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Abstract

The observation of a visual binary star consist in measure a set o values which are: �; � and take the time t. Where

� is the separation between the two components and � is the position angle, for � = 0
Æ indicates the North Celestial Pole.

Such observations certainly will contain errors and can be of di�erent origins. However, the e�ects of such errors can be

minimized since it is known that the apparent orbit is an ellipse. By the use of Kepler's second law applied to the apparent

ellipse the constant of areal velocity can be determined by means of numerical way using a �nite di�erence approach and

also the least square analysis can applied to the set of observations, in order to determine a general equation of a conic

which represent the apparent orbit. The orbital elements are then calculated since one know the conic equation of the

apparent orbit by means of Kowalsky's method and a numerical procedure is designed in order to calculate the periastron

passage using the inverse process of the ephemeris calculation. The orbital period is also calculated using areal's constant

of velocity and the apparent ellipse area. By this numerical procedure, as de�ned in this paper, is possible to calculate the

true orbit and then calculate the ephemeris predictions.

1 Introduction

In remembering some aspects of the past, one can get a clear idea of our present time and the possibilities
which are now available. How the things have changed so much in too short period of time: : : I can refer the
reader to Prof. Henry Norris Russell [9]. He, said referring to the his method \Experience has shown it to be

rapid, two complete orbits having once been computed in one day". Just to make known his words was stated in
1933!. What could say Prof. Russell now a days : : : Certainly he will be happy in know that not only two, but
thousands and thousands of orbits could be computed in one day. The main reason in attempt the numerical
solution is make use of small computers which are able to make tricky tasks in easy way.

The method devised by this paper does not intend to be a �nal one, but has as its main purpose show how
the numerical procedures can be applied to a set of observations collected by one single observer or various. As
is known by people involved with this kind of study, that the measurements of any binary star orbit in function
of time, when tabulated (with corrections, if required) will exhibit discrepancies arising from accidental and
systematic errors of observations, occasionally, from actual mistakes. If the measurements are plotted, the points
which correspond the secondary star will not fall upon an ellipse but will be jointed by a very irregular polygonal
line resembling an ellipse.

The present numerical method make use of the least square (LS) analysis in order to �t the set of observations
to an ellipse which is a result of the minimization of the residuals among those set of points. As can be noted,
the result which comes from such numerical procedure will not be exact, as compared with those ones devised by
graphical methods, but will be fast and reliable. The construction of the apparent ellipse is the critical part of the
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entire orbit determination, and keeping the validation of the law of areas is the major problem. The "computer"1

who is skilled in the task of graphical methods has also enough ability to discard any observation which is not
good or presents great discrepancy in relation to all the sets of observations. In order to adjust the constant of
areal velocity many trials are done until a reasonable apparent orbit is obtained. But, by the numerical procedure
all sets of observations are involved in the calculation and inevitably some discrepancy still will arise.

Once the conic equation representing the apparent orbit is obtained by the least squares (LS) method it is
possible to start the calculation of the orbital elements by means of the Kowalsky method. The only elements
which can not be directly obtained by such method are the orbital period and the periastron passage. So, a inverse
ephemeris numerical procedure is designed, in the present paper, in order to calculate the periastron passage and
the period is calculated by means of the knowledge of the apparent orbit area. After the orbital elements are
available, any classical ephemeris method is used to calculate the orbit over the same period of observation time
in order to evaluate the accuracy of the present method.

It must also be stressed that the present work has been conducted only as an exercise in visual binary orbit
computing techniques, and must not be interpreted or used as a de�nitive orbital element procedure of calculation.

About the several other methods it is necessary to know that they will not always work properly and sometimes
there is no way to succeed with any method at all. It is also important to say that strange results may arise in
such attempts once the "computer" has decided that some measurements are wrong and should be rejected. As
I used to say \the orbit calculation is a cumbersome task and can give weird results : : :.

By the course of these considerations there is clearly a moral obligation on the part of the "computer" to assure
that some conditions must be respected, as for example:

� Depending on the bulk of information available relating to the binary star which intend to compute the
orbit, attention must be done in how the orbit represent the present collected data.

� The orbit calculated based on old and new material has to be signi�cant in terms of (C{O)(computed minus
observed) residuals and also represent the orbit for all observation data sets.

� If the new elements calculated are really signi�cant and also di�erent from the previously published orbit,
it should be published.

� In any circumstances the "computer" should yield just redundant calculations and even more submit them
to publication. There is no reason at all to do calculations except if the results are justi�able.

Keeping in mind such conditions all the calculations which can comes from the present technique should be
seem as a tool in order to serve an immediate necessity of research. However, the present technique can be
improved to be more robust in order to produce even more accurate results and be used extensively.

2 Least Square Method { LSM

The LSM is largely used when one has a set of observations, and in present case the set for the present
application must cover at least 270Æ of position angle (�), another-wise the procedure will fail. This restriction
is easily justi�ed since there is not enough points which describe the apparent orbit well, it will be quite diÆcult
to the LSM be able to �t any reasonable ellipse in a set representing an open curve. It is depicted in Figure(1)
some situations related to small observations set.

The great objection to this method is that it entirely disregards the time of observation [1]. As one should
know the quantity to be measured (�) is very small, the observation errors can be large in proportions to this
quantity. So, the LSM can yield not perfect ellipse at �rst time, needing repeated trials in which concern with the
preparation of the data set, where sometimes one can have bad data, as can be seen when plotting the original

1Who carry on the orbit calculation by graphical or numerical way.



Figure 1: Ambiguities

set and such data must be removed. The graphical methods are therefore to be preferred. But to avoid the use of
graphical procedures it is also possible to make the numerical solution more accurate calculating the constant of
areal velocity by �nite di�erences approximation and keeping the overall precision at a good level for a preliminary

orbit.

Even though adopting such calculation procedure, serious restrictions are encountered because no account is
taken of the law of area in the determination of the conic coeÆcients by the LSM. This restriction can be made
with much less signi�cance since one do the calculation with a reasonable data set of observation, as for example,
a short period orbit. In this case two or more orbital periods are known, or more accurate observations are
available.

2.1 Formulation of the Least Square Method

The general equation of a conic which is to be �t in the set of observational data is given by

By2 + 2Hyx + Ax2 + 2Fy + 2Gx = 1 (1)

the values of the constants B;H;A; F and G, may be computed by the LSM. In order to obtain a real ellipse
one should have observed the following conditions:

A > 0
B > 0

AB �H2 > 0
(2)

If one assume the position of the primary star as origin, one may calculate the �ve constants of the eq(1), since
that the (xi; yi) are known by the following relations:

xi = �i cos(�i) (3)

yi = �i sin(�i) (4)

i = 1; : : : n (5)



where n corresponds the number of pair (�i; �i) in di�erent times of observation.

There is a confusing situation in relation to the eq(1) and in consequence the relations of Kowalsky method
present some signal mistakes. For example, in Aitken [1] the eq(1) is given as

By2 + 2Hyx + Ax2 + 2Fy + 2Gx = �1 (6)

which is the same notation as used by Smart [4].

But in Heintz [2] he writes as in eq(1) and the Kowalsky relations are quite di�erent from the former ones. The
present author implemented both ways but only the Heintz notation [2] was able to produce the correct values
for the orbital elements.

The LSM procedure require to minimize the residual function given by

� =
X
i

wi
�
By2i + 2Hyixi + Ax2i + 2Fyi + 2Gxi � 1

�2
(7)

where wi is the weight. Now, consider observations of di�erent weight. It is normal, therefore, to take into account
di�erent weights in any series of observation, which is done simply by multiplying each conditional equation by
its weight wi. The integer value of wi is taken equal the number of observation nights [7].

� is a function of the parameters B;H;A; F and G and is known that a minimum of the square sum of the
residuals de�ned by � happen when the partial di�erential of �(B;H;A; F;G) in relation to B;H;A; F;G are all
identically to zero. Writing in formal way, one have the following relations:
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The set of eq(8) state the necessary limitations which are need for the system. It yields a set of �ve algebraic
equations involving the sum of (xi; yi) given by eq(5) and can be solved in order to obtain the geometric parameters
B;H;A; F and G. Such a system of equations are known as the normal equations and can be written in a more
direct form. De�ning the partial di�erential related to the parameters as:
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�
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i

fj (9)

One can write the �nal form of the system given by eq(8) as:

X
i

wi [Bf1 + 2Hf2 + Af3 + 2Ff4 + 2Gf5 � 1] fj = 0 (10)

W
i and j = 1; : : : ; 5. Doing the multiplication indicated in eq(10) the following result is obtained
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where j = 1; : : : ; 5.

Eq(11) can be written in matrix form, where the sum on i = 1; : : : ; n represents the number of observation
points and j = 1; : : : ; 5 indicate the �ve parameter of the conic. So, eq(11) in matrix form is written as:
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The solution of eq(12) give the parameters B;H;A; F;G which minimize the residual function � or make the
residuals minimum for the data set of observation. So, the ellipse obtained by this procedure is said to �t, in the
sense of \least squares" to the ellipse curve of the apparent orbit.

In the present work the chosen method to solve eq(12) is the Gauss Elimination which is eÆcient for a (5x5)
matrix. Is relevant to say about the particular characteristic of this matrix which is symmetric and much less
work is need to generate all its elements, actually only half the matrix need to be generated.

2.2 The Conic Classi�cation

As stated in the beginning of this section sometimes there is no enough observations data and the one which
are available do not cover more than 270Æ in �. Depending on the quality and number of points available, the
LSM can fail, giving a odd result. In order to restrict such behavior a test providing a classi�cation of the conic
obtained is derived based on the �ve parameters of the conic equation. Based on the analytical geometry one can
state the following invariants of a general conic as given by eq(1).
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H B F
G F �1
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5

Æ =

�
A H
H B

�

S = A + B

(13)

The quantities 4; Æ; S do not modify when the frame of the coordinate system is translated or even rotated.
They are called invariants of the curve. Based on this, one can state the following conditions:

Central Curve Æ 6= 0

8>><
>>:

Æ > 0

� 4 6= 0 Ellipse
4 = 0 Pair of Imag. S. Lines

4 : S < 0 Real
4 : S > 0 Imaginary

Æ < 0

� 4 6= 0 Hyperbole
4 = 0 Pair of Conv. S. Lines

Æ = 0

8>><
>>:

4 6= 0 Parabola

4 = 0 Pair of S. Lines

8<
:

G2 �A > 0 Parallel
G2 �A = 0 Coincident
G2 �A < 0 Imaginary

Where S: and Conv: stands for Straight and Convergent respectively. These conditions are implemented just
as the solution of the system given by eq(12) is obtained, such implementation make capable the procedure to
follow or stop depending on the classi�cation given above.

3 The Kowalsky Method

Kowalsky's method is essentially an analytical method and a detailed description of this method originally
proposed by Kowalsky, for deriving the orbital elements of a visual binary, is given in [5] and also in [1]. However
the mathematical analysis is presented by Smart [4]. The derivation of the orbital elements from the �ve conic
parameters, which are need to de�ne the general equation of the apparent ellipse, and which is the orthogonal



projection of the true orbit, is some what presented in the literature in a confused way. The authors in [1] and
[4] represent the eq(1) in a complete di�erent way as in [3] which the derivation of Kowalsky's relations present
signal mistakes. Due this discrepancy the present author could not obtain correct solution for the orbital elements
implementing the set of relations given in [1] and [4]. But, the set of relations presented in [3] are consistent and
show to be the correct relations and are used [10] in the present calculation.

In order to determine the orbital elements, the following relations involving the �ve conic parameters are
established and are written as:

tan2(i)

p2
= �2(H + GF )

sin(2
)
(14)

tan2(i)

p2
=

(F 2 + B)� (G2 + A)

cos(2
)
(15)

tan2(i)

p2
= (F 2 + B) + (G2 + A)� 2

p2
(16)

e sin(!) = (F cos(
)�G sin(
)) p cos(i) (17)

e cos(!) = (F sin(
) +G cos(
)) p (18)

a =
p

1� e2
(19)

Once the apparent orbit has been de�ned by the LSM still remains to derive the elements which de�ne form
and size of the true orbit, the position of the orbit plane, the position of the orbit within that plane, and the
position of the companion star in the orbit at any speci�ed time. The six relations given above involving the �ve
conic parameters of the apparent ellipse determine three angles and two geometric parameters of the orbit. Some
of these elements are independent of the spatial location of the binary system and others are used to relate the
binary system to the earth's orbit.

The following four elements are independent of the angular ones, and are de�ned as dynamical elements of the
orbit

� P ! the orbital period of revolution (years)

� T ! the time of periastron passage (year)

� e ! the eccentricity

� a ! the semi axis major (second of arc)

The remains elements are the Campbell Elements of the orbit

� 
 ! the position of the nodal point which lies between 0Æ and 180Æ. Measurements of the position angle
and separation provide information only about the apparent orbit, which lies in the plane perpendicular to
the line of sight. One can not distinguish between the ascending and descending node, or between direct
and retrograde motion in the ordinary sense. In some systems the observed position angles increase with
the time, in others they decrease. 
 is measured with respect to the north pole at a speci�ed epoch, so, it
su�er from the e�ect of precession, that is to say it will change slowly with time. It is conventional to select
a value for 
 less than 180Æ, unless radial velocity measurements of the companion give an indication of the
true inclination of the orbit.

� ! ! the angle in the plane of true orbit between the line of nodes and the major axis, measured from the
nodal point 
 to the point of periastron passage in the direction of the companion's motion and may have
any value from 0Æ to 360Æ.



� i! the inclination of the orbit plane; the value lies between 0Æ and 180Æ, direct motion of the companion
(increasing �) is indicated by 0Æ � i � 90Æ, retrograde motion (decreasing �) by 90Æ � i � 180Æ. The
computed value of i is often shown as � until the indetermination of i and 
 is removed by such radial
velocity measures. When these are available i is taken to be positive if the orbital motion at the nodal point
is taking the companion away from the observer, or negative if the motion is toward the observer at this
point of the orbit. See the true and apparent orbital elements depicted in the Figures(2 and 3 ) respectively.

The Kowalsky relations can be worked out in order to give all elements with exception of the period and
the periastron passage. To calculate the period one need to know the constant of areal velocity � which will be
described in the following section.

Figure 2: True and Project Orbit Elements

3.1 The Constant of Areal Velocity

The classical study to determine the constant of areal velocity � is by means of graphical trials, and by analytical
adjustment using the (�; �) pairs of observation until the areas law is satis�ed. There is a small problem in order
to carry out such an adjustment, the "computer" need to have a good practice and feeling and all the procedures
depend on human ability. What is needed at this point is no "human" intervention of any kind leaving it as a
totally numerical technique. So, the numerical procedure will evaluate the value of � as much as precisely as
possible. Based on this, the �nite di�erence scheme designed here is adopted to calculate the law of areas which
it is stated as:

� = �2
d�

dt
(rad/year) (20)

where (d�=dt) may be expressed in radian per year, and � is in seconds of arc.

The reliability of the observations is shown since the constancy of � is kept. Interpolation curves may be
adjusted to some extent in order to yield more nearly equal values of � for di�erent times. This interpolation



Figure 3: Apparent Orbit Elements

curves are used in the graphical process, the �nite di�erence stated as following can be used to uncouple this
need. Such an area relation comes from Green's theorem as:

� =

P
n�1

i
(xi4yi�yi4xi)

4t

(n� 1)
(21)

Without any adjustment the value of � given by eq(21) most nearly satis�es the law of areas. The value of � is
the double of the areal constant.

3.2 The Period Calculation

The period can be calculated by the de�nition of

P =
area

C (year) (22)

The ellipse area is known since the semi axis major a is already determined by the relations of Kowalsky's
method. The value of C corresponds the constant of areal velocity of the true orbit. This value is related to �
corresponding the apparent orbit by [6] the following relation:

C =
�

cos(i)
(23)

and the period as given by eq(22) can be rewritten as:

P =
2� a2

p
1� e2

�
cos(i) (24)

Bear in mind that � is the double areal constant.



3.3 The Periastron Passage Calculation

One way to determine the time of periastron passage T , is by means of anomaliesM(mean anomaly), computed
from the observations by taking the ephemeris formulae in reverse order. Every pair of (�i; �i) will give a value
for Mi and an equation for Ti. The following classical relations of the ephemeris calculation are:

tan(v + !) = arctan

�
tan(� �
)

cos(i)

�
! v (25)

tan(
E

2
) =

1q
1+e
1�e

�
tan(

1

v
)

�
! E (26)

M = �(t� T ) = E � e sin(E) (27)

T =
1

�
[�t� (E � e sin(E))] (28)

In order to avoid odd results as for example: T being be less than the value of the �rst time of observation or T
being greater than the last time, a criterion must be implemented in such way that states the following condition:

t1 < T < tn (29)

The value of T is calculated as the arithmetical mean of Ti values which satisfy this criterion. In many
observational problems the arithmetical mean is the preferred value and is considered the most accurate. It is
clear that this criterion states indirectly that one needs to know a suÆcient portion of the apparent orbit and
presume that the companion has passed through the periastron at least once in the time of the observations.
With all the parameters calculated as described before, some numerical experiments are carried out in order to
test the procedure.

4 Application

{ The orbit of ADS 9982 {

The data set for the ADS 9982 is obtained from [3] and is written as follow:

_________________________

DATE | rho | theta | w

-------------------------

1853.8 1.90 333.7 1

1870.9 1.36 322.0 1

1880.5 1.04 311.0 1

1890.5 0.71 290.9 1

1899.5 0.50 245.0 1

1907.1 0.43 181.1 1

1912.8 0.40 120.6 1

1920.4 0.66 70.6 1

1926.1 0.92 55.0 1

1931.8 1.22 47.1 1

These data was tried by the authors in [3] using the Russell graphical method [9] and the di�erential corrections
producing what they classify as orbit II which have the following Innes elements [1]:



A = -2.977 e = 0.86

B = -0.277 T = 1906.8

F = +0.238 mi= 0.00923 rad/year

P = 680 years a = 3.04 (second of arc)

i = +/- 130.6

Using the designed procedure, presented above, the following orbital elements are calculated as:

ORBITAL ELEMENTS

CALCULATED BY THE PRESENT METHOD

PERIOD (YEARS) ==> 629.576519

AREAL CONST. ==> .027383

MAJOR AXIS a ==> 2.803509

ECCENTRICITY e ==> .843848

INCLINATION i ==> 130.586372

OMEGA ==> 14.723172

OMEGAP ==> 195.185154

VALUE OF PERIASTRON PASSAGE ==> 1896.524873

X

Y

-0.5 0 0.5 1

0

1

2

3

4

5

Figure 4: Orbit for ADS 9982

{ The orbit of ADS 11520 {

The data set for the ADS 11520 is obtained from [1]. The orbit of this binary system was calculated by the
Glasenapp{Kowalsky method and the method of Zwiers by Aitken [1]. The data set for this pair is given as follow:



_________________________

DATE | rho | theta | w

-------------------------

1900.46 0.14 353.2 3

1901.56 0.14 338.3 3

1902.66 0.12 318.1 3

1903.40 0.11 293.6 3

1904.52 0.14 278.4 4

1905.53 0.12 224.8 4

1906.48 0.13 199.1 4

1907.30 0.14 193.5 1

1908.39 0.15 178.1 3

1909.67 0.10 150.4 2

1910.56 0.11 47.0 2

1911.55 0.15 18.7 1

1912.57 0.15 356.1 3

1914.55 0.14 331.2 4

1915.52 0.15 306.4 3

1916.24 0.13 277.2 1

1916.63 0.16 243.0 2

1916.76 0.14 248.8 2

1917.62 0.10 222.5 1

1917.64 0.14 228.1 2

1918.52 0.14 200.4 3

1918.76 0.14 196.9 1

1919.62 0.15 188.4 3

1920.37 0.16 173.6 2

1920.67 0.16 172.6 5

1921.52 0.15 143.5 1

1921.53 0.12 144.4 4

1923.57 0.14 10.9 4

1923.76 0.18 11.8 4

1924.51 0.15 354.9 1

1924.65 0.12 344.2 1

1925.61 0.15 340.6 3

1928.63 0.14 272.2 2

1931.66 0.14 187.5 2

1932.78 0.15 177.7 2

1933.60 0.11 159.3 4

Glasenapp's Method Zwiers' Method

P = 12.12 years P = 12.12 years

T = 1910.10 T = 1910.10

a = 0.176 a = 0.175

e = 0.276 e = 0.273

i = 117.6 i = 117.75

w1= 269.9 w1= 270.6

w2= 2.4 w2= 3.9

w1 = ! and w2 = 
.



The orbital elements calculated by the present procedure are as follow:

ORBITAL ELEMENTS

CALCULATED BY THE PRESENT METHOD

PERIOD (YEARS) ==> 11.640049

AREAL CONST. ==> .010537

MAJOR AXIS a ==> .150021

ECCENTRICITY e ==> .030356

INCLINATION i ==> 150.200084

OMEGA ==> 15.495030

OMEGAP ==> 223.211238

VALUE OF PERIASTRON PASSAGE ==> 1917.019808

X
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-0.05

0

0.05

0.1
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Figure 5: Orbit for ADS-11520

{ The orbit of ADS 10786 {

The data set for the ADS 10786 is obtained from [8]. The orbit elements calculation was by Couteau and was
based on the method of the opposite points. The data set for the ADS 10786 as given in [8] is written as follow:

_________________________

DATE | rho | theta | w

-------------------------

1857.50 1.82 59.2 2

1865.79 1.17 84.1 7



1878.08 1.03 233.5 13

1885.56 0.67 286.7 5

1894.74 1.23 41.4 30

1902.94 1.63 63.6 32

1906.28 1.37 73.0 18

1908.46 1.22 80.1 22

1911.59 0.72 102.4 8

1915.66 0.49 175.4 7

1921.11 1.00 233.0 14

1928.59 0.66 283.3 3

1933.53 0.64 8.7 7

1940.00 1.37 47.6 36

1946.43 1.60 63.7 26

1951.10 1.26 79.5 8

1954.54 0.77 99.9 7

1956.57 0.55 126.8 9

1960.65 0.70 204.0 4

1964.68 1.07 234.2 4

1974.54 0.51 330.8 7

The orbital elements calculate by Couteau are

P = 43.20 years

T = 1965.40

a = 1.360

e = 0.178

i = 66.2

w1= 174.0

w2= 60.7

The orbital elements calculated by the present procedure are as follow:

ORBITAL ELEMENTS

CALCULATED BY THE PRESENT METHOD

PERIOD (YEARS) ==> 50.752358

AREAL CONST. ==> .087931

MAJOR AXIS a ==> 1.380174

ECCENTRICITY e ==> .201759

INCLINATION i ==> 67.623392

OMEGA ==> 61.968940

OMEGAP ==> 170.319104

VALUE OF PERIASTRON PASSAGE ==> 1924.701467

5 Conclusion and Comments

As was discussed before, all the e�ort applied in develop the present calculation procedure is based on the fact
that the graphical methods may be avoided, since one can be able to have a reliable numerical result on hand any
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Figure 6: Orbit for ADS-10786

time. However, should be clear, that the graphical methods, still have their purpose and will not be discarded
even because in some situations the numerical procedure, as the present one, is not able to compute small orbit
arcs.

The results obtained show that the present numerical procedure is able to deal with two di�erent situations.
The �rst one is when the � decrease with time and the second one s when the � increase with time. It is well
known that both of these cases are common in the orbital elements calculations and depending of the adopted
method quite di�erent behavior of solution may certainly happens.

In the three cases presented above, a very good agreement is obtained. Should be said at once that no
adjustment of any kind at all was applied to all three data set of observations and even though good results
for the orbital elements were obtained. Seems that if some kind of adjustment is applied to the � and � values
before the LSM be applied a much better improvement can be obtained not only in the angular but also for the
dynamical elements and also to the constant of areal velocity. Such adjustments are applied in order to keep the
law of areas satis�ed for all data points. It is important to say that such adjustments should only be tried by who
have some experience in the subject another wise meaningless results are obtained. With the present results it
is possible to carry out a study of accuracy based on the C{O di�erences. The numerical calculation underlying
the presented results were carried out in a PC computer and did not take more than 1/2 second for each orbit
calculation.
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