
Fortran 90 User’s Guide

Part No.: 801-5492-10
Revision A, March 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc. CRAY is a registered trademark of Cray Research, Inc. All other product names mentioned
herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PRODUCT IS DERIVED FROM CRAY CF90™, A PRODUCT OF CRAY RESEARCH, INC.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface . xvii

1. Introduction . 1

1.1 Operating Environment. 2

1.2 Text Editing . 2

1.3 Program Development. 3

1.4 Debugging. 3

1.5 Licensing . 3

2. Getting Started . 5

2.1 Summary . 5

2.2 Compiling . 6

2.3 Running . 6

2.4 Renaming the Executables . 6

iv Fortran 90 User’s Guide

3. Using the Compiler . 9

3.1 Compile Command . 9

Purpose . 10

Compile Link Sequence . 10

Command-line File Names . 11

Unrecognized Arguments . 12

3.2 Compiler Options. 12

Actions/Options Frequently Used . 13

Actions and What Options Invoke Them 13

Options and What Actions They Do . 15

3.3 Miscellaneous Tips . 33

Floating-Point Hardware Type . 33

Many Options on Short Commands. 33

4. File System and File I/O . 35

4.1 Summary . 35

4.2 Directories . 37

4.3 File Names. 37

4.4 Path Names . 37

Relative Path Names . 38

Absolute Path Names. 38

4.5 Redirection . 40

4.6 Piping. 41

Contents v

4.7 Accessing Files from Fortran Programs. 42

Accessing Named Files . 42

Accessing Unnamed Files . 43

Passing File Names to Programs . 43

4.8 Direct I/O . 45

4.9 Internal Files . 46

5. Program Development . 49

5.1 Simple Program Builds . 49

Writing a Script . 49

Creating an Alias . 50

Using a Script or Alias . 50

Limitations. 50

5.2 Program Builds with the make Program 50

The make File . 50

Using make . 51

5.3 Tracking and Controlling Changes with SCCS. 52

Putting Files under SCCS. 52

Checking Files Out and In . 54

6. Libraries . 57

6.1 Libraries in General . 57

Load Map. 58

Advantages of Libraries. 58

vi Fortran 90 User’s Guide

6.2 Static Libraries . 58

Disadvantages of Libraries . 58

Sample Creation of a Static Library . 59

Sample Replacement in a Static Library 61

6.3 Dynamic Libraries . 61

Performance Issues. 62

Binding Options . 62

A Simple Dynamic Shared Library. 63

6.4 Consistent Compile and Link . 65

6.5 Library Paths. 65

Installation Directory . 65

Building Executables: ld Search order. 66

Running Executables: ld Search order 66

Build Paths and Run Paths . 67

Finding Built-in Paths . 67

7. Debugging . 69

7.1 Global Program Checking (-Xlist) 69

Errors in General. 70

Details . 70

Using Global Program Checking . 71

Suboptions for Global Checking Across Routines 73

Contents vii

7.2 The dbx Debugger . 77

Sample Program for Debugging . 78

A Sample dbx Session . 79

Segmentation Fault—Finding the Line Number. 81

Exception—Finding the Line Number 83

Trace of Calls . 84

Pointer to a Scalar . 85

Pointer to an Array . 86

User-Defined Types . 87

Pointer to User-Defined Type . 89

Allocated Arrays. 91

Print Arrays . 92

Print Array Slices . 93

Generic Functions . 94

Miscellaneous Tips . 96

Main Features of the Debugger. 96

Help . 97

8. Floating Point . 99

8.1 Summary . 99

8.2 The General Problems . 100

8.3 IEEE Solutions. 101

viii Fortran 90 User’s Guide

8.4 IEEE Exceptions . 102

Detecting a Floating-point Exception. 102

Generating a Signal for a Floating-point Exception 102

Default Signal Handlers. 102

8.5 IEEE Routines . 103

Flags and ieee_flags() . 104

Values and ieee_values() . 106

Exception Handlers and ieee_handler() 107

Retrospective . 111

Nonstandard Arithmetic . 111

Messages about Floating-point Exceptions 112

8.6 Debugging IEEE Exceptions . 113

8.7 Guidelines . 113

8.8 Miscellaneous Examples . 114

Kinds of Problems. 114

Simple Underflow. 115

Use Wrong Answer. 116

Excessive Underflow . 116

9. C–Fortran Interface . 119

9.1 Sample Interface . 120

9.2 How to Use this Chapter . 121

Contents ix

9.3 Compatibility Requirements . 122

Function or Subroutine . 123

Underscore in Names of Routines . 124

Case Sensitivity . 124

Data Type Compatibility . 125

Passing Arguments by Reference or Value 127

Character Strings and Order . 129

Array Indexing and Order. 130

Libraries and Linking with the f90 Command 131

File Descriptors and stdio . 132

File Permissions . 133

9.4 Fortran Calls C . 134

Arguments Passed by Reference (f90 Calls C). 134

Arguments Passed by Value (f90 Calls C) 141

Function Return Values (f90 Calls C) 141

Labeled Common (f90 Calls C) . 147

Alternate Returns (f90 Calls C) - N/A 148

9.5 C Calls Fortran . 149

Arguments Passed by Reference (C Calls f90). 149

Arguments Passed by Value (C Calls f90) - N/A 155

Function Return Values (C Calls f90) 155

Labeled Common (C Calls f90) . 160

Alternate Returns (C Calls f90) . 161

x Fortran 90 User’s Guide

A. Features and Differences . 163

A.1 Standards. 163

A.2 Extensions . 164

Tabs in the Source . 164

Continuation Line Limits. 165

Fixed-Form Source of 96 Characters. 165

Directives . 165

Source Form Assumed . 165

Boolean Type . 167

Abbreviated Size Notation for Numeric Data Types 170

Cray Pointers. 171

Cray Character Pointers. 176

Intrinsics . 178

A.3 Directives. 179

General Directives . 179

Form of General Directive Lines . 180

FIXED and FREE Directives. 181

Parallel Directives . 182

Form of Parallel Directive Lines . 182

Contents xi

A.4 Compatibility with FORTRAN 77 184

Source . 184

Executables . 184

Libraries . 184

I/O . 185

Intrinsics . 187

A.5 Forward Compatibility . 188

A.6 Mixing Languages . 188

A.7 Module Files . 188

B. iMPact: Multiple Processors . 189

B.1 Requirements . 189

B.2 Overview . 190

Automatic Parallelization . 190

Explicit Parallelizing . 190

Summary . 191

Standards . 191

B.3 Speed Gained or Lost . 192

B.4 Number of Processors . 192

C. iMPact: Automatic Parallelization . 195

C.1 What You Do . 195

C.2 What the Compiler Does . 196

Parallelize the Loop . 196

Dependency Analysis. 196

Definitions: Array, Scalar, and Pure Scalar 197

xii Fortran 90 User’s Guide

C.3 Definition: Automatic Parallelizing 197

General Definition . 197

Details . 197

Exceptions for Automatic Parallelizing 198

D. iMPact: Explicit Parallelization . 201

D.1 What You Do . 201

D.2 What the Compiler Does . 202

D.3 Parallel Directives. 203

Form of Directive Lines . 203

DOALL Parameters . 205

D.4 DOALL Loops. 206

Definition . 206

Explicitly Parallelizing a DOALL Loop 206

CALL in a Loop . 208

D.5 Exceptions for Explicit Parallelizing 208

D.6 Risk with Explicit: Nondeterministic Results 209

Testing is not Enough. 209

How Indeterminacy Arises . 210

D.7 Signals . 211

Index . 213

Join the SunPro SIG Today . 227

xiii

Figures

Figure 4-1 File System Hierarchy. 36

Figure 4-2 Relative Path Name. 38

Figure 4-3 Absolute Path Name . 39

xiv Fortran 90 User’s Guide

xv

Tables

Table 3-1 File Name Suffixes Fortran 90 Recognizes. 11

Table 3-2 Options Frequently Used . 13

Table 3-3 Actions/Options Sorted by Action . 13

Table 3-4 Summary of -Xlist Suboptions. 32

Table 7-1 -Xlist Combination Special or A La Carte Suboptions 74

Table 7-2 -Xlist Suboptions Summary . 74

Table 8-1 ieee_flags Argument Meanings . 105

Table 8-2 Functions for Using IEEE Values . 107

Table 9-1 C Data Type to Fortran 90 Data Type 125

Table 9-2 Fortran 90 Data Type to C Data Type . 126

Table 9-3 Characteristics of Three I/O Systems. 132

Table A-1 Size Notation for Numeric Data Types 170

Table A-2 Nonstandard Intrinsics . 178

Table A-3 General Directives Guaranteed Only in the Current Release . 179

Table A-4 Parallel Directives Guaranteed Only in the Current Release . 182

xvi Fortran 90 User’s Guide

Table B-1 Parallelization Summary . 191

Table D-1 DOALL General Parameters . 205

Table D-2 DOALL Scheduling Parameters . 205

xvii

Preface

This preface is organized into the following sections.

Purpose and Audience
This guide shows how to use Sun Fortran 90 1.0. Major topics of the guide are:

• Using the compiler command and options
• Global program checking across routines
• Using iMPact™ multiprocessor Fortran 90 MP
• Making and using libraries
• Using some utilities and development tools
• Using IEEE floating point with Fortran 90
• Using debuggers with Fortran 90
• Mixing C and Fortran 90

The guide is intended for scientists and engineers with the following:

• Thorough knowledge of Fortran 90
• General knowledge of some operating system (experience with some OS)
• Particular knowledge of the SunOS™ commands cd , pwd, ls , cat

Purpose and Audience page xvii

Before You Read This Book page xviii

How This Book is Organized page xviii

Related Documentation page xviii

Conventions in Text page xxii

xviii Fortran 90 User’s Guide

Before You Read This Book
If you are not familiar with Fortran 90, you may want to consult the following.

• Fortran 90 Handbook (Fortran 90 language definition, including intrinsics)
• Fortran 90 Explained (Text book introduction to Fortran 90)

See “Related Manuals” on page xix.

How This Book is Organized
This book is organized as follows.

Related Documentation
The related kinds of documentation included with Fortran 90 are as follow:

• Paper manuals (hard copy)
• On-line manuals in the AnswerBook™ viewing system
• On-line man pages
• f90 -help variations
• On-line READMEs directory of information files

Chapter 1, Introduction page 1

Chapter 2, Getting Started page 5

Chapter 3, Using the Compiler page 9

Chapter 4, File System and File I/O page 35

Chapter 5, Program Development page 49

Chapter 6, Libraries page 57

Chapter 7, Debugging page 69

Chapter 8, Floating Point page 99

Chapter 9, C–Fortran Interface page 119

Appendix A, Features and Differences page 163

Appendix B, iMPact: Multiple Processors page 189

Appendix C, iMPact: Automatic Parallelization page 195

Appendix D, iMPact: Explicit Parallelization page 201

xix

AnswerBook

The AnswerBook system displays and searches the on-line copies of the paper
manuals. The system and manuals are included on the CD-ROM and can be
installed to hard disc during installation. Installing and starting AnswerBook
are described in the manual Installing SunSoft Developer Products on Solaris.

Related Manuals

The following manuals are provided on-line or on paper, as indicated.

man Pages

Purpose
A man page is intended to answer “What does it do?” and “How do I use it?”

• Memory Jogger— A man page reminds the user of details, such as arguments
and syntax. It assumes you knew and forgot. It is not a tutorial.

• Quick Reference—A man page helps find something fast. It is brief, covering
major highlights. It is a quick reference, not a complete reference.

Title Part Number Paper AnswerBook

Fortran 90 User’s Guide 801-5492-10 X X

Fortran 90 Handbook, by Adams, Brainerd, et al 875-1202-10 X

Fortran 90 Browser 802-2190-10 X X

Debugging a Program 801-7105-10 X X

Numerical Computation Guide 801-7639-10 X X

Installing SunSoft Developer Products on Solaris 802-1561-10 X X

What Every Computer Scientist Should Know About Floating-Point Arithmetic 800-7895-10 X

xx Fortran 90 User’s Guide

Using man Pages
To display a man page, use the man command.

Example: Display the f90 man page.

Example: Display the man page for the man command.

The man command uses the MANPATH environment variable, which can effect
which set of man pages are accessed. See man(1).

Related man Pages
The following man pages may be of interest to Fortran 90 users.

demo$ man f90

demo$ man man

f90(1) Invoke the Fortran 90 compiler.

asa(1) Print files having Fortran carriage-control.

dbx(1) Debug by a command-line-driven debugger.

debugger(1) Debug by a graphical-user-interface .

fpr(1) Print files having Fortran carriage-control.

ieee_flags(3M) Examine, set, or clear floating-point exception bits.

ieee_handler(3M) Handle exceptions.

matherr(3M) Handle errors.

xxi

f90 -help Variations

The following variations are meant to suggest other possibilities.

READMEs

The READMEs directory has information files: bug descriptions, information
discovered after the manuals were printed, feedback form, and so forth.

SIG

Sun Programmers Special Interest Group membership entitles you to other
documentation and software. A membership form is included at the very end
of this book. See “Join the SunPro SIG Today,” on page 215.

f90 -help | more The list does not scroll off the screen.

f90 -help | grep "par" Show only parallel options.

f90 -help | grep "lib" Show only library options.

f90 -help | lp Print a copy on paper.

f90 -help > MyWay Put list onto a file, regroup, reorder, delete, …

f90 -help | tail Show how to send feedback to Sun.

Standard Installation Nonstandard Installation to / my/ dir/

Location /opt/SUNWspro/READMEs/ / my/ dir/SUNWspro/READMEs/

Contents

File Names feedback Sun programmers email template file: Send feedback comments to Sun

fortran_90 Fortran 90 bugs, new features. behavior changes, documentation errata

xxii Fortran 90 User’s Guide

Conventions in Text
We use the following conventions in this manual to display information.

• We show code listing examples in boxes.

• Plain typewriter font shows prompts and coding.

• In dialogs, boldface typewriter font shows text the user types in.

• Italics indicate general arguments or parameters that you replace with the
appropriate input. Italics also indicate emphasis.

• For Solaris 2.x, the default shell is sh and the default prompt is the dollar
sign ($) . Most systems have distinct host names, and you can read some of
our examples more easily if we use a symbol longer than a dollar sign.
Examples generally use “demo$ ” as the system prompt; where the csh shell
is shown, we use “demo%” as the system prompt.

• A small clear triangle ∆ shows a blank space where that is significant.

• We generally tag nonstandard features with a small black diamond (♦).
Wherever we indicate that a feature is nonstandard, that means a program
using it does not conform to the ANSI X3.198-1992 standard, as described in
American National Standard for Programming Language—Fortran—Extended,
ANSI X3.198-1992, 1992, American National Standards Institute, Inc.,
informally abbreviated as the Fortran 90 Standard.

• We usually show Fortran 90 examples in free form, not fixed form or tab.
• We usually abbreviate “ Sun Fortran 90” as “f90” .
• We usually show Fortran 90 keywords and intrinsics in uppercase, and all

else in lowercase or mixed case.

WRITE(*, *) ’Hello world’

demo$ echo hello
hello
demo$ ■

∆∆36.001

 1

Introduction 1

This chapter is organized into the following sections.

Sun Fortran 90 comes with a programming environment, including certain
operating system calls and support libraries. It integrates with powerful
development tools, including SunSoft™ tools such as the Debugger, make,
MakeTool™, and TeamWare™. Some examples assume you installed the Source
Compatibility Package.

iMPact™ and Workshop™

The compiler is available in various packages and configurations:

• Alone, or as part of a package, such as the Fortran 90 Workshop
• With or without the iMPact MT/MP multiple processor package

Operating Environment page 2

Text Editing page 2

Program Development page 3

Debugging page 3

Licensing page 3

 2 Fortran 90 User’s Guide

1

1.1 Operating Environment
Sun Fortran 90 runs in the Solaris® 2.x operating environments.

The Solaris 2.x operating environment includes (among other components) the
SunOS 5.x operating system. SunOS 5.x is based on the System V Release 4
(SVR4) UNIX operating system, and the ONC+™ family of published
networking protocols and distributed services, including ToolTalk™.

Abbreviations
• Solaris 2.x is an abbreviation for “Solaris 2.3 and later.”
• SunOS 5.x is an abbreviation for “SunOS 5.3 and later.”

1.2 Text Editing
There are several text editors available.

vi The major text editor for source programs is vi (vee-eye), the visual display
editor. It has considerable power because it offers the capabilities of both a line
and a screen editor. vi also provides several commands specifically for editing
programs. These are options you can set in the editor. Two examples are the
autoindent option, which supplies white space at the beginning of a line,
and the showmatch option, which shows matching parentheses. For more
information, read the vi section of the manual.

textedit The textedit editor and other editors are available, including ed and ex .

emacs For the emacs editor, and other editors not from Sun, read the Sun document
Catalyst™, a Catalog of Third-Party Software and Hardware.

xemacs Xemacs is an Emacs editor that provides interfaces to the selection service and
to the ToolTalk™ service.

The EOS package (“Era On Sparcworks”) uses these two interfaces to provide
simple yet useful editor integration with two SPARCworks tools: the
SourceBrowser and the Debugger. Era is an earlier name of this editor.

It is available through the University of Illinois, by anonymous ftp , at
ftp.cs.uiuc.edu:/pub/era

Introduction 3

1

1.3 Program Development
There are several development tools available.

asa This utility is a Fortran output filter for printing files that have Fortran carriage-
control characters in column one. The UNIX implementation on this system
does not use carriage-control since UNIX systems provide no explicit printer
files. You use asa when you want to transform files formatted with Fortran
carriage-control conventions into files formatted according to UNIX line-
printer conventions. See asa (1) and fpr (1).

fsplit This utility splits one Fortran file of several routines into several files, so that
there is one routine per file.

1.4 Debugging
There are two debugging tools.

dbx An interactive symbolic debugger that understands Sun Fortran 90 programs
(available with the SPARCworks set).

debugger A window, icon, mouse, and pointer interface to dbx (in SPARCworks set).

1.5 Licensing
This compiler uses network licensing. Before you use Sun Fortran 90, purchase
and install a SunSoft Fortran 90 license.

When you invoke the compiler, if a license is available, the compiler simply
starts. If no license is available, your request for a license is put on a queue,
and your compile continues when a license becomes available.
See also –noqueue and -xlicinfo.

Licensing information is in the manual Installing SunSoft Developer Products on
Solaris, including (among other items):

• Installing a license
• Starting a license daemon
• Restarting a license daemon after a license server crash

 4 Fortran 90 User’s Guide

1

 5

Getting Started 2

This chapter is organized into the following sections.

This chapter gives a bare minimum on how to compile and run Fortran 90
programs under Solaris. This chapter is for you if you know Fortran 90
thoroughly and need to start writing programs in this Fortran 90 immediately.
Skip to Chapter 3, “Using the Compiler,” to learn more about it first.

2.1 Summary
To use this Fortran 90 involves three steps:

• Write and save a Fortran 90 program; use .f90 or .f as file name suffix.
• Compile and link this file using the f90 command.
• Execute by typing the name of the executable file.

Summary page 5

Compiling page 6

Running page 6

Renaming the Executables page 6

Before you use this release of
f90 , it must be installed and
licensed. Read Installing SunSoft
Developer Products on Solaris.

 6 Fortran 90 User’s Guide

2

Example: This program displays a message on the screen.

2.2 Compiling
Compile and link using the f90 command as follows.

In the example above, f90 compiles hack.f90 and puts the executable code
in the a.out file.

2.3 Running
Run the program by typing a.out on the command line.

2.4 Renaming the Executables
It is awkward to have the result of every compilation on a file called a.out ,
since if such a file exists, it is overwritten. You can avoid this in two ways.

• After each compilation, use mv to change the name of a.out .

• On the command line, use -o to rename the output executable file.

The above command places the executable code in the maven file.

demo$ cat hack.f90
PROGRAM Opinion
 PRINT *, ’Real programmers hack Fortran 90!’
END PROGRAM Opinion
demo$ ■

demo$ f90 hack
demo$ ■

demo$ a.out
 Real programmers hack Fortran 90!
demo$ ■

demo$ mv a.out maven
demo$ ■

demo$ f90 –o maven hack
demo$ ■

Getting Started 7

2

Either way, run the program by typing the name of the executable file.

At this point, read Chapter 3, “Using the Compiler for the compiler options
and the summary of performance optimization. If you are not familiar with a
UNIX file system, read Chapter 4, “File System and File I/O.” or refer to any
introductory UNIX book.

demo$ maven
 Real programmers hack Fortran 90!
demo$ ■

 8 Fortran 90 User’s Guide

2

 9

Using the Compiler 3

This chapter is organized into the following sections.

3.1 Compile Command
The syntax of a simple compiler command is as follows.

where sfn is a Fortran 90 source file name, and options is one or more of the
compiler options.

Example: A compile command with two files.

Example: A compile command, same files, with some options.

Compile Command page 9

Compiler Options page 12

Miscellaneous Tips page 33

f90 [options] sfn …

 demo$ f90 growth.f90 fft.f90

 demo$ f90 -g -P growth.f90 fft.f90

Before you use this release of
f90 , it must be installed and
licensed. Read Installing
SunSoft Developer Products o n
Solaris.

 10 Fortran 90 User’s Guide

3

A more general form of the compiler command is as follows.

• The fn is a file name (not necessarily of a Fortran 90 source file).
See “Command-line File Names” on page 11.

• The -l x is the option to link with library lib x.a .

• The -l x is after the list of file names. Always safer. Not always required.

The files and the results of compilations are linked (in the order given) to make
an executable program, named (by default) a.out or with a name specified by
the -o option.

Purpose

The purpose of f90 is to translate source to an executable file.

Other major uses:

• Translate source code files to relocatable binary (.o) files
• Link .o files into an executable load module (a.out) file
• Show the commands built by the compiler, but do not execute
• Prepare for debugging

Compile Link Sequence

With the above commands, if you successfully compile the files growth.f90
and fft.f90 , the object files growth.o and fft.o are generated, then an
executable file is generated with the default name a.out .

The files growth.o and fft.o are not removed. If there is more than one
object file (.o file), then the object files are not removed. This allows easier
relinking if there is a linking error.

If the compile fails, you get an error message for each error, the a.out file is
not generated, and the remaining .o files are not generated.

f90 [options] fn … [- l x]

Using the Compiler 11

3

Compile and Link in Separate Steps

You can compile and link in separate steps. This is usually done if one of
several source files was changed—that way you need not recompile all the
other source files.

Example: Compile and link in separate steps.

Of course, every file named in the first step (as a .f90 file) must also be named
in the second step (as a .o file).

Consistent Compile and Link

Be consistent with compiling and linking. If you compile and link in separate
steps, and you compile any subprogram with -dalign or –fast , then be sure
to link with the same options.

Command-line File Names

If a file name in the command line has any of the following suffixes, the
compiler recognizes it; otherwise it is passed to the linker.

Fixed-form source and free-form source are explained in Section 3.3 Source
Form, of the Fortran 90 Handbook.

demo$ f90 -c file1.f90 file2.f90 file3.f90 {make .o files}
demo$ f90 file1.o file2.o file3.o {make a.out file}

Table 3-1 File Name Suffixes Fortran 90 Recognizes

 Suffix Language Form Action

.f90 Fortran 90 Free Compile Fortran 90 source files, put object files in current
directory; default name of object file is that of the source
but with .o suffix.

.f Fortran 90 or
standard FORTRAN 77

Fixed Same as .f90, but different source form

.for Same as .f Fixed Same as .f

.ftn Same as .f Fixed Same as .f

.s Assembler Assemble source files with the assembler.

.o Object Files Pass object files through to the linker.

 12 Fortran 90 User’s Guide

3

Unrecognized Arguments

Any arguments f90 does not recognize are taken to be one of the following:

• Linker option arguments
• Names of f90 -compatible object programs (maybe from a previous run)
• Libraries of f90 -compatible routines

If an unrecognized argument:

• Has a “- ”, then it is an option, and generates a warning.
• Has no “- ”, then it generates no warnings; but if the linker does not

recognize them, the linker issues error messages.

3.2 Compiler Options
This compiler has the power of many optional features, so this tends to produce
a very long list of features. To help you use this long list, the options are
organized from different perspectives—so you can look up an action to see
which option does it, or you can look up an option to see what it does.

List/Perspective How to Get It

● Actions and What Invokes Them (Actions/Options Sorted by Action)

Frequent—Actions/Options Frequently Used See page 13

Summary—One-line descriptions See page 13

 (See also “compile action” in the Index.)

● Options and What They Do (Options/Actions Sorted by Option)

Summary—One-line descriptions f90 -help

Full Descriptions—Examples, risks, trade-offs, restrictions, interactions

All risks, trade-offs, restrictions, interactions, and examples See page 15, …

Some risks, trade-offs, restrictions, interactions, examples man f90

 (See also: the option name in the Index.)

Using the Compiler 13

3

Actions/Options Frequently Used

A few options are needed by almost every programmer.

Check “Details” for trade-offs, risks, restrictions, interactions, and examples.

Actions and What Options Invoke Them

Actions/Options Sorted by Action—This section groups related actions together.
Check “Details” for risks, trade-offs, restrictions, interactions, and examples.

Table 3-2 Options Frequently Used

Action Option Details

Debug—produce additional symbol table information for the debugger. –g page 20

Performance—make executable run faster using a selection of options. –fast page 19

Performance—make executable run faster using the optimizer. –O[n] page 25

Bind as dynamic (or static) any library listed later in the command. -Bdynamic , -Bstatic –B binding page 15

Library—Allow or disallow dynamic libraries for the entire executable. -dy , -dn –d binding page 17

Compile only—suppress linking; make a .o file for each source file. –c page 16

Name the final output file nm instead of a.out . –o nm page 25

Display a list of compiler options. –help page 20

Table 3-3 Actions/Options Sorted by Action

Action Option Details

Debug

Compile for use with the debugger. –g page 20

Global checking—across routines (arguments, commons, parameters, …). -Xlist page 32

Version ID—show version ID along with name of each compiler pass. -V page 30

Library

Bind as dynamic (or static) any library listed later in the command. –Bbinding page 15

Allow or disallow dynamic libraries for the entire executable. –dbinding page 17

Build a dynamic shared library. –G page 20

Name a shared dynamic library. –hname page 20

Directory—search this directory first. -L dir page 22

Link with library lib x. -l x page 21

 14 Fortran 90 User’s Guide

3

Library (continued)

Multithread safe libraries, low level threads. -mt page 22

Paths—store into object file. -R list page 28

No automatic libraries. -nolib page 24

No run path in executable. -norunpath page 24

Performance

Faster execution—make executable run faster using a selection of options. –fast page 19

Generate code to run on generic SPARC architecture. –cg89 page 16

Generate code to run on SPARC V8 architecture. -cg92 page 16

Use the best floating-point arithmetic for this machine. -native page 23

Optimize for execution time. -O [n] page 25

Use selected math routines optimized for performance. -xlibmopt page 31

Reset -fast so that it does not use -xlibmopt . -xnolibmopt page 30

Parallelization

Parallelize automatically and with explicit directives. -parallel page 26

Parallelize explicitly. -explicitpar page 18

Stack local variables to allow better optimizing with parallelizing. -stackvar page 29

Profile by

Procedure for gprof . -pg page 27

Procedure for prof . -p page 26

Information and Warnings

Verbose—print name of each compiler pass. -v page 30

Version ID—show version ID. -V page 30

Warnings—suppress warnings. -w page 31

Licensing

License information—display license server user ids. -xlicinfo page 30

No license queue. -noqueue page 24

Source Forms

Fixed form source. -fixed page 19

Free form source. -free page 19

Table 3-3 Actions/Options Sorted by Action (Continued)

Action Option Details

Using the Compiler 15

3

Options and What Actions They Do

Options/Actions Sorted by Option—This section shows all f90 options, with a
full description, including risks, restrictions, caveats, interactions, examples,
and other details.

–ansi ANSI conformance check—identify many non-ANSI extensions.

–Bbinding Bind as dynamic (or static) any library listed later in the command.

No space is allowed between -B and dynamic or static , and either dynamic
or static must be included.

• –Bdynamic : Prefer dynamic binding (try for shared libraries).
• -Bstatic : Require static binding (no shared libraries).

If you have neither -Bdynamic nor -Bstatic , you get the default: dynamic .

Miscellaneous

ANSI conformance check—identify many non-ANSI extensions. -ansi page 15

Compile only, do not make a.out, do not execute -c page 16

CIF—generate a compiler information file. -db page 17

Command—show command line built by driver, but do not execute. –dryrun page 17

Align on 8-byte boundaries. -f page 19

Do not trap floating-point exceptions. -fnonstop page 19

Options—display the list of options. –help page 20

Include path—add dir to the search path for INCLUDE statements. -I dir page 21

Module directory—look for Fortran 90 modules in the dir directory. -Mdir page 23

Output—rename the output file. -o outfil page 25

DOloops—use one trip DO loops. -onetrip page 25

Pass option list to program. -Qoption pr ls page 27

Assembly source—generate only assembly source code. -S page 30

Symbol table—strip executable of symbol table (prevents debugging). -s page 29

Temporary files—set directory to locate temporary files. -temp= dir page 30

Time for execution—display for each compilation pass. -time page 30

Table 3-3 Actions/Options Sorted by Action (Continued)

Action Option Details

 16 Fortran 90 User’s Guide

3

For –Bdynamic and -Bstatic , there is asymmetry besides prefer/require:

• If you specify static, but it finds only a dynamic version, then the library is
not linked, and you get a warning that the “library was not found.”

• If you specify dynamic, but it finds only a static version, then the library is
linked, and you get no warning.

You can toggle -Bstatic and -Bdynamic on the command line. That is, you
can link some libraries statically and some dynamically by specifying
-Bstatic and -Bdynamic any number of times on the command line.

These are loader/linker options. If you compile and link in separate steps, and
you need -B binding, then you need it in the link step also.

–c Compile only, do not make a.out , do not execute.

Suppress linking by the loader. Make a .o file for each source file. Do not make
an executable file. You can name a single object file explicitly using the -o
option.

–cg89 Generate code to run on generic SPARC architecture.

Use a subset of the SPARC V8 instruction set. With -cg89 and optimization,
the instructions are scheduled for faster executables on a generic SPARC
machine. Code compiled with -cg89 does run on -cg92 hardware.

-cg92 Generate code to run on SPARC V8 architecture.

Allow the use of the full SPARC V8 instruction set.

General Comments on -cg89 and -cg92
• For SPARC systems, the default code generation option is -cg89 .

• You can mix routines compiled -cg89 with routines compiled -cg92 ; that
is, you can have both kinds in one executable.

• Use fpversion (1) to tell which to use so the executables run faster:
-cg89 or -cg92 . It may take about a minute to start the full report.

Using the Compiler 17

3

–dalign Allow f90 to use double load/store.

Generate double load/store instructions wherever possible for faster execution.
Using this option automatically triggers the –f option, which causes all
double-precision and quadruple-precision data types (both real and complex)
to be double aligned. With -dalign , you may not get ANSI standard Fortran
90 alignment. It is a trade-off of portability for speed.

If you compile one subprogram with -dalign , compile all subprograms of the
program with –dalign .

-db Compiler information file.

Generate a compiler information (CIF) file.

–dryrun Commands—show commands built by driver, but do not execute.

–d [y,n] Allow or disallow dynamic libraries for the entire executable.

 No space is allowed between -d and y or n. Either y or n must be included.

• -dy : Yes—allow dynamically bound libraries (allow shared libraries).
• -dn : No—do not allow dynamically bound libraries (no shared libraries).

If you have neither -dy nor -dn , you get the default: y.

These apply to the whole executable. Use only once on the command line.

If a.out uses only static libraries, then -dy causes a few seconds delay at
runtime it makes the dynamic linker be invoked when a.out is run. This takes
a few seconds to invoke and find that no dynamic libraries are needed.

-d binding is a loader/linker option. If you compile and link in separate steps,
and you need -d binding, then you need it in the link step.

–e Extend the source line maximum length to 132 columns.

Accept lines up to 132 characters long.

 18 Fortran 90 User’s Guide

3

-explicitpar Multiprocessor—parallelize explicitly.

You do the dependency analysis: analyze and specify loops for inter-iteration
data dependencies. The software parallelizes the specified loops.

The -explicitpar option requires the Multiprocessor Fortran 90
multiprocessor enhancement package. To get faster code, this option requires a
multiprocessor system. On a single-processor system the generated code
usually runs slower. Before you parallelize explicitly, see Appendix B, “iMPact:
Multiple Processors,” Appendix C, “iMPact: Automatic Parallelization,” and
Appendix D, “iMPact: Explicit Parallelization."

Summary: To parallelize explicitly, do the following.

• Analyze the loops to find those that are safe to parallelize.
• Insert !MIC$ DOALL to parallelize a loop.
• Use the -explicitpar option.

Example: Insert a parallel pragma immediately before the loop.

Example: Compile to explicitly parallelize.

Restrictions:
• -g turns off -explicitpar .

• Avoid -explicitpar if you do your own thread management. See –mt.

• Do not mix parallelized f77 and parallelized f90 .

• If you use -explicitpar and compile and link in separate steps, then link
with -explicitpar .

 ...
!MIC$ DOALL

 DO i = 1, n
a(i) = b(i) * c(i)

 END DO
 ...

 demo$ f90 -explicitpar any.f90

Using the Compiler 19

3

–f Align on 8-byte boundaries.

Align all COMMON blocks and all double-precision and quadruple-precision
local data on 8-byte boundaries. This applies to both real and complex data.

If you compile with -f for any subprogram of a program, then compile all
subprograms of that program with -f .

–fast Faster execution—make executable run faster using a selection of options.

Select the combination of compilation options that optimize for speed of
execution without excessive compilation time.

This should provide close to the maximum performance for most realistic
applications.

If you combine -fast with other options, the last specification applies.

If you do not specify the level (as in -fast -O) you get -fast -O3 .

If you compile and link in separate steps, and you compile with -fast , then
be sure to link with -fast .

-fixed Fixed-form source.

Interpret all Fortran 90 source files by fixed form rules. Overrides file suffix.
See also, “FIXED and FREE Directives” on page 181.

-flags Synonym for -help .

-fnonstop Do not trap floating-point exceptions.

Without -fnonstop , there is a trap on the invalid , overflow , and divide
by zero floating-point exceptions.

-free Free-form source.

Interpret all Fortran 90 source files by free form rules. Overrides file suffix. See
also “FIXED and FREE Directives” on page 181.

 20 Fortran 90 User’s Guide

3

–g Debug—produce additional symbol table information for the debugger.

Produce a symbol table of information for the debuggers. You get much more
debugging power if you compile with -g before using the debuggers.

• -g overrides -O .
• -g is turned off by -explicitpar , -parallel , or -reduction .

–G Library—build a dynamic library.

Tell the linker to build a dynamic library. Without -G , the linker builds an
executable file. With -G , it builds a dynamic library.

–hnm Library—make nm be the name of the generated shared dynamic library.

When generating a shared dynamic library, the compile-time linker records the
specified name in the library file as the internal name of the library. If there is
no -h nm option, then no internal name is recorded in the library file, and the
path of the library is stored instead.

Advantage—If the library has an internal name, then whenever the executable is
run, the linker needs only a library with the exact same internal name—it can
be in any path the linker is searching. If the library has no internal name, then
whenever the executable is run, the linker must find the library in the exact
same path used when the executable was created That is, the internal name
method is more flexible.

Remarks
• A space between -h and nm is optional.
• In general, this name must be the same as what follows the -o .
• The -h nm option is meaningless without -G .
• Internal names facilitate versions of a dynamic library.
• This is a linker option.

See the Linker and Libraries Manual.

–help Options—display the list of options.

Display an equivalent of this list of options. This also shows how to send
feedback comments to Sun.

Using the Compiler 21

3

Variations for -help :

• f90 -help | more Do not scroll the list off screen.
• f90 -help | grep "par" Show only parallel options.
• f90 -help | tail Show how to send feedback to Sun.

See also “f90 -help Variations” on page xxi.

–I loc Include path—add to the search path for INCLUDE statements.

Insert the path loc at the start of the list of directories in which to search for
Fortran 90 INCLUDE files.

• No space is allowed between -I and loc.
• Invalid directories are just ignored with no warning message.
• The -I loc applies to INCLUDE files with relative, not absolute, path names.

Example: f90 -I/usr/applib growth.f90

Above, f90 searches for INCLUDE files in the source file directory and then
in the /usr/applib directory.

Use -I loc again to insert more paths.

Example: f90 -Ipath1 -Ipath2 any.f90

Search Order: The search for INCLUDE files is in the following order:

• The directory containing the source file
• Directories named in -I loc options

–l x Library—link with library lib x.

Pass -l x to the linker. ld links with object library lib x. If shared library
lib x.so is available, ld uses it, otherwise, ld uses archive library lib x.a. If it
uses a shared library, the name is built in to a.out . No space is allowed
between -l and x character strings.

Example: Link with the library lib abc.

Use -l x again to link with more libraries.

demo$ f90 any.f90 –l abc

 22 Fortran 90 User’s Guide

3

Example: Link with the libraries liby and libz .

See also Section 6.5, “Library Paths,” on page 65.

–Ldir Library—search this directory first.

Add dir at the start of the list of object-library search directories. While
building the executable file,ld (1) searches dir for archive libraries (.a files)
and shared libraries (.so files). A space between -L and dir is optional. The
directory dir is not built in to the a.out file. See also –lx. ld searches dir before
the default directories. See “Building Executables: ld Search order” on page 66.
For the relative order between LD_LIBRARY_PATH and -L dir, see ld (1).

Example: Use -L dir to specify a library search directory.

Example: Use -L dir again to add more directories.

Restrictions
• No -L/usr/lib : Do not use –Ldir to specify /usr/lib . It is searched by

default. Including it here may prevent using the unbundled libm .

• No -L/usr/ccs/lib : In Solaris 2.x, do not use –Ldir to specify
/usr/ccs/lib . It is searched by default. Including it here may prevent
using the unbundled libm .

–mt Multithread safe libraries—use for low level threads.

Use multithread safe libraries. If you do your own low level thread
management this helps prevent conflicts between threads. Use -mt if you mix
C and Fortran 90 and you do your own thread management of multithread C
coding using the libthread primitives. Before you use your own multi-
threaded coding, read the “Guide to Multi-Thread Programming.”

demo$ f90 any.f90 –ly -lz

demo$ f90 -Ldir1 any.f90

demo$ f90 -Ldir1 -Ldir2 any.f90

Using the Compiler 23

3

The –mt option does not require the Multiprocessor Fortran 90 multiprocessor
enhancement package, but to compile and run it does require Solaris 2.2 or
later. The equivalent of -mt is included automatically with -autopar ,
-explicitpar , or -parallel .

On a single-processor system the generated code can run slower with the –mt
option, but not usually by a significant amount.

The Fortran 90 library lib f90 is multithread safe. The FORTRAN 77 library
that is linked in if you use -mt , libF77_mt , is also multithread safe.

Restrictions for -mt
• With -mt , if a function does I/O, do not name that function in an I/O list.

Such I/O is called recursive I/O, and it causes the program to hang
(deadlock). Recursive I/O is unreliable anyway, but is more apt to hang
with -mt .

• In general, do not combine your own multi-threaded coding with
-autopar , -explicitpar , or -parallel . Either do it all yourself or let
the compiler do it. You may get conflicts and unexpected results if you and
the compiler are both trying to manage threads with the same primitives.

-Mdir Modules—look for Fortran 90 modules in the dir directory also.

No space is allowed between -M and dir.

By default, such files are sought in the current working directory. The -Mdir
option allows you to keep them in some other location in addition.

Background—If a file containing a Fortran 90 module is compiled, f90
generates a module file (.M file) in addition to the .o file.

–native Native floating point—use what is best for this machine.

Direct the compiler to decide which floating-point options are available on the
machine the compiler is running on, and generate code for the best one. If you
compile and link in separate steps, and you compile with the -native option,
then be sure to link with -native .

 24 Fortran 90 User’s Guide

3

-nolib No automatic libraries.

Do not automatically link with any system or language library; that is do not
pass any -l x options on to ld . The default is to link such libraries into the
executables automatically, without the user specifying them on the command
line.

The -nolib option makes it easier to link one of these libraries statically. The
system and language libraries are required for final execution. It is the users
responsibility to link them in manually. This provides complete control (and
with control comes responsibility) for the user.

For example, a program linked dynamically with libF77 fails on a machine
that has no libF77 . When you ship your program to your customer, you can
ship libF77 or you can link it into your program statically.

Example: Link libm statically and link libc dynamically.

There is no dynamic libf90 ; it is always linked statically.

Order for -l x options is important. Use the order shown in the example.

–noqueue No license queue.

If you use this option, and no license is available, the compiler returns without
queueing your request and without doing your compile. A nonzero status is
returned for testing in make files.

-norunpath No run path in executable.

If an executable file uses shared libraries, then the compiler normally builds in
a path that tells the runtime linker where to find those shared libraries. The
path depends on the directory where you installed the compiler. The
-norunpath option prevents that path from being built in to the executable.

This option is helpful if you have installed in some nonstandard location, and
you ship an executable to your customers, but you do not want to make the
customers deal with that nonstandard location. Compare with -R list.

demo$ f90 -nolib any.f90 -lf90 -Bstatic -lm -Bdynamic -lc

Using the Compiler 25

3

–o nm Output file—rename the output file.

Name the final output file nm instead of a.out . There must be a blank
between -O and nm.

–onetrip DO loops—use one trip DO loops.

Compile DO loops so that they are performed at least once if reached. DO loops
in Fortran 90 ordinarily are not performed at all if the upper limit is less than
the lower limit, unlike some implementations of FORTRAN 66 DO loops.

–O[n] Optimize the object code for speed of execution.

The n can be 1, 2, 3, or 4. No space is allowed between -O and n.
If -O[n] is not specified, the compiler still performs a default level of
optimization; that is, it executes a single iteration of local common subexpression
elimination and live/dead analysis.

–g suppresses –On.

–O If you do not specify an n, f90 uses whatever n is most likely to yield the fastest
performance for most reasonable applications. For the current release, this is 3.

–O1 Do only conservative scalar optimization.

This level usually results in moderate code size and compile time. If an
optimization can create a false exception, then that optimization is not
performed. At this level, f90 can analyze whether a variable is used before it is
defined.

–O2 Do moderate optimization.

–O3 Do aggressive scalar optimization.

Some of these optimizations can create false exceptions.This level can result in
larger code size and compile time. At this level, f90 can analyze whether a
variable is used before it is defined.

 26 Fortran 90 User’s Guide

3

–O4 For this release, -O4 is equivalent to -O3 .

–p Profile by procedure for prof .

Prepare object files for profiling, see prof (1). If you compile and link in
separate steps, and if you compile with the -p option, then be sure to link with
the -p option. -p with prof is provided mostly for compatibility with older
systems. -pg with gprof does more.

-parallel Multiprocessor—Parallelize automatically and parallelize explicitly indicated
loops.

Parallelize loops both automatically by the compiler and as explicitly specified
by the programmer. With explicit parallelization of loops, there is a risk of
producing incorrect results.

If optimization is not at -O3 , then it is raised to -O3 .

Restrictions:

• -g turns off -parallel .
• Avoid -parallel if you do your own thread management. See –mt.
• Do not mix parallelized f77 and parallelized f90 .
• If you use -parallel and compile and link in separate steps, then link with

-parallel .

The -parallel option requires the Multiprocessor Fortran 90 multiprocessor
enhancement package. To get faster code, use this option on a multiprocessor
SPARC system. On a single-processor system the generated code usually runs
slower.

Number of Processors—To request a number of processors, set the PARALLEL
environment variable. The default is 1.

• Do not request more processors than are available.

• If N is the number of processors on the machine, then for a one-user,
multiprocessor system, try PARALLEL=N-1 .

• See Section B.4, “Number of Processors.”

Before you use -parallel , see Appendix B, “iMPact: Multiple Processors,”
Appendix C, “iMPact: Automatic Parallelization,” and Appendix D, “iMPact:
Explicit Parallelization."

Using the Compiler 27

3

–pg Profile by procedure for gprof .

Produce counting code in the manner of –p , but invoke a runtime recording
mechanism that keeps more extensive statistics and produces a gmon.out file
at normal termination. Then you can make an execution profile by running
gprof (1). -pg and gprof are complementary to -a and tcov .

Library options must be after the .f and .o files (-pg libraries are static).

If you compile and link in separate steps, and you compile with -pg , then be
sure to link with -pg . Compare this profiling method with the one described in
the manual Performance Tuning an Application.

For Solaris 2.x, when the operating system is installed, gprof is included if
you do a Developer Install, rather than an End User Install; it is also included if
you install the package SUNWbtool .

-Qoption pr op Option—pass option list to specified program.

Pass the option list op to the program pr. There must be a blank between
Qoption and pr and op. The Q can be uppercase or lowercase. The list is a
comma-delimited list of options, no blanks within the list. Each option must be
appropriate to that program and can begin with a minus sign.

The assembler used by the compiler is named fbe .

Example: Pass the help option for help to the linker, ld .

Example: Pass the load map to the linker, ld .

-reduction Multiprocessor—reduction loops: analyze loops for reduction.

Analyze loops for reduction during automatic parallelization. There is
potential for roundoff error with the reduction.

The -reduction option requires the Multiprocessor Fortran 90
multiprocessor enhancement package. To get faster code, this option requires a
multiprocessor system. On a single-processor system the generated code
usually runs slower.

demo$ f90 –Qoption ld -Dhelp src.f90

demo$ f90 –Qoption ld -m src.f90

 28 Fortran 90 User’s Guide

3

-reduction conflicts with -g .

Before you use -reduction , see Appendix C, “iMPact: Multiple Processors”
and Appendix D, “iMPact: Automatic Parallelization."

Reduction works only during parallelization. If you specify -reduction
without -parallel , the compiler does no reduction. If you have a directive
explicitly specifying a loop, then there will be no reduction for that loop.

Example: Automatically parallelize with reduction.

–R ls Library paths—store paths into object file.

While building the executable file, store a list of library search paths into it.

• ls is a colon-separated list of directories for library search paths.
• The blank between -R and ls is optional.

Multiple instances of this option are concatenated together, with each list being
separated by a colon.

How this list is used—The list will be used at runtime by the runtime linker,
ld.so . At runtime, dynamic libraries in the listed paths are scanned to satisfy
any unresolved references.

Why You would want to use it—Use this option to let your users run your
executables without a special path option to find your dynamic libraries.

LD_RUN_PATH and -R

For f90 , -R and the environment variable LD_RUN_PATH are not identical (for
the runtime linker ld.so , they are).

demo$ f90 -parallel -reduction any.f90

Using the Compiler 29

3

If you build a.out with:

• -R , then only the paths of -R are put in a.out . So -R is raw: it inserts only
the paths you name, and no others.

• LD_RUN_PATH, then the paths of LD_RUN_PATH are put in a.out , plus
paths for Fortran 90 libraries. So LD_RUN_PATH is augmented: it inserts the
ones you name, plus various others.

• Both LD_RUN_PATH and -R , then only the paths of -R are put in a.out , and
those of LD_RUN_PATH are ignored.

–s Strip the executable file of its symbol table (makes debugging impossible).

–stackvar Stack the local variables to allow better optimizing with parallelizing.

Use the stack to allocate all local variables and arrays in a routine unless
otherwise specified. This makes them automatic, rather than static.

Purpose: More freedom to optimizer for parallelizing a CALL in a loop.

Parallel CALL: This option gives more freedom to the optimizer for such
tasks as parallelizing a loop that includes a CALL.

Definition: Variables and arrays are local unless they are:

• Arguments in a SUBROUTINE or FUNCTION statement (already on stack)
• Global items in a COMMON or SAVE, or STATIC statement
• Initialized items in a type statement or a DATA statement, such as:

REAL :: X=8.0 or DATA X /8.0/

Segmentation Fault and -stackvar : You can get a segmentation fault using
-stackvar with large arrays. Putting large arrays onto the stack can overflow
the stack, so you may need to increase the stack size.

There are two stacks.

• The whole program has a main stack.
• Each thread of a multi-threaded program has a thread stack.

The default stack size is about 8 MBytes for the main stack and 256 KBytes for
each thread stack. The limit command (no parameters) shows the current
main stack size. If you get a segmentation fault using -stackvar , you might
try doubling the main stack size at least once.

 30 Fortran 90 User’s Guide

3

Example: Stack size—show the current main stack size.

Example: Set the main stack size to 64 MBytes.

Example: Set each thread stack size to 8 MBytes.

See csh (1) for details on the limit command.

–S Assembly source—generate only assembly source code.

Compile the named programs and leave the assembly-language output on
corresponding files suffixed with .s (no .o file is created).

–temp= dir Temporary files—set directory to locate temporary files.

Set directory for temporary files used by f90 to be dir. No space is allowed
within this option string. Without this option, they go into /tmp/ .

–time Time for execution—display for each compilation pass.

–v Verbose—print name of each compiler pass.

Print the name of each pass as the compiler executes, plus display in detail the
options and environment variables used by the driver.

–V Version ID—show version ID.

Print the name and version ID of each pass as the compiler executes.

The main stack size →

demo$ limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes
coredumpsize unlimited
descriptors 64
memorysize unlimited
demo$ ■

demo% limit stacksize 65536

demo% setenv STACKSIZE 8192

Using the Compiler 31

3

-w[n] Warnings—suppress warnings.

The n can be any one of 0, 1, 2, 3, or 4.

• -w0 suppresses the least warnings.
• -w4 suppresses the most warnings.
• -w with no n, is the same as -w0 .

-xlibmopt Use selected math routines optimized for performance.

This usually generates faster code. It may produce slightly different results; if
so, they usually differ in the last bit. The order on the command line for this
library option is not significant.

-xlicinfo License information—display license server user ids.

Return license information about the licensing system. In particular, return the
name of the license server and the user ID for each of the users who have
licenses checked out. Generally, with this option no compilation is done and a
license is not checked out; and generally this option is used with no other
options. However, if a conflicting option is used, then the last one on the
command line wins and there is a warning.

Example: Report license information, do not compile (order counts).

Example: Do not report license information, do compile (order counts).

-xnolib Synonym for -nolib .

-xnolibmopt Reset -fast so that it does not use -xlibmopt .

Reset -fast so that it does not use the library of selected math routines
optimized for performance. Use this after the -fast option:
f90 -fast -xnolibmopt …

demo$ f90 -c -xlicinfo any.f90

demo$ f90 -xlicinfo -c any.f90

 32 Fortran 90 User’s Guide

3

-xO[n] Synonym for -O[n].

-xpg Synonym for -pg .

-xtime Synonym for -time .

-Xlist Global program checking—check across routines (arguments, commons, …).

This helps find a variety of bugs by checking across routines for consistency in
arguments, common blocks, parameters, and so forth. In general, -Xlist also
makes a line-numbered listing of the source, and a cross reference table of the
identifiers. The errors found do not necessarily prevent the program from
being compiled and linked.

For more information, see “Details of -Xlist Suboptions” on page 75.

Table 3-4 Summary of -Xlist Suboptions

Option Action

-Xlist (no suboption) Errors, listing, and cross reference table.

-XlistE Errors.

-Xlisterr Suppress all error messages in the verification report.

-Xlisterr[nnn] Suppress error nnn in the verification report.

-XlistI Include files.

-XlistL Listing (and errors).

-Xlistl n Page length is n lines.

-Xlisto name Rename the -Xlist output report file.

-Xlistwar Suppress all warning messages in the report.

-Xlistwar[nnn] Suppress warning nnn in the report.

-XlistX Cross reference table (and errors).

Using the Compiler 33

3

3.3 Miscellaneous Tips

Floating-Point Hardware Type

Some compiler options are specific to particular hardware options. The utility
fpversion tells which floating-point hardware is installed. The utility
fpversion (1) takes 30 to 60 wall clock seconds before it returns, since it
dynamically calculates hardware clock rates of the CPU and FPU. See
fpversion (1). Also read the Numerical Computation Guide for details.

Many Options on Short Commands

Some users type long command lines—with many options. To avoid this, make
a special alias or use environment variables.

Alias Method
Example: Define f90f .

Example: Use f90f .

The above command is equivalent to “f90 -fast -O4 any.f90 ”.

Environment Variable Method
Some users shorten command lines by using environment variables. The
FFLAGS or OPTIONS variables are special variables for FORTRAN.

• If you set FFLAGS or OPTIONS, they can be used in the command line.

• If you are compiling with make files, FFLAGS is used automatically if the
make file uses only the implicit compilation rules.

Example: Set FFLAGS.

demo$ alias f90f "f90 -fast -O4"

demo$ f90f any.f90

 demo$ setenv FFLAGS ’-fast -O4’

 34 Fortran 90 User’s Guide

3

• Example: Use FFLAGS explicitly.

The above command is equivalent to “f90 -fast -O4 any.f90 ”.

• Example: Let make use FFLAGS implicitly.

If both:
• The compile in a make file is implicit (no explicit f90 compile line)
• The FFLAGS variable is set as above

Then invoking the make file results in a compile command equivalent to
“f90 -fast -O4 any.f90 ”.

 demo$ f90 $FFLAGS any.f90

 35

File System and File I/O 4

This chapter is organized into the following sections.

This chapter is a basic introduction to the file system and how it relates to the
Fortran I/O system. If you understand these concepts, then skip this chapter.

4.1 Summary
The basic file system consists of a hierarchical file structure, established rules
for file names and path names, and various commands for moving around in
the file system, showing your current location in the file system, and making,
deleting, or moving files or directories.

Summary page 35

Directories page 37

File Names page 37

Path Names page 37

Redirection page 40

Piping page 41

Accessing Files from Fortran Programs page 45

Direct I/O page 45

Internal Files page 46

 36 Fortran 90 User’s Guide

4

The system file structure of the UNIX operating system is analogous to an
upside-down tree. The top of the file system is the root directory. Directories,
subdirectories, and files all branch down from the root. Directories and
subdirectories are considered nodes on the directory tree, and can have
subdirectories or ordinary files branching down from them. The only directory
that is not a subdirectory is the root directory, so except for this instance, you
do not usually make a distinction between directories and subdirectories.

A sequence of branching directory names and a file name in the file system tree
describes a path. Files are at the ends of paths, and cannot have anything branching
from them. When moving around in the file system, down means away from the
root and up means toward the root. The figure below shows a diagram of a file
system tree structure.

Figure 4-1 File System Hierarchy

 root
directory

file subdirectory subdirectory

subdirectoryfile file

file file

File System and File I/O 37

4

4.2 Directories
All files branch from directories except the root directory. Directories are just
files with special properties. While you are logged on, you are said to be in a
directory. When you first log on, you are usually in your home directory. At any
time, wherever you are, the directory you are in is called your current working
directory. It is often useful to list your current working directory. The pwd
command prints the current working directory name and the getcwd routine
gets (returns) the current working directory name. You can change your
current working directory simply by moving to another directory. The cd shell
command and the chdir routine change the current working directory to a
different directory.

4.3 File Names
All files have names, and you can use almost any character in a file name. The
name can be up to 1024 characters long, but individual components can be
only 512 characters long. However, to prevent the shell from misinterpreting
certain special punctuation characters, restrict your use of punctuation in file
names to the dot (.), underscore (_), comma (,), plus (+), and minus (-). The
slash (/) character has a specific meaning in a file name, and is only used to
separate components of the path name (as described in the following section).
Also, avoid using blanks in file names. Directories are just files with special
properties and follow the same naming rules as files. The only exception is the
root directory, named slash (/).

4.4 Path Names
To describe a file anywhere in the file system, you can list the sequence of
names for the directory, subdirectory, and so forth, and file, separated by slash
characters, down to the file you want to describe. If you show all the
directories, starting at the root, that’s called an absolute path name. If you show
only the directories below the current directory, that’s called a relative path
name.

 38 Fortran 90 User’s Guide

4

Relative Path Names

From anywhere in the directory structure, you can describe a relative path name
of a file. Relative path names start with the directory you are in (the current
directory) instead of the root. For example, if you are in the directory
/usr/you , and you use the relative path name mail/record , that is
equivalent to using the absolute path name /usr/you/mail/record .

This is illustrated in the diagram below:

Figure 4-2 Relative Path Name

Absolute Path Names

A list of directories and a file name, separated by slash characters, from the
root to the file you want to describe, is called an absolute path name. It is also
called the complete file specification or the complete path name.

A complete file specification has the general form:

There can be any number of directory names between the root (/) and the file
at the end of the path as long as the total number of characters in a given path
name is less than or equal to 1024.

/directory/directory/…/directory/file

/usr/you

 mail

 record

File System and File I/O 39

4

An absolute path name is illustrated in the diagram below:

Figure 4-3 Absolute Path Name

/

usr

 you

mail

record

/usr/you/mail/record

 40 Fortran 90 User’s Guide

4

4.5 Redirection
Redirection is a way of changing the files that a program uses without passing
a file name to the program. Both input to and output from a program can be
redirected. The symbol for redirecting standard input is the ‘<’ sign, and for
standard output is the “>” sign.

File redirection is a function performed by the command interpreter or shell
when a program is invoked by it.

Input

The shell command line:

The above command causes the file mydata (which must already exist) to be
connected to the standard input of the program myprog when it is run. This
means that if myprog is a Fortran 90 program and reads from unit 5, it reads
from the mydata file.

Output/Truncate

The shell command line:

The above command causes the file myoutput (which is created if it does not
exist, or rewound and truncated if it does) to be connected to the standard
output of the program myprog when it is run. So if the Fortran 90 program
myprog writes to unit 6, it writes to the file myoutput .

Output/Append

The shell command line:

The above command causes the file myoutput (which must exist) to be
connected for appending. So if the Fortran 90 program myprog writes to unit 6,
it writes to the file myoutput but after wherever the file ended before.

demo$ myprog < mydata

demo$ myprog > myoutput

demo$ myprog >> myoutput

File System and File I/O 41

4

Both standard input and standard output may be redirected to and from
different files on the same command line. Standard error may also be
redirected so it does not appear on your workstation display. In general, this is
not a good idea, since you usually want to get error messages from the
program immediately, rather than sending them to a file.

The shell syntax to redirect standard error varies, depending on whether you
are using sh or csh .

Example: csh. Redirecting standard error and standard output.

Example: sh. Redirecting standard error and standard output.

In each shell, the above command runs the program myprog1 and redirects the
standard output and standard error to the program myprog2 .

4.6 Piping
You can connect the standard output of one program directly to the standard
input of another without using an intervening temporary file. The mechanism
to accomplish this is called a pipe.

Example: A shell command line using a pipe.

This causes the standard output (unit 6) of firstprog to be piped to the
standard input (unit 5) of secondprog . Piping and file redirection can be
combined in the same command line.

Example: myprog reads mydata and pipes output to wc, wc writes datacnt .

The program myprog takes its standard input from the file mydata , and has its
standard output piped into the standard input of the wc command, the
standard output of wc is redirected into the file datacnt .

demo% myprog1 |& myprog2

demo$ myprog1 2>&1 | myprog2

demo$ firstprog | secondprog

demo$ myprog < mydata | wc > datacnt

 42 Fortran 90 User’s Guide

4

4.7 Accessing Files from Fortran Programs
Data are transferred to or from devices or files by specifying a logical unit
number in an I/O statement. Logical unit numbers can be nonnegative integers
or the character “* ”. The “* ” stands for the standard input if it appears in a
READ statement, or the standard output if it appears in a WRITE or PRINT
statement. Standard input and standard output are explained in the section on
preconnected units found later in this chapter.

Accessing Named Files

Before a program can access a file with a READ, WRITE, or PRINT statement,
the file must be created and a connection established for communication
between the program and the file. The file can already exist or be created at the
time the program executes. The Fortran 90 OPEN statement establishes a
connection between the program and file to be accessed. (For a description of
OPEN, read the Fortran 90 Handbook.)

File names can be simple expressions, as listed below.

• Quoted character constants

• Character variables

• Character expressions

A program can read file names from a file or terminal keyboard.

File = ’myfile.out’

File = Filnam

File = LEN_TRIM(Prefix) // ’/’ // LEN_TRIM(Name)

READ(4, 401) Filnam

File System and File I/O 43

4

Accessing Unnamed Files

When a program opens a Fortran 90 file without a name, the runtime system
supplies a file name. There are several ways it can do this.

Opened as Scratch

If you specify STATUS=’SCRATCH’ in the OPEN statement, then the system
opens a file with a name of the form tmp.F AAAxnnnnn, where nnnnn is
replaced by the current process ID, AAA is a string of three characters, and x is
a letter; the AAA and x make the file name unique. This file is deleted upon
termination of the program or execution of a CLOSE statement, unless
STATUS=’KEEP’ is specified in the CLOSE statement.

Already Open

If a Fortran 90 program has a file already open, an OPEN statement that
specifies only the file’s logical unit number and the parameters to change can
be used to change some of the file’s parameters (specifically, BLANK and FORM).
The system determines that it must not really OPEN a new file, but just change
the parameter values. Thus, this looks like a case where the runtime system
would make up a name, but it does not.

Other

In all other cases, the runtime system OPENs a file with a name of the form
fort.n , where n is the logical unit number given in the OPEN statement.

Passing File Names to Programs

The file system does not have any notion of temporary file name binding (or
file equating) as some other systems do. File name binding is the facility that is
often used to associate a Fortran logical unit number with a physical file
without changing the program. This mechanism evolved to communicate file
names more easily to the running program, because in FORTRAN 66 there was
no way to open files by name.

 44 Fortran 90 User’s Guide

4

With this operating system the following ways communicate file names to a
Fortran program.

• Redirection and piping. Redirection and piping can change the names of
program input and output files without changing the program. See the
sections “Redirection” and “Piping” earlier in this chapter.

Preconnected Units

When a Fortran program begins execution under this operating system, there
are usually three units already open. They are preconnected units. Their names
are standard input, standard output, and standard error.

In Fortran, the following are preconnected.

• Standard input is logical unit 5
• Standard output is logical unit 6
• Standard error is logical unit 0

All three are connected, unless file redirection or piping is done.

Other Units

All other units are preconnected to files named fort. n where n is the
corresponding unit number, and can be 0, 1, 2, …, with 0, 5, and 6 having the
usual special meanings. These files need not exist, and are created only if the
units are actually used, and if the first action to the unit is a WRITE or PRINT;
that is, only if an OPEN statement does not override the preconnected name
before any WRITE or PRINT is issued for that unit.

Example: Preconnected Files. The program OtherUnit.f90 .

The above program preconnects the file fort.25 and writes a single
formatted record onto that file.

WRITE(25, ’(I4)’) 2
END

demo$ f90 OtherUnit.f90
demo$ a.out
demo$ cat fort.25
 2
demo$

File System and File I/O 45

4

4.8 Direct I/O
Random access to files is also called direct access. A direct-access file contains
a number of records that are written to or read from by referring to the record
number. This record number is specified when the record is written. In a direct-
access file, records must be all the same length and all the same type.

A logical record in a direct access, external file is a string of bytes of a length
specified when the file is opened. Read and write statements must not specify
logical records longer than the original record size definition. Shorter logical
records are allowed. Unformatted, direct writes leave the unfilled part of the
record undefined. Formatted, direct writes cause the unfilled record to be
padded with blanks.

In using direct unformatted I/O, be careful with the number of values your
program expects to read. Each READ operation acts on exactly one record; the
number of values that the input list requires must be less than or equal to the
number of values in that record.

Direct access READ and WRITE statements have an extra argument, REC=n,
which gives the record number to be read or written.

Example: Direct-access, unformatted.

This opens a file for direct-access, unformatted I/O, with a record length of 20
characters, then reads the thirteenth record as is.

Example: Open, direct-access, formatted.

This opens a file for direct-access, formatted I/O, with a record length of 20
characters, then reads the thirteenth record and converts it according to the
format “(I10,F10.3) ”.

OPEN(2, FILE=’data.db’, ACCESS=’DIRECT’, RECL=20, &
FORM=’UNFORMATTED’, ERR=90)

READ(2, REC=13, ERR=30) x, y

OPEN(2, FILE=’inven.db’, ACCESS=’DIRECT’, RECL=20, &
FORM=’FORMATTED’, ERR=90)

READ(2, FMT="(I10,F10.3)", REC=13, ERR=30) a, b

 46 Fortran 90 User’s Guide

4

4.9 Internal Files
An internal file is a variable of type default character. This means that an
internal file can be one of the following:

• Scalar
• Array
• Element of an array
• Section of an array
• Component of a structure
• Substring

To use an internal file, give the name or the designator of the character variable
in place of the unit number.

This is called I/O, because you use READ and WRITE statements to deal with
internal files, although I/O is not a precise term to use here.

f90 extends what can be an internal file: if you are reading from an internal file,
the internal file can be a literal constant character string.

Rules and Restrictions
• The variable must not be an array section with a vector subscript.

• For a constant there is a single record in the file. ♦
• For a variable or substring, there is a single record in the file.
• For an array, each array element is a record.
• Each sequential READ or WRITE starts at the beginning of an internal file.

File System and File I/O 47

4

Example: Scalar for internal file, sequential formatted read.

Example: Array for internal file, sequential formatted read.

demo$ cat intern1.f90
CHARACTER x*80
WRITE(*,*) ’Enter two numbers’
READ(*, ’(A)’) x ! Reads a character string from standard input to x
READ(x, ’(I3,I4)’) n1, n2 ! Reads the internal file x
WRITE(*, *) n1, n2
END
demo$ f90 intern1
demo$ a.out
 Enter two numbers
12 99
 12 99
demo$ ■

demo$ cat intern3.f90
CHARACTER *16, Line(4)
DATA Line / ’ 81 81 ’, ’ 82 82 ’, ’ 83 83 ’, ’ 84 84 ’ /
READ(Line, ’(2I4)’) i, j, k, l, m, n ! Reads internal file Line
PRINT *, i, j, k, l, m, n
END
demo$ f90 intern3
demo$ a.out
 81 81 82 82 83 83
demo$ ■

 48 Fortran 90 User’s Guide

4

 49

Program Development 5

This chapter is organized into the following sections.

5.1 Simple Program Builds
For a program that depends on a few source files and some system libraries,
you can easily compile all of the source files every time you change the
program. Even in this simple case, the f90 command can involve much typing,
and with options or libraries, a lot to remember. A script or alias can help.

Writing a Script

A shell script can save typing. For example, to compile a small program that is
in the file example.f90 , and that uses the Xview support library, you can save
a one-line shell script onto a file, here called fex , that looks like this.

You may need to put execution permissions on fex .

Simple Program Builds page 49

Program Builds with the make Program page 50

Tracking and Controlling Changes with SCCS page 52

f90 example.f90 –lFxview –o example

demo$ chmod +x fex

 50 Fortran 90 User’s Guide

5

Creating an Alias

You can create an alias to do the same command.

Using a Script or Alias

Either way, to recompile example.f90 , you type only fex .

Limitations

With multiple source files, forgetting one compile makes the objects
inconsistent with the source. Recompiling all files after every editing session
wastes time, since not every source file needs recompiling. Forgetting an
option or a library produces questionable executables.

5.2 Program Builds with the make Program
The make program recompiles only what needs recompiling, and it uses only
the options and libraries you want. This section shows you how to use normal,
basic make, and it provides a simple example. For a summary, see make (1).

The make File

The way you tell make what files depend on other files, and what processes to
apply to which files, is to put this information into a file called the make file, in
the directory where you are developing the program.

Example: A program of four source files and a make file.

demo$ alias fex "f90 example.f90 -lFxview –o example"

demo$ fex

demo$ ls
makefile
commonblock
computepts.f90
pattern.f90
startupcore.f90
demo$ ■

Program Development 51

5

Assume both pattern.f90 and computepts.f90 do an include of
commonblock , and you wish to compile each .f90 file and link the three
relocatable files (plus a series of libraries) into a program called pattern .

The make file for this example is listed below.

The first line of this make file says:

• make pattern

• pattern depends on pattern.o, computepts.o , and startupcore.o

The second line is the command for making pattern .

The third line is a continuation of the second (because it starts with a tab).

There are four such paragraphs or entries in this make file. The structure of
these entries is:

• Dependencies — Each entry starts with a line that names the file to make, and
names all the files it depends on.

• Commands — Each entry has one or more subsequent lines that contain
Bourne shell commands, and that tell how to build the target file for this
entry. These subsequent lines must each be indented by a tab.

Using make

The make command can be invoked with no arguments, such as this.

The make utility looks for a file named makefile or Makefile in the current
directory, and takes its instructions from there.

demo$ cat makefile
pattern: pattern.o computepts.o startupcore.o

f90 pattern.o computepts.o startupcore.o –Fxview –o pattern
pattern.o: pattern.f90 commonblock

f90 –c pattern.f90
computepts.o: computepts.f90 commonblock

f90 –c computepts.f90
startupcore.o: startupcore.f90

f90 –c startupcore.f90
demo$ ■

demo$ make

 52 Fortran 90 User’s Guide

5

The make utility general actions are:

• From the make file, it gets all the target files it must make, and what files
they depend on. It also gets the commands used to make the target files.

• It gets the date and time changed for each file.

• If any target file is not up to date with the files it depends on, then that
target is rebuilt, using the commands from the make file for that target.

5.3 Tracking and Controlling Changes with SCCS
 SCCS is Source Code Control System. It provides a way to:

• Keep track of the evolution of a source file (change history)

• Prevent different programmers from changing the same source file at the
same time

• Keep track of the version number by providing version stamps

The basic three operations of SCCS are putting files under SCCS control,
checking out a file for editing, and checking in a file. This section shows you
how to use SCCS to do these things and provides a simple example, using the
previous program. It describes normal, basic SCCS, and introduces only three
SCCS commands: create , edit , and delget .

Putting Files under SCCS

Putting files under SCCS control involves making the SCCS directory, inserting
SCCS ID keywords into the files (optional), and creating the SCCS files.

Making the SCCS Directory

To begin, you must create the SCCS subdirectory in the directory in which your
program is being developed.

The ‘SCCS’ must be uppercase.

demo$ mkdir SCCS
demo$ ■

Program Development 53

5

Inserting SCCS ID Keywords

Some people put one or more SCCS ID keywords into each file, but that is
optional. These will later be filled in with a version number each time the file is
checked in with a get or delget SCCS command. There are three likely
places to put such strings:

• Comment lines
• Parameter statements
• Initialized data

The advantage of the last is that the version information appears in the
compiled object program, and can be printed using the what command.
Included header files containing only parameter and data definition statements
do not generate any initialized data, so the keywords for those files usually are
put in comments or in parameter statements. Finally, in the case of some files,
like ASCII data files or make files, the source is all there is, so the SCCS
information can go in comments, if anywhere.

Identify the make file with a make comment containing the keywords.

The source files startupcore.f90 and computepts.f90 and pattern.f90
can be identified to SCCS by initialized data of the form.

Creating SCCS Files

Example: Put files under control of SCCS with an SCCS create command.

%Z%%M% %I% %E%

CHARACTER (LEN=50) :: sccsid = "%Z%%M% %I% %E%\n"

demo$ sccs create makefile commonblock startupcore.f90 \
computepts.f90 pattern.f90

demo$ ■

 54 Fortran 90 User’s Guide

5

The make file looks like this after SCCS keyword expansion.

Checking Files Out and In

Out— Once your source code is under SCCS control, you use SCCS for two
main tasks: to check out a file so that you can edit it and to check in a file you are
done editing. A file is checked out using the SCCS edit command.

Example: Check out a file using SCCS.

In this example, SCCS makes a writable copy of computepts.f90 in the
current directory, and records your login name. Other users cannot check it out
while you have it checked out, but they can find who checked out which files.

In— Check in the file with the sccs delget command when you have
completed your current editing.

Example: Check in a file using SCCS.

This causes the SCCS system to do the following:

1. Make sure that you are the user who checked it out (compares login names).

2. Solicit a descriptive comment from the user on the changes.

3. Make a record of what was changed in this editing session.

4. Delete the writable copy of computepts.f90 from the current directory.

5. Replace it by a read-only copy with the SCCS keywords expanded.

@(#)makefile1.184/03/01
OBJ = pattern.o computepts.o startupcore.o
pattern: $(OBJ)

f90 $(OBJ) –Fxview –o pattern
pattern.o: pattern.f90 commonblock
computepts.o: computepts.f90 commonblock
startupcore.o: startupcore.f90

demo$ sccs edit computepts.f90
demo$■

demo$ sccs delget computepts.f90
demo$ ■

Program Development 55

5

The SCCS command delget is a composite of the two simpler SCCS
commands, delta and get . The delta command does the first three items in
the list above and the get command does the fourth and fifth.

 56 Fortran 90 User’s Guide

5

 57

Libraries 6

This chapter is organized into the following sections.

See ld (1) for more details.

6.1 Libraries in General
A library can be a collection of subprograms. Each member of this collection is
called a library element or module. A relocatable library is one whose elements
are relocatable (.o) files. These object modules are inserted into the executable
file by the linker during the compile/link sequence.

Some examples of static libraries on the system are:

• Fortran 90 library: libf90.a
• Math library: libm.a
• C library: libc.a

Libraries in General page 57

Static Libraries page 58

Dynamic Libraries page 61

Consistent Compile and Link page 65

Library Paths page 65

 58 Fortran 90 User’s Guide

6

Some examples of shared dynamic libraries on the system are:

• FORTRAN 77 library: libF77.so
• C library: libc.so

Load Map

To display a load map, pass the load map option to the linker by -Qoption .
This displays which libraries are linked and which routines are obtained from
which libraries during the creation of the executable module. This is a very
simple load map.

Example: -m for load map.

Advantages of Libraries

Relocatable libraries provide an easy way for commonly used subroutines to be
used by several programs. The programmer need only name the library when
linking the program, and those library modules that resolve references in the
program are linked—copied into the executable file. This has two advantages.

• Only the needed modules are loaded (at least, for static libraries).

• The programmer need not change the link command line as subroutine calls
are added and removed during program development.

6.2 Static Libraries
Static libraries are built from object files (.o files) using the program ar .

Disadvantages of Libraries

When the linker searches a library, it extracts elements whose entry points are
referenced in other parts of the program it is linking, such as subprogram or
entry names or names of COMMON blocks initialized in BLOCKDATA
subprograms. The nature of the elements and the nature of the search leads to
some disadvantages.

demo$ f90 -Qoption ld -m any.f90

Libraries 59

6

• The whole thing — For static libraries, when the linker extracts a library
element, it extracts the whole thing (not so for dynamic libraries). A library
element corresponds to the result of a compilation, so routines that are
compiled together are always linked together. This is a difference between
this operating system and some other systems, and it may affect whether
you chunk compilation files to many small files for your libraries.

• Order matters — In linking static libraries, order really matters. The linker
processes its input files in the order that they appear on the command line
(that is, left to right). When the linker decides whether or not a library
element is to be linked, its decision is based only on the relocatable modules
it has already processed.

You can use lorder and tsort to order static libraries.

Example: Order matters. If a Fortran 90 program is in two files, main.f90
and graf.f90 , and only the latter accesses the Xview library, it is an error
to reference that library before graf.f90 or graf.o :

Sample Creation of a Static Library

Base—source of four routines (for example on creating static library).

(Wrong) demo$ f90 main.f –lFxview graf.f90 –o myprog
(Right) demo$ f90 main.f graf.f90 –lFxview –o myprog

demo$ cat one.f
SUBROUTINE twice (a, r)
REAL a, r
r = a * 2.0
END
SUBROUTINE half (a, r)
REAL a, r
r = a / 2.0
END
SUBROUTINE thrice (a, r)
REAL a, r
r = a * 3.0
END
SUBROUTINE third (a, r)
REAL a, r
r = a / 3.0
END

demo$ ■

 60 Fortran 90 User’s Guide

6

Main program to use one of the routines (for creating static library).

• Split the file, using fsplit , so there is one subroutine per file.

• Compile each with -c so it will compile only, and leave the .o object files.

• Use ar to create static library faclib.a from the four object files.

Alternate: Specify the order using lorder and tsort .

• Compile the main, using the new static library.

• Use nm to list the name of each object in a.out built from static library.

demo$ cat teslib.f
READ(*,*) x
CALL twice(x, z)
WRITE(*,*) z
END

demo$ ■

demo$ fsplit one.f ← fsplit assumes fixed form. It may not work on all f90 source.
demo$ ■

demo$ f90 -c half.f
demo$ f90 -c third.f
demo$ f90 -c thrice.f
demo$ f90 -c twice.f
demo$ ■

Create the library. demo$ ar cr faclib.a half.o third.o thrice.o twice.o

demo$ ar cr faclib.a ’lorder half.third.o thrice.o twice.o | tsort’

demo$ f90 teslib.f90 faclib.a
demo$ ■

Note that twice is here.

Note that
half , third , and thrice
are not here (good).

demo$ demo$ nm a.out | grep twice
[260]| 77832| 72|FUNC |GLOB |0 |8 |twice_
demo$ nm a.out | grep half
demo$ nm a.out | grep third
demo$ nm a.out | grep thrice
demo$ ■

Libraries 61

6

• Run a.out

Sample Replacement in a Static Library

If you recompile an element of a static library (usually because you’ve changed
the source), replace it in its library by running ar again. A library need not be
specially flagged for the linker; the linker recognizes a library when it
encounters one.

Example: Recompile, replace. Give ar the r option; use cr only for creating.

6.3 Dynamic Libraries
A dynamic library has the following features.

• It is a collection of object modules such that each is already in executable file
format (the a.out format) but the collection has no main entry.

• The object modules are not bound into the executable file by the linker
during the compile/link sequence; such binding is deferred until runtime.

• If you change a module of a shared library, then whenever any application
using it starts to execute, it will get the changed version. The ability to
modify and improve libraries independent of the executables that use it can
be a significant advantage in maintaining programs.

If you have a a -pic option to use to generate position-independent code,
then from the generated dynamic library, a module can be used by many
executing programs without duplicating it in them all. In this release, f90 has
no -pic to generate position-independent code, so the library is not truly
shared. You still save disk space for storing the executable, and you can still get
library changes into the executable without rebinding the executable.

demo$ a.out
6
 12.0000
demo$ ■

demo$ f90 -c half.f
demo$ ar r faclib.a half.o
demo$ ■

 62 Fortran 90 User’s Guide

6

Performance Issues

The usual trade-off between space and time applies.

• Less space

In general, deferring the binding of the library module uses less disk space

• More time

It takes a little more CPU time to do the following:
• Load the library during runtime.
• Do the link editing operations.
• Execute the library position-independent code.

• Programs Vary

Because of these various performance issues, some programs are slower
if they use nonshared libraries, and some if they use shared libraries. You
might bind each way to tell whether one method is significantly better
for your program.

Binding Options

You can specify the binding option when you compile, that is, dynamic or static
libraries. These options are actually linker options, but they are recognized by
the compiler and passed on to the linker.

-d [y,n]: Allow or disallow dynamic libraries for the entire executable
• -dy : Yes—allow dynamically bound libraries (allow shared libraries).
• -dn : No—do not allow dynamically bound libraries (no shared libraries).

These apply to the whole executable. Use only once on the command line.
The default is y.

-B [dynamic ,static]: Bind as dynamic (or static) libraries listed later
This applies to any library listed later in the command.
The default is dynamic .

• –Bdynamic : Prefer dynamic binding (try for shared libraries).
• -Bstatic : Require static binding (no shared libraries).

Libraries 63

6

If you provide a library for your customers, then providing both a dynamic
and a static version allows the customers the flexibility of binding whichever
way is best for their application. For example, if the customer is doing some
benchmarks, the –dn option reduces one element of variability.

A Simple Dynamic Shared Library

You can build a shared library from the relocatable object (.o) files using the
ld command. Be careful to avoid any need for reentrant code, since this release
does not provide a way to guarantee that code is position independent.

Sample Create

Example: Create a dynamic shared library.

Start with the same files used for the static library example: half.f90 ,
third.f90 , thrice.f90 , twice.f90 .

Compile.

Example: Create a dynamic shared library.

Link, and specify the .so file, and the -h to get a version number.

The -G tells the linker to build a shared library.

Note that there is no “-z text ” because that would generate warnings. The
“-z text ” warns you if it finds anything other than position-independent
code, such as relocatable text. It does not warn you if it finds writable data.

Bind: Make the executable file a.out .

demo$ f90 -c *.f90
demo$ ■

demo$ ld -o libfac.so.1 -dy -G -h libfac.so.1 *.o
demo$ ■

demo$ f90 teslib.f90 libfac.so.1
demo$ ■

 64 Fortran 90 User’s Guide

6

Run.

Inspect the a.out file for use of shared libraries. The file command shows
that a.out is a dynamically linked executable — programs that use shared
libraries are completely link-edited during execution.

The ldd command shows that a.out uses some shared libraries, including
libfac.so.1 and libc (included by default by f90). It also shows exactly
which files on the system will be used for these libraries.

Your path may vary.

demo$ a.out
6

12.0000
demo$ ■

demo$ file a.out
a.out: ELF 32-bit MSB executable SPARC Version 1
dynamically linked, not stripped
demo$ ■

demo$ ldd a.out
 libfac.so.1 => ./libfac.so.1
 libF77.so.2 => /opt/SUNWspro/lib/libF90.so.2
 libc.so.1 => /usr/lib/libc.so.1
 libucb.so.1 => /usr/ucblib/libucb.so.1
 libresolv.so.1 => /usr/lib/libresolv.so.1
 libsocket.so.1 => /usr/lib/libsocket.so.1
 libnsl.so.1 => /usr/lib/libnsl.so.1
 libelf.so.1 => /usr/lib/libelf.so.1
 libdl.so.1 => /usr/lib/libdl.so.1
 libaio.so.1 => /usr/lib/libaio.so.1
 libintl.so.1 => /usr/lib/libintl.so.1
 libw.so.1 => /usr/lib/libw.so.1
demo$ ■

Libraries 65

6

6.4 Consistent Compile and Link
Be consistent with compiling and linking. Do not build libraries with
inconsistent modules. Inconsistent compilation and linkage is not supported.

• For compiling and linking as separate steps (separate commands), if you
compile any module with -g , then be sure to link with the same option.

Example. Compile sbr.f90 with -g and smain.f90 without it.

The above sequence is equivalent to the following commands.

• If you compile any module under a major release of the operating system,
then compile all modules of that program with the same major release.

6.5 Library Paths
The linker searches for libraries in several locations and it searches in certain
prescribed orders. You can make some changes to the order and locations.

Installation Directory

Some library locations depend on the installation directory. These locations are
described here in terms of a path called BasDir , defined as follows:

 demo$ f90 -c -g sbr.f90
 demo$ f90 -g sbr.o smain.f90 ← Pass the -g to the linker.

 demo$ f90 -c -g sbr.f90
 demo$ f90 -c smain.f90
 demo$ f90 -g sbr.o smain.o

Installation Location BasDir

Standard /opt/SUNWspro/lib/

Nonstandard, for example, / my/ dir / / my/ dir /

 66 Fortran 90 User’s Guide

6

Building Executables: ld Search order

During the build of the executable, ld searches for libraries in the following
locations, in order:

The linker also searches in any directories specified in LD_LIBRARY_PATH
or by the -L dir option.

Running Executables: ld Search order

During the run of the executable, ld searches for shared libraries in the
following locations, in order:

The linker also searches in directories specified in LD_LIBRARY_PATH.

Summary of Environment Variables for Paths
• LD_RUN_PATH: Value matters only when executable is created.
• LD_LIBRARY_PATH: Value matters when executable is created or run.

Path Comment

/ BasDir /lib/ Sun shared libraries here

/ BasDir /SC3.0.1/lib/ Sun libraries, shared or static, here

/opt/SUNWspro/lib/ Standard location for Sun libraries

/usr/ccs/lib/

/usr/lib/

Path Comment

/ BasDir /lib/ Built in by driver, unless -norunpath

/opt/SUNWspro/lib Built in by driver, unless -norunpath

Directories built in by -R or
LD_RUN_PATH when executable was
made

/usr/ccs/lib/

/usr/lib/

Libraries 67

6

Build Paths and Run Paths

When you run the executable file, the runtime linker locates the shared
libraries again. The linker searches in any directories specified in the
LD_LIBRARY_PATH environment variable, and that variable can change even
after the executable file has been created. Therefore it doesn’t matter where the
libraries were when the executable was created.

Finding Built-in Paths

Use dump to check which paths were built in when the executable was created.

Example: Find which directories were built in to a.out .

demo$dump -Lv a.out | grep RPATH

 68 Fortran 90 User’s Guide

6

 69

Debugging 7

This chapter is organized into the following sections.

7.1 Global Program Checking (-Xlist)
Purpose—Checking across routines helps find various kinds of bugs.

With -Xlist , f90 reports errors of alignment, agreement in number and type
for arguments, common blocks, parameters, plus many other kinds of errors
(details follow).

It also makes a listing and a cross reference table; combinations and variations
of these are available using suboptions. An example follows.

Example: Errors only—Use -XlistE to show errors only.

Global Program Checking (-Xlist) page 69

The dbx Debugger page 77

-XlistE

Form of output varies.

demo$ f90 -XlistE Repeat.f90
demo$ cat Repeat.lst
FILE "Repeat.f90"
...
demo$ ■

 70 Fortran 90 User’s Guide

7

Errors in General

Global program checking can do the following:

• Enforce type checking rules of Fortran 90 more stringently than usual,
especially between separately compiled routines.

• Enforce some portability restrictions needed to move programs between
different machines and/or operating systems.

• Detect legal constructions that are nevertheless wasteful or error-prone.

• Reveal other bugs and obscurities.

Details

More particularly, global cross checking reports problems such as:

• Interface problems
• Checking number and type of dummy and actual arguments
• Checking type of function values
• Checking possible conflicts of incorrect usage of data types in common

blocks of different subprograms

• Usage problems
• Function used as a subroutine or subroutine used as a function
• Declared but unused functions, subroutines, variables, and labels
• Referenced but not declared functions, subroutines, variables, and labels
• Usage of unset variables
• Unreachable statements
• Implicit type variables
• Inconsistency of the named common block lengths, names, and layouts

• Syntax problems—syntax errors found in a Fortran 90 program

• Portability problems—codes that do not conform to ANSI Fortran 90, if the
appropriate option is used

Debugging 71

7

Using Global Program Checking

To cross check the named source files, use -Xlist on the command line.

Example: Compile three files for global program checking.

In the above example, f90 does the following:
• Saves the output in the file any1.lst
• Compiles and links the program if there are no errors

Example: Compile all Fortran 90 files for global program checking.

Terminal Output

To display directly to the terminal, rename the output file to /dev/tty .

Example: Display to terminal.

See -Xlisto name, on page 76.

The Default Output Features

The simple -Xlist option (as shown in the example above) provides a
combination of features available for output. That is, with no other -Xlist
options on the f90 command line, the plain, simple -Xlist option provides
the following:

• The output file has the same name as the first file, with a .lst extension.
• The output content includes:

• A line-numbered source listing (Default)
• Error messages (embedded in listing) for inconsistencies across routines
• Cross reference table of the identifiers (Default)
• Pagination at 66 lines per page, 79 columns per line (Defaults)
• No call graph (Default)
• No expansion of include files (Default)

demo$ f90 -Xlist any1.f90 any2.f90 any3.f90

demo$ f90 -Xlist *.f90

demo$ f90 -Xlisto /dev/tty any1.f90

 72 Fortran 90 User’s Guide

7

Example: Using -Xlist —a program with inconsistencies between routines.

Repeat.f90

Form of output varies.

Compile with -Xlist . →
List the -Xlist output file. →

demo$ cat Repeat.f90
 PROGRAM repeat
 pn1 = REAL(LOC (rp1))
 CALL subr1 (pn1)
 CALL nwfrk (pn1)
 PRINT *, pn1
 END ! PROGRAM repeat

 SUBROUTINE subr1 (x)
 IF (x .GT. 1.0) THEN
 CALL subr1 (x * 0.5)
 END IF
 END

 SUBROUTINE nwfrk(ix)
 EXTERNAL fork
 INTEGER prnok, fork
 PRINT *, prnok (ix), fork ()
 END

 INTEGER FUNCTION prnok (x)
 prnok = INT (x) + LOC(x)
 END

 SUBROUTINE unreach_sub()
 CALL sleep(1)
 END

demo$ f90 -Xlist Repeat.f90
demo$ cat Repeat.lst

Debugging 73

7

Suboptions for Global Checking Across Routines

The standard global cross checking option is -Xlist (with no suboption).

This shows the listing, errors, and cross reference table. For variations from
this standard report, add one or more suboptions to the command line.

Suboption Syntax

Add suboptions according to the following rules:

• Append the suboption to -Xlist
• Put no space between the -Xlist and the suboption
• Put only one suboption per -Xlist

Combination Special and A La Carte Suboptions

Combine suboptions according to the following rules:

• The combination special: -Xlist (listing, errors, and cross reference table)
• The a la carte options are: -XlistE , -XlistL , and -XlistX .
• All other options are detail options, not a la carte, not combination special.
• Once you start ordering a la carte, the three parts of the combination special

are cancelled, and you get only what you specify.

Example: Each of these two commands does the same thing.

 demo$ f90 -XlistL -Xlist any.f90
 demo$ f90 -XlistL any.f90

 74 Fortran 90 User’s Guide

7

Combination special or a la carte suboptions (with no other suboptions):

Summary of -Xlist Suboptions

Table 7-1 -Xlist Combination Special or A La Carte Suboptions

Type/Amount of Output Option Comment Details

Errors, listing, cross reference table -Xlist No suboptions page 71

Errors -Xlist E By itself, does not show listing or cross reference table page 75

Errors and listing -Xlist L By itself, does not show cross reference table page 76

Errors and cross reference table -Xlist X By itself, does not show listing page 76

Table 7-2 -Xlist Suboptions Summary

Option Action Details

-Xlist (no suboption) Errors, listing, and cross reference table. page 73

-Xlist E Errors. page 75

-Xlist err Suppress all error messages in the verification report. page 75

-Xlist err [nnn] Suppress error nnn in the verification report. page 75

-Xlist I Include files. page 75

-Xlist L Listing (and errors). page 76

-Xlist l n Page length is in n lines. page 76

-Xlist o name Rename the -Xlist output report file. page 76

-Xlist war Suppress all warning messages in the report. page 76

-Xlist war [nnn] Suppress warning nnn in the report. page 76

-Xlist X Cross reference table (and errors). page 76

Debugging 75

7

Details of -Xlist Suboptions

-Xlisterr Suppress all error messages in the verification report.

-Xlisterr[nnn] Suppress error nnn in the verification report. This is useful if you want a cross
reference or a listing without the error messages. It is also useful if you do not
consider certain practices to be real errors. To suppress more than one error, use
this option repeatedly. Example: -Xlisterr338 suppresses error message 338.
If nnn is not specified, then suppress all error messages.

-XlistE Global cross check errors. Show cross routine errors. This suboption by itself
does not show a listing or a cross reference.

-XlistI Include files. List and cross check the include files.

If -XlistI is the only -Xlist option/suboption used, then you get the
standard -Xlist output of a line numbered listing, error messages, and a
cross reference table—but include files are shown or scanned, as appropriate.

• Listing

If the listing is not suppressed, then the include files are listed in place. Files
are listed as often as they are included. The following are all listed:
• Source files
• INCLUDE files

• Cross Reference Table

If the cross reference table is not suppressed, then the following are all
scanned while generating the cross reference table:
• Source files
• INCLUDE files

Default: No include files.

 76 Fortran 90 User’s Guide

7

-Xlistl n Page breaks. Set the page length for pagination to n lines. That is the letter ell for
length, not the digit one. For example, -Xlistl45 sets the page length to 45
lines. Default: 66.

No Page Breaks: The -Xlistl0 {that is a zero, not a letter oh} option shows
listings and cross reference with no page breaks (easier for on-screen viewing).

-XlistL Listing (and errors). Show cross check errors and listing. This suboption by itself
does not show a cross reference. Default: Show listing, cross reference.

-Xlisto name Rename the -Xlist output report file. The space between o and name is
required. Output is then to the name.lst file.

To display directly to the terminal: -Xlisto /dev/tty

-Xlistwar Suppress all warning messages in the report.

-Xlistwar[nnn] Suppress warning nnn in the report. If nnn is not specified, then all warning
messages will be suppressed from printing. To suppress more than one, but not
all warnings, use this option repeatedly. For example, -Xlistwar338
suppresses warning message 338.

-XlistX Cross reference table (and errors). Show cross checking errors and cross
reference. This suboption by itself does not show a listing.

The cross reference table shows information about each identifier:

• Is it an argument?
• Does it appear in a COMMON or EQUIVALENCE declaration?
• Is it set or used?

Example: Use -Xlistwar nnn to suppress two specific warnings.

-Xlistwar n

Suppress specific
warnings.

demo$ f90 -Xlistwar338 -Xlistwar348 -XlistE Repeat.f90
demo$ cat Repeat.lst
FILE "Repeat.f90"
demo$ ■

Debugging 77

7

7.2 The dbx Debugger
This section is organized as follows:

This section introduces some dbx features likely to be used with Fortran. Use it
as a quick start for debugging Fortran. Be sure to try the help feature.

Note – Before you use the Debugger, you must install the appropriate Tools
package—read Installing SunSoft Developer Products on Solaris for details.

With dbx you can display and modify variables, set breakpoints, trace calls,
and invoke procedures in the program being debugged without having to
recompile.

The Debugger program lets you make more effective use of dbx by replacing
the original, terminal-oriented interface with a window- and mouse-based
interface.

Sample Program for Debugging (example) page 78

A Sample dbx Session (example) page 79

Segmentation Fault—Finding the Line Number (example) page 81

Exception—Finding the Line Number (example) page 83

Trace of Calls (example) page 84

Pointer to a Scalar (example) page 85

Pointer to an Array (example) page 86

User-Defined Types (example) page 87

Pointer to User-Defined Type (example) page 89

Allocated Arrays (example) page 91

Print Arrays (example) page 92

Print Array Slices (example) page 93

Generic Functions (example) page 94

Miscellaneous Tips page 96

Main Features of the Debugger page 96

Help (example) page 97

 78 Fortran 90 User’s Guide

7

Sample Program for Debugging

The following program, with bug, and consisting of files a1.f90 , a2.f90 , and
a3.f90 , is used in several examples of debugging.

Example: Main for debugging.

Example: Function for debugging.

Example: Subroutine for debugging.

a1.f90 PROGRAM TryDbx
 INTEGER, PARAMETER :: n=2
 REAL, DIMENSION(n,n) :: twobytwo
 DATA ((twobytwo(k,j),k=1,n),j=1,n) / 4*-1 /
 CALL mkidentity(twobytwo, n)
 PRINT *, determinant(twobytwo)
END

a3.f90 REAL FUNCTION determinant (a)
 REAL a(2,2)
 determinant = a(1,1) * a(2,2) - a(1,2) / a(2,1)
END

a2.f90 SUBROUTINE mkidentity (array, m)
 REAL, DIMENSION(m,m) :: array
 DO i = 1, m

DO j = 1, m
 IF (i .eq. j) THEN

array(i,j) = 1.0
 ELSE

array(i,j) = 0.0
 END IF
END DO

 END DO
END

Debugging 79

7

A Sample dbx Session

The following examples use the sample program above.

• Compile—To use dbx or Debugger , compile and link with the -g flag.
You can do this in one step or two, as shown in the examples below.

Example Compile and link in one step, with -g .

Example: Compile and link in separate steps.

• Start dbx —To start dbx , type dbx and the name of your executable file.

Example: Start dbx on the executable named silly .

• Quit dbx —To quit dbx , enter the quit command.

Example: Quit dbx .

• Breakpoint—To set a breakpoint, at the dbx prompt; type “stop in subnam”,
where subnam names a subroutine or function, and subnam can be upper
case or lower case.

Example: A way to stop at the first executable statement in a main program.

 demo$ f90 -o silly -g a1.f90 a2.f90 a3.f90

 demo$ f90 -c -g a1.f90 a2.f90 a3.f90
 demo$ f90 -o silly a1.o a2.o a3.o

 demo$ dbx silly
 Reading symbolic information…
 (dbx) ■

 (dbx) quit {Skip this for now so you can do the next steps.}
 demo$ ■

 (dbx) stop in main
 (2) stop in main
 (dbx) ■

 80 Fortran 90 User’s Guide

7

• Run Program—To run a program from within dbx , enter the run command.

Example: Run a program from within dbx.

When the breakpoint is reached, dbx displays a message showing where it
stopped, in this case at line 5 of the a1.f90 file.

• Print—To print a value, enter the print command.

Example: Print the variable n. Note that dbx handles parameters.

Example: Print the matrix twobytwo (format may vary with release).

Example: Print the matrix array .

In the above example:
• The print fails because array is not defined here—only in mkidentity .
• The error message details may vary with the release, and translation.

 (dbx) run
 Running: silly
(process id 8786)
 stopped in main at line 5 in file "a1.f90"

5 CALL mkidentity(twobytwo, n)
 (dbx) ■

 (dbx) print n
 n = 2
 (dbx) ■

 (dbx) print twobytwo
 twobytwo =

(1,1) -1.0
(2,1) -1.0
(1,2) -1.0
(2,2) -1.0

 (dbx) ■

(dbx) print array
dbx: "array" is not defined in the current scope
dbx: see ‘help scope’ for details
(dbx) ■

Debugging 81

7

• Next Line—To advance execution to the next line, enter the next command.

Example: Advance execution to the next line.

Note that print twobytwo now displays the unit matrix.

The next command executes the current source line, then stops at the next
line. It counts subprogram calls as single statements.

Compare next with step . The step command executes the next source
line, or the next step into a subprogram, and so forth. In general, if the next
executable source statement is a subroutine or function call, then
• step sets a breakpoint at the first source statement of the subprogram.
• next sets the breakpoint at the first source statement after the call but still

in the calling program.

Segmentation Fault—Finding the Line Number

If a program gets a segmentation fault (SIGSEGV), it referenced a memory
address outside of the memory available to it.

Some Causes of SIGSEGV

The most frequent causes are the following:

• An array index being outside the declared range
• The name of an array index is misspelled
• The calling routine has a REAL argument; called routine has it as INTEGER
• An array index is miscalculated
• The calling routine calls with fewer arguments than required
• A pointer is used before it is defined

(dbx) next
stopped in main at line 6 in file "a1.f90"
 6 PRINT *, determinant(twobytwo)
(dbx) print twobytwo
twobytwo =

(1,1) 1.0
(2,1) 0.0
(1,2) 0.0
(2,2) 1.0

(dbx) quit
demo$ ■

 82 Fortran 90 User’s Guide

7

You can locate the offending source line using -Xlist or dbx .

• Recompile with the -Xlist option to get global program checking
• Use dbx to find the source code line where a segmentation fault occurred

Example: Program to generate a segmentation fault.

Example: Use dbx to locate a segmentation fault.

demo 4% cat WhereSEGV.f90
INTEGER a(5)
j = 2000000
DO i = 1,5

a(j) = (i * 10)
END DO
PRINT *, a
END

demo 5% ■

demo 5% f90 -g WhereSEGV.f90
demo 6% a.ou t
Segmentation fault (core dumped)
demo 7% dbx a.out
Reading symbolic information for a.out

... other messages ...
(dbx) run
Running: a.out
(process id 8813)
signal SEGV (no mapping at the fault address) in main at line 4

in file "WhereSEGV.f90"
 4 a(j) = (i * 10)
(dbx) quit
demo 8% ■

Debugging 83

7

Exception—Finding the Line Number

Example: Find where an exception occurred.

WhereExcept.f90

You can find the source code line
number where a floating-point
exception occurred by using the
ieee_handler routine with
either dbx or Debugger .

Note the “catch FPE ”
dbx command →

EXTERNAL myhandler ! Main
INTEGER ieeer, ieee_handler, myhandler
REAL :: r=14.2, s=0.0
ieeer = ieee_handler('set', 'all', myhandler)
PRINT *, r/s
END
INTEGER FUNCTION myhandler(sig, code, context) ! Handler

!
INTEGER sig, code, context(5)
CALL abort()
END

demo$ f90 -g WhereExcept.f90
demo$ dbx a.out
Reading symbolic information for a.out
 ...
(dbx) catch FPE
(dbx) run
Running: a.out
signal FPE (floating point divide by zero)
 in main at line 5 in file "WhereExcept.f"
 5 PRINT *, r/s
(dbx) ■

 84 Fortran 90 User’s Guide

7

Trace of Calls

Sometimes a program stops with a core dump, and you need to know the
sequence of calls that brought it there (a stack trace).

Example: Show the sequence of calls, starting at where the execution stopped.

The where command shows where in the program flow execution stopped (how
execution reached this point), that is, a stack trace of the called routines. This can
be helpful, since you no longer get an automatic traceback, as bemoaned in the
ode below.

 Ode To Traceback

 O blinding core! File of death!
 Alone like Abel's brother, Seth.
 The demise of process I cannot face
 Without the aid of stackish trace.
 To see what by you must needs be done,
 Please see Example Twenty-One.1

 Mateo Burtch, 1992

1. Since trace be dead, or just not there, try dbx ’s better where .
Seek not example twenty one, as it was cited just for fun.

ShowTrace.f90 is a program
contrived to get a core dump a few
levels deep in the call sequence—to
show a stack trace.

Execution stopped, line 23 →

calcb called from calc , line 9 →
calc called from main , line 3 →
Note reverse order: main called
calc, calc called calcb .

demo$ f90 -g ShowTrace.f90
demo$ a.out
Segmentation Fault (core dumped)
demo$ dbx a.out
Reading symbolic information for a.out
...
(dbx) run
(process id 8939)
Running: a.out
(process id 1089)
signal SEGV (no mapping at the fault address) in calcb

at line 23 in file "ShowTrace.f"
 23 v(j) = (i * 10)
(dbx) where
=>[1] calcb(v = ARRAY , m = 2), line 23 in "ShowTrace.f90"
 [2] calc(a = ARRAY , m = 2, d = 0), line 9 in "ShowTrace.f90"
 [3] main(), line 3 in "ShowTrace.f90"
(dbx) ■

Debugging 85

7

Pointer to a Scalar

Example: Pointer to a scalar, in dbx .

PtrScal.f90

demo% f90 -g PtrScal.f90
demo% dbx a.out
(dbx) list 1,99
 1 PROGRAM PtrScalar
 2 REAL, POINTER :: p
 3 REAL, TARGET :: r
 4 p => r
 5 r = 2.3
 6 PRINT *, p
 7 p = 3.2
 8 PRINT *, r
 9 END
(dbx) stop at 8
(2) stop at "PtrScal.f90":8
(dbx) run
Running: a.out
(process id 12367)
 2.29999995
stopped in main at line 8 in file "PtrScal.f90"
 8 PRINT *, r
(dbx) whatis p
real*4 p ! f90 pointer
(dbx) whatis r
real*4 r
(dbx) print p
p = 3.2
(dbx) print r
r = 3.2
(dbx) quit
demo$ ■

 86 Fortran 90 User’s Guide

7

Pointer to an Array

Example: Pointer to an array, in dbx .

PtrArray.f90

demo% f90 -g PtrArray.f90
demo% dbx a.out
(dbx) list 1,99
 1 PROGRAM PtrArray
 2 INTEGER, TARGET :: a(5,5)
 3 INTEGER, POINTER :: corners(:,:)
 4 DO i = 1,5
 5 a(i,:) = i
 6 END DO
 7 corners => a(1:5:4, 1:5:4)
 8 PRINT *, corners
 9 END
(dbx) stop at 8
(2) stop at "PtrArray.f90":8
(dbx) run
Running: a.out
(process id 12397)
stopped in main at line 8 in file "PtrArray.f90"
 8 PRINT *, corners
(dbx) whatis a
integer*4 a(1:5,1:5)
(dbx) whatis corners
integer*4 , corners(1:2,1:2) ! f90 pointer
(dbx) print corners
corners =
 (1,1) 1
 (2,1) 5
 (1,2) 1
 (2,2) 5
(dbx) quit
demo$ ■

Debugging 87

7

User-Defined Types

Example: Structures—user defined types, in dbx .

DebStruc.f90

demo% f90 -g DebStruc.f90
demo% dbx debstr
(dbx) list 1,99
 1 PROGRAM Struct ! Debug a Structure
 2 TYPE product
 3 INTEGER id
 4 CHARACTER*16 name
 5 CHARACTER*8 model
 6 REAL cost
 7 REAL price
 8 END TYPE product
 9
 10 TYPE(product) :: prod1
 11
 12 prod1%id = 82
 13 prod1%name = "Schlepper"
 14 prod1%model = "XL"
 15 prod1%cost = 24.0
 16 prod1%price = 104.0
 17 WRITE (*, *) prod1%name
 18 END
(dbx) stop at 17
(2) stop at "Struct.f90":17
(dbx) run
Running: a.out
(process id 12326)
stopped in main at line 17 in file "Struct.f90"
 17 WRITE (*, *) prod1%name
(dbx) whatis prod1
product prod1
(dbx) whatis -t product
type product
 integer*4 id
 character*16 name
 character*8 model
 real*4 cost
 real*4 price
end type product
(dbx) ■

 88 Fortran 90 User’s Guide

7

Example: Structures—user-defined types, in dbx .

(dbx) print prod1
prod1 = (
 id = 82
 name = 'Schlepper'
 model = 'XL'
 cost = 24.0
 price = 104.0
)
(dbx) quit
(dbx) ■

Debugging 89

7

Pointer to User-Defined Type

Example: Structures—user defined types, and pointers, in dbx .

Example: Structures—set a breakpoint, and run under dbx .

DebStruc.f90

Declare a user-defined type.

Declare variables prod1 and
prod2 to be of that type and
targets.

Declare variables curr and prior
as pointers to the type.

Make curr point to prod1.
Make prior point to prod1.

Initialize prior.

Set curr to prior.
Print name from curr and prior.

demo% f90 -o debstr -g DebStruc.f90
demo% dbx debstr
(dbx) stop in main
(2) stop in main
(dbx) list 1,99
 1 PROGRAM DebStruPtr ! Debug structures & pointers
 2 TYPE product
 3 INTEGER id
 4 CHARACTER*16 name
 5 CHARACTER*8 model
 6 REAL cost
 7 REAL price
 8 END TYPE product
 9
 10 TYPE(product), TARGET :: prod1, prod2
 11 TYPE(product), POINTER :: curr, prior
 12
 13 curr => prod2
 14 prior => prod1
 15 prior%id = 82
 16 prior%name = "Schlepper"
 17 prior%model = "XL"
 18 prior%cost = 24.0
 19 prior%price = 104.0
 20 curr = prior
 21 WRITE (*, *) curr%name, " ", prior%name
 22 END PROGRAM DebStruPtr
(dbx) ■

The exact layout and messages
may vary with each release.

(dbx) stop at 21
(1) stop at "DebStruc.f90":21
(dbx) run
Running: debstr
(process id 10972)
stopped in main at line 21 in file "DebStruc.f90"
 21 WRITE (*, *) curr%name, " ", prior%name
(dbx) ■

 90 Fortran 90 User’s Guide

7

Example: Structures—print an item of user-defined type.

Above, dbx displays all fields of the user-defined type, including field names.

Example: Structures—inquire about an item of user-defined type.

Example: Structures—print a pointer, then quit dbx .

(dbx) print prod1
 prod1 = (

id = 82
name = "Schlepper "
model = "XL "
cost = 24.0
price = 104.0

)
(dbx) ■

Ask about the variable.

Ask about the type (-t).

(dbx) whatis prod1
product prod1
(dbx) whatis -t product
type product
 integer*4 id
 character*16 name
 character*8 model
 real cost
 real price
end type product
(dbx) ■

dbx displays the contents of a
pointer, which is an address. This
address can be different with
every run.

(dbx) print prior
prior = (
 id = 82
 name = ’Schlepper’
 model = ’XL’
 cost = 24.0
 price = 104.0
)
(dbx) quit
demo$ ■

Debugging 91

7

Allocated Arrays

Example: Allocated arrays in dbx .

The exact layout and messages
may vary with each release.

Alloc.f90

Unknown size is at line 6 →

Known size is at line 9 →

buffer(1000) holds1000 →

demo% f90 -g Alloc.f90
demo% dbx a.out
(dbx) list 1,99
 1 PROGRAM TestAllocate
 2 INTEGER n, status
 3 INTEGER, ALLOCATABLE :: buffer(:)
 4 PRINT *, 'Size?'
 5 READ *, n
 6 ALLOCATE(buffer(n), STAT=status)
 7 IF (status /= 0) STOP 'cannot allocate buffer'
 8 buffer(n) = n
 9 PRINT *, buffer(n)
 10 DEALLOCATE(buffer, STAT=status)
 11 END
(dbx) stop at 6
(2) stop at "alloc.f90":6
(dbx) stop at 9
(3) stop at "alloc.f90":9
(dbx) run
Running: a.out
(process id 10749)
 Size?
1000
stopped in main at line 6 in file "alloc.f90"
 6 ALLOCATE(buffer(n), STAT=status)
(dbx) whatis buffer
integer*4 , allocatable::buffer(:)
(dbx) next
continuing
stopped in main at line 7 in file "alloc.f90"
 7 IF (status /= 0) STOP 'cannot allocate buffer'
(dbx) whatis buffer
integer*4 buffer(1:1000)
(dbx) cont
stopped in main at line 9 in file "alloc.f90"
 9 PRINT *, buffer(n)
(dbx) print n
n = 1000
(dbx) print buffer(n)
buffer(n) = 1000
(dbx) ■

 92 Fortran 90 User’s Guide

7

Print Arrays

Example: dbx recognizes arrays. It can print arrays.

Arraysdbx.f90

demo$ dbx a.out
(dbx) list 1,25
 1 DIMENSION iarr(4,4)
 2 DO i = 1,4
 3 DO j = 1,4
 4 iarr(i,j) = (i*10) + j
 5 END DO
 6 END DO
 7 END
(dbx) stop at 7
(1) stop at "Arraysdbx.f90":7
(dbx) run
Running: a.out
stopped in main at line 7 in file "Arraysdbx.f90"
 7 END
(dbx) print IARR
iarr =

(1,1) 11
(2,1) 21
(3,1) 31
(4,1) 41
(1,2) 12
(2,2) 22
(3,2) 32
(4,2) 42
(1,3) 13
(2,3) 23
(3,3) 33
(4,3) 43
(1,4) 14
(2,4) 24
(3,4) 34
(4,4) 44

(dbx) print IARR(2,3)
iarr(2, 3) = 23 ← order of user-specified subscripts ok

(dbx) quit
demo$ ■

Debugging 93

7

Print Array Slices

This section shows one way of printing portions of large arrays.

Example: dbx prints array slices if you specify which rows and columns.

Example: Print row 3.

Example: Print column 4.

ShoSli.f90 demo$ f90 -g ShoSli.f90
demo$ dbx a.out
(dbx) list 1,12

1 INTEGER*4 a(3,4), col, row
2 DO row = 1,3
3 DO col = 1,4
4 a(row,col) = (row*10) + col
5 END DO
6 END DO
7 DO row = 1, 3
8 write(*,'(4I3)') (A(row,col),col=1,4)
9 END DO
10 END

(dbx) stop at 7
(1) stop at "ShoSli.f90":7
(dbx) run
Running: a.out
stopped in main at line 7 in file "ShoSli.f90"

7 DO row = 1, 3
(dbx) ■

(dbx) print a(3:3,1:4)
a(3:3, 1:4) =
 (3,1) 31
 (3,2) 32
 (3,3) 33
 (3,4) 34
(dbx) ■

(dbx) print a(1:3,4:4)
a(3:3, 1:4) =
 (1,4) 14
 (2,4) 24
 (3,4) 34
(dbx) ■

 94 Fortran 90 User’s Guide

7

Generic Functions

Example: Generic function, cube root.

Generic.f90
(dbx) list 1,99
 1 MODULE cr
 2 INTERFACE cube_root
 3 FUNCTION s_cube_root(x)
 4 REAL :: s_cube_root
 5 REAL, INTENT(IN) :: x
 6 END FUNCTION s_cube_root
 7 FUNCTION d_cube_root(x)
 8 DOUBLE PRECISION :: d_cube_root
 9 DOUBLE PRECISION, INTENT(IN) :: x
 10 END FUNCTION d_cube_root
 11 END INTERFACE
 12 END MODULE cr
 13 FUNCTION s_cube_root(x)
 14 REAL :: s_cube_root
 15 REAL, INTENT(IN) :: x
 16 s_cube_root = x ** (1.0/3.0)
 17 END FUNCTION s_cube_root
 18 FUNCTION d_cube_root(x)
 19 DOUBLE PRECISION :: d_cube_root
 20 DOUBLE PRECISION, INTENT(IN) :: x
 21 d_cube_root = x ** (1.0d0/3.0d0)
 22 END FUNCTION d_cube_root
 23 USE cr
 24 REAL :: x, cx
 25 DOUBLE PRECISION :: y, cy
 26 WRITE(*,"('Enter a SP number: ')")
 27 READ (*,*) x
 28 cx = cube_root(x)
 29 y = x
 30 cy = cube_root(y)
 31 WRITE(*,'("Single: ",F10.4, ", ", F10.4)') x, cx
 32 WRITE(*,'("Double: ",F12.6, ", ", F12.6)') y, cy
 33 WRITE(*,"('Enter a DP number: ')")
 34 READ (*,*) y
 35 cy = cube_root(y)
 36 x = y
 37 cx = cube_root(x)
 38 WRITE(*,'("Single: ",F10.4, ", ", F10.4)') x, cx
 39 WRITE(*,'("Double: ",F12.6, ", ", F12.6)') y, cy
 40 END

Debugging 95

7

Example: dbx with a generic function, cube root.

If asked “What is cube_root ?”,
dbx tells you there are two,
and asks you to select one.

If asked for cube_root(8)
dbx tells you there are two,
and asks you to select one.

If told to stop in cube_root ,
dbx tells you there are two,
and asks you to select one.

From inside s_cube_root ,
show current value of x .

(dbx) stop at 26
(2) stop at "Generic.f90":26
(dbx) run
Running: Generic
(process id 14633)
stopped in main at line 26 in file "Generic.f90"
 26 WRITE(*,"(’Enter a SP number : ’)")
(dbx) whatis cube_root
More than one identifier ’cube_root.’
Select one of the following names:
 1) ‘Generic.f90‘cube_root s_cube_root ! real*4 s_cube_root
 2) ‘Generic.f90‘cube_root s_cube_root ! real*8 d_cube_root
> 1
 real*4 function cube_root (x)
 (dummy argument) real*4 x
(dbx) print cube_root(8.0)
More than one identifier ’cube_root.’
Select one of the following names:
 1) ‘Generic.f90‘cube_root ! real*4 s_cube_root
 2) ‘Generic.f90‘cube_root ! real*8 d_cube_root
> 1
cube_root(8) = 2.0
(dbx) stop in cube_root
More than one identifier ’cube_root.’
Select one of the following names:
 1) ‘Generic.f90‘cube_root ! real*4 s_cube_root
 2) ‘Generic.f90‘cube_root ! real*8 d_cube_root
> 1
(3) stop in cube_root
(dbx) cont
continuing
Enter a SP number:
8
stopped in cube_root at line 16 in file "Generic.f90"
 16 s_cube_root = x ** (1.0/3.0)
(dbx) print x
x = 8.0
(dbx) ■

 96 Fortran 90 User’s Guide

7

Miscellaneous Tips

The following tips and background concepts can help.

Current Procedure and File

During a debug session, the Debugger defines a procedure and a source file as
current. Requests to set breakpoints and to print or set variables are interpreted
relative to the current function and file. Thus, “stop at 5 ” sets one of three
different breakpoints, depending on whether the current file is a1.f90,
a2.f90 , or a3.f90 .

Uppercase Letters

In general, if your program has uppercase letters in any identifiers, then the
Debugger recognizes them. You do not need to give it any specific case
sensitive/insensitive commands, as in some earlier versions.

In fact, for f90 1.0, f90 and dbx must both be in the case insensitive mode;
that is, do not set “dbxenv case sensitive ”.

Note – Names of files or directories are always case sensitive in both Debugger
and dbx . This is true even if you have set the “dbxenv case insensitive ”
environment attribute.

Main Features of the Debugger

Be sure to read Debugging a Program for the following:

• The full range of features in the Debugger
• The window- and mouse-based interface

Overview of dbx Features Useful for Fortran 90

The Debugger provides event management, process control, and data
inspection. It allows you to watch what is happening during program
execution.

Debugging 97

7

With dbx , you can do such things as the following:

• Set watchpoints to stop or trace if a specified item changes
• Collect data for the performance-tuning Analyzer
• Graphically monitor variables, structures, and arrays—Data Inspector
• Set breakpoints (set places to halt in the program) at lines or in functions
• Show values—once halted, show or modify variables, arrays, structures, …
• Step through program, one source line at a time (or one assembly line)
• Trace program flow (show sequence of calls taken)
• Invoke procedures in the program being debugged
• Step over or into function calls; step up and out of a function call
• Run, stop, and continue execution (at the next line or at some other line)
• dbx -safe I/O in the command window—Program Input/Output Window
• Save and then replay all or part of a debugging run
• Stack—Examine the call stack; move up and down the call stack
• Program scripts by embedded Korn shell
• Follow programs as they fork (2) and exec (2)

Help

At the Debugger prompt, to get:

• All commands—a list of commands, grouped by action, type help
• Details of one command—a command explanation, type help cmdname
• Changes—a list of the new and changed features, type help changes
• FAQ—answers to frequently asked questions, type help FAQ

Example: Command Summary (output varies with release).

(dbx) help
Command Summary

Execution and Tracing
 cancel catch clear cont delete fix
 fixed handler ignore intercept next pop
 replay rerun restore run save status
 step stop trace unintercept when whocatches
Displaying and Naming Data
 assign call demangle dis display down dump
 examine exists frame hide inspect print undisplay
 unhide up whatis where whereami whereis which
<many commands omitted>

Solaris 2.x

Solaris 2.x

 98 Fortran 90 User’s Guide

7

Example: “help cmdnam”—details for the where command.

(dbx) help where
where # Print a procedure traceback
where <num> # Print the <num> top frames in the traceback
where -f <num> # Start traceback from frame <num>
where -h # Include hidden frames
where -q # Quick traceback (only function names)
where -v # Verbose traceback (include function args and line
info)

Any of the above forms may be followed by a thread or LWP ID to obtain the
traceback for the specified entity.
(dbx) ■

 99

Floating Point 8

This chapter is organized into the following sections.

8.1 Summary
This chapter introduces some floating-point issues. It focuses on IEEE floating
point, and provides some reasons for it, some definitions, and some examples
of how to use it. It lets you use IEEE floating point with some understanding.
It is more tutorial than the other chapters, and deeper. This chapter is intended
for scientists and engineers who use floating-point arithmetic in their work,
but are not necessarily numerical analysts.

Read the Numerical Computation Guide, where you will find more complete
explanations, examples, and details. You might also want to read What Every
Computer Scientist Should Know About Floating-point Arithmetic,” by David

Summary page 99

IEEE Solutions page 101

The General Problems page 100

IEEE Exceptions page 102

IEEE Routines page 103

Debugging IEEE Exceptions page 113

Guidelines page 113

Miscellaneous Examples page 114

 100 Fortran 90 User’s Guide

8

Goldberg, which is in the on-line READMEs directory. It is a PostScript file and
can be printed by lpr on any PostScript-compatible printer that has Palatino
font. It can be viewed on-line by pageview .

8.2 The General Problems
How can IEEE arithmetic help solve real problems? IEEE 754 standard floating-
point arithmetic offers the user greater control over computation than is
possible in any other type of floating point. In scientific research, there are
many ways for errors to creep in.

• The model may be wrong.
• The algorithm may be numerically unstable (solving equations by inverting

ATA for example).
• The data may be ill-conditioned.
• The computer may be doing something astonishing, or at least unexpected.

It is nearly impossible to separate these error sources. Using library packages
which have been approved by the numerical analysis community reduces the
chance of there being a code error. Using good algorithms is another must.
Using good computer arithmetic is the next obvious step.

The IEEE standard represents the work of many of the best arithmetic
specialists in the world today. It was influenced by the mistakes of the past. It
is, by construction, better than the arithmetic employed in the S/360 family, the
VAX family, the CDC1, CRAY, and UNIVAC2 families (to name but a few). This
is not because these vendors are not clever, but because the IEEE pundits came
later and were able to evaluate the choices of the past, and their consequences.
Does IEEE arithmetic solve all problems? No. But in general, the IEEE Standard
makes it easier to write better numerical computation programs.

1. CDC is a registered trademark of Control Data Corporation.

2. UNIVAC is a registered trademark of UNISYS Corporation.

Floating Point 101

8

8.3 IEEE Solutions
IEEE arithmetic is a relatively new way of dealing with arithmetic operations
where the result yields such problems as invalid, division by zero, overflow,
underflow, or inexact. The big differences are in rounding, handling numbers
near zero, and handling numbers near the machine maximum.

For rounding, IEEE arithmetic defaults to doing the intuitive thing, and closely
corresponds with old arithmetic. IEEE offers choices, which the expert can use
to good effect, while old arithmetic did it just one way.

What happens when we multiply two very large numbers with the same sign?
Large numbers of different signs? Divide by zero? Divide zero by zero? In old
arithmetic, all these cases are the same. The program aborts on the spot; or in
some very old machines, the computation proceeds, but with garbage.IEEE
provides choices. The default solution is to produce the following.

Above, +Inf , -Inf , and NaN are just introduced intuitively. More later.

Also an exception of one of the following kinds is raised.

Invalid — Examples that yield invalid are 0.0/0.0, sqrt(-1.0), log(-37.8), …

Division by zero — Examples that yield division by zero are 9.9/0.0, 1.0/0.0, …

Overflow — Example with overflow: MAXDOUBLE+0.0000000000001e308

Underflow — Example that yields underflow: MINDOUBLE * MINDOUBLE

Inexact — Examples that yield inexact are 2.0 / 3.0, log(1.1), read in 0.1, …
 (no exact representation in binary for the precision involved)

There are various reasons to care about how all this works.

• If you don’t understand what you are using, you may not like the results.

• Poor arithmetic can produce poor results. This cannot easily be
distinguished from other causes of poor results.

• Switching everything to double precision is no panacea.

big*big = +Inf
big*(-)big = -Inf
num/0.0 = +Inf ← Where num > 0.0
num/0.0 = -Inf ← Where num < 0.0
0.0/0.0 = NaN ← Not a Number

 102 Fortran 90 User’s Guide

8

8.4 IEEE Exceptions
IEEE exception handling is the default on a SPARC processor. However, there
is a difference between detecting a floating-point exception, and generating a
signal for a floating-point exception (SIGFPE).

Detecting a Floating-point Exception

In accordance with the IEEE standard, two things happen when a floating-
point exception occurs in the course of an operation.

• The handler returns a default result. For 0/0, return NaN as the result.
• A flag is set that an exception is raised. For 0/0, set “invalid operation” to 1.

Generating a Signal for a Floating-point Exception

The default on SPARC hardware systems is that they do not generate a signal
for a floating-point exception. The assumption is that signals degrade
performance, and that most users don’t care about most exceptions.

To generate a signal for a floating-point exception, you establish a signal
handler. You use a predefined handler or write your own. See “Exception
Handlers and ieee_handler()” later in this chapter for details.

Default Signal Handlers

By default, f90 sets up some signal handlers, mostly for dealing with such
things as a floating-point exception, interrupt, bus error, segmentation
violation, or illegal instruction.

Although you would not generally want to turn off this default behavior, it is
possible to do so by setting the global C variable f77_no_handlers to 1.

Example: Get no default signal handlers (set f77_no_handlers to 1.)

1. Create the following C program.

demo$ cat NoHandlers.c
int f90_no_handlers=1;

demo$

Floating Point 103

8

2. Compile it and save the .o file.

3. Link the corresponding .o file into your executable file.

Otherwise (by default) it is 0. The effect is felt just before execution is
transferred to the user’s program so it does not make sense to set/unset it in
the user’s program.

Note – This variable is in the name space of the user’s program, so do not use
f90_no_handlers as the name of a variable anywhere else other than in the
above C program.

8.5 IEEE Routines
Many vendors support the IEEE standard. The SPARC processors conform to
the IEEE standard in a combination of hardware and software support for
different aspects.

The older Sun-4 uses the Weitek 1164/5, and the Sun-4/110 has that as an
option.

The newer Sun-4 and the SPARCsystem series both use floating-point units
with hardware square root. This is accessed if you compile with the -cg89
option.

The newest SPARCsystem series uses new floating-point units, including
SuperSPARC, with hardware integer multiply and divide instructions. These
are accessed if you compile with the -cg92 option.

The utility fpversion tells which floating-point hardware is installed. This
utility runs on all Sun architectures. See fpversion (1), and read the Numerical
Computation Guide for details. This replaces the older utility fpuversion4 .

demo$ cc -c -o NoHand NoHandlers.c
demo$

demo$ f90 NoHand.o Any.f90
demo$

 104 Fortran 90 User’s Guide

8

The the following interfaces help people use all the facets of IEEE arithmetic.
These are mostly in the math library, in the libm.a and libm.il files, and in
several .h files.

• ieee_flags (3m)

Control rounding direction. Control rounding precision. Query
exception status. Clear exception status.

• ieee_handler (3m)

Establish exception handler. Remove exception handler.

• ieee_functions (3m)

List name and purpose of each IEEE function.

• ieee_values (3m)

A list of functions that return special values.

• Other libm functions:
• ieee_retrospective
• nonstandard_arithmetic
• standard_arithmetic

Flags and ieee_flags()

The ieee_flags function is part of the libm shipped with the operating
system. It allows the programmer to do the following.

• Control rounding direction and rounding precision
• Check the status of the exception flags
• Clear exception status flags

The ieee_flags function can be used to query and clear exception status
flags. The general form of a call to ieee_flags is as follows.

• Each of the four arguments is a string.
• Input: action , mode, and in
• Output: out and i
• ieee_flags is an integer-valued function. Useful information is returned

in i. Refer to the man page for ieee_flags (3m) for complete details.

i = ieee_flags (action, mode, in, out)

Floating Point 105

8

Possible parameter values are shown below.

The meanings of the possible values for in and out depend on the action and
mode they are used with. These are summarized in the following table.

Example: To determine what is the highest priority exception that has a flag
raised, pass the input argument in as the null string.

Example: To determine if the overflow exception flag is raised, set the input
argument in to overflow . On return, if out equals overflow , then the
overflow exception flag is raised; otherwise it is not raised.

Example: Clear the invalid exception.

Example: Clear all exceptions.

action: get, set, clear, clearall
mode: direction, precision, exception
in,out: nearest, tozero, negative, positive,

extended, double, single,
inexact, division, underflow, overflow, invalid,
all, common

Table 8-1 ieee_flags Argument Meanings

Value of in and out Refers to

nearest, tozero, negative, positive Rounding direction

extended, double, single Rounding precision

inexact, division, underflow, overflow,
invalid

Exceptions

all All 5 exceptions

common Common exceptions:
 invalid, division, overflow

ieeer = ieee_flags(’get’, ’exception’, ’’, out)
PRINT *, out, ’ flag raised’

ieeer = ieee_flags(’get’, ’exception’, ’overflow’, out)
IF (out.eq. ’overflow’) PRINT *,’overflow flag raised’

ieeer = ieee_flags(’clear’, ’exception’, ’invalid’, out)

ieeer = ieee_flags(’clear’, ’exception’, ’all’, out)

 106 Fortran 90 User’s Guide

8

Example: Set rounding direction to zero.

Example: Set rounding precision to double .

Turn Off All Warning Messages with ieee_flags

Use this only if you are certain you don’t want to know about the unrequited
exceptions. To do this, clear all accrued exceptions by putting a call to
ieee_flags() just before your program exits.

Example: Clear all accrued exceptions with ieee_flags() .

Calls of this form are used in the next two examples.

Values and ieee_values()

The ieee_values (3m) file is a collection of functions. Each function returns a
special IEEE value. The Fortran names for these functions are listed in
libm_double (3f) and libm_single (3f). You can use special IEEE entities,
such as infinity or minimum normal, in a user program. See also the man page
ieee_values (3m).

Example: A convergence test might be like this.

ieeer = ieee_flags(’set’, ’direction’, ’tozero’, out)

ieeer = ieee_flags(’set’, ’precision’, ’double’, out)

i = ieee_flags(’clear’, 'exception', ’all’, out)

IF (delta .LE. r_min_normal()) RETURN

Floating Point 107

8

The IEEE values available are listed in the table below.

For the two NaN functions, you can assign and/or print out the values, but
comparisons using either of them always yield false. To determine whether
some value is a NaN, use the function ir_isnan(r) or id_isnan(d) ; see
libm_double (3f), libm_single (3f), and ieee_functions (3m).

Exception Handlers and ieee_handler()

A floating-point user may need to know the following about IEEE exceptions.

• What happens when an exception occurs?
• How to use ieee_handler() to establish a function as a signal handler
• How to write a function that can be used as a signal handler
• How to locate the exception (Where did it occur?)

To get information about an exception:

• Generate a signal for a floating-point exception. The official UNIX name for
signal is floating-point exception is SIGFPE.

• To generate a SIGFPE, establish a signal handler. The default behavior on
SPARC hardware systems is “do not generate a SIGFPE.”

Establishing a Signal Handler Function with ieee_handler()

To establish a signal handler, pass the following to ieee_handler() :

• Name of the function
• Exception to watch for
• Action to take

Table 8-2 Functions for Using IEEE Values

IEEE Value Double Precision Single Precision

infinity d_infinity() r_infinity()

quiet NaN d_quiet_nan() r_quiet_nan()

signaling NaN d_signaling_nan() r_signaling_nan()

min normal d_min_normal() r_min_normal()

min subnormal d_min_subnormal() r_min_subnormal()

max subnormal d_max_subnormal() r_max_subnormal()

max normal d_max_normal() r_max_normal()

 108 Fortran 90 User’s Guide

8

Once a handler is established, a signal is generated whenever the particular
floating-point exception occurs.

The form of invoking ieee_handler() is as follows.

Writing a Signal Handler Function

Actions taken by the function are up to you, but the form of the function is:

• The function must be an integer function.
• The function must have three arguments, typed as follows:

Pattern— hand5x(sig, sip, uap)

• hand5x is your name for your integer function
• sig is an integer
• sip is a record which has the structure siginfo (see sample below)
• uap is not used here

i = ieee_handler(action, exception, handler)

action character "get" or "set" or "clear"

exception character "invalid" or "division" or
"overflow" or "underflow" or
"inexact"

handler function name The name of the function you wrote

return value integer 0=OK

Floating Point 109

8

Form: Signal handler function.

Pattern— hand4x(sig, code, context)

hand4x is your name for your integer functionForm: Signal handler function.
Example: Detect an exception using a handler, and abort—SunOS 5.x or 4.x.

5.x
SunOS 5.x Form

INTEGER FUNCTION hand5x(sig, sip, uap)
INTEGER sig, location
TYPE fault_typ

INTEGER address
END TYPE fault_typ
TYPE siginfo

INTEGER si_signo
INTEGER SI_CODE
INTEGER si_errno
TYPE(fault_typ) fault

END TYPE siginfo
TYPE(siginfo) sip
location = sip%fault%address
... actions you take ...
END

5.x and 4.x
DetExcHan.f90
SunOS 5.x or 4.x

SIGFPE is generated whenever a
floating-point exception occurs→
Then the SIGFPE is detected and
control is passed to the
myhandler function.

PROGRAM DetExcH
 EXTERNAL myhandler
 REAL :: r = 14.2, s = 0.0
 i = ieee_handler('set', 'division', myhandler)
 t = r/s
END
INTEGER FUNCTION myhandler(sig, code, context) ! Handler, 5.x or 4.x
! OK in SunOS 5.x/4.x as all we do is abort
 INTEGER sig, code
 INTEGER, DIMENSION(5) :: context
 CALL abort()
END
demo% f90 DetExcHan.f90
demo% a.out
abort: called
Abort (core dumped)
demo% ■

 110 Fortran 90 User’s Guide

8

Example: Locate an exception (get address) using a handler

Example: Locate an exception (get address) using a handler.

5.x
LocExcHan5x.f90

SunOS 5.x

An address is mostly for those who
use such low-level debuggers as
adb .

For how get the line number, see
Section 8.6, “Debugging IEEE
Exceptions” for details.

Caveat: I/O in a handler is risky.
Calling abort() reduces the risk.

PROGRAM LocExcH5x ! Locate Exception, by Handler - SunOS 5.x
 EXTERNAL hand5x
 INTEGER hand5x
 REAL :: r = 14.2, s = 0.0
 i = ieee_handler('set', 'division', hand5x)
 t = r/s
END
INTEGER FUNCTION hand5x(sig, sip, uap) ! Handler - SunOS5.x
 INTEGER location, sig
 TYPE fault_typ

INTEGER address
 END TYPE fault_typ
 TYPE siginfo

INTEGER si_signo
INTEGER si_code
INTEGER si_errno
TYPE(fault_typ) fault

 END TYPE siginfo
 TYPE(siginfo) sip
 location = sip%fault%address
 WRITE (*,"('Exception at ',Z8)") location ! Risky in a handler
 CALL abort() ! Just to reduce risk.
END

5.x
Compile/Load/Run

SunOS 5.x

The actual address varies with
installation and architecture.

demo% f90 LocExcHan5x.f90
demo% a.out
Exception at 11FA8
abort: called
Abort (core dumped)
 Note: Following IEEE floating-point traps enabled;see
 ieee_handler(3M): Division by Zero;
 Sun's implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.
demo% ■

Floating Point 111

8

Example: Locate an exception (get address) using a handler

Retrospective

The ieee_retrospective function queries the floating-point status registers
to find out which exceptions have accrued. If any exception has a raised
accrued exception flag, a message is printed to standard error to inform the
programmer which exceptions were raised but not cleared.

For Fortran 90, this function is called automatically just before execution
terminates.

The message typically looks like this (may vary slightly with each release):

Nonstandard Arithmetic

Another useful math library function is nonstandard arithmetic. The IEEE
standard for arithmetic specifies a way of handling underflowed results
gradually, by dynamically adjusting the radix point of the significand. Recall
that in IEEE floating-point format, the radix point occurs before the
significand, and there is an implicit leading bit of 1.

Gradual underflow allows the implicit leading bit to be cleared to 0, and to
shift the radix point into the significand, when the result of a floating-point
computation would otherwise underflow. This is not accomplished in

4.x
Compile/Load/Run

SunOS 4.x

The actual address varies with
installation and architecture.

demo% f90 LocExcHan4x.f90
demo% a.out
Exception at pc 9172
abort: called
Abort (core dumped)
 Note: Following IEEE floating-point traps enabled;see
 ieee_handler(3M): Division by Zero;
 Sun's implementation of IEEE arithmetic is discussed in
 the Numerical Computation Guide.
demo% ■

NOTE: The following IEEE floating-point arithmetic
exceptions occurred and were never
cleared: Inexact; Division by Zero; Underflow;
Overflow; Invalid Operand;
Sun’s implementation of IEEE arithmetic is discussed
in the Numerical Computation Guide

 112 Fortran 90 User’s Guide

8

hardware on a SPARC processor, but in software. If your program happens to
generate many underflows (perhaps a sign of a problem with your algorithm?),
and you run on a SPARC processor, you may experience a performance loss.

To turn off gradual underflow, compile with -fnonstd , or insert this.

To turn on gradual underflow (after you have turned it off), insert this.

The standard_arithmetic() subroutine corresponds exactly to an earlier
version named gradual_underflow() . The nonstandard_arithmetic()
subroutine corresponds exactly to an earlier version named
abrupt_underflow() .

Messages about Floating-point Exceptions

For Fortran 90, the current default is to display a list of accrued floating-point
exceptions at the end of execution. In general, you will get a message if any
one of the invalid, division-by-zero, or overflow exceptions occur. Since most
real programs raise underflow and inexact exceptions, you will get a message
if any two of the underflow and inexact exceptions occur, in general.

You can turn off any or all of these messages with ieee_flags() by clearing
exception status flags. If this is done at all, it is usually done at the end of your
program. Clearing all messages is not recommended.

You can gain complete control with ieee_handler() . In your own exception
handler routine you can specify actions, and you can turn off messages with
ieee_flags() by clearing exception status flags.

CALL nonstandard_arithmetic()

CALL standard_arithmetic()

Floating Point 113

8

8.6 Debugging IEEE Exceptions
You may want to debug programs that have worrisome messages like this.

You need to do these two things:

• Establish a signal handler, using ieee_handler (3m).

This will cause a SIGFPE to be generated when a floating-point
exception occurs.

• After you invoke dbx , enter the “catch FPE ” command.

This causes dbx to listen for any SIGFPE, and halt when it hears
one. See the subsection on where the exception occurred in
Section 7.2, “The dbx Debugger” for explicit examples.

8.7 Guidelines
To sum up, SPARC arithmetic is a state-of-the art implementation of IEEE
arithmetic, optimized for the most common cases.

• More problems can safely be solved in single precision, due to the clever
design of IEEE arithmetic.

• To get the benefits of IEEE math for most applications, if your program gets
one of the common exceptions, then you probably want to continue with a
sensible result. That is, you do not want to use ieee_handler to abort on
the common exceptions.

• If your system time is very large, over 50% of runtime, check into modifying
your code, or using nonstandard_arithmetic .

NOTE: the following IEEE floating-point arithmetic
exceptions occurred and were never
cleared: Inexact; Division by Zero; Underflow;
Overflow; Invalid Operand;
Sun’s implementation of IEEE arithmetic is discussed
in the Numerical Computation Guide

 114 Fortran 90 User’s Guide

8

8.8 Miscellaneous Examples
A miscellaneous collection of more or less realistic examples is provided here,
as a possible additional aid.

Kinds of Problems

The problems in this chapter usually involve arithmetic operations with a
result of invalid, division by zero, overflow, underflow, or inexact.

For instance, Underflow — In old arithmetic, that is, prior to IEEE, if you
multiply two very small numbers on a computer, you get zero. Most
mainframes and minicomputers behave that way. In IEEE arithmetic, there is
gradual underflow; this expands the dynamic range of computations.

For example, consider a machine with 1.0E-38 as the machine epsilon, the
smallest representable value on the machine. Multiply two small numbers.

In old arithmetic you get 0.0 , but with IEEE arithmetic (and the same word
length) you get 1.40130E-45 . With old arithmetic, if a result is near zero, it
becomes zero. This can cause problems, especially when subtracting two
numbers — because this is a principal way accuracy is lost.

You can also detect that the answer is inexact. The inexact exception is
common, and means the calculated result cannot be represented exactly, at
least not in the precision being used, but it is as good as can be delivered.

Underflow tells us, as we can tell in this case, that we got an answer smaller
than the machine naturally represents. This is accomplished by stealing some
bits from the mantissa and shifting them over to the exponent. The result is
less precise, in some sense, but more so in another. The deep implications are
beyond this discussion. The interested reader may wish to consult Computer,
January 1980, Volume 13, Number 1, particularly I. Coonen’s article,
“Underflow and the Denormalized Numbers.”

a = 1.0E-30
b = 1.0E-15
x = a * b

Floating Point 115

8

Roundoff — Most scientific programs have sections of code that are sensitive to
roundoff, often in an equation solution or matrix factorization. So be concerned
about numerical accuracy — if your computer doesn’t do a good job, your
results will be tainted, and there is often no way to know that this has happened.

Simple Underflow

Some applications actually do a lot of work very near zero. This is common in
algorithms which are computing residuals, or differential corrections. For
maximum numerically safe performance, perform the key computations in
extended precision. If the application is a single-precision application, this is
easy, as we can perform key computations in double precision.

Example: A simple dot product computation.

If a(i) and b(i) are small, many underflows will occur. By forcing the
computation to double precision, you compute the dot product with greater
accuracy, and not suffer underflows.

It may be advisable to have both versions, and to switch to the double
precision version only when required.

You can force a SPARC processor to behave like an older computer with
respect to underflow. Add the following to your Fortran 90 main program.

But be aware that you are giving up the numerical safety belt that is the
operating system default. You can get your answers faster, and you won’t be
any less safe than, say, a VAX — but use at your own risk.

sum = 0
DO i = 1, n

sum = sum + a(i) * b(i)
END DO

REAL*8 sum
DO i = 1, n

sum = sum + dble(a(i)) * dble(b(i))
END DO
result = sum

CALL nonstandard_arithmetic()

 116 Fortran 90 User’s Guide

8

Use Wrong Answer

You might wonder why continue if the answer is clearly wrong. Consider a
circuit simulation. The only variable of interest (for the sake of argument) from
a particular 50 line computation is the voltage. Further assume that the only
values which are possible are +5v, 0, -5v.

It is possible to carefully arrange each part of the calculation to coerce each
subresult to the correct range.

Furthermore, since Inf is not an allowed value, you need special logic to
ensure that big numbers are not multiplied.

IEEE arithmetic allows the logic to be much simpler, as the computation can be
written in the obvious fashion, and only the final result need be coerced to the
correct value, since ±Inf can occur, and can be easily tested.

Furthermore the special case of 0/0 can be detected and dealt with as you
wish. The result is easier to read, and faster executing (since you don’t do
unneeded comparisons).

Excessive Underflow

If two very small numbers are multiplied, the result underflows. The
hardware, being designed for the typical case, does not produce a result;
instead software is employed to compute the correct IEEE complying result. As
one might guess, this is much slower. In the majority of applications, this is
invisible. When it is not, the symptom is that the system time component of
your runtime (which can be determined by running your application with the
time command) is much too large.

 4.0 < computed < Inf → 5 volts
-4.0 ≤ computed ≤ 4.0 → 0 volts
-Inf < computed ≤ -4.0 → -5 volts

Floating Point 117

8

Example: Excessive underflow.

After compiling and running dotprod, the results of the time command are:

So the real computation required about 0.1 seconds, but the software fix
required four seconds. In a real application this can be hours. Clearly this is not
desirable.

Solution 1: Change All of the Program

If you change the code to be double precision (by rewriting the code with
double precision variables) you get vast improvement.

Now, of course, it may not be desirable to promote an entire program to double
precision (though this is what is traditionally done to make up for the fact that
old style arithmetic is less accurate).

PROGRAM dotprod
INTEGER maxn
PARAMETER (maxn=10000)
REAL a(maxn), b(maxn), eps /1.0e-37/, sum
DO i = 1, maxn

a(i) = 1.0e-30
b(i) = 1.0e-15

END DO
sum = 0.
DO i = 1, maxn

sum = sum + a(i)*b(i)
END DO
END

real 0m4.50s
user 0m0.11s
sys 0m4.35s

real 0m0.20s
user 0m0.08s
sys 0m0.11s

 118 Fortran 90 User’s Guide

8

Solution 2: Change One Double-Precision Variable

If you declare sum to be DOUBLE PRECISION, and change only the summation
line of code as follows:

then you get

By promoting one variable to double, you eliminate the software underflow
problem. Note that in a real application, put the variable sum in double
precision and coerce it to single precision only on output. This is not a
performance issue, but a numeric one. Of course it may not be easy to tell
which variables in a huge program need to be promoted. The effort is
worthwhile, not only because of the performance (which, as you will learn, can
be achieved in other ways), but because the numerics are enhanced as well.

Solution 3: Nonstandard Arithmetic

There is a quick and dirty solution, which is:

This tells the hardware to act like an old-style computer, and when underflow
occurs just flush to zero. This results in a runtime like this.

Note that this time is very nearly the same as promoting one variable to
double. The difference is that now the computed result is 0. This is bad because
if this dot product is really the final result, there is probably nothing wrong
with this solution. If, however, this result feeds into more elaborate
computations, you have thrown away some information. This may be
important. If the algorithm is stable, the input well conditioned, and the
implementation careful, it won’t matter. If there is anything else shaky, this
may push it over.

sum = sum + a(i)*dble(b(i))

real 0m0.18s
user 0m0.06s
sys 0m0.11s

CALL nonstandard_arithmetic()

real 0m0.18s
user 0m0.01s
sys 0m0.13s

 119

C–Fortran Interface 9

This chapter is organized into the following sections.

Glendower: I can call spirits from the vasty deep.

Hotspur: Why, so can I, or so can any man;
 But will they come when you do call for them?

Henry IV, Part I

Purpose—This chapter shows how to write Fortran 90 routines that call C
routines, and C routines that call Fortran 90 routines. A common reason to do
such calls is to use existing libraries.

Caveat—This subject requires more sophistication than most of this manual. To
paraphrase Hotspur, any programmer can write such programs, but will they work
when you do call for them?

Approach—This chapter lists the compatibility rules and shows examples for
item passable between C and Fortran. Examples show how to pass an item, not
how it would be used in real applications.

Sample Interface page 120

How to Use this Chapter page 121

Compatibility Requirements page 122

Fortran Calls C page 134

C Calls Fortran page 149

 120 Fortran 90 User’s Guide

9

9.1 Sample Interface
Example: A C function to be called by a Fortran main program.

Example: A Fortran main program to call a C function.

Example: A Fortran program calls a C function.

Samp.c samp_ (int *i, float *f) /* both i and f are pointers */
{

*i = 9;
*f = 9.9;

}

Sampmain.f90 PROGRAM Sample
 INTEGER i
 REAL r
 CALL Samp (i, r) ! both i and r are passed by reference
 WRITE(*, "(I2, F4.1)") i, r
END PROGRAM Sample

Compile/Link/Execute. demo$ cc -c Samp.c
demo$ f90 Samp.o Sampmain.f90 ← This does the linking
demo$ a.out
 9 9.9
demo$ ■

C–Fortran Interface 121

9

9.2 How to Use this Chapter
1. Examine the previous section, “Sample Interface.”

2. Examine the next section, “Compatibility Requirements.”

3. Find what to do in the section “Fortran Calls C” or “C Calls Fortran.”

The following two tables help find the appropriate subsection.

For a Fortran 90 main and a C function:

Fortran Calls C page 134

Arguments Passed by Reference (f90 Calls C) page 134

Simple Arguments Passed by Reference (f90 Calls C) page 134

Complex Arguments Passed by Reference (f90 Calls C) page 135

Character Arguments Passed by Reference (f90 Calls C) page 136

Vector Arguments Passed by Reference (f90 Calls C) page 138

Matrix Arguments Passed by Reference (f90 Calls C) page 139

Structure Arguments Passed by Reference (f90 Calls C) page 140

Pointer Arguments Passed by Reference (f90 Calls C)—N/A page 140

Arguments Passed by Value (f90 Calls C) page 141

Function Return Values (f90 Calls C) page 141

INTEGER Function Return Value (f90 Calls C) page 141

REAL Function Return Value (f90 Calls C) page 142

Pointer-to-a-REAL Function Return Value (f90 Calls C) page 143

DOUBLE PRECISION Function Return Value (f90 Calls C) page 144

LOGICAL Function Return Value (f90 Calls C) page 145

CHARACTER Function Return Value (f90 Calls C) N/A page 146

Labeled Common (f90 Calls C) page 147

Alternate Returns (f90 Calls C) - N/A page 148

 122 Fortran 90 User’s Guide

9

For a C main and a Fortran 90 subprogram:)

9.3 Compatibility Requirements
Most C/Fortran interfaces must get all of these aspects right:

• Function or subroutine
• Underscore in names of routines
• Upper and lowercase in identifiers
• Data type compatibility
• Passing arguments by reference or value
• String arguments and order
• Telling the linker to use Fortran libraries

Some C/Fortran interfaces must also get these right:

• Arrays: Indexing and order
• File descriptors and stdio
• File permissions

C Calls Fortran page 149

Arguments Passed by Reference (C Calls f90) page 149

Simple Arguments Passed by Reference (C Calls f90) page 149

Complex Arguments Passed by Reference (C Calls f90) page 150

Character Arguments Passed by Reference (C Calls f90) page 151

Vector Arguments Passed by Reference (C Calls f90) page 152

Matrix Arguments Passed by Reference (C Calls f90) page 152

Structure Arguments Passed by Reference (C Calls f90) page 153

Pointer Arguments Passed by Reference (C Calls f90)—N/A page 155

Arguments Passed by Value (C Calls f90) - N/A page 155

Function Return Values (C Calls f90) page 155

INTEGER Function Return Value (C Calls f90) page 155

REAL Function Return Value (C Calls f90) page 156

DOUBLE PRECISION Function Return Value (C Calls f90) page 156

LOGICAL Function Return Value (C Calls f90) page 158

CHARACTER Function Return Value (C Calls f90) page 159

Labeled Common (C Calls f90) page 160

Alternate Returns (C Calls f90) page 161

C–Fortran Interface 123

9

Function or Subroutine

The word function means different things in C and Fortran.

• As far as C is concerned, all subprograms are functions, it is just that some
of them return a null value.

• As far as Fortran is concerned, a function passes a return value and a
subroutine does not.

Fortran Calls a C Function
• If the called C function returns a value, call it from Fortran as a function.
• If the called C function does not return a value, call it as a subroutine.

C Calls a Fortran Subprogram
• If the called Fortran subprogram is a function, call it from C as a function

that returns a comparable data type.

• If the called Fortran subprogram is a subroutine, call it from C as a function
that returns a value of int (comparable to Fortran INTEGER*4) or void .
This return value is useful if the Fortran routine does a nonstandard return.

 124 Fortran 90 User’s Guide

9

Underscore in Names of Routines

The Fortran compiler appends an underscore (_) to the names of
subprograms, for both a subprogram and a call to a subprogram. This
distinguishes it from C procedures or external variables with the same user-
assigned name.

Each subprogram name must have 31 or fewer characters.

To avoid the underscore problem, in the C function definition, change the
name of the C function by appending an underscore to that name.

Case Sensitivity

C and Fortran take opposite perspectives on case sensitivity.

• C is case sensitive—uppercase or lowercase matters.
• Fortran ignores case.

The Fortran default is to ignore case by converting identifiers to lowercase. It
converts all uppercase letters to lowercase letters, except within character-
string constants.

To avoid the case sensitivity problem—in the C function definition, make the
name of the C function all lowercase.

C–Fortran Interface 125

9

Data Type Compatibility

You may want to write Fortran 90 routines to interface with existing C
routines, or C routines to interface with existing Fortran 90 routines.

Writing Fortran 90 Code for Existing C Routines

For any given C intrinsic data type, the following table provides a close
corresponding Fortran 90 data type.

C double aligns on 8-byte boundaries, unless in a common block, then on 4.

Table 9-1 C Data Type to Fortran 90 Data Type

C Intrinsic Type Close Fortran 90 Type Size
(Bytes)

Alignment
(Bytes)

char x ; CHARACTER x 1 1

signed char x ;
signed char x[n] ;
unsigned char x[n] ;

INTEGER (KIND=1) x
CHARACTER (LEN=n) x
CHARACTER (LEN=n) x

1
n
n

4
1
1

float x ; REAL x 4 4

double x ;
long double x ;

DOUBLE PRECISION x
N/A

8
16

4
4

int x ; INTEGER x 4 4

signed x ;
signed int x ;
long x ;
long int x ;
signed long x ;
signed long int x ;
unsigned int x ;
unsigned long x ;
unsigned long int x ;

short x ;
short int x ;
signed short int x ;
unsigned short x ;
unsigned short int x ;

INTEGER x
INTEGER x
INTEGER x
INTEGER x
INTEGER x
INTEGER x
INTEGER x
INTEGER x
INTEGER x

INTEGER (KIND=2) x
INTEGER (KIND=2) x
INTEGER (KIND=2) x
INTEGER (KIND=2) x
INTEGER (KIND=2) x

4
4
4
4
4
4
4
4
4

2
2
2
2
2

4
4
4
4
4
4
4
4
4

4
4
4
4
4

long long x ; N/A - -

unsigned long long x ; N/A - -

 126 Fortran 90 User’s Guide

9

Writing C Code for Existing Fortran 90 Routines

For any given Fortran 90 intrinsic data type, the following table provides a
close corresponding C data type.

In the current release, with items of type INTEGER for KIND=1,2, or 4:

• Each uses 4 bytes of storage
• Each aligns on 4-byte boundaries
• Each involves 32 bits if any computations are involved

Table 9-2 Fortran 90 Data Type to C Data Type

Fortran 90 Intrinsic Data Type Close C Data Type Size
(Bytes)

Alignment
(Bytes)

CHARACTER x unsigned char x ; 1 1

CHARACTER (LEN=n) x
CHARACTER (LEN=n, KIND=1) x

unsigned char x[n] ;
unsigned char x[n] ;

n
n

1
1

COMPLEX x struct {float r,i;} x; 8 4

COMPLEX (KIND=4) x
COMPLEX (KIND=8) x

struct {float r,i;} x;
struct {double dr,di;} x;

8
16

4
4

DOUBLE PRECISION x double x ; 8 4

REAL x float x ; 4 4

REAL (KIND=4) x
REAL (KIND=8) x

float x ;
double x ;

4
8

4
4

INTEGER x int x ; 4 4

INTEGER (KIND=1) x
INTEGER (KIND=2) x
INTEGER (KIND=4) x

signed char x ;
short x ;
int x ;

1
2
4

4
4
4

LOGICAL x int x ; 4 4

LOGICAL (KIND=1) x
LOGICAL (KIND=2) x
LOGICAL (KIND=4) x

signed char x ;
short x ;
int x ;

1
2
4

4
4
4

C–Fortran Interface 127

9

Passing Arguments by Reference or Value

C and Fortran 90 pass arguments using the following different basic rules.

• Fortran 90 generally passes arguments by reference.
• C passes arguments by value.

Despite this seeming conflict, some compatibility can be achieved, at least for
the Fortran 90 pass by reference. The compatibility is possible because a C
program can specify that the value being passed is actually an address. For C,
this is traditionally described as passing pointers.

Passing Arguments by Reference

Pass by reference in Fortran 90 can be made compatible with pass pointers in C.

In C, passing pointers is specified in either of the following ways—one for
defining new functions, and another for invoking existing functions.

• Defining New Functions

In a function, where data types of arguments are declared, if you precede a
dummy argument by an asterisk (*), C passes a pointer to the item.

Example: Define a C function—a dummy argument is a pointer to an int .

void simref1_ (int * d) /* d is a pointer to an int */
{
 ...
}

 128 Fortran 90 User’s Guide

9

• Invoking Existing Functions

To make C pass the address of the argument, in the statement that invokes
the function do the following:
• If the item is not a character string or array, then precede the actual

argument by an ampersand (&).

Example: An actual argument is a pointer to an int .

• If the item is a character string or array, then do not precede the actual
argument by an ampersand (&).

Example: An actual argument is a pointer to a character string.

C always passes arrays and character strings using pointers. In fact, C
universally promotes character strings and arrays to pointers. So in C, you
cannot pass arrays or character strings by value.

Passing Arguments by Value (N/A)

If a C function passes an argument by value using no pointers, there is no
compatible way of passing to Fortran 90. That is, Fortran 90, cannot interface
with such a function.

Example: Define a C function—dummy argument is an int (no pointer).

The above function cannot be called from Fortran 90.

 int a ;
...
simref2_ (&a) /* &a is a pointer to an int */
...

 char s[9] ;
...
simref3_ (s) /* s is a pointer to a character string */
...

simval1_ (int i)
{
 ...
}

C–Fortran Interface 129

9

Character Strings and Order

Passing strings between C and Fortran is nonstandard. It is not encouraged.

The following compatibility rules are provided for those who need to do it,
despite the complexities.

Rules for Passing Any Character Strings
• If you make a string in Fortran and pass it to C, you must provide an

explicit null terminator because Fortran does not automatically do that, and
C expects (requires) it.

• All C character strings pass using pointers.

 Arguments that are Character Strings
• For a character argument, Fortran 90 passes/needs an extra argument that:

• Contains the length of the character string
• Is equivalent to a C long int

• Is passed by value

• The order of arguments is as follows.
• A list of the regular arguments
• A list of hidden arguments, one for each character string argument

The list of hidden arguments comes after the list of regular arguments.

• For Fortran 90 calling C, if Fortran 90 passes a character string argument,
the C function can ignore the extra argument or use it.

• For C calling Fortran 90, C must pass the extra argument because Fortran 90
expects (requires) it.

Example: Fortran string argument, passed by reference—a Fortran call.

CHARACTER*7 s
INTEGER b

…
CALL sam (s, b)

 130 Fortran 90 User’s Guide

9

Example: The above Fortran call is equivalent to the following C call.

In the above example:
• s is passed by pointer because s is a character string.
• b is passed by pointer because we explicitly use an ampersand (&).
• 7, the length, is passed by value (without a pointer) as a literal 7 long .

Functions that are Character Strings

The returned character string is passed as two extra initial arguments, in the
following order:

• A pointer to the start of the string return value
• The length of the string return value

Array Indexing and Order

Array Indexing

C arrays always start at zero, but by default, Fortran arrays start at 1. There are
two common ways of approaching this.

• You can use the Fortran default, as in the above example. Then the Fortran
element b(2) is equivalent to the C element b[1] .

• You can specify that the Fortran array b starts at 0. as follows.

This way the Fortran element b(1) is equivalent to the C element b[1] .

char s[7] ;
long b ;

…
sam_ (s, &b, 7L) ;

INTEGER b(0:2)

C–Fortran Interface 131

9

Array Order

Fortran arrays are stored in column-major order, C arrays in row-major order.
For one-dimensional arrays, this is no problem. For two-dimensional and
higher arrays, switch subscripts in all references and declarations.

Tip

Many users tell us that it gets confusing, say, to triangularize in C and then
pass the parts to Fortran. More generally, it may be confusing to do some of the
matrix manipulation in C and some in Fortran. So if passing parts of arrays
between C and Fortran does not work (or if it is confusing), try passing the
whole array to the other language and do all the matrix manipulation there;
avoid doing part in C and part in Fortran.

Libraries and Linking with the f90 Command

To get the proper Fortran libraries linked, use the f90 command to pass the.o
files on to the linker. This usually shows up as a problem only if a C main calls
Fortran. Dynamic linking is encouraged and made easy.

Example 1: Use f90 to link.

Example 2: Use cc to link. This fails. The libraries are not linked.

demo$ f90 -c RetCmplx.f90
demo$ cc -c RetCmplxmain.c
demo$ f90 RetCmplx.o RetCmplxmain.o ← This does the linking
demo$ a.out
 4.0 4.5
 8.0 9.0
demo$ ■

demo$ f90 -c RetCmplx.f90
demo$ cc RetCmplx.o RetCmplxmain.c ← wrong link command
ld: Undefined symbol ← missing routine
 _ _Fc_mult
demo$ ■

 132 Fortran 90 User’s Guide

9

File Descriptors and stdio

Fortran I/O channels are in terms of unit numbers. The I/O system does not
deal with unit numbers, but with file descriptors. The Fortran runtime system
translates from one to the other, so most Fortran programs don’t have to know
about file descriptors.

Many C programs use a set of subroutines called standard I/O (or stdio).
Many functions of Fortran I/O use standard I/O, which in turn uses operating
system I/O calls. Some of the characteristics of these I/O systems are listed
below.

Table 9-3 Characteristics of Three I/O Systems

Fortran Units Standard I/O File Pointers File Descriptors

Files Open Opened for read-
ing and writing

Opened for reading; or
Opened for writing; or
Opened for both; or
Opened for appending
See OPEN(3S).

Opened for reading; or
Opened for writing; or
Opened for both

Attributes Formatted or
unformatted

Always unformatted, but
can be read or written with
format-interpreting routines

Always unformatted

Access Direct or
sequential

Direct access if the physical
file representation is direct
access, but can always be
read sequentially

Direct access if the
physical file representa-
tion is direct access, but
can always be read
sequentially

Structure Record Character stream Character stream

Form Arbitrary
nonnegative
integers

Pointers to structures in the
user’s address space

Integers from 0-63

C–Fortran Interface 133

9

File Permissions

C programmers traditionally open input files for reading and output files for
writing, sometimes for both. In Fortran it’s not possible for the system to
foresee what use you will make of the file since there’s no parameter to the
OPEN statement that gives that information.

Fortran tries to open a file with the maximum permissions possible, first for
both reading and writing then for each separately.

This occurs transparently and is of concern only if you try to perform a READ,
WRITE, or ENDFILE but you don’t have permission. Magnetic tape operations
are an exception to this general freedom, since you can have write permissions
on a file but not have a write ring on the tape.

 134 Fortran 90 User’s Guide

9

9.4 Fortran Calls C

Arguments Passed by Reference (f90 Calls C)

Simple Arguments Passed by Reference (f90 Calls C)

The simple arguments are of Fortran 90 data types INTEGER, REAL, DOUBLE
PRECISION, or LOGICAL, without pointers, dimensions, or structures.

Example: Simple arguments, C function—C arguments as pointers.

Example: Simple arguments—Fortran default way.

Example: Simple arguments with Fortran and C.

SimRef.c void simref_ (b4, i4, r4, d8)
/* Simple types, passed by reference, from f90 (f90 calls C)*/
 int * b4 ;
 int * i4 ;
 float * r4 ;
 double * d8 ;
{
 *b4 = 1 ;
 *i4 = 9 ;
 *r4 = 9.9f ;
 *d8 = 9.9F ;
}

SimRefmain.f90 PROGRAM SimpleRef
! Pass some simple types, by reference, to C (f90 calls C)
 LOGICAL b4 ! Default kind is 4-byte
 INTEGER i4 ! Default kind is 4-byte
 REAL r4 ! Default kind is 4-byte
 DOUBLE PRECISION d8! This is 8-byte
 CALL SimRef (b4, i4, r4, d8)
 WRITE(*, '(L4,I4,F6.1,F6.1)') b4, i4, r4, d8
END PROGRAM SimpleRef

Compile/Link/Execute demo$ cc -c SimRef.c
demo$ f90 SimRef.o SimRefmain.f90
demo$ a.out
 T 9 9.9 9.9
demo$ ■

C–Fortran Interface 135

9

Complex Arguments Passed by Reference (f90 Calls C)

Example: Complex arguments, C function—pointers to structures.

Example: Complex arguments, Fortran main program calls C function.

Example: Complex arguments.

CmplxRef.c void cmplxref_ (struct complex { float r, i; } *w
 struct dcomplex { double r, i; } *z)

{
w -> r = 6;
w -> i = 7;
z -> r = 8;
z -> i = 9;

}

CmplxRefmain.f90 PROGRAM ComplexRef
! Pass complex types, by reference, to C (f90 calls C)
 INTEGER, PARAMETER :: doublecomplex=8
 COMPLEX w
 COMPLEX (KIND=doublecomplex) z
 CALL CmplxRef (w, z)
 WRITE(*,*) w
 WRITE(*,*) z
END PROGRAM ComplexRef

Compile/Link/Execute demo$ cc -c CmplxRef.c
demo$ f90 CmplxRef.o CmplxRefmain.f90
demo$ a.out
 (6.0000000, 7.0000000)
 (8.0000000000000000, 9.0000000000000000)
demo$ ■

 136 Fortran 90 User’s Guide

9

Character Arguments Passed by Reference (f90 Calls C)

Passing strings between C and Fortran is nonstandard. It is not encouraged.

For Fortran 90 calling C, if Fortran 90 passes a character string argument, it
always passes an extra, hidden argument. The C function can ignore these
extra arguments or it can use them. For the detailed requirements of passing
string arguments, see “Character Strings and Order” on page 129.

Ignoring Extra Arguments for Strings
A C function can ignore the extra arguments, since they are after the list of other
arguments.

Example: Character arguments—this C function ignores the extra arguments.

Example: Character arguments—a Fortran call passes hidden extra arguments.

Example: Character arguments, Fortran and C, C ignores the extra arguments.

StrRefI.c void strrefi_ (char *a, char *z)
{
 static char ax[11] = "abcdefghij" ;
 static char zx[31] = "abcdefghijklmnopqrstuvwxyz" ;
 strncpy (a, ax, 10) ;
 strncpy (z, zx, 26) ;
}

StrRefImain.f90 PROGRAM StringRefI
 CHARACTER a*10, z*30
 a = ' '
 z = ' '
 CALL StrRefI(a, z)
 WRITE (*, 1) a, z
1 FORMAT("a='", A, "'", /, "z='", A, "'")
END PROGRAM StringRefI

Compile/Link/Execute demo$ cc -c StrRefI.c
demo$ f90 StrRefI.o StrRefmain.f90
demo$ a.out
s10='abcdefghij'
s30='abcdefghijklmnopqrstuvwxyz '
demo$ ■

C–Fortran Interface 137

9

Using Extra Arguments for Strings
A C function can use the extra arguments from Fortran; they are after the list of
other arguments, and they are passed without pointers.

Example: Character arguments—a C function uses the extra arguments.

Example: Character arguments—a Fortran call makes hidden extra arguments.

Example: Character arguments, Fortran and C, C uses the extra arguments.

The above C function prints the extra arguments (the lengths); what you really
do with them is up to you

StrRefU.c strrefu_ (char *a, char *z, long L10, long L30)
{

static char ax[11] = "abcdefghij" ;
static char zx[31] = "abcdefghijklmnopqrstuvwxyz" ;

printf("%d %d \n", L10, L30) ; /* Use L10 and L30, print them */
strncpy (a, ax, 11) ;
strncpy (z, zx, 26) ;

}

StrRefUmain.f90 PROGRAM StringRefU
 CHARACTER a*10, z*30
 a = ' '
 z = ' '
 CALL StrRefU(a, z)
 WRITE (*, 1) a, z
1 FORMAT("a='", A, "'", /, "z='", A, "'")
END PROGRAM StringRefU

Compile/Link/Execute 10 30
s10=’abcdefghij’
s30=’abcdefghijklmnopqrstuvwxyz ’

 138 Fortran 90 User’s Guide

9

Vector Arguments Passed by Reference (f90 Calls C)

 Example: A C one-dimensional array argument, indexed from 0 to 8.

Example: A Fortran vector argument, implicitly indexed from 1 to 9.

Example: A vector argument, Fortran and C, implicitly indexed from 1 to 9.

Example: A vector argument, Fortran and C, explicitly indexed from 0 to 8.

Example: A vector argument, Fortran and C, explicitly indexed from 0 to 8.

FixVec.c void fixvec_ (int v[9], int *sum)
{
 int i;
 *sum = 0;
 for (i = 0; i <= 8; i++) *sum = *sum + v[i];
}

FixVecmain.f90 PROGRAM FixedVector
 INTEGER, DIMENSION(9) :: a = (/ 1,2,3,4,5,6,7,8,9 /)
 INTEGER i, sum
 CALL FixVec (a, sum)
 WRITE(*, '("a: ", 9I2, ", sum:" I3)') (a(i),i=1,9), sum
END PROGRAM FixedVector

Compile/Link/Execute demo$ cc -c FixVec.c
demo$ f90 FixVec.o FixVecmain.f90
demo$ a.out
a: 1 2 3 4 5 6 7 8 9, sum: 45
demo$ ■

FixVecmainE.f90 PROGRAM FixedVectorE ! a is explicitly indexed 0 to 8
 INTEGER, DIMENSION(0:8) :: a = (/ 1,2,3,4,5,6,7,8,9 /)
 INTEGER i, sum
 CALL FixVec (a, sum)
 WRITE(*, '("a: ", 9I2, ", sum:" I3)') (a(i),i=0,8), sum
END PROGRAM FixedVectorE

Compile/Link/Execute demo$ cc -c FixVec.c
demo$ f90 FixVec.o FixVecmain#.f90
demo$ a.out
a: 1 2 3 4 5 6 7 8 9, sum: 45
demo$ ■

C–Fortran Interface 139

9

Matrix Arguments Passed by Reference (f90 Calls C)

In a two-dimensional array, the rows and columns are switched.

Example: A 2 by 2 C array argument, indexed from 0 to 1.

Example: A 2 by 2 Fortran array argument, explicitly indexed from 0 to 1.

Example: A 2 by 2 array argument—show m before and after the C call.

FixMat.c fixmat_ (int a[2][2])
{

a[0][1] = 99 ; /* C changes a[0][1] */
}

FixMatmain.f90 PROGRAM FixedMatrix
 INTEGER c, r
 INTEGER, DIMENSION(0:1,0:1) :: m
 m(0,0)=00 ; m(0,1)=01 ; m(1,0)=10 ; m(1,1)=11
 DO r = 0, 1

DO c = 0, 1
 WRITE(*,'("m(",I1,",",I1,")=",I2.2)') r, c, m(r,c)
END DO

 END DO
 CALL FixMat (m)
 DO r = 0, 1

DO c = 0, 1
 WRITE(*,'("m(",I1,",",I1,")=",I2.2)') r, c, m(r,c)
END DO

 END DO
END PROGRAM FixedMatrix

Compile/Link/Execut
e

Before →

After →

demo$ cc -c FixMat.c
demo$ f90 FixMat.o FixMatmain.f90
demo$ a.out
m(0,0) = 00
m(0,1) = 01
m(1,0) = 10
m(1,1) = 11
m(0,0) = 00
m(0,1) = 01
m(1,0) = 99 ←Fortran shows that m(1,0) got changed
m(1,1) = 11
demo$ ■

 140 Fortran 90 User’s Guide

9

Structure Arguments Passed by Reference (f90 Calls C)

Example: A C structure argument—an integer and a character string.

Example: A Fortran 90 structure argument, an integer and a character string.

Example: A structure argument, Fortran 90 and C.

Pointer Arguments Passed by Reference (f90 Calls C)—N/A

 These two kinds of pointers are not compatible.

StruRef.c struct InCh { /* Define a structure */
 int nbytes ;
 char a[16] ;
} ;

void struref_ (v) /* Use the structure in definining a function */
struct InCh *v ;
{
 bcopy("oyvay", v->a, 5) ; /* Change the char component */
 v -> nbytes = 5 ; /* Change the int component */
}

StruRefmain.f90 PROGRAM StructureRef
 TYPE IntChr ! Define the derived type IntChr

INTEGER n
CHARACTER str*15

 END TYPE IntChr

 TYPE(IntChr) vls ! Make vls an item of type IntChr

 vls % n = 0 ! Initialize components
 vls % str = '123456789012345'
 CALL StruRef (vls) ! Change components
 WRITE (*, 1) vls % n, vls % str ! Print components
1 FORMAT("n =", I2, ", str='", A, "'")
END PROGRAM StructureRef

Compile/Link/Execute demo$ cc -c StruRef.c
demo$ f90 StruRef.o StruRefmain.f90
demo$ a.out
n = 5, str='oyvay6789012345'
demo$ ■

C–Fortran Interface 141

9

Arguments Passed by Value (f90 Calls C)

In general, if an existing C function passes arguments by value using no
pointers, then Fortran 90 cannot use that function.

Function Return Values (f90 Calls C)

In general, for a C function return value:

• If it has no pointer, then Fortran 90 can use it as is.

• If it returns a pointer, then Fortran 90 needs an interface block. See “Pointer-
to-a-REAL Function Return Value (f90 Calls C)” on page 143.

INTEGER Function Return Value (f90 Calls C)

Example: A C function with an int function return value (not a pointer).

Example: A Fortran program uses a C function that returns an int

Example: Fortran and C with an INTEGER function return value.

RetInt.c int retint_ (int *r)
{
 int s ;
 s = *r ;
 s++ ;
 return (s) ;
}

RetIntmain.f90 PROGRAM ReturnInt
 INTEGER r, s, RetInt
 r = 8
 s = 100 + RetInt (r) ! The C function is invoked here
 WRITE(*, "(2I4)") r, s
END PROGRAM ReturnInt

Compile/Link/Execute demo$ cc -c RetInt.c
demo$ f90 RetInt.o RetIntmain.f90
demo$ a.out
 8 109
demo$■

 142 Fortran 90 User’s Guide

9

REAL Function Return Value (f90 Calls C)

Example: A C function yields a float function return value (not a pointer).

Example: A Fortran program uses a C function that returns a float .

Example: Fortran and C with a REAL function return value.

In earlier versions of C, if C returned a function value that was a float , C
promoted it to a double , and various tricks were needed to get around that.

RetFloat.c float retfloat (float *pf)
{

float f ;
f = *pf ;
f++ ;
return (f) ;

}

RetFloatmain.f90 PROGRAM ReturnFloat
 REAL RetFloat, r, s
 r = 8.0
 s = 100.0 + RetFloat (r) ! The C function is invoked here
 WRITE(*, '(2F6.1)') r, s
END PROGRAM ReturnFloat

Compile/Link/Execute demo$ cc -c RetFloat.c
demo$ f90 RetFloat.o RetFloatmain.f
demo$ a.out
 8.0 109.0
demo$ ■

C–Fortran Interface 143

9

Pointer-to-a-REAL Function Return Value (f90 Calls C)

In general, if an existing C function returns a pointer to an item, then
Fortran 90 requires an interface block for the function.

Example: A C function with a pointer-to-a-float function return value.

Example. A Fortran program uses a pointer-to-a-REAL function return value.

Example: Fortran and C with a pointer-to-a-REAL function return value.

RetPtrF.c static float f;
float *retptrf (float *a)
{

f = *a ;
f++ ;
return &f ;

}

RetPtrFmain.f90 PROGRAM ReturnPtrFloat
! Use a C function return value that is a pointer to a real.
 INTERFACE
 FUNCTION RetPtrF (x)
 REAL x
 REAL, POINTER :: RetPtrF
 END FUNCTION RetPtrF
 END INTERFACE
 REAL a, b
 a = 8.0
 b = 100.0 + RetPtrF(a) ! Uses C function here
 WRITE(*,'(F9.0)') b
END PROGRAM ReturnPtrFloat

Compile/Link/Execute demo$ cc -c RetPtrF.c
demo$ f90 RetPtrF.o RetPtrFmain.f90
demo$ a.out
 109.
demo$ ■

 144 Fortran 90 User’s Guide

9

DOUBLE PRECISION Function Return Value (f90 Calls C)

Example: A C function with a double function return value (not a pointer).

Example: Fortran 90 uses a DOUBLE PRECISION function return value from C.

Example: Fortran and C with a DOUBLE PRECISION function return value.

RetDbl.c double retdbl_ (double *r)
{
 double s ;
 s = *r ;
 s++ ;
 return (s) ;
}

RetDblmain.f90 PROGRAM ReturnDbl
 DOUBLE PRECISION r, s, RetDbl
 r = 8.0
 s = 100.0 + RetDbl(r) ! The C function is invoked here
 WRITE(*, "(2F6.1)") r, s
END PROGRAM ReturnDbl

Compile/Link/Execute demo$ cc -c RetDbl.c
demo$ f90 RetDbl.o RetDblmain.f90
demo$ a.out
 8.0 109.0
demo$ ■

C–Fortran Interface 145

9

LOGICAL Function Return Value (f90 Calls C)

Example: A C function with an int function return value (not a pointer).

Example: A Fortran program uses a C function as if it returns a LOGICAL.

Example: Fortran and C with a LOGICAL function return value.

RetLog.c int retlog_ (int *r)
{
 int s;
 s = *r;
 if (s == 0) s = 1 ; else s = 0 ;
 return (s);
}

RetLogmain.f90 PROGRAM TryRetLog
 LOGICAL r, s, RetLog
 r = .FALSE.
 s = .TRUE. .AND. RetLog(r)
 WRITE(*, "(2L4)") r, s
END PROGRAM TryRetLog

Compile/Link/Execute demo$ cc -c RetLog.c
demo$ f90 RetLog.o RetLogmain.f90
demo$ a.out
 F T
demo$■

 146 Fortran 90 User’s Guide

9

CHARACTER Function Return Value (f90 Calls C) N/A

Passing character strings between C and Fortran is not encouraged.

See “Character Strings and Order” on page 129, for details of compatibility.

Example. A C character string function for Fortran.

Example. A Fortran program uses a C CHARACTER function.

Example: Fortran and C with a character string function.

RetStr.c

The function value is passed not
as a “function return value,” but
as these arguments:
 rval_ptr , pointer to string
 rval_len , length of string

The normal string argument is
passed as:
 &ch _ptr, pointer to string
 ch_len , length of string

void retstr_ (char *rval_ptr, /* pointer to returned string */
int rval_len, /* length of returned string */
char *ch_ptr, /* pointer to string argument */
int *n_ptr, /* pointer to number of copies */
int ch_len) /* length of string argument */

{ /* Return string: n_ptr copies of the character ch_ptr */
 int count, i ;
 char *cp ;
 count = *n_ptr ;
 cp = rval_ptr ;
 for (i=0; i<count; i++) {
 *cp++ = *ch_ptr ;
 }
}

RetStrmain.f90 PROGRAM TryRetStr
 CHARACTER String*16, RetStr*9
 String = ' '
 String = '1234' // RetStr('*',9) // '456' ! Use C function here
 WRITE(*,*) "'", String, "'"
END PROGRAM TryRetStr

Compile/Link/Execute demo$ cc -c RetStr.c
demo$ f90 RetStr.o RetStrmain.f90
demo$ a.out
 '1234*********456'
demo$ ■

C–Fortran Interface 147

9

Labeled Common (f90 Calls C)

C and Fortran can share values in labeled common.

Example: A C function uses labeled common matching the Fortran one below.

Example: A Fortran main program uses a labeled common.

Example: Fortran and C share a labeled common.

Note – Any of the options that change size or alignment (or any equivalences
that change alignment) might invalidate such sharing.

UseCom.c extern struct comtype {
 float p ;
 float q ;
 float r ;
} ;
extern struct comtype ilk_ ;
void usecom_ ()
{
 ilk_.p = 1.0 ;
 ilk_.q = 2.0 ;
 ilk_.r = 3.0 ;
}

UseCommain.f90 PROGRAM TryUseCom
 REAL u, v, w
 COMMON / ilk / u, v, w
 u = 7.0
 v = 8.0
 w = 9.0
 WRITE(*,*) u, v, w
 CALL UseCom (u, v, w)
 WRITE(*,*) u, v, w
END PROGRAM TryUseCom

Compile/Link/Execute demo$ cc -c CUseCom.c
demo$ f90 CUseCom.o FUseCommain.f90
demo$ a.out
 7.0000000 8.0000000 9.0000000
 1.0000000 2.0000000 3.0000000
demo$ ■

 148 Fortran 90 User’s Guide

9

Alternate Returns (f90 Calls C) - N/A

C does not have an alternate return. The work-around is to pass an argument
and branch on that.

C–Fortran Interface 149

9

9.5 C Calls Fortran

Arguments Passed by Reference (C Calls f90)

Simple Arguments Passed by Reference (C Calls f90)

Example: Simple arguments, Fortran arguments by reference.

Example: Simple arguments, C passes the address of each.

Example: Simple arguments, C and Fortran.

SimRef.f90 SUBROUTINE SimRef (b4, i4, r4, d8)
! f90 gets passed some simple types, by reference, from C (C calls f90)
 LOGICAL b4 ! Default kind is 4-byte
 INTEGER i4 ! Default kind is 4-byte
 REAL r4 ! Default kind is 4-byte
 DOUBLE PRECISION d8 ! This is 8-byte
 b4 = .TRUE.
 i4 = 9
 r4 = 9.9
 d8 = 9.9
END SUBROUTINE SimRef

SimRefmain.c void main ()
{ /* Simple types passed by reference to f90 (C calls f90) */
 int b4 ; /* f90: 4-byte LOGICAL */
 int i4 ; /* f90: 4-byte INTEGER */
 float r4 ; /* f90: 4-byte REAL */
 double d8 ; /* f90: 8-byte DOUBLE PRECISION */
 extern simref_ (int *, int *, float *, double *) ;
 simref_ (&b4, &i4, &r4, &d8) ;
 printf ("%08o %d %3.1f %3.1f \n",
 b4, i4, r4, d8) ;
}

Compile/Link/Execute demo$ f90 -c SimRef.f90
demo$ cc -c SimRefmain.c
demo$ f90 SimRef.o SimRefmain.o ← This does the linking
demo$ a.out
00000001 9 9.9 9.9
demo$ ■

 150 Fortran 90 User’s Guide

9

Complex Arguments Passed by Reference (C Calls f90)

Example: Complex arguments, Fortran 90 expects a simple structure.

Example: Complex arguments—C passes pointers to structures.

Example: Complex arguments, C and Fortran.

CmplxRef.f90 SUBROUTINE CmplxRef (w, z)
! f90 gets passed complex arguments from C (C calls f90)
 INTEGER, PARAMETER :: doublecomplex=8
 COMPLEX w
 COMPLEX (KIND=doublecomplex) :: z
 w = (6, 7)
 z = (8, 9)
END SUBROUTINE CmplxRef

CmplxRefmain.c main ()
{
 struct complex { float r, i ; } ;
 struct complex d1 ;
 struct complex *w = &d1 ;

 struct dcomplex { double r, i ; } ;
 struct dcomplex d2 ;
 struct dcomplex *z = &d2 ;

 extern cmplxref_ (struct complex *, struct dcomplex *) ;

 cmplxref_ (w, z) ; /* w and z are pointers */
 printf ("%3.1f %3.1f \n%3.1f %3.1f \n",
 w->r, w->i, z->r, z->i) ;

}

Compile/Link/Execute demo$ f90 -c CmplxRef.f90
demo$ cc -c CmplxRefmain.c
demo$ f90 CmplxRef.o CmplxRefmain.o ← This does the linking
demo$ a.out
6.0 7.0
8.0 9.0
demo$ ■

C–Fortran Interface 151

9

Character Arguments Passed by Reference (C Calls f90)

Passing strings between C and Fortran is nonstandard. It is not encouraged.

For C calling Fortran 90, if C passes a character string argument, C must pass
the extra hidden argument because Fortran 90 expects (requires) it. For the
detailed requirements of passing string arguments, see “Character Strings and
Order” on page 129.

Example: Character arguments—Fortran uses extra arguments from C.

Example: Character arguments—C passes extra arguments.

Example: Character arguments—C and Fortran.

StrRefU.f90 SUBROUTINE StrRefU (a, s)
! Character arguments -- use extra args passed from C.
 CHARACTER a*(*), s*(*)
 a = 'abcdefghi' // char(0)
 s = 'abcdefghijklmnopqrstuvwxyz' // char(0)
END SUBROUTINE StrRefU

StrRefUmain.c void strrefu (char *, char *, long, long) ; /* Declare fcn interface */
void main () /* Pass string arguments to f90 with extra args */
{
 char s10[10], s80[80] ; /* Provide memory for the strings */
 long L10, L80 ;
 L10 = 10 ; /* Initialize extra args */
 L80 = 80 ;
 strrefu_ (s10, s80, L10, L80) ; /* C strings pass by reference */
 printf (" s10='%s' \n s80='%s' \n", s10, s80) ;
}

Compile/Link/Execute demo$ f90 -c StrRef.f90
demo$ cc -c StrRefmain.c
demo$ f90 StrRef.o StrRefmain.o
demo$ a.out
 s10='abcdefghi'
 s80='abcdefghijklmnopqrstuvwxyz'
demo$■

 152 Fortran 90 User’s Guide

9

Vector Arguments Passed by Reference (C Calls f90)

 Example: A Fortran one-dimensional array arg, implicitly indexed from 1 to 9.

Example: A C one-dimensional array argument, indexed from 0 to 8.

Example: A one-dimensional array argument, Fortran and C.

VecRef.f90 SUBROUTINE VecRef (v, total)
! f90 gets passed a one-dimensional array argument, from C (C calls f90)
 INTEGER i, total, v(9)
 total = 0
 DO i = 1, 9
 total = total + v(i)
 END DO
END SUBROUTINE VecRef

VecRecmain.c void vecref_ (int[], int *) ; /* Declare fcn interface */
void main ()
{ /* A one-dimensional array argument passed to f90 */
 int i, sum ;
 int v[9] = { 1,2,3,4,5,6,7,8,9 } ;
 vecref_ (v, &sum) ; /* Arrays pass by reference */
 printf (" %d \n", sum) ;
}

Compile/Link/Execute demo$ f90 -c VecRef.f90
demo$ cc -c VecRefmain.c0
demo$ f90 VecRef.o VecRefmain.f90
demo$ a.out
 45
demo$ ■

C–Fortran Interface 153

9

Matrix Arguments Passed by Reference (C Calls f90)

Example: A Fortran 2 by 2 array argument, explicitly indexed from 0 to 1.

Example: A 2 by 2 C array argument, indexed from 0 to 1.

Example: A 2 by 2 array argument—show m before and after Fortran call.

MatRef.f90

In a two-dimensional
array, the rows and
columns are
switched, comparing
C and Fortran.

SUBROUTINE MatRef (a, total)
! f90 gets passed a two-dimensional array from C (C calls f90)
 INTEGER c, r, total, a(0:1,0:1)
 a(0,1) = 99 ! Changes a(0,1)
 total = 0
 DO r = 0, 1 ! Sums all of a
 DO c = 0, 1
 total = total + a(r,c)
 END DO
 END DO
END SUBROUTINE MatRef

MatRefmain.c

Such square arrays
are either
incompatible for C
and Fortran, or
awkward to do right,
depending on your
attitude or needs.

Nonsquare arrays are
worse.

void matref_ (int[][2], int *) ; /* Declare fcn interface */
void main ()
{ /* A C two-dimensional array argument passed to f90 */
 int c, r, sum ;
 int m[2][2] = {{ 00, 01 },

 { 10, 11 }} ;
 for (c=0; c<2; c++) {
 for (r=0; r<2; r++)
 printf ("m(%d,%d)=%#02d \n", c, r, m[c][r]) ;
 }
 matref_ (m, &sum) ; /* Arrays pass by reference */
 for (c=0; c<2; c++) {
 for (r=0; r<2; r++)
 printf ("m(%d,%d)=%#02d \n", c, r, m[c][r]) ;
 }
}

Compile/Link/Execut
e
Before →

After →

m(0,0)=00
m(0,1)=01
m(1,0)=10
m(1,1)=11
m(0,0)=00
m(0,1)=01
m(1,0)=99 ← C shows that m(1,0) got changed.
m(1,1)=11

 154 Fortran 90 User’s Guide

9

Structure Arguments Passed by Reference (C Calls f90)

Example: A Fortran 90 structure argument—received from C.

Example: A C structure argument, passed to Fortran 90.

Example: A structure argument, Fortran 90 and C.

StruRef.f90

See also “Complex Arguments
Passed by Reference (C Calls
f90)” on page 150.

SUBROUTINE StruRef (n)
! f90 gets passed structure argument from C (C calls f90)
 TYPE IntReal
 INTEGER i
 REAL r
 END TYPE IntReal
 TYPE (IntReal) n
 n % i = 8
 n % r = 9.0
END SUBROUTINE StruRef

StruRefmain.c struct InRl { /* Define a structure */
int i ;
float r ;

} ;

void struref_ (struct InRl *) ; /* Use structure, define function */

void main ()
{

struct InRl ir ;
struct InRl *n = &ir ;

n -> i = 1 ; /* Initialize the structure */
n -> r = 2.0 ;

 struref_ (n) ; /* Uses Fortran routine here */
 printf ("n->i=%d, n->r=%3.1f \n",
 n->i, n->r) ;
}

Compile/Link/Execute demo$ f90 -c StruRef.f90
demo$ cc -c StruRefmain.c
demo$ f90 StruRef.o StruRefmain.o
demo$ a.out
n->i=8, n->r=9.0
demo$ ■

C–Fortran Interface 155

9

Pointer Arguments Passed by Reference (C Calls f90)—N/A

 These two kinds of pointers are not compatible.

Arguments Passed by Value (C Calls f90) - N/A

In general, Fortran 90 cannot pass an argument by value, whether Fortran 90
calls C or C calls Fortran 90.

The work-around is to pass all arguments by reference.

Function Return Values (C Calls f90)

For function return values, a Fortran function of type BYTE, INTEGER,
LOGICAL, DOUBLE PRECISION, or REAL*16 (quadruple precision) is
equivalent to a C function that returns the corresponding type.

INTEGER Function Return Value (C Calls f90)

Example: A Fortran function with an INTEGER function return value.

Example: A C program uses a Fortran function that returns an INTEGER.

RetInt.f90 FUNCTION RetInt (k)
 INTEGER k, RetInt
 RetInt = k + 1
END FUNCTION RetInt

RetIntmain.c int retint_ (int *) ; /* Declare function interface */

void main()
{
 int k, m ;
 k = 8 ;
 m = 100 + retint_ (&k) ;
 printf("%d %d\n", k, m) ;
}

 156 Fortran 90 User’s Guide

9

Example Fortran and C with an INTEGER function return value.

REAL Function Return Value (C Calls f90)

Example: Fortran returns a REAL to a C float .

Example: A C program uses a Fortran function that returns a REAL.

Example Fortran and C with a REAL function return value.

In earlier versions of C, if C returned a function value that was a float , C
promoted it to a double , and various tricks were needed to get around that.

Compile/Link/Execute demo$ f90 -c RetInt.f
demo$ cc -c RetIntmain.c
demo$ f90 RetInt.o RetIntmain.o
demo$ a.out
8 109
demo$ ■

RetFloat.f90 FUNCTION RetFloat (x)
 REAL x, RetFloat
 RetFloat = x + 1.0
END FUNCTION RetFloat

RetFloatmain.c float retfloat_ (float *) ; /* Declare function interface */

main ()
{
 float r, s ;
 r = 8.0 ;
 s = 100.0 + retfloat_ (&r) ;
 printf(" %8.6f %8.6f \n", r, s) ;
}

Compile/Link/Execute demo$ f90 -c RetFloat.f
demo$ cc -c RetFloatmain.c
demo$ f90 RetFloat.o RetFloatmain.o
demo$ a.out
 8.000000 109.000000
demo$ ■

C–Fortran Interface 157

9

DOUBLE PRECISION Function Return Value (C Calls f90)

Example: Fortran function with a DOUBLE PRECISION function return value.

Example: A C main uses a Fortran function that returns a DOUBLE PRECISION.

Example Fortran and C with a DOUBLE PRECISION function return value.

RetDbl.f90 FUNCTION RetDbl (x)
 DOUBLE PRECISION RetDbl, x
 RetDbl = x + 1.0
END

RetDblmain.c double retdbl_ (double *) ; /* Declare function interface */

main()
{
 double x, y ;
 x = 8.0 ;
 y = 100.0 + retdbl_ (&x) ;
 printf("%8.6f %8.6f\n", x, y) ;
}

Compile/Link/Execute demo$ f90 -c RetDbl.f
demo$ cc -c RetDblmain.c
demo$ f90 RetDbl.o RetDblmain.o
demo$ a.out
8.000000 109.000000
demo$ ■

 158 Fortran 90 User’s Guide

9

LOGICAL Function Return Value (C Calls f90)

Example: A Fortran function with a LOGICAL function return value.

Example: A C program uses a Fortran function that returns a LOGICAL.

Example: Fortran and C with a LOGICAL function return value.

RetLog.f90 FUNCTION RetLog (b)
 LOGICAL b, RetLog
 RetLog = .NOT. b
END FUNCTION RetLog

RetLogmain.c int retlog_ (int *) ; /* Declare function interface */

void main()
{
 int r, s ;
 r = 0 ;
 s = retlog_ (&r) ;
 printf("%d %d\n", r, s) ;
}

Compile/Link/Execute demo$ f90 -c RetLog.f90
demo$ cc -c RetLogmain.c
demo$ f90 RetLog.o RetLogmain.o
demo$ a.out
0 1
demo$■

C–Fortran Interface 159

9

CHARACTER Function Return Value (C Calls f90)

Passing strings between C and Fortran is not encouraged.

See “Character Strings and Order” on page 129, for details of compatibility.

Example: A Fortran character string function.

Example: A C main uses a Fortran character function.

Example: C and Fortran with a character string function.

RetChr.f90 FUNCTION RetChr(c, n)
 CHARACTER RetChr*(*), c
 RetChr = ''
 DO i = 1, n

RetChr(i:i) = c
 END DO
 RetChr(n+1:n+1) = CHAR(0) ! Put in the null terminator for C
END FUNCTION RetChr

RetChrmain.c

The function value is passed not
as a “function return value,” but
as these arguments:
 rval_ptr , pointer to string
 rval_len , length of string

The normal string argument is
passed as:
 &ch , pointer to string
 ch_len , length of string

void retchr_ (char *, int , char *, int *, int) ; /* fcn interface */

main()
{ /* Use a Fortran 90 character function,(C calls f90) */

char strbuffer[9] = "123456789" ;
char *rval_ptr = strbuffer ; /* extra initial arg 1 */
int rval_len = sizeof(strbuffer) ; /* extra initial arg 2 */
char ch = '*' ; /* for normal arg 1 */
int n = 4 ; /* for normal arg 1 */
int ch_len = sizeof(ch) ; /* extra final arg */

 printf(" '%s'\n", strbuffer) ;
 retchr_ (rval_ptr, rval_len, &ch, &n, ch_len) ;
 printf(" '%s'\n", strbuffer) ;
}

Compile/Link/Execute demo$ f90 -c RetChr.f90
demo$ cc -c RetChrmain.c
demo$ f90 RetChr.o RetChrmain.o
demo$ a.out
 '123456789'
 '****'
demo$ ■

 160 Fortran 90 User’s Guide

9

Labeled Common (C Calls f90)

C and Fortran can share values in labeled common.

Example: A Fortran subroutine uses a labeled common.

Example: A C main uses a labeled common matching the Fortran one above.

Example: Fortran and C share a labeled common.

Note – Any of the options that change size or alignment (or any equivalences
that change alignment) might invalidate such sharing.

UseCom.f90 SUBROUTINE UseCom
 REAL u, v, w
 COMMON / ilk / u, v, w
 u = 7.0
 v = 8.0
 w = 9.0
END SUBROUTINE UseCom

UseCommain.c extern struct comtype {/* Declare a structure */
 float p ;
 float q ;
 float r ;
} ;
extern struct comtype ilk_ ; /* Define an item using the structure */
void usecom_ () ; /* Declare function interface */
void main()
{
 ilk_.p = 1.0 ;
 ilk_.q = 2.0 ;
 ilk_.r = 3.0 ;
 usecom_ () ;
 printf(" ilk_.p=%4.1f, ilk_.q=%4.1f, ilk_.r=%4.1f\n",

 ilk_.p, ilk_.q, ilk_.r) ;
}

Compile/Link/Execute demo$ f90 -c UseCom.f90
demo$ cc -c UseCommain.c
demo$ f90 UseCom.o UseCommain.o
demo$ a.out
 ilk_.p= 7.0, ilk_.q= 8.0, ilk_.r= 9.0
demo$ ■

C–Fortran Interface 161

9

Alternate Returns (C Calls f90)

Some C programs may need to use a Fortran routine with nonstandard returns.
No new Fortran 90 routine needs alternate returns—they are obsolete.

Example: One regular argument and two alternate returns.

Example: Alternate returns—C invokes the subroutine as a function.

Example: Alternate returns, C and Fortran.

In this example, the C main receives a 2 as the return value of the subroutine
because the “RETURN 2” was executed.

AltRet.f90

Obsolete features are candidates
for removal from the next version
of the standard. Fortran 90 has
better ways of doing the same
thing.

SUBROUTINE AltRet (i, *, *) ! Obsolete
 INTEGER i, k
 i = 9
 k = 20
 IF (k .eq. 10) RETURN 1 ! Obsolete
 IF (k .eq. 20) RETURN 2 ! Obsolete
 RETURN
END SUBROUTINE AltRet

AltRetmain.c

To C, a Fortran routine with
nonstandard returns does return
an int (INTEGER*4). The return
value specifies which alternate
return was used. If the routine
has no entry points with
alternate return arguments, the
returned value is undefined.

int altret_ (int *) ; /* Declare function interface */
main()
{
 int k, m ;
 k = 0 ;
 m = altret_ (&k) ; /* Use the Fortran subroutine */
 printf("%d %d\n", k, m) ;
}

Compile/Link/Execute demo$ f90 -c AltRet.f90
Obsolescent: The alternate RETURN construct is obsolete at line 6
Obsolescent: The alternate RETURN construct is obsolete at line 7
demo$ acc -c AltRetmain.c
demo$ f90 AltRet.o AltRetmain.o
demo$ a.out
9 2
demo$

 162 Fortran 90 User’s Guide

9

 163

Features and Differences A

This appendix is organized into the following sections.

This appendix shows some of the major features differences between:

• Standard Fortran 90 and Sun Fortran 90
• FORTRAN 77 and Fortran 90

A.1 Standards
This Fortran is an enhanced ANSI Standard Fortran 90 development system.

• It conforms to the ANSI X3.198-1992 Fortran standard and the
corresponding International Standards Organization ISO/IEC 1539:1991 (E)
Fortran 90 standard.

• It provides an IEEE standard 754-1985 floating-point package.

Standards page 163

Extensions page 164

Directives page 179

Compatibility with FORTRAN 77 page 184

Forward Compatibility page 188

Mixing Languages page 188

Module Files page 188

 164 Fortran 90 User’s Guide

A

• On SPARC systems, it provides support for optimization exploiting features
of SPARC V8, including the SuperSPARC implementation1. These
features are defined in the SPARC Architecture Manual: Version 8.

A.2 Extensions
Sun Fortran 90 provides the following extensions.

Tabs in the Source

f90 allows the tab character in fixed-form source and in free-form source.
Standard Fortran 90 does not allow tabs.

The tab character is not converted to a blank, so the visual placement of tabbed
statements depends on the utility you use to edit or display text.

Fixed-Form Source
• For a tab in column one:

If the next character is a nonzero digit,
then the current line is a continuation line;
otherwise, the current line is an initial line.

• A tab cannot precede a statement label.

• A tab after column one is treated by f90 the same as a blank character,
except in literal strings.

Free-Form Source

f90 treats a tab and a blank character as equivalent, except in literal strings.

1. SuperSPARC is a trademark of Texas Instruments, Inc.

Features and Differences 165

A

Continuation Line Limits

f90 allows 99 continuation lines (1 initial and 98 continuation lines). Standard
Fortran 90 allows 19 for fixed-form and 39 for free-form.

Fixed-Form Source of 96 Characters

In fixed-form source, lines can be 96 characters long. Columns 73 through 96
are ignored. Standard Fortran 90 allows 72-character lines.

Directives

f90 allows directive lines starting with CDIR$, !DIR$, CMIC$, or !MIC$. They
look like comments but are not. For full details on directives, see “Directives”
on page 179.

Standard Fortran 90 has no directives.

Source Form Assumed

The source form assumed by f90 depends on options, directives, and suffixes.

• Command-line options

If the -free or -fixed option is used, that overrides the file name suffix.

 Option Action

-fixed Interpret all source files as Fortran 90 fixed form

-free Interpret all source files as Fortran 90 free form

 166 Fortran 90 User’s Guide

A

• File name suffixes

• Directives

If either a FREE or FIXED directive is used, that overrides the option and file
name suffix.

Mixing Forms

Some mixing of source forms is allowed.

• In the same f90 command, some source files can be fixed form, some free.
• In the same file, free form can be mixed with fixed form by using directives.

 Suffix Source Form

.f90 Fortran 90 free-form source files

.f Fortran 90 fixed-form source files
or

ANSI standard FORTRAN 77 source files

.for Same as .f .

.ftn Same as .f .

other None—file name is passed to the linker

 Directive Action

!DIR$ FIXED Interpret the rest of the source file as Fortran 90 fixed form

!DIR$ FREE Interpret the rest of the source file as Fortran 90 free form

Features and Differences 167

A

Boolean Type

f90 supports constants and expressions of Boolean type. There are no Boolean
variables or arrays, and there is no Boolean type statement.

Miscellaneous Rules Governing Boolean Type
• Masking—A bitwise logical expression has a Boolean result; each of its bits is

the result of one or more logical operations on the corresponding bits of the
operands.

• For binary arithmetic operators, and for relational operators:
• If one operand is Boolean, the operation is performed with no conversion.
• If both operands are Boolean, the operation is performed as if they were

integers.

• No user-specified function can generate a Boolean result, although some
(nonstandard) intrinsics can.

• Boolean and logical types differ as follows:
• Variables, arrays, and functions can be of logical type, but they cannot be

Boolean type.
• There is a LOGICAL statement, but no BOOLEAN statement.
• A logical variable or constant represents only one value. A Boolean

constant can represent as many as 32 values.
• A logical expression yields one value. A Boolean expression can yield as

many as 32 values.
• Logical entities are invalid in arithmetic, relational, or bitwise logical

expressions. Boolean entities are valid in all three.

 168 Fortran 90 User’s Guide

A

Alternate Forms of Boolean Constants

f90 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the
following alternate forms (no binary). Variables cannot be declared Boolean.
Standard Fortran 90 does not allow these forms.

Octal
ddddddB, where d is any octal digit

• You can use the letter B or b.

• There can be 1 to 11 octal digits (0 through 7).

• 11 octal digits represent a full 32-bit word, with the leftmost digit allowed to
be 0, 1, 2, or 3.

• Each octal digit specifies three bit values.

• The last (rightmost) digit specifies the content of the rightmost three bit
positions (bits 29, 30, and 31).

• If less than 11 digits are present, the value is right-justified—it represents the
rightmost bits of a word: bits n through 31. The other bits are 0.

• Blanks are ignored.

Within an I/O format specification, the letter B indicates binary digits;
elsewhere it indicates octal digits.

Hexadecimal
X’ ddd’ or X" ddd" , where d is any hexadecimal digit

• There can be 1 to 8 hexadecimal digits (0 through 9, A-F).

• Any of the letters can be uppercase or lowercase (X, x , A-F, a-f).

• The digits must be enclosed in either apostrophes or quotes.

• Blanks are ignored.

• The hexadecimal digits may be preceded by a + or - sign.

• 8 hexadecimal digits represent a full 32-bit word and the binary equivalents
correspond to the contents of each bit position in the 32-bit word.

• If less than 8 digits are present, the value is right-justified—it represents the
rightmost bits of a word: bits n through 31. The other bits are 0.

Features and Differences 169

A

Hollerith

Above, “…” is a string of characters and n is the character count.

• A Hollerith constant is type Boolean.

• If any character constant is in a bitwise logical expression, the expression is
evaluated as Hollerith.

• A Hollerith constant can have 1 to 4 characters.

Examples: Octal and hexadecimal constants.

Examples: Octal and hexadecimal in assignment statements.

Alternate Contexts of Boolean Constants

f90 allows BOZconstants in the places other than DATA statements.

If these are assigned to a real variable, no type conversion occurs.

Standard Fortran 90 allows these only in DATA statements.

nH… ’ …’H " …"H

nL… ’ …’L " …"L

nR… ’ …’R " …"R

Boolean Constant Internal Octal for 32-bit word
0B 00000000000
77740B 00000077740
X"ABE" 00000005276
X"-340" 37777776300
X'1 2 3' 00000000443
X'FFFFFFFFFFFFFFFF' 37777777777

i = 1357B
j = X"28FF"
k = X'-5A'

B’ bbb’ O’ ooo’ Z’ zzz’

B" bbb" O" ooo" Z" zzz"

 170 Fortran 90 User’s Guide

A

Abbreviated Size Notation for Numeric Data Types

f90 allows the following nonstandard type declaration forms in declaration
statements, function statements, and IMPLICIT statements.

The form in column one is nonstandard. The kind number can vary by vendor.

Table A-1 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

INTEGER*1 INTEGER(KIND=1) INTEGER(1) One-byte signed integers

INTEGER*2 INTEGER(KIND=2) INTEGER(2) Two-byte signed integers

INTEGER*4 INTEGER(KIND=4) INTEGER(4) Four-byte signed integers

LOGICAL*1 LOGICAL(KIND=1) LOGICAL(1) One-byte logicals

LOGICAL*2 LOGICAL(KIND=2) LOGICAL(2) Two-byte logicals

LOGICAL*4 LOGICAL(KIND=4) LOGICAL(4) Four-byte logicals

REAL*4 REAL(KIND=4) REAL(4) IEEE single-precision floating-point (Four-byte)

REAL*8 REAL(KIND=8) REAL(8) IEEE double-precision floating-point (Eight-byte)

COMPLEX*8 COMPLEX(KIND=4) COMPLEX(4) Single-precision complex (Four-bytes each part)

COMPLEX*16 COMPLEX(KIND=8) COMPLEX(8) Double-precision complex (Eight-bytes each part)

Features and Differences 171

A

Cray Pointers

A Cray pointer is a variable whose value is the address of another entity, which
is called the pointee.

f90 supports Cray pointers. Standard Fortran 90 does not support them.

Syntax

The Cray POINTER statement has the following format:

Where pointer_name, pointee_name, and array_spec are as follows:

Example: Declare Cray pointers to two pointees.

The above example declares Cray pointer p and its pointee b, and Cray
pointer q and its pointee c .

Example: Declare a Cray pointer to an array.

The above example declares Cray pointer ix and its pointee x ; and declares
x to be an array of dimensions n by m-1 .

POINTER (pointer_name, pointee_name [array_spec]), …

pointer_name Pointer to the corresponding pointee_name.
pointer_name contains the address of pointee_name.
Must be: a scalar variable name (but not a structure)
Cannot be: a constant, a name of a structure, an array, or a
function

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or
nonconstant bounds), or assumed-size.

POINTER (p, b), (q, c)

 POINTER (ix, x(n, 0:m))

 172 Fortran 90 User’s Guide

A

Purpose of Cray Pointers

You can use pointers to access user-managed storage by dynamically
associating variables to particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

Cray pointers do not provide convenient manipulation of linked lists because
(for optimization purposes) it is assumed that no two pointers have the same
value.

 Cray Pointers and Fortran 90 Pointers

 Cray pointers are declared as follows:

POINTER (pointer_name, pointee_name [array_spec])

Fortran 90 pointers are declared as follows:

POINTER :: object_name

The two kinds of pointers cannot be mixed.

Features of Cray Pointers
• Whenever the pointee is referenced, f90 uses the current value of the

pointer as the address of the pointee.

• The Cray pointer type statement declares both the pointer and the pointee.

• The Cray pointer is of type Cray pointer.

• The value of a Cray pointer occupies one storage unit. Its range of values
depends on the size of memory for the machine in use.

• The Cray pointer can appear in a COMMON list or as a dummy argument.

• The Cray pointee has no address until the value of the Cray pointer is
defined.

• If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:
• A separate type statement
• A separate DIMENSION statement
• The pointer statement itself

Features and Differences 173

A

• If the array declarator is in a subprogram, the dimensioning can refer to:
• Variables in a common block, or
• Variables that are dummy arguments

• The size of each dimension is evaluated on entrance to the subprogram, not
when the pointee is referenced.

Restrictions on Cray Pointers
• If pointee_name is of character type, it must be a variable typed

CHARACTER*(*) .

• If pointee_name is an array declarator, it must be explicit shape, (constant or
nonconstant bounds), or assumed-size.

• An array of Cray pointers is not allowed.

• A Cray pointer cannot be:
• Pointed to by another Cray pointer or by a Fortran 90 pointer.
• A component of a structure.
• Declared to be any other data type.

• A Cray pointer cannot appear in:
• A PARAMETER statement or in a type declaration statement that includes

the PARAMETER attribute.
• A DATA statement.

Restrictions on Cray Pointees
• A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON, or

PARAMETER statement.

• A Cray pointee cannot be a dummy argument.

• A Cray pointee cannot be a function value.

• A Cray pointee cannot be a structure or a structure component.

• A Cray pointee cannot be of a derived type.

Note – Cray pointees can be of type character, but their Cray pointers are
different from other Cray pointers. The two kinds cannot be mixed in the same
expression.

 174 Fortran 90 User’s Guide

A

Usage of Cray Pointers

Cray pointers can be assigned values as follows:

• Set to an absolute address

Example: q = 0

• Assigned to or from integer variables, plus or minus expressions

Example: p = q + 100

• Cray pointers are not integers. You cannot assign them to a real variable.

• The LOC function (nonstandard) can be used to define a Cray pointer.

Example: p = LOC(x)

Example: Use Cray pointers as described above.

Remarks about the above example:

• word64 refers to the contents of absolute address 64
• blk is an array that occupies the first 128 words of memory
• a is an array of length 1000 located in blank common
• b follows a and is of length n
• c follows b
• a, b, and c are associated with pool
• word64 is the same as blk(17) because Cray pointers are byte address and

the integer elements of blk are each 4 bytes long

SUBROUTINE sub (n)
COMMON pool(100000)
INTEGER blk(128), word64
REAL a(1000), b(n), c(100000-n-1000)
POINTER (pblk, blk), (ia, a), (ib, b), &

(ic, c), (address, word64)
DATA address / 64 /
pblk = 0
ia = LOC(pool)
ib = ia + 1000
ic = ib + n
...

Features and Differences 175

A

Optimization and Cray Pointers

For purposes of optimization, f90 assumes the storage of a pointee is never
overlaid on the storage of another variable—it assumes that a pointee is not
associated with another variable.

Such association could occur in either of two ways:

• A Cray pointer has two pointees, or
• Two Cray pointers are given the same value

Note – You are responsible for preventing such association.

These kinds of association are sometimes done deliberately, such as for
equivalencing arrays, but then results can differ depending on whether
optimization is turned on or off.

Example: b and c have the same pointer.

Above, because b and c have the same pointer, assigning 2.0 to c gives the
same value to b. Therefore b prints out as 2.0, even though it was assigned 1.0.

POINTER (p, b), (p, c)
REAL x, b, c
p = LOC(x)
b = 1.0
c = 2.0
PRINT *, b
...

 176 Fortran 90 User’s Guide

A

Cray Character Pointers

If a pointee is declared as a character type, its Cray pointer is a Cray character
pointer.

Purpose of Cray Character Pointers

A Cray character pointer is a special data type that allows f90 to maintain
character strings by keeping track of the following:

• Byte address of the first character of the string
• Length
• Offset

An assignment to a Cray character pointer alters all three. That is, when you
change what it points to, all three change.

Declaration of Cray Character Pointers

For a pointee that has been declared with an assumed length character type,
the Cray pointer declaration statement declares the pointer to be a Cray
character pointer.

1. Before the Cray pointer declaration statement, declare the pointee as a
character type with an assumed length.

2. Declare a Cray pointer to that pointee.

3. Assign a value to the Cray character pointer.

You can use functions CLOC or FCD, both nonstandard intrinsics.

Example: Declare Ccp to be a Cray character pointer and use CLOC to make it
point to character string s .

CHARACTER*(*) a
POINTER (Ccp, a)
CHARACTER*80 :: s = "abcdefgskooterwxyz"
Ccp = CLOC(s)

Features and Differences 177

A

Operations on Cray Character Pointers

You can do the following operations with Cray character pointers:

where Ccp1 and Ccp2 are Cray character pointers and i is an integer.

Restrictions on Cray Character Pointers and Pointees

All restrictions to Cray pointers also apply to Cray character pointers. In
addition, the following apply:

• A Cray character pointee cannot be an array.

• In a relational operation, a Cray character pointer can be mixed with only
another Cray character pointer—not with a Cray pointer, not with an
integer.

• A relational operation applies only to the character address and the bit
offset; the length field is not involved.

• Cray character pointers must not appear in EQUIVALENCE statements, or
any storage association statements. (The size can vary with the platform.)

• Cray character pointers are not optimized.

• Code containing Cray character pointers is not parallelized.

• A Cray character pointer in a list of an I/O statement is treated as an
integer.

Ccp1 + i

Ccp1 - i

i + Ccp1

Ccp1 = Ccp2

Ccp1 relational_operator Ccp2

 178 Fortran 90 User’s Guide

A

Intrinsics

f90 supports some intrinsic procedures which are extensions beyond the
standard.

The notes in the above table are explained as follows:

Table A-2 Nonstandard Intrinsics

 Type

Name Definition Function Arguments Arguments Remark Notes

CLOC Get Fortran character
descriptor (FCD)

Cray
character
pointer

character ([C=] c) NP, I

COT Cotangent real real ([X=] x) P, E

DDIM Positive difference double
precision

double precision ([X=] x,[Y=] y) P, E

FCD Create Cray character pointer
in Fortran character
descriptor (FCD) format

Cray
pointer

i: integer or
 Cray pointer
j: integer

([I=] i,[J=] j) i: word address
 of first
 character
j: character
 length

NP, I

LEADZ Get the number of leading 0
bits

integer Boolean, integer,
real, or pointer

([I=] i) NP, I

POPCNT Get the number of set bits integer Boolean, integer,
real, or pointer

([I=] i) NP, I

POPPAR Calculate bit population
parity

integer Boolean, integer,
real, or pointer

([X=] x) NP, I

Note Meaning

P The name can be passed as an argument.

NP The name cannot be passed as an argument.

E External code for the intrinsic is called at run time.

I f90 generates inline code for the intrinsic procedure.

Features and Differences 179

A

A.3 Directives
A compiler directive directs the compiler to do some special action. Directives
are also called pragmas.

A compiler directive is inserted into the source program as one or more lines of
text. Each line looks like a comment, but has additional characters that identify
it as more than a comment for this compiler. For most other compilers, it is
treated as a comment, so there is some code portability.

General Directives

Currently there are only two general directives, FREE and FIXED. These
directives tell the compiler to assume free-form source or fixed-form source.

Other General Directives
Some other parallel directives are included which are not described in detail
because they are not guaranteed to be in the next release.

Table A-3 General Directives Guaranteed Only in the Current Release

Directive

TASK, NOTASK

SUPPRESS(var1, var2, …)

TASKCOMMON(cb1, cb2, …)

 180 Fortran 90 User’s Guide

A

Form of General Directive Lines

General directives have the following syntax.

A general directive line is defined as follows.

• A directive line starts with the 5 characters CDIR$ or !DIR$, followed by:
• A space
• A directive

• Spaces before, after, or within a directive are ignored.

• Letters of a directive line can be in uppercase, lowercase, or mixed.

The form varies for fixed-form and free-form source as follows.

Fixed-Form Source
• Put CDIR$ or !DIR$ in columns 1 through 5.
• Directives are listed in columns 7 and beyond.
• Columns beyond 72 are ignored.
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.

Free-Form Source
• Put !DIR$ followed by a space anywhere in the line.

The !DIR$ characters are the first nonblank characters in the line
(actually, non-whitespace).

• Directives are listed after the space.

• An initial directive line has a blank, tab, or newline in the position
immediately after the !DIR$.

• A continuation directive line has a character other than a blank, tab, or
newline in the position immediately after the !DIR$.

Thus, !DIR$ in columns 1 through 5 works for both free-form source and
fixed-form source.

!DIR$ d1, d2, …

Features and Differences 181

A

FIXED and FREE Directives

These directives specify the source form of lines following the directive line.

Scope
They apply to the rest of the file in which they appear, or until the next FREE or
FIXED directive is encountered.

Uses
• They allow you to switch source forms within a source file.

• They allow you to switch source forms for an INCLUDE file. You insert the
directive at the start of the INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the form being used prior to
processing the INCLUDE file.

Restrictions
The FREE/FIXED directives:

• Each must appear alone on a compiler directive line (not continued).

• Each can appear anywhere in your source code. Other directives must
appear within the program unit they affect.

Example: A FREE directive.

!DIR$ FREE
DO i = 1, n

a(i) = b(i) * c(i)
END DO

 182 Fortran 90 User’s Guide

A

Parallel Directives

A parallel directive is a special comment that directs the compiler to do some
parallelizing. Currently there is only one parallel directive, DOALL.

DOALL Directive
The DOALL directive tells the compiler to parallelize the next loop it finds, if
possible.

Other Parallel Directives
Some other parallel directives are included which are not described in detail
because they are not guaranteed to be in the next release.

Form of Parallel Directive Lines

Parallel directives have the following syntax.

A parallel directive line is defined as follows.

• A parallel directive starts with the CMIC$ or !MIC$, followed by:
• A space
• A directive
• For some directives, one or more parameters

• Spaces before, after, or within a directive are ignored.

• Letters of a parallel directive line can be in uppercase, lowercase, or mixed.

Table A-4 Parallel Directives Guaranteed Only in the Current Release

Directive

CASE, END CASE

PARALLEL, END PARALLEL

DO PARALLEL, END DO

GUARD, END GUARD

!MIC$ DOALL [general parameters] [scheduling parameter]

Features and Differences 183

A

The form varies for fixed-form and free-form source as follows.

Fixed
• Put CMIC$ or !MIC$ in columns 1 through 5.
• Directives are listed in columns 7 and beyond.
• Columns beyond 72 are ignored.
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.

Free
• Put !MIC$ followed by a space anywhere in the line.

The !MIC$ characters are the first nonblank characters in the line
(actually, non-whitespace).

• Directives are listed after the space.

• An initial directive line has a blank, tab, or newline in the position
immediately after the !MIC$.

• A continuation directive line has a character other than a blank, tab, or
newline in the position immediately after the !MIC$.

Thus, !MIC$ in columns 1 through 5 works for both free and fixed.

Example: Directive with continuation lines (DOALL directive and parameters.)

Example: Same directive and parameters, with no continuation lines.

!MIC$ DOALL
!MIC$& SHARED(a, b, c, n)
!MIC$& PRIVATE(i)

DO i = 1, n
a(i) = b(i) * c(i)

END DO

!MIC$ DOALL SHARED(a, b, c, n) PRIVATE(i)
DO i = 1, n

a(i) = b(i) * c(i)
END DO

 184 Fortran 90 User’s Guide

A

A.4 Compatibility with FORTRAN 77

Source

Source from Sun FORTRAN 77 is not generally compatible with Fortran 90,
unless it strictly follows the FORTRAN 77 standard. In general, i f it uses no
extensions, then it is compatible.

Executables

Libraries compiled and linked in FORTRAN 77 under Solaris 2.x run in the
Fortran 90 1.0 environment.

Libraries
• Libraries (.a) and object files (.o) compiled and linked in FORTRAN 77

under Solaris 2.x are compatible with Fortran 90 1.0. You can check the
/usr/4lib directory on your SunOS 5.x system for the libF77.so.2.0
and libV77.so.2.0 library files.

Example: f90 main and f77 subroutine.

demo$ cat m.f90
CHARACTER*74 :: c = ’This is a test.’
 CALL echo1(c)
END
demo$ cat s.f

SUBROUTINE echo1(a)
CHARACTER*74 a
PRINT*, a
RETURN
END

demo$ f77 -c -silent s.f
demo$ f90 m.f90 s.o
demo$ a.out
 This is a test.
demo$ ■

Features and Differences 185

A

• The library libF77 is generally compatible with f90 .

Example: f90 main calls a routine from the libF77 library.

See dtime (3f).

I/O

f77 and f90 are generally I/O compatible for binary I/O, since f90 loads the
f77 I/O compatibility library.

Such compatibility includes the following two situations:

• In the same program, you can write some records in f90 , then read them in
f77 .

• An f90 program can write a file. Then an f77 program can read it.

The numbers read back in may or may not equal the numbers written out.

• Unformatted

The numbers read back in do equal the numbers written out.

• Floating-point formatted

The numbers read back in can be different from the numbers written out.
This is caused by slightly different base conversion routines, or by different
conventions for uppercase/lowercase, spaces, plus or minus signs, and so
forth.

Examples: 1.0e12, 1.0E12, 1.0E+12

demo$ cat tdtime.f90
 REAL e, dtime, t(2)
 e = dtime(t)
 DO i = 1, 10000
 k = k+1
 END DO
 e = dtime(t)
 PRINT *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
 END
demo$ f90 tdtime.f90
demo$ a.out
 elapsed:6.405999884E-3, user:5.943499971E-3, sys:4.625000001E-4
demo$ ■

 186 Fortran 90 User’s Guide

A

• List-directed

The numbers read back in can be different from the numbers written out.
This can be caused by various layout conventions with commas, spaces,
zeros, repeat factors, and so forth.

Example: ’0.0’ as compared to ’.0’

Example: ’ 7’ as compared to ’7’

Example: ’3, 4, 5’ as compared to ’3 4 5’

Example: ’3*0’ as compared to ’0 0 0’

The above results are from: integer::v(3)=(/0,0,0/); print *,v

Example: ’0.333333343’ as compared to ’0.333333’

The above results are from PRINT *, 1.0/3.0

Features and Differences 187

A

Intrinsics

The Fortran 90 standard supports the following new intrinsic functions that
FORTRAN 77 does not have.

If you use one of these names in your program, you must add an EXTERNAL
statement to make f90 use your function rather than the intrinsic one.

The Fortran 90 standard supports the following new array intrinsic functions.

ADJUSTL LEN_TRIM SELECTED_INT_KIND

ADJUSTR MAXEPONENT SELECTED_REAL_KIND

ALLOCATED MINEXPONENT SET_EXPONENT

ASSOCIATED NEAREST SHAPE

BIT_SIZE PRECISION SIZE

DIGITS PRESENT SPACING

EPSILON RADIX TINY

EXPONENT RANGE TRANSFER

FRACTION REPEAT TRIM

HUGE RRSPACING UBOUND

KIND SCALE VERIFY

LBOUND SCAN

ALL MAXLOC RESHAPE

ANY MAXVAL SPREAD

COUNT MERGE SUM

CSHIFT MINLOC TRANSPOSE

DOT_PRODUCT MINVAL UNPACK

EOSHIFT PACK

MATMUL PRODUCT

 188 Fortran 90 User’s Guide

A

A.5 Forward Compatibility
This next release of f90 is intended to be source code compatible with this
release.

If you generate any libraries with this release of f90 , they are not guaranteed
to be compatible with the next release.

A.6 Mixing Languages
On Solaris systems, routines written in C can be combined with Fortran 90
programs, since these languages have common calling conventions.

A.7 Module Files
If a file containing a Fortran 90 module is compiled, f90 generates a module
file (.M file) in addition to the .o file.

By default, such files are usually sought in the current working directory. The
-Mdir option allows you to tell f90 to seek them in an additional location.

The .M files cannot be stored into an archive file. If you have many .M files in
some directory, and you want to reduce the number of such files (to reduce
clutter), you can concatenate them into one large .M file.

 189

iMPact: Multiple Processors B

This appendix is organized into the following sections.

This appendix introduces ways to spread a set of programming instructions
over a multiple-processor system so they execute in parallel. The process is
called parallelizing. The goal is speed.

It is assumed that you are familiar with parallel processing and with Sun
Fortran and the SunOS or UNIX operating system.

B.1 Requirements
 Multiprocessor Fortran 90 requires the following.

• SPARC multiple processor system
• Solaris 2.3 Operating Environment, or later

Solaris 2.3 and later supports the libthread multi-thread library and
running many processors simultaneously. Fortran 90 MP has features that
exploit multiple processors using Solaris 2.3 and later.

• The iMPact MT/MP multiple processor package

Requirements page 189

Overview page 190

Speed Gained or Lost page 192

Number of Processors page 192

 190 Fortran 90 User’s Guide

B

B.2 Overview
In general, this compiler can parallelize certain kinds of loops that include
arrays. You can let the compiler determine which loops to parallelize (automatic
parallelizing) or you can specify each loop yourself (explicit parallelizing).

Automatic Parallelization

Automatic parallelization is both fast and safe. To automatically parallelize loops,
use the -parallel option. With this option, the software determines which
loops are appropriate to parallelize.

Example: Automatic parallelization. Do all appropriate loops.

Explicit Parallelizing

Explicit parallelization may yield extra performance at some risk of producing
incorrect results. To explicitly parallelize all user-specified loops, do the
following.

• Determine which loops are appropriate to parallelize.
• Insert a special directive just before each loop that you want to parallelize.
• Use the -explicitpar option on the compile command line.

Example: Explicit parallelization. Do only the “DO I=1, N ” loop.

demo$ f90 -parallel any.f90

demo$ cat t1.f90
...

!MIC$ DOALL See Appendix D, “iMPact: Explicit Parallelization.
!MIC$& SHARED(a, b, c, n)
!MIC$& PRIVATE(i)

DO i = 1, n ! This loop gets parallelized.
a(i) = b(i) * c(i)

END DO

DO k = 1, m ! This loop does not get parallelized.
x(k) = y(k) * z(k)

END DO

...
demo$ f90 -explicitpar t1.f90

iMPact: Multiple Processors 191

B

Summary

The following table summarizes the parallel options and the directive.

Notes on the Parallel Options and the Directive
• -parallel includes -explicitpar and does automatic parallelization.
• The parallelization options can be in any order but must be all lower case.
• All require a Fortran MP enhancement package and Solaris 2.2, or later.
• To get faster code, all require a multiprocessor system; on a single-processor

system the code usually runs slower.
• Using -explicitpar or -parallel has high risk as soon as you insert a

directive.
• You get automatic and explicit parallelization with the -parallel option.

• The compiler automatically parallelizes all appropriate loops.
• It also parallelizes any appropriate loops that you explicitly identify by a

directive (still a risk with directives of producing incorrect results).
• A loop with an explicit directive gets no reductions.

Standards

Multiprocessing is an evolving concept. When standards for multiprocessing
are established, the above features may be superceded.

Table B-1 Parallelization Summary

Options Syntax Risk of Incorrect Results

Explicit (only) -explicitpar Note directive, below.

Automatic and Explicit -parallel Note directive, below.

Automatic with reduction -parallel -reduction Note directive, below.

Directive

DOALL !MIC$ DOALL
!MIC$& SHARED(v1, v2, …)
!MIC$& PRIVATE(u1, u2, …
)

other parameters

High

 192 Fortran 90 User’s Guide

B

B.3 Speed Gained or Lost
The speed gained varies widely with the application. Some programs are
inherently parallel and show great speedup. Many have no parallel potential
and show no speedup. There is such a wide range of improvement that it is
hard to predict what speedup any one program will get.

Variations in Speedups
To illustrate the range of possible speedups, the following hypothetical
scenario is presented.

Assume 4 Processors
With parallelization the following variations occur. The normal upper limit
(with 4 processors) is about 3 times as fast.

• Many perfectly good programs, tuned for single-processor computation,
and with the overhead of the parallelization, actually run slower.

• Many perfectly good programs (tuned for single-processor computation) get
absolutely no speedup.

• Some programs run 10% faster

• A few less run 50% faster

• Even fewer run 100% faster

• A few have so much parallelism that they run 3 or 4 times faster.

Vectorization Comparison
If you have good speedup on vector machines (with an autovectorizing
compiler) a first-order rough approximation may be performed as follows.

speedup = vectorization * (number of CPUS - 1)

Remember that this is only a first-order rough approximation.

B.4 Number of Processors
To set the number of processors, set the environment variable PARALLEL.

iMPact: Multiple Processors 193

B

Setting environment variables varies with the shell, csh (1) or sh (1).

Example: Set PARALLEL to 4.

• sh :

• csh :

Guidelines for Number of Processors
The following are general guidelines, not hard and fast rules. It usually helps
to be flexible and experimental with number of processors.

For these guidelines, let N be the number of processors on the machine.

• Do not set PARALLEL to more than N (usually degrades performance)

• Try PARALLEL set to the number of processors wanted and expected to get.

• In general, allow at least one processor for activities other than the program
you are parallelizing (for overhead, other users, and so forth).
• For a one-user system, try PARALLEL=N-1 and try PARALLEL=N.

• For a multiple-user system, if the machine is overloaded with users it may
help to try PARALLEL set to much less than N. For example, with a 10 user
machine, it may help to try PARALLEL at 4, or 6, or 8. If you ask for 10 and
cannot get 10, then you may end up time-sharing some CPU’s with other
users.

demo$ PARALLEL=4
demo$ export PARALLEL

demo% setenv PARALLEL 4

 194 Fortran 90 User’s Guide

B

 195

iMPact: Automatic Parallelization C

This appendix is organized into the following sections.

This appendix shows an easy way to parallelize programs for multiple
processors. This is called automatic parallelizing. This is a “how to” guide.

C.1 What You Do
To tell the compiler to parallelize automatically, use the -parallel option.
Example: Parallelize automatically, some loops get parallelized, some do not.

What You Do page 195

What the Compiler Does page 196

Definition: Automatic Parallelizing page 197

demo$ cat t2.f90
...
DO i = 1, 1000 ! ← Parallelized

a(i) = b(i) * c(i)
END DO

DO k = 3, 1000 ! ← Not parallelized -- dependency
x(k) = x(k-1) * x(k-2) ! See page 196, under Dependency Analysis.

END Do
...

demo$ f90 -parallel t2.f90

See Appendix B, “iMPact:
Multiple Processors” for required
background.

 196 Fortran 90 User’s Guide

C

To determine which programs benefit from automatic parallelization, study the
rules the compiler uses to detect parallelizable constructs. Alternatively,
compile the programs with automatic parallelization then time the executions.

C.2 What the Compiler Does
For automatic parallelization, the compiler does two things:

• Dependency analysis to detect loops that are parallelizable
• Parallelization of those loops

This is similar to the analysis and transformations of a vectorizing compiler.

Parallelize the Loop

The compiler applies appropriate dependence-based restructuring
transformations. It then distributes the work evenly over the available
processors. Each processor executes a different chunk of iterations.

Example: 4 processors, 1000 iterations; the following occur simultaneously.

Dependency Analysis

A set of operations can be executed in parallel only if the computational result
does not depend on the order of execution. The compiler does a dependency
analysis to detect loops with no order-dependence. If it errs, it does so on the
side of caution. Also, it may not parallelize a loop that could be parallelized
because the gain in performance does not justify the overhead.

Example: Automatic parallelizing skips this loop; it has data dependencies.

You cannot calculate x(k) until two previous elements are ready.

Processor 1 executing iterations 1 through 250
Processor 2 executing iterations 251 through 500
Processor 3 executing iterations 501 through 750
Processor 4 executing iterations 751 through 1000

DO k = 3, 1000
x(k) = x(k-1) * x(k-2)

END DO

iMPact: Automatic Parallelization 197

C

Definitions: Array, Scalar, and Pure Scalar
• An array variable is one that is declared with dimensioning in a DIMENSION

statement or a type statement (examples below).

• A scalar variable is a variable that is not an array variable.

• A pure scalar variable is a scalar variable that is not aliased (not referenced in
an equivalence statement and not in a pointer statement).

Examples: Array/scalar, both m and a are array variables; s is pure scalar.

The variables u, x , z , and px are scalar variables, but not pure scalar.

C.3 Definition: Automatic Parallelizing

General Definition

Automatic parallelization parallelizes DO loops that have no inter-iteration data
dependencies.

Details

This compiler finds and parallelizes any loop that meets the following criteria
(but note exceptions below).

• The construct is a DO loop (uses the DO statement, but not DO WHILE).

• The values of array variables for each iteration of the loop do not depend on
the values of array variables for any other iteration of the loop.

• Calculations within the loop do not conditionally change any pure scalar
variable that is referenced after the loop terminates.

• Calculations within the loop do not change a scalar variable across
iterations. This is called loop-carried dependency.

DIMENSION a(10)
REAL m(100,10), s, u, x, z
REAL, TARGET :: x
REAL, POINTER :: px
EQUIVALENCE (u, z)
s = 0.0
...

 198 Fortran 90 User’s Guide

C

There are slight differences from vendor to vendor, since no two vendors have
compilers with precisely the same criteria.

Example: Using the -parallel option.

Exceptions for Automatic Parallelizing

For automatic parallelization, the compiler does not parallelize a loop if any of
the following occur:
• The DO loop is nested inside another DO loop that is parallelized.
• Flow control allows jumping out of the DO loop.
• There is a user-level subprogram invoked inside the loop.
• There is an I/O statement in the loop.
• Calculations within the loop change an aliased scalar variable.

Examples
The following examples illustrate the definition of what gets done with
automatic parallelization, plus the exceptions.

Example: Using -parallel, a call inside a loop.

...
DO i = 1, n ! ← Parallelized

a(i) = b(i) * c(i)
END DO
...

demo$ f90 -parallel t.f90

...
DO 40 kb = 1, n ! ← Not parallelized

k = n + 1 - kb
b(k) = b(k)/a(k,k)
t = -b(k)
call daxpy(k-1,t,a(1,k),1,b(1),1)

40 CONTINUE
...

iMPact: Automatic Parallelization 199

C

Example: Using -parallel , a constant step size loop.

Example: Using -parallel , a variable step size loop.

Example: Using -parallel , nested loops.

Example: Using -parallel , a jump out of loop.

INTEGER, PARAMETER :: del = 2
...
DO k = 3, 1000, del ! ← Parallelized

x(k) = x(k) * z(k,k)
END DO
...

INTEGER :: del = 2
...
DO k = 3, 1000, del ! ← Not parallelized

x(k) = x(k) * z(k,k)
END DO
...

DO 900 i = 1, 1000 ! ← Parallelized (outer loop)
do 200 j = 1, 1000 ! ← Not parallelized (inner loop)
...

200 CONTINUE
900 CONTINUE

DO i = 1, 1000 ! ← Not parallelized
...

IF (a(i) .gt. min_threshold) GO TO 20
...
END DO

20 CONTINUE
...

 200 Fortran 90 User’s Guide

C

Example: Using -parallel , a loop that conditionally changes a scalar variable
referenced after a loop.

...
DO i = 1, 1000 ! ← Not parallelized

...
IF (whatever) s = v(i)

END DO
t(k) = s
...

 201

iMPact: Explicit Parallelization D

The appendix is organized into the following sections.

This appendix shows an advanced way to parallelize programs for multiple
processors. This is called explicit parallelizing. It may be faster, with some risk of
incorrect results. This is a “how to” guide.

D.1 What You Do
To parallelize explicit loops, do the following.

• Analyze loops to detect those with no order-dependence. This requires far
more analysis and sophistication than using automatic parallelization.

• Insert a special directive just before each loop that you want parallelized.
• Use the -explicitpar option on the f90 command line.
• Check results very carefully.

What You Do page 201

What the Compiler Does page 202

Parallel Directives page 203

DOALL Loops page 206

Exceptions for Explicit Parallelizing page 208

Risk with Explicit: Nondeterministic Results page 209

Signals page 211

See Appendix B, “iMPact:
Multiple Processors for required
background.

 202 Fortran 90 User’s Guide

D

The special directive is described later, but first it is illustrated in the following
example.

Example: Parallelize the “DO I=1, N ” loop explicitly.

D.2 What the Compiler Does
For explicit parallelization, the compiler parallelizes those loops that you have
specified. This is similar to the transformations of a vectorizing compiler.

The compiler applies appropriate dependence-based restructuring
transformations. It then distributes the work evenly over the available
processors. Each processor executes a different chunk of iterations.

Example: 4 processors, 1000 iterations; the following occur simultaneously.

The “!MIC$ DOALL ” is
explained later.

!MIC$ DOALL
!MIC$& SHARED(a, b, c, n)
!MIC$& PRIVATE(i)

DO i = 1, n ! This loop gets parallelized.
a(i) = b(i) * c(i)

END DO
DO k = 1, m ! This loop does not get parallelized.

x(k) = y(k) * z(k)
END DO

demo$ f90 -explicitpar t1.f90

Processor 1 executing iterations 1 through 250

Processor 2 executing iterations 251 through 500

Processor 3 executing iterations 501 through 750

Processor 4 executing iterations 751 through 1000

iMPact: Explicit Parallelization 203

D

D.3 Parallel Directives
Explicitly parallelizing loops requires using both of the following:

• A parallel directive
• One or more command-line options

A parallel directive is a special comment that directs the compiler to do some
parallelizing. Directives are also called pragmas.

DOALL—Currently there is one parallel directive, DOALL. The compiler
parallelizes the next loop it finds, if possible.

Form of Directive Lines

Parallel directives have the following syntax.

A directive line is defined as follows.

• It starts with the 5 characters CMIC$ or !MIC$, followed by:
• A space
• A directive
• For some directives, one or more parameters

• Spaces before, after, or within a directive are ignored.

• Letters of a directive line can be in uppercase, lowercase, or mixed.

The form varies for fixed and free form source as follows.

Fixed
• Put CMIC$ or !MIC$ in columns 1 through 5.
• Directives are listed in columns 7 and beyond.
• Columns beyond 72 are ignored
• An initial directive line has a blank in column 6.
• A continuation directive line has a nonblank in column 6.

!MIC$ DOALL [general parameters] [scheduling parameter]

 204 Fortran 90 User’s Guide

D

Free
• Put !MIC$ followed by a space anywhere in the line.

The !MIC$ characters are the first nonblank characters in the line
(actually, non-whitespace).

• Directives are listed after the space.

• An initial directive line has a blank, tab, or newline in the position
immediately after the !MIC$.

• A continuation directive line has a character other than a blank, tab, or
newline in the position immediately after the !MIC$.

Thus, !MIC$ in columns 1 through 5 works for both free and fixed.

Example: Directive with continuation lines (DOALL directive and parameters.)

Example: Same directive and parameters, with no continuation lines.

!MIC$ DOALL
!MIC$& SHARED(a, b, c, n)
!MIC$& PRIVATE(i)

DO i = 1, n
a(i) = b(i) * c(i)

END DO

!MIC$ DOALL SHARED(a, b, c, n) PRIVATE(i)
DO i = 1, n

a(i) = b(i) * c(i)
END DO

iMPact: Explicit Parallelization 205

D

DOALL Parameters

The DOALL directive allows general parameters and a scheduling parameter.

Table D-1 DOALL General Parameters

Parameter Action

IF (expr) At runtime, if the expression expr is true, use multiprocessing.
If this parameter is not specified, and
 the loop was not called from a parallel region,
then use multiprocessing.

SHARED(v1, v2, …) Share the variables v1, v2, … between parallel processes.
That is, they are accessible to all the tasks.

PRIVATE(x1, x2, …) Do not share the variables x1, x2, … between parallel processes.
That is, each task has its own private copy of these variables.

SAVELAST Save the values of private variables from the last DO iteration.

MAXCPUS(n) Use no more than n CPUs.

Table D-2 DOALL Scheduling Parameters

Parameter Action

SINGLE Distribute one iteration to each available processor.

CHUNKSIZE(n) Distribute n iterations to each available processor.
• n is an expression. For best performance, n must be an integer constant.
• Example: With 100 iterations and CHUNKSIZE(4), distribute 4 iterations to each CPU.

NUMCHUNKS(m) If there are i iterations, then distribute i/m iterations to each available processor.
• There can be one smaller residual chunk.
• m is an expression. For best performance, m must be an integer constant.
• Example: With 100 iterations and NUMCHUNKS(4), distribute 25 iterations to each CPU.

GUIDED Distribute the iterations by use of guided self-scheduling.
• This minimizes synchronization overhead, with acceptable dynamic load balancing.

VECTOR Distribute 64 iterations to each available processor.
• If stripmining an inner loop, unrolling is used to automatically improve scheduling.

 206 Fortran 90 User’s Guide

D

Restrictions on DOALL Parameters
• No one variable can be declared both shared and private.
• The loop control variable of the DOALL loop must be declared private.
• These variables cannot be array elements or components of derived types.
• A directive can have many general parameters.
• A directive can have at most one scheduling parameter.

D.4 DOALL Loops
To use explicit parallelization safely, you must understand the rules for explicit
parallelizing. Explicit parallelization of a DOALL loop requires more analysis
and sophistication than automatic parallelization. There is far more risk of
indeterminate results. This is not only roundoff, but inter-iteration interference.

Definition

For explicit parallelization the DOALL loop is defined as follows:

• The construct is a DO loop (uses the DO statement, but not DO WHILE).

• The values of array variables for each iteration of the loop do not depend on
the values of array variables for any other iteration of the loop.

• Calculations within the loop do not change any scalar variable that is
referenced after the loop terminates. Such scalar variables are not guaranteed
to have a defined value after the loop terminates, since the compiler does
not ensure a proper storeback for them.

• For each iteration, any subprogram invoked inside the loop does not
reference or change values of array variables for any other iteration.

Explicitly Parallelizing a DOALL Loop

To explicitly parallelize a DOALLloop, do the following.

• Use the -explicitpar option on the f90 command line.
• Insert a DOALL parallel directive immediately before the loop, including

specifying each variable in the loop as shared or private.

iMPact: Explicit Parallelization 207

D

Example: Explicit, DOALL loop.

Example: Explicit, DOALL, some calls can make dependencies.

The code is taken from linpack . The subroutine daxpy was analyzed by
some software engineer for iteration dependencies and found to not have
any. It is a nontrivial analysis. This example is an instance where explicit
parallelization is useful over automatic parallelization.

demo$ cat t4.f90
...

!MIC$ DOALL
!MIC$& SHARED(a, b, c, n)
!MIC$& PRIVATE(i)

DO i = 1, n ! ← Parallelized
a(i) = b(i) * c(i)

END DO

DO k = 1, m ! ← Not parallelized
x(k) = x(k) * z(k,k)

END DO
...

demo$ f90 -explicitpar t4.f90

demo$ cat t5.f90
...

!MIC$ DOALL
!MIC$& SHARED(a, b, n)
!MIC$& PRIVATE(kb, k, t)

DO 40 kb = 1, n ! ← Parallelized
k = n + 1 - kb
b(k) = b(k)/a(k,k)
t = -b(k)
CALL daxpy(k-1,t,a(1,k),1,b(1),1)

40 CONTINUE
...

demo$ f90 -explicitpar t5.f90

 208 Fortran 90 User’s Guide

D

CALL in a Loop

It is sometimes difficult to determine if there are any inter-iteration
dependencies. A subprogram invoked from within the loop requires advanced
dependency analysis. Since such a case works only under explicit
parallelization, it is you who must do the advanced dependency analysis, not
the compiler.

The following rule sometimes helps with subprogram calls in a loop:

Within a subprogram, if all local variables are automatic, rather than
static, then the subprogram does not have iteration dependencies.

Note that the above rule is sufficient, but it is by no means necessary. For
instance, the daxpy() routine in the previous example does not satisfy this
rule, and it does not have iteration dependencies, although that is not obvious.

You can make all local variables of a subprogram automatic as follows:

• List them in an automatic statement. However, then you cannot initialize
them in a data statement.

D.5 Exceptions for Explicit Parallelizing
The following are the primary exceptions that prevent the compiler from
explicitly parallelizing a DO loop. The compiler issues error messages that the
loops are not parallelized, except for a DO loop nested inside another DO loop,
which is so common that messages would be distracting.

• The DO loop is nested inside another DO loop that is parallelized.

This exception holds for indirect nesting too. If you explicitly parallelize a
loop, and that loop includes a call to a subroutine, then even if you
parallelize loops in that subroutine, still, at runtime, those loops are not run
in parallel.

• A flow control statement allows jumping out of the DO loop.

• The index variable of the loop is subject to side effects, such as being
equivalenced.

• There is an I/O statement in the loop.

For the following exception, the compiler issues no error message.

iMPact: Explicit Parallelization 209

D

• If you explicitly parallelize a loop, and that loop includes a call to a
subroutine, then even if you parallelize loops in that subroutine, still, at
runtime, those loops are not run in parallel.

• Example: A parallelized loop with a call to a routine that also has a
parallelized loop.

D.6 Risk with Explicit: Nondeterministic Results
A set of operations can be safely executed in parallel only if the computational
result does not depend on the order of execution. For explicit parallelizing, you
(rather than the compiler) specify which constructs to parallelize, and then the
compiler parallelizes the specified constructs. You do your own dependency
analysis.

If you force parallelization where dependencies are real, then the results
depend on the order of execution; they are nondeterministic; you can get
incorrect results.

Testing is not Enough

An entire test suite can produce correct results over and over again, and then
produce incorrect results. What happens is that the number of processors (or
the system load, or some other parameter) changed. So you must test with
different numbers of processors, different system loads, and so forth. But this
means you cannot be exhaustive in your test cases.

...
!MIC$ DOALL
!MIC$& SHARED(a, x)
!MIC$& PRIVATE(i)

DO 100 i = 1, 200
...
CALL calc (a, x)
...

100 CONTINUE
...

SUBROUTINE calc (b, y)
...

!MIC$ DOALL
!MIC$& SHARED(…)
!MIC$& PRIVATE(m)

DO 1 m = 1, 1000
...

1 CONTINUE
RETURN
END

↑ At runtime, loops within this
subroutine do not run in parallel.

 210 Fortran 90 User’s Guide

D

The problem is not roundoff but interference between iterations. An example of
this is one iteration referencing an element of an array that is calculated in
another iteration, but the reference happens before the calculation.

One approach is systematic analysis of every explicitly parallelized loop. To be
sure of correct results, you must be certain there are no dependencies.

Example: Loop with dependency: parallelize explicitly, nondeterministic result

How Indeterminacy Arises

In a simpler example, 4 processors, 8 iterations, same kind of initialization:

• The first 2 iterations run on processor 1
• The next 2 iterations run on processor 2
• …

All processors run simultaneously, and usually finish at about the same time.
But the compiler provides no synchronization for arrays, and for many
reasons, one processor can finish before others; you cannot know the finishing
order in advance.

REAL a(1001), s / 0.0 /
DO i = 1, 1001 ! Initialize array a.

a(i) = i
END DO

!MIC$ DOALL
!MIC$& SHARED(a)
!MIC$& PRIVATE(i)

DO i = 1, 1000 ! This loop has dependencies.
a(i) = a(i+1)

END DO
DO i = 1, 1000 ! Get the sum of all a(i) .

s = s + a(i)
END DO
PRINT *, s ! Print the sum.
END

demo$ f90 -explicitpar t1.f90

Processor 1 Processor 2 Processor 3 Processor 4

a(1) = a(2) a(3) = a(4) a(5) = a(6) a(7) = a(8)

a(2) = a(3) a(4) = a(5) a(6) = a(7) a(8) = a(9)

iMPact: Explicit Parallelization 211

D

When processor 1 does a(2) = a(3) :

• If processor 2 has done a(3) = a(4) , then a(2) gets 4
• If processor 2 has not yet done a(3) = a(4) , then a(2) gets 3

Therefore the values in a(2) depend on which processor finishes first. After
completion of the parallelized loop, the values in array a depend on which
processor finishes first. And which finishes second, … So the sum depends on
events you cannot determine. The major variables in the runtime environment
that cause this kind of trouble are the number of processors in the system, the
system load, interrupts, and so forth. However, you usually cannot know them
all, much less control them all.

D.7 Signals
In general, if the loop you are parallelizing does any signal handling, then
there is a risk of unpredictable behavior, including a system hang, getting
hosed, and other generic bad juju.

In particular, if

• The I/O statement raises an exception
• The signal handler you provide does I/O

then your system can lock up. This causes problems even on single-processor
machines.

Two common ways of doing signal handling without being explicitly aware of
it are the following.

• Input/Output statements (WRITE, PRINT, and so forth) that raise exceptions
• Requesting Exception Handling

Example: Output that can raise exceptions.

Input/Output statements do locking, and if an exception is raised then there
may be an attempt to lock an already locked item, resulting in a deadlock.

One (possibly overly cautious) approach: If you are parallelizing, do not have
I/O in that loop, and do not request exception handling.

REAL :: x = 1.0, y = 0.0
PRINT *, x/y
END

 212 Fortran 90 User’s Guide

D

Example: Using a signal handler which breaks the rules.

CHARACTER string*5, out*20
DOUBLE PRECISION value
EXTERNAL exception_handler

PRINT *, ’ ’
PRINT *, ’output’
i = ieee_handler(’set’, ’all’, exception_handler)
READ(5, ’(E5)’) value
string = ’1e310’
READ(string, ’(E5)’) value
PRINT *, ’Input string ’, string, ’ becomes: ’, value
PRINT *, ’Value of 1e300 * 1e10 is:’, 1e300 * 1e10
i = ieee_flags(’clear’, ’exception’, ’all’, out)
END

INTEGER FUNCTION exception_handler(sig, code, sigcontext)
INTEGER sig, code, sigcontext(5)
PRINT *, ’*** IEEE exception raised!’
RETURN
END

213

Index

Symbols
!DIR$ in directives, 180
!MIC$ in directives, 183
.M files, 23
/usr/ccs/lib , error to specify it, 22
/usr/lib , error to specify it, 22

Numerics
132-column lines, -e , 17

A
a.out file, 10
abrupt underflow, 112
access

named files, 42
unnamed files, 43

accrued exceptions, do not warn, 106
actions

actions/options sorted by action, 13
and what options invoke them, 13
frequently used actions/options, 13

addenda for manuals, read me file, xxi
agreement across routines, -Xlist , 69
alias, 50

many options, short commands, 33

align
data types, 125, 126
double word, -dalign , 17
errors across routines, -Xlist , 69

allocated array, 91
ANSI

conformance check, -Xlist , 70
X3.198-1992 Fortran standard, 163

-ansi extensions, 15
AnswerBook, documents in, xix
ar , 58

create static library, 60
arithmetic

nonstandard, 111
standard, 111

array
allocated, 91
bounds, exceeding, 81
C FORTRAN differences, 130
dbx , 92, 93
slices in dbx , 93

asa FORTRAN print, 3
audience, xvii

214 Fortran 90 User’s Guide

automatic parallelization
definition, 197
exceptions, 198
overview, 190
usage, 195
what the compiler does, 196

automatic variables, 29
autovectorizing compiler,

comparison, 192

B
-Bdynamic , 15, 62
best

floating point -native , 23
performance, 25

binding
dynamic, 15, 17, 62
static, 15, 62

boldface font conventions, xxii
Boolean

constant, alternate forms, 168
type, constants, 167

bounds of arrays
checking, 81

box, clear, xxii
BS 6832, xviii
-Bstatic , 15, 62

C
C, 155

calls FORTRAN, 149
function return value, 141
is called by FORTRAN, 134

C FORTRAN
function compared to subroutine, 123
key aspects of calls, 122
labeled common, 147, 160

-c , compile only, 16
call

C from FORTRAN, 134
FORTRAN from C, 149

CALL in a loop, parallelize, 29

case preserving, 124
catalog, 2
Catalyst, 2
catch FPE , 83, 113
CDIR$ in directives, 180
-cg89 , 16
-cg92 , 16
CIF file, -db , 17
clear box, xxii
CMIC$ in directives, 183
code generator option, -cg yr, 16
command

ar , create static library, 60
asa , 3
compiler, 9
f90 , 9

comments
as directives, 179
to Sun, xxi, 20

compatibility
C, 188
FORTRAN 77, 184
forward, 188
with f77 I/O, 185
with f77 libraries, 185
with f77 object files, 184

compile
check across routines, -Xlist , 71
fails, message, 10
link for a dynamic shared library, 20
link sequence, 10
link, consistent, 65
make assembler source files only, 30
only, -c , 16
passes, times for, 30

compile action
align

on 8-byte boundaries, -f , 19
ANSI, show non-ANSI extensions,

-ansi , 15
assembly-language output files, keep,

-S , 30
check across routines, -Xlist , 32

Index 215

compile action (continued)
compile only, -c , 16
debug, -g , 20
DO loops for one trip min,

-onetrip , 25
do not trap on floating-point

exceptions, -fnonstop , 19
dynamic binding

-Bdynamic , 15, 62
-dy , 17, 62

executable file, name the, -o outfil, 25
explicit parallelization,

-explicitpar , 18
extend lines to 132 columns, -e , 17
fast execution, -fast , 19
feedback to Sun, -help , 20
-fixed-form source, -fixed , 19
floating point

best, -native , 23
free-form source, -free , 19
generate a CIF file, -db , 17
generate code for

generic SPARC, -cg89 , 16
SPARC, V8 -cg92 , 16

generate double load/store
instructions, -dalign , 17

global program checking, -Xlist , 32
library

add to search path for, -L dir, 22
build shared library, -G , 20
name a shared dynamic,

-h name, 20
license

do not queue request,
-noqueue , 24

information, -xlicinfo , 31
link with library x, -l x, 21
list of options, -help , 20
multi-thread safe libraries, -mt , 22
no automatic libraries, -nolib , 24
no run path, norunpath , 24
optimize object code, -On, 25
parallelize, -parallel , 26
pass option to other program,

-Qoption , 27
paths, store into object file, -R ls, 28

compile action (continued)
print

name of each pass as compiler
executes, -v , 30

version id of each pass as
compiler executes, -V , 30

profile by
procedure, -p , 26
procedure, -pg , 27

reduction, analyze loops for
reduction, -reduction , 27

report execution times for
compilation passes,
-time , 30

reset -fast so that it does not use
-xlibmopt , 31

set
directory for temporary files,

-temp= dir, 30
INCLUDE path, -I path, 21
module files path, -Mdir, 23

show commands, -dryrun , 17
show compile flags, -flags , 19
stack the local variables, -

stackvar , 29
static binding

-Bstatic , 15, 62
strip executable file of symbol table, -

s , 29
use fast math routines, -

xlibmopt , 31
verbose

-v , 30
compiler

command, 9
frequently used options, 13
passes, 30
recognizes files by types, 11

complete path name, 38
consistent

across routines, -Xlist , 69
arguments, commons, parameters,

etc., 32
compile and link, 11, 65

continuation lines, 165

216 Fortran 90 User’s Guide

conventions in text, xxii
Courier font, xxii
Cray

character pointer, 176
pointer, 171
pointer and Fortran 90 pointer, 172
pointer and optimization, 175

create
library, 59
SCCS files, 53

cross reference table, -Xlist , 32, 76
current working directory, 37

D
-dalign , double-word align, 17
data

inspection, dbx , 96
-db CIF file, 17
dbx , 77

allocated arrays, 91
arrays, 92
catch FPE , 82, 83
commands, 96
current procedure and file, 96
debug, 3
f90 -g , 20
-g , 79
locate exception

by line number, 82, 83
next , 81
print , 80
quit , 79
run , 80
set breakpoint, 79
structures, 85, 86, 87, 88, 89

debug, 113

allocated arrays, 91
arguments, agree in number and

type, 69
array slices, 93
arrays, 92
checking across routines for global

consistency, 69
column print, 93
common blocks, agree in size and

type, 69
dbx , 3
debugger , 3
generic function, 94
IEEE exceptions, 113
locating exception

by line number, 83
option, -g , 20
parameters, agree globally, 69
pointer, 90

to a scalar, 85
to an array, 86
to user defined type, 89

record, 90
row print, 93
slices of arrays, 93
stack trace, 84
structure, 85, 86, 87, 88, 89
trace of calls, 84
uppercase, lowercase, 96
user defined type, 87

debugger, main features, 96
declared but unused, checking,

-Xlist , 70
deep, vasty, 119
dependency

analysis, 196
with explicit parallelization, 210

diamond indicates nonstandard, xxii
differences

Fortran 90, standard, Sun, FORTRAN
77, 163

direct I/O, 45

Index 217

directive, 165, 179, 182, 203
DOALL, 182
explicit parallelization, 180, 182, 203
line defined, 180

directory, 37
current working, 37
object library search, 22
temporary files, 30

display to terminal, -Xlist , 71
division by zero IEEE, 101
-dn , 17, 62
DO loops executed once, -onetrip , 25
DOALL directive, 182
doall loop, 206
double-word align, -dalign , 17
-dryrun , 17
-dy , 17, 62
dynamic

binding, 17, 62
library, 61

build, -G , 20
name a dynamic library, 20
path in executables, 28

E
-e , extended source lines, 17
ed , 2
emacs, 2
email

alias, Sun Programmers SIG, 227
send feedback comments to Sun, xxi

environment
variable, shorten command line, 33

EOS package, 2
era , 2
errata and addenda for manuals, read me

file, xxi
error

standard error, 41, 44
standard error, accrued

exceptions, 111
errors only, -XlistE , 75

establish a signal handler, 109
event management, dbx , 96
ex , 2
exceptions

debugging, 113
explicit parallelization, 208
handlers, 102, 107
ieee_handler , 107
location in dbx

by line number, 83
unrequited, 111

executable file
built-in path to dynamic libraries, 28
names in, nm command, 60
naming it, 25
strip symbol table from, -s , 29

execution time
compilation passes, 30
optimization, 25

explicit
parallelization, 201

exceptions, 208
overview, 190
risk, 209

-explicitpar , parallelize explicitly, 18
extended

lines, -e , 17
syntax check, -Xlist , 70

extensions
non-ANSI, 15
to Fortran 90, 164

F
-f , align on 8-byte boundaries, 19
f90 command, 9
-fast , fast execution, 19
features

debugger, 96
Fortran 90, standard, Sun, FORTRAN

77, 163
feedback file for email to Sun, xxi
feedback to Sun, -help , 20
FFLAGS shorten command line, 33

218 Fortran 90 User’s Guide

file
a.out , 10
directory, 37
executable, 10
information files, xxi
internal, 46
object, 10
permissions C FORTRAN, 133
pipe, 41
redirection, 40
split by fsplit , 3
standard error, 44
standard input, 44
standard output, 44
system, 35

file names, 42
passing to programs, 43
recognized by the compiler, 11, 165,

166
FIPS 69-1, xviii
fixed

form source, 180
form source and tabs, 164

FIXED directive, 179
-fixed form source, 19
-flags synonym for -help , 19
floating-point

exceptions, -fnonstop , 19
Goldberg paper, xix
hardware, 33
option, -native , 23

-fnonstop no stop on floating-point
exceptions, 19

font
boldface, xxii
conventions, xxii
Courier, xxii
italic, xxii

FORTRAN
calls C, 134
is called by C, 149
read me file, bugs, new/changed

features, xxi
Fortran print, fpr , 3

FPE catch in dbx , 83
fpr FORTRAN print, 3
fpversion , show floating-point

version, 33
free

form source, 180
form source and tabs, 164

FREE directive, 179, 181
-free , free-form source, 19
fsplit FORTRAN file split, 3
function

called within a loop,
parallelization, 208

compared to subroutine, C
FORTRAN, 123

data type of, checking, -Xlist , 70
names, 124
return values from C, 141
return values to C, 155
unused, checking, -Xlist , 70
used as a subroutine, checking,

-Xlist , 70

G
-g , debug, 20
-G , generate a dynamic library, 20
generic functions, debug, 94
getcwd , 37
Glendower, 119
global program checking, 69
Goldberg, floating-point white paper, xix
gprof

-pg , profile by procedure, 27
gradual underflow, 112
graphically monitor variables, dbx , 97
GSA validated, xviii
guidelines for number of processors, 193

Index 219

H
-h name, 20
handlers, exception, 102, 107
hardware

floating-point fpversion , 33
-help , 20
-help , list of options, 20
Henry IV, 119
hexadecimal, 168
hierarchical file system, 35
Hollerith, 169
Hotspur, 119

I
I/O, 40
identifiers and lowercase, 124
IEEE, 101, 111, 113

754, xviii
exceptions, 102
signal handler, 109
standard 754-1985, 163
warning messages off, 106

ieee_flags , 104, 105
ieee_functions , 104
ieee_handler , 104, 107
ieee_values , 104, 106
impatient user’s guide, 5
INCLUDE path, 21
inconsistency

arguments, checking, -Xlist , 70
named common blocks, checking,

-Xlist , 70
increase stack size, 30
indeterminacy, how it arises, 210
index check of arrays, 81
information files, xxi
input

redirection, 40
standard, 44

inserting SCCS ID keywords, 53
installation directory, 65

interface
for C and FORTRAN, 119
problems, checking for, -Xlist , 70

internal files, 46
intrinsic procedures, extensions, 178
invalid, IEEE exception, 101
-I path, INCLUDE files, 21
italic font conventions, xxii

L
labeled common C FORTRAN, 147, 160
labels, unused, -Xlist , 70
LD_LIBRARY_PATH, 66
LD_RUN_PATH, 66

and -R , not identical, 28
-L dir, 22
libm , user error making it unavailable, 22
libraries

C FORTRAN, 131
paths in executables, 28
search order, 65

library, 57
build, -G , 20
create, 59
load, 21
loaded, 58
name a shared library, 20
paths in executables, 28
replace module, 61
static, 58

license
information, 31
no queue, 24

licensing, 3
limit stack size, 29
line length, 165
line number of

exception, 83
segmentation fault (SIGSEGV), 81

line-numbered listing, -Xlist , 71
lines extended -e , 17

220 Fortran 90 User’s Guide

link
options, 65
sequence, 10
suppress, 16

linker, search order, 65
lint-like checking across routines,

-Xlist , 69
list of options, -help , 20
listing

line numbered with diagnostics,
-Xlist , 69

-Xlist , 76
load

library, 21
map, 58

loaded library, 58
local

variables, 29
locating

exception
by line number, 83

segmentation fault by line
number, 82

long command lines, 33
loop

parallelizing a CALL in a loop, 29
lowercase, do not convert to, 124

M
M files, .M files, 23
-m linker option for load map, 58
main stack, 29
make, 50
making SCCS directory, 52
man pages, xix
manuals, xix
many options, short commands, 33
map, load, 58
mateo, 84
math

library, user error making it
unavailable, 22

-Mdir modules directory, 23
membership in SunPro SIG, Sun

Programmers Special Interest
Group, 227

MIL-STD-1753, xviii
miscellaneous tips

alias, many options, short
commands, 33

environment variable, many options,
short commands, 33

floating-point version, 33
mixing form of source lines, 166
monitor variables graphically, dbx , 97
MP FORTRAN, 189
–mt , multi-thread safe libraries, 22
multiprocessing standards, 191
multiprocessor FORTRAN, 189

N
name

compiler pass, show each, 30
executable file, 25

names in executable, nm command, 60
-native floating point, 23
NBS validated, xviii
nesting

parallelized loops, 198, 208
network licensing, 3
NIST validated, xviii
nm, names in executable, 60
no license queue, 24
-nolib , 24
non-ANSI extensions, 15
nondeterministic results, explicit

parallelization, 209
nonstandard

arithmetic, 111
indicated by diamond, xxii

-noqueue , 24
-norunpath , 24

Index 221

number of
processors for parallelization, 192

O
-O , 25

with -g , 25
-o , output file, 25
-O1 , 25, 26
-O2 , 25
-O3 , 25
object library search directories, 22
obscurities, checking for -Xlist , 70
octal, 168
ode to trace, 84
off

license queue, 24
link system libraries, 24
linking, 16
trap for floating-point exceptions, 19
warnings

IEEE accrued exceptions, 106
-xlibmopt , 31

-onetrip , 25
on-line

documents, xviii, xix
optimization

object code, 25
performance, 19

options, 12
and what actions they do, 15
frequently used, 13
list available options, -help , 20
listed by

option name, 15
what they do, 13

most frequently used, 12
options/actions sorted by option, 15
show list of, -help , 20

OPTIONS variable for command line, 33
order of linker search, 66

output
file, naming it, 25
redirection, 40
standard, 44
to terminal, -Xlist , 71

overflow
IEEE, 101
stack, 29

P
-p , profile by procedure, 26
parallel directive, 182
PARALLEL, number of processors, 193
-parallel , parallelize loops, 26
parallelization

automatic, 195
CALL in a loop, 29
explicit, 18, 201
general requirements, 189
number of processors, 193
overview, 190
reduction, 27
speed gained or lost, 192
summary table, 191

part numbers for manuals, xix
parts of large arrays in dbx , 93
pass

arguments by value, 127
file names to programs, 43

passes of the compiler, 30
path, 36

.M files, 23
built in during build of a.out , 67
INCLUDE files, 21
modules files, 23

path name, 38
absolute, 38
complete, 38
relative, 38

performance
optimization, 19

-pg , profile by procedure, 27
pipes, 41

222 Fortran 90 User’s Guide

pointee, 171
pointer, 171
pointer, debug, 90
porting

problems, checking, -Xlist , 70
position-independent code, 61
pragma, 179, 203
preconnected units, 44
prerequisites, xvii
preserve case, 124
print

array
parts of large, in dbx , 93
slices in dbx , 93

asa , 3
fpr , 3

PRIVATE parameter of DOALL, 183
procedure

profile -pg gprof , 27
process control, dbx , 96
processors

number for parallelization, 192
prof , -p , 26
profile by

procedure, -p , prof , 26
procedure, -pg , gprof , 27

prompt
conventions, xxii

pure scalar variable, 197
purpose of manual, xvii
pwd, 37

Q
-Qoption , 27

R
-R and LD_RUN_PATH, not identical, 28
-R list , store lib paths, 28
-r option for ar , 61
random I/O, 45
READMEs directory, xxi

record debug, 90
recursive I/O, 23
redirection, 40

standard error, 41
-reduction , parallelize automatically,

with reduction, 27
reference

versus value, C/FORTRAN, 127
referenced but not declared, checking,

-Xlist , 70
relative path name, 38
rename executable file, 6
replace library module, 61
retrospective of accrued exceptions, 111
return function values to C, 155
risk with explicit parallelization, 209
root, 36
run path in executable, 24
running FORTRAN, 6

S
-S , 30
-s , 29
safe libraries for multi-thread

programming, 22
sample interface C FORTRAN, 120
SCCS, 52

checking in files, 54
checking out files, 54
creating files, 53
inserting keywords, 53
making directory, 52
putting files under SCCS, 52

search
object library directories, 22

segmentation fault, 29, 82
some causes, 81

Index 223

set
directory for

temporary files, 30
INCLUDE path, 21
number of

processors for
parallelization, 192

Shakespeare, 119
shared library

name a shared library, 20
SHARED parameter of DOALL, 183
shell script, 49
shorten command lines

alias, 33
environment variable, 33

show commands, 17
SIG, Sun Programmers Special Interest

Group, xxi, 227
SIGFPE

debugging, 113
definition, 102, 107
detect in dbx , 113
generate, 107
when generated, 109, 113

signal
handler, 109
with explicit parallelization, 211

SIGSEGV, some causes, 81
size

of data types, 125, 126
slices of arrays in dbx , 93
Solaris, 2
source

lines -e , 17
source form

directives, 166
options, 165
suffixes, 166

speed gained or lost from
parallelization, 192

spirits, 119

stack
overflow, 29
variables, 29

stack trace, 84
-stackvar , 29
standard

arithmetic, 112
conformance to standards, xviii
error, 41
error, accrued exceptions, 111
Fortran 90, 163
input, 40, 44
output, 40, 44

statement
unreachable, checking, -Xlist , 70

static
binding, 17, 62
library, 58

strip executable of symbol table, -s , 29
structure

debug, 87, 88, 89
stupid UNIX tricks

shorten command line, alias, 33
shorten command line, environment

variable, 33
subprogram in loop, explicit

parallelization, 208
subroutine

compared to function, C
FORTRAN, 123

unused, checking, -Xlist , 70
used as a function, checking,

-Xlist , 70
suffix

of file names recognized by
compiler, 11, 165, 166

Sun Programmer Quarterly
Newsletter, 227

Sun, sending feedback to, xxi, 20
SunOS

5.x, 2

224 Fortran 90 User’s Guide

suppress
error nnn, -Xlist , 75
license queue, 24
linking, 16
trap for floating-point exceptions, 19
warnings

-Xlist , 76
SVR4, 2
symbol table

for dbx , -g , 20
strip executable of, 29

syntax
compiler, 9
errors, -Xlist , 70
f90 , 9

System V Release 4 (SVR4), 2

T
tab character in source, 164
-temp , 30
templates inline, 21
temporary files, directory for, 30
terminal display, -Xlist , 71, 76
textedit , 2
third-party software and hardware, 2
thread stack, 29
-time , timing compilation passes, 30
traceback

dbx , 84
ode, 84

tree, 36
triangle as blank space, xxii
turn off warnings about IEEE accrued

exceptions, 106
type checking across routines, -Xlist , 70
type declaration alternate form, 170
typewriter font, xxii

U
-U do not convert to lowercase, 124
underflow

abrupt, 112
gradual, 112
IEEE, 101

units, preconnected, 44
unrecognized options, 12
unrequited exceptions, 111
unused functions, subroutines, variables,

labels, -Xlist , 70
uppercase

debug, 96
external names, 124

usage
automatic parallelization, 195
compiler, 9
explicit parallelization, 201

V
-V , 30
-v , 30
variable

unused, checking, -Xlist , 70
used but unset, checking, -Xlist , 70

vasty deep, 119
verify agreement across routines,

-Xlist , 69
version

id of each compiler pass, 30
vi , 2

W
-w , 31
watchpoints, dbx , 97
where

exception occurred, by line
number, 83

execution stopped, 84
wimp, 77

interface to dbx , 3, 96

Index 225

X
xemacs , 2
-xlibmopt , use fast math routines, 31
-xlicinfo , 31
-Xlist , 71

a la carte options, 73
combination special, 73
defaults, 71
display directly to terminal, 71
errors and

cross reference, -XlistX , 74
listing, -XlistL , 74

sample usage, 72
suboptions, 73

details, 75
summary, 32, 74

-Xlist , global program checking, 32, 69
-XlistE , 74, 75
-Xlisterr , 75
-XlistI , 75
-Xlistl n, 76
-Xlisto , 76
-Xlistw , 76
-Xlistwar , 76
-XlistX , 76
-xnolib , 31, 32
-xnolibmopt , 31
-xO n, 32
-xpg , 32

Z
zero, division by, 101

226 Fortran 90 User’s Guide

Join the SunPro SIG Today
Sun Programmer Special Interest Group

The benefits are SIGnificant

At SunSoft, in the Software Development Products business of Sun Microsystems, our goal is to meet the needs of
professional software developers by providing the most useful line of software development products for the
Solaris platform. We’ve also recently formed a special interest group, SunPro SIG, designed to provide a worldwide
forum for exchanging software development information. This is your invitation to join our world-class
organization for professional programmers. For a nominal annual fee of $20, your SunPro SIG membership
automatically entitles you to:

• Membership on an International SunPro SIG Email Alias

Share tips on performance tuning, product feedback, or anything you
wish; available as a UUNET address and a dial-up number

• Subscription to the SunProgrammer Quarterly Newsletter

Includes advice on getting the most out of your code, regular features,
guest columns, product previews and the latest industry gossip

• Access to a Repository of Free Software

SunSoft will collect software related to application development and
make it available for downloading

• Free SunSoft Best-of-Repository CD-ROM

You receive one free CD-ROM for joining, plus we’ll take the cream of
the crop from the depository and distribute it to members annually

• Free Access to SIG Events

Including national events, like SIG seminars held at the SUG conference,
and regional SunPro SIG seminars

SPECIAL OFFER

Sign up today, and receive a SunPro SIG Tote Bag

A spiffy 15” x 12” black nylon Cordura tote with the SIG logo proof positive of your Power Programmer status

So join the SunPro SIG today. And plug into what’s happening in SPARC and Solaris development world-wide.
Simply complete the form below.

Mail to: SunPro SIG, 2550 Garcia Avenue MS UMPK 03-205, Mountain View, CA,94043-1100

TEL: (415) 688-9862

or

FAX: (415) 968-6396

Unfortunately we cannot accept credit card orders via Email since we need to have your signature on file.

Sign me up for SunPro SIG!

Sun Programmer Special Interest Group I’d like to pay
for my one-year
membership fee
of $20 by:

Date

Name

Title

Company ❐ VISA

Email Address

Address ❐ MASTERCARD

City State

ZIP Country Card # _______________

Phone Expiration Date: _________

Fax Signature:

ALL INFO MUST BE FILLED OUT ❐ Check made
payable to
SunSoft

SunSoft, A Sun Microsystems, Inc. Business

