1 4 3])

%print -depsc cellplot.eps

whos

% Problems:

% Show the difference between B(2,2) and B{2,2}

% Declare an empty cell array

Remark 13

The notation“{}” denotes the empty cell array, just as “[]”
denotes the empty matrix for numeric arrays. You can use
the empty cell array in any cell array assignments. Use
square brackets to concatenate cell arrays, just as you do
for numeric arrays.

2

Pre-allocating Cell Arrays with the Cell Function

The cell function allows you to pre-allocate empty cell arrays of the specified
size. For example, this statement creates an empty 2-by-3 cell array.

B = cell(2, 3);

Use assignment statements to fill the cells of B.

B(1, 3) = {1 : 3};
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Tad Patzek

3+7i

Figure 8.1: Result of cellplot(B).

8.4.5 Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields.

function structures()

% How to create structures and structure arrays

% T.W. Patzek, E77N, April 5, 2001

% Last modified TWP, 2002-02-06

%

clear all; clc

% Direct definition of all structure fields

mydata = struct(...

’name’, ’Tadeusz W. Patzek’,...

’office’,’425 Davis Hall’,...

’favoritenumbers’,[0,1,1,3,5,8,13],...

’phoneprefix’,3,...

’phone’,5834);
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% Add a field I forgot to add to the structure definition

mydata.height = 182;

fprintf(’mydata.name=%s\n’,mydata.name)

ll=length(mydata.favoritenumbers);

fprintf(...

’\nNumber of elements in favoritenumbers field=%d\n’,...

ll);

fprintf(’\nmydata.favoritenumbers:\n’);

for(i=1:ll) fprintf(’%d ’,mydata.favoritenumbers(i));end

fprintf(’\n\n’);

% You can perform arithmetic operations on numeric fields:

mydata.favoritenumbers(1)+mydata.favoritenumbers(5)

%Structure array defined one field at a time:

friends = {};

friends(1).name = ’Allen Tom’;

friends(1).phone = 1212;

friends(2).name = ’Berdichevsky Maria’;

friends(2).phone = 3434;

friends(3).name = ’Rahmani Mustapha’;

friends(3).phone = 5656;

friends(4).name = ’Carapia Jorge’;

friends(4).phone = 7878;

fprintf(’friends(%d).name=%s\n’,3,friends(3).name);

ll=length(friends);

fprintf(’\nfriends(:).phone:\n’);

for(i=1:ll) fprintf(’%d ’,friends(i).phone);end

fprintf(’\n’);

% Get field information

f = getfield(friends,{3},’phone’);

fprintf(’\nf=%d\n\n’,f);

% You can perform arithmetic operations on numeric fields:

fprintf(’\nAdd phone numbers in elements 3 and 4=%d\n\n’,...

friends(3).phone+friends(4).phone);

% whos creates a structure array with cell arrays as fields:

s=whos;

s(2).name

s(2).size

s(2).bytes

8.4.6 Objects

Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods.
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8.4.7 Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers
is stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

8.4.8 Empty Arrays

MATLAB arrays of any type can be empty.

8.4.9 Data Storage

All MATLAB data is stored column-wise, which is how FORTRAN stores matri-
ces. MATLAB uses this convention because it was originally written in Fortran.
For example, given the matrix

a = [’house’; ’floor’; ’porch’]

a =

house

floor

porch

its dimensions are

size(a)

>> ans = 3 5

and its data are stored as (write a as a 3 row array and proceed by column)

h f p o l o u o r s o c e r h

8.5 Exercises

1. Go through the sample codes and answer the questions included in them.
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Chapter 9

Fundamentals of Plotting

9.1 What Are You Going To Learn?

In this chhapter you will learn how to make nice plots in MATLAB. In particular,
I will cover the following subjects:

• What is a MATLAB figure?

• How do you change figure properties?

• How do you label figures?

• How do you put legends into figures?

• How do you put text into figures?

• How do you include multiple plots in one figure?

• How do you plot surfaces?

• What is a parametric plot?

Your best source of information on the properties of figures and plotting
tricks is MATLAB’s online Help.

The Chapter 9 folder on fttp:\\petroleum.berkeley.edu has the following files:

CreateGreenYellowPlot.m demonstrates some of the enormous graphical
capabilities of MATLAB. It creates a figure object (window) that covers
most of computer screen, changes the figure background to green, turns
off the figure number, gives the figure your own title, plots a blue line on a
yellow background, changes the line thickness, plots legends, changes the
legend font, etc.

CreateGreenYellowPlotLecture.m is the non-demo version of the function
above.

105
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fitplot.m is a script to perform several polynomial fits (of increasing order)
to a data set. The data points and fitting models are then plotted using
subplot. One figure with four sub-figures is created.

legends.m is a script to plot multiple legends.

ParametricPlot.m generates a three-dimensional parametric plot of a trajec-
tory [x(t), y(t), z(t)].

plotpwfun.m is a script file that plots the 2D surface pwfun.m using a näıve
if...end construct.

pwfun.m computes the values of a 2D surface defined by patches, using the if
statements (näıve implementation).

plotpwfun2.m plots the 2D function pwfun2.m using the vectorized find.

pwfun2.m computes the values of a 2D surface defined by patches, using the
find function (sophisticated implementation).

PlotZCubed.m plots the real and imaginary parts of a complex function of
the complex variable w(z) = z3 − 1 as two 3D color-coded surfaces; one
of the surfaces is semi-transparent. It also plots the roots of w as three
vertical lines intersecting the surfaces.

9.2 Why Is It Important?

One of the main reasons for using MATLAB is the ease with which you can
present your results graphically. MATLAB gives you an unparalleled flexibility
in creating custom graphics that satisfy the most subtle artistic taste.

9.3 What Is MATLAB Figure?

Definition 6 MATLAB command figure creates a figure graphics object with
a unique identifier, called handle. Each figure object creates its own window
that is a child of the root window, i.e., the screen in which MATLAB displays
graphical output. Each new figure object is created with the default properties
inherited from the root.

Example 2 When you type:

h=figure;

MATLAB creates a new figure graphics object and refers to it through a handle
h, which happens to be a unique number.

You get the current properties of a figure object identified by handle h by using
the function:
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get(h)

You change the properties of h by using the function:

set(h,’PropertyName’, NewPropertyValue)

where ’PropertyName’ is any of the valid properties of the figure object, and
NewPropertyValue is the new value to which this property will be set. 2

Example 3 To create a figure window that is one quarter the size of your screen
and is positioned close to the upper-left corner, use the root object’s ScreenSize
property to determine the size. ScreenSize is a four-element vector: [left,
bottom, width, height]:

close all

% 0 is the handle of the root graphics object, i.e, the screen

scrsz = get(0,’ScreenSize’);

% [left bottom width height ]

h=figure(’Position’,[25, scrsz(4)/2, scrsz(3)/2, scrsz(4)/2]-20)

% On my screen, I need to shift the figure right by 25 pixels,

% and down by 20 pixels for the tool bar and border to show.

Note that the window may have to be moved away from the upper left corner
to display correctly. 2

You get the handle of the current graphics figure (gcf) by typing:

figure;

h=gcf;

To change the background color of your current figure from silver to green type:

set(h, ’Color’, [0.5, 1, 0]);

To change the figure name type:

set(h, ’Name’, ’My Green Figure’);

To turn off the display of the figure number type:

set(h, ’NumberTitle’, ’off’);

By now you have created a green canvas on which you may place whatever you
want, e.g., a plot. So suppose that you want to plot y = x2, for x ∈ [1 : 20]:

x=1:1:20;

y=x.^2;

hp=plot(x,y)

ax=gca;

get(ax)
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Now My Green Figure has a new child, a graphics object called axes. To get
the properties of the graphics current axes, (gca), we have typed in the last two
lines. Suppose that you want the plot area to have yellow background color.
You achieve this by setting:

set(ax, ’Color’, [1,1,0]);

The axes child of the figure object has its own child called line. The line object
was created by the axes created by the call to plot. The new line has a unique
handle hp. Now you can change the properties of the line object as much as you
please:

set(hp, ’LineWidth’, 2);

set(hp, ’Color’, ’r’);

Here is the entire code, written properly as a function:

function CreateGreenYellowPlot(x,y)

% x,y vectors of x,y coordinates of the curve y=x^2 to be plotted

%

% TWP, E77N material, U.C. Berkeley, 2002-02-24

%

%

% 0 is the handle of the root graphics object, i.e, the screen

% |

% V

scrsz = get(0,’ScreenSize’);

% [left bottom width height ]

h=figure(’Position’,[25, scrsz(4)/2, scrsz(3)/2, scrsz(4)/2]-20);

% On my screen, I need to shift the figure right by 25 pixels,

% and down by 20 pixels for the tool bar and border to show.

% Change figure background to green, turn off the figure number

% give the figure your own title

set(h, ’Color’, [0.5, 1, 0]);

set(h, ’Name’, ’My Green Figure’);

set(h, ’NumberTitle’, ’off’);

% Plot blue line on yellow background

hp = plot(x,y);

ax = gca;

get(ax)

set(ax, ’Color’, [1,1,0]);

% Change line width to 2 and color to red

get(hp)

set(hp, ’LineWidth’, 2);
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set(hp, ’Color’, ’r’);

%Label axes

xlabel(’x’);

ylabel(’y=x^2’);

% Change font properties, replot labels

set(ax,’FontSize’,14);

set(ax,’FontWeight’,’bold’);

xlabel(’x’);

ylabel(’y=x^2’);

Let us summarize what we have learned thus far:

We have created three graphics objects. The first one was fig-
ure, a child of the root, Figure 9.1. The graphics object figure
was endowed with its own child, axes. The axes child was cre-
ated by a call to a high-level function plot, which also created
a child, line, of the axes. Each of the graphics objects (figure,
axes and line) was identified by a unique handle, and could be
accessed through its own function set. The accessor functions
set change the properties of the respective objects from the
default values to what we wanted them to be.

text line image patch surface

axes

figure

root

text line image patch surface

axes

figure

root

Figure 9.1: Hierarchy of MATLAB graphics objects.

9.4 Figure Labels

Axis labels belong to the axes graphical object. The labels are created by the
xlabel and ylabel functions:

xlabel(’x’);

ylabel(’y=x^2’);
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Properties of all text belonging to the axes object can be changed globally:

set(ax,’FontSize’,14);

set(ax,’FontWeight’,’bold’);

The labels must be replotted with the new text properties, because they inherit
these properties from the axes.

9.5 Figure Legends

To plot legends for multiple curves, one may use strvcat, Figure 9.2:

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Display multiple legends

x

y

y
1
=x2

y
2
=x3−x2

y
3
=(10x)1/2

Figure 9.2: Displaying multiple legends.

% LEGENDS: a script to plot multiple legends

% TWP, E77N material, U.C. Berkeley, 2002-02-24

%

clear all

close all

x = (0:.05:1)’;

y=zeros(length(x),3);

y(:,1) = x.^2;

y(:,2) = x.^3-y(:,1);

y(:,3) = sqrt(10*x);

x= [x,x,x];
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% Compose a string for multiple legends

s=[];

s1=sprintf(’y_1=x^2’);

s=strvcat(s,s1);

s1=sprintf(’y_2=x^3-x^2’);

s=strvcat(s,s1);

s1=sprintf(’y_3=(10x)^{1/2}’);

s=strvcat(s,s1);

figure

% Note that I am plotting 3 curves in 3 columns of x and y

plot(x,y,’LineWidth’,2)

set(gca,’Fontsize’,14,’FontWeight’,’b’)

title(’Display multiple legends’)

xlabel(’x’)

ylabel(’y’)

% Display legends in the upper left corner

legend(s,2)

grid on

box on

%print -depsc legends.eps

9.6 Multiple Plots in One Figure

Here is an example that shows some of the features of basic plotting with MAT-
LAB, Figure 9.3.

%

% Script to do several polynomial fits

% (of increasing order) to some dataset.

%

% Data points and fitting models are then

% plotted using subplot.

%

% Reference: W. J. Palm III,

% Introduction to Matlab 6 for Engineers,

% pp 277-278.

%

% Author: Ruben Juanes

% Last modified: 2/20/2001

clear all

close all

% data set

x = 1:9;

y = [5,6,10,20,28,33,34,36,42];
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Figure 9.3: A two-by-two plot created with the subplot command.

% points for plotting and fitting models

xp = 1:0.01:9;

fitmod = [’First Degree’;...

’Second Degree’;...

’Third Degree’;...

’Fourth Degree’];

% loop over fitting models and plots

for k = 1:4

coeff = polyfit(x,y,k);

yp(k,:) = polyval(coeff,xp);

J(k) = sum((polyval(coeff,x)-y).^2);

subplot(2,2,k)

plot(x,y,’o’)

hold on

plot(xp,yp(k,:),’-’)

axis([0 10 0 50])

title(fitmod(k,:))

xlabel(’x’),ylabel(’y’)

text(6,10,[’J = ’,num2str(J(k))])

end
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9.7 Surface Plots

Example 4 Consider the following two-dimensional function, which is shown
in Figure 9.4 for (x, y) ∈ [−1, 1]× [−1, 1]:

f(x, y) =







sin(πx) sin(πy) if x > 0, y > 0,

0 if x < 0, y > 0,

−|xy| if y < 0.

2

The following MATLAB function evaluates f(x, y) using if statements:

function [f] = pwfun(x,y)

%

if y < 0

f = -abs(x*y);

else

if x > 0

f = sin(pi*x)*sin(pi*y);

else

f = 0;

end

end

−1
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Figure 9.4: MATLAB plot of the function f(x, y) defined in pwfun.m.

Example 5 Recall the function in Figure 9.4. Here is the näıve way to generate
it (using the function pwfun.m and for loops):

x = -1:.1:1; y = x;

%
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% loop to compute function

for ix = 1:length(x)

for iy = 1:length(y)

xx = x(ix);

yy = y(iy);

f(ix,iy) = pwfun(xx,yy);

end

end

%

% plot

figure; surf(x,y,f’)

Use Help surf to find out why f’ is needed. 2

Here is the vectorized code using array operations, which runs significantly
faster. (Can you understand it?)

x = -1:.1:1; y = x;

%

% compute function

f = pwfun2(x,y);

%

% plot

figure; surf(x,y,f’)

% ----------------------------------------

function [f] = pwfun2(x,y)

%

f = - abs(x’*(y.*(y<0))) ...

+ sin(pi*x.*(x>0))’*sin(pi*y.*(y>0));

9.8 Parametric Plots

Let us plot a three-dimensional logarithmic spiral:

t ∈ [0, 20π]

x = ln(t) cos(t)

y = ln(t) sin(t)

z = t3

Function ParametricPlot.m does the job, and the result is shown in Figure 9.5.

function ParametricPlot()

% Generate a 3D parametric plot

% TWP , E77N material, U.C. Berkeley, 2002-02-24

%

close all
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Figure 9.5: A three-dimensional spiral generated as a parametric curve.

clear all

clc

% Parameter vector

t=(1:0.005:10)*2*pi;

x=log(t).*cos(t);

y=log(t).*sin(t);

z=t.^3;

figure

hp=plot3(x,y,z);

set(hp, ’Linewidth’,2);

set(hp, ’Color’,’r’);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

box on

rotate3d on

%print -depsc parametric.eps
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Chapter 10

Mathematical Induction

10.1 What Are You Going To Learn?

You will learn how to use mathematical induction, an important method of science
and philosophy specialized to mathematics and computer science.

10.2 Why Is It Important?

Mathematical induction the oldest way of making sure that a formula you just
worked out, which you say is true as far as you can tell, is always true. An induc-
tive proof assures that a formula you tested for several values of its arguments
will always work for all valid values of these arguments.

Mathematical induction is one of the most important tools in proving al-
gebraic identities and properties of algorithms (to be discussed in Lecture 11).
Recursion, which will also be discussed in Lecture 11, is closely related to math-
ematical induction.

10.3 Important Definitions

Definition 7 Deduction is an act of deriving a conclusion by reasoning; infer-
ence in which conclusion follows necessarily from the premises [32]. 2

Definition 8 Induction is an instance of reasoning from a part to a whole, from
particulars to generals, or from the individual to the universal [32]. 2

Definition 9 Iteration is the action of repeating the same set of operations or
reapplying the same method. 2

Definition 10 Recursion (from Latin to run back, to return) is (1) the action
of a function calling itself, or (2) the definition of an object which refers to the
object itself. 2
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Definition 11 A recursive definition of an expression proceeds by first specifying
a base case of the items it applies to and then specifying the remaining items it
applies to in terms of a relation (recursive formula) which any such item bears to
an item to which the expression already applies. Thus the term “ancestor” may
be defined recursively as follows: (1) both of a person’s parents are ancestors
of that person; (2) any parent of an ancestor of a person is also an ancestor of
that person; (3) nothing else is an ancestor of a person [30]. 2

Definition 12 Trees are the most important nonlinear structures that arise in
computer algorithms. Let us define a tree as a finite set T of one or more nodes
such that

1. There is one specifically designated node called the root of the tree, root(T ),
and

2. The remaining nodes (excluding the root) are partitioned into m ≥ 0
disjoint sets T1, T2, . . . , Tm, and each of these sets in turn is a tree. The
trees T1, T2, . . . , Tm are called the subtrees of the root.

The definition just given is recursive: We define a tree in terms of trees. There
is no problem with logical circularity, because the trees with only one node must
consist of only the root, and trees with n > 1 nodes are defined in terms of trees
with fewer than n nodes. 2

10.4 Essentials of Mathematical Induction

In a narrow sense induction is a method of generalization to all cases from the
observation of particular cases. In a broad sense induction is a method for
reasoning from some observed fact to a different fact not involved in the for-
mer. Relying on Aristotle’s testimony we can say that Socrates introduced
induction (epagōgē) into Greek philosophy. In the Indian tradition, induction
(vyāptigraha) played a significant role in Gotama’s Nyāyasutra, the oldest sys-
tematic logical work in Sanskrit [5].

In ordinary induction1, we examine a certain number of particular cases and
then generalize. Here is how you could carry out a real-life induction process
about the properties of hamburgers in your town. Suppose that you decided
to inspect burgers in 100 coffee shops, by tasting one burger in each one of the
shops. Based on the inspection of a sample of all coffee shops in your city, you
would then draw conclusions about all other burger shops:

1. Coffee shop burger #1 was greasy.

2. Coffee shop burger #2 was greasy.

3. Coffee shop burger #3 was greasy.

1Based on the Web page of Peter Suber, who is a professor of philosophy and chair of
the Philosophy Department at Earlham College.
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4. ...

100. Coffee shop burger #100 was greasy.

101. Therefore, all coffee shop burgers are greasy. (Or: The next coffee shop
burger will be greasy.)

Inductions differ from valid deductions in one important way: in the induc-
tion, the conclusion contains information that was not contained in the premises.
This is the source of the uncertainty of inductions. Conversely, deductions
are certain because they tautologically restate their premises. Inductions are
strengthened as confirming instances pile up. However, they can never bring
certainty unless every possible case is actually examined, in which case they be-
come deductions. Despite our experience with 100 greasy coffee shop burgers,
the next one might be lean and bone dry.

“Mathematical induction” is unfortunately named, for it is unambiguously
a form of deduction carried out in reverse. However, it has certain similarities
to induction, which very likely inspired its name. It is like induction in that it
generalizes to a whole class from a smaller sample. In fact, the sample is usually
a sample of one, and the class is usually infinite.

Remark 14 Mathematical induction2 is deductive; it works because the sample
and a rule about the unexamined cases together give us information about every
member of the class.

Conversely, the conclusion of a mathematical induction does not contain
more information than was latent in the premises. Mathematical inductions
therefore conclude with deductive certainty. 2

10.4.1 Structure of Proof by Induction

You are probably quite sure that every even number is divisible by 2. But you
have never examined every even number, and nobody else has either. So how
do you know that some very big even number won’t violate this rule? Why
isn’t the situation analogous to the coffee shop burgers? In both cases, aren’t
we moving from known cases to unknown cases?

The reason the even numbers are decisively different from coffee shop burgers
lies in the logic of mathematical induction. We can prove that the smallest even
number (2) is divisible by 2. This is our very small sample. And we can prove
that the next even number after every number divisible by 2 will also be divisible
by 2. This is our rule about the unexamined cases. That is enough to imply
that the successor of 2, namely 4, will be divisible by 2, and its successor, 6,
and its successor 8... and so on ad infinitum. (Obviously, if 2k is divisible by 2,
then 2(k + 1) = 2k + 2 is also divisible by 2.) This is how a small sample and a

2The first European on record to apply mathematical induction to rigorous proofs was
Francesco Maurolico, in 1575. Pierre de Fermat made further improvement in the early
17th century. Mathematical induction also appears in the later writings of Blaise Pascal
(1653). The phrase “mathematical induction” was apparently coined by A. De Morgan in
the early 19th century.
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Figure 10.1: The number of stems at each horizontal level of development of this
plant follows the Fibonacci sequence. (Sketch by L. Patzek from a sneezewort
photo.)

rule about unexamined cases can give us information about every case. This is
how our knowledge of an infinite set of unexamined cases can be as certain as
the conclusion of a valid deduction, quite unlike the conclusion of an ordinary
induction.

The large-scale structure of a proof by mathematical induction is simple:

1. P(1): The theorem is true of the sample. (This requires a separate proof.)

2. P(k)→ P(k + 1): A rule tells us that if the theorem is true of the sample,
then it is true of the unexamined members of a certain class. (This rule
requires a separate proof.)

3. Therefore, the theorem is true of all the members of a certain class.

Here’s how the inference looks when described in the special terminology of
mathematical induction:

1. Basis. Prove that the theorem holds for the minimal case, i.e., for i = 1.

2. Induction Step. Prove that the property of complying with the theorem
is “hereditary” and extends to all the successors of the minimal case.

(a) If the rule of heredity tells us that the theorem is true of “descendant”
cases if it is true of the “ancestor” cases, then the claim that it is
true of the ancestor cases is called the induction hypothesis.
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3. Conclusion. Together, Steps 1 and 2 imply that the theorem holds for all
possible cases, i.e., the minimal case and all its successors. If you didn’t
use the true minimal case in Step 1, you have proved only that the theorem
holds for your minimal case and its successors, not for all possible cases.

The induction step is the part that causes the most difficulties. It can take
two forms, which correspond to two forms of mathematical induction:

• Weak: Prove that if the theorem holds for all cases at some arbitrary
point n, then it holds for all cases at point n + 1.

• Strong: Prove that if the theorem holds for all cases up to some arbitrary
point n, then it holds for all cases at point n + 1.

10.4.2 Example: A sum of Fibonacci Numbers

Figure 10.2: Fibonacci was born circa 1175 A.D. and died circa 1250 A.D.

The sequence

F (0) = 0, F (1) = 1, F (2) = 1, F (3) = 2, F (4) = 3, F (5) = 5, F (6) = 8, . . .

in which each next number is the sum of the preceding two, plays an important
role in this course, governs the behavior of plants (Figure 10.1), bees and stock



122 CHAPTER 10. MATHEMATICAL INDUCTION

markets, decides who is pretty and who is not, and which music is pleasant to
listen to3. This famous sequence was published in 1202 by Fibonacci.

The numbers in the sequence are denoted by F (n), and formally defined as:

F (n + 2) = F (n + 1) + F (n), n ≥ 0

F (0) = 0, F (1) = 1
(10.1)

If we look at sums of the Fibonacci numbers, we see:

F (0) = 0

F (0) + F (1) = 0 + 1 = 1

F (0) + F (1) + F (2) = 0 + 1 + 1 = 2

F (0) + F (1) + F (2) + F (3) = 0 + 1 + 1 + 2 = 4

F (0) + F (1) + F (2) + F (3) + F (4) = 0 + 1 + 1 + 2 + 3 = 7

...

(10.2)

etc., generating a new sequence 0, 1, 2, 4, 7, 12, . . . . What are these numbers?
That is, what is F (0) + F (1) + · · ·+ F (n)?

It shouldn’t take long to hypothesize that this sum may be F (n + 2) − 1.
Let’s test this proposition, i.e.,

P(n) : F (0) + F (1) + ... + F (n) = F (n + 2)− 1 for n ≥ 0. (10.3)

Clearly P(1) is a true. Suppose we have checked the truth of the statement for
n = 0, 2, ..., k - this is our induction hypothesis.

What about P(k + 1)? Using the induction hypothesis to replace the first k
terms in the summation, we obtain

F (0) + F (1) + · · ·+ F (k)
︸ ︷︷ ︸

Hypothesis

+ F (k + 1) = [F (k + 2)− 1]
︸ ︷︷ ︸

Hypothesis

+ F (k + 1), (10.4)

but, from the definition of the Fibonacci numbers,

[F (k + 2)− 1] + F (k + 1) = F (k + 3)− 1. (10.5)

Therefore

F (0) + F (1) + ... + F (k) + F (k + 1) = F (k + 3)− 1 (10.6)

Thus, since P(1) is true and the assumption that P(k) is true implies the truth
of P(k + 1), we have that the truth of P(1) implies P(2) is true, in turn the
truth of P(2) implies P(3) is true, in turn the truth of P(3) implies ..., i.e., P(n)
is true for all n.
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Figure 10.3: The ancestral tree of the rabbit family follows the Fibonacci
sequence. KEY: a = pair of young adult rabbits, A= pair of breeding adult
rabbits, b = pair of baby rabbits. (Reproduced from Figure 5-1 in [14].)

10.5 Fibonacci and His Numbers

Leonardo Pisano4, better known under a literary name of Fibonacci5 was
the greatest mathematician of Medieval Europe.

In 1202, he published a book, Liber Abaci6, which changed European history.
The book acquainted Europeans with the Indian-Arabic ciphers 0, 1, 2, . . . . It
also contained the following problem of ever-lasting importance:

One pair of rabbits is born at time 0. After one month, this pair is mature
and after a month, it gives birth to new pair of rabbits and continues to do so,
i.e., every month a new pair of rabbits is born to the original pair. Moreover,
each new pair of rabbits matures after one month and begins producing pairs
of offspring every month after that ad infinitum. We assume that the rabbits
live forever. What is the number of pairs after n months? See Figure 10.3
for the answer. The exploding rabbit population problem was perhaps the first
population balance envisioned eight hundred years ago by Fibonacci.

10.6 Exercises

1. Prove by induction that n2 = 1 + 3 + · · ·+ (2n− 1).

2. Prove by induction that
n(n + 1)

2
= 1 + 2 + · · ·+ n.

3For more information on the Fibonacci numbers please look up the beautiful books by
Trudi H. Garland [14], and H. E. Huntley [18].

4He did not have the last name, so people called him Pisano (of Pisa) because he was born
in Pisa, where he settled again after extensive travels to Egypt, Syria and Greece.

5Fibonacci = Filius Bonaccii, son of Bonaccio.
6Latin: Book of the Abacus.
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3. Prove by induction that
n(n + 1)(2n + 1)

6
= 12 + 22 + · · ·+ n2.

4. Formulate and prove by induction a rule for the sums 12, 22 − 12, 32 −
22 + 12, 42 − 32 + 22 − 12, 52 − 42 + 32 − 22 + 12, etc.

5. Prove by induction that F (n + m) = F (m)F (n + 1) + F (m− 1)F (n), for
any positive integer m.



Chapter 11

Recursion, Part I

11.1 What Are You Going To Learn?

You will learn about recursion, and a way of describing recursive calls through
trees. In Chapter 11 folder on fttp:\\petroleum.berkeley.edu, please look up the
following MATLAB files:

BruteForceGCD.m is a näıve Greatest Common Divisor (GCD) algorithm,
which calls tryDivisor.

tryDivisor.m implements recursive brute force approach to GCD.

DijkstraGCD.m is the smartest recursive GCD algorithm, due to Dijkstra.

EuclidGCD.m is the classical Euclid recursive GCD algorithm.

FactorialDemo.m demonstrates the different speeds of recursive and iterative
calculation of n!. Calls the recursive function nf and the iterative function
IterativeFactorial to perform the calculations.

nf.m is a recursive implementation of the n! algorithm.

IterativeFactorial.m is an iterative implementation of the n! algorithm. It
compares a näıve implementation (flag=1) with a vectorized one (flag=2).

fib.m is a näıve recursive algorithm to calculate the Fibonacci numbers. To
calculate the nth Fibonacci number it makes 2n−1 calls.

FibonacciDemo.m demonstrates the Second Order Recurrence, modfib, writ-
ten with a helper function, helpFib. The function helpFib “memorizes”
the previous Fibonacci numbers just as you would using a piece of paper.
Because of the helper function, the number of calls is n, not 2n−1 as in
the näıve fib algorithm.

modfib.m is the modified Fibonacci algorithm that uses a helper function to
memorize the prior two Fibonacci numbers: n = 0, 1, 2, . . . .

125
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helpFib.m is the helper function for modfib. It memorizes the last two Fi-
bonacci numbers.

11.2 Why Is It Important?

Recursion is probably the most powerful technique of generating simple, efficient
computer algorithms. It is also a way of thinking about problems in science and
engineering, which is as old as the science itself.

Recursive functions are often simple and their correctness is easily seen.
In practice, the speed of a computer implementation of a sloppily constructed
recursion may suffer from the excessive number of cascading calls to the same
function1, but this is merely a technicality.

11.3 Useful Background

The concept of an algorithm is fundamental to all of computer science, and we
should begin by carefully analyzing this concept. In Chapter One of his mono-
graph [20], Knuth discusses the origin and history of the concept of algorithm.
Here we include a brief summary of Knuth’s discussion.

The word “algorithm” comes from the Middle Age term “algorism,” the pro-
cess of doing arithmetic using Arabic numerals. The term algorism itself came
from the name of a famous Persian mathematician Abū ‘ Abd Allāh Muham-
mad ibn Mūsā al-Khwārizmi - literally, “Father of Abdullah, Mohammed, son
of Moses, native of Khwārizm2.”

By 1950, the word algorithm was most frequently associated with Euclid’s
algorithm, a process of finding the greatest common divisor of two numbers
that appears in Euclid’s Elements3. As we will use it in the remainder of this
chapter, it is instructive to present Euclid’s algorithm here:

Algorithm E (Euclid’s algorithm). Given two positive integers m and n (m >
n), find their greatest common divisor, i.e., the largest positive integer that
evenly divides both m and n.

E1. [Find reminder.] Divide m by n and let r be the reminder (0 ≤ r < n).

E2. [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

E3. [Reduce.] Set m← n (read this “set m to n”), n← r (n to r), and go back
to step E1.

1You will get a warning message of stack overflow, or you will crash your computer.
2Today’s Aral Sea in Central Asia
3Euclid of Alexandria (circa 330-275 B.C.) published this algorithm in Volume VII of his

Elements, the most successful text ever written in the history of mathematics, see Chapter
29.
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Figure 11.1: Al-Khwarizmi’s book Kitab al-Jabr wa al-Mukhabala (A Book of
Algebra and Comparisons), written in the first quarter of the ninth century, is
the oldest book on algebra. In it al-Khwarizmi tried to provide a theory for the
solution of all types of linear and quadratic equations. (Reproduced from the
figure on page 186 in [10].)
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Table 11.1: Steps in implementing a mathematical definition.

Algorithm Procedure Process

An idea of how to perform
a mathematical activity

Step-by-step description
of the activity (Many
different procedures
may describe the same
algorithm)

Activity itself

11.4 Introduction

If we want to solve a mathematical problem, we need first to define what we
want, i.e., we need a mathematical definition. For simplicity, let us start from
the celebrated definition of n factorial:

n! ≡
{

1 if n = 0
n(n− 1)! if n > 0

(11.1)

The definition above only tells us what we want, but not how
to get it. To implement a definition in practice we need the
three other steps described in Table 11.1. The central step is
to have an idea of how to perform the necessary calculations.
This idea is encapsulated as a mathematical algorithm. Then
we need to transcribe the idea into a series of steps necessary
to reach our goal; we need to write a procedure. Finally, to
get a specific answer, we need to execute the procedure on a
computer, or carry out a process.

Example 6 Build a recursive procedure nf to calculate n factorial. In MAT-
LAB this procedure will be a single function nf.m. Figure 11.2 illustrates how
this function works.

Because of the problem simplicity, an idea of how to obtain n factorial is at
the same time a procedure to obtain it. We simply devise an algorithm straight
from the mathematical definition and write it down in as a MATLAB function.
In words, the algorithm can be described as:

Algorithm F (Recursive factorial algorithm). Given a positive integer n (n ≥
1), find n factorial, the product of all integers from 1 up to and including n.
Define zero factorial as one.
F1. [Reduce.] Remember n (put it on a stack). Set n← n− 1.



11.4. INTRODUCTION 129

F2. [Go down.] Call factorial of n.
F3. [Is n = 0?] If n > 0, go to step F1. If n is 0, go to step F4.

F4. [Go backward and combine.] Take the product of all numbers stored in the
stack vector, N = [1, 2, . . . , n]. Terminate the algorithm.

function p = nf(n)

if (n<1)

p = 1;

else

p = n*nf(n-1);

end

Will this work? Let’s try using the substitution model.

nf(0)

>> 1

nf(3)

3 * nf(2)

3 * 2 * nf(1)

3 * 2 * 1 * nf(0)

3 * 2 * 1 * 1

>> 6

This looks good; we have reduced the factorial problem to a sequence of
smaller instances of the same problem. The idea of reducing a problem to itself
is known as recursion.

Let’s pick apart the code:

function p = nf(n)

% A RECURSIVE METHOD is a method that CALLS ITSELF

if (n<1)

p = 1;

else

p = n * nf(n-1);

% ^ |-----------|

% | ^

% | |____Recursive call to itself

% |

% |___Combining step (used to combine other

% calculations with the results of a

% recursive call

end

Here are some hints for writing recursive procedures:

• Always identify the base case and associated result first.
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• Make sure the recursive call is for a smaller problem (one “closer” to the
base case)

Another way to think about the execution of a recursive procedure is with
the “actors” model (or dataflow model). In this simple model, we draw a box
for each procedure invocation and show the flow of data into and out of each
box, Figure 11.2.

2 -nf(2)
2-return

n = 2 p = 2 ∗ 1

?

6
nf(1) return

n = 1 p = 1 ∗ 1

?

6
nf(0) return

n = 0 p = 1

Figure 11.2: Flowchart of calculations in the recursive n factorial function nf.

Example 7 Fibonacci numbers
Consider now the following definition of the Fibonacci numbers:

F (n) =







0 if n = 0
1 if n = 1
F (n− 1) + F (n− 2) if n ≥ 2

(11.2)

2

The Fibonacci series is 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . . Let’s write a recursive
procedure for Fibonacci numbers directly from the definition:

function s = fib(n)

% A naive recursive algorithm to calculate

% the Fibonacci numbers. Note n = 0,1,2,...

if (n<=1)

s = n;

else

% Two recursion calls

s = fib(n-1) + fib(n-2);

end

fprintf(’n=%4d, s=%4d\n’,n,s);

This procedure combines results from two different recursive calls. Such an
approach is sometimes known as “deep” recursion, or in other cases “divide and
conquer.”
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Let’s consider all the recursive calls for fib(5), Figure 11.3. The function
calls described in Figure 11.3 return the correct answer, but it takes a long time,
since there are many of them.

As you can see a lot of work is repeated. For example, call [11] to fib(3) is
a repeat of call [3], calls [8] and [12] to fib(2) repeat call [3], etc. In general,
when n increases by 1, we roughly double the work and make about 2n−1 calls!

Let’s think of another algorithm that is less wasteful. When we compute the
Fibonacci series on paper, this is what do we do: 0 1 1 2 3 5 8 13 21 34 . . . .
We look at the previous two numbers and add them to get the next number.
We do not recompute the previous two numbers, we just write them down (or
remember them).

Let’s use this algorithm. We shall start the implementation by writing a
helper procedure whose input parameters are n, a number k, and the values of
F (k) and F (k − 1). Think of k as the place we have come so far in writing out
the series. When k reaches n, we are done.

Here is the code:

function s = modfib(n)

% The modified Fibonacci algorithm that uses

% a helper function to memorize the prior two

% Fibonacci numbers: n=0,1,2,...

%

if (n <=1 )

s = n;

else

% Start recursion k=0, F(1), F(0)

s = helpFib(n-1, 0, 1, 0);

end

function retval = helpFib(n, k, fibk, fibk1)

[1]
n = 5
s = 5

[2]
n = 4
s = 3

[3]
n = 3
s = 2

[4]
n = 2
s = 1

[5]
n = 1
s = 1


 J

JJ

[6]
n = 0
s = 0


 J

JJ

[7]
n = 1
s = 1

´
´

´́ Q
Q

QQ

[8]
n = 2
s = 1

[9]
n = 1
s = 1

¶
¶¶ S

SS

[10]
n = 0
s = 0

³³³³³³³ PPPPPPP

[11]
n = 3
s = 2

[12]
n = 2
s = 1

[13]
n = 1
s = 1

¶
¶¶ S

SS

[14]
n = 0
s = 0

¶
¶¶ S

SS

[15]
n = 1
s = 1

Figure 11.3: Flowchart of 15 recursive calls made by fib(5) function.
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% The helper function for modfib memorizes

% the last two Fibonacci numbers

if (n == k)

retval = fibk;

% Preorder printout

fprintf(’%2d %2d %4d %4d\n’,n,k,fibk,fibk1);

else

%Preorder printout

fprintf(’%2d %2d %4d %4d\n’,n,k,fibk,fibk1);

% Recursion Next k F(k)+F(k-1) F(k-1)

retval = helpFib(n, k+1, fibk+fibk1, fibk);

end

%Postorder printout

%fprintf(’%2d %2d %4d %4d\n’,n,k,fibk,fibk1);

And this is how the code works:

>>modfib(6)

helpFib(6, 1, 1, 0)

helpFib(6, 2, 1, 1)

helpFib(6, 3, 2, 1)

helpFib(6, 4, 3, 2)

helpFib(6, 5, 5, 3)

helpFib(6, 6, 8, 5)

>>8

The new recursive procedure needs only n iterations to compute fib(n),
much better than 2n−1. The lesson here is that being clever about an algorithm
can yield significant savings.

11.5 More Complicated Recursion: Greatest Com-
mon Divisor (GCD)

Definition 13 Let us assume that we deal only with integers and m ≥ n > 0.
The greatest common divisor (GCD) of m and n is defined as the largest integer
that divides both m and n with no remainder. 2

11.5.1 GCD Algorithm 1: Brute Force

The idea is to try all integers from n down until finding one that divides m and
n evenly. First, define TryDivisor that takes in m, n, and a guess. If the guess
works, then it returns the guess. Otherwise, it tries a smaller guess:

function gcd = TryDivisor(m, n, g)

% Recursive brute force approach to GCD
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% Try out all integers until one works...

if ((rem(m,g) == 0) & (rem(n,g) == 0))

gcd = g;

else

gcd = TryDivisor(m, n, g - 1);

end

Now we can reduce GCD to TryDivisor:

function retval = BruteForceGCD(m, n)

% Naive Greatest Common Divisor Algorithm calls tryDivisor

% Use n as our first guess

retval = tryDivisor(m, n, n);

An example using the substitution model: This algorithm obviously works, but
for large numbers, the calculations could take a while. Let us consider another
algorithm.

11.5.2 GCD Algorithm 2: Euclid’s Algorithm

Definition 14 In this section “/” denotes integer division. For example, take
m = 22 and n = 4:

22/4 ≡ integer part of
22

4
= 5, (11.3)

and the reminder is 2. In MATLAB, floor(22/4) = 5 and rem(22,4) = 2 2

Euclid’s GCD algorithm dates from c. 300 B.C., and it is based on the
following fact:

for m ≥ n > 0, gcd(m, n) =

{
n if n divides m with no remainder

gcd (n, reminder of m/n)

(11.4)

Why is this true? We can rewrite m as follows:

m = n (m/n) + reminder (m/n) , e.g.,

22 = 4 ∗ 5 + 2
(11.5)

Now any integer d (2) that divides both m (22) and n (4), must divide the
first term on the right hand side with no remainder, since it is the product of
n and an integer. Therefore, d must also divide the second term since d divides
m and m is the sum of the two terms:

m/d = (n/d) (m/n) + reminder (m/n) /d, e.g.,

22/2 = (4/2) ∗ (5) + (2)/2
(11.6)
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Since any divisor common to m and n must divide the remainder of m/n,
we know that, in particular, the GCD does, since it is a common divisor. It just
happens to be the greatest such divisor.

So by taking the gcd(n, remainder of m/n), we can “close in quickly” on
the GCD of m and n. (This is extremely clever - you would not be expected
to come up with something like this in an algorithm question for the E77N
midterm examination.)
Now we can write:

function retval = EuclidGCD(m, n)

% Classical Euclid recursive GCD algorithm

if (rem(m, n) == 0)

retval = n;

else

retval = EuclidgGCD(n, rem(m, n) );

end

An example using the substitution model:

>>EuclidGCD(468, 24)

EuclidGCD(24, 12)

>>12

>>EuclidGCD(135, 19)

EuclidGCD(19, 2)

EuclidGCD(2, 1)

>>1

Euclid’s GCD algorithm is very fast, but division (taking remainders) is a
more time-consuming operation than simple addition and subtraction. Can we
devise a GCD algorithm that doesn’t use division?

11.5.3 GCD Algorithm 3: Dijkstra’s Algorithm

Dijkstra is a Dutch mathematician and computer scientist who had the following
idea:

If m > n, GCD(m,n) is the same as GCD(m-n,n).

Why? If m/d and n/d both leave no remainder, then (m − n)/d leaves no
remainder. (Again, this is very, very clever. Most graduate students probably
could not come up with this if they have not already seen it.)

Dijkstra’s idea leads to the following algorithm:

for m ≥ n > 0, gcd(m, n) =







m if m = n
gcd(m− n, n) if m > n
gcd(n−m, m) if n > m

(11.7)
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Here is the MATLAB implementation:

function retval = DijkstraGCD(m, n)

% The smartest recursive GCD algorithm, due to Dijkstra

if(m == n)

retval = m;

elseif (m > n)

retval = gcd(m-n, n);

else

retval = gcd(m, n-m);

end

An example using the substitution model:

>>DijkstraGCD(468, 24)

DijkstraGCD(444, 24)

DijkstraGCD(420, 24)

...

DijkstraGCD(36, 24)

DijkstraGCD(12, 24) (Now n is bigger)

DijkstraGCD(12, 12) (Same)

>>12

Dijkstra’s algorithm does accomplish the calculation with no division.

11.6 Summary and More Solved Examples

Recursion is closely related to mathematical induction. As we have learned in
Lecture 10, one has to define a base case and recursive formula. For example,
in the identity n2 = 1 + 3 + · · ·+ (2n− 1) =: S(n), we have

(a) Base case: S(1) = 1.

(b) Recursive formula: S(n) = S(n− 1) + (2n− 1), n ≥ 2.

A recursive function is a function which calls itself, by means of some recursive
formula, until the base case is encountered. Once this happens, the function re-
turns (recursively) to the calling procedure. The program creates a new internal
variable in every function call and puts on the MATLAB stack. In MATLAB,
up to 500 recursive calls can be made without stack overflow. Here is how it
works for the example above. The code is:

function S = n2(n)

% Finds the square of an integer n

% Recursive implementation

if (n == 1)

S = 1;

else

S = n2(n-1) + 2*n-1;

end



136 CHAPTER 11. RECURSION, PART I

Figure 11.4 below shows a flowchart of how the calculations are actually done
in the computer.

3 -n2(3)
9-return

n = 3 S = 9

?

6
n2(2) return

n = 2 S = 4

?

6
n2(1) return

n = 1 S = 1

Figure 11.4: Flowchart of calculations in a recursive function

In what follows we present more examples. We include the recursive and the
iterative version, so that you can compare them.

Example 8 Again, the identity n2 = S(n) := 1 + 3 + · · ·+ (2n− 1). 2

function s = nsqr_rec(n)

% Square of an integer n

% Recursive implementation

if (n == 1)

s = 1;

else

s = nsqr_rec(n-1) + 2*n-1;

end

function s = nsqr_itr(n)

% Square of an integer n

% Iterative implementation

s = 0; for k = 1:n

s = s + 2*k-1;

end

Example 9 Sum of an arithmetic series

S(n) :=

n∑

k=1

[x + (k − 1)a] = S(n− 1) + (x + (k − 1)a) 2

function s = arith_rec(x,a,n)

% Sum of an arithmetic series

% Recursive implementation

if n == 1

s = x;

else

s = arith_rec(x,a,n-1) + ...

x+(n-1)*a;

end

function s = arith_itr(x,a,n)

% Sum of an arithmetic series

% Iterative implementation

s = 0; for k = 1:n

s = s + x+(k-1)*a;

end

Example 10 Factorial of an integer n! = P (n) :=
∏n

k=1 k 2
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function p = fact_rec(n)

% Factorial of an integer n

% Recursive implementation

if (n == 0)

p = 1;

else

p = n*fact_rec(n-1);

end

function p = fact_itr(n)

% Factorial of an integer n

% Iterative implementation

p = 1; if (n > 0)

for k = 2:n

p = p*k;

end

end

Example 11 Calculation of the greatest common divisor of two integers using
Euclid’s algorithm. 2

function gcd = euclid_rec(m,n)

% Greatest common divisor

% Recursive implementation

r = rem(m,n); if (r == 0)

gcd = n;

else

m = n;

n = r;

gcd = euclid_rec(m,n);

end

function gcd = euclid_itr(m,n)

% Greatest common divisor

% Iterative implementation

r = rem(m,n); while r ~= 0

m = n;

n = r;

r = rem(m,n);

end gcd = n;

11.7 Exercises

1. Write a recursive function to multiply m times n.

2. Write a recursive function to calculate
√

n.

3. Write an iterative function fib itr(n) to generate the Fibonacci se-
quence with n terms, and compare its performance with the näıve recursive
implementation fib.m, and the sophisticated implementation modfib.m.
Use sufficiently large values of n ≤ 500.
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Chapter 12

Trees

12.1 What Are You Going To Learn?

You will learn about oriented ordinary trees and forests, and binary trees which
are altogether different.

12.2 Why Is It Important?

Trees, forests and binary trees form three fundamental information structures in
computer science1. They arise from many sources and are, therefore, important
in computer algorithms. Here we will follow closely the monograph by Knuth
[20].

12.3 Useful Definitions

Tree structure means “branching” relationship between nodes. If you recall
Lecture 10, the most appropriate definition of a tree is recursive: a finite set of
one or more nodes such that

(a) there is a special node called the root of the tree, and

(b) the remaining nodes are partitioned into disjoint sets, each of which is in
turn a tree.

It follows from the definition that every node of a tree is the root of some subtree
contained in the whole tree. More specific definitions follow:

Degree of a node: number of subtrees of that node.

Leaf (or terminal node): a node of degree zero.

1The other types of information structure are lists and graphs.
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Branch node: a node that is not a terminal node.

Children of a node: the roots of the subtrees of that node.

Parent : the root of the children subtrees.

Level : the level of root(T) is zero; the level of any other node is one higher than
that node’s level with respect to the subtree of root(T) containing it.

Forest : a set (usually an ordered set) of zero or more disjoint trees. For example,
nodes of a tree form a forest when the root is excluded.

The very nature of computer representation defines an implicit ordering for
a tree, so in most cases ordered trees are of interest to us.

Trees can be drawn in many ways. There are four principle alternatives in
how a tree can be drawn depending on the position of the root (draw them as
an exercise). How you draw a tree, is significant. Our natural inclination is to
draw the root at the bottom as in a living tree, see Figure 10.1 in Chapter 10.
But after years of testing, Knuth [20] has found out that people are used to
drawing algorithmic trees down, not up. Consequently, we will adopt here the
root-at-the-top convention, Figure 12.1.

12.3.1 Binary trees

In a binary tree each node has at most two subtrees; and when only one subtree is
present, we distinguish between the left and right subtree. Therefore, a binary
tree is not a special case of a tree. It is a different concept altogether. For
example, the binary trees in Figure 12.2 are different, although as generic trees
these two diagrams would represent the same tree structure. Also, a binary tree
can be empty; an ordinary tree cannot.

12.3.2 Traversing binary trees

The notion of traversing or “walking through” a tree is essential. This is a
method of examining the nodes of a tree systematically so that each node is
visited exactly once. Three principal ways may be used to traverse a binary
tree, which are defined recursively as follows:

Preorder traversal

1. Visit the root

2. Traverse the left subtree

3. Traverse the right subtree

Inorder traversal

1. Traverse the left subtree

2. Visit the root
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Figure 12.1: This is an example of a tree that includes labels (top), and two
trees that don’t. The level of the tree root, node 1 and A, is zero. Node 1 has
two subtrees, {2, 4, 5} and {3, 8, 6, 7}. The level of nodes 2 and 3, or B and C
is one. The level of nodes 4, 5, 8, or D, E, or D, F, G is two, etc. Nodes 4, 5, 6, 7
are terminal or leafs. Nodes 4 and 5 are children of node 2. Node 8 is a parent
of subtrees 6 and 7 and its degree is two.

3. Traverse the right subtree

Postorder traversal

1. Traverse the left subtree

2. Traverse the right subtree

3. Visit the root
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Figure 12.2: These two binary trees are different. From left to right, the root
has an empty right subtree in one case and the left one in the other. As ordinary
trees, these two binary trees would be equivalent.
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Figure 12.3: Binary tree used in Example 12. Preorder: A B D C E G F H J ,
Inorder: D B A E G C H F J , and Postorder: D B G E H J F C A.

Example 12 Consider the binary tree in Figure 12.3. We can write the list
of nodes using each of the methods for traversing a tree:

Preorder: A B D C E G F H J

Inorder: D B A E G C H F J

Postorder: D B G E H J F C A 2

Example 13 Any algebraic formula defines an implicit tree structure [20].
Figure 12.4 shows a binary tree corresponding to the arithmetic expression
a− b(c/d + e/f). 2

12.4 Traversing Forests of Trees

The ways of traversing the binary trees can be recast [20], pages 334-336, in
terms of forests and, therefore, trees. There is no simple analog of the inorder
traversal sequence, since there is no obvious place to insert the root among its
descendants. The other two types of traversal are carried over as follows:
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Figure 12.4: Binary tree representation of the formula in Example 13. Left,
postorder traversal as in an HP calculator: a, Enter, b, Enter, c, Enter, d, ÷,
e, Enter, f , ÷, ×, −. Right, inorder traversal as in a TI calculator: a, −, b,
×, ( c, ÷, d, +, e ÷ f ).

Preorder traversal

1. Visit the root of the first tree

2. Traverse the subtrees of the first tree

3. Traverse the remaining trees

Postorder traversal

1. Traverse the subtrees of the first tree

2. Visit the root of the first tree

3. Traverse the remaining trees

The two ways of forest traversal are shown in Figure 12.5.

12.5 Recursion Trees

Recursion trees are useful in understanding more complicated recurrences. For
example the action of the recursive n factorial function in previous lecture was to
create a binary tree on the stack, Figure 12.6, which was traversed in postorder.

Recall, for example, the sequence of Fibonacci numbers, introduced in Lec-
ture 7:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

in which each number is the sum of the preceding two. This sequence can be
formally defined by the recursive formula that starts from n = 0:

F (0) = 0; F (1) = 1; F (n) = F (n− 2) + F (n− 1), n ≥ 2.

Also, recall a (very inefficient) recursive function to evaluate Fibonacci numbers:
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Figure 12.5: Forest traversal. Preorder: A B C K ; D E H F J G. Postorder:
B K C A; H E J F G D.
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Figure 12.6: Flowchart of the four recursive calls made by nf(3) function.

function s = fib(n)

if (n < =1)

s = n;

else

s = fib(n-2) + fib(n-1);
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end

This is what happens when fib(5) is called:
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n = 5
s = 5

[9]
n = 4
s = 3

[5]
n = 3
s = 2

[3]
n = 2
s = 1

[1]
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[8]
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n = 1
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 J
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[12]
n = 2
s = 1

[10]
n = 1
s = 1
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SS

[11]
n = 0
s = 0

¶
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SS

[13]
n = 1
s = 1

Figure 12.7: Flowchart of 15 recursive calls made by fib(5) function.

A recursion tree is helpful in explaining the flow of the recursive function
calls. Each node in the recursion tree represents one call to the function. The
root of the tree is the first call. The children of the root are the recursive
calls that the root makes, and so on. In Figure 12.7 we show the binary tree
representation of the recursive implementation of the Fibonacci numbers for
n = 5. At the center of each node we write the current value of n and s = F (n).
At the left of each node we write the index of the corresponding function call.
A total number of 15 calls are generated. Note that the sequence of function
calls is precisely the postorder traversal of the tree.
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Chapter 13

Finding Roots of Nonlinear
Functions

13.1 What Are You Going To Learn?

You will learn about two most popular iterative methods used to find zeros
(roots) of nonlinear functions: the bisection and Newton’s method. You will
also learn about the approximation errors and the rate of convergence.

In Chapter 13 folder on fttp:\\petroleum.berkeley.edu, please look up the fol-
lowing MATLAB files:

domains.m plots the näıve domains of attraction of all three roots of f(z) =
z3 − 1, where z is the complex variable.

truedomains.m finds the complex roots of f(z) = z3 − 1 for a very fine grid
of initial guesses on an (x, y)-square between -1 and 1 (a unit square on
the complex plane), thus generating the beautiful Julia fractal for the true
domains of influence of each root.

rootbisection.m finds a previously bracketed root of a function using the bi-
section method; based on the Numerical Recipes in C.

rootnewton.m using a close enough guess for a root, find the root using New-
ton’s method; based on the Numerical Recipes in C.

rootsafe.m in an interval [x1, x2] containing a root, find the root using a combi-
nation of bisection and Newton’s method; based on the Numerical Recipes
in C.

showbisection.m demonstrates how the bisection method works.

shownewton.m demonstrates how Newton’s method works.

funcd.m is a cubic polynomial used by the showbisection and shownewton

demos.
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13.2 Why Is It Important?

Many interesting problems in engineering and science are nonlinear. Almost all
solutions to these problems involve finding roots of nonlinear functions. In many
practical problems, we end up with a large set of nonlinear algebraic equations,
whose roots we must find. Often these equations are solved using variants of
Newton’s method.

13.3 Introduction

The basic problem is to solve (numerically) a nonlinear equation

f(x) = 0.

The solution or solutions x are called the roots of function f , and thus the name
root finding. In this course we shall not deal with the much more complicated
problem of solving systems of nonlinear equations.

You should take the following steps when trying to solve a nonlinear equa-
tion:

Algorithm R (Root-finding algorithm for a function of one variable f(x) ).

R1. [Explore.] Plot the function f(x) with different x− and y−ranges.

R2. [Bracket the root.] Identify an interval [a, b] which brackets the desired
root.

R3. [Guess the root.] Provide an initial guess x0 of the root.

R4. [Refine estimate.] Refine your initial guess iteratively using a numerical
method appropriate1 for f(x) until a convergence criterion is met.

Here we shall study two numerical methods only, namely, bisection (Sec-
tion 13.4) and Newton (Section 13.5).

13.3.1 A Sample Nonlinear Function

For simplicity, we shall consider the following polynomial function:

w = f(z) = z3 − 1 (13.1)

This function can be also written as

f(z) = z3 − 1 = (z − 1)(z2 + z + 1)

= (z − 1)

(

z − −1 + i
√

3

2

)(

z − −1− i
√

3

2

)

(13.2)

1The function f(x) should be at least continuous, but different numerical methods require
different degrees of smoothness of f(x).
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Thus, as expected, the function w = z3 − 1 has exactly three roots:

z∗1 = 1 + i0

z∗2 = −1

2
+ i

√
3

2

z∗3 = −1

2
− i

√
3

2

(13.3)

These roots are shown in Figure 13.1 as points on the complex plane z = x+iy.
The lines passing through the origin and each of the three roots bisect the three
colored regions in Figure 13.1. Each region is the basin of attraction2, of the
root along its bisector. As we shall learn in Section 13.5, Newton’s method
will converge to a given root if the starting point is well inside the root’s region
of influence. If the starting point is near a boundary between two regions, the
story is much more complicated. For simplicity, here we shall find numerically
only the real root, z∗1 = 1 + 0i = 1, by using the bisection and Newton’s
method.

13.3.2 Function Handles

An iterative root finding method is independent of a suitable function whose
root we want to find. Therefore, we should design the root-finding functions so
that they can be called with any suitable function f(z).

In MATLAB this is achieved by using a pointer to a particular f(z), say
f1(z), and then calling, e.g., the bisection method function with that pointer:

fhandle = @f1;

% Interval bracketing the root and approximation tolerance

a=0; b=2; tol=1e-04;

root = rootbisection(fhandle,a,b,tol);

Inside the bisection function, we use a special MATLAB function that cal-
culates the values of a function through a pointer to it. This function is

feval(fhandle,argumentvalues).

13.4 Bisection method

Given an interval [a, b] containing the root, the bisection method cannot fail.
The idea is very simple:

Algorithm B (Bisection algorithm for a function of one variable f(x)).

2Arthur Cayley recognized that if we already know the roots of a function, Newton’s
method suggests another problem: which initial guesses iterate to which roots [4], i.e., what
are the basins of attraction of the roots. He determined the basins of attraction for the
quadratic equation, z2

− 1, and claimed to have found the basins of attraction for the cubic
equation z3

− 1.
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Figure 13.1: The roots of f = z3 − 1, and their rough basins of attraction for
Newton’s method. This picture illustrates the state of knowledge near the end
of the 19th century.

B1. [Is the root bracketed?] Choose an interval [a, b]. Check that f(a) and f(b)
have different signs, so that somewhere in between the value of the function will
be zero.
B2. [Evaluate.] Evaluate the function at the interval’s midpoint and examine
its sign.
B3. [Refine estimate.] Use the midpoint to replace the interval’s limit where
the function sign is the same as in Step B2.
B4. [Is the estimate good enough?] If the size of the interval is smaller than
the tolerance, then stop. Otherwise go back to Step B2.

Appendix 13.6 contains a MATLAB implementation of the bisection sub-
routine in the Numerical Recipes.

The bisection method exhibits linear convergence, i.e., if en is the size of the
interval at iteration n, then

en+1 =
1

2
en.

Example 14 Convergence of the Bisection Method. We solve the equation
f(x) = x3−1 = 0 (Figure 13.2) with the initial interval [−1, 2] and a tolerance
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of 10−4 for convergence. Figure 13.3 represents the sequence of intervals and
Figure 13.4 the evolution of the interval width (error).
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Figure 13.2: Function f(x) = x3 − 1
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Figure 13.4: Evolution of error

13.5 Newton’s method

This is probably the most celebrated method for one-dimensional root finding3.
It requires the evaluation of both the function f(x) and its derivative f ′(x), at
arbitrary points x. There are two possible interpretations:

3It appeared in Newton’s Method of Fluxions, written in Latin in about 1671.
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Geometrical. Newton’s method consists of extending the tangent line at a
current point xi until it crosses zero, then setting the next guess xi+1 to
the abscissa of that zero-crossing (see Figure 13.5).

x

f(x)

◦
x0

6
◦

◦
x1

6
◦

◦
x2

Figure 13.5: Geometrical interpretation of Newton’s method

Algebraic. The method derives from Taylor series expansion of a function in
the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +O(δ2),

where O(δ2) are small terms of second order. If we are sufficiently close to
the solution, so that higher order terms are unimportant, i.e., f(x+δ) ≈ 0:

δ = − f(x)

f ′(x)
.

Thus, we can describe Newton’s method concisely in the following steps (a
MATLAB implementation is given in Appendix 13.7):

Algorithm N (Newton’s algorithm for a function of one variable f(x) ).
N1. [Guess the root.] Set i ← 0. Take an initial guess xi sufficiently close to
the root.
N2. [Refine.] Given an approximation xi to the root, take

xi+1 = xi − δi, δi =
f(xi)

f ′(xi)
.
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N3. [Is the estimate good enough?] If the correction δi is smaller than the
tolerance, then stop. Otherwise set i← i + 1 and go back to Step N2.

Definition 15 Error: Let xi approximate a real number x (here the root). The
most useful measures of the accuracy of xi are its absolute error

eabs(xi) = |xi − x|

and its relative error

erel(xi) =
|xi − x|
|x| , x 6= 0

In scientific computation, where answers to problems may vary by many or-
ders of magnitude, the relative error is of most interest, because it is scale-
independent. 2
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Figure 13.6: Newton’s method with x0 = 2. Left: Sequence of approxima-
tions. Right: Magnitude of correction.



154 CHAPTER 13. FINDING ROOTS OF NONLINEAR FUNCTIONS

−2 −1 0 1 2
−10

−5

0

5

10

x

f(
x)

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

10
2

Iteration

In
cr

em
en

t

Figure 13.7: Newton’s method with x0 = −2. Left: Sequence of approxima-
tions. Right: Magnitude of correction.

The power of Newton’s method lies in its rate of convergence. By New-
ton’s formula, we have

(xi+1 − x) = (xi − x)− f(xi)

f ′(xi)

ei+1 = ei −
f(xi)

f ′(xi)
.

Using Taylor series expansion about the root x (recall that f(x) = 0),

f(xi) = f(x + ei) = f(x) + eif
′(x) + e2

i

f ′′(x)

2
+ · · · ,

f ′(xi) = f ′(x + ei) = f ′(x) + eif
′′(x) + · · · ,

with ei ≪ 1 it follows that

f(xi)

f ′(xi)
= ei + e2

i

f ′′(x)

2f ′(x)
+ · · · .
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Substituting this last expression into the equation for ei+1 we get

ei+1 ≈ −e2
i

f ′′(x)

2f ′(x)

|ei+1| ≈
∣
∣
∣e2

i

f ′′(x)

2f ′(x)

∣
∣
∣ = Conste2

i .

This equation says that Newton’s method converges quadratically, i.e., near
a root the number of significant digits approximately doubles with each step.
However, one should be aware of the limitations of Newton’s method:

1. Far from the root, where the higher order terms are important, Newton’s
formula can give inaccurate, meaningless corrections δi.

2. Nothing ensures that the iterative scheme will converge, except when we
are sufficiently close to the root.

Hence, it is usually best to combine the bisection and Newton’s method (see
a Matlab implementation in Appendix 13.8).

Example 15 Convergence of Newton’s Method. We solve the equation f(x) =
x3−1 = 0 (Figure 13.2) with two different initial guesses: x0 = 2 (Figure 13.6)
and x0 = −2 (Figure 13.7).

Now suppose that we cover the square [−1, 1]× [−1, 1] with a fine grid of initial
guesses for the complex roots of z3−1. We then use Newton’s method to obtain
the root corresponding to each initial guess. The result, shown in Figure 13.8,
is quite amazing. The basins of attraction of each root are infinitely nested
into each other and form a fractal Julia set. The MATLAB code is listed in
Appendix 13.9.
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Figure 13.8: In Newton’s method, the basins of attraction of the roots of
f(z) = z3 − 1 have very complicated fractal boundaries: any circle enclosing
points of two colors must also enclose points of the third color.
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13.6 MATLAB Code for the Bisection Method

function [xbis,niter] = rootbisection(fhandle,x1,x2,xtol)

%------------------------------------------------------

% ROOTBISECTION: Root finding using bisection

% Input: fhandle = handle to a user-defined function

% [x1,x2] = interval containing the root

% xtol = accuracy of the root (xbis)

% Output: xbis = approximate root

% niter = number of iterations

%

% E77N Class Material, Numerical Recipes, 2002-03-07

%

% Note: the function handle is something like @myfun

% where myfun is a function defined as

% function [f] = myfun(x), ...

%------------------------------------------------------

%

% Maximum number of iterations

MAXITER = 40;

%

% initialize

xbis = []; niter = 0;

if x1>x2

x=x1; x1=x2; x2=x; % swap x1 and x2

end

fmid = feval(fhandle,x2);

f = feval(fhandle,x1);

if (f*fmid > 0)

s=sprintf(’Root not bracketed in [x1=%g,x2=%g]’,x1,x2);

error(s)

end

%

% Orient the search so that f>0 lies at x+dx

if (f < 0)

xbis = x1;

dx = x2-x1;

else

xbis = x2;

dx = x1-x2;

end

%

% Bisection loop

for j = 1:MAXITER

dx = 0.5*dx;

% New xmid if f>0, xbis does not change

xmid = xbis+dx;

fmid = feval(fhandle,xmid);

if (fmid <= 0)

xbis = xmid; % new xbis if f<=0
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end

if (abs(dx) < xtol | fmid == 0)

niter = j;

return

end

end

%

disp(’too many iterations in rootbisection’)

return
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13.7 MATLAB Code for Newton’s Method

function [xnewt,niter] = rootnewton(fhandle,x1,x2,xtol)

%------------------------------------------------------

% ROOTNEWTON: root finding using Newton’s method

% Input: fhandle = handle to a user-defined function

% [x1,x2] = interval containing the root

% xtol = accuracy of the root (xnewt)

% Output: xnewt = approximate root

% niter = number of iterations

%

% E77N Class Material, Numerical Recipes, 2002-03-07

%

% Note: the function handle is something like @myfun

% where myfun is a function defined as

% function [f,df] = myfun(x)

%------------------------------------------------------

%

% Maximum number of iterations

MAXITER = 20;

%

% initialize

xnewt = 0.5*(x1+x2);

niter = 0;

%

% Newton-Raphson loop

for j = 1:MAXITER

[f,df] = feval(fhandle,xnewt);

dx = f/df;

xnewt = xnewt - dx;

if ((x1-xnewt)*(xnewt-x2) < 0)

disp(’rootnewton jumped out of brackets’)

niter = j;

return

end

if (abs(dx) < xtol)

niter = j;

return

end

end

%

disp(’too many iterations in rootnewton’)

return
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13.8 MATLAB Code for Newton with Bisection

function [xsafe,niter] = rootsafe(fhandle,x1,x2,xtol)

%------------------------------------------------------

% ROOTSAFE: root finding using a combination of

% bisection and Newton’s method

% Input: fhandle = handle to a user-defined function

% [x1,x2] = interval containing the root

% xtol = accuracy of the root (xbis)

% Output: xsafe = approximate root

% niter = number of iterations

%

% E77N Class Material, Numerical Recipes, 2002-03-07

%

% Note: the function handle is something like @myfun

% where myfun is a function defined as

% function [f,df] = myfun(x)

%------------------------------------------------------

%

% Maximum number of iterations

MAXITER = 100;

%

% initialize

xsafe =[]; niter=1;

[fl,df] = feval(fhandle,x1);

[fh,df] = feval(fhandle,x2);

if ((fl>0 & fh>0) | (fl<0 & fh<0))

disp(’root is not bracketed in [x1,x2]’)

niter = 1;

return

end

%

% Orient search so that f(x1)<0

if (fl == 0)

xsafe = x1;

niter = 1;

return

elseif (fh == 0)

xsafe = x2;

niter = 1;

return

elseif (fl < 0)

xl = x1;

xh = x2;

else

xl = x2;

xh = x1;

end

%

% Initialize guess for root, the "stepsize before last"
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% and the last step

xsafe = 0.5*(x1+x2);

dxold = abs(x2-x1);

dx = dxold;

[f,df] = feval(fhandle,xsafe);

%

% Loop

for j = 1:MAXITER

% Bisect if Newton out of range

% or not decreasing fast enough

if (((xsafe-xh)*df-f)*((xsafe-xl)*df-f) > 0 ...

| abs(2.*f) > abs(dxold*df) )

dxold = dx;

dx = 0.5*(xh-xl);

xsafe = xl+xh;

if (xl == xsafe) % change in root is negligible

niter = j;

return

end

else % Newton step acceptable. Take it

dxold = dx;

dx = f/df;

temp = xsafe;

xsafe = xsafe - dx;

if (temp == xsafe)

niter = j;

return

end

end

if (abs(dx) < xtol) % convergence criterion

niter = j;

return

end

% the one new function evaluation per iteration

[f,df] = feval(fhandle,xsafe);

if (f < 0) % maintain the bracket on the root

xl = xsafe;

else

xh = xsafe;

end

end

%

disp(’too many iterations in rootsafe’)

return
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13.9 MATLAB Code for Newton Method’s Do-
mains of Influence

function truedomains(m)

%

% Finds complex roots of f=z^3-1=0 for a fine grid of

% initial guesses, thus generating the beautiful Julia

% fractal for the domains of influence of each root

%

% E77N Class Material, T. W. Patzek, 2002-03-07

%

close all

niter = 20; % Max number of Newton iterations

if nargin == 0

m = 1024; % Number of initial guesses is m*m

end

b = 1; % Limits of the initial guess grid

x = linspace(-b,+b,m);

y = linspace(-b,+b,m);

% Complex initial guesses

[X,Y] = meshgrid(x,y);

Z = X +i*Y;

% Free memory

clear X Y

% Value of a reference root

z2 = -0.5+i*0.5*sqrt(3);

% Newton’s method with f and f’ substituted in

for k=1:niter;

Z=2/3*Z + 1/3*1./(eps+Z.^2);

end

% Magnitude of difference

W = abs(Z-z2);

% Phase of each root

A = angle(Z);

SS = get(0, ’ScreenSize’);

% Initialize a new figure

figure(’Visible’,’on’,...

’Units’,’Pixels’,...

’Resize’,’on’,...

’Name’,’Newton’’s method: Domains of influence of each root’,...

’Numbertitle’,’off’,...

’Position’,[1,10,SS(3),SS(4)-85],...

’BackingStore’, ’off’);

colors = prism(3*m); % The number of colors is ~3*m

colormap(colors);

hold on

% Color pixels in pseudocolor whose index increases with

% the magnitude of W-A
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pcolor(W-A);

shading flat;

axis(’square’,’equal’,’off’);

hold off

%print -depsc E77N-Figure10.7.eps
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Chapter 14

Iteration: Fractal Geometry
of Mandelbrot’s Set

14.1 What Are You Going To Learn?

You are going to learn more about iteration and its convergence properties.
The quadratic function example I will use reveals the existence of fixed points,
n-cycles, n = 1, 2, . . . and chaos, and will lead to the Mandelbrot set. I will
follow closely some of the material presented on the Web by Prof. Robert L.
Devaney1 and in the book Chaos Under Control by David Peak and Michael
Frame [26].

MandelbrotFractal.m generates the Mandelbrot fractal on an m×m grid,
based on the code by Alberto Strumia.

MandelbrotMap.m calculates n terms in the Mandelbrot iteration, given
a constant c.

MandelbrotOrbits.m plots the history of the Mandelbrot iteration z = z2+c,
as a “time series,” i.e., as z(n) vs. n. Calculates the iteration amplitude
histograms. You can use different constants c, some listed in the program,
to obtain very different behaviors of the time series.

JuliaFractal.m plots colorful or b&w Julia fractals, some initial points are
listed.

14.2 Why Is It Important?

The simple numerical experiments I will present here are a part of the worldwide
interest in the complex dynamic systems. These experiments deal with chaos

1Department of Mathematics, Boston University, Boston, MA 02215, USA,
http://math.bu.edu/DYSYS/FRACGEOM/FRACGEOM.html.
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and order, and with their competition and coexistence. They show that the
transition from one to the other has most magnificent geometric properties. As
you will see soon, the emergence of chaos is a common feature of the simplest
iterative schemes.

14.3 Iteration and Mandlebrot’s Set

Figure 14.1: The Mandelbrot set obtained with the MATLAB function in
Section 14.7.

One of the most intricate and beautiful images in all of mathematics is
the Mandelbrot set, Figure 14.1, discovered by a French mathematician
Benoit Mandelbrot in 1980. At that time, Mandelbrot worked on new
visualization techniques at the IBM Thomas J. Watson Research Center. The
Mandelbrot set is considered the most complex object mathematics has ever
encountered. It is a rather peculiar fractal in that it combines the properties
of self-similarity with the properties of infinite change. Most people within the
mathematics community, and many people outside of the discipline, have seen
this image and have marvelled at its geometric intricacy. Unfortunately, only a
few of these people are acquainted with the equally beautiful mathematics and
numerics that lurk behind this image.

The Mandelbrot set is generated by iteration. Recall that to iterate means
to repeat a process many times. In mathematics and computer science, this pro-
cess is most often the applied to a mathematical function. For the Mandelbrot
set, the function involved is the simplest nonlinear function imaginable, namely:
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f(z) = z2 + c, (14.1)

where c is a constant. As we go along, we will specify exactly what values c
takes. To iterate z2 + c, we begin with a seed or the starting point for the
iteration. This is a (real or complex) number, which we denote by z0. Applying
the function z2 + c to z0 yields the new number

z1 = f(z0) = z2
0 + c (14.2)

Now, we iterate, using the result of the previous computation as the input for
the next. That is

z2 = f(z1) = z2
1 + c

z3 = f(z2) = z2
2 + c

. . .

zn−1 = f(zn−2) = z2
n−2 + c

zn = f(zn−1) = z2
n−1 + c

(14.3)

and so forth.

Definition 16 Orbits. The list of numbers z0, z1, zn, . . . generated under iter-
ation of z2 + c is called the orbit of z0. 2

The principal questions in iterations are:

1. What is the fate of typical orbits?

2. Do they converge or diverge?

3. Do they cycle or behave erratically?

The Mandelbrot set is a geometric version of the answers to these ques-
tions. Let’s begin with a few examples. Suppose we start with the constant
c = 1. Then, if we choose the seed z0 = 0, the orbit is

z0 = 0

z1 = 02 + 1 = 1

z2 = 2

z3 = 5

z4 = 26

zn →∞

(14.4)

and we see that this orbit tends to infinity. As another example, for c = 0, the
orbit of the seed 0 is quite different: this orbit remains fixed for all iterations:

z0 = 0

z1 = 0

z2 = 0

. . .

zn = 0

(14.5)
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If we now choose c = −1, something else happens. For the seed 0, the orbit is

z0 = 0

z1 = −1

z2 = 0

. . .

z2n−1 = −1

z2n = 0

(14.6)

Here we see that the orbit bounces back and forth between 0 and -1, a cycle of
period 2.

Before proceeding, let us make a seemingly obvious and uninspiring obser-
vation. Under iteration of z2 + c, either the orbit of 0 goes to infinity, or it does
not. When the orbit does not go to infinity, it may behave in a variety of ways.
It may be fixed or cyclic or chaotic, but the fundamental observation is that
there is a dichotomy: sometimes the orbit goes to infinity, other times it does
not.

The Mandelbrot set is a picture of precisely this dichotomy in the special
case where 0 is used as the seed. Thus, the Mandelbrot set is a record of the
fate of the orbit of z0 = 0 under iteration of z2 + c.

How then is the Mandelbrot set a two-dimensional or planar picture? The
answer is, instead of considering real values of c, we also allow c to be a complex
number. For example, the orbit of 0 under z2 + i is given by

z0 = 0

z1 = i

z2 = i2 + i = −1 + i

z3 = (−1 + i)2 + i = 1− 2i− 1 + i = −i

z4 = −1 + i

z5 = −i

. . .

(14.7)

and we see that this orbit eventually cycles with period 2. If we change c to 2i,
then the orbit behaves very differently

z0 = 0

z1 = 2i

z2 = −4 + 2i

z3 = 12− 14i

z4 = 52− 334i

z5 = BIG (meaning far from the origin)

z6 = BIGGER

(14.8)
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and we see that this orbit tends to infinity in the complex plane (the numbers
comprising the orbit move further and further from the origin). Again, we make
the fundamental observation either orbit of 0 under z2 + c tends to infinity, or
it does not.

14.4 The Mandelbrot Set

The Mandelbrot set puts some geometry into the fundamental observation
above. The precise definition is:
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Figure 14.2: Each arrow labelled “n” points to an n-cycle region in the Man-
delbrot set.

Definition 17 The Mandelbrot set M consists of all of those complex values of
c for which the corresponding orbits of z0 = 0 do not escape to infinity under
the iteration z2 + c. 2

The Mandelbrot set is made up of infinitely many discs and cardioids (most
are slightly distorted from true discs and cardioids), but the arrangement and
sizes of these pieces exhibit many patterns.

Definition 18 Given a fixed (complex) value of c, the filled-in Julia set J con-
sists of all of those (complex) z0-values for which the corresponding orbit under
z2 + c does not escape to infinity. The Julia set is the edge or boundary of the
filled-in Julia set. 2

Referring to2 Figure 14.2, we see that attached to the left of the big cardioid
(the fixed point, or 1-cycle, component) is a 2-cycle component, attached to the

2Figure 14.2 follows Figure 7.13 in [26].
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left of the latter is a 4-cycle component, attached to the left of the latter is an
8-cycle component, and so on. This is called the period-doubling cascade. In
the 1970s this cascade was studied (for a process equivalent to looking at the
Mandelbrot set for real numbers) by Mitchell Feigenbaum [11], and Pierre
Coulette and Charles Tresser [6]. Certainly, the 2n-cycle components get
smaller as n increases.

Call c1 the point of attachment of the 2-cycle and 1-cycle components. Call
c2 the point of attachment of the 4-cycle and 2-cycle components. Call c3 the
point of attachment of the 8-cycle and 4-cycle components. In general, call
cn the point of attachment of the 2n-cycle and 2n−1-cycle components in the
period-doubling cascade. Careful numerical experiments [26] give these values:

c1 = −0.75

c2 = −1.25

c3 = −1.3680989394 . . .

c4 = −1.3940461566 . . .

c5 = −1.3996312389 . . .

c6 = −1.4008287424 . . .

c7 = −1.4010852713 . . .

c8 = −1.401140214699 . . .

c9 = −1.401151982029 . . .

c10 = −1.401154502237 . . .

(14.9)

To understand the fate of orbits, it is most often easiest to proceed geometri-
cally. Accordingly, a “time” series (f(z) vs. n) plot of the orbit often gives more
information about the fate of the orbits. In the plots below, we have displayed
the time series for z2 +c where c = −0.6, −0.75, −1.3, −1.38, and −1.9. In each
case, we have computed the orbit of 0. Note that the fate of the orbit changes
with c. For c = −0.6 < c1 there is no oscillation and the orbit tends to a fixed
point, Figure 14.3. For c = −0.75, we see that the orbit approaches a 2-cycle,
Figure 14.4, as required by Eq. (14.9)1. In the histogram, you can see that z
oscillates between two values (hence the name “2-cycle”). For c = −1.3 > c2,
the orbit tends to a 4-cycle, Figure 14.5. For c = −1.38 > c3, we see an 8-
cycle, Figure 14.6. When c = −1.9 > c10, there is no apparent pattern for the
orbit; mathematicians use the word chaos for this phenomenon, Figure 14.7.

From our previous calculations, it follows that c = −0.6,−1.1,−1.3,−1.38,
−1.9, and i all lie in the Mandelbrot set, whereas c = 1 and c = 2i do not.
At this point, a natural question is: Why would anyone care about the fate of
the orbit of 0 under z2 + c? Why not the orbit of z0 = i? Or z0 = 2 + 3i, or
any other complex seeds, for that matter?

There is a very good reason for inquiring about the fate of the orbit of 0;
somehow the orbit of 0 tells us a tremendous amount about the fate of all other
orbits under z2 + c. Before turning to this idea, note that the very definition



14.4. THE MANDELBROT SET 171

of the Mandelbrot set gives us an algorithm for computing it. We simply
consider a square in the complex plane (usually centered at the origin with
sides of length 4). We overlay a grid of equally spaced points in this square.
Each of these points is to be considered a complex c-value. Then, for each such
c, we ask the computer to check whether the corresponding orbit of 0 goes to
infinity (escapes) or does not go to infinity (remains bounded). In the former
case, we leave the corresponding c-value (pixel) white. In the latter case, we
paint the c-value black (or in a pseudocolor). Thus, the color points in Figure
14.1 represent the Mandelbrot set.

Two points need to be made. Figure 14.1 is only an approximation of the
Mandelbrot set. Indeed, it is not possible to determine whether certain c-
values lie in the Mandelbrot set. We can only iterate a finite number of times
to determine if a point lies in M . Certain c-values close to the boundary of M
have orbits that escape only after a very large number of iterations. A second
question is: How do we know that the orbit of 0 under z2 + c really does escape
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Figure 14.3: “Time” series plot of the real part of orbit of z0 = 0 and the
corresponding histogram for c = −0.65. The orbit settles on a fixed point at
z = 0.4.
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to infinity? Fortunately, there is an easy criterion, which helps:

Definition 19 The Escape Criterion: Suppose |c| is less than or equal to 2. If
the orbit of 0 under z2 + c ever lands outside of the circle of radius 2 centered at
the origin, then this orbit definitely tends to infinity. For a proof see Appendix
14.5. 2

It may seem that this criterion is not too valuable, as it only works when |c|
is less than or equal to 2. However, it is known that the entire Mandelbrot set
lies inside this disk, so these are the only c-values we need consider anyway.
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Figure 14.4: “Time” series plot of the real part of orbit of z0 = 0 and the
corresponding histogram for c = −0.75. The orbit eventually settles to an
oscillation between -0.55 and -0.45, or a “2-cycle”.
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14.5 Why z > 2 Runs Away to Infinity?

For a complex number zn = xn + iyn, the absolute value is |zn| =
√

x2
n + y2

n,
the distance from zn to the origin.

Recall that the sequence z0, z1, . . . is generated by iteration zn+1 = z2
n + c.

We want to show that if some zn satisfies |zn| > max(2, |c|), then the sequence
zn, zn+1, . . . runs away to infinity.

Because |zn| > 2, we can write |zn| = 2 + e, for some e > 0. From the
triangle inequality:

|z2
n| = |z2

n + c− c| ≤ |z2
n + c|+ |c| (14.10)

Because |zn| > |c|

|z2
n + c| ≥ |z2

n| − |c| = |zn|2 − |c| > |zn|2 − |zn|
= (|zn| − 1)|zn| = (1 + e)|zn|

(14.11)
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Figure 14.5: “Time” series plot of the real part of orbit of z0 = 0 and the corre-
sponding histogram for c = −1.3. The orbit eventually settles to a modulated
oscillation between roughly -1.3 and 0.4, and -1.1 and 0 or a “4-cycle”.
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That is,
|zn+1| > (1 + e)|zn|. (14.12)

Iterating,
|zn+k| > (1 + e)k|zn|. (14.13)

To complete the proof that |zn| > 2 implies the sequence runs away to
infinity, observe that if |c| > 2, then

z0 = 0

z1 = c

z2 = c2 + c = c(c + 1).

(14.14)

Therefore, |z2| = |c||c + 1| > |c| (noting |c + 1| > 1 because |c| > 2).
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Figure 14.6: “Time” series plot of the real part of orbit of z0 = 0 and the corre-
sponding histogram for c = −1.38. The orbit eventually settles to a modulated
oscillation with 4 different amplitudes or an “8-cycle”.
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14.6 MATLAB Code for the MandelBrot Itera-
tion

function MandelbrotOrbits(c,n)

%--------------------------------------------------------------------------

%

% MANDELBROTORBITS plots results of Mandelbrot iteration

% as time series, z(n) vs (n). Calculates amplitude histograms

%

% INPUTS:

% c = iteration constant,

% n = number of points in time series

%

% Here are the points of attachment of the k-cycles to

% (k-1)-cycles. Use them as your constants c to obtain some

% interesting results.

%
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Figure 14.7: “Time” series plot of the real part of orbit of z0 = 0 and the
corresponding histogram for c = −1.9. The orbit becomes chaotic.
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% E77N Course Material, TWP, 2002-03-11

% Last modified, TWP, 2002-10-07

%--------------------------------------------------------------------------

% c1 = -0.75

% c2 = -1.25

% c3 = -1.3680989394

% c4 = -1.3940461566

% c5 = -1.3996312389

% c6 = -1.4008287424

% c7 = -1.4010852713

% c8 = 1.401140214699

% c9 = -1.401151982029

% c10 = -1.401154502237

%--------------------------------------------------------------------------

if nargin<2

n=100;

end

PrintFlag = 0;

PlotFlag = 0;

FigureNumber = 1;

Ns = 1:1:n;

% Calculate the time series

Zs = MandelbrotMap(c,n);

% Get the current screen size and set the figure size

% so that it does not cover the bottom screen bar

SS = get(0, ’ScreenSize’);

% Initialize a new figure

figure(FigureNumber)

set(gcf,’Visible’,’on’,...

’Units’,’Pixels’,...

’Resize’,’on’,...

’Name’,’Mandelbrot Orbits’,...

’Numbertitle’,’off’,...

’Position’,[1,1,SS(3),SS(4)-50],...

’BackingStore’, ’off’);

% Specify plot area

% xmin ymin dx dy

axes(’Units’,’Normalized’,’Position’,[0.28 0.15 0.55 0.80])

set(gca, ’FontSize’, 14)

if imag(c)==0

s=sprintf(’c=%.14f’,c);

else

s=sprintf(’c=%g+i%g’,real(c),imag(c));

end
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index=1;

NumberOfSubplots=3;

if (imag(c)==0)

NumberOfSubplots=2;

end

subplot(NumberOfSubplots,1,index)

index=index+1;

plot(Ns,real(Zs))

axis([1,n,-2,2]);

title(s, ’fontsize’,12)

ylabel(’real(Z)’, ’fontsize’,12)

xlabel(’"time"’, ’fontsize’,12)

if (imag(c)~=0)

subplot(NumberOfSubplots,1,index)

index=index+1;

plot(Ns,imag(Zs))

axis([1,n,-2,2]);

ylabel(’imag(Z)’,’fontsize’,12)

end

x=-2:min(50/n,0.05):2;

subplot(NumberOfSubplots,1,index)

index=index+1;

hist(real(Zs),x)

title(’Histogram of real(Z)\in[-2,2]’, ’fontsize’,12)

if PrintFlag

fn = sprintf(’Figure11.%s.eps’,s);

print( gcf, ’-depsc2’, fn );

end

% Plot a Poincare return map (ommitted by default)

if (PlotFlag)

figure(2)

offset=1;

z2 = real(Zs(1+offset:end));

plot(real(Zs(1:end-offset)), z2)

s= sprintf(’real[Z(n-%d)]’,offset);

xlabel(s)

ylabel(’real[Z(n)]’, ’fontsize’,12)

title(’Return map of real(Z)’, ’fontsize’,12)

end

if PrintFlag

fn = sprintf(’Figure2-%g.eps’,c);

print( gcf, ’-depsc2’, fn );

end

function Zs = MandelbrotMap(c,n)

% Mandelbrot iteration, n-times

% E77N Course Material, TWP, 2002-03-11
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%

z0 = complex(0,0);

Zs = complex(zeros(n,1), zeros(n,1));

Zs(1)= z0;

%

for i = 2:n

Zs(i)=Zs(i-1)*Zs(i-1)+c;

end

% Q: Can you vectorize this function?

14.7 MATLAB Code for the MandelBrot Set

function MandelbrotFractal(m, noiter)

%-------------------------------------------------

% Adapted by TWP from Alberto Strumia

% University of Bolognia

% http://eulero.ing.unibo.it/~strumia/

%

% Input arguments: m = number of points in x

% and y directions.

% noiter = number of iterations

%

% An m-by-m grid of constants C

% will be used to find the orbits of zero

% I have used m=2000 to generate the pictures

% but it may be too much for your computer

%

% The iteration seed is an m-by-m zero array

% The Mandelbrot set is the locus of finite

% orbits of zero.

%

% $Version 1.1, TWP, 2002.02.07

%

%-------------------------------------------------

%

if nargin<1

m =500;

noiter=25;

elseif nargin <2

noiter=25;

end

ColorFlag=1;%<<<Set to 1 if color is desired

%---------------------------------------------------------

% Span x=[-2.1, 0.5], y=[-1.3,1.3] with a grid of

% m-by-m points
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x=linspace(-2.1,0.5,m);

y=linspace(-1.3,1.3,m);

%---------------------------------------------------------

% [X,Y] = meshgrid(x,y) transforms the domain

% specified by vectors x and y into arrays X and Y,

% which can be used to evaluate functions of two variables

% and three-dimensional mesh/surface plots.

% Rows of the output array X are copies of vector x.

% Columns of the output array Y are copies of vector y.

[X,Y] = meshgrid(x,y);

% Array of complex values of C

C = X + i*Y;

% Free precious memory from X and Y

clear X Y

%---------------------------------------------------------

% A variant of the classical escape method is applied here:

% instead of evaluating the number of cycles required

% in order that the modulus of the partial sum exceeds

% a fixed bound, we evaluate the value of that modulus

% for a fixed number of cycles.

%

% Instead Z=zeros(m), we’ll save one iteration by setting

Z = C; % Because Zo = 0, Z1=C!

%---------------------------------------------------------

% MATLAB shines here in performing matrix operations

for k=1:noiter

Z = Z.*Z + C;

end

% I do not need C anymore

clear C

close all

figure(1)

if (ColorFlag)

%

% Attenuate the huge absolute values of abs(Z)

% for the diverging orbits

% This avoids an expensive vector if statement.

% For complex Z, abs(Z)= sqrt(X^2+Y^2)

%

% I do not need the old Z anymore

Z = exp(-abs(Z));
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% Set a color map of your choice: colormap prism(256);

% or colormap copper(256); etc.

colormap hsv(1024);

% A pseudocolor plot is a rectangular array of cells

% with colors determined by the array Z.

% MATLAB creates a pseudocolor plot by using each set

% of four adjacent points in C to define a surface patch

% (i.e., cell).

pcolor(Z);

% No color interpolation

shading flat;

%---------------------------------------------------------

% Print to an eps file. The bitmap from Copy Figure

% may take too much memory and crash MATLAB

% This prints a huge eps file to the current directory

%fn = sprintf(’Figure1Color.eps’);

else

W = ones(m);

W = W + ( abs(Z) < 2 ); % black or white?

% Because images are displayed down from top of screen,

% not that it matters here

W = flipud(W);

% Ones for white exterior; zeros for black interior

bwmap = [ 1 1 1; 0 0 0 ];

image(W), colormap(bwmap);

%fn = sprintf(’Figure1B&W.eps’);

end

% Set both axes to form a square and turn them off

axis(’square’,’equal’,’off’);



Chapter 15

Recursion, Part II∗

15.1 What Are You Going To Learn?

A sloppy recursion algorithm will prevent you from using it in practice because
of stack overflow. As we saw in Lecture 8, a näıve Fibonacci recursion resulted
in roughly 2n−1 calls to calculate the nth Fibonacci number. We overcame
our näıveté by introducing a helper function that “memorized” the previous
Fibonacci numbers, and limited the number of recursive calls to n. In this
chapter, we establish the connection between memory and more complicated
recursion, and develop new smart, first- and second-order linear recursion and
iteration algorithms. The one-step feedback machine with one and two variables
is introduced to illustrate the concept of single-step and two-step iteration and
recursion. The feedback machines are described in detail in a remarkable book
by Peitgen, Jürgens and Saupe [27].

In Chapter 15 folder on fttp:\\petroleum.berkeley.edu, look up the following
MATLAB files:

IterSqrt.m An iterative calculation of the square root of x with an initial guess
x0. Returns the root approximation, xn, and the number of iterations, n,
necessary to obtain the root with machine precision.

RecSqrt.m A recursive calculation of the square root of x with an initial guess
x0. Returns the root with machine precision.

IterFib.m An iterative calculation of the Fibonacci numbers based on a
two-variable, single-step feedback machine.

SORDemo.m Demo for Second Order Recurrence, modSOR, written with a helper
function, helpSOR, which “memorizes” two previous values.

modSOR.m This SOR function calculates recursively the current response by
using a helper function to store two previous responses.
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helpSOR.m The helper function for modSOR calculates recursively the current
response by swapping the second and third argument, so that the current
response becomes the previous one in the next call.

15.2 Why is it important?

Recursion and iteration are two different ways of looking at feedback machines,
very useful mathematical tools developed to solve complex problems in mathe-
matics and engineering. Simple iteration and recursion correspond to a one-step
feedback machine operating with a single number input and outputting a single
number. Complicated iteration and recursion correspond to one-step feedback
machines that operate on vectors of input numbers and output vectors of num-
bers. Your understanding of the connection between iteration and recursion will
help you to become the cool computer-literate engineers and scientists.

15.3 One-Step Feedback Machine: First Order
Recursion

One-step machines are characterized by an iteration formula xn+1 = f(xn),
where f(x) can be any function of x, Figure 15.1. It requires one number as
input and returns one number - the result of the formula as output. The formula
can be controlled by a fixed parameter (as in the Julia sets), e.g., f(xn) = x2

n+c,
i.e., with control parameter c. The numbers are indexed to keep track of the
time (cycle) in which they were obtained. Recall the “time” series and the onset
of chaos in the discussion of the Mandelbrot set.

xn - f(xn) xn+1-

6

Figure 15.1: One-step feedback machine is a very useful tool developed for the
solution of complex mathematical problems. One-step feedback machines have
a long tradition in mathematics.

Example 16 Ancient Square Root Computation. This example of a one-step
feedback machine goes back to the Sumerian mathematicians some 4000 year
ago. It is a beautiful illustration of the strength and continuity of mathematics.
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Pick a real number a > 0 . Compute a sequence x1, x2, x3, . . . such that the
limit is

√
a, i.e., xn approaches

√
a as we increase n. We begin with an arbitrary

guess x0 > 0 and proceed with

xn+1 =
1

2

(

xn +
a

xn

)

(15.1)

Let us approximate, for example,
√

2 ≈ 1.41421356237310. Let us start with
x0 = 2.

x1 =
1

2

(

x0 +
a

x0

)

=
1

2

(

2 +
2

2

)

= 1.5

x2 =
1

2

(

x1 +
a

x1

)

=
1

2

(

1.5 +
2

1.5

)

= 1.41666666666667

x3 =
1

2

(

x2 +
a

x2

)

=
1

2

(

1.416... +
2

1.416...

)

= 1.41421568627451

. . .

(15.2)

With our starting point, this algorithm converges to machine precision in five
iterations. Here is the iterative algorithm:

function [xn,n]=IterSqrt(x,x0)

% Iterative square root of x with an initial guess x0

% Returns the root approximation, xn, and the number of

% iterations, n, to obtain the root with machine precision

% E77N Class Material, T.W. Patzek, 2002-03-10

%

error = eps; %eps = machine precision

n = 0;

xn = x0;

while error > eps

xnp1 = 0.5*(xn+x/xn)

error = abs(xnp1-xn);

xn = xnp1;

n = n+1;

end

n = n-1;

Here is the recursive version of the algorithm:

function root = RecSqrt(x,x0)

% Recursive square root of x with an initial guess x0.

% Returns the root with machine precision

% E77N Class Material, T.W. Patzek, 2002-03-10

%

root = 0.5*(x0+x/x0);

if abs(root-x0) > eps

root = RecSqrt(x,root);

end
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Which one do you prefer? In this simple case, both algorithms are similar in
length and complexity, although the recursive algorithm is always more compact.

These two algorithms for the computation of the square root are an example
of a more general method for the solution of nonlinear equations, today called
Newton’s method. Indeed, put f(x) = x2 − a = 0, f ′(x) = 2x, and

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − a

2xn
=

1

2
xn +

a

2xn
=

1

2

(

xn +
a

xn

)

(15.3)

Thus, Newton’s method has roots (no pun intended) that are 4000 years old!2

15.4 One-Step Feedback Machine with Two Vari-
ables: Second Order Linear Recursion

Suppose now that the feedback machine can remember the recent past; for
example, the last iteration.

15.4.1 Feedback Machines with Memory

Superficially it seems that the two-step processes cannot be fit into the feedback
machine in Figure 15.1. Indeed the output, xn+1, depends not only on the last
step, xn, but also on the previous step, xn−1. Therefore, our feedback machine
must now be endowed with memory of its recent past.

xn - xn+1 = g(xn, xn−1) xn+1-

6

xn−1-

?

Figure 15.2: Feedback machine with memory. Here xn is the input unit, and
xn−1 is the memory unit. These two units must be initialized with x1 and x0,
respectively. At each time level the memory unit is updated, xn−1 ← xn, before
the input unit, xn ← xn+1. This feedback machine is equivalent to the one-step
feedback machine with two variables, shown in Figure 15.3.

We now extend the concept of a simple feedback machine by equipping the
processing unit with internal memory. Here the iteration of the two-step method
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can be implemented as follows. To start the machine we need two values, x0

and x1, Figure 15.2, and then we follow with iteration:

Preparation: Initialize the memory unit with x0 and the input unit with x1.

Iteration: Evaluate xn+1 = g(xn, xn−1), where xn is in the input unit and
xn−1 is in the memory unit. Then update the memory unit with xn and the
input unit with xn+1.

15.4.2 One-Step Machines with Two Variables

The feedback machine with memory seems to be a generalization of the one-
step feedback machine. This is not the case at all. If we analyze carefully
the feedback machine in Figure 15.2, we see that it is equivalent to a one-step
machine in which a pair of input variables (xn, xn−1) generates a pair of output
variables (xn+1, xn) . Formally, we introduce a new variable yn = xn−1, and
extend the formula xn+1 = g(xn, xn−1) to the equivalent pair:

xn+1 = g(xn, yn)

yn+1 = xn

(15.4)

xn

yn

- xn+1 = g(xn, xn−1)
yn+1 = xn

xn+1

yn+1

-

6

Figure 15.3: One-step feedback machine with two variables.

We conclude that one-step feedback processes can be extended to any num-
ber of iteration steps, if their variables are represented by vectors, Figure 15.3.

The now familiar Fibonacci numbers are such a sequence if we put

g(xn, xn−1) = xn + xn−1 (15.5)

Let us now analyze carefully the problem of rabbit population dynamics
in Lecture 10 and recast it in terms of a feedback machine algorithm. In our
population of rabbits, we must distinguish between adult and young rabbits,
Figure 15.4. A just-born pair is young, and turns adult after one time step
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Figure 15.4: The ancestral tree of the Fibonacci rabbit family. KEY: Yn =
baby rabbits at time level n, An = adult rabbits at time level n. At each time
level, the adult population consists of young adults and breeding adults. Note
that the current notation, which refers to time levels, is different from that in
Lecture 7.

(one month). Moreover, an adult pair gives birth to a young pair after one
time step. Let Yn and An be the populations of young and adult pairs after n
months, respectively. Initially at time n = 0 , there is one young pair and no
adults (Y0 = 1 and A0 = 0). After one month, the young pair turns into an
adult one (Y1 = 0 and A1 = 1 ). After two months, the adult pair gives birth
to one young pair (Y2 = 1, A2 = 1), then again after one month. In addition,
the young pair turns into an adult one (Y3 = 1, A3 = 2).

The general rule is that the number of newborn pairs, Yn+1, equals the previ-
ous adult pair, An. The adult population grows by the number of young pairs,
Yn, from the previous month. Thus, the following two equations completely
describe the dynamics of rabbit population:

Yn+1 = An

An+1 = An + Yn

(15.6)

As initial values, we take Y0 = 1 and A0 = 0. From the Eq. (15.6)1, it follows
that Yn = An−1. Inserting this into the second equation, we obtain

An+1 = An + An−1

A0 = 0, A1 = 1
(15.7)

This is the single equation for the total adult rabbit population (see Eq. (15.6)2)
at time n. Using this equation the number of pairs in successive generations is
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easily computed:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . (15.8)

The Fibonacci numbers are a special case of a general recurrence called
second-order linear recurrence or SOR. The Fibonacci sequence is roughly ex-
ponential. Let’s confirm that by plotting modfib(n) vs. n with a linear x-axis
and a logarithmic y-axis. The MATLAB plotting function is called semilogy,
Figure 15.5.
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Figure 15.5: The Fibonacci numbers grow exponentially as this semi-
logarithmic plot demonstrates.

The exponent of the line slope in Figure 15.5 is

1.618 ≈ 1 +
√

5

2
, (15.9)

which is better known as the “golden mean” or proportio divina1. Therefore,
the Fibonacci numbers grow as

An ∼ exp

(

1 +
√

5

2
n

)

(15.10)

1In architecture and art this number is obtained by dividing a given length of 1 + x into
two parts, the larger, x, and the smaller, 1, and requesting that the whole to the larger part
is in the same proportion as the larger part to the smaller part: (1 + x)/x = x/1. The golden
ratio is the larger root of the resulting quadratic equation, x2

− x− 1 = 0.
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With the Fibonacci numbers, we already know that

xn+1 = xn + yn

yn+1 = xn

x0 = 1, y0 = 0

(15.11)

So here is the iterative Fibonacci algorithm:

function xnp1=IterFib(n)

% Iterative calculation of Fibonacci numbers

% based on a two-variable single-step feedback machine

% E77N Class Material, T.W. Patzek, 2002-03-10

%

xn = 1; yn = 0; xnp1 = 0;

if (n==2) xnp1 = 1; end

for i=3:n

xnp1 = xn + yn;

ynp1 = xn;

xn = xnp1;

yn = ynp1;

end
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Figure 15.6: Second order linear recurrence with freq = 0.05 and gain = 1,
results in the plot of cos(2πν1n) , where ν1 = 1/20.

This algorithm is about five times faster than the modified recursive algo-
rithm of Lecture 11, modFib.
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Figure 15.7: Second order linear recurrence with freq = 0.05 and gain = 0.95,
results in the plot of exponentially damped cos(2πν2n) , where ν2 6= ν1.
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Figure 15.8: Second order linear recurrence with freq = 0.05 and gain = 1.05,
results in the plot of exponentially growing cos(2πν3n) , where ν3 6= ν2.

Second-order recurrences give sequences that are sums of two exponentials
(if they are different, the smaller once is swamped by the bigger one, as in
the case of Fibonacci numbers). If we change the recurrence a little bit, we get
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sums of two complex exponentials, which is very interesting from an engineering
point of view. Let’s call the function to do this modSOR for modified Second-
Order Recurrence. The complex amplitude and frequency are governed by two
parameters: freq and gain.

To accommodate the complex exponentials, we alter the modified Fibonacci
algorithm in Chapter 11. Our new smart algorithm requires only n calls, and it
can be used directly to plot results with up to 495 points (remember the stack
limit is 500 words).

function retval = modSOR(n,freq,gain)

%---------------------------------------------------------------

% Input arguments:

% n = current argument

% freq = frequency of response

% gain = gain of amplitude of response

%

% The SOR function calculates recursively the current

% response by using a helper function to store the

% previous responses

%

% Written by T. W. Patzek, March 27, 2001

% UC Berkeley, 437 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834 or 510-486-5322,

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/10/2002, TWP

% $Revision: 2.0 $ $Date: 2002.03.10 16:03:00 $

%

%---------------------------------------------------------------

if (n<3)

retval = 1;

else

% Note that the third and fourth arguments here are 1 and 1, not

% 1 and 0 as for the Fibonacci numbers in modfib.m

retval = helpSOR(n, 1, 1, 1, freq, gain);

end

function retval = helpSOR(n, k, sork, sorkm1, freq, gain)

%----------------------------------------------------------------

% Input arguments:

% n = current argument

% k = variable argument 1<=k<=n

% sork = response for the last k

% sorkm1 = memory of response for k-1

% freq = frequency of response

% gain = gain of amplitude of response

%

% The helper function calculates recursively the current

% response by swapping the second and third argument,

% so that the current response becomes the previous one
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% in the next call with k=k+1

%

% Written by T. W. Patzek, March 27, 2001

% UC Berkeley, 437 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834 or 510-486-5322,

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/10/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.10 16:03:00 $

%-----------------------------------------------------------------

if (n == k)

retval = sork;

return

else

retval = ...

helpSOR(n,k+1,2*(1-freq)*sork-gain*sorkm1,sork,freq,gain);

% |-------------------------| ^

% | | Current value

% |_____New value | moves to memory

% of response as sorkm1

end

The results are plotted in Figure 15.6 - Figure 15.8.

15.5 Exercises

1. Write the iterative version of the recursive SOR algorithm with memory.
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Chapter 16

Quadratic Iterator: Don’t
Trust Your Computer∗

16.1 What Are You Going To Learn?

In this chapter we will remind you about the quadratic iterator, i.e.,, a single-
step feedback machine that iterates a quadratic function. You will see that such
an iterator represents broad classes of problems, including the law of logistic
population growth. You will also see that a simple quadratic iterator leads to
computations which expose the inherent limitations of computers. Depending
on the properties of the iterated function f(x), the process of direct iteration:
xn+1 = f(xn) = axn(1 − xn), may converge to a fixed point, a cycle, or not
converge at all. The material of this lecture follows closely [27].

In Chapter 16.1 folder on fttp:\\petroleum.berkeley.edu, look up the following
MATLAB files:

IterationDemo.m A demo that calls GraphicalIteration.

GraphicalIteration.m performs graphical iteration with a quadratic iterator.

qiterator.m is a general quadratic iteration function, given the initial value
of x and the constant c.

16.2 Why Is It Important?

Modern computers allow scientists to perform computations which are so com-
plex and extensive that humans no longer can digest fully their enormity. In
such massive computations it is often true that a comprehensive error propa-
gation analysis is impossible, and this realization has lead to a very dangerous
trend. Many engineers and scientists are foolish enough to have absolute confi-
dence in the correctness of their computations. Such an unjustified confidence
may lead to disastrous results, and loss of property and life.

193
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16.3 Quadratic Iterators

The quadratic iterator, Figure 16.1, belongs to the family of one-step feedback
machines

xn - xn+1 = x2
n + c xn+1-

6

c

?

Figure 16.1: The quadratic iterator with a control parameter c.

xn+1 = f(xn), n = 0, 1, . . .

and uses the simplest quadratic function for f :

f(xn) = x2
n + c (16.1)

Here xi and c are just numbers, but their roles are different. To iterate the
expression above for a fixed control value c means this: start with an x, evaluate
the expression, use the result as new x, and so on. Here is an example:

Preparation: Choose a value for c, say c = −1. Then choose an initial value
for x, say x = 0.1.

Iteration: Evaluate the expression for x, obtaining 0.01− 1 = −0.99. Now use
the new value x = 0.99 to evaluate the same expression again, obtaining
x = 0.0199, and so on, Figure 16.2.

The table below summarizes the results of the first 10 iterations:
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Iteration x x2 + c
1 0.100000000000000 -0.990000000000000
2 -0.990000000000000 -0.019900000000000
3 -0.019900000000000 -0.999603990000000
4 -0.999603990000000 -0.000791863176080←
5 -0.000791863176080 -0.999999372952710
6 -0.999999372952710 -0.000001254094186
7 -0.000001254094186 -0.999999999998427
8 -0.999999999998427 -0.000000000003145
8 -0.000000000003145 -1.000000000000000
10 -1.000000000000000 0.000000000000000

After a mere 4 iterations we are running into a serious problem. In each itera-
tion, the squaring operation essentially doubles the number of digits necessary
to represent the answer. This makes it impossible to achieve correct results after
more than 4 iterations, when using double precision in MATLAB. Of course if
we used quadruple precision (128 bits), we would delay the loss of accuracy for
another four iterations, and so on. The computers are finite (For more detailed
warnings refer to Chapter 5.)

Here is the MATLAB code:

function qiterator(x,c)

%

% E77N, TWP, 29.04.2001, A general quadratic iterator machine

% with the starting point x and the constant c.

%

if nargin==0

x=0.1;

c=-1;

elseif nargin<2

c=-1;

end

if (imag(x)~=0 | imag(c) ~=0)

error(’Imaginary parts of input arguments will be ignored\n’);

end

clc

n=60;

ys=zeros(n,1);

clc;

for i=1:n

ys(i)=x;

xold=x;

x=x^2+c;

fprintf(’%17.15f %17.15f\n’,xold,x);

end

% Plot the iterator response

close all
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figure(1)

xs=1:1:n;

plot(xs,ys);

xlabel(’Time’)

ylabel(’Iterator response’)

s = sprintf(’c=%g, x_0=%g’,c, ys(1));

title(s)

set(gcf,’PaperPosition’,[1 1 4.5 3.2])

fn=sprintf(’qiterator%g%g.eps’,ys(1),c)

%print(’-depsc2’, fn)
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Figure 16.2: The “time series” of a quadratic iterator response.

16.3.1 Error Propagation Matters!

At this point, if we just shrug our arms and proceed, we will abandon the
unbelievable battles for accuracy in measurement and computation fought by
the great heros of science and engineering, Tycho Brahe, Johannes Kepler,
Galileo Galilei, Sir Isaak Newton, Leonhard Euler, Carl Friedrich
Gauss, just to name a few.

To point out just how limited computations are, let us quote from James
Glick’s Chaos, Making a New Science:

“The modern weather models work with a grid of points on the
order of sixty miles apart, and even so, some starting data has to be
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guessed, since ground stations and satellites cannot see everywhere.
But suppose the earth could be covered with sensors spaced one
foot apart, rising at one-foot intervals all the way to the top of
the atmosphere. Suppose that every sensor gives perfectly accurate
readings of temperature, pressure, humidity, and any other quantity
a meteorologist would want. Precisely at noon an infinitely powerful
computer takes all the data and calculates what will happen at each
point at 12:01, then 12:02, then 12:03, ... The computer will still
be unable to predict whether Princeton, New Jersey, will have sun
or rain on a day one month away. At noon the spaces between the
sensors will hide fluctuations that the computer will not know about,
tiny deviations from the average. By 12:01, those fluctuations will
have already created small error one foot away. Soon the errors will
be multiplied to the ten-foot scale, and so on up to the size of the
globe.”

16.3.2 More on the Quadratic Iteration

We will now iterate the quadratic expression of the form

pn+1 = pn + rpn(1− pn), n = 0, 1, . . .

This equation is equivalent to our prototype quadratic iterator x→ x2 + c. The
quadratic expression above has a very interesting interpretation in the history
of biology. It was at the core of the first realistic1 population dynamics model,
which goes back to the Belgian mathematician Pierre Françoise Verhulst
[31], Figure 16.3.

A population dynamics model allows us to predict the future growth of a
biological population. As with Fibonacci’s rabbits, time is measured in incre-
ments n = 1, 2, . . . (seconds, hours, years, generations, whatever is appropriate).
The size of the population at time n is measured by the actual number of in-
dividuals, Pn. The size of a population may depend on many factors, such as
food, climate, predators, age structure, fertility, mortality, etc. Let us denote
the maximum population size supported by the environment as N , and the
fractional population size as pn = Pn/N .

After Verhulst, we shall assume that the relative growth rate of the popu-
lation is proportional to the fraction of its size that has not been yet exhausted
by the current population, and the proportionality constant is r:

pn+1 − pn

pn
= r(1 − pn), n = 0, 1, . . .

Therefore
pn+1 = pn + rpn(1− pn), n = 0, 1, . . . (16.2)

Equation 16.2 is the famous logistic growth law of Verhulst.

1Please recall Fibonacci’s rabbits.
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Figure 16.3: Pierre François Verhulst, 1804-1849.

16.3.3 Equivalence of Logistic Equation and Quadratic It-
erator

It can be verified by induction that the logistic equation (16.2) and the quadratic
iterator equation are equivalent with the following change of scale:

c =
1− r2

4
(16.3)

xn =
1 + r

2
− rpn

This change of scale is similar to the change of temperature scale in which a
temperature p in degrees Fahrenheit corresponds to

x =
5

9
(p− 32)
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in degrees Celsius.

Remark 15
The quadratic iterator and the logistic population balance are
equivalent with the change of scale (16.31) - (16.32).

Therefore, to represent all quadratic iterators, we can study just the simplest
one, x← x2 + c, or its cousin, x← ax(1− x).

16.3.4 Is Loss of Precision Alone Responsible For the Some-
times Wild Behavior of the Iterator?

As we have already seen, if there is an error in the feedback process, this error
is amplified by the squaring process. Therefore we are tempted to blame error
propagation alone for the chaotic behavior of the iterator. It is the case, but
in a much more subtle way that we might think. (In the previous lecture, this
subtlety lead to the Mandelbrot set and the Julia sets.) It then follows that
squaring alone does not explain anything!

If we choose x0 = 1.97 and c = −2, the iterator behaves chaotically, Figure
16.4.
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Figure 16.4: The “time series” of a chaotic response of the quadratic iterator.

But in Figure 16.2, we saw that the same iterator behave perfectly reason-
ably, albeit with a different constant c. We get the same perfect behavior if
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start the iterator with x0 = 1. Then the iterator converges immediately to
−1,−1, . . . . If we start with x0 = 2, the iterator will settle on 2, 2, . . . . In
other words, there exist values of x0, for which the same iterator (with the same
c) behaves perfectly tamely. We could demonstrate that this orderly behavior
of the iterator is an exception, i.e., for almost any x ∈ [−2, 2] the iterator be-
haves chaotically. We can start with a very good approximation of x0 = 2, e.g.,
x0 = 1.99999999, and the result is shown in Figure 16.5.
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Figure 16.5: The “time series” of a chaotic response of the quadratic iterator
for x0 = 1.99999999 (rounded in the title to 2).

This mess shows that the behavior of the iterator is not so straightforward.
Our difficulties are only amplified if we set c = −1 in the iterator. Then x0 = 0.1
or x0 = 0.25 or x0 = 0.754 yield the same answer, shown if Figure 16.2. The
feedback process is now perfectly stable.

Remark 16 The quadratic iterator may be either stable or wildly unstable
depending on its constant c and the starting point x0. The chaotic behavior
of this iterator has little to do with round-off error caused by the repetitive
squaring, but depends essentially the shape of the parabola, i.e., the on the
constant c. 2

16.3.5 Graphical representation of the feedback process

Here we will use a quadratic iterator on the interval x ∈ [0, 1]

xn+1 = axn(1− xn) (16.4)
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with the initial guesses on the same interval. The graph of the function y =
ax(1 − x) is a parabola with y = 0 at x = 0 and y = 0 at x = 1, independent
of the choice of a. The vertex of the parabola is at (1/2, a/4). Of course the
quadratic iterator (16.4) is equivalent to our basic iterator xn+1 = x2

n + c under
a change of scale. It is also equivalent to the logistic curve iterator under the
following change of scale:

a = r + 1 (16.5)

xn =
r

r + 1
pn
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Figure 16.6: The “time series” of a fixed-point response of the quadratic iterator.

There is a very simple way of constructing the graphical representation of
the iteration process. First we plot the diagonal and the parabola. Then we go
vertically from the initial guess (x0, 0) to the parabola (x0, x1), then horizontally
to the diagonal (x1, x1), then vertically to the parabola (x1, x2), and so on. Here
is the MATLAB code:

function GraphicalIteration(r,x0,nmax)
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Figure 16.7: The “time series” of a fixed-point response of the quadratic iterator.

% Perform graphical iteration with a quadratic iterator

% T.W. Patzek, E77N, April 28, 2001

%

SS = get(0, ’ScreenSize’);

figure(’Visible’,’on’, ’Units’,’Pixels’,...

’Resize’,’on’, ’Name’,’Graphical Iteration’, ’Numbertitle’,’off’,...

’Position’,[50,50,0.708*SS(3),0.85*SS(4)], ’BackingStore’, ’off’);

get(gca)

set(gca,’XLim’, [0,1], ’YLim’,[0,1]);

drawnow

c= colormap(hsv(nmax));

%axis equal

x=0:0.01:1;

a=r+1;

y=a*x.*(1-x);

hold on

plot(x,y,’color’,’k’);

plot([0,1],[0,1],’color’,’k’);

xi=x0;



16.3. QUADRATIC ITERATORS 203

for i=1:nmax

xip1=a*xi*(1-xi);

if (i==1)

plot([xi,xi],[0,xip1], ’color’, c(i,:));

else

plot([xi,xi],[xi,xip1],’color’, c(i,:));

end

plot([xi,xip1],[xip1,xip1],’color’, c(i,:));

xi=xip1;

end

s=sprintf(’r=%g, x_0=%g, N_{max}=%g’,r,x0,nmax)

title(s)

s=’x_0’;

text(x0+0.01,+0.015,s);

box on

set(gcf,’PaperPosition’,[1 1 4.5 4.2])

fn=sprintf(’qiterator2-%g%g.eps’,x0,r)

%print(’-depsc2’, fn)
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Figure 16.8: The “time series” of a cyclic response of the quadratic iterator.



204 CHAPTER 16. QUADRATIC ITERATOR: DON’T TRUST YOUR COMPUT ER∗

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=3, x
0
=0.1, N

max
=1000

x
0

Figure 16.9: The “time series” of a chaotic response of the quadratic iterator.

Figures 16.6 - 16.9 illustrate the results.

16.4 Exercises

1. Prove by induction that the logistic population equation (16.2) and the
quadratic iterator equation (16.1) are equivalent under the change of scale
given by Eq. (16.3).

2. Prove by induction that the quadratic iterator (16.1) and the quadratic
iterator (16.4) are equivalent under the change of scale (16.5).



Chapter 17

Polynomials and Taylor
Series

17.1 What Are You Going To Learn?

You will learn how to work with polynomials using MATLAB. In Chapter 17
folder on fttp:\\petroleum.berkeley.edu, you will find the following MATLAB
files:

taylorexp.m computes a Taylor Series expansion of the function f(x) =
exp(x) about x0 = 0 on the interval [a, b].

taylorlog.m computes a Taylor Series expansion of the function f(x) = ln(x)
about x0 = 1 on the interval [a, b].

17.2 Why Is It Important?

Operations involving polynomials appear in interpolation, extrapolation, re-
gression, numerical differentiation, numerical integration, just to name a few.
Taylor series is the most basic polynomial approximation of a smooth function.

17.3 Useful Background

Most commonly used functions, e.g., y = sin(x), y = ln(x), y = sinh(x), as well
as most results of physical measurements, cannot be calculated from a simple
algebraic formula, such as y = 3+2x. If we want to estimate a value, y = f(x),
of a function1, f , of a single independent variable2, x, we have three choices:

1Also called a dependent variable or ordinate.
2Also called abscissa.

205



206 CHAPTER 17. POLYNOMIALS AND TAYLOR SERIES

1. The function f(x) is sufficiently smooth, i.e., it has continuous first, sec-
ond, third, . . . , nth derivative over some closed interval [a, b] containing
the point x. In this case, we can choose a reference abscissa3 x0 ∈ [a, b].
We then evaluate the function and its derivatives only at x0, and form a
polynomial Taylor series to approximate the function value at an arbi-
trary abscissa x in the neighborhood [a, b] of x0. Thus, for a sufficiently
smooth function we can approximate its behavior in a neighborhood of a
given point, x0, from the knowledge of the function value and the values
of the function’s derivatives, all evaluated at x0.

2. It may happen that we do know exactly the values of the abscissa, x1, x2,
. . . , xn, but we do not know exactly the corresponding values of the ordi-
nate, y1 = f(x1),. . . , yn = f(xn). Then we may choose to approximate
the function globally with a simple known model, such as a straight line
or a polynomial, so as to minimize the sum of squares of errors of the
approximation of the function values. This approach is called the general
linear least squares fit, or regression, and it will be discussed in Lecture 19
and 20.

3. The function f(x) is merely continuous, but we know its values at many
points: (x1, y1), (x2, y2),. . . , (xn, yn). If x is between the largest and small-
est of the xi’s, we call the process of finding f(x) interpolation; otherwise,
we call this process extrapolation (Lecture 21).

Remark 17 Approximation with a Taylor series is never exact, in the sense
that we do not know the exact value of the function at any point in a closed
neighborhood of x0. We do know, however, the conditions which make our
approximation “close enough” to the function at all points x in this neighbor-
hood. 2

Remark 18 Interpolation is exact by definition, in the sense that the interpo-
lating function passes through each and every point. 2

Remark 19 Extrapolation is usually a bad practice, and it leads to completely
meaningless estimations in almost all cases. 2

There are two types of interpolants:

1. Global interpolants. The estimated value ŷ depends on all the points
(xi, yi), i = 1, 2, . . . , n. The Lagrange interpolation polynomial of degree
n− 1 is an example.

2. Local interpolants. The estimated value ŷ depends only on the points in the
neighborhood of x. The piecewise linear, quadratic or cubic interpolations
are examples.

3For example, x = 0 or x = 1, at which the function and its derivatives are especially
simple to calculate.
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17.4 Polynomials

17.4.1 Representation

We write

Pn(x) = a0 + a1x + a2x
2 + · · ·+ anxn =

n∑

i=0

aix
i.

MATLAB uses a different notation:

Pn(x) = an+1x
n + anxn−1 + · · ·+ a3x

2 + a2x + a1,

and therefore the coefficients can be represented in a row vector:

a = [an+1, an, . . . , a3, a2, a1].

Remark 20 A polynomial of degree n has n + 1 coefficients.

17.4.2 Evaluation of polynomials

Consider the polynomial P (x) = 9x3 − 5x2 + 3x + 7, and suppose we want to
evaluate this polynomial at x = 2. You should never write something like this:

>> 9*2^3-5*2^2+3*2+7

Quoting the marvellous book Numerical Recipes by Press et al. [28]:

Come the (computer) revolution, all persons found guilty of such
criminal behavior will be summarily executed and their programs
won’t be!

To evaluate a polynomial at a point x, MATLAB has a built-in function:
polyval. Study the following commands and their corresponding output:

>> P = [9,-5,3,7];

>> polyval(P,2)

ans =

65

>> x = [-2:.05:2];

>> plot(x,polyval(P,x))
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Figure 17.1: MATLAB plot of the polynomial P (x) = 9x3 − 5x2 + 3x + 7

17.4.3 Addition of polynomials

We add or subtract polynomials by adding or subtracting the coefficients of like
powers of x. Given the polynomials

Pn(x) =
n∑

i=0

aix
i, Qn(x) =

n∑

i=0

bix
i,

the sum of the two is

Sn(x) = Pn(x) + Qn(x) =

n∑

i=0

(ai + bi)x
i.

Example: Let

P (x) = 9x3 − 5x2 + 3x + 7

Q(x) = 0x3 + 6x2 − 1x + 2

>> P

P =

9 -5 3 7

>> Q = [0,6,-1,2]

Q =

0 6 -1 2

>> S=P+Q

S =

9 1 2 9

>> plot(x,polyval(P,x),’-.’,’LineWidth’,1.5)

>> hold on
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Figure 17.2: MATLAB plot of the polynomials P (x) = 9x3− 5x2 + 3x+ 7 (−·),
Q(x) = 6x2 − x + 2 (· · · ), and S(x) = P (x) + Q(x) (−)

>> plot(x,polyval(Q,x),’:’,’LineWidth’,1.5)

>> plot(x,polyval(S,x),’-’,’LineWidth’,2)

17.4.4 Multiplication (convolution) of polynomials

We shall explain convolution of polynomials with an example, rather than with
a general formula. Consider the same polynomials P (x) and Q(x) above. Their
convolution (please note the operator ⋆) is also another polynomial, given by
the usual distributive law:

C(x) = P (x) ⋆ Q(x)

= (9x3 − 5x2 + 3x + 7)(6x2 − x + 2)

= 54x5 − 30x4 + 18x3 + 42x2

− 9x4 + 5x3 − 3x2 − 7x

+ 18x3 − 10x2 + 6x + 14

= 54x5 − 39x4 + 41x3 + 29x2 − x + 14

MATLAB has the built-in function conv to perform convolution of polynomials:

>> P = [9,-5,3,7]

P =

9 -5 3 7

>> Q = [6,-1,2]

Q =

6 -1 2
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>> conv(P,Q)

ans =

54 -39 41 29 -1 14

17.4.5 Division (deconvolution) of polynomials

In order to understand division of polynomials, we need to understand division
of integers first. If we did not know how to operate with rational numbers, the
precise meaning of 19

5 is as follows: there exist two numbers, 3 and 5 (quotient
and remainder, respectively), such that

19 = 5× 3
︸︷︷︸

quot

+ 4
︸︷︷︸

rem

The numbers involved in the equation above are all integers. Division of poly-
nomials works in the same way. Given two polynomials, U(x) and V (x), there
exist two polynomials Q(x) and R(x), such that:

U(x)

V (x)
⇐⇒ U(x) = V (x) ⋆ Q(x) + R(x)

For example, if U(x) = 2x3 + x2 + 5, V (x) = 2x + 3, then

2x3 + x2 + 5 = (2x + 3) ⋆ (x2 − x + 1.5
︸ ︷︷ ︸

quot

) + ( 0.5
︸︷︷︸

rem

)

MATLAB provides the function deconv to calculate the quotient and the re-
mainder of a division of polynomials. For the example above:

>> U

U =

2 1 0 5

>> V

V =

2 3

>> [Q,R]=deconv(U,V)

Q =

1.0000 -1.0000 1.5000

R =

0 0 0 0.5000

17.4.6 Rational functions

These are functions of the form

R(x) =
Pn(x)

Qm(x)

where Pn(x) and Qm(x) are polynomials. In general R(x) is not a polynomial,
but can be evaluated by evaluating each polynomial separately.



17.5. TAYLOR SERIES EXPANSION 211

17.5 Taylor series expansion

Figure 17.3: Brook Taylor was born on August 18, 1685, in Edmonton, Mid-
dlesex, England, and died on December 29, 1731, in Somerset House, London,
England.

The idea behind Taylor series4 is to approximate a function f(x) in the
neighborhood of a point x0 using a polynomial. The Taylor series expansion
of a function f(x) (which is assumed to be sufficiently differentiable) about a
point x0 is:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 +
f ′′′(x0)

6
(x− x0)

3 + · · ·

+
f (n)(x0)

n!
(x − x0)

n + Rn+1

The term Rn+1 is the remainder after n terms. Note that only the value of the
function and its derivatives at one point is needed.

You may wonder where do the awkward coefficients f (i)(x0)/i! come from.
They come from imposing that the Taylor series should be exact if the func-
tion f(x) were actually a polynomial. Suppose we have

f(x) = a0 + a1(x − x0) + a2(x− x0)
2 + a3(x− x0)

3 + · · ·

We can compute the coefficients a0, a1, a2, a3 . . . by evaluating the function
and its derivatives at the point x = x0. This is how it works:

f(x0) =
[
a0 + a1(x− x0) + a2(x− x0)

2 + a3(x− x0)
3 + · · ·

]

x0
= a0

f ′(x0) =
[
a1 + 2a2(x− x0) + 3a3(x− x0)

2 + · · ·
]

x0
= a1

f ′′(x0) = [2a2 + 3 · 2a3(x− x0) + · · · ] x0
= 2a2

f ′′′(x0) = [3 · 2a3 + · · · ] x0
= 3 · 2a3

4Published by Brook Taylor in 1715 in his Methodus incrementorum directa et inversa.
When x0 = 0, the Taylor series is called Mclaurin series. In fact, the Taylor series had
been known to James Gregory and Jean Bernoulli long before Taylor published it [2].



212 CHAPTER 17. POLYNOMIALS AND TAYLOR SERIES

so we get the general relation

ai =
f (i)(x0)

i!
, i = 0, . . . , n

and the formula for the Taylor series follows.

17.5.1 Example 1. Exponential function

This is the easiest possible example. We want to obtain the Taylor series ex-
pansion of f(x) = exp(x) about x0 = 0. In this case

f(x) = f ′(x) = f ′′(x) = · · · = f (n)(x) = exp(x),

and thus

f(0) = f ′(0) = f ′′(0) = · · · = f (n)(0) = exp(0) = 1.

Hence, the Taylor series is:

exp(x) = 1 + x +
x2

2
+

x3

6
+ · · · =

∞∑

i=0

xi

i!
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Figure 17.4: Taylor series approximation of f(x) = exp(x).
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17.5.2 Example 2. Natural logarithm

We now consider the Taylor series expansion of f(x) = ln(x) about x0 = 1.
In this case

f(x) = ln(x) −→ f(1) = 0

f ′(x) = x−1 −→ f ′(1) = 1

f ′′(x) = −x−2 −→ f ′′(1) = −1

f ′′′(x) = 2x−3 −→ f ′′′(1) = 2

f ′′′′(x) = −6x−4 −→ f ′′′′(1) = −6

. . . . . .

f (i)(x) = (−1)i−1(i− 1)! x−i −→ f (i)(1) = (−1)i−1(i− 1)!

Hence, the Taylor series is:

ln(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
+ · · · =

∞∑

i=1

(−1)i−1 (x− 1)i

i
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Figure 17.5: Taylor series approximation of f(x) = ln(x).
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17.6 Taylor Series for e
x

function taylorexp(a,b,n)

%

% Function which computes a Taylor Series

% expansion of the function f(x)=exp(x)

% about x0=0 on the interval [a,b]

%

% Input: a = lower limit of the interval

% b = upper limit of the interval

% n = no of terms of the expansion

%

% Output: none

% (the function generates a plot)

%

% Author: Ruben Juanes

% Last modified: 2/27/2001

%

% data set

np = 101;

x = linspace(a,b,np);

% polynomial coeffs of the Taylor Series

coeff = [n:-1:0];

for i = 1:n+1

coeff(i) = 1/factorial(coeff(i));

end

texp = polyval(coeff,x);

% plot the approximation

plot(x,exp(x),’-’,’LineWidth’,2)

hold on

plot(x,texp,’-.’,’LineWidth’,1.5)

text(x(np),texp(np),[’n = ’,num2str(n)])

title(’Taylor Series for f(x)=exp(x)’)

xlabel(’x’),ylabel(’y’)

17.7 Taylor Series for lnx

function taylorlog(a,b,n)

%

% Function which computes a Taylor Series

% expansion of the function f(x)=log(x)

% about x0=1 on the interval [a,b]

%

% Input: a = lower limit of the interval

% b = upper limit of the interval

% n = no of terms of the expansion

%
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% Output: none

% (the function generates a plot)

%

% Author: Ruben Juanes

% Last modified: 2/27/2001

%

% data set

np = 101;

x = linspace(a,b,np);

xi = x-1;

% polynomial coeffs of the Taylor Series

coeff(n+1) = 0;

vsign = 1;

for i = n:-1:1

coeff(i) = vsign*1/(n+1-i);

vsign = -vsign;

end

tlog = polyval(coeff,xi);

% plot the approximation

figure(1)

plot(x,log(x),’-’,’LineWidth’,2)

hold on

plot(x,tlog,’-.’,’LineWidth’,1.5)

text(x(np),tlog(np),[’n = ’,num2str(n)])

title(’Taylor Series for f(x)=log(x)’)

xlabel(’x’),ylabel(’y’)



216 CHAPTER 17. POLYNOMIALS AND TAYLOR SERIES



Chapter 18

Solution of Systems of
Linear Equations

18.1 What Are You Going To Learn?

In this chapter you will learn the rudiments of solving small systems of linear
equations. Such systems arise in many practical problems in engineering and
science.

• What are linear equations?

• Determined systems of linear equations

• Underdetermined systems of linear equations

• Overdetermined systems of linear equations

• Example: an electric circuit problem

The Chapter 18 folder on fttp:\\petroleum.berkeley.edu has the following files:

circuit.m solves an electric circuit problem from Palm.

lseq.m shows the behavior of 2x2 systems of linear equations: determined,
underdetermined and overdetermined.

18.2 Why Is It Important?

Linear algebra is the bread and butter of engineering and science. In the end,
we always solve a system of linear algebraic equations or linearize nonlinear
equations locally and then solve the resulting linear equations. Thousands of
books have been written on this subject; I personally like Berkeley’s Demmel [8],
Householder [17] and Higham [16].
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18.3 Linear systems of equations

In this book we shall consider the following two standard problems of linear
algebra:

• Solve a system of linear equations, Ax = b. Here A is a known n-by-n
real or complex matrix, which is nonsingular (its determinant is not equal
to zero); b is an n-by-1 known column vector; and x is an n-by-1 column
vector of unknowns.

• Solve a least square problem by computing the vector x that minimizes
‖Ax− b‖2. Here A is m-by-n, b is m-by-1, x is n-by-1, and

‖Ax− b‖2 ≡

√
√
√
√

i=m∑

i=1

|(Ax)i − bi|2

is called the two-norm of vector Ax− b, and we have omitted the column
index of the components of the two column vectors under the square root,
i.e., bi = bi1 etc.. If m > n, there are more equations than unknowns,
the system of equations is overdetermined, and in general we cannot solve
Ax = b exactly. If m < n, the system is underdetermined, and has no or
infinitely many solutions.

18.3.1 Introduction

Systems of linear equations look like this:

a11x1 + a12x2 + a13x3 + · · · a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · a2nxn = b2

...
...

... . . .
...

am1x1 + am2x2 + am3x3 + · · · amnxn = bm

.

Using matrix-vector notation:








a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

... . . .
...

am1 am2 am3 . . . amn















x1

x2

...
xn








=








b1

b2

...
bm








,

or in compact form

A
︸︷︷︸

m×n

x
︸︷︷︸

n×1

= b
︸︷︷︸

m×1

,

where A is the matrix of coefficients, x is the vector of unknowns, and b is the
vector of independent terms (the right hand side vector).

You need to know the following preliminaries before we start our discussion
on the possible different cases which may arise.
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• Determinant of a square matrix. If the determinant is zero, the matrix is
singular, i.e., one or more rows may be expressed as a linear combination
of other rows. The determinant can be computed in MATLAB with the
function det.

• Rank of a rectangular matrix. The rank of a matrix is the number of lin-
early independent rows or columns, whichever is lower, i.e., the size of the
maximum nonzero sub-determinant. The matrix rank can be computed in
MATLAB with the function rank.

Example. Consider the following two matrices,

A =

(
1 2
3 4

)

, B =





2 −4 5
−4 −2 3
2 6 −8



 .

>> A = [1,2;3,4];

>> B = [2,-4,5;-4,-2,3;2,6,-8];

>> det(A)

ans =

-2

>> rank(A)

ans =

2

>> det(B)

ans =

0

>> rank(B)

ans =

2

18.3.2 Determined systems

When the number of linearly independent equations is equal to the number of
unknowns, m = n, this system of linear equations is determined. The precise
condition is

rank(A) = rank([A, b]) = n,

where [A, b] is a n × (n + 1) matrix, which consists of the original matrix A
augmented with the right hand side vector b. In this case, the solution x exists
and is unique.

Example. Consider the following 2× 2 system of equations:

(
1 2
3 −4

)(
x
y

)

=

(
5
6

)

.



220 CHAPTER 18. SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Here

A =

(
1 2
3 −4

)

, [A, b] =

(
1 2 5
3 −4 6

)

Each equation represents a straight line in the x− y plane. The first line is
given by y = (5 − x)/2, and the second one is y = (3x − 6)/4. The solution of
the system is given by the location where the lines intersect (Figure 18.1).

0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(3.2,0.9)

rank(A) = 2

rank([A,b]) = 2

x

y

Figure 18.1: Graphical representation of a 2× 2 determined system.

18.3.3 Underdetermined systems

In this case, the system does not contain enough information to solve for the
unknowns, usually because there are fewer equations than unknowns (m < n)
or because some of the equations are linearly dependent. We have two subcases.

Underdetermined systems with no solution

This happens when

rank(A) < rank([A, b]) = n.

Example. Consider the following 2× 2 system of equations:

(
1 −2
2 −4

)(
x
y

)

=

(
5
6

)

.

Here

A =

(
1 −2
2 −4

)

, [A, b] =

(
1 −2 5
2 −4 6

)
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Each equation represents a straight line in the x − y plane. The first line is
given by y = (x − 5)/2, and the second one is y = (x − 3)/2. These lines are
parallel and never intersect (Figure 18.2).

Underdetermined systems with infinite solutions

This happens when
rank(A) = rank([A, b]) < n.

Example. Consider the following 2× 2 system of equations:
(

1 −2
2 −4

)(
x
y

)

=

(
3
6

)

.

Both equations represent the same line in the x − y plane. Any point on that
line is a solution of the system (Figure 18.3).

0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

rank(A) = 1

rank([A,b]) = 2

x

y

Figure 18.2: A 2× 2 underdetermined system with no solution.

18.3.4 Overdetermined systems

The system has more independent equations than unknowns (m > n). The
precise condition is

n = rank(A) < rank([A, b]).

A solution does not exist.

Example. Consider the following 3× 2 system of equations:




1 2
3 −4
3 2





(
x
y

)

=





5
6
8



 .
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0 1 2 3 4
−2.5

−2

−1.5
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0

0.5

rank(A) = 1

rank([A,b]) = 1

x

y

Figure 18.3: A 2× 2 underdetermined system with infinite solutions.

Each equation represents a straight line in the x− y plane. There is not a point
(x, y) at which all three lines intersect each other (Figure 18.4).
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y

Figure 18.4: Graphical representation of a 3× 2 overdetermined system.
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18.3.5 Solving systems of equations with MATLAB

We now concentrate on the usual case of a system with square (m = n) and
nonsingular (det(A) 6= 0) matrix:

A
︸︷︷︸

n×n

x
︸︷︷︸

n×1

= b
︸︷︷︸

n×1

.

There are two ways to solve the system:

1. Using Gaussian elimination: this numerical technique is similar to the way
you are used to when solving systems, i.e., elimination and substitution.
In MATLAB this is done with the left division operator (\):

>> x = A\b

This is a very efficient method for systems of moderate size.

2. Using the inverse matrix : The inverse of a nonsingular square matrix A
is a matrix A−1 such that

A−1A = AA−1 = I =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

0 0 1








,

where I is the identity matrix. Therefore, we can write

Ax = b −→ x = A−1b.

This is done in MATLAB using the matrix inverse function (inv):

>> x = inv(A)*b

This operation is computationally much more expensive than Gaussian
elimination and is never used in practice (just for academic purposes and
very small systems).

Example: We want to solve for the currents i1 through i5 in the circuit
below (Figure 18.5) given the values of the resistances R1 to R5 and the two
applied voltages V1, V2.

Applying Kirchhoff’s voltage law for each loop and charge conservation at
the nodes, we end up with the following system of equations

R1i1 +R4i4 = V1

R2i2 −R4i4 +R5i5 = 0
−R3i3 +R5i5 = V2

i1 −i2 −i4 = 0
i2 −i3 −i5 = 0
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−
+

V1

R1
-i1

?i4

R4

R2
-i2

?i5

R5

R3
-i3

−
+

V2

Figure 18.5: Electric circuit.

or in matrix-vector form








R1 0 0 R4 0
0 R2 0 −R4 R5

0 0 −R3 0 R5

1 −1 0 −1 0
0 1 −1 0 −1

















i1
i2
i3
i4
i5









=









V1

0
V2

0
0









Below we include the MATLAB script file to calculate the currents in this electric
circuit.

%

% Simple script file to solve an

% electric circuit

%

% Reference: Palm III, page 328

%

% Author: Ruben Juanes

% Last revised: 3/8/01

clear all

close all

% Data

R1 = 5; R2 = 100; R3 = 200; R4 = 150; R5 = 250;

V1 = 100; V2 = 50;

% Set up matrix-vector

A = [R1, 0, 0, R4, 0;...

0,R2, 0,-R4,R5;...

0, 0,-R3, 0,R5;...

1,-1, 0, -1, 0;...

0, 1,-1, 0, -1];
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b = [V1; 0; V2; 0; 0];

x = A\b;

disp(’currents = ’)

disp(x)

And here is the output:

>> circuit

currents =

0.9544

0.3195

0.0664

0.6349

0.2531
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Chapter 19

Least Squares Fit to a
Straight Line

19.1 What Are You Going To Learn?

You will learn how to fit many data points to a simple model, a straight line.
In Chapter 20 you will learn how to fit your data to a parabola, or some other
polynomial of degree much less than the number of data points.

In Chapter 19 folder on fttp:\\petroleum.berkeley.edu, you will find the fol-
lowing MATLAB files:

cigarettes.m generates Sample, a structure containing the following fields:
Name, Weight (g), Nicotine (mg) , Tar (mg) and CO (mg). The data
presented there are taken from Mendenhall and Sincich.

CigDemo.m loads the cigarette data into the Sample structure, performs rudi-
mentary statistics and (covariances and correlation coefficients) and plots
the results using plotcig.

plotcig.m generates standard plots for the cigarette data.

LLL.m performs the weighted least square fit of data with a linear model y =
a + bx.

LSDemo.m Generates examples of least square fits using LLL and the MAT-
LAB standard polyfit, and plots the results.

If you are interested in learning more about statistics, please consult my
all-time favorite by Mandel, The Statistical Analysis of Experimental Data
[22]. My daughter’s AP Statistics handbook, Introduction to the Practice of
Statistics [24], is also a good choice. You can learn a lot about regression from
the Applied Regression Analysis [9].

227
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19.2 Why Is It Important?

Electronic sensors and computers flood1 the engineers and scientists with “infor-
mation” that is not readily useful. We measure ever more parameters of every
conceivable natural or industrial process at ever-shorter intervals. As a result,
the raw numbers inundate us, and often we cannot grasp their meaning. What
we really want is to distill the ugly numbers down to a few simple relationships
hidden in them. This is no simple task.

In particular, the statistical method of least squares can be used to examine
vast data sets and to draw meaningful conclusions about the dependencies that
may exist among the various response variables and explanatory variables in
these sets. This method of analysis is called regression2.

19.3 Useful Definitions

Definition 20 Random variable is a variable whose numerical value is an out-
come of a random process. A measurement whose outcome is subject to random
error is a random variable. 2

Definition 21 Mean, Variance, Standard Deviation: Let y1, y2, y3, . . . , yN rep-
resent a (random) sample of size N from any population3. The following for-
mulæ express the sample estimates of the population mean, µ̃, and the variance,
σ2, respectively:

Estimate of µ̃ = µ =
y1 + y2 + · · ·+ yN

N
=

∑N
i=1 yi

N

Estimate of σ2 = s2 =

∑N
i=1(yi − µ)2

N − 1

(19.1)

The sample estimate of a standard deviation, σ, generally denoted by s, is:

Estimate of σ = s =

√
∑N

i=1(yi − µ)2

N − 1
(19.2)

Note that sample estimates of mean, variance and standard deviation may or
may not be representative of the corresponding parameters of the population.
More advanced statistics can help you to determine whether a sample is repre-
sentative of a population. 2

1Recall E77 Introduction and Lecture 1, as well as the book by Roszak [29].
2The word “regression” was introduced by an English anthropologist Sir Francis Galton

at the turn of the 19th century. Galton studied heredity and observed that the children of tall
parents were taller than average, but not as tall as their parents. He called this phenomenon
“regression towards mediocrity”; hence the name of the statistical method to be summarized
in this lecture.

3Go to Mandel [22] for further explanations.
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Definition 22 Covariance is a measure of statistical association between two
random variables. Let y1, y2, y3, . . . , yN and z1, z2, . . . , zN be two random vari-
ables4. Formally, the covariance is defined as the mean of the product of (y−µy)
and (z − µz):

Cov(y, z) =

∑N
i=1(yi − µy)(zi − µz)

N − 1
(19.3)

Note that the covariance pertains to populations, but its value is estimated from
samples. 2

Definition 23 The coefficient of correlation of random samples y and z is de-
fined as

r(y, z) =
Cov(y, z)

sysz
(19.4)

By using z = y and z = −y, one can show that the correlation coefficient is
always between -1 and 1. 2

Let us now look5 at a sample of the population of all cigarettes sold in
the U.S., Table 19.1. The means, variances and standard deviations of the
measurements included in the sample are listed in Table 19.1, and the respective
covariances and correlation coefficients are listed in Table 19.2.

The tar content is positively correlated with carbon monoxide (CO) pro-
duced and nicotine content. The nicotine content is also positively correlated
with CO produced. The respective correlation coefficients are above 0.92, indi-
cating significant positive correlation. The cigarette weight and CO produced
are also positively correlated, but the correlation is poor (r = 0.46). The results
are plotted in Figure 19.1.

In the example above, we have divided the sample into two types of variables.
In each plot, a single independent or explanatory variable (tar content, CO
produced, or cigarette weight) was used to fit a single dependent or response
variable (nicotine content, CO produced or tar content).

The independent variable can either be set to a desired value (e.g., cigarette
weight or tar content) or else take values that can be measured but cannot be
controlled (e.g., CO emissions). As a result of changes that are deliberately
made, or just take place in the independent variable, the dependent variable
takes on different values. Here we want to find out if a single dependent variable
follows a simple model function of a single independent variable or is unaffected
by the changes of the independent variable:

Response variable =

Model function of explanatory variable + Random error

4For example, yi and zi are the measurements of two different parameters of a process
sampled at discrete times t = ti, i = 1, 2, . . . , N . Each measurement is subject to random
error.

5This data set was downloaded through the Internet from the following source: go-
pher://jse.stat.ncsu.edu/11/jse under the folder JSE Dataset Archive. The data presented
there is taken from Mendenhall and Sincich [23] and is a subset of the data produced by
the Federal Trade Commission. It was submitted by Lauren McIntyre, Department of
Statistics, North Carolina State University.
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Table 19.1: Tar and nicotine contents, weight, and carbon monoxide produced
by the popular cigarettes.

Brand Tar (mg) Nicotine (mg) Weight (g) CO (mg)

Alpine 14.1 0.86 0.9853 13.6

Benson & Hedges 16.0 1.06 1.0938 16.6

Bull Durham 29.8 2.03 1.1650 23.5

Camel Lights 8.0 0.67 0.9280 10.2

Carlton 4.1 0.40 0.9462 5.4

Chesterfield 15.0 1.04 0.8885 15.0

Golden Lights 8.8 0.76 1.0267 9.0

Kent 12.4 0.95 0.9225 12.3

Kool 16.6 1.12 0.9372 16.3

L & M 14.9 1.02 0.8858 15.4

Lark Lights 13.7 1.01 0.9643 13.0

Marlboro 15.1 0.90 0.9316 14.4

Merit 7.8 0.57 0.9705 10.0

Multi Filter 11.4 0.78 1.1240 10.2

Newport Lights 9.0 0.74 0.8517 9.5

Now 1.0 0.13 0.7851 1.5

Old Gold 17.0 1.26 0.9186 18.5

Pall Mall Light 12.8 1.08 1.0395 12.6

Raleigh 15.8 0.96 0.9573 17.5

Salem Ultra 4.5 0.42 0.9106 4.9

Tareyton 14.5 1.01 1.0070 15.9

TRUE 7.3 0.61 0.9806 8.5

Viceroy Rich Light 8.6 0.69 0.9693 10.6

Virginia Slims 15.2 1.02 0.9496 13.9

Winston Lights 12.0 0.82 1.1184 14.9

Mean, µ 12.2 0.88 0.9703 12.5

Variance, s2 32.1 0.13 0.0077 22.5

Standard Deviation, s 5.7 0.35 0.0877 4.7

Table 19.2: Covariances and correlation coefficients

Nic. vs Tar. Nic. vs CO CO vs Weight Tar vs CO

Cov 1.959 1.554 0.1929 25.71

r 0.9766 0.9259 0.4640 0.9574
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Figure 19.1: Least square fits of the cigarette data in Table 19.1

The model function is assumed to be known (in practice we can test several
simple functions and pick the one that works best, see Lecture 16). The dis-
tribution of the random errors is usually assumed to be normal (it follows a
bell curve) with zero mean and a standard deviation defined by the uncertainty
of a given measurement, i.e., the individual measurements are assumed to be
unbiased and their errors are assumed to be independent.

Remark 21 The least square fit does not honor the individual data points, but
only their average trend. 2

19.4 Fitting Data to a Straight Line

This section follows closely Section 15.2 in the Numerical Recipes in C [28] .
Suppose that we have N measurements of a response variable (e.g., nicotine
content), {yi}, at discrete values of an explanatory variable (e.g., tar content or
time), {xi}, where N is very large. At first, we want to consider the simplest
possible model of our data, a straight line:

y(x) = a0 + a1x = y(x; a0, a1) (19.5)
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This problem is called linear regression. We assume that the uncertainty (noise),
σi, associated with each measurement yi is known6, and that we know exactly
each value of xi.

To measure how well our model agrees with the data, we use a simple merit
function

χ2(a0, a1) =
N∑

i=1

(
yi − a0 − a1xi

σi

)2

(19.6)

This particular function is called in statistics the chi-square function or the
goodness-of-fit function.

Equation (19.6) is minimized to obtain a0 and a1. At its minimum the
derivatives of χ2(a0, a1) with respect to a0 and a1 vanish:

∂χ2

∂a0
= −2

N∑

i=1

yi − a0 − a1xi

σ2
i

= 0

∂χ2

∂a1
= −2

N∑

i=1

xi(yi − a0 − a1xi)

σ2
i

= 0

(19.7)

Equations (19.7) can be rearranged in a more convenient form if we define the
following parameters:

S ≡
N∑

i=1

1

σ2
i

, Sx ≡
N∑

i=1

xi

σ2
i

, Sy ≡
N∑

i=1

yi

σ2
i

Sxx ≡
N∑

i=1

x2
i

σ2
i

, Sxy ≡
N∑

i=1

xiyi

σ2
i

(19.8)

With definitions (19.8), Eqs. (19.7) become

a0S + a1Sx = Sy

a0Sx + a1Sxx = Sxy

(19.9)

The solution of these two linear equations in a0 and a1 is simply

D ≡ SSxx − (Sx)2

a0 =
SxxSy − SxSxy

D

a1 =
SxyS − SxSy

D

(19.10)

Equation (19.10) gives the solution for the best-fit model parameters a0 and a1.

6In many texts, these uncertainties are taken to be equal and scaled to one, i.e., all σi = 1.
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19.5 Normal Equations

The individual equations in the merit function (19.6) can be written as

1

σi
a0 +

xi

σi
a1 =

yi

σi
, i = 1, 2, . . . , N (19.11)

or in matrix-vector form








1/σ1 x1/σ1

1/σ2 x2/σ2

...
...

1/σN xN/σN








︸ ︷︷ ︸

(N×2) X

(
a0

a1

)

︸ ︷︷ ︸

(2×1) a

=








y1/σ1

y2/σ2

...
yN/σN








︸ ︷︷ ︸

(N×1) y

Xa = y

(19.12)

Remark 22 The system of linear equations (19.12) has 2 unknowns and N ≫ 2
equations. This system is overdetermined and it cannot be solved for a0 and a1.
However, the “best” values of a0 and a1 can be found that minimize the sum of
squares of the deviations between the straight line fit and the data; hence the
name “least square fit.” 2

In matrix-vector form, the 2× 2 system of equations (19.9) is
(∑N

i=1
1

σ2

i

∑N
i=1

xi

σ2

i
∑N

i=1
xi

σ2

i

∑N
i=1

x2

i

σ2

i

)

︸ ︷︷ ︸

(2×2) A

(
a0

a1

)

︸ ︷︷ ︸

(2×1) a

=

( ∑N
i=1

yi

σ2

i∑N
i=1

xiyi

σ2

i

)

︸ ︷︷ ︸

(2×1) b

.

Here a = [a0, a1]
T is the vector of the unknown fit parameters. These equations

can also be written in a more familiar form by noting that:

A
︸︷︷︸

(2×2)

=

(
1/σ1 1/σ2 . . . 1/σN

x1/σ1 x2/σ2 . . . xN/σN

)

︸ ︷︷ ︸

(2×N)








1/σ1 x1/σ1

1/σ2 x2/σ2

...
...

1/σN xN/σN








︸ ︷︷ ︸

(N×2)

= XT X,

b
︸︷︷︸

(2×1)

=

(
1/σ1 1/σ2 . . . 1/σN

x1/σ1 x2/σ2 . . . xn/σN

)

︸ ︷︷ ︸

(2×N)








y1/σ1

y2/σ2

...
yN/σN








︸ ︷︷ ︸

(N×1)

= XT y,

so we get the final form of the Normal Equations :

XT Xa = XT y. (19.13)
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Remark 23 The reason for multiplying both sides of the overdetermined sys-
tem Xa = y by XT is to minimize the sum of the errors squared (thus the name
least squares), not just to get a determined system (the latter task could be
achieved with infinitely many different 2×N arrays). 2

19.6 Analysis of Variance

We are not done yet. We must still estimate the following:

1. How much of the variation in the dependent variable data has been ex-
plained by the regression line. (From Figure 19.1 we see that the CO emis-
sions are not explained well by the “best” linear function of the cigarette
weight. On the other hand, the nicotine content depends linearly on the
tar content.)

2. What are the probable uncertainties in the estimates of a0 and a1. (Ob-
viously the measurement errors in the data must introduce uncertainty
in the determination of the model parameters. If the measurements are
independent, then each contributes its own bit of uncertainty to the pa-
rameters.)

xxm

ym

y

ˆ
iy

iy

ix

i yy m-
ˆ

i i ie y y= -

ˆ
i yy m-

Figure 19.2: Geometry of identity (19.15).

19.6.1 How Good is the Correlation?

Let us denote the least square prediction of the value of yi as ŷi, i.e.,

ŷi = a0 + a1xi (19.14)
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Then the following identity holds:

(yi − µy) = (yi − ŷi) + (ŷi − µy). (19.15)

Geometrically, Eq. (19.15) means that the deviation of a measured value, yi,
from the mean of the measured values, µy, is the sum of the residual or error
of approximation of the measured value, ei := yi − ŷi, and of the deviation of
the the approximate value, ŷi, from the mean, µy, Figure 19.2.

If we square both sides of Eq. (19.15) for each i and add all terms i =
1, 2, . . . , N , we obtain (See Exercise 4):

N∑

i=1

(yi − µy)2 =

N∑

i=1

(yi − ŷi)
2 +

N∑

i=1

(ŷi − µy)2 (19.16)

In words, Eq. (19.16) can be explained as follows:
(

Sum of squares
about the mean

)

=

(
Sum of squares
about the LS fit

)

+

(
Sum of squares
due to LS fit

)

(19.17)

Now it is clear the some of the variation of the y’s about their mean can be
ascribed to the regression line, and some,

∑
(yi − ŷi)

2, to the sad fact that the
actual measurements do not all follow a straight line. If they all did, then the
sum of squares about the regression (also called the residual sum of squares)
would be zero and the correlation would be perfect! The imperfection of the
correlation is measured by the R2 statistic:

R2 =
SS due to LS fit given a0

Total SS, corrected for µy
=

∑N
i=1(ŷi − µy)2

∑N
i=1(yi − µy)2

(19.18)

Therefore R2 measures the proportion of the total variation about the mean,
µy, explained by the least squares fit.

19.6.2 What Are the Uncertainties in a and b?

The analysis of variance of a and b is too involved to be followed here, but the
result is [9, 28]:

σ2
a0

=
N∑

i=1

(
Sxx − Sxxi

Dσi

)2

=
S2

xxS − 2Sxx(Sx)2 + (Sx)2Sxx

D2
=

Sxx

D

σ2
a1

=

N∑

i=1

(
Sxi − Sx

Dσi

)2

=
S2S2

xx − 2S(Sx)2 + (Sx)2S

D2
=

S

D

(19.19)

These are the variances in a0 and a1, respectively. We will need one more
number to characterize the probable uncertainty of the parameter estimation.
That number is the covariance of a0 and a1, and it is given by

Cov(a0, a1) = −Sx

D
(19.20)
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Usually, the covariance is normalized to obtain the coefficient of correlation
between the uncertainty in a0 and the uncertainty in a1:

ra0a1
=

Cov(a0, a1)

σa0
σa1

= − Sx√
SSxx

(19.21)

19.7 Better Least Squares Equations

Formulæ (19.10) are susceptible to roundoff error. A better way of writing them
is:

ti =
1

σi

(

xi −
Sx

S

)

, i = 1, 2, . . . , N (19.22)

and

Stt =
N∑

i=1

ti (19.23)

Then (please verify by substitution)

a1 =
1

Stt

N∑

i=1

tiyi

σi

a0 =
Sy − Sxa1

S

(19.24)

In addition, the uncertainties in a0 and a1 can be estimated as:

σ2
a0

=
1

S

(

1 +
S2

x

SStt

)

σ2
a1

=
1

Stt

Cov(a0, a1) = − Sx

SStt

ra0a1
=

Cov(a0, a1)

σa0
σa1

(19.25)

19.8 Example of Least Square Fit

The code is listed in Section 19.10 and 19.11. The function to be fit with least
squares is as follows:

σi = 10(rand + 10−5)

ei = Random Number from ND(µ = 0, σ = σi)

yi = −2.125xi + 4 + ei,

i = 1, 2, . . . , N

(19.26)

where rand is the uniform random distribution function, and ND is the normal
distribution probability function. The results are shown in Figures 19.3 and
19.4.
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Figure 19.3: Unweighted least square fit using MATLAB’s polyfit and polyval

functions. The green lines are bounds on at least 50% of the data points being
closer to the fit.
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Figure 19.4: Weighted least square fit of data in Figure 1, using the LLL.m

function. Note that the fit is closer to the main linear trade in the data than
the MATLAB fit. This is because the outliers are weighted less. The two green
lines are fit with plus and minus 3 standard deviations in the slope and intercept.

19.9 Exercises

1. Download cigarette.m and calculate the sample statistics using MAT-
LAB.
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2. Perform the least square linear fits of the data using polyfit, and plot
the results using polyval.

3. Show that the sum of errors of the least squares approximation is zero:

N∑

i=1

ei ≡
N∑

i=1

(yi − ŷi) = 0

4. Bonus: Show that the cross-product term,
∑N

i=1(ŷi − µy)(yi − ŷi), in
Eq. (19.16) vanishes. Hint: Use the equation for a1, and the following
identities, (ŷi − µy) = a1(xi − µx), and yi − ŷi = yi − µy − a1(xi − µx).
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19.10 Least Square Fit Demo

function LSDemo()

% Generates examples of least square fits using LLL and

% MATLAB standard polyfit and plots the results.

% NOTE: The Class Reader fit almost always does better than polyfit!

%

% E77N Class Material, T. W. Patzek, 2002-10-27

clear all,close all,clc

PrintFlag =0;

FontSize=12;

if ~PrintFlag

FontSize=14;

end

%Number of measurements

N = 50;

x = 1:1:N;

% Specify measurement error

Sigma = 10*(rand(1,N)+1e-05);

Mean = 0;

%--------------------------------------------------------------------------

% Normal error distribution with zero mean and

% a random STD about each y_i

%--------------------------------------------------------------------------

Error=Mean+Sigma.*randn(1,N);

y = -2.125*x + 4 + Error;

fprintf(’\n\nTRUE: a_1=-2.125, a_0= 4.000 (plus random error)\n’);

%--------------------------------------------------------------------------

% MATLAB’s least square fit<<<<<<<<<<<<<<<<<<<<<<

%--------------------------------------------------------------------------

[p,S] = polyfit(x,y,1);

% Use polyval to evaluate the polynomials<<<<<<<<<<<<<<<<

[yLS,delta] = polyval(p,x,S);

% Obtain R^2 statistic

ybar = mean(y);

RSquare = sum((yLS-ybar).^2)/sum((y-ybar).^2);

figure(1)

hold on

plot(x,y,’+’)

plot(x,yLS,’color’,’r’,’linewidth’,2);

plot(x,yLS+delta,’color’,’g’,’linewidth’,1);

plot(x,yLS-delta,’color’,’g’,’linewidth’,1);

set(gca,’FontSize’,FontSize);

s=sprintf(’a_1=%6.3f, a_0=%6.3f, R^2=%7.4f’,...

p(1),p(2),RSquare);

fprintf(’MATLAB: %s\n’,s);

title(s), xlabel(’x’), ylabel(’y’), box on

if PrintFlag



240 CHAPTER 19. LEAST SQUARES FIT TO A STRAIGHT LINE

print(’-dpsc2’, ’E77N-Figure15.3.eps’);

end

%--------------------------------------------------------------------------

% Class Reader LS Fit

%--------------------------------------------------------------------------

[a,b,SigmaA, SigmaB, RabSquare,RSquare]=LLL(x,y,Sigma);

p2=[b,a];

[yLS2] = polyval(p2,x);

p3=[b+3*SigmaB,a+3*SigmaA];

[yLS3] = polyval(p3,x);

p4=[b-3*SigmaB,a-3*SigmaA];

[yLS4] = polyval(p4,x);

figure(2)

plot(x,y,’+’)

hold on

set(gca,’FontSize’,FontSize);

plot(x,yLS2,’color’,’r’,’linewidth’,2);

%Plot maximum deviation lines

plot(x,yLS3,’color’,’g’,’linewidth’,1);

plot(x,yLS4,’color’,’g’,’linewidth’,1);

s=sprintf(’a_1=%6.3f, a_0=%6.3f, R^2=%7.4f’,...

p2(1),p2(2),RSquare);

fprintf(’READER: %s\n’,s);

title(s), box on, xlabel(’x’), ylabel(’y’)

if PrintFlag

print(’-dpsc2’, ’E77N-Figure15.4.eps’);

end

%Compare polyfit with the Reader solution

[yLS2] = polyval(p2,x);

figure(3)

plot(x,y,’+’)

hold on

set(gca,’FontSize’,FontSize);

plot(x,yLS ,’color’,’b’,’linewidth’,2);

plot(x,yLS2,’color’,’r’,’linewidth’,2);

legend(’Data’,’MATLAB’,’Reader’)

title(’MATLAB vs Class Reader’), box on, xlabel(’x’), ylabel(’y’)

19.11 Least Square Fit Algorithm Based on

Eqs. (19.22-19.24)

function [a,b,SigmaA, SigmaB, rab, RSquare]=...

LLL(xs,ys,Sigmas)

%-----------------------------------------------------

% Function LLL performs the least square

% fit of data with a linear model y=a+b*x

%
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% Input arguments:

% xs = vector of independent variable values

% ys = vector of dependent variable values

% Sigmas = vector of STD’s in ys (if you do not

% know them input a vector of ones)

% Output arguments:

% a = intercept of fit line (=a_0)

% b = slope of fit line (=a_1)

% SigmaA = standard deviation of a

% SigmaB = standard deviation of b

% rab = correlation coefficient between a and b

% RSquare= R^2 statistic of correlation

%

% Written by T. W. Patzek, March 07, 2001

% UC Berkeley, 437 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834 or 510-486-5322,

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/26/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.26 17:00:00 $

%-----------------------------------------------------

% PRELIMINARIES

if nargin < 1

error(’You must input vectors of xs, ys and sigmas’)

elseif nargin < 2

error(’You must input vectors of ys and sigmas’)

elseif nargin < 3

error(’You must input vector of sigmas’)

end

% Check for consistency

% Force all inputs to be column vectors

xs = (xs(:)’)’;

ys = (ys(:)’)’;

Sigmas = (Sigmas(:)’)’;

llx = length(xs);

lly = length(ys);

lls = length(Sigmas);

if (llx~=lly)

error(’Vectors x and y must have the same length’);

end

N=llx;

if (lls ~= N)

error(’Sigma must have the same length as x and y’);

end

%-----------------------------------------------------

% START THE CODE

% Class Reader Section 19.7

%-----------------------------------------------------

S = sum(1./(Sigmas.^2));
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Sx = sum(xs./(Sigmas.^2));

Sy = sum(ys./(Sigmas.^2));

ts = (xs-Sx/S)./Sigmas;

Stt = sum(ts.*ts);

b = sum((ts.*ys)./Sigmas)/Stt;

a = (Sy-Sx*b)/S;

SigmaA = sqrt((1+Sx^2/(S*Stt))/S);

SigmaB = sqrt(1/Stt);

CovAB = -Sx/(S*Stt);

rab = CovAB/(SigmaA*SigmaB);

ybar = mean(ys);

RSquare = sum((a+b*xs-ybar).^2)/sum((ys-ybar).^2);

if (RSquare > 1) RSquare = 1; end;



Chapter 20

Least Squares Fit to a
Polynomial

20.1 What Are You Going To Learn?

You will learn how to fit a very large number of data points, N , to a polynomial
of degree much less than the number of data points minus one. This approach
is called general linear least square fit.

In Chapter 20 folder on fttp:\\petroleum.berkeley.edu look up the following
MATLAB files:

GLLS.m performs least squares fit of data with a nonlinear model y = a1 +
a2x + a3x

2 + . . . .

BasisFunctions.m employs monomials of x as basis functions for the least
square fit. Any other set of basis functions could be used.

GLLSDemo.m Generates examples of least square fits using GLLS and the
MATLAB standard polyfit, and plots the results.

20.2 Why Is It Important?

If the dependent, or response variable does not follow a linear trend, you should
try a more complicated model function of the independent, or explanatory vari-
able. In this lecture, the model function will be a sum of monomials of degrees 0
through M − 1≪ N of the independent variable. Our task is to find the “best”
coefficient of each monomial, a0, a1, a2, . . . , aM−1, thus obtaining the best poly-
nomial fit of the data. The model function is linear in the fit coefficients (hence
the term linear), and involves monomial powers greater than one (hence the
term general).

243
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20.3 General Linear Least Squares

In the last lecture you learned how to fit data to a straight line. Here we shall
learn how the simplest linear least squares model can be generalized. This
section follows closely Section 15.4 in the Numerical Recipes in C [28].

Again, suppose that we have N measurements {yi} at discrete values of the
independent variable {xi}, where N is very large. Now we want to fit our data
not just to a linear combination of x0 = 1 and x1 (namely a0 + a1x), but rather
to a linear combination of any M specified functions of x. For example, we
might choose as the fitting functions 1, x, x2, . . . , xM−1, in which case their
general linear combination is a polynomial of degree M − 1. For convenience,
we will start our summation index from one, not from zero as in Lecture 14:

y(x) = a1 + a2x + a3x
2 + .... + aMxM−1 = y(x; a1, a2, ...aM ) (20.1)

Alternatively, the functions could be sines and cosines, in which case their
general combination would be a harmonic series.

The general form of this model of data is

y(x) =

M∑

i=1

aiXi(x) (20.2)

where X1(x), ...., XM (x) are arbitrary, fixed, but independent functions of x,
called the basis functions ; for example, X1(x) = 1, X2(x) = x, . . . , XM (x) =
xM−1.

Remark 24 The functions Xi(x) can be wildly nonlinear. In our context, the
word “linear” refers only to the linear combination of the basis functions, using
the parameters ai. This method is called the general linear least squares fit. 2

As before, we assume that the uncertainty (noise) σi associated with each
measurement yi is known, and that we know exactly each value of the indepen-
dent variable xi.

To measure how well our model agrees with the data, we use the same merit
function:

χ2(a1, ...aM ) =

N∑

i=1








yi −
M∑

k=1

akXk(xi)

σi








2

(20.3)

As before, this particular function is called the chi-square function or the goodness-
of-fit function.

Once again, we shall pick as best parameters those values of a1, a2, ..., aM

that minimize Eq. (20.3). Several different methods are used to find this mini-
mum. Here we shall discuss only one of the two particularly useful, the normal
equations method. The second, very best method, called the singular value de-
composition (SVD), is beyond the scope of this course. To get started, we need
to define notation.
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Let A be an array whose N ×M elements are constructed from the M basis
functions evaluated at the N abscissas, xi, and from the N measurement errors,
σi:

Aij ≡
Xj(xi)

σi
, i = 1, 2, ..., N, j = 1, 2, ..., M (20.4)

The array A is called the design matrix of the fitting problem. Observe that
in general A has more rows than columns, N ≫ M , because there should be
many more data points than parameters.

←− basis functions −→

A =















X1(x1)
σ1

X2(x1)
σ1

. . . XM (x1)
σ1

X1(x2)
σ2

X2(x2)
σ2

· · · XM (x2)
σ2

...
... · · ·

...
...

... · · ·
...

...
... · · ·

...
X1(xN )

σN

X2(xN )
σN

· · · XM (xN )
σN















(20.5)

We shall also define a column vector y of length N by

yT =
( y1

σ1

y2

σ2
· · · yN

σN

)
(20.6)

and denote the column vector whose elements are the parameters to be fitted,
a1, a2, . . . , aM as a.

20.3.1 Solution With the Normal Equations

At its minimum the derivatives of χ2(a1, a2, . . . , aM ) with respect to a1, a2, . . . , aM

vanish:

∂χ2

∂a1
= −2

N∑

i=1

1

σ2
i



yi −
M∑

j=1

ajXj(xi)



X1(xi) = 0

∂χ2

∂ak
= −2

N∑

i=1

1

σ2
i



yi −
M∑

j=1

ajXj(xi)



Xk(xi) = 0,

k = 2, 3, . . . , M

(20.7)

Equations (20.7) can be rewritten in a more convenient if we interchange the
order of summations, move the vector y to the right hand side, and write them
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as the matrix equation:

M∑

j=1







[
N∑

i=1

1

σ2
i

Xj(xi)Xk(xi)

]

︸ ︷︷ ︸

(AT A)kj

aj







=

N∑

i=1

1

σ2
i

[yiXk(xi)]

︸ ︷︷ ︸

(AT y)k

,

k = 1, 2, 3, . . . , M

(20.8)

So, finally, the general least square fit problem has been recast into the Normal
Equation form:

(AT A)a = AT y (20.9)

The array AT A is a square M ×M matrix, multiplying the column vector of
M unknowns a. The right hand side is a known column vector of length M . In
MATLAB, the system of linear equations (20.9) can be solved easily with the
“backslash” operator.

The inverse matrix

C = (AT A)−1 (20.10)

is closely related to the standard uncertainties in the estimated parameters a.
In particular, it turns out that

σ2(aj) = Cjj (20.11)

If we do not want to calculate the uncertainties in the estimated parameters, the
“backslash” operator is just fine. Otherwise, we must calculate the inverse ma-
trix, with e.g., inv(A’A), Gauss-Jordan elimination, or any other technique.

Remark 25 At this point, you need to be forewarned that the solution of a
least-squares problem from the normal equations is susceptible to roundoff error.
This and other difficulties in the least squares solutions are resolved when the
SVD method is used. Therefore, the SVD method is preferred above all other
methods. 2

Remark 26 In addition, in practice we need a bookkeeping trick that will allow
us to “freeze” certain values of the fitted parameters ak. We may know these
frozen values from some theory or other experiments. This task is accomplished
with the vector of freeze flags, each equal to zero or one. The zero flag corre-
sponding to a parameter ak, signals that the value of this parameter should not
be changed by least squares. For a nice implementation, see [28]. 2
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20.3.2 Examples

Let us consider “data points” generated from the following nonlinear function:

σi = 10(rand + 10−5)

ei = Random Number from ND(µ = 0, σ = σi)

yi = 4− 2xi + 0.04x2
i − 0.001x3

i + ei

i = 1, 2, . . . , N

(20.12)

where rand is the uniform random distribution function, andND is the normal
distribution probability function. We approximate these data with a cubic re-
gression model:

y = a1 + a2x + a3x
2 + a4x

3 (20.13)

The results are shown in Figure 20.1 and 20.2. The code is listed in Section
20.5 and 20.6.
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Figure 20.1: Unweighted cubic fit using MATLAB’s polyfit and polyval func-
tions. The green lines are bounds on at least 50% of the data points being closer
to the fit.

20.4 Exercises

1. Approximate function (20.12) with the trigonometric basis functions, X(xi) =
cos(2(n− 1)πxi/L), n = 1, 2, . . . , M , L = max(x)−min(x). Test a couple
of M ’s.
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Figure 20.2: Weighted cubic fit using the function GLS.m. The outliers are
discounted.

20.5 General Linear Least Square Fit Demo

function GLSDemo()

%

% GLLSDEMO = General Linear Least Squares Demo

% uses the nonlinear basis functions (here integer powers of x)

% Calls GLLS and MATLAB polyfit, and plots the results

% NOTE: The Class Reader fit almost always does better than polyfit!

%

% Written by T. W. Patzek, March 10, 2001

% UC Berkeley, 437 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834 or 510-486-5322,

% email: patzek@patzek.berkeley.edu

%

% Last revision 2002-10-27, TWP

% $Revision: 1.1 $ $Date: 2002.10.27 17:00:00 $

%----------------------------------------------------------------

clear all, close all, clc

PrintFlag =0;

FontSize=12;

LineWidth =1;

if ~PrintFlag

FontSize=14;

LineWidth =2;

end

%Number of measurements

N = 50;

x = 1:1:N;

% Specify measurement error
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Sigma = 10*(rand(1,N)+1e-05);

Mean = 0;

%--------------------------------------------------------------------------

% Normal error distribution with zero mean and

% a random STD about each y_i

%--------------------------------------------------------------------------

Error=Mean+Sigma.*randn(1,N);

y = -0.001*x.^3+0.04*x.^2-2*x+4 + Error;

fprintf(’\n\nTRUE: a_1= 4.000, a_2=-2.000, a_3= 0.040, a_4=-0.001\n’);

%--------------------------------------------------------------------------

% MATLAB’s least square fit<<<<<<<<<<<<<<<<<<<<<<

%--------------------------------------------------------------------------

[p,S] = polyfit(x,y,3);

% Use polyval to evaluate the polynomials!!!

[yLS,delta] = polyval(p,x,S);

%Get the correlation coefficient

R= corrcoef(y,yLS);

rSquare=R(1,2)^2;

figure(1)

plot(x,y,’+’)

hold on

set(gca,’FontSize’,FontSize);

plot(x,yLS,’color’,’r’,’linewidth’,LineWidth);

plot(x,yLS+delta,’color’,’g’,’linewidth’,1);

plot(x,yLS-delta,’color’,’g’,’linewidth’,1);

s=sprintf(...

’a_1=%6.3f, a_2=%6.3f, a_3=%6.3f, a_4=%6.3f, r^2=%7.4f’,...

p(4),p(3),p(2),p(1),rSquare);

fprintf(’MATLAB: %s\n’,s);

title(s), xlabel(’x’), ylabel(’y’), box on

if PrintFlag

print(’-dpsc2’, ’E77N-Figure16.1.eps’);

end

M=4; % Cubic polynomial

%--------------------------------------------------------------------

% Pointer to the function that stores and evaluates

% basis functions

%--------------------------------------------------------------------

fhandle = @BasisFunctions;

% Class Reader function

[aout, Covariances, RSquare]=GLLS(x, y, Sigma, M, fhandle);

p2=flipud(aout);

[yLS2] = polyval(p2,x);

figure(2)

plot(x,y,’+’)

hold on

set(gca,’FontSize’,FontSize);
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plot(x,yLS2,’color’,’r’,’linewidth’,LineWidth);

s=sprintf(’a_1=%6.3f, a_2=%6.3f, a_3=%6.3f, a_4=%6.3f, r^2=%7.4f’,...

p2(4),p2(3),p2(2),p2(1),RSquare);

fprintf(’READER: %s\n’,s);

title(s), xlabel(’x’), ylabel(’y’), box on

if PrintFlag

print(’-dpsc2’, ’E77N-Figure16.2.eps’);

end

%Compare polyfit with the Reader solution

figure(3)

plot(x,y,’+’)

hold on

set(gca,’FontSize’,FontSize);

[yLS2] = polyval(p2,x);

plot(x,yLS ,’color’,’b’,’linewidth’,LineWidth);

plot(x,yLS2,’color’,’r’,’linewidth’,LineWidth);

legend(’Data’,’MATLAB’,’Reader’)

title(’MATLAB vs Class Reader’), box on, xlabel(’x’), ylabel(’y’)

20.6 General Linear Least Square Fit Algorithm
Based on Eqs. (20.9 - 20.10)

function [aout, Covar, RSquare]=...

GLLS(xs, ys, Sigmas, M, fhandle)

%-----------------------------------------------------------

% Function GLLS performs least squares

% fit of data with a nonlinear model y=a1+a2*x+a3*x^2+...

%

% Input arguments:

% xs = vector of independent variable

% ys = vector of dependent variable

% Sigmas = vector of STD’s in ys (if you do not

% know them input a vector of ones)

% M = Order of approximation

% fhandle = pointer to a function that evaluates

% basis functions at each abscissa

%

% Output arguments:

% aout = vector of fit coefficients of length M:

% yLS = a(1)+a(2)*x+...a(M)*x^(M-1)

% Thus the a’s must be flipped before using polyval

% Covar = matrix of covariances of fit coefficients

% RSquare = R^2 statistic, or goodness of fit (approximate expression)

%

% Written by T. W. Patzek, March 10, 2001

% UC Berkeley, 437 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834 or 510-486-5322,

% email: patzek@patzek.berkeley.edu
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%

% Last revision 03/26/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.26 12:15:00 $

%-------------------------------------------------------------

% PRELIMINARIES

if nargin < 1

error(’You must input vector of xs’)

elseif nargin < 2

error(’You must input vector of ys’)

elseif nargin < 3

error(’You must input vector of Sigmas’)

elseif nargin < 4

error(’You must input order of LS fit’)

elseif nargin < 5

erorr(’You must specify pointer to basis functions’)

end

% Initialize inputs

aout = [];

Covar = [];

RSquare = 0;

if (M==0)

error(’There is no parameters to be fit’);

end

% Check for consistency

% Force all inputs to be column vectors

xs = (xs(:)’)’;

ys = (ys(:)’)’;

Sigmas = (Sigmas(:)’)’;

llx = length(xs);

lly = length(ys);

lls = length(Sigmas);

if (llx~=lly)

error(’Vectors x and y must have the same length’);

end

N=llx;

if (lls ~= N)

error(’Sigma must have the same length as x and y’);

end

%-----------------------------------------------------

% START THE CODE

% Class Reader Chapter 20

%-----------------------------------------------------

Betas = zeros(M,1);

Covar = zeros(M,M);

% Evaluate all basis functions at all abscissas

A = feval(fhandle, xs, M, Sigmas);

ATA = A’*A;

B = A’*(ys./Sigmas);

% Calculate the inverse of A’*A, or the covariance matrix

Covar = inv(ATA);
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aout = Covar*B;

yLS = polyval(flipud(aout),xs);

R = corrcoef(ys,yLS);

RSquare=R(1,2)^2;

function [Values] = BasisFunctions(xi, M, Sigmas)

%---------------------------------------------------------------

% This BasisFunctions function employs monomials of x

% Any other set of basis functions could be used

%

% Input arguments:

% xi = column vector of independent variable

% M = number of fit coefficients

% Sigmas = standard deviations of dependent variable

% Output arguments:

% Values = values of M basis functions evaluated at N=len

% abscissas

%

% Written by T. W. Patzek, March 10, 2001

% Last revision 03/26/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.26 11:55:00 $

%---------------------------------------------------------------

Values = zeros(length(xi),M);

for i=1:M

Values(:,i) = xi.^(i-1)./Sigmas;

end



Chapter 21

Interpolation and
Approximation

21.1 What Are You Going To Learn?

You will learn how to interpolate functions using linear polynomials and La-
grange polynomials.

In Chapter 21 folder on fttp:\\petroleum.berkeley.edu, you will find the fol-
lowing MATLAB files:

LinearInt.m performs piecewise linear interpolation.

LagrangeInt.m performs interpolation with the highest order Lagrange poly-
nomial possible.

vibration.m demonstrates performance of piecewise linear and the Lagrange
interpolations of a periodic function and a step function.

LagrangeDemo.m shows how 2, 3, and 4 points of an arbitrary function are
interpolated by the Lagrange polynomials of order 1, 2, and 3.

CSDemo.m Demonstrates performance of cubic spline approximations of a
periodic function and step function.

21.2 Why Is It Important?

Interpolation and approximation techniques are used every day in all branches
of engineering and science.

253
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21.3 MATLAB Shortcut

MATLAB has one-, two- and three-dimensional interpolation functions, interp1,
interp2 and interp3, respectively. In each function, you can specify one of the
following interpolation methods:

1. Nearest neighbor interpolation: ’nearest’.

2. Linear interpolation (default): ’linear’.

3. Cubic spline interpolation: ’spline’.

4. Piecewise cubic Hermite interpolation: ’pchip’.

See MATLAB help for details.

21.4 Preliminaries

In the Chapter 17, we introduced Taylor series, i.e., the special polynomial
approximation of a differentiable function:

Pn(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 +
f ′′′(x0)

3!
x3 + . . .

+
f (n)(x0)

n!
(x − x0)

n

(21.1)

which uniformly approximates the function f in a closed interval [a, b], provided
that the function f is sufficiently smooth. The difference between this poly-
nomial and the function itself is an infinitesimally small quantity of the order
higher than (x− x0)

n, i.e.,

Rn+1(x) ≡ f(x)− Pn(x) = o(x− x0)
n (21.2)

Note the “small o” quantity in Eq. (21.2). We will discuss such quantities later
in the course.

21.5 Approximation

There are many reasons to approximate a function. The type of approximation
sought depends upon the application and the ease or difficulty with which it can
be obtained. In all cases, the simplest approximating functions are polynomials,
but trigonometric functions are also useful.

In general, a polynomial Pn(x) of degree at most n approximates a function
f(x) in an interval a ≤ x ≤ b if some measure of the deviation of the polynomial
from the function in this interval is “small”

||f(x)− Pn(x)|| < ε << 1 (21.3)
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We call this deviation a norm. We should remember that what might be a good
approximation in one norm is a poor approximation in another norm. Once we
have defined the norm, three questions must be answered:

1. Does a polynomial exist, of a specified maximum degree, which minimizes
the error?

2. If such a polynomial exits, is it unique?

3. How can it be determined, if it exists?

Figure 21.1: Karl Theodor Wilhelm Weierstrass, born October 31, 1815,
in Ostenfelde, Westphalia (now Germany), died February 19, 1897, in Berlin,
Germany.

Weierstrass’s Approximation Theorem provides answers to these questions:

Theorem 1 Let f(x) be a function continuous in the closed interval [a, b]. Then
for any ε > 0 there exists and integer n = n(ε) and a polynomial Pn(x) of degree
at most n such that

|f(x)− Pn(x)| < ε (21.4)

for all x ∈ [a, b]. 2

This theorem guarantees that arbitrarily close polynomial approximations are
possible throughout a closed bounded interval, provided that the function being
approximated is continuous. This statement gives no hint how to construct such
a polynomial. Such hints were provided by Bernstein and many others.
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21.6 Interpolation

An approximation polynomial, which is equal to the function it approximates
at a number of specified points is called an interpolation polynomial. Given the
n + 1 distinct points xi , i = 0, 1, ..., n− 1, n, and corresponding function values
yi = f(xi), the interpolation of degree at most n minimizes

n∑

i=0

|yi − Pn(xi)| (21.5)

The minimum value of Eq. (21.5) is zero. Thus, we seek a polynomial

Pn(x) =

n∑

k=0

akxk (21.6)

for which
Pn(xi) ≡ yi, i = 0, 1, . . . , n (21.7)

By considering the coefficients ak in Eqs. (21.6) as unknowns, we have a system
of n + 1 linear equations:

Pn(x0) = y0 = a0 + a1x0 + · · ·+ anxn
0

Pn(x1) = y1 = a0 + a1x1 + · · ·+ anxn
1

...

Pn(xn) = yn = a0 + a1xn + · · ·+ anxn
n.

(21.8)

The system of equations (21.8) has a unique solution if the coefficient matrix
is non-singular. The determinant of this matrix is called a Vandermonde
determinant and it can be easily evaluated to yield

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 x0 ... xn
0

1 x1 ... xn
1

...
...

...
1 xn ... xn

n

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∏

i>j

(xi − xj) =
n−1∏

j=0





n∏

i=j+1

(xi − xj)



 . (21.9)

Since {xi} are distinct points, the determinant is nonzero and a unique solution
to Eqs. (21.8) exists.

Rather than solve Eqs. (21.8), one may use an alternative procedure to
obtain the interpolation procedure directly. Set

Pn(x) =

n∑

j=0

f(xj)φn,j(x) (21.10)

where the n + 1 functions φn,j(x) are nth degree polynomials. We note that
Pn(xi) = 0 if the polynomials φn,j(x) satisfy

φn,j(xi) =

{

1 if i = j

0, otherwise

i, j = 0, 1, 2, ..., n

(21.11)
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Such polynomials are easily constructed

φn,j =
(x− x0)(x− x1)...(x − xj−1)(x − xj+1)...(x − xn)

(xj − x0)(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xn)

j = 0, 1, 2, ...n

(21.12)

The interpolation polynomial (21.10) is called the Lagrange interpolation

Figure 21.2: Joseph-Louis Lagrange, born January 25, 1736, in Turin,
Sardinia-Piedmont (now Italy), died April 10, 1813, in Paris, France.

polynomial and the coefficients (21.11) are called the Lagrange interpolation
coefficients. We can use the product notation for each φ, which yields

Pn(x) =

n∑

j=0

f(xj)

n∏

k=0
k 6=j

x− xk

xj − xk
(21.13)

Here is how it works: Let’s take an arbitrary function, say, f(x) = 3x sin2(x),
and pick up 2, 3 or 4 arbitrary points, x = x0, x = x1, x = x2, x = x3 (they do
not have to start at the leftmost end of the interval shown in Figure 21.3).

We assume that we know the values of the function at these points: f(x0) =
y0, f(x1) = y1, f(x2) = y2, f(x3) = y3. We will now construct the Lagrange
interpolation polynomials of order one, two and three. As we remember from
elementary geometry, through any two points we can draw a unique straight
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Figure 21.3: Suppose that we want to interpolate f(x) = 3x sin(x) using a linear,
quadratic or cubic Lagrange interpolator, passing through 2, 3 or 4 consecutive
points denoted by the diamonds, and starting from the second point on the left.
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Figure 21.4: Linear interpolation of f(x) that passes through points x1 and x2.

line. Through any three points that do not belong to a line, we can draw a
unique parabola, and through any four points that do not belong to a parabola,
we can draw a unique cubic.

The equation of the line passing through two points can be written as

y =
x− x1

x0 − x1
y0 +

x− x0

x1 − x0
y1 (21.14)

and the result is shown in Figure 21.4.
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The parabola passing through points x0 − x2 has the following equation:

y =
(x− x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
y1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2

(21.15)
and the result is shown in Figure 21.5.
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Figure 21.5: Quadratic interpolation of f(x) that passes through points x1, x2

and x3.

The cubic curve that passes through points x0−x3 has the following equation:

y =
(x− x1)(x − x2)(x − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
y0 +

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
y1+

(x− x0)(x − x1)(x − x3)

(x2 − x0)(x2 − x1)(x2 − x3)
y2 +

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
y3

(21.16)

and the result is shown in Figure 21.6. All these calculations and plots are
performed by the LagrangeDemo.m function, listed in Section 21.8.

21.7 Lagrange Interpolations of Different Orders

Suppose that we know 25 discrete sensor positions at some time, and these
positions are given by the following equation, Figure 21.7:

f(xi) = 3 sin

(
i

1.1

)

+ 4

i = 1, 2, . . . , 25

We want to approximate these positions using linear interpolation (straight
line through each pair of sensor positions), Figure 21.8, and a 24th degree
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Figure 21.6: Cubic interpolation of f(x) that passes through points x1, x2, x3

and x4.

Lagrange polynomial, Figure 21.9. In the linear Lagrange interpolation
case, we calculate 10 interpolated points between each pair of sensor positions.
In the 24th degree Lagrange polynomial interpolation case, there is only one
unique polynomial passing through all 25 sensor positions. As we can see for
the very smooth sensor position data, the Lagrange interpolation does a good
job.
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Figure 21.7: Discrete amplitudes (diamonds) of 25 sensors to be interpolated
by piecewise linear and polynomial Lagrangian schemes (Files vibration.m,
LinearInt.m and LagrangeInt.m.)
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Figure 21.8: Result of piecewise linear Lagrange interpolation of the 25 sensor
positions in Figure 21.7, with 10 points between each pair of data points.
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Figure 21.9: Result of the 24th degree Lagrange polynomial interpolation of
the 25 sensor positions in Figure 21.7. Note that the 24th degree Lagrange
polynomial is not local, i.e., it retains information about the global function
behavior.

Suppose that now that approximate 10 discontinuous sensor positions with
the following equation, Figure 21.10:

f(xi) =

{

1 if i ≤ 5

24.5 if i > 5

i = 1, 2, . . . , 10
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We approximate these positions using linear interpolation (straight line through
each pair of sensor positions), Figure 21.11, and a 9th degree Lagrange poly-
nomial, Figure 21.12. In the linear Lagrange interpolation case, we calculate
10 interpolated points between each pair of sensor positions. In the 9th degree
Lagrange polynomial interpolation case, there is only one unique polynomial
passing through all 10 sensor positions. As we can see for the very discontin-
uous sensor position data, the Lagrange interpolation fails miserably. The
MATLAB code is listed in listed in Section 21.9.
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Figure 21.10: Step function in sensor amplitudes.
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Figure 21.11: Piecewise linear Lagrange interpolation of a step function works
very well.
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Figure 21.12: 9th-degree polynomial Lagrange interpolation of a step function
fails miserably.

21.8 Lagrange Interpolation Demo

function LagrangeDemo()

%-----------------------------------------------------------------------

% Shows how 2, 3,and 4 points of an arbitrary function

% are interpolated by Lagrange polynomials of order 1, 2, and 3

%

% Written by T. W. Patzek, March 05, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-643-5834

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/29/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.29 17:00:00 $

%-----------------------------------------------------------------------

clear all, close all, clc

PrintFlag = 0; %<<<<<No hard copy, 1 otherwise

LineWidth = 1;

if ~PrintFlag

LineWidth=2;

end

x = (0:0.2:1)*pi;

y = 3*x.*(sin(x)).^2;

xc =(0:0.01:1)*pi;

yc = 3*xc.*(sin(xc)).^2;

ll = length(x);
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figure(1), hold on

if ~PrintFlag

set(gca, ’FontSize’,14);

end

plot(x,y,’d’, ’linewidth’,LineWidth)

plot(xc,yc,’linewidth’,LineWidth)

xlabel(’x’), ylabel(’y’), box on

axis([0,3.5,0,6]);

if ~PrintFlag

title(’f(x)=3 x sin^2(x)’);

else

print(’-dpsc2’, ’E77N-Figure17.1.eps’)

end

% Linear Lagrange polynomial

% Pick any two points, say 2 and 3

x0 = x(2);

x1 = x(3);

y0 = y(2);

y1 = y(3);

% Construct the linear Lagrange interpolator

P1 = (x-x1)/(x0-x1)*y0 +(x-x0)/(x1-x0)*y1;

figure(2), hold on

if ~PrintFlag

set(gca, ’FontSize’,14);

end

plot(x,y,’d’, ’linewidth’,LineWidth)

plot(xc,yc,’linewidth’,LineWidth);

plot(x,P1,’color’,’r’,’linewidth’,LineWidth)

xlabel(’x’), ylabel(’y’), box on

axis([0,3.5,0,6]);

if ~PrintFlag

title(’Linear Lagrange interpolation through 2 points’)

else

print(’-dpsc2’, ’E77N-Figure17.2.eps’)

end

% Quadratic Lagrange polynomial

% Pick any three points, say 2, 3 and 4

x0 = x(2);

x1 = x(3);

x2 = x(4);

y0 = y(2);

y1 = y(3);

y2 = y(4);

% Construct the quadratic Lagrange interpolator

P2 = (xc-x1).*(xc-x2)/((x0-x1)*(x0-x2))*y0+...

(xc-x0).*(xc-x2)/((x1-x0)*(x1-x2))*y1+...

(xc-x0).*(xc-x1)/((x2-x0)*(x2-x1))*y2;
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figure(3), hold on

if ~PrintFlag

set(gca, ’FontSize’,14);

end

plot(x,y,’d’, ’linewidth’,LineWidth)

plot(xc,yc,’linewidth’,LineWidth);

plot(xc,P2,’color’,’r’,’linewidth’,LineWidth)

xlabel(’x’), ylabel(’y’), box on

axis([0,3.5,0,6]);

if ~PrintFlag

title(’Quadratic Lagrange interpolation through 3 points’)

else

print(’-dpsc2’, ’E77N-Figure17.3.eps’)

end

% Cubic Lagrange polynomial

% Pick any four points, say 2,3,4 and 5

x0 = x(2);

x1 = x(3);

x2 = x(4);

x3 = x(5);

y0 = y(2);

y1 = y(3);

y2 = y(4);

y3 = y(5);

% Construct the cubic Lagrange interpolator

P3 = (xc-x1).*(xc-x2).*(xc-x3)/((x0-x1)*(x0-x2)*(x0-x3))*y0+...

(xc-x0).*(xc-x2).*(xc-x3)/((x1-x0)*(x1-x2)*(x1-x3))*y1+...

(xc-x0).*(xc-x1).*(xc-x3)/((x2-x0)*(x2-x1)*(x2-x3))*y2+...

(xc-x0).*(xc-x1).*(xc-x2)/((x3-x0)*(x3-x1)*(x3-x2))*y3;

figure(4), hold on

if ~PrintFlag

set(gca, ’FontSize’,14);

end

plot(x,y,’d’, ’linewidth’,LineWidth)

plot(xc,yc,’linewidth’,LineWidth);

plot(xc,P3,’color’,’r’,’linewidth’,LineWidth)

xlabel(’x’), ylabel(’y’), box on

axis([0,3.5,0,6]);

if ~PrintFlag

title(’Cubic Lagrange interpolation through 4 points’)

else

print(’-dpsc2’, ’E77N-Figure17.4.eps’)

end

figure(5), hold on

if ~PrintFlag

set(gca, ’FontSize’,14);
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end

plot(x,y,’d’, ’linewidth’,LineWidth)

plot(x,P1,’color’,’m’,’linewidth’,LineWidth,...

’marker’,’none’,’linestyle’,’--’)

plot(xc,P2,’color’,’k’,’linewidth’,LineWidth,...

’marker’,’none’,’linestyle’,’-.’)

plot(xc,P3,’color’,’r’,’linewidth’,LineWidth,...

’marker’,’none’,’linestyle’,’:’)

plot(xc,yc,’linewidth’,LineWidth);

xlabel(’x’), ylabel(’y’), box on

legend(’Function’,’Linear’, ’Quadratic’, ’Cubic’,2)

axis([0,3.5,0,6]);

if ~PrintFlag

title(’Lagrange interpolation’)

else

print(’-dpsc2’, ’E77N-Figure17.1a.eps’)

end

21.9 Interpolation of Sensor Positions

function vibration()

%---------------------------------------------------------

% Demonstrates performance of piecewise linear and

% Lagrange interpolations of a periodic function and a

% step function

%

% Written by T. W. Patzek, March 05, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-643-5834

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/29/2002, TWP

% $Revision: 1.0 $ $Date: 2002.03.29 17:00:00 $

%---------------------------------------------------------

clear all, close all, clc

PrintFlag = 0;

LineWidth =1;

FontSize =12;

if ~PrintFlag

LineWidth =2;

FontSize = 14;

end

%-------------------------------------------------

% Smooth function

%-------------------------------------------------

% Discrete sensor positions to be interpolated

xsensor=1:1:25;

vib(1,:)=xsensor;
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vib(2,:) = 3*sin(xsensor/1.1) + 4;

x = 1:0.1:25;

y = 3*sin(x/1.1) + 4;

% Plot the sensors and the function they represent

figure(1), hold on

plot(x,y,’-’, ’linewidth’,LineWidth)

plot(vib(1,:), vib(2,:),’d’);

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Discrete positions of 25 sensors’)

else

print(’-dpsc2’, ’E77N-Figure17.5.eps’)

end

% Perform piecewise interpolations of xsensor, ysensor arrays

[xint, yint]= LinearInt(vib(1,:),vib(2,:),10);

figure(2), hold on

plot(x,y,’-’, ’linewidth’,LineWidth);

plot(xint,yint,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Piecewise linear interpolation’)

else

print(’-dpsc2’, ’E77N-Figure17.6.eps’)

end

% Perform Lagrange interpolations of xsensor, ysensor arrays

[xint, yint]= LagrangeInt(vib(1,:),vib(2,:));

figure(3), hold on

plot(x,y,’-’, ’linewidth’,LineWidth);

plot(xint,yint,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Lagrangian polynomial interpolation’)

else

print(’-dpsc2’, ’E77N-Figure17.7.eps’)

end

%-------------------------------------------------

% Step function

%-------------------------------------------------

x = 1:1:10;

y=[ones(1,5), 24.5*ones(1,5)];
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%Plot the step function

figure(4)

plot(x,y,’d-’, ’linewidth’,LineWidth)

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Discrete positions of 10 sensors’)

else

print(’-dpsc2’, ’E77N-Figure17.8.eps’)

end

% Perform piecewise interpolations of xsensor, ysensor arrays

[xint, yint]= LinearInt(x,y,10);

figure(5), hold on

plot(x,y,’-’, ’linewidth’,LineWidth);

plot(xint,yint,’marker’, ’o’, ’color’,...

’r’, ’linestyle’, ’none’)

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Piecewise linear interpolation’)

else

print(’-dpsc2’, ’E77N-Figure17.9.eps’)

end

% Perform Lagrange interpolations of xsensor, ysensor arrays

[xint, yint]= LagrangeInt(x,y);

figure(6), hold on

plot(x,y,’-’, ’linewidth’,LineWidth);

plot(xint,yint,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

set(gca,’FontSize’,FontSize);

xlabel(’Sensor #’), ylabel(’Sensor position’), box on

if ~PrintFlag

title(’Lagrangian polynomial interpolation’)

else

print(’-dpsc2’, ’E77N-Figure17.10.eps’)

end

function [x, PnOfx]= LagrangeInt(xpts,ypts)

%---------------------------------------------------------------

% Input arguments:

% xpts = vector of x values

% ypts = vector of y values

%

% Output arguments:

% x = vector of interpolated x’s

% PnOfx = vector of y’s interpolated with the

% highest order Lagrange polynomial possible
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%

% Written by T. W. Patzek, March 05, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-643-5834

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/20/2006, TWP

% $Revision: 1.0 $ $Date: 2006.03.20 09:00:00 $

%---------------------------------------------------------------

x = []; PnOfx = [];

if nargin <1

error(’You must specify the input array’);

end

% Set the degree of the Lagrange polynomial

% to the number of points

% Only column vectors are allowed

xpts = (xpts(:)’)’;

ypts = (ypts(:)’)’;

ll = length(xpts);

lly = length(ypts);

if (ll~=lly)

error(’xpts and ypts vectors must have equal length’);

end

n = length(xpts);

xmax = max(xpts);

xmin = min(xpts);

% I am going to generate 5*n points using

% Lagrange interpolation

x = linspace(xmin,xmax,5*n);

lagrange = ones(n,5*n);

PnOfx = zeros(size(x));

for j=1:n

for k=1:n

if(k==j)

% Do nothing

else

% Accumulate the product (function phi in Chapter 21)

lagrange(j,:) = lagrange(j,:).* ...

((x-xpts(k))/(xpts(j)-xpts(k)));

end

end

% Equation 13 in Chapter 21....

PnOfx = lagrange(j,:)*ypts(j) + PnOfx;

end

function [xint, yint] = LinearInt(x,y,n)

%---------------------------------------------------------------

% Input arguments:
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% x = vector of x values

% y = vector of y values

% n = number of points in between consequtive data points

% to perform piecewise linear interpolation

%

% Output arguments:

% xint = vector of linearly interpolated x’s

% ys = vector of linearly interpolated y’s

%

% Written by T. W. Patzek, March 05, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-643-5834

% email: patzek@patzek.berkeley.edu

%

% Last revision 03/20/2006, TWP

% $Revision: 1.0 $ $Date: 2006.03.20 09:15:00 $

%---------------------------------------------------------------

xint = []; yint = [];

if nargin < 1

error(’You must specify the input array’);

elseif nargin <2

n = 10;

end

%Only column vectors are allowed

x = (x(:)’)’;

y = (y(:)’)’;

ll = length(x);

lly = length(y);

if (ll~=lly)

error(’x and y vector must have equal length’);

end

intx = zeros(ll-1,n);

inty = zeros(ll-1,n);

% Linear interpolation

for j=1:(size(x)-1)

% Fill in n points between two consecutive x data points

intx(j,:) = linspace(x(j),x(j+1),n);

inty(j,:) = (y(j+1)-y(j))/(x(j+1)-x(j))*(intx(j,:)-x(j))+y(j);

end

xint = intx(:);

yint = inty(:);



Chapter 22

Numerical Differentiation

22.1 What Are You Going To Learn?

You will learn how calculate the first derivative and higher derivatives of func-
tions that are known only at discrete points. You will learn to appreciate that
numerical differentiation is tricky and may lead to very large errors.

In Chapter 22 folder on fttp:\\petroleum.berkeley.edu look up the following
MATLAB files:

derivatives.m approximates the input data with cubic splines over the interval
[xmin, xmax] that can extend beyond the interval min(xdata), max(xdata).
It also calculates the first and second derivative of a function using central
differences of the interpolated data.

DiffDemo.m demonstrates performance of cubic spline approximations of a
periodic function and its first two derivatives. Calls derivatives.

22.2 Why Is It Important?

Any rate-of-change parameter (the first derivative) is the slope of a system
response. Engineers must perform their tasks in finite time; therefore, rates are
of interest. Sometimes, accelerations, i.e., the second derivatives may also be
important.

22.3 MATLAB Shortcut

In MATLAB, Y = diff(X) calculates differences between adjacent elements of
X. If X is a multidimensional array, you have control over which dimension to
take the differences. Once you obtained the differences, you might be able to
calculate the approximate derivatives. See MATLAB Help for more details.

271
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22.4 Finite Differences

22.4.1 First Derivative

Take x0 as an arbitrary fixed starting point and let h > 0 be the spacing between
the adjacent points. Then consider the points

xj = x0 + jh, j = 0,±1,±2, ... (22.1)

Note that x0 is not the end-point, and neither are the points x−1 = x0−h, etc.,
to the left of it, Figure 22.1. We shall assume that all xj ∈ [a, b].
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Figure 22.1: Equally spaced points on the x-axis.

Associated with equally spaced points is the forward difference, which is
defined by

∆+f(x) ≡ f(x + h)− f(x) (22.2)

Therefore

∆+f(x0) = f(x0 + h)− f(x0) = f(x1)− f(x0)

∆+f(x1) = f(x1 + h)− f(x1) = f(x2)− f(x1)

. . .

(22.3)

We can also associate with equally spaced points the backward difference, de-
fined as

∆−f(x) ≡ f(x)− f(x− h) (22.4)

Therefore

∆−f(x0) = f(x0)− f(x0 − h) = f(x0)− f(x−1)

∆−f(x1) = f(x1)− f(x1 − h) = f(x1)− f(x0)

. . .

(22.5)

Finally, we can associate with equally spaced points the central difference, de-
fined as

∆±f(x) ≡ f(x + h)− f(x− h) (22.6)

Therefore

∆±f(x0) = f(x0 + h)− f(x0 − h) = f(x1)− f(x−1)

∆±f(x1) = f(x1 + h)− f(x1 − h) = f(x2)− f(x0)

. . .

(22.7)
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Remark 27 Before differencing a function, we need to interpolate the irregu-
larly spaced function values to an equal spacing, h, using a robust interpolation
scheme. If the interpolating polynomial oscillates, our regularly spaced function
values may be meaningless. 2

The first derivative is the slope of a function graph. If a function has the first
derivative at a point x0, then

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

∆+f(x0)

h

f ′(x0) = lim
h→0

f(x0)− f(x0 − h)

h
= lim

h→0

∆−f(x0)

h

f ′(x0) = lim
h→0

f(x0 + h)− f(x0 − h)

2h
= lim

h→0

∆±f(x0)

2h

(22.8)

Given that the function values are known sufficiently well, how small should h
be to approximate the first derivative?

To answer this question, we need to assume that our function has three
continuous derivatives in a neighborhood of point x0 and the fourth derivative
exists at point x0. Once this assumption is made, we may expand the function
into a Taylor series:

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 +
1

6
f ′′′(x0)(x− x0)

3 (22.9)

Then

f(x0 + h) ≈ f(x0) + f ′(x0)h +
1

2
f ′′(x0)h

2 +
1

6
f ′′′(x0)h

3

f(x0 − h) ≈ f(x0)− f ′(x0)h +
1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3
(22.10)

We can use these function expansions to estimate the approximation error in
the first derivative if we use the forward, backward and central finite difference

f(x0 + h)− f(x0)

h
≈ +f ′(x0) +

1

2
f ′′(x0)h +

1

6
f ′′′(x0)h

2

f(x0)− f(x0 − h)

h
≈ f ′(x0)−

1

2
f ′′(x0)h +

1

6
f ′′′(x0)h

2

f(x0 + h)− f(x0 − h)

2h
≈ f ′(x0) +

1

6
f ′′′(x0)h

2

(22.11)

Remark 28 If h is small, h≪ 1 , then h2 is even smaller. Both the forward and
the backward finite difference provide estimates of the first derivative that are
first order in h. The central difference provides an estimate of the first derivative
that is second order in h. Figure 22.2 compares the three methods. 2
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Figure 22.2: Slope approximations using the forward, backward and central
finite differences.

22.4.2 Second Derivative

The second derivative of a function is related to its second differences.
The second difference can be calculated as the difference of the first differ-

ences:

∆2
+f(x) = ∆+f(x + h)−∆+f(x) = f(x + 2h)− 2f(x + h) + f(x)

∆2
−f(x) = ∆−f(x)−∆−f(x− h) = f(x)− 2f(x− h) + f(x− 2h)

∆2
±f(x) = ∆±f(x + h)−∆±f(x− h) = f(x + 2h)− 2f(x) + f(x− 2h)

(22.12)

The second derivative can now be estimated as

f ′′(x0) ≈
∆2

+f(x0)

h2
+ H.O.T.

f ′′(x0) ≈
∆2

−f(x0)

h2
+ H.O.T.

f ′′(x0) ≈
∆2

±f(x0)

4h2
+ H.O.T.

(22.13)

Note that all these calculations involve points x0, x0 +h, x0 +2h, or x0, x0−h,
x0 − 2h, or x0 , x0 + 2h, x0 − 2h, i.e., over the interval x0 ± 2h.

What is the order of approximations (22.13)? Let us check just Eq. (22.13)3
(central second difference). The remaining two, you should check at home as an
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exercise.

f(x0 + 2h) ≈ f(x0) + f ′(x0)2h +
1

2
f ′′(x0)4h2 +

1

6
f ′′′(x0)8h3 +

1

24
f IV (x0)16h4

f(x0 − 2h) ≈ f(x0)− f ′(x0)2h +
1

2
f ′′(x0)4h2 − 1

6
f ′′′(x0)8h3 +

1

24
f IV (x0)16h4

(22.14)

Adding the two equations (22.14), moving the term 2f(x0) to the left hand side
and dividing through 4h2 gives

f(x0 + 2h)− 2f(x0) + f(x0 − 2h)

(2h)2
≈ 1

3
f IV (x0)h

2 (22.15)

Thus the central second difference approximates the second derivative to order
of h2, i.e., it is a second order approximation. (You ought to anticipate the
remaining two answers.)

There is one more way of constructing the central difference

∆2f(x) = ∆+f(x)−∆−f(x) = f(x + h)− 2f(x) + f(x− h) (22.16)

and the second derivative is approximated as

f ′′(x0) ≈
∆2f(x0)

h2
=

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+ H.O.T. (22.17)

Order of the latter approximation is calculated directly by adding Eqs. (22.10)
and solving the result for the second derivative.

Remark 29 At a cost of requiring a wider support, the central second finite
difference provides a second order approximation of the second derivative. 2

What happens when x0 − h < a or x0 + h > b?

Remark 30 At end-points of the interval of interest, we need extra function
values to the left and to the right. Now we must have a robust extrapolation
algorithm. 2

Remark 31 To calculate the first and the second derivative of smooth-enough
functions, consider using cubic spline interpolation. If the function is positive,
but has a very large variation, consider approximating its logarithm with cubic
splines, and then transforming back:

z = ln y

z′ =
y′

y
⇒ y′ = yz′

z′′ =
y′′y − y′2

y2
⇒ y′′ = z′′y +

y′2

y

(22.18)

2
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Example 17 Suppose that you collected discrete amplitudes (diamonds) of a
sensor at 25 different times between 1 and 25s, Figure 22.3. We want to ap-
proximate these 25 amplitudes with a smooth function, and calculate their first
and second derivatives with respect to time (sensor velocity and acceleration) To
calculate the derivatives, we will use the central differences of the cubic spline
approximation of the sensor positions, Figure 22.4 - 22.6. The code is listed
in Appendix 22.5. 2

Example 18 Suppose that you want to approximate a wildly varying function
and its first two derivatives. You can proceed as in the example above, through
a combination of the cubic spline approximation of the function and the central
difference derivatives, Figure 22.7 - 22.8. Or you can take the logarithm of the
function, the logarithmic derivatives, Eq (22.18), and reconstruct the original
function and its derivatives Figure 22.9 - 22.10. The code is listed in Section
22.5. 2
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Figure 22.3: The diamonds are the measured sensor amplitudes. For conve-
nience, I am showing you that these amplitudes belong to the curve (solid line)
that extends beyond the measurements. Our task is to calculate the sensor
velocity and acceleration. First we decide on the limits of approximation (in-
terpolation and extrapolation if necessary). We pick time between 0 and 27
seconds. We also choose the interval of interpolation to be h = 0.1 s. The result
of the spline interpolation is shown in Figure 22.4.
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Figure 22.4: Interpolation and extrapolation of sensor positions using cubic
splines (circles).

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

5

6

Time, s

S
en

so
r 

ve
lo

ci
ty

, m
m

/s

Figure 22.5: The exact first derivative (velocity) of sensor amplitude (solid
line) and its numerical approximation by a central difference of the cubic spline
approximation (circles).



278 CHAPTER 22. NUMERICAL DIFFERENTIATION

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

Time, s

S
en

so
r 

ac
ce

le
ra

tio
n,

 m
m

/s
2

Figure 22.6: The exact second derivative (acceleration) of sensor amplitude
(solid line) and its numerical approximation by a central difference of the cubic
spline approximation (circles).
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Figure 22.7: The first derivative of ex using the cubic spline approximation and
central difference.
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Figure 22.8: The second derivative of ex using the he cubic spline approximation
and central difference.
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Figure 22.9: The first derivative of ex by taking the logarithm and scaling back,
Eq. (22.18).
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Figure 22.10: The second derivative of ex by taking the logarithm and scaling
back, Eq. (22.18).

22.5 Differentiation Demo

function DiffDemo()

%---------------------------------------------------------

% Demonstrates performance of cubic spline approximations

% of a periodic function and its first two derivatives

%

% Written by T. W. Patzek, March 12, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834,

% email: patzek@patzek.berkeley.edu

%

% Last revision 04/06/2002, TWP

% $Revision: 1.0 $ $Date: 2002.04.06 17:00:00 $

%---------------------------------------------------------

clear all, close all, clc

LW = 1;

PrintFlag = 0; %<<< Set to zero to see plot titles

% Discrete sensor amplitudes to be interpolated

% 1<=x<=25

% Times

xsensor = 1:1:25;

vib(1,:) = xsensor;

% Amplitudes

vib(2,:) = 3*sin(xsensor/1.1) + 4;

% These discrete amplitudes belong to a smooth function

% Exact function beyond the sampling points

x = 0:0.1:27;
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y = 3*sin(x/1.1) + 4;

% Exact first derivative

yprime = (3/1.1)*cos(x/1.1);

% Exact second derivative

ybis = -(3/1.1/1.1)*sin(x/1.1);

% Calculate the derivatives from iterpolation,

% extrapolation and central differences

[xs,ys,yp,ypp] = derivatives(vib(1,:),vib(2,:),0,27,0.1);

% Plot the discrete sensor amplitudes and the function

% they represent

figure(3), hold on

plot(x,y,’-’, ’linewidth’,LW)

plot(vib(1,:), vib(2,:),’rd’);

xlabel(’Time, s’), ylabel(’Sensor amplitude, mm’), box on

if (~PrintFlag)

title(’Discrete positions of 25 sensors’)

else

print -dpsc2 ’E77N-Figure18.3.eps’

end

figure(4), hold on

plot(x,y,’-’, ’linewidth’,LW);

plot(xs, ys,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’Time, s’), ylabel(’Sensor amplitude, mm’), box on

if (~PrintFlag)

title(’Cubic spline interpolation’)

else

print -dpsc2 ’E77N-Figure18.4.eps’

end

figure(5), hold on

plot(x,yprime,’-’, ’linewidth’,LW);

plot(xs, yp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’Time, s’), ylabel(’Sensor velocity, mm/s’), box on

if (~PrintFlag)

title(’First derivative from CS and Central FD’)

else

print -dpsc2 ’E77N-Figure18.5.eps’

end

figure(6), hold on

plot(x,ybis,’-’, ’linewidth’,LW);

plot(xs, ypp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’Time, s’), ylabel(’Sensor acceleration, mm/s^2’), box on

if (~PrintFlag)

title(’Second derivative from CS and Central FD’)

else

print -dpsc2 ’E77N-Figure18.6.eps’

end
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%---------------------------------------------------------

% Calculate the derivatives of e^x from splines and

% from ln(e^x) and splines

%---------------------------------------------------------

x = 1:1:10;

y=exp(x);

[xs,ys,yp,ypp] = derivatives(x,y,0,11,0.1);

figure(7), hold on

plot(xs,exp(xs),’-’, ’linewidth’,LW);

plot(xs, yp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’x’), ylabel(’dy/dx’), box on

if (~PrintFlag)

title(’First derivative of e^x’)

else

print -dpsc2 ’E77N-Figure18.7.eps’

end

figure(8), hold on

plot(xs,exp(xs),’-’, ’linewidth’,LW);

plot(xs, ypp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’x’), ylabel(’d^2y/dx^2’), box on

if (~PrintFlag)

title(’Second derivative of e^x’)

else

print -dpsc2 ’E77N-Figure18.8.eps’

end

% Do the logarithmic derivative

z=log(y);

[xs,zs,zp,zpp] = derivatives(x,z,0,11,0.1);

% Transform back to the original derivatives

yp=zp.*ys;

ypp = zpp.*ys+yp.^2./ys;

figure(9), hold on

plot(xs,exp(xs),’-’, ’linewidth’,1.5);

plot(xs, yp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’x’), ylabel(’dy/dx’), box on

if (~PrintFlag)

title(’First derivative from z=ln(e^x)’)

else

print -dpsc2 ’E77N-Figure18.9.eps’

end

figure(10), hold on

plot(xs,exp(xs),’-’, ’linewidth’,1.5);

plot(xs, ypp,’marker’, ’o’, ’color’, ’r’, ’linestyle’, ’none’)

xlabel(’x’), ylabel(’d^2y/dx^2’), box on

if (~PrintFlag)
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title(’Second derivative of z=ln(e^x)’)

else

print -dpsc2 ’E77N-Figure18.10.eps’

end

function [x,y,yp,ypp] = derivatives(xdata,ydata,xmin,xmax,h)

%---------------------------------------------------------

% A function that

% 1.

%Approximates the input data with cubic splines over

% the interval [xmin,xmax] that can extend beyond

% the interval min(xdata), max(xdata).

% 2. Calculates the first and second derivative of the

% function using central differences of the interpo-

% lated data

% Input arguments:

% xdata, ydata = vector of raw function data

% xmin,xmax = interval over which the function

% is interpolated and extrapolated

% h = interpolation interval

%

% Output arguments

% x = vector of x’s for the derivatives

% y = vector of y’s for the derivatives

% yp = first derivative

% ypp = second derivative

%

% Written by T. W. Patzek, March 13, 2001

% UC Berkeley, 425 Davis Hall, Berkeley, CA 94720

% Tel: 510-43-5834

% email: patzek@patzek.berkeley.edu

%

% Last revision 04/06/2002, TWP

% $Revision: 1.0 $ $Date: 2002.04.16 17:00:00 $

%-----------------------------------------------------

% PRELIMINARIES

% Intialize outputs

x =[];

yp =[];

ypp =[];

if nargin < 1

error(’You must input xdata’)

elseif nargin < 2

error(’You must input ydata’)

end

% Make both arrays into row vectors, regardless of their initial

% shape

[mx,nx] = size(xdata); lx = mx*nx; xdata = reshape(xdata,1,lx);
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[my,ny] = size(ydata); ly = my*ny; ydata = reshape(ydata,1,ly);

if (lx ~=ly)

error(’Arrays xdata and ydata must have the ame sizes’)

end

% if necessary, sort xdata to make them increasing

if any(diff(xdata)<0)

[xdata,ix]=sort(xdata);

ydata = ydata(ix);

end

if nargin < 3

xmin = min(xdata);

xmax = max(xdata);

h=(xmax-xmin)/100;

elseif nargin < 4

xmax = max(xdata);

h=(xmax-xmin)/100;

elseif nargin < 5

h=(xmax-xmin)/100;

end

%-----------------------------------------------------

% START THE CODE

%-----------------------------------------------------

% Go 2*h beyond the desired interval to calculate the

% second derivative at both endpoints

xsmin = xmin-2*h;

xsmax = xmax+2*h;

n = fix((xsmax-xsmin)/h + 0.5);

xs = linspace(xsmin,xsmax,n);

ys = spline(xdata,ydata,xs);

% First derivative

div = 0.5/h;

for i=3:n-2

yp(end+1)=div*(ys(i+1)-ys(i-1));

end

% Second derivative

div = div*div;

for i=3:n-2

ypp(end+1)=div*(ys(i+2)-2*ys(i)+ys(i-2));

end

% The function approximation

y = ys(3:n-2);

x = xs(3:n-2);



Chapter 23

Numerical Integration

23.1 What Are You Going To Learn?

You will learn about a hierarchy of simple quadrature formulae that employ
interpolation polynomials. In this lecture, I will follow very closely Chapter 4
of the Numerical Recipes in C [28].

In Chapter 23 folder on fttp:\\petroleum.berkeley.edu, look up the following
MATLAB files:

Romberg.m integrates the function pointed to by fhandle from x = a to
x = b, and produces a triangular Romberg table, T , of results.

RombergF.m Put here your own function to integrate. The current example
function is y = ex.

RombergDemo.m demonstrates performance of Romberg’s numerical inte-
gration algorithm described in Romberg.m. The Romberg function is about
20 times faster than the MATLAB quadl function.

23.2 MATLAB Shortcut

MATLAB has a built in function quad which implements an adaptive Simpson’s
scheme, and quadl which implements a high order method using an adaptive
Gauss/Lobatto quadrature rule. Please check MATLAB help for details.

23.3 Why Is It Important?

In many practical problems, the function we should integrate is known only
approximately and its indefinite integral is unknown. In these situations, we
must integrate numerically, and we want to be confident that the numerical
integral is reasonably close to the real one.
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23.4 Introduction

Explicit formulae cannot be given for the indefinite integrals of most functions.
Furthermore, in many problems the integrand, f(x), is not known precisely but
given by a series of discrete points (e.g., a time series), or is the solution of a
differential equation, which cannot be solved explicitly.

Thus we shall seek appropriate numerical procedures to approximate the
value of the definite integral, say

I{f} ≡
b∫

a

f(x)dx (23.1)

Here [a, b] is a finite closed interval, and Eq. (23.1) should be read in words
as “the operator I acting on all values of a function f is defined as a definite
integral of f .” The geometrical interpretation is, as you know, the area under
the curve on the interval [a, b] (see Figure 23.1).

f(x)

a b x

y

I =
∫ b

a f(x) dx

Figure 23.1: Geometrical interpretation of the integral
∫ b

a f(x) dx

The types of approximation to Eq. (23.1) we consider here are all essentially
of the form

In{f} ≡
n∑

j=1

ajf(xj) (23.2)

The sum in Eq. (23.2) is called a numerical quadrature or numerical integration
formula. The n distinct points, a ≤ xj ≤ b, are called the quadrature points or
nodes and the coefficients aj are called quadrature coefficients.

The basic problems in numerical integration are in choosing the nodes and
coefficients so that In{f} is a “close” approximation of I{f(x)}. As with poly-
nomial approximation, different criteria can be used to measure the quadrature
error,

En{f} ≡ I{f)− In{f} (23.3)

One particularly useful measure of the quadrature error is the so-called degree
of precision, defined as the maximum integer m such that En{xk} = 0 for
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k = 1, 2, ..., m, but En{xm+1} 6= 0. Thus if a quadrature formula has degree
of precision m, all polynomials of degree at most m will be integrated exactly
with this formula.

If a “close” approximation to f(x) in a ≤ x ≤ b is known, then the integral
of the approximating function will be “close” to the integral of f(x). In other
words, if

|f(x)− g(x)| ≤ ε
∣
∣
∣
∣
∣
∣

b∫

a

f(x)dx −
b∫

a

g(x)dx

∣
∣
∣
∣
∣
∣

≤ |b− a|ε
(23.4)

This simple result is the motivation for developing most numerical integration
methods. Of course, it is desirable that the approximating function has a simple
explicit integral. Hence polynomial approximations are naturally suggested,
and of these interpolation polynomials are most frequently used. All practical
quadrature methods are interpolatory.

23.5 Closed Newton-Cotes Formulæ

First some notation: we have a sequence of abscissas, x0, x1, ..., xN , xN+1 which
are spaced apart by a constant step h,

xi = x0 + ih, i = 0, 1, ..., N + 1 (23.5)

A function f(x) has known values at the xi’s,

f(xi) ≡ fi (23.6)

Closed quadrature formulæuse points x0 and xN+1, while open formulædo not.
In the subsequent sections, we will use a somewhat different notation, starting
from x1 and ending with xN for closed intervals. This change in notation should
not lead to confusion. Now we are ready to review several simple integration
methods, which employ increasingly more interior points and approximate the
true integral to increasingly higher order.

23.5.1 The Trapezoidal Rule

x2∫

x1

f(x)dx = h

[
1

2
f1 +

1

2
f2

]

+ O(h3f ′′) (23.7)

Here the error term O( ) signifies that the true answer differs form the estimate
by an amount that is the product of some numerical coefficient times h3 times the
value of the function’s second derivative somewhere in the interval of integration.
The coefficient is known, and it can be found in all standard texts on numerical
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analysis. The point at which the second derivative should be evaluated is not
known. If it were known, we would use this knowledge and approximate the
integral to a higher order. Since a product of a known and an unknown is
an unknown, we streamline the notation and write only O( ) instead of the
full formula. The trapezoidal rule in Eq. (23.7) is a “single panel” algorithm.
Equation (23.7) approximates the function with a straight line, i.e., it is exact
up to and including a polynomial of degree one, or f(x) = x.

23.5.2 Simpson’s Rule

One may anticipate that there exists a three-point formula exact up to polyno-
mials of degree 2. This is true, and lucky error cancellation makes it exact up
to and including order 3, i.e., f(x) = x3 is integrated exactly.

x3∫

x1

f(x)dx = h

[
1

3
f1 +

4

3
f2 +

1

3
f3

]

+ O(h5f (4)) (23.8)

Note that this formula produces the integral over two intervals of size h each.
Hence, the coefficients of Eq. (23.8) add up to 2, i.e., we have two “panels”.

There is no lucky error cancellation in the four-point formula, so it is exact
for polynomials up to and including degree 2. This is Simpson’s 3/8 rule:

x4∫

x1

f(x)dx = h

[
3

8
f1 +

9

8
f2 +

9

8
f3 +

3

8
f4

]

+ O(h5f (4)) (23.9)

How many panels do we have here?

23.5.3 Boole’s Rule

The five-point formula benefits from luck again, and it is exact for polynomials
up to and including degree 5:

x5∫

x1

f(x)dx = h

[
14

45
f1 +

64

45
f2 +

24

45
f3 +

64

45
f4 +

14

45
f5

]

+ O(h7f (6)) (23.10)

How many panels are present here? At this point, the quadrature formulae stop
being named after famous persons, so we stop too.

23.6 Extended Formulae (Closed)

If we use Eq. (23.7) N − 1 times, to do the integration in the intervals [x1, x2],
[x2, x3], . . . , [xN−1, xN ], and then add the results, we obtain an “extended”, or
“composite” formula for the integral from x1 to xN .
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23.6.1 Extended Trapezoidal Rule

xN∫

x1

f(x)dx = h

[
1

2
f1 + f2 + f3 + ... + fN−1 +

1

2
fN

]

+ O(Nh3f ′′) (23.11)

f(x)

a b x

y

Piecewise linear interpolation

Figure 23.2: Geometrical interpretation of the trapezoidal rule.

The error term may be rewritten as follows

O(Nh3f ′′) = O

(
(xN − x1)

3

N2
f ′′

)

(23.12)

The latter notation is clearer, because we usually keep the endpoints fixed and
want to know how much the error will decrease if we double the number of
points (it will decrease 4 times).

23.6.2 Extended Simpson’s Rule

If we apply Eq. (23.7) to successive non-overlapping pairs of intervals, we obtain
the extend Simpson’s rule:

xN∫

x1

f(x)dx = h

[
1
3f1 + 4

3f2 + 2
3f3 + 4

3f4 + ....
+ 2

3fN−2 + 4
3fN−1 + 1

3fN

]

+ O

(
(xN − x1)

5

N4
f (4)

)

(23.13)
Note the alternating coefficients 4/3 and 2/3.

23.7 Romberg Integration

The algorithms in the previous section can be unified with new notation, T m
k ,

where the subscript k labels the order of the approximation (the number of
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f(x)

a b x

y

Piecewise quadratic interpolation

Figure 23.3: Geometrical interpretation of Simpson’s rule.

panels equals 2k), and the superscript m identifies the level of integration algo-
rithm:

m = 0 Trapezoidal rule T 0
k

m = 1 Simpsons’ rule T 1
k

m = 2 Boole’s rule T 2
k

(23.14)

etc. The equations of the previous section can be rewritten in terms of this new
notation:

T 1
k = T 0

k +
1

3

(
T 0

k − T 0
k−1

)

T 2
k = T 1

k +
1

15

(
T 1

k − T 1
k−1

)

T 3
k = T 2

k +
1

63

(
T 2

k − T 2
k−1

)

(23.15)

The generalization of these results leads to the equation for the Romberg al-
gorithm:

T m+1
k = T m

k +
1

4m+1 − 1

(
T m

k − T m
k−1

)
(23.16)

This algorithm usually gives much more accurate results for sufficiently smooth
functions with little more work than required in trapezoidal rule quadrature. Of
the extended trapezoidal rule, the Romberg algorithm removes all terms in the
error series up to but not including O(1/N2k). Romberg’s algorithm is a good
example of a very general idea that has the name of Richardson’s deferred
approach to the limit: Perform some numerical algorithm for several decreasing
values of a parameter h, and then extrapolate to the continuum limit h = 0.
For more information, please look up [28] and [1].



Chapter 24

Ordinary Differential
Equations

24.1 What Are You Going To Learn?

In this chapter you will learn how to integrate the ordinary differential equations
of first order subject to some initial conditions with:

• Euler’s forward method

• Variable step Runge-Kutta method

• MATLAB built-in ode45 function

Euler’s forward method relies on a forward difference approximation to
a derivative. Euler’s method is the most elementary numerical scheme of
integration, but it is only first-order accurate and may require very small time
steps.

Runge-Kutta’s methods give more accurate calculation of the dependent
variable at the next desired time level by calculating several intermediate values
of the right-hand-side of the equation.

Chapter 24 folder on fttp:\\petroleum.berkeley.edu has the following files:

BaseballDemo.m demonstrates performance of the forward Euler method,
the 4th order Runge-Kutta method, and the default MATLAB ODE
integration function ode45.

FwdEuler.m implements the forward Euler method with a constant step.

rk4.m is the fourth order Runge-Kutta method with a constant step.

LotkaVolterra.m integrates the Lotka-Volterra population balance of preda-
tors and prey, and plots the results.
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RHSfun.m is the right hand side of the system of ODE’s to be integrated with
any of the integration schemes above.

RHSLV.m is the right hand side of the Lotka-Volterra system.

24.2 Why Is It Important?

As you will see from the quotation later, the material of this lecture covers pretty
much what most engineers know about solving numerically first order nonlinear
ordinary differential equations. If you acquaint yourself with the example prob-
lems and the MATLAB code samples below, you will be almost as good as most
practicing engineers. You will also recognize the need to debug your numerical
integration schemes against analytical solutions of test problems. Otherwise you
will never know how good your numerical integration routine is.

24.3 MATLAB Shortcut

MATLAB’s ode45 function solves non-stiff ordinary differential equations; other
functions exist, Table 24.1. You can improve accuracy of ode45 by changing
its default parameters with the odeset function.

Table 24.1: MATLAB functions which integrate ordinary differential equations.

—Solver Problem
Type

Order of
Accuracy

When to Use

—ode45 Non-stiff Medium Most of the time. This should be the
first solver you try.

—ode23 Non-stiff Low If using crude error tolerances or solving
moderately stiff problems.

—ode113 Non-stiff Low to high If using stringent error tolerances or
solving a computationally intensive
ODE file.

—ode15s Stiff Low to
medium

If ode45 is slow because the problem is
stiff.

—ode23s Stiff Low If using crude error tolerances to solve
stiff systems and the mass matrix is
constant.

—ode23t Moderately
Stiff

Low If the problem is only moderately stiff
and you need a solution without
numerical damping.

—ode23tb Stiff Low If using crude error tolerances to solve
stiff systems.
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24.4 Conversion of ODEs into the standard MAT-
LAB form

Suppose that the problem we solve results in a third order ordinary differential
equation (ODE) of the form:

y′′′ ≡ d3y

dx3
= f(x, y, y′, y′′) (24.1)

with the initial conditions

y(0) = y10, y′(0) = y20, y′′(0) = y10 (24.2)

By defining the new variables

y1 := y

y2 := y′

y3 := y′′

(24.3)

we can write

dy1

dx
= y2

dy2

dx
= y3

dy3

dx
= f(x, y1, y2, y3)

(24.4)

or

Y ′ = F (x, Y )

Y (0) = Y0

(24.5)

where

Y :=





y1

y2

y3





F :=





y2

y3

f(x, Y )





Y0 :=





y1(0)
y2(0)
y3(0)





(24.6)
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24.5 Simple Example: Throwing a Ball

Suppose that at time t = 0, I throw upwards a base ball at an angle α with
respect to horizontal. Initial velocity of the ball is v0, and the velocity mag-
nitude is v0. We want to determine the trajectory of the ball. The problem
can be formulated mathematically in a Cartesian coordinate system with me at
standing at x = 0 and the y−axis pointing vertically upwards:

vx = v0 cosα (24.7)

vy = v0 sin α− gt (24.8)

We remember that the distance travelled by the ball in the x− and y−direction
is

dsx

dt
= vx

dsy

dt
= vy (24.9)

sx(0) = 0, sy(0) = y0

24.5.1 Euler’s Forward Method

Equations (24.9) form a system of two (here independent) Ordinary Differential
Equations, abbreviated as ODE’s, with appropriate initial conditions (y0 is my
height). These two equations can be integrated directly with respect to time
and the results is

sx(t) = (v0 cosα)t

sy(t) = y0 + (v0 sin α)t− 1

2
gt2 (24.10)

So here we know the answer exactly, and we will try to obtain the same answer
numerically using the simplest numerical integration scheme, Euler’s Forward
Method.

For us, an ODE involves a single unknown function, e.g., y(t), (here y = sx

and y = sy) and its derivatives, e.g., y ′(t), y ′′(t), . . . . An ODE equation alone
is not enough to determine the value of y for all times: we need an initial
condition. An ODE, together with an initial condition, constitutes an Initial
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Value Problem (IVP):










y′
1

y′
2
...

y′
n−1

y′
n










=










f1(t, y1, . . . , yn)
f2(t, y1, . . . , yn)

...
fn−1(t, y1, . . . , yn)
fn(t, y1, . . . , yn)



















y1(0)
y2(0)

...
yn−1(0)
yn(0)










=










y10

y20

...
y(n−1)0

yn0










or, in vector notation,

y ′ = f(t, y)

y(0) = y0,

where f is a function of both time t and the unknown y. (Here the function f
is simply vx(t) or vy(t), so there is no dependence on the unknowns sx or sy.)

The forward Euler’s method attempts to compute the value of y at time tk+1

given its value at time tk. Note that we can always start the process since we
know the initial value y0 at t = 0. The idea is to use a finite difference approx-
imation of y′, and to evaluate f(t, y) at the current time step ti:

y′
i ≈

yi+1 − yi

∆t
= f(ti, yi).

Solving for yi+1, we get the forward Euler method:

yi+1 = yi + f(ti, yi)∆t.

The code is listed in Section 24.7.

24.5.2 Runge-Kutta Method

The Euler method formula is

yi+1 = yi + hf(ti, yi). (24.11)

which advances a solution from ti to ti+1 ≡ ti+h. This formula is asymmetrical:
it advances the solution through an interval h, but uses derivative information
only at the beginning of that interval. Therefore (please verify it as an exercise
by expansion in Taylor series) the approximation error is only one power of h
higher (i.e., it is smaller) than the correction on the right side of Eq. (24.11).
In other words, the error is O(h2).
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Figure 24.1: Plot of the baseball trajectory for v0 = 100 km/h, α = 30 deg.

There are several reasons why we do not recommend Euler’s method for
practical use: (1) the method is not very accurate when compared with other
methods that run at equivalent step size, and (2) it is not very stable either.

Consider, however, taking step like (24.11) to take a “trial” step to the middle
of the interval. Then use the values of both t and y at that midpoint to compute
the “real” step across the whole interval. The corresponding mathematical
expressions are:

k1 = hf(ti, yi)

k2 = hf(ti +
1

2
h, yi +

1

2
k1)

yi+1 = yi + k2 +O(h3) (24.12)

As the error term indicates, this symmetrization cancels out the first or-
der error term, making the method second order. Remember that a numerical
method is called nth order if its remainder term is O(hn+1). In fact, (24.12) is
called the second-order Runge-Kutta or midpoint method.

We can continue this trial-correction game to eliminate the error terms order
by order. This is the basic idea behind the Runge-Kutta method. By far the
most used is the classical fourth-order Runge-Kutta formula, which is very
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slick:

k1 = hf(ti, yi)

k2 = hf

(

ti +
1

2
h, yi +

1

2
k1

)

k3 = hf

(

ti +
1

2
h, yi +

1

2
k2

)

k4 = hf(ti + h, yi + k3)

yi+1 = yi +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (24.13)

function [t,y] = rk4(RHSfunp,ICs,tmin,tmax,h,v0,alpha)

% Fourth order Runge-Kutta method with a constant timestep h

% Input arguments:

% RHSfunp = pointer to the RHS function, here in m/s

% IC’s = row vector of initial conditions, here in m

% tmin = starting time, s

% tmax = end time,s

% h = time step, s

% v0 = initial velocity in m/s (problem specific parameter)

% alpha = angle in radians (problem specific parameter)

% Output arguments:

% t = vector of integration times

% y = array of rows of integrated function values

% (here distances)

% TWP, E77N, April 4, 2001

%-----------------------------------------------------------------

% Number of integration steps

nstep = (tmax-tmin)/h;

%

% Initialization

t(1) = tmin;

y(1,:) = ICs;

hh = 0.5*h;

%

% Time loop with the fourth order R-K inside

for istep = 1:nstep

f1 = feval(RHSfunp,t(istep),y(istep,:),v0,alpha);

k1 = h*f1’;

f2 = feval(RHSfunp,t(istep)+hh,y(istep,:)+0.5*k1,v0,alpha);

k2 = h*f2’;

f3 = feval(RHSfunp,t(istep)+hh,y(istep,:)+0.5*k2,v0,alpha);

k3 = h*f3’;

f4 = feval(RHSfunp,t(istep)+h,y(istep,:)+k3,v0,alpha);

k4 = h*f4’;

y(istep+1,:) = y(istep,:) +(k1/6+k2/3+k3/3+k4/6);

t(istep+1) = tmin + istep*h;

end
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Figure 24.2: Plot of the baseball trajectory for v0 = 100 km/h, α = 30 deg.
This example uses the MATLAB built in function ode45.m and our own function
rk4.m

24.6 Predator-Prey Processes

The earliest representations of predator-prey behavior were constructed inde-
pendently by Lotka (1925) and Volterra (1926). Although their point of
departure was identical, Volterra probed far more deeply. He discussed sev-
eral possible cases, the simplest being that of two associated species. One species
finding sufficient food in the environment, would multiply indefinitely when left
to itself, whilst the other would perish for lack of food if left alone; but the
second feeds upon the first, and so the two species can coexist together.

Denote

N1(t) = number of prey (or hosts)

N2(t) = number of predators (or parasites)

at time t. Suppose that in the absence of predators prey increase at rate r1,
whilst in the absence of prey predators die at rate r2. The the simplest deter-
ministic description of coexistence of the two species is

dN1

dt
= N1(r1 − b1N2)

dN2

dt
= N2(−r2 + b2N1) (24.14)



24.6. PREDATOR-PREY PROCESSES 299

Let us demonstrate this process with the following particular example:

dN1

dt
= N1(1.5− 0.1N2)

dN2

dt
= N2(−0.25 + 0.01N1) (24.15)

With the initial conditions

N1(0) = 1, 5, 10, 15, 20

N2(0) = 15 (24.16)

The code is listed in Section 24.8.
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Figure 24.3: Trajectories of prey and predator populations. This example uses
the MATLAB built in function ode45.m and our own function LotkaVolterra.m

For many scientific users, fourth-order Runge-Kutta method

is not just the first word on ODE integrators, but the last word

as well. Keep in mind, however, that the old workhorse’s last

trip may well be to take you to the poorhouse: Bulirsch-Stoer

predictor-corrector methods can be very much more efficient in

problems where very high accuracy is a requirement.

— WILLIAM H. PRESS et al., Numerical Recipes (1992)
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24.7 MATLAB Code for the Baseball Problem

Here we give you the Euler forward method implemented for the particular
baseball problem (FwdEuler.m), the right hand side function (RHSfun.m), and
the demo function that calls the Euler integration routine and performs plot-
ting (BaseballDemo.m).
BaseballDemo.m

function BaseballDemo()

% Demonstrates performance of the forward Euler method,

% the 4th order Runge-Kutta method, and the default MATLAB

% ODE integration function ode45.

% TWP, E77N, April 4, 2001

clear all; close all; clc

%

% Zero initial conditions

ICs = [0,1.81];

%

% My time interval and time step

tmin=0; tmax=2.95; h=0.05;

%

% Angle in radians

alpha = 30*pi/180;

% Initial velocity in m/s, assuming that I am a famous pitcher

v0 = 100*1000/3600;

%
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Figure 24.4: History of prey and predator populations for N1(0) = 20, N2(0) =
15. This example uses the MATLAB built in function ode45.m and our own
function LotkaVolterra.m
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% Forward Euler method with a constant timestep h

[t,y] = FwdEuler(@RHSfun,ICs,tmin,tmax,h,v0,alpha);

%

% Comparison with direct integration

t = tmin:h:tmax;

xd = ICs(1)+v0*cos(alpha)*t;

yd = ICs(2)+v0*sin(alpha)*t-9.81/2*t.^2;

%

figure(1)

hold on

plot(y(:,1),y(:,2),...

’color’,’b’,’marker’,’+’,’linestyle’,’none’);

plot(xd,yd,’color’,’k’,’linewidth’,1);

grid on, box on

xlabel(’Horizontal distance, m’);

ylabel(’Vertical distance, m’);

legend(’Euler’,’Exact’)

set(gcf,’PaperPosition’,[1 1 4.5 3.2])

%print -depsc2 baseball1.eps

%--------------------------------------------------------------------------

%Comparison with our Runge-Kutta method<<<<<<<<<<<

[tRK4,yRK4] = rk4(@RHSfun,ICs,tmin,tmax,h,v0,alpha);

%--------------------------------------------------------------------------

%Comparison with MATLAB Runge-Kutta method<<<<<<<

[tRK45,yRK45] = ode45(@RHSfun,[tmin,tmax],ICs,[],v0,alpha);

%

figure(2); hold on

plot(yRK45(:,1),yRK45(:,2),...

’color’,’b’,’marker’,’+’,’linestyle’,’none’);

plot(yRK4(:,1),yRK4(:,2),...

’color’,’r’,’marker’,’o’,’linestyle’,’none’);

plot(xd,yd,’color’,’k’,’linewidth’,1);

grid on, box on

xlabel(’Horizontal distance, m’);

ylabel(’Vertical distance, m’);

legend(’ode45’,’rk4’,’Exact’)

set(gcf,’PaperPosition’,[1 1 4.5 3.2])

%print -depsc2 baseball2.eps

FwdEuler.m

function [t,y] = FwdEuler(RHSfunp,ICs,tmin,tmax,h,v0,alpha)

% Forward Euler method with a constant timestep h

% Input arguments:

% RHSfunp = pointer to the RHS function, here in m/s

% IC’s = row vector of initial conditions, here in m

% tmin = starting time, s

% tmax = end time,s

% h = time step, s

% v0 = initial velocity in m/s (problem specific parameter)

% alpha = angle in radians (problem specific parameter)
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% Output arguments:

% t = vector of integration times

% y = array of rows of integrated function values

% (here distances)

%

% TWP, E77N, April 4, 2001

%-----------------------------------------------------------------

% Number of integration steps

nstep = (tmax-tmin)/h;

%

% Initialization

t(1) = tmin;

y(1,:) = ICs;

%

% Euler loop

for istep = 1:nstep

f = feval(RHSfunp,t(istep),y(istep,:),v0,alpha);

y(istep+1,:) = y(istep,:) + f’*h;

t(istep+1) = tmin + istep*h;

end

return

RHSfun.m

function [f] = RHSfun(t,y, v0,alpha)

% The right hand sides of the system of ODE’s

% to be coded by you for each problem as a >>COLUMN<< vector

% TWP, E77N, April 4, 2001

% -------------------------------------------------------------------------

% the RHS function MUST return a >>COLUMN<< vector

f = zeros(2,1); % We have 2 equations

v_x = v0*cos(alpha);

v_y = v0*sin(alpha)-9.81*t;

f(1,1) = v_x;

f(2,1) = v_y;

24.8 MATLAB Code for the L-V Equation

function LotkaVolterra()

% Integrates the Lotka-Volterra population balance of

% predators and prey.

% TWP, E77, April 4, 2001

% Last modified, TWP 2006-04-10

clear all; close all; clc

PrintFlag = 1;

%

% Initial conditions

ICs = [1,5,10,15,90;
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15,15,15,15,15];

% My time interval

tmin=0; tmax=15;

% Parameters of Lotka-Volterra equations

r1=1.5; r2=0.25; b1=0.1; b2=0.01;

%

% MATLAB Runge-Kutta method with variable time step

figure(1); hold on

cs = [’r’,’g’,’b’,’m’,’k’];

options = odeset(’Refine’,4,’RelTol’,1e-6);

for i=1:length(ICs)

[tRK45,yRK45] = ode45(@RHSLV,[tmin,tmax],ICs(:,i),...

options, r1,r2,b1,b2);

plot(yRK45(:,1),yRK45(:,2),’color’,cs(i),’marker’,...

’none’,’linestyle’,’-’);

end

grid on

xlabel(’Number of Prey’);

ylabel(’Number of Predators’);

legend(num2str(ICs(1,1)),num2str(ICs(1,2)),num2str(ICs(1,3)),...

num2str(ICs(1,4)),num2str(ICs(1,5)) )

set(gcf,’PaperPosition’,[1 1 4.5 3.2])

if PrintFlag

print -depsc2 lotkavolterra1.eps

end

figure(2); hold on

plot(tRK45(:),yRK45(:,1),’color’,’g’,’marker’,’none’,...

’linestyle’,’-’,’linewidth’,2)

plot(tRK45(:),yRK45(:,2),’color’,’k’,’marker’,’none’,...

’linestyle’,’-’,’linewidth’,2)

grid on

xlabel(’Dimensionless Time’);

ylabel(’Number of Prey and Predators’);

legend(’Prey’,’Predators’,’Location’,’N’)

set(gcf,’PaperPosition’,[1 1 4.5 3.2])

if PrintFlag

print -depsc2 lotkavolterra2.eps

end

figure(3); hold on

x = 1:1:(length(tRK45)-1);

y1 = diff(tRK45);

plot(x,y1)

xlabel(’Time step #’);

ylabel(’Time step length’);

RHSLV.m

function [f] = RHSLV(t,y, r1,r2,b1,b2)

% The right hand sides of the Lotka-Volterra system of ODE’s

% Must be coded by you as a >>>COLUMN<<< vector
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% TWP, E77N, April 4, 2001

%

f = zeros(2,1);

f(1,1) = y(1)*(r1-b1*y(2));

f(2,1) = y(2)*(-r2+b2*y(1));



Chapter 25

Sort & Search Algorithms,
Big O Analysis

25.1 What are you going to learn?

In this lecture you shall learn about the rearrangement of items into ascending
and descending order. You shall also learn about the computational cost of this
rearrangement. We shall follow the thoroughly tested algorithms in Volume 3 of
Donald E. Knuth’s monograph entitled: The Art of Computer Programming
[21]. This volume has 780 pages packed with information on general-purpose
sorting and searching algorithms.

In Chapter 25 on fttp:\\petroleum.berkeley.edu, you will find the following
functions

bubblesort.m Bubble sort algorithm based on Knuth’s monograph.

picksort.m Pick sort algorithm based on Knuth’s monograph.

qsort.m Quick sort algorithm based on Numerical Recipes in C [28].

binsearch.m Binary search algorithm based on Knuth’s monograph.

SortDemos.m Animation of sort of a vector of random numbers with bubble
sort, pick sort and quick sort.

bubblesortwgraph.m Bubble sort animation function.

picksortwgraph.m Pick sort animation function.

qsortwgraph.m Quick sort animation function.

bigo.m Big O analysis. Definition of Big O description of truncation error by
expanding sin(h) into Taylor series with two terms. Cost of initializing a
two-dimensional array with and without prior memory allocation.

305
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BubbleSortDemo.m Demonstration that bubble sort is O(n2).

PickSortDemo.m Demonstration that quick sort is O(n2).

QSortDemo.m Demonstration that quick sort is O[n log(n)].

MatlabSortDemo.m Demonstration that MATLAB sort() is O[n log(n)].

SortAndSearchDemo.m Demonstration that binary search is O[log(n)].

25.2 Why is it important?

Imagine how difficult life would be if dictionaries or phone books were not al-
phabetized. Similarly, we will see that the order in which items are stored in
computer memory often has a profound influence on the speed and simplic-
ity of algorithms that manipulate those items. Some of the most important
applications of sorting are:

• Solving the “togetherness problem”, in which all items with the same iden-
tification are brought together. Suppose that we have 10000 items in
arbitrary order, many of which have equal values; suppose that we want
to rearrange these items so that all items with equal values appear in
consecutive positions.

• Matching items from two or more files. If several files have been sorted
into the same order, it is possible to find all of the matching entries in one
sequential pass through them, without backing up.

• Searching for information by key values. Sorting is also an aid to searching,
hence it helps us make compute output more suitable for humans. As
Knuth says, a listing that has been sorted into alphabetic order often looks
quite authoritative even when associated with numerical information that
has been incorrectly computed.

In real world business applications, sorting may be the most important part
of computing workload. Just think about the Web search engines, such as
Yahoo! or Alta Vista, and imagine what would happen if their answers to your
complex questions popped on the screen in 30 minutes, not in 30 seconds.

25.3 Sorting

Sorting is the process of rearranging the elements of an array into numerical
order (either ascending or descending). Given an initial array

R1, R2, . . . , RN ,
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we want to find a permutation p(1), p(2), . . . , p(N) of the indices {1, 2, . . . , N}
that will put the array into nondecreasing order:

Rp(1) ≤ Rp(2) ≤· · · ≤ Rp(N).

R1 R2 R3 ← Record
89 37 41 Key
R S O Satellite information
D T D Satellite information

Slot for a link

The definitive description of sorting algorithms is, again, in Donald E. Knuth,
The Art of Computer Programming, Vol. 3, second edition (1998).

25.3.1 Bubble sort

Despite the quotes at the end of this lecture, we do describe bubble sort because
we still think it is instructive. Perhaps the most obvious way to sort is to
compare R1 with R2, interchanging them if they are out of order; then do the
same to R2 and R3, R3 and R4, etc.. During this sequence, large numbers tend
to move to the right, and in fact the largest record will move up to become RN .
Repeating this process will get the appropriate records into positions RN−1,
RN−2, etc., so that all records will ultimately be sorted. The method is called
“bubble sorting” because large elements “bubble up” to their proper position.
After each pass, it is not hard to see that all records above and including the
last one to be exchanged must be in their final positions, so they need not be
examined on subsequent passes. Here is the MATLAB code:

function [R] = bubblesort(R)

% bubblesort.m

% Exchange selection sort of array R

%

% B1. Initialize BOUND

BOUND = length(R);

%

% B2. Loop in j

while (BOUND>1)

t = 0;

for j = 1:BOUND-1

%

% B3. Compare/exchange R(j) and R(j+1)

if (R(j)>R(j+1))

temp = R(j);

R(j) = R(j+1);

R(j+1) = temp;

t = j;

end
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end

%

% B4. Reset BOUND

BOUND = t;

end

Example 19 Table 25.1 shows an example of bubble sort in action. The ver-
tical bar | shows the position of BOUND. Records to the right of this bar are in
their final position and need not be sorted.

Table 25.1: Example of bubble sort

Data 503 275 908 87 703 |
Pass 1 275 503 87 703 | 908
Pass 2 275 87 | 503 703 908
Pass 3 87 | 275 503 703 908
Pass 4 | 87 275 503 703 908

25.3.2 Straight insertion (Picksort)

The idea of straight insertion is very simple. (In fact, this is the way expe-
rienced card players sort their cards.) Assume that 1 < j ≤ N , and that
records R1, . . . , Rj−1 have been rearranged so that

R1 ≤ R2 ≤· · · ≤ Rj−1.

We compare the record Rj with Rj−1, Rj−2, . . . , until we find out that Rj

should be inserted between records Ri and Ri+1; then we move records Ri+1,
. . . , Rj−1 up one space and put the new record into position i + 1. Here is the
MATLAB code:

function [R] = picksort(R)

% picksort.m

% Straight insertion sort of array R

%

% S1. Loop on j

for j = 2:length(R)

%

% S2. Set up i, temp

i = j-1;

temp = R(j);

%

% S3. Compare R(i):temp

while R(i) > temp

%

% S4. Move R(i), decrease i
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R(i+1) = R(i);

i = i-1;

if (i == 0) break; end

end

%

% S5. temp into R(i+1)

R(i+1) = temp;

end

Example 20 Table 25.2 shows an example of straight insertion sort for the
same original array as before. The symbol ∧ shows the location at which the
new record has to be inserted.

Table 25.2: Example of straight insertion

Data 503 275 908 87 703
Pass 1 ∧ 503 : 275
Pass 2 275 503 ∧ : 908
Pass 3 ∧ 275 503 908 : 87
Pass 4 87 275 503 ∧ 908 : 703
Pass 5 87 275 503 703 908

25.3.3 Other methods

Shellsort Improvement of straight insertion following a “divide-and-conquer”
approach, which allows records to take long leaps instead of small steps.

Heapsort This is a very powerful method of sorting by selection, based on the
construction of a binary tree structure.

Quicksort This is, on average, the fastest general-purpose sorting algorithm
known to date. It is based on a partition-exchange procedure.

Quicksort (Not Required)

QuickSort is a sorting algorithm that sorts an n element input array in ascending
order. The longest run time of QuickSort is O(n2), when the input array is
already sorted. On average, the running time of QuickSort is O(n log n), which
is remarkably efficient.

The following is a description of the QuickSort algorithm:

1. Choose one element in the array, A, that will be the pivot element, p, from
A(first...last).

2. Make one pass through the array, called the partition step, rearranging
the elements such that:
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• The pivot is in its proper place.

• Elements < than pivot are to the left of pivot, A(first...p-1).

• Elements ≥ to pivot are to the right, A(p+1...last).

3. Recursively apply QuickSort to the part of the array that is to the left of
the pivot, and to the part on the right.

Arranging the array elements around the pivot generates two smaller sorting
problems - sort the left segments of the array and sort the right segment of the
array. The relationships between the pivot and the array elements imply that
once you solve the left and right sorting problems, the original sorting problem
has been solved. Partitioning the array before the recursive calls places the
pivot in its correct position and ensures that when the smaller array segments
are sorted, their elements will be in the proper relation to the rest of the array.
The QuickSort algorithm will eventually terminate. The left and right sorting
problems are smaller than the original sorting problem, and each is closer to the
base case, an array containing one element.

Of course, for speed, QuickSort should be implemented iteratively. An it-
erative implementation below, patterned after the Numerical Recipes in C is
rather complicated:

function [R]= qsort(R)

% T.W. Patzek, E77N Class Material, 2002-04-28

% Quick sort algorithm adapted from Numerical

% Recipes in C, pages 333-334, Second Edition

% KNOWN BUG: Sometimes leaves first element out

% of order. To be fixed next semester

M = 7;

NSTACK = 50;

ir = length(R);

il = 1;

jstack = 0;

istack = zeros(1,NSTACK);

while(1)

if ir-il<M % Pick sort when the subarray is small

for j=(il+1):1:ir

r = R(j);

for i=(j-1):-1:1

if (R(i)<=r) break; end;

R(i+1) = R(i);

end

R(i+1) = r;

end

if (jstack == 0) break; end;

% Pop stack and begin a new round of partitioning

ir = istack(jstack);

jstack = jstack -1;

il = istack(jstack);
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jstack = jstack -1;

else

% Choose median of left and right elements as

% the partitioning element r.

k = floor((il+ir)/2);

% Also rearrange so that R(il+1)<=R(il)<=R(ir)

temp = R(il+1);

R(il+1) = R(k);

R(k) = temp;

if R(il+1)>R(ir)

temp = R(il+1);

R(il+1) = R(ir);

R(ir) = temp;

end

if R(il)>R(ir)

temp = R(il);

R(il) = R(ir);

R(ir) = temp;

end

if R(il+1)>R(il)

temp = R(il+1);

R(il+1) = R(il);

R(il) = temp;

end

% Initialize pointers to partitioning

i=il+1;

j=ir;

r=R(il); % Partitioning element

% Beginning of the innermost loop

while(1)

% Execute each while loop at least once

% Scan up to find element >= r

while (1)

i=i+1;

if (R(i)>=r) break; end;

end

% Scan down to find element <= r

while(1)

j=j-1;

if (R(j)<=r) break; end

end

% Pointers crossed, scan is complete

if (j<i) break; end;

% Swap the offending elements

temp = R(i);

R(i) = R(j);

R(j) = temp;

end

% Final swap of this round

R(il) = R(j);
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R(j) = r;

jstack = jstack+2;

if (jstack>NSTACK)

error(’NSTACK too short for qsort’);

end

% Push current partitions on the stack

if (ir-i+1 >= j-il)

istack(jstack) = ir;

istack(jstack-1) = i;

ir = j-1;

else

istack(jstack) = j-1;

istack(jstack-1) = il;

il = i;

end

end

end

25.4 Searching

In this section we shall concentrate on methods that are appropriate for search-
ing a table whose elements satisfy

R1 < R2 < · · · < RN .

25.4.1 Binary search

The first method that suggests itself is to start by comparing the argument R to
the middle element in the table; the result of this comparison tells which half of
the table should be searched next, and the same procedure can be used again.
Eventually we will have found the record or detected the two records embracing
the argument.

Although the basic idea of binary search is straightforward, the details can
be tricky. Here is a MATLAB implementation following Knuth:

function [lower,upper] = binsearch(R,K)

% Binary search of an ordered table

% April 24, 2002

%

% B1. Initialize

lower = 1;

upper = length(R);

% B2. Get midpoint

while (upper >= lower)

mid = floor(0.5*(lower+upper));

% B3. Compare

if (K < R(mid))
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% B4. Adjust upper

upper = mid-1;

else

% B5. Adjust lower

lower = mid+1;

end

end

% B6. Brackets crossed, swap them

temp = lower;

lower = upper;

upper = temp;

Example 21 Table 25.3 shows two examples of binary search. The brackets [
and ] indicate the position of the lower and upper limits of the search, respec-
tively. The underlined record represents the middle element. In both examples
the search terminates after four steps.

Table 25.3: Examples of binary search

(a) Searching for K = 653

[ 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 ]

061 087 154 170 275 426 503 509 [ 512 612 653 677 703 765 897 908 ]

061 087 154 170 275 426 503 509 [ 512 612 653 ] 677 703 765 897 908

061 087 154 170 275 426 503 509 512 612 [ 653 ] 677 703 765 897 908

(b) Searching for K = 400

[ 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 ]

[ 061 087 154 170 275 426 503 ] 509 512 612 653 677 703 765 897 908

061 087 154 170 [ 275 426 503 ] 509 512 612 653 677 703 765 897 908

061 087 154 170 [ 275 ] 426 503 509 512 612 653 677 703 765 897 908

061 087 154 170 275 ][ 426 503 509 512 612 653 677 703 765 897 908

25.5 Analysis of algorithms

An algorithm must always terminate after a finite number of steps. In fact, this
should be a reasonable number so that we get an answer in a reasonable time
using a computer. The study of the quantitative behavior of algorithms (such
as the number of times each step is executed) is called analysis of algorithms.

25.5.1 O-notation

We often want to quantity approximately, rather than exactly. The O-notation
allows us to replace the “≈” sign by “=” and to quantify the degree of accuracy;
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for example,
f(x + 1

n ) = f(x) + f ′(x) 1
n + O(( 1

n )2).

The last term is read as “big-oh of one over n squared.” In general, let ǫn =
O(f(n)). The precise meaning is this: there are positive constants M and n0

such that |ǫn| ≤ M |f(n)|, for all integers n ≥ n0. We do not say what the
constants M and n0 are because we usually do not know them.

Example 22 We know that

12 + 22 + · · ·+ n2 = 1
3n(n + 1

2 )(n + 1) = 1
3n3 + 1

2n2 + 1
6n.

It follows that

12 + 22 + · · ·+ n2 = O(n4),

12 + 22 + · · ·+ n2 = O(n3),

12 + 22 + · · ·+ n2 = 1
3n3 + O(n2).

The first equation is rather crude, but not incorrect. The last equation is the
strongest statement. 2

Example 23 Let’s expand sin(h) in Taylor series about 0:

sin(h) ≈ h− 1

6
h3 +

1

5!
h5,

sin(h) ≈ h− 1

6
h3 + O(hn)

Suppose that we do not know the exponent n. To see what n is we could plot
the difference between the sin(x) and its polynomial approximation, divided by
hm, m = 1, 2, . . . , and check when this ratio becomes constant. In other words,
there should be a positive constant M , such that

| sin(h)− (h− 1
6h3)|

hm
≤M (25.1)

for all h larger than the smallest h we used. The result of this analysis is shown
in Figure 25.1. 2

The O-notation is very useful in analyzing algorithms because it leaves out
unimportant details. It can also be manipulated algebraically, with some care.
The most important consideration is that of one-way inequalities. We write

1
2n2 + n = O(n2) ←− correct

and not

O(n2) = 1
2n2 + n ←− wrong!!
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Figure 25.1: Big O analysis of truncation error. Scaling of Eq. (25.1) with h and
m = 1, 2, 3, 4, 5. Error of this particular approximation of sin(h) is uniformly
smaller that Mh for all h ≥ hmin, where M = 0.01 (the dotted line). Note that
for small h, the linear approximation of sin(h is best.

The right-hand side of an equation does not give more information than the
left-hand side. Here are some simple examples of O-notation operations:

O(c · f(n)) = O(f(n)),

O(n + k) = O(n),

O(n2 + n) = O(n2),

O(log n + k) = O(log n),

O(n log n + n) = O(n log n).

25.5.2 Analysis of bubble sort

There are three different actions which can be identified. Let P be the number
of passes (outer loops while BOUND>1), C the number of comparisons Rj :
Rj+1, and E the number of exchanges Rj ↔ Rj+1. The running time will
be proportional to the number of times that each statement in the program is
executed. In our case (check it):

T = 1 + 4P + 2C + 4E



316 CHAPTER 25. SORT & SEARCH ALGORITHMS, BIG O ANALYSIS

function [R] = bubblesort(R)

% bubblesort.m

% Exchange selection sort of array R

%

% B1.

BOUND = length(R); % 1

%

% B2.

while (BOUND>1) % P1

t = 0; % P2

for j = 1:BOUND-1 % P3,C1

%

% B3.

if (R(j)>R(j+1)) % C2

temp = R(j); % E1

R(j) = R(j+1); % E2

R(j+1) = temp; % E3

t = j; % E4

end

end

%

% B4.

BOUND = t; % P4

end

% T= 1+4P+2C+4E

In the worst case scenario (array in descending order):

1. P = n (BOUND decreases by one after each pass)

2. C = (n− 1) + (n− 2) + · · ·+ 2 + 1 = n(n− 1)/2 (arithmetic series)

3. E = C (all comparisons are true)

We have

max T = 1 + 4n + 2
n(n− 1)

2
+ 4

n(n− 1)

2
= 1 + 3n2,

and thus

maxT = O(n2).

25.5.3 Analysis of MATLAB sort

The MATLAB sort algorithm is O[n log(n)], Figure 25.4.

25.5.4 Analysis of binary search

There are three different actions: P is the number of passes (sequence of search-
ing intervals), C is the number of comparisons, and A is the number of adjust-
ments of either limit of the interval. The number of operations will be
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Figure 25.2: Scaling of bubble sort with n2.

function [lower,upper] = binsearch(R,K)

% Binary search of an ordered table

% April 24, 2002

%

% B1. Initialize

lower = 1; % 1

upper = length(R); % 2

%

% B2. Get midpoint

while (upper >= lower) % C1

mid = floor(0.5*(lower+upper)); % P1,P2,P3

%

% B3. Compare

if (K < R(mid)) % C2

%

% B4. Adjust upper

upper = mid-1; % A1

else % C2

%

% B5. Adjust lower

lower = mid+1; % A2

end

end
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Figure 25.3: Scaling of pick sort with n2.

temp = lower; % 3

lower = upper; % 4

upper = temp; % 5

% T=5+3P+2C+A=5+3P+2P+P=5+6P

T = 5 + 3P + 2C + A.

Also, the number of comparisons is, in the worst case, C = P , and the number
of adjustments is A = P . So we only have to find the number of passes. This
is very easy because we decrease the size of the searching interval by a factor
of two in every pass: n, n/2, n/4, . . . , 1. If we take log2 of these lengths, we
get log2(n), log2(n) − 1, log2(n) − 2,. . . , 2, 1, 0. The length of this arithmetic
sequence is log2(n) + 1, so P = ⌈log2 n⌉. Thus, T = 5 + 6⌈log2 n⌉, and

T = O(log n).
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Figure 25.4: Scaling of MATLAB sort with n log n.

In short, the bubble sort seems to have

nothing to recommend it, except a catchy name.

— DONALD E. KNUTH, The Art of Computer Programming (1973)

If you know what bubble sort is, wipe it out from your mind;

if you don’t know, make a point of never finding out!

— WILLIAM H. PRESS et al., Numerical Recipes (1986)
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Chapter 26

Data Structures, Part II.
Linked Lists, Queues and
Stacks

26.1 What Are You Going To Learn?

You will learn about singly and doubly linked lists, stacks and queues. In Chapter
26 folder on fttp:\\petroleum.berkeley.edu, you will find

dsadbx.zip A zipped file, which contains 71 files creating the Data Structures
and Algorithms Toolbox. The toolbox implements a new POINTER object.
Unzip these files into a folder in which you will hold your data structure
demos. You are now ready to use the other demos listed below.

SingleListDemo.m Demonstrate use of MathWorks’ sl * functions.

changetwp.m A function that replaces a string in a linked list.

QueueDemo.m Demonstrate use of MathWorks’ qu * functions.

StackDemo.m Demonstrate use of MathWorks’ st * functions.

OTHER In addition, the toolbox comes with its own demos.

26.2 Why Is It Important?

Most computer programs operate on tables of information [20]. Usually these
tables are not amorphous masses of numbers, but they involve structural rela-
tionships among the data elements. In its simplest form, a table may be a linear
list of elements. This structure is sufficient when the only questions we ask are:
Which element is first? Which is last? Which elements precede and succeed an
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element of interest? Lists, and their simpler children, queues and stacks, are
the fundamental linear data structures of Computer Science. They are essen-
tial to the efficient management of computer memory and implementations of
computer algorithms.

26.3 MATLAB Shortcuts

Data Structures & Algorithms Toolbox for MATLAB R12, author Yaron Keren,
zip file: dsatbx.zip.

26.3.1 Summary

The Data Structures & Algorithms Toolbox provides advanced data structures
and algorithms for the MATLAB environment. The toolbox implements func-
tions to create and destroy singly and doubly linked lists, stacks, queues, binary
trees and red-black (balanced) binary trees:

1. Data structures can be dynamically allocated and destroyed.

2. Data elements can be inserted, deleted or searched for.

3. Contents of lists, queues and stacks can be displayed.

4. A user-defined function can operate on the fields of the lists and binary
trees as they are visited.

5. Binary trees can be visited inorder, postorder and preorder.

6. A graphical representation of trees can be shown.

All algorithms are clearly written as m-files, which allows the toolbox to be
used as a teaching aid in educational data structures courses. This is the first
implementation available of advanced data types, common in other languages,
for MATLAB.

26.3.2 Toolbox contents

% Data Structures & Algorithms Toolbox

% Version 1.03 8-Aug-2001

%

% Demonstrations:

% avl_demo - AVL binary tree demo.

% bt_demo - Binary tree demo.

% rb_demo - Red-Black binary tree demo.

% (compare to bt_demo!)

% sl_demo - Singly linked list demo.

%

% Binary trees:

% bt_del - Delete a node.
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% bt_find - Find a node.

% bt_free - Free allocated tree.

% bt_graph - Graph the tree.

% bt_inord - Traverse the tree inorder.

% bt_new - Allocate a new tree.

% bt_posto - Traverse the tree postorder.

% bt_preor - Traverse the tree preorder.

% bt_put - Add a node.

%

% Red-Black (balanced) binary trees:

% rb_del - Delete a node.

% rb_find - Find a node.

% rb_free - Free allocated tree.

% rb_graph - Graph the tree.

% rb_inord - Traverse the tree inorder.

% rb_new - Allocate a new tree.

% rb_posto - Traverse the tree postorder.

% rb_preor - Traverse the tree preorder.

% rb_put - Add a node.

%

% AVL (better balanced) binary trees:

% avl_del - Delete a node.

% avl_find - Find a node.

% avl_free - Free allocated tree.

% avl_graph - Graph the tree.

% avl_inord - Traverse the tree inorder.

% avl_new - Allocate a new tree.

% avl_posto - Traverse the tree postorder.

% avl_preor - Traverse the tree preorder.

% avl_put - Add a node.

%

% Stacks:

% st_empty - Is empty?

% st_free - Free allocated stack.

% st_new - Allocate a new stack.

% st_pop - Pop top element.

% st_push - Push top element.

% st_top - Return top element without popping it.

%

% Queues:

% qu_dequ - Dequeue (remove) first element.

% qu_empty - Is empty?

% qu_enqu - Enqueue (insert) last element.

% qu_free - Free allocated queue.

% qu_front - Return first element without removing it.

% qu_new - Allocate a new queue.

%

% Singly linked lists:

% sl_appnd - Append node as tail of list.

% sl_count - Count number of elements in list.
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% sl_del - Delete a node.

% sl_disp - Display the list.

% sl_empty - Is empty?

% sl_free - Free allocated list.

% sl_get - Return list head.

% sl_insrt - Insert node as head of list.

% sl_new - Allocate a new list.

% sl_puta - Put after specified node.

% sl_trav - Traverse the list.

%

% Doubly linked lists:

% dl_del - Delete a node.

% dl_disp - Display the list.

% dl_empty - Is empty?

% dl_free - Free allocated list.

% dl_get - Return list head.

% dl_new - Allocate a new list.

% dl_puta - Put after specified node.

% dl_trav - Traverse the list.

%

% Copyright (c) MathWorks Inc. 1998-2001. All rights reserved.

%

% Send suggestions, bug fixes and questions to yaron@mathworks.com

%

% AVL Tree and corrections to Red-Black Tree and Binary Tree

% made by Anthony Gallagher (http://www.cs.cmu.edu/~anthonyg)

% of the Robotics Institute, School of Computer Science,

% Carnegie Mellon University. Nov 2000.

26.4 Useful Definitions

The definitions below follow Knuth [20], and the Dictionary of Algorithms and
Data Structures maintained on the Web http://www.nist.gov/dads/ by the Na-
tional Institute of Standards (NIST).

First we must define a couple of terms essential in the definitions below. The
information in a linear table consists of a set of nodes, also called “records,”
“entities,” or “beads” by some authors. The synonyms of “node” are “item” or
“element.” More generally a node can be a container, i.e., an object used to
store other objects, endowed with methods to access these objects. The singly
linked list implementation discussed below allows for a user-defined function (a
“method”) to operate on the contents of each node. From this point of view,
the list nodes can also be called containers. Each node consists of one or more
consecutive words of computer memory, divided into named parts called fields..
The address of a node, also called a link, pointer or reference to the node, is
the memory location of the node’s first word. The contents of any field within
a node may represent numbers, characters, links, or anything else we desire. In
particular, in MATLAB each field may be a general cell array.
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FIRST - Item 1 - Item 2 - Item 3 - Item 4

?
Figure 26.1: A singly linked list. Here FIRST is a link variable pointing to the
first node of the list (its head). Node 4 is last (the list tail), and it points to
nowhere.

Definition 24 A linear list is a sequence of n ≥ 0 nodes N(1), N(2),. . . , N(n)
that are described only by the relative positions as they appear in a line. All we
care is that if n > 0, N(1) is the first node and N(n) is the last; also if 0 < k < n,
then the kth node N(k) is preceded by N(k − 1) and followed by N(k + 1). 2

Definition 25 The singly linked list, Figure 26.1, is a convenient way to store
an unbounded array, that is create an array when we don’t know in advance how
large this array will be. The disadvantage of the singly linked list is that data
can only be accessed sequentially. To read the contents of the millionth element
(node) of a singly linked list, you must access the 999,999 elements that precede
it; the singly linked list supports only forward traversal. A linked list consists
of a root node, allocated on the stack (a local variable) and one or more nodes,
allocated on the heap (by allocating to them permanent storage locations1. In
the singly linked list, each node has two parts, the link field to the subsequent
node and the data field(s) containing the information you want stored in the
linked list. The end of the singly linked list, its tail, is indicated by setting the
link field to zero. The data field in each node can have different length and
type; it can be a string, number array or cell array. 2

Definition 26 A doubly linked list supports both forward and backward traver-
sal, and insertion and removal of elements at the beginning or the end, or in
the middle. In a doubly linked list, each node has a link to the previous node
as well as the next. These links allow easier access of the list nodes backwards
as well as forwards, and inserting or deleting a node in fixed time. 2

Because different people mean different things when they say “list”, you should
always specify that you mean a linear list, singly linked list or a doubly linked
list.

A singly linked list can be used to implement two other children data struc-
tures, a stack and a queue :

Definition 27 A stack, Figure 26.2, is linear list in which all insertions and
deletions are made at one end of the list: only the most recently added item
may be accessed or deleted. The latest added item is at the stack top. The basic
operations defined for a stack are add (to the head) or push, remove (from the

1Equivalent to calling malloc() in C; see malloc.m in the Lecture 22 folder.
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head) or pop, and access (the head) or top. Stacks are examples of the “last-
in, first-out” or LIFO linear lists. Let S denote a stack and v a value. In the
MATLAB toolbox, the operation new() is st new.m, push(v, S) is st push.m,
pop(S) is st pop.m, and top(S) is st top.m. 2

Bottom (Tail)

Fourth from top

Third from top

Next to top

Top (Head)

Insert or delete 

Figure 26.2: Stack

Front (Head)    Second      Third     Rear (Tail)

Delete 
Insert 

Figure 26.3: Queue

Definition 28 A queue, Figure 26.3, is a linear list for which all insertions
are made at one end of the list and all deletions are made at the other end: only



26.5. SINGLY LINKED LIST, EXAMPLE 327

the earliest added item may be accessed or deleted. Basic operations are add (to
the tail), or enqueue, and delete (from the head) or dequeue. The first element
is at the queue’s front. Delete returns the item removed. Queues are examples
of the “first-in, first-out” or FIFO linear lists. Let Q denote a queue and v a
value. In the MATLAB toolbox the operation new() is qu new.m, add(v, Q) is
qu enque.m, front(Q) is qu front.m , and remove(Q) is qu de-qu.m. 2

26.5 Singly Linked List, Example

The following demo will create a singly linked list, put cell arrays into each node
by expanding the list head-first or tail-first. Then a user-defined function will
operate on each node of the list replacing a fragment of text with another one:

function SingleListDemo

% SingleListDemo uses the MathWorks sl_* functions,

% copyrighted (c) MathWorks Inc. 1998-2001.

% E77N Class Material, T.W. Patzek, 2002-04-25

%

clc, clear all, close all;

% Create a new singly linked list

h1=sl_new;

% Put something into it:

Records = {’I love learning’;

’about linked lists’;

’because I love E77N too’;

’What will I do with my time’;

’when the semester is over’;

’??!!?’};

%---------------------------------------------------------

% NOTE: Each record can be anything: a cell array, string

% array, number... Records may be of different types

%---------------------------------------------------------

len = length(Records);

% Insert records into the list.

% The last record becomes the list head

for i = 1:len

h1=sl_puta(h1,h1.head,Records{i,:});

end

disp(’--- Contents of a singly linked list ---’);

disp(’--- Each new record is inserted at head ---’);

% Display list contents from head to tail

sl_disp(h1);

disp(’---------------------------’);

% Get list head

data=sl_get(h1);

fprintf(’\nList head is: %s\n\n’,data);

% Delete list

h1=sl_free(h1);

%---------------------------------------------------------
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% Insert records into the list.

% The last record becomes the list tail

h2=sl_new;

for i = 1:len

h2=sl_puta(h2,h2.tail,Records{i,:});

end

disp(’--- Contents of a singly linked list ---’);

disp(’--- Each new record is inserted at tail ---’);

sl_disp(h2);

disp(’---------------------------’);

% Get list head

data=sl_get(h2);

fprintf(’\nList head is: %s\n\n’,data);

% While traversing each node of the list,

% execute a user-supplied function

disp(’--- Execute a user function at each node ---’);

sl_trav(h2,@changetwp);

% Free the list

h2=sl_free(h2);

function changetwp(s)

% TWP, E77N Class Material, 2002-04-25

[k]=findstr(s,’love’);

if ~isempty(k)

s(k(1):k(1)+3)=’hate’;

end

fprintf(’%s\n’,s);

26.5.1 What Does the Demo Do?

The SingleListDemo.m initializes two singly linked lists and inserts into them a
cell array, one row per node. In the first case, the new node is inserted at the list
head (just as in a stack), pushing the prior nodes further away. In the second
case, the new item is inserted at the list tail (just like in a queue), preserving
the order of rows in the input cell array. Here is the MATLAB output:

--- Contents of a singly linked list ---

--- Each new record is inserted at head ---

??!!?

when the semester is over

What will I do with my time

because I love E77N too

about linked lists

I love learning

---------------------------

List head is: ??!!?
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--- Contents of a singly linked list ---

--- Each new record is inserted at tail ---

I love learning

about linked lists

because I love E77N too

What will I do with my time

when the semester is over

??!!?

---------------------------

List head is: I love learning

--- Execute a user function at each node ---

I hate learning about linked lists

because I hate E77N too

What will I do with

my time when the semester is over

??!!?

26.6 Stack Example

function StackDemo

% StackDemo uses the MathWorks st_* functions,

% Copyrighted (c) MathWorks Inc. 1998-2001.

% E77N Class Material, T.W. Patzek, 2002-04-26

%

clc, clear all, close all;

% Create a new stack

s1=st_new;

Records = {’Hi, I am a stack’;

’When you push in’;

’I pop out’};

%---------------------------------------------------------

% NOTE: Each stack record can be anything: a cell array,

% string array, number... Records may be of different types

%---------------------------------------------------------

len = length(Records);

% Insert records into the stack.

% The last record becomes the list head

disp(’--- Contents of a stack ---’);

disp(’--- Push a new record into stack’’s HEAD ---’);

for i = 1:len

s1=st_push(s1,Records{i,:});

% Display stack contents

disp(’---------------------------’);

sl_disp(s1);

end
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% Get the top element of the stack

data=st_top(s1);

fprintf(’\nStack top is: %s\n\n’,data);

disp(’--- Contents of a stack ---’);

disp(’--- Pop a new record from stack’’s HEAD ---’);

sl_disp(s1);

for i = 1:len

s1=st_pop(s1);

% Display stack contents

disp(’---------------------------’);

sl_disp(s1);

end

disp(’Stack is LIFO’);

% Delete stack

s1=sl_free(s1);

26.6.1 What Does the Demo Do?

First we push three cell arrays into the stack:

>>StackDemo

--- Contents of a stack ---

--- Push a new record into stack’s HEAD ---

---------------------------

Hi, I am a stack

---------------------------

When you push in

Hi, I am a stack

---------------------------

I pop out

When you push in

Hi, I am a stack

---------------------------

Stack top is: I pop out

--- Contents of a stack ---

--- Pop a new record from stack’s HEAD ---

I pop out

When you push in

Hi, I am a stack

---------------------------

When you push in

Hi, I am a stack

---------------------------

Hi, I am a stack

---------------------------
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Stack is LIFO

26.7 Queue Example

function QueueDemo

% QueueDemo uses the MathWorks qu_* functions,

% Copyrighted (c) MathWorks Inc. 1998-2001.

% E77N Class Material, T.W. Patzek, 2002-04-26

%

clc, clear all, close all;

% Create a new stack

q1=qu_new;

Records = {’Hi, I am a queue’;

’When you push in’;

’I pop out’};

%---------------------------------------------------------

% NOTE: Each queue record can be anything: a cell array,

% string array, number... Records may be of different types

%---------------------------------------------------------

len = length(Records);

% Insert records into the queue.

% The last record becomes the queue tail;

disp(’--- Contents of a queue ---’);

disp(’--- Enqueue a new record into queue’’s TAIL ---’);

for i = 1:len

q1=qu_enqu(q1,Records{i,:});

% Display queue contents

disp(’---------------------------’);

sl_disp(q1);

end

% Get the first element of the queue, without popping it

data=qu_front(q1);

fprintf(’\nQueue front is: %s\n\n’,data);

disp(’--- Contents of a queue ---’);

disp(’--- Dequeue a new record from queue’’s HEAD ---’);

sl_disp(q1);

for i = 1:len

q1=qu_dequ(q1);

% Display queue contents

disp(’---------------------------’);

sl_disp(q1);

end

disp(’Queue is FIFO’);

% Delete queue

q1=qu_free(q1);
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26.7.1 What Does the Demo Do?

First we push three cell arrays into the queue:

>>QueueDemo

--- Contents of a queue ---

--- Enqueue a new record into queue’s TAIL ---

---------------------------

Hi, I am a queue

---------------------------

Hi, I am a queue

When you push in

---------------------------

Hi, I am a queue

When you push in

I pop out

---------------------------

Queue front is: Hi, I am a queue

--- Contents of a queue ---

--- Dequeue a new record from queue’s HEAD ---

Hi, I am a queue

When you push in

I pop out

---------------------------

When you push in

I pop out

---------------------------

I pop out

---------------------------

Queue is FIFO
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Graphs, Adjacency
Matrices and Lists, &
Depth-First Search

27.1 What Are You Going To Learn?

You will learn a little about graphs and how their vertices and edges can be
encoded and displayed in MATLAB. In particular, the graph connectivity will
be encoded through the adjacency matrix and the adjacency list. You will
also see an implementation of the depth-first search using the adjacency list
description of graphs.

In Chapter 27 folder on fttp:\\petroleum.berkeley.edu, you will find the files
pertinent to the adjacency matrix description of graphs:

am graph.m is the main function to generate a directed graph, given a con-
nectivity (adjacency) matrix.

am graphvertices.m generates n vertices of a graph located on a symmetric
n-gon rotated by an arbitrary angle.

am graphedges.m generates edges linking vertices V of a graph and adjusts
their lengths to fit the radius R of each vertex (node) to be plotted.

am edgearrows.m generates arrows in the middle of graph each edge.

arrowgen.m , plots a a single vector with an arrow.

myrotation.m rotates Cartesian coordinates (x, y) of each row of the vertex
array V counterclockwise.

am plotvertices.m plots a vertices of a polygon and labels them as they ap-
pear in the vertex matrix V .
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am plotedges.m .

am plotarrows.m plots an arrow in the middle of each directed edge of a
polygon.

plotcircle.m plots edges of a polygon.

You will also find files pertinent to the adjacency (neighbor) list description of
graphs:

nl graph.m generates an undirected graph using the neighbor list description.

nl graphedges.m generates edges linking vertices of a graph G and adjusts
their lengths to fit the radius R of each vertex (node) to be plotted.

nl plotedges.m plots edges of a polygon with neighbor list description.

nl dfs.m A näıve depth-first search of a graph.

nl plotvertices.m plots a vertices of a polygon and labels them as they appear
in structure G.

27.2 Why Is It Important?

Engineers and scientists use mathematics to build models of practical problems.
One area of mathematics particulary well-suited to model building is graph
theory. Graphs are essential to solve problems in

1. Connections: electrical, flow, chemical...

2. Scheduling: classes, computer laboratories, airport takeoff times...

3. Transportation: highway control, street light control, UPS deliveries, FedEX
flights...

4. Network analysis: pore space of a natural rock is a disordered network
with random connectivity

5. Games and Puzzles.

Graph theory is routinely applied in

1. Critical path analysis

2. Molecular chemistry

3. Analysis of complex chemical reactions

4. Genetics

5. Linear algebra (matrix theory)
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6. Set theory

7. Topology

8. Group theory

9. Sort & Search

10. Analysis of computer algorithms

11. ... (just to name a few)

27.3 Background

Figure 27.1: It became a tradition to try to walk around Königsberg crossing
each bridge only once, but nobody could find the right path. Leonhard Euler,
proved that such a walk was impossible. He proved this by inventing a diagram
called graph (or network), that was made up of vertices (dots where lines meet,
also called sites or nodes) and arcs (also called edges or links).
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Figure 27.2: Leonhard Euler, probably the greatest mathematician of all
times. In 1736 Euler published a paper on the solution of the Königsberg
bridge problem entitled Solutio problematis ad geometriam situs pertinentis
which translates into English as The solution of a problem relating to the ge-
ometry of position. The title indicates that Euler knew he was dealing with
a different type of geometry where distance was not relevant, but connectivity
was.

The river Pregel divides the town of Königsberg into four separate land
masses, A, B, C, and D, Figure 27.1. Seven bridges connect the various parts
of town, and some of the town’s curious citizens wondered if it were possible to
take a journey across all seven bridges without having to cross any bridge more
than once. All who tried ended up in failure, including the Swiss mathematician,
Leonhard Euler, Figure 27.2, probably the best mathematician of all times.
Of course, Euler succeeded in explaining why such a journey was impossible,
not only for the Königsberg bridges, but whether such a journey was possible
or not for any network of bridges anywhere. Euler reasoned that to succeed
each land mass should have an even number of bridges connected to it, or if
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the journey would begin on one land mass and end on another, then exactly
those two land masses could have an odd number of connecting bridges, while
all other land masses must have an even number of connecting bridges.

To succeed, a traveller in the middle of the journey must enter a land mass
via one bridge and leave by another, thus that land mass must have an even
number of connecting bridges. Further, if the traveller at the start of the journey
leaves one land mass, then a single bridge will suffice and upon completing the
journey the traveller may again only require a single bridge to reach the ending
point of the journey. The starting and ending points then, are allowed to have
an odd number of bridges. But if the starting and ending point are to be the
same land mass, then it and all other land masses must have an even number
of connecting bridges.

Alas, all the land masses of Königsberg have an odd number of connecting
bridges and the journey that would take a traveller across all the bridges, one
and only one time during the journey, proves to be impossible!

27.4 Graph Definitions

v1v2

v3

v4

Figure 27.3: An undirected graph with 4 vertices and 4 edges.

Definition 29 A graph G is a finite nonempty set of vertices, V , together with
a set of edges, E. For example, Figures 27.3 and 27.4, a graph, G, may be
defined by the vertex set:

V = {v1, v2, v3, v4}, (27.1)
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v1 v2

v3

v4

Figure 27.4: This graph is equivalent to the graph in Figure 27.3.

and the edge set:

E = {{(v1, v2), (v2, v1)}, {(v1, v3), (v3, v1)},
{(v2, v3), (v3, v2)}, {(v3, v4), (v4, v3)}}.

(27.2)

2

Definition 30 A directed graph or digraph, D, is a finite nonempty set of ver-
tices, V , together with a set of directed edges or arcs, E. For example, Figure
27.5, a graph, D, may be defined by the vertex set:

V = {v1, v2, v3, v4}, (27.3)

and the edge set:

E = {(v1, v2), (v2, v3), (v3, v1), (v4, v3)}. (27.4)

You can think of undirected graphs as a subset of directed graphs where each
edge (vi, vj) coexists with the edge (vj , vi). For simplicity, we will identify each
vertex with its index and write, e.g., 3 instead of v3. 2

Definition 31 The number of vertices in G is called the order of G. The
number of edges in G is called the size of G. Occasionally it is useful to to talk
about the vertex set or edge set of a given graph: V (G) and E(G). Graphs are
more general data structures than trees in that they may have loops. 2
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12

3

4

Figure 27.5: The directed graph above is not the same as that in Figure 27.3.

1 2

34

Figure 27.6: A simple undirected graph: V = {1, 2, 3, 4}, E = {(1, 2), (2, 1),
(2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4), (1, 3), (3, 1)}.

27.5 Adjacency Matrix Representation

Definition 32 A graph with n vertices (nodes) can be represented as a matrix
of n rows and n columns. The (i, j)th-entry of the matrix is the number of
edges from node i to node j (0, 1, 2, . . . ). Note that the the adjacency matrix of
an undirected graph is symmetric with respect to the diagonal or anti-diagonal,
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1

2

3

4

5

6

7

8

9
10

Figure 27.7: A more complicated directed graph: V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
E = {(1,2), (2,3), (3,4), (4,5), (5,1), (1,6), (2,7), (3,8), (4,9), (5,10), (6,8), (8,10),
(10,7), (7,9), (9,6)}.

depending on the node numbering scheme. This symmetry is enforced by Eq.
(27.2): if node i is connected to node j, then both (i, j) and (j, i)th elements of
the matrix are equal. The adjacency matrix of a directed graph is not symmetric
in general. 2

27.5.1 Examples

Example 24 Adjacency matrix of the graph in Figure 27.6 is symmetric with
respect to the diagonal, because the nodes are numbered clockwise:

A =







0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0







(27.5)

If node labels 3 and 4 were swapped, the node numbering would be rowwise,
the new adjacency matrix would be different:

A =







0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0







(27.6)

but still symmetric with respect to the diagonal. 2
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Example 25 Adjacency matrix of the directed graph in Figure 27.7 is not
symmetric:

A =



















0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0



















(27.7)

2

1

2

3

4

5

6

Figure 27.8: The directed graph in Example 26.

Example 26 The adjacency matrix representation of graphs allows one to op-
erate on graphs using well-known matrix techniques which are efficiently im-
plemented in MATLAB. For example the operation of squaring a graph can be
done by squaring the adjacency matrix. Let us square a simple graph in Figure
27.8, A = A2. The result is shown in Figure 27.9. Now every second node is
connected. This is one of the reasons why “adjacency matrix” has its name. 2

27.6 Adjacency List Representation

The undirected graph in Figure 27.6 was conveniently represented by the adja-
cency matrix (27.5). The same graph can be represented alternatively by the
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1

2

3

4

5

6

Figure 27.9: The square of the graph in Figure 27.8.

adjacency list (the list of neighbors) of each vertex:

1 : [2, 3, 4]

2 : [1, 3]

3 : [1, 2, 4]

4 : [1, 3]

(27.8)

For the directed graph in Figure 27.7, we only account for the edges going out
of a given vertex:

1 : [2, 6]

2 : [3, 7]

3 : [4, 8]

4 : [5, 9]

5 : [1, 10]

6 : [7]

7 : [9]

8 : [10]

9 : [6]

10 : [7]

(27.9)
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27.7 Depth-First-Search

In Chapter 9, we saw three kinds of binary tree traversals, preorder, inorder
and postorder; now we look at graph traversals. There are two types of graph
traversals: depth-first search and breadth-first search, often abbreviated DFS
and BFS respectively. With the adjacency list implementation of the graph,
both types of traversals give O(|V | + |E|) time for a complete traversal. This
time is optimal, since in order to completely traverse a graph using any method,
you must visit all of the vertices and edges. The key to a fast traversal is avoiding
loops: you do not want to get stuck going around and around a cycle endlessly.

Definition 33 Breadth-first search goes through the tree level-by-level, visiting
all of the nodes on the top level first, then all the nodes on the second level,
and so on. This strategy has the benefit of being complete (if there’s a solution,
it will be found), and optimal as long as the shallowest solution is the best
solution. However, the way breadth-first search achieves this is by keeping all
of the leaf nodes in memory, which requires a prohibitive amount of memory
when searching anything more than a very small tree. 2

Definition 34 Depth-first search goes through the tree branch by branch, going
all the way down to the leaf nodes at the bottom of the tree before trying the
next branch over. This strategy requires much less memory than breadth-first
search, since it only needs to store a single path from the root of the tree down
to the leaf node. However, it is potentially incomplete, since it will keep going
on down one branch until it finds a dead-end, and it is non-optimal – if there is a
solution at the fourth level in the first branch tried, and a solution at the second
level in the next one over, the solution at the fourth level will be returned. 2

27.8 Exercises

1. What is the maximum number of connections in a directed graph with n
vertices?

2. If one integer takes 8 bytes of storage in MATLAB, what would be the
space required to store a graph with 1000 vertices?

3. What will be the result of transposing the adjacency matrix in Example
26?
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Chapter 28

Object Oriented
Programming in MATLAB

28.1 What Are You Going To Learn?

Before you start reading this lecture, please review the definitions of class and
object introduced in Chapter 8, and the properties and operations on polynomials
discussed in Chapter 17.

In this lecture you will learn the fundamentals of object oriented program-
ming methods peculiar to MATLAB. We shall proceed as follows:

• Classes and objects

• Designing classes in MATLAB

• Overloading operators and functions

• Example: a polynomial class: polynom

The Chapter 28 folder on fttp:\\petroleum.berkeley.edu has the following files1:

polynomdemo.m Demo which demonstrates the polynom object methods.

@polynom\polynom.m polynom object constructor.

@polynom\char.m An overloaded method converting a polynom object into
a syntactically correct string.

@polynom\double.m Convert polynom object to a coefficient vector.

@polynom\display.m An overloaded method to display polynom objects.

1Most of these files were taken from MATLAB online help.

345
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@polynom\subsref.m An overloaded subscript reference method to evaluate
numerical values of a polynom object at a set of values given by vector.

@polynom\plus.m An overloaded polynom addition method.

@polynom\minus.m An overloaded polynom subtraction method.

@polynom\mpower.m A simple implementation of pq, where p is a polynom,
and q ≥ 0 is an integer.

@polynom\mtimes.m An overloaded polynom multiplication method.

@polynom\roots.m an overloaded polynom root finder.

@polynom\polyval.m An overloaded polynom polyval method.

@polynom\diff.m An overloaded method for polynom differentiation.

@polynom\plot.m An overloaded plot method to plot a polynom object.

In order to fully understand this chapter, please download the MATLAB files
listed above.

Following MATLAB Help, we shall create a class polynom. The objects
in this class will be polynomials of any order with the coefficients specified
by us. We shall implement several methods that act upon these polynomials.
These methods will allow us to display, add, subtract, multiply and differentiate
polynomials, as well as to plot them in a predefined way. Still other methods
will allow us to evaluate the polynomials with vector arguments and calculate
their roots. You can easily create your own methods to get the polynomial
coefficients, integrate the polynomials, etc. Note that all the method files are
included in the subdirectory of the Chapter 28 directory named @polynom. The
calling function PolynomDriver.m resides in the Chapter 28 directory.

28.2 Why Is It Important?

Think about the following. Will the software you develop survive a lifetime
of change as requirements change and technology evolves? Or will it become
woefully inadequate and obsolete before you are promoted or move to another
job? It has always been the case that even the smallest piece of code, once
delivered, needs to be modified to fit the ever-changing needs. Today, the cost
of software modification dominates the cost of development. Just think about
all the buggy software you buy everyday. The reasons for the bugs are many,
but the common reason is that the code is never easy to understand and its
documentation is never complete and up to date. As a result, we spend way too
much time trying to understand old, often badly written code. On the other
hand, the code represents an investment which is more cost effective to reuse
than to rewrite. The object-oriented methods that we shall barely begin to
scratch in this course, make the code reusable and flexible the future. The price
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we pay up front is more work in algorithm design and code development; in
short, more thinking.

28.3 Classes and Objects

There are two ways of constructing a diagram, computer program or another
model of the world around us. The concrete way is to just draw a single diagram
or code the computer description of just the objects we want to model today.
The abstract way is to consider not individual objects but classes to which they
belong. Class and object are two important concepts. They are not the same
and the distinction is fundamental. An object will always be an instance of a
class. It is therefore possible to refer to all the instances of a particular class.

You can view classes as new data types having specific behaviors defined for
the class. For example, a polynomial class might redefine the addition operator
(+) so that it correctly performs the operation of addition on polynomials. This
redefinition is called overloading. Operations defined to work with objects of a
particular class are known as methods of that class.

You can also view classes as new items that you can treat as single entities.
An example is an arrow object that MATLAB can display on graphs (perhaps
composed of MATLAB line and patch objects) and that has properties like a
Handle Graphics object. You can create an arrow simply by instantiating the
arrow class.

You can add classes to your MATLAB environment by specifying a MAT-
LAB structure that provides data storage for the object and creating a class
directory containing M-files that operate on the object. These M-files contain
the methods for the class. The class directory can also include functions that
define the way various MATLAB operators, including arithmetic operations,
subscript referencing, and concatenation, apply to the objects. Redefining how
a built-in operator works for your class is known as overloading the operator.

28.4 Example: A Polynomial Class

In this example we shall implement a new MATLAB data type for polynomials
by defining a new class called polynom. The class definition specifies a structure
for data storage and defines a directory (@polynom) of functions (methods) that
operate on polynom objects.

28.4.1 Polynom Data Structure

The polynom class represents a polynomial with a row vector containing the
coefficients of powers of the variable, in decreasing order. Therefore, a polynom
object p is a structure with a single field, p.c, containing the coefficients. This
field is accessible only within the methods in the @polynom directory.
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28.4.2 Polynom Methods

To create a class that is well behaved within the MATLAB environment and
provides useful functionality for a polynomial data type, the polynom class im-
plements the following methods:

• A constructor method polynom.m

• A polynom to double converter, double.m

• A polynom to char converter, char.m

• A display method, display.m

• A subscripted-reference, subsref, method, subsref.m

• Overloaded +, −, and matrix ∗ operators, plus.m, minus.m and mtimes.m

• Overloaded root finder, roots.m

• Overloaded polynomial evaluation, polyval.m

• Overloaded plotting method, plot.m, and

• Overloaded differentiation method, diff.m

Polynom constructor method

Here is the simple code:

function p = polynom(a)

% POLYNOM: Polynomial class constructor.

%

% p = POLYNOM(a) creates a polynomial object from the vector a,

% containing the coefficients of descending powers of x.

if nargin == 0

p.c = [];

p = class(p,’polynom’);

elseif isa(a,’polynom’)

p = a;

else

p.c = a(:).’;

p = class(p,’polynom’);

end

You can call the polynom constructor method with one of three different
arguments:

No input argument - If you call the constructor function with no arguments,
it returns a polynom object with empty fields.



28.4. EXAMPLE: A POLYNOMIAL CLASS 349

Input argument is an object - If you call the constructor function with an
input argument that is already a polynom object, MATLAB returns the
input argument. The isa function (pronounced “is a”) checks for this
situation.

Input argument is a coefficient vector - If the input argument is a variable
that is not a polynom object, reshape it to be a row vector and assign it
to the .c field of the object’s structure. The class function creates the
polynom object, which is then returned by the constructor.

An example use of the polynom constructor is the statement

>> p = polynom([1 0 -2 -5])

This creates a polynomial with the specified coefficients.

Note that the syntax

p.c = a(:).’

converts an arbitrary array into a row vector column-by-column, e.g.,

>> a = [1,2,3,4;5,6,7,8]

>> a =

1 2 3 4

5 6 7 8

>> b = a(:).’

>> b =

1 5 2 6 3 7 4 8

Polynom to double converter

A converter method converts an object of one class to an object of another class.
Two of the most important converter methods contained in MATLAB classes are
double and char. Conversion to double produces MATLAB’s traditional matrix,
although this may not be appropriate for some classes.

The double converter method for the polynom class is a very simple M-file,
@polynom/double.m, which merely retrieves the coefficient vector:

function c = double(p)

% POLYNOM/DOUBLE Convert polynom object to coefficient vector.

% c = DOUBLE(p) converts a polynomial object to the vector c

% containing the coefficients of descending powers of x.

c = p.c;
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Polynom to char converter

Conversion to char is useful for producing printed output.The converter to char
is a key method because it produces a character string involving the powers
of an independent variable, x. Therefore, once you have specified x, the string
returned is a syntactically correct MATLAB expression, which you can then
evaluate.

Here is @polynom/char.m:

function s = char(p,b)

% POLYNOM/CHAR, Modified by TWP, 2002-05-06

% CHAR(p) is the string representation of p.c

% For example, 2*b^2 + 2*b + 3

if nargin < 2

b=’x’;

else

if ~isa(b,’char’)

error(’Power base must be a character’)

end

end

if all(p.c == 0)

s = ’0’;

else

d = length(p.c) - 1; % Degree of polynomial

s = [];

for a = p.c; % Loop through all coefficients

if a ~= 0;

if ~isempty(s)

if a > 0

s = [s ’ + ’];

else

s = [s ’ - ’];

a = -a;

end

end

if a ~= 1 | d == 0

s = [s num2str(a)];

if d > 0

s = [s ’*’];

end

end

if d >= 2

s = [s b ’^’ int2str(d)];

elseif d == 1

s = [s b];

end

end

d = d - 1;

end

end
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If you create the polynom object p

>> p = polynom([1 0 -2 -5]);

and then call the char method on p

char(p)

MATLAB produces the result

ans =

x^3-2*x-5

The value returned by char is a string that you can pass to eval once you
have defined a scalar value for x. For example,

>> x = 3;

>> eval(char(p))

ans =

16

Polynom display method

Here is @polynom/display.m. This method relies on the char method to produce
a string representation of the polynomial, which is then displayed on the screen.
This method produces output that is the same as standard MATLAB output.
That is, the variable name is displayed followed by an equal sign, then a blank
line, then a new line with the value.

function display(p,b)

% POLYNOM/DISPLAY Command window display of a polynom

% Modified by TWP, 2002-05-06

disp(’ ’);

% Display name of the input variable and equal sign

disp([inputname(1),’ = ’])

% Blank line

disp(’ ’);

% Display the character conversion of p

if nargin < 2

disp([’ ’ char(p)])

elseif nargin == 2

disp([’ ’ char(p,b)])

end

disp(’ ’);

Polynom subscripted reference method

Suppose the design of the polynom class specifies that a subscripted reference to
a polynom object causes the polynomial to be evaluated with the value of the
independent variable equal to the subscript. That is, for a polynom object p,
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p = polynom([1 0 -2 -5]);

the following subscripted expression returns the value of the polynomial at x =
3 and x = 4.

>> p([3 4])

ans =

16 51

This implementation takes advantage of the char method already defined in the
polynom class to produce an expression that can then be evaluated.

function b = subsref(a,s)

%B = subsref(A,S) is called with the syntax

% A(i), A{i}, or A.i when A is an object.

% S is a structure array with the following fields:

%

% S.type: A string containing ’()’, ’{}’, or ’.’, where

% ’()’ specifies numeric subscripts

% ’{}’ specifies cell array subscripts, and

% ’.’ specifies subscripted structure fields

%

% S.subs: A cell array or string containing the actual

% values of subscripted variable

%

% Function "subscript reference" evaluates polynomial a

% at a set of values given by vector s. The calling

% sequence could be x=xmin:step;xmax; p(x)

%

%fprintf(’\na=%s\n’,char(a))

%s

switch s.type

case ’()’

ind = s.subs{:};

for i = 1:length(ind)

% string search and replace:

% str = strrep(str1,str2,str3) replaces all occurrences

% of string >>str2<< within string >>str1<< with

% string >>str3<<

%

% eval executes a string containing a MATLAB expression

%

% str1 str2 str3

b(i) = eval(strrep( char(a), ’x’, num2str(ind(i)) ));

%strrep( char(a), ’x’, num2str(ind(i)) )

end

otherwise

error(’Specify value for x as p(x)’)

end
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Once the polynomial expression has been generated by the char method, the
strrep function is used to swap the passed in value for the character x. The
eval function then evaluates the expression and returns the value in the output
argument.

polynom +, −, ∗ operators

Several arithmetic operations are meaningful on polynomials and should be im-
plemented for the polynom class. When overloading arithmetic operators, keep in
mind what data types you want to operate on. In this section, the plus, minus,
and mtimes methods are defined for the polynom class to handle addition, subtrac-
tion, and multiplication on polynom/polynom and polynom/double combinations
of operands.

If either p or q is a polynom, the expression

p + q

generates a call to a function @polynom/plus.m, if it exists (unless p or q is an
object of a higher precedence,see below.)

function r = plus(p,q)

% POLYNOM/PLUS Implement p + q for polynoms.

p = polynom(p); % Convert object p to a polynom

q = polynom(q); % Convert object q to a polynom

k = length(q.c) - length(p.c);

r = polynom([zeros(1,k) p.c] + [zeros(1,-k) q.c]);

The function first makes sure that both input arguments are polynomials. This
ensures that expressions such as

p + 1

that involve both a polynom and a double, work correctly. The function then
accesses the two coefficient vectors and, if necessary, pads one of them with zeros
to make them the same length. The actual addition is simply the vector sum of the
two coefficient vectors. Finally, the function calls the polynom constructor a third
time to create the properly typed result.

You can implement the overloaded minus operator (-) using the same approach
as the plus (+) operator. MATLAB calls @polynom/minus.m to compute p− q.

function r = minus(p,q)

% POLYNOM/MINUS Implement p - q for polynoms.

p = polynom(p); % Convert object p to a polynom

q = polynom(q); % Convert object q to a polynom

k = length(q.c) - length(p.c);

r = polynom([zeros(1,k) p.c] - [zeros(1,-k) q.c]);
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MATLAB calls the method @polynom/mtimes.m to compute the product p ∗ q.
The letter m at the beginning of the function name comes from the fact that it is
overloading MATLAB’s matrix multiplication. Multiplication of two polynomials
is simply the convolution of their coefficient vectors.

function r = mtimes(p,q)

% POLYNOM/MTIMES Implement p * q for polynoms.

p = polynom(p); % Convert object p to a polynom

q = polynom(q); % Convert object q to a polynom

r = polynom(conv(p.c,q.c));

Polynom root finder

MATLAB already has several functions for working with polynomials repre-
sented by coefficient vectors. They should be overloaded to also work with the
new polynom object. In many cases, the overloading methods can simply ap-
ply the original function to the coefficient field. The method @polynom/roots.m
finds the roots of polynom objects:

function r = roots(p)

% POLYNOM/ROOTS. ROOTS(p) is a vector containing the roots of p.

r = roots(p.c);

Polynom evaluation method

The function polyval evaluates a polynomial at a given set of points. @poly-
nom/polyval.m uses nested multiplication, or Horner’s method to reduce the
number of multiplication operations used to compute the various powers of x.

function y = polyval(p,x)

% POLYNOM/POLYVAL POLYVAL(p,x) evaluates p at the points x.

y = 0;

for a = p.c

y = y.*x + a;

end

Polynom plot method

Here is the overloaded @polynom/plot.m function

function plot(p)

% POLYNOM/PLOT PLOT(p) plots the polynom p.

r = max(abs(roots(p)));

x = (-1.1:0.01:1.1)*r;

y = polyval(p,x);

plot(x,y);

title(char(p))

grid on
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Polynom differentiation method

The method @polynom/diff.m differentiates a polynomial by reducing the degree
by 1 and multiplying each coefficient by its original degree.

function q = diff(p)

% POLYNOM/DIFF DIFF(p) is the derivative of the polynom p.

p = polynom(p); % Convert object p to a polynom

c = p.c;

d = length(c) - 1; % degree

q = polynom(p.c(1:d).*(d:-1:1));

Polynom integration method

The method @polynom/integral.m integrates a polynomial by reducing the degree
by 1 and dividing each coefficient by its original degree+1. It is your task to
construct this method.

Listing class methods

The function call

methods(’class name’)

or its command form

methods class name

shows all the methods available for a particular class.

28.5 Object Precedence

Object precedence is a means to resolve the question of which of possibly many
versions of an operator or function to call in a given situation. Object precedence
enables you to control the behavior of expressions containing different classes of
objects. For example, consider the expression

objectA + objectB

Ordinarily, MATLAB assumes that the objects have equal precedence and calls
the method associated with the leftmost object. However, there are two excep-
tions:

1. User-defined classes have precedence over MATLAB built-in classes.

2. User-defined classes can specify their relative precedence with respect to
other user-defined classes using the inferiorto and superiorto func-
tions.

For example, in section 28.4.2, the polynom class defines a plus method that
enables addition of polynom objects. Given the polynom object p
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p = polynom([1 0 -2 -5])

p =

x^3-2*x-5

The expression,

1 + p

ans =

x^3-2*x-4

calls the polynom plus method (which converts the double, 1, to a polynom
object, and then adds it to p). The user-defined polynom class has precedence
over the MATLAB double class.

28.5.1 Specifying Precedence of User-Defined Classes

You can specify the relative precedence of user-defined classes by calling the
inferiorto or superiorto function in the class constructor.

The inferiorto function places a class below other classes in the precedence
hierarchy. The calling syntax for the inferiorto function is

inferiorto(’class1’,’class2’,...)

You can specify multiple classes in the argument list, placing the class below
many other classes in the hierarchy.

Similarly, the superiorto function places a class above other classes in the
precedence hierarchy. The calling syntax for the superiorto function is

superiorto(’class1’,’class2’,...)

Location in the Hierarchy

If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the precedence
hierarchy, then MATLAB calls @classB/plus.m.

28.6 Followup

Go to http://www.geocities.com/tablizer/oopbad.htm and read about some of
the pitfalls of Object-Oriented Programming (OOP).



Chapter 29

The Greatest Minds Behind
the Modern Computer

29.1 What Are You Going To Learn?

In the Introduction, I told you that computers were incredibly stupid, but light-
ening fast abaci. After several months of struggle, you probably discovered that,
yes, your computer is stupid and inflexible, but when properly instructed it can
do pretty incredible things. It can draw precise geometrical objects, rotate them
in three dimensions, and zoom down to the finest details. It can solve thousands
of linear equations, large systems of nonlinear ordinary differential equations,
sort millions of numbers and characters in a blink of an eye, and find a number
among millions of other numbers faster than you can read this sentence. So how
is it that a computer is at the same time so “stupid” and so “smart”? The secret
lies in the computer’s past... The purpose of this chapter is to tell you a short
story about the giant men of the past (yes, they were all men) whose unrelenting
pursuit of perfection and truth in science made the present day computer such
an amazing device.

For more information please go to an absolutely lovely and clever book,
The Universal Computer: The Road from Leibnitz to Turing [7] by Mar-
tin Davis, a professor of logic retired from Berkeley. You should also visit
the History of Mathematics website http://www-groups.dcs.st-and.ac.uk/

∼history/index.html.

29.2 Why Is It Important?

You cannot appreciate how computers came to be the way they are without
some knowledge of their distinguished past.
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Figure 29.1: Euclid was born ca 325 B.C., and died ca 265 in Alexandria,
Egypt. Right: A page from the first of more than a thousand editions of
Euclid’s Elements (Venice, 1482). Printing revolutionized the study of math-
ematics since it could mass-produce accurate calculations and diagrams.
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Figure 29.2: René Descartes was born on 31 March 1596 in La Haye (now
Descartes), Touraine, France, and died on 11 February 1650 in Stockholm, Swe-
den. In one of three appendices to his treatise Discours de la méthod pour bien
conduire sa raison et chercher la vérité dans les sciences, entitled La géométrie,
Descartes applied algebra to geometry and created what we call now Carte-
sian geometry.
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Figure 29.3: Gottfried Wilhelm von Leibniz was born on 1 July 1646 in
Leipzig, Saxony (now Germany), and died on 14 November 1716 in Hanover,
Hanover (now Germany). Leibnitz was a great builder of clear notation in
mathematics, second perhaps only to Euler. He conceived of a language whose
words would be ideas not symbols. Another of Leibniz’s great achievements in
mathematics was his development of the binary system of arithmetic.
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Figure 29.4: George Boole was born on 2 November 1815 in Lincoln, Lin-
colnshire, England, and died on 8 December 1864 in Ballintemple, County Cork,
Ireland. In 1854 he published An investigation into the Laws of Thought,
on Which are founded the Mathematical Theories of Logic and Probabilities.
Boole approached logic in a new way reducing it to simple algebra. He pointed
out the analogy between algebraic symbols and those that represent logical
forms. Thus began the algebra of logic called Boolean algebra which now finds
application in computer architecture and languages.
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Figure 29.5: Gottlob Frege was born on 8 November 1848 in Wismar,
Mecklenburg-Schwerin (now Germany), and died on 26 July 1925 in Bad
Kleinen, Germany. He was the first to attempt to show that all mathemat-
ics is reducible to logic. His works, The Foundations of Arithmetic (1884), and
The Basic Laws of Arithmetic,Volume 1 (1893) were devoted to this subject.
When reading Frege’s work, Bertrand Russell formulated his famous para-
dox of extraordinary sets and caused Frege a lot of grief. In Europe, Frege is
considered the father of Prolog, a logic predicate-based computer language.
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Figure 29.6: Georg Cantor was born on 3 March 1845 in St. Petersburg,
Russia, and died on 6 January 1918 in Halle, Germany. Cantor was the first
mathematician to quantify what happens when one is not merely passing to
infinity, but is at infinity. Are all infinities the same, or are some more infinite
than others? In 1873 Cantor proved the rational numbers to be countable,
i.e., they may be placed in one-one correspondence with the natural numbers.
He also showed that the algebraic numbers, i.e., the numbers which are roots of
polynomial equations with integer coefficients, were countable. A transcendental
(“real”) number is an irrational number that is not a root of any polynomial
equation with integer coefficients. In his 1874 work, Cantor showed that in
a certain sense almost all numbers are transcendental by proving that the real
numbers were not countable while he had proved that the algebraic numbers
were countable. His work had a huge impact on the future computer science.
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Figure 29.7: David Hilbert was born on 23 January 1862 in Königsberg,
Prussia (now Kaliningrad, Russia), and died on 14 February 1943 in Göttingen,
Germany. Hilbert’s work in geometry had the greatest influence in that area
after Euclid. A systematic study of the axioms of Euclidean geometry led
Hilbert to propose 21 such axioms and analyze their significance. He published
Grundlagen der Geometrie in 1899 putting geometry in a formal axiomatic
setting. By proving that all geometry can be reduced to algebra, Hilbert
greatly influenced the future computer science.
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Figure 29.8: Kurt Gödel was born on 28 April 1906 in Brünn, Austria-
Hungary (now Brno, Czech Republic), and died on 14 January 1978 in Prince-
ton, New Jersey, USA. Gödel is best known for his proof of Incompleteness
Theorems. In 1931 he published these results in Über formal unentscheidbare
Sätze der Principia Mathematica und verwandter Systeme. He showed that
in any axiomatic mathematical system there are propositions that cannot be
proved or disproved within the axioms of the system. In particular the consis-
tency of the axioms cannot be proved. Gödel showed that a (future) computer
can never be programmed to answer all mathematical questions.
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Figure 29.9: Alan Mathison Turing was born on 23 June 1912 in London,
England, and died on 7 June 1954 in Wilmslow, Cheshire, England. Turing
studied Gödel’s incompleteness results and Hilbert’s question on decidability:
given a mathematical proposition could one find an algorithm which would
decide if the proposition was true or false. For many propositions it was easy
to find such an algorithm. The real difficulty arose in proving that for certain
propositions no such algorithm existed. When given an algorithm to solve a
problem it was clear that it was indeed an algorithm, yet there was no definition
of an algorithm which was rigorous enough to allow one to prove that none
existed. In 1936 he published On Computable Numbers, with an application
to the Entscheidungsproblem. In this paper Turing introduced an abstract
machine, now called a Turing machine, which moved from one state to another
using a precise finite set of rules (given by a finite table) and depending on a
single symbol it read from a tape. This machine was an abstract prototype of
the future digital computer.
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Figure 29.10: John (János) von Neumann was born on 28 December 1903
in Budapest, Hungary, and died on 8 February 1957 in Washington D.C., USA.
He became one of the original six mathematics professors (J. W. Alexander, A.
Einstein, M. Morse, O. Veblen, J. von Neumann and H. Weyl) in 1933 at the
newly founded Institute for Advanced Study in Princeton, a position he kept for
the remainder of his life. Von Neumann was one of the pioneers of computer
science making significant contributions to the development of logical design.
He advanced the theory of cellular automata, advocated the adoption of the bit
as a measurement of computer memory, and solved problems in obtaining reli-
able answers from unreliable computer components. Today’s digital computer
architecture was conceived in great part by Von Neumann.
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Figure 29.11: Donald Knuth was born 10 January 1938 in Milwaukee, Wis-
consin, USA. Knuth’s seminal three-volume monograph on the Art of Com-
puting has made a large impact on computer science in general, and this book
in particular. His major contribution, which has totally changed the whole way
that mathematics is printed and communicated is the invention of TEX, a lan-
guage for typesetting mathematical and scientific articles. TEX has changed the
technology of mathematics and science publishing since it enables mathemati-
cians and scientists to produce the highest quality of printing of mathematical
articles, yet this can be achieved simply by using a home computer. However,
TEX has not only changed how mathematical and scientific articles are published
but also how mathematics is communicated. In the 17th century, a mathemati-
cian would have written a letter to another mathematician, and they would
discuss their everyday lives in English, French or German, say, but whenever
they came to explain a piece of mathematics they would use Latin. Now mathe-
maticians do not speak Latin, communicate by e-mail, and whenever they want
to explain a piece of mathematics they require mathematical symbols, which
almost always they communicate using TEX. This book was typeset using a
TEX derivative LATEX.
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