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These lecture notes are based on ”Introduction to Linear Elasticity”
by P.L. Gould (see bibliography).

Here:
Mostly linear theory with exception of definition of strain.

(Non-linear theory see 'Introduction to continuum mechanics’.)
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1 Introduction and mathematical

preliminaries

1.1 Vectors and matrices

e A vector is a directed line segment. In a cartesian coordinate system it looks like

depicted in figure 1.1,

Figure 1.1: Vector in a cartesian coordinate system

e. g., it can mean the location of a point P or a force. So a vector connects direction
and norm of a quantity. For representation in a coordinate system unit basis vectors
e;, e, and e, are used with |e,;| = |e,| = |e,| = 1.

| - | denotes the norm, i. e., the length.

Now the vector a is

a=aze, +aye, + a.e, (1.1)

3
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with the coordinates (a,, a,, a,) = values/length in the direction of the basis vec-

tors/coordinate direction.

More usual in continuum mechanics is denoting the axis with e;, e; and eg

= a = aie; + ases + ases (12)

Different representations of a vector are

aq
a=|ay | =(a,a9,a3) (1.3)

a3

with the length/norm (Euclidian norm)

la] = \/a} + a3 + df . (1.4)

e A matrix is a collection of several numbers

Ay A Az ... Ag,
A — A'Ql A22 A23 .. A2n (15>
Aml Am2 Am3 <. Amn

with n columns and m rows, i.e., a (m xn) matrix. In the following mostly quadratic

matrixes n = m are used.

A vector is a one column matrix.

Graphical representation as for a vector is not possible. However, a physical inter-
pretation is often given, then tensors are introduced.

e Special cases:

. 0 000
— Zero vector or matrix: all elements are zero, e.g., a = (8) and A = (8 0 8)

— Symmetric matrix A = AT with A7 is the "transposed’ matrix, i.e., all elements

at the same place above and below the main diagonal are identical, e.g., A =

154
(32¢)
463
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1.2 Indical Notation

Indical notation is a convenient notation in mechanics for vectors and matrices/tensors.
Letter indices as subscripts are appended to the generic letter representing the tensor
quantity of interest. Using a coordinate system with (e;, e, e3) the components of
a vector a are a; (eq. 1.7) and of a matrix A are A;; with ¢ = 1, 2,...,m and j =
1, 2,...,n (eq. 1.6). When an index appears twice in a term, that index is understood
to take on all the values of its range, and the resulting terms summed. In this so-called
FEinstein summation, repeated indices are often referred to as dummy indices, since their
replacement by any other letter not appearing as a free index does not change the meaning
of the term in which they occur. In ordinary physical space, the range of the indices is
1,2,3.

Aii :ZAu :A11+A22+A33+...+Amm (16)
=1
and
aibi = a1b1 -+ a2b2 + ...+ ambm. (17)

However, it is not summed up in an addition or subtraction symbol, i.e., if a; 4+ b; or a; —b;.

o

free dummy

Further notation:

[ J
3
Hai = ajp - ag - as (19)
i=1
[
da; ) Ja;  Oay
oz, a; j wil a;, 0, + O ( )
or
81413 aAﬂ aAlg
813]' 0:61 + 8%2 + I ( )

This is sometimes called comma convention!
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1.3 Rules for matrices and vectors

e Addition and subtraction

component by component, vector similar.
e Multiplication

— Vector with vector

* Scalar (inner) product:

c:a-b:aibi (113)
* Cross (outer) product:
€e; €y e3 agbg — agbg
c=axb= a; ag ag| = a3b1 — a1b3 (114)

by by b3 a1by — asby

Cross product is not commutative.
Using indical notation
Ci = Eijra;by (1.15)

with permutations symbol / alternating tensor

(1 i, 7, k even permutation (e.g. 231)

—1 4, j, k odd permutation (e.g. 321
Eijk = ’ P (e ) . (1.16)
0 1, J, k no permutation, i.e.

two or more indices have the same value

\

* Dyadic product:
C=a®b (1.17)

— Matrix with matrix — Inner product:

C=AB (1.18)
Cir, = AijBji, (1.19)

Inner product of two matrices can be done with Falk scheme (fig. 1.2(a)). To

get one component C;; of C, you have to do a scalar product of two vectors a;
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and b;, which are marked in figure 1.2 with a dotted line. It is also valid for

the special case of one—column matrix (vector) (fig. 1.2(b))

- Bij b
~~~~~ TR e
(a) Product of matrix with matrix (b) Product of matrix with vector

Figure 1.2: Falk scheme

Remarks on special matrices:
e Permutation symbol (see 1.16)
.. . .
eijp = 5 (0= 7)1 = k)(k —1)

e Kronecker delta

1 ifi=j
5ij: j
0 ifij
SO
A(Sij@(éﬁg) fori,j—1,2,3
00X

6ijai = aj 5iijk = Dzk
e Product of two unit vectors

€ e =0 (orthogonal basis)

e Decomposition of a matrix

1 1
Ay = §(Aij + Aji) + 5(141']‘ —Aj)
—— ——

symmetric anti-symmetric/skrew symmetric

(1.20)

(1.21)

(1.22)

(1.23)
(1.24)

(1.25)

(1.26)
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1.4 Coordinate transformation

Assumption:

2 coordinate systems in one origin rotated against each other (fig. 1.3).

/
T3 3
S

Figure 1.3: Initial (21, z9, x3) and rotated (2, %, x%) axes of transformed coordinate sys-

tem

The coordinates can be transformed

x'l = 1171 + 19T2 + Q13T3 = Q15T (127)
l’/2 = Qg5 (128)
$g = Q3;T; (129)
= LL’; = Q;T; (130)
with the ’constant’ (only constant for cartesian system) coefficients
0x;
a;; = cos(x), ;) = 5 2 = cos(e], e;) = € - €. (1.31)
———— T,
direction cosine
In matrix notation we have
x' = R X. (1.32)
~
rotation matrix
Rij = Ty j (133)

So the primed coordinates can be expressed as a function of the unprimed ones

o = xi(x;) x' = x'(x). (1.34)
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If J = |R| does not vanish this transformation possesses a unique inverse

r=x(x)) x=x(x). (1.35)

J 1s called the Jacobian of the transformation.

1.5 Tensors

Definition:

A tensor of order n is a set of N™ quantities which transform from one coordinate system

x; to another z/ by

n order ‘ transformation rule
Iy

0 | scalar a a(x}) = a(x;)

1 | vector z; T = Qi

2 | tensor T;; TZ’] = apaiThy

with the «;; as given in chapter 1.4 (cy; = x; ;). So a vector is a tensor of first order which

can be transformed following the rules above.
Mostly the following statement is o.k.:

A tensor is a matriz with physical meaning. The values of this matriz are depending on

the given coordinate system.

It can be shown that

A’ =RAR". (1.36)
Further, a vector is transformed by
T = oy, or I = y;a; (1.37)
SO
Tj = QGjQply (138)
which is only valid if
Qi Qlyp = (Sjg . (139)

This is the orthogonality condition of the direction cosines. Therefore, any transformation
which satisfies this condition is said to be an orthogonal transformation. Tensors satisfying

orthogonal transformation are called cartesian tensors.
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Another 'proof’ of orthogonality: Basis vectors in an orthogonal system give

bij = €; - €] (1.40)
= (aurer) - (ajeer) (1.41)
= k€ - € (1.42)
= Q0o (1.43)
= QiR Qi (1.44)
=e; € (1.45)
= (axi€},) - (ausep) (1.46)
= i 0y Ok (1.47)
= il (1.48)

1.6 Scalar, vector and tensor fields

A tensor field assigns a tensor T(x,t) to every pair (x,t) where the position vector x
varies over a particular region of space and t varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x,t)
are continuous (or differentiable) functions of x and ¢. If the tensor T does not depend
on time the tensor field is said to be steady (7'(x)).

1. Scalar field: & = ®(x;,t) o = P(x,t)
2. Vector field:  v; = v;(x;, 1) v =v(x,t)
3. Tensor field: T;; =T;;(z;,t) T =T(x,t)

Introduction of the differential operator V: It is a vector called del or Nabla—Operator,
defined by

V=e aii and V2 = $ =V -V= 8?151- s (1.49)
Laplacian operator
A few differential operators on vectors or scalar:
grad d =V® = e (result: vector) (1.50)
divv=V-.-v =u; (result: scalar) (1.51)

curl v =V X v = g;,0k (result: vector) (1.52)
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Similar rules are available for tensors/vectors.

1.7 Divergence theorem

For a domain V' with boundary A the following integral transformation holds for a first-

order tensor g

/divng :/V cgdV = /n-gdA (1.53)

\4 \%4 A

/in7jdV:/ajinjdA (155)

and for a second-order tensor o

\<
I

/divadV = [ V.gdV /a’ndA. (1.56)
v 1% A

Here, n = n;e; denotes the outward normal vector to the boundary A.

1.8 Summary of chapter 1

Vectors
aq 1 0 0
a — a9 =a;-€e1t+ax-€2+as-es =a; 0 + ag 1 + as 0
as 0 0 1

Magnitude of a:

la| = \/a? + a3+ a3 is the length of a

Vector addition:

aq b1 a; + b1
(05} + bg - as + bg

as b3 as + bg
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Multiplication with a scalar:

aq C-ay
C- (05} = C- a9
as C- Qs

Scalar (inner, dot) product:

a-b:|a|]b|-cosgo:al-bl—l—ag-bg—l—ag-bg

Vector (outer, cross) product:

€ €z €3 azbs — asby
as @ a; a a, a
axb= a; Qg ag| = ex 2 5 — €9 ! 3+e3 ! 2 = (lgbl—albg
b2 b3 b1 bg b1 b2
by by b3 a1by — asby
Rules for the vector product:
axb = —(bxa)

(c-a)xb = ax(c-b)=c(axDb)
(a+b)xc = axc+bxc
ax(bxc) = (a-c)-b—(a-b)-c

Matrices

All A12 A13 Aln
A21 A22 A23 A2n

Aml Am? Am3 Amn

Multiplication of a matrix with a scalar:

ccA=A-c=c-Ay eg:c- A A _ c-Ay c-Ap
Agp A c-Ay c- Ao
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Addition of two matrices:

A+B=B+ A = (Ay)+ (Bix) = (Air + Bir)

A A n By DBis _ A+ B Ais+ By
Ay Ag Byy By Aoy + Boy A+ By

Rules for addition of matrices:

e.g.

(A+B)+C = A+(B+C)=A+B+C
Multiplication of two matrices:

l
C,‘k == AﬂBlk + AiQBQk + ...+ AilBlk == ZAiijk 1= 1, M k

J=1

B Bis
BQl 822

I
—_

e.g.

Ay Ag Aoy By + AgaBay A1 Big + Ay Bao

<A11 AlZ) (Aan + A12B12 A1 Bia + A12Boo

Rules for multiplication of two matrices:
A(BC) = (AB)C=ABC
AB # BA

Distributive law:
(A+B)-C=A-C+B-C
Differential operators for vector analysis

Gradient of a scalar field f(z,y, 2)

grad f(z1, x0, 05) = [ =552

Derivative into a certain direction:

0 a
—f(.Tl,Z'Q,.ng) = H : gradf(xlwr%xi%)

Oa

)
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Divergence of a vector field

0X n oY 4 0z
8331 8132 8.113

div V(X<x17 T2, $3), Y(-rla Z2, $3), Z(xh X2, xS)) =

Curl of a vector field

89z oy
Dz Ox3
curl v(X (z1, x9, x3), Y (21, 29, x3), Z (21, T2, T3)) = g—;i — g—fl
oY _ X
o1 Oz

Nabla (del) Operator V

0

ox1

_ d

V=

0

Oxs
of
ox1

V (21,9, 73) = 3—;; = grad f(z1, 72, 73)

of
Ox3

VV(X(J]l,x2,$3)7Y($1,ZE2,$3)7 Z(.Tl,ﬁ?g,l‘g)) = g_-ii + g_;; + g_xZS =divv

€ €z €3

=0 94 9 |_
VXxv= Or1  Oxy  Ox3 curlv
X Y Z

Laplacian operator A
Pu  Pu  u
ox?  Ox3  0x3

Au=V -V =divgradu =

Indical Notation — Summation convention

A subscript appearing twice is summed from 1 to 3.

e.g.:

3
CLin’ = E (Zibi
=1

= (Zlbl + agbz + a3b3

Djj = D11 + D22 + D33
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Comma-subscript convention

The partial derivative with respect to the variable x; is represented by the so-called

comma-subscript convention e.g.:

00 _ = grado
8:1@
gzz = v;,; = divv
dv;
or; Vi

v

axjﬁxk = ik

1.9 Exercise

1. given: scalar field

f(z1, 20, 23) = 321 + 116" + 129"

gradf(x17 T2, .T3) =7

gradf(3,1,0) =?

2. given: scalar field

3
flzy, 29, 23) = $% + 51’%

Lai=I"\)
N———

Find the derivative of f in point/position vector (2) in the direction of a (

3. gien: vector field
T+ x%
V = | e*1*8 4 sinxy

T1T2T3
diVV(X(:Cl, Ta, $3), Y(ill'l, Ta, .CCg), Z(l’l, Ta, l’g)) =7

divV(1,7,2) =?
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4. given: vector field
T+ X9
V = 6I1+x2 -+ T3

T3 + sinxy

(a)

cuer(xl, Ta, ZL‘3) =7

(b)
curlV(0,8,1) =7

5. Expand and, if possible, simplify the expression D;;z;x; for
(a) Dij = Dj;
(b) Dij = —Dj.

6. Determine the component f; for the given vector expressions
(a) fi = cijbj — cjib;
(b) fi = Bijf;

7. If r* = x;z; and f(r) is an arbitrary function of r, show that
(a) V(f(r)) = L=
(b) Vz(f(r)) = () + 2f;(r)’

where primes denote derivatives with respect to r.



2 Traction, stress and equilibrium

2.1 State of stress

Derivation of stress at any distinct point of a body.

2.1.1 Traction and couple—stress vectors

Figure 2.1: Deformable body under loading

Assumption: Deformable body
Possible loads:
e surface forces: loads from exterior
e body forces: loads distributed within the interior, e.g., gravity force

17
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At any element AA,, in or on the body (n indicates the orientation of this area) a resultant

force AF,, and/or moment AM,, produces stress.

) AF, dF, )
Aﬁffio AL di t, stress vector/traction (2.1)
AM,  dM,
AE,ILIL DAL AL C, couple stress vector (2.2)

The limit AA,, — 0 expresses that every particle has it’s ’own’ tractions or, more precise,
the traction vector varies with position x. In usual continuum mechanics we assume
C, = 0 at any point x. As a consequence of this assumption every particle can have
only translatory degrees of freedom. The traction vector represents the stress intensity at
a distinct point x for the particular orientation n of the area element AA. A complete
description at the point requires that the state of stress has to be known for all directions.

So t,, itself is necessary but not sufficient.
Remark:

Continua where the couple stress vector is not set equal to zero can be defined. They are
called Cosserat-Continua. In this case each particle has additionally to the translatory

degrees of freedom also rotary ones.

2.1.2 Components of stress

Assumption:
Cartesian coordinate system with unit vectors e; infinitesimal rectangular parallelepiped;

t; are not parallel to e; whereas the surfaces are perpendicular to the e;, respectively (fig.

2.2). So, all e; represents here the normal n; of the surfaces.

Each traction is separated in components in each coordinate direction
t; = 01 + 040€2 + 0i3€3 (2.3)
tz' = 0;;€;. (24)
With these coefficients o;; a stress tensor can be defined

011 O12 013
O = | 021 O922 023 | = 04y, (2-5>

031 032 033

with the following sign—convention:
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y

€3 A 013 —
> \
paT to
€3 o11
=)
T2
e

1 ‘y

1 t

Figure 2.2: Tractions t; and their components o;; on the rectangular parallelepiped sur-

faces of an infinitesimal body

1. The first subscript ¢ refers to the normal e; which denotes the face on which t; acts.
2. The second subscript j corresponds to the direction e; in which the stress acts.

3. 04 (no summation) are positive (negative) if they produce tension (compression).
They are called normal components or normal stress
o;j (i # j) are positive if coordinate direction x; and normal e; are both positive
or negative. If both differ in sign, o;; (¢ # j) is negative. They are called shear

components or shear stress.

2.1.3 Stress at a point

Purpose is to show that the stress tensor describes the stress at a point completely.

In fig. 2.3, f is a body force per unit volume and

dA; = dA, cos(n,e;) = dA,n - e; (2.6)
A; A;

— dA, = o :d k (2.7)
n-e; n;

with n- €, =n,e; - e, = nj(Sij ; n;. (28)

Equilibrium of forces at tetrahedron (fig. 2.3):

1

volume of the tetrahedron
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xs3
\ t;

. | / dA, n
\

dA2 —_— > 19
dA,
I
- dAs;
\l
t3

Figure 2.3: Tractions of a tetrahedron

Now, taking the limit dA,, — 0, i.e., h — 0 reduces the tetrahedron to a point which gives

tn = t,nl = 0;€;Nn;. 2.11
J J

Resolving t,, into cartesian components t,, = t;e; yields the Cauchy theorem

t,e; = 0i€iN; =1, = Ol (212)

with the magnitude of the stress vector
[ta] = V/(tits). (2.13)

Therefore, the knowledge of ¢; = oj;n; is sufficient to specify the state of stress at a point
in a particular cartesian coordinate system. As o is a tensor of 2. order the stress tensor

can be transformed to every rotated system by

0';-1» = OG0kl (214)

with the direction cosines «;; = cos(z}, x;).
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el

dA,

Figure 2.4: Normal and tangential component of t,,

2.1.4 Stress on a normal plane

Interest is in the normal and tangential component of t,, (fig. 2.4).

Normalvector: n = n;e;

Tangentialvector: s = s;e; (two possibilities in 3-D)

= Normal component of stress tensor with respect to plane dA,,:
Onn = tn -n = Jijniej s Nier

= aijnmmjk = Uijnjni
= Tangential component:

Ops — tn ©8 = 04iN;€5 - Sp€ = 045155

2.2 Equilibrium

2.2.1 Physical principles

Consider an arbitrary body V' with boundary A (surface) (fig. 2.5).

In a 3-d body the following 2 axioms are given:

1. The principle of linear momentum is
d2
/de%—/tdA:/pﬁudV
v A v

with displacement vector u and density p.

2. The principle of angular momentum (moment of momentum)

/(rxf)dV+/(rxt)dA:/(rXpﬁ)dV

14 A %4

21

(2.15)

(2.16)

(2.17)

(2.18)
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t
T3 /

T2

T

Figure 2.5: Body V under loading f with traction t acting normal to the boundary of the
body

Considering the position vector r to point P(x)

r=2z;e; (2.19)

and further
rxf= 5ijkx]~fkei (220)
rxt= 5ijkxjtkei (221)

The two principles, (2.17) and (2.18), are in indical notation

/fidV + /ajmjdA = p/i/lidV [note7 that () = j—;()} (2.22)
v A

|4

/eijkzzjfde—I—/ajkxjalknldA:p/sl-jkxjiikdv, (223)
\%4 A \%4

where the Cauchy theorem (2.12) has been used. In the static case, the inertia terms on
the right hand side, vanish.

2.2.2 Linear momentum

Linear momentum is also called balance of momentum or force equilibrium. With the

assumption of a C! continuous stress tensor o we have

/(f +V-o)dV = /piidV (2.24)

%4 1%
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or

\%

\%4

using the divergence theorem (1.56). The above equation must be valid for every element
in V, i.e., the dynamic equilibrium is fulfilled. Consequently, because V' is arbitrary the
integrand vanishes. Therefore,

V.-o+f=pu (2.26)

has to be fulfilled for every point in the domain V. These equations are the linear

momentum.

2.2.3 Angular momentum

Angular momentum is also called balance of moment of momentum or momentum equi-

librium. We start in indical notation by applying the divergence theorem (1.55) to

/[&Tijkxjfk —+ (&jkIjO'lk),l]dV = /paijkxjiide . (228)
\% \%

With the product rule

(€ijkTjom) 1 = €ijk|Tj 00 + Tj0uk,] (2.29)

and the property x;; = d;;, i.e., the position coordinate derivated by the position coordi-

nate vanishes if it is not the same direction, yields

/8Z‘j]€[$jf]€ + 5jlo-lk + CL’jO’lk’l]dV = /pswkx]ukd\/ . (230)
\%4 14

Applying the linear momentum (2.25)
ik (fr + owg — pii) =0 (2.31)
the above equation is reduced to

/%kéﬂolkdv =0 (232)
\%
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which is satisfied for any region dV' if
€ijk0jk =0 (2.33)

holds.

Now, if the last equation is evaluated for ¢ = 1,2,3 and using the properties of the

permutation symbol, it is found the condition
_ _ T
gij = 0ji oc=o0 (2.34)

fulfills (2.33).

This statement is the symmetry of the stress tensor. This implies that o has only six
independent components instead of nine components. With this important property of

the stress tensor the linear momentum in indical notation can be rewritten
0i; + fi = pl (2.35)

and also Cauchy’s theorem
ti = 0Ny . (236)

This is essentially a boundary condition for forces/tractions. The linear momentum are
three equations for six unknowns, and, therefore, indeterminate. In chapter 3 and 4 the

missing equations will be given.

2.3 Principal stress

2.3.1 Maximum normal stress

Question: Is there a plane in any body at any particular point where no shear stress
exists?

Answer: Yes

For such a plane the stress tensor must have the form

o= 0 o 0 (2.37)
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with three independent directions n®) where the three principal stress components act.
Each plane given by these principal axes n®) is called principal plane. So, it can be

defined a stress vector acting on each of these planes

t =c®n (2.38)

where the tangential stress vector vanishes. To find these principal stresses and planes
(k=1,2,3)
015 — o(k)nl ; 0 (239)

must be fulfilled. Using the Kronecker delta yields

This equation is a set of three homogeneous algebraic equations in four unknowns (n;

with i = 1,2,3 and ¢(®)). This eigenvalue problem can be solved if
|O'ij — a(k)5”| =0 (241)

holds, which results in the eigenvalues ¢®), the principal stresses. The corresponding
orientation of the principal plane n®) is found by inserting ¢*) back in equation (2.40)
and solving the equation system. As this system is linearly dependent (cf. equation

(2.40)) an additional relationship is necessary. The length of the normal vectors

) =1 (2.42)

(2 K3

is to unify and used as additional equation. The above procedure for determining the
principal stress and, subsequently, the corresponding principal plane is performed for

each ecigenvalue ¢® (k = 1,2,3).

The three principal stresses are usually ordered as

oM < o® <o, (2.43)

Further, the calculated n®) are orthogonal. This fact can be concluded from the following.

Considering the traction vector for £k =1 and k = 2

aijn§1) = J(l)ngl) aijn§-2) = 0(2)7152) (2.44)
and multiplying with ngz) and ngl), respectively, yields

anl® = WD
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al-jnf)ngl) = 0(2)n§2)n§1) )
Using the symmetry of the stress tensor and exchanging the dummy indices ¢ and j, the
left hand side of both equations is obviously equal. So, dividing both equations results in
0= (oW — 0(2))n(~1)n(2). (2.45)

Now, if o™ £ ¢® the orthogonality of nV) and n® follows. The same is valid for other

combinations of n*).

To show that the principal stress exists at every point, the eigenvalues o*) (the principal
stresses) are examined. To represent a physically correct solution ¢*) must be real-valued.
Equation (2.41) is a polynomial of third order, therefore, three zeros exist which are not
necessarily different. Furthermore, in maximum two of them can be complex because
zeros exist only in pairs (conjugate complex). Let us assume that the real one is ¢V and

the n"—direction is equal to the z;-direction. This yields the representation

o) 0 0
o= 0 o9 093 (2.46)

0 o9 o033

of the stress tensor and, subsequently, equation (2.41) is given as

(0(1) - U(k)){(am - U(k))(033 - U(k)) - 053} = 0. (2.47)

The two solutions of the curly bracket are

(U(k))2 — (092 + 033)0(k) + (092033 — 033) =0 (2.48)
(2,3) _ 1 2 _ 2
=0T =g {(022 + 033) & \/(022 + 033)%2 — 4(022033 023)} . (2.49)

For a real-valued result the square-root must be real yielding
!
(022 + 0'33)2 - 4(0'220'33 - 0'33) = (0'22 - 0'33)2 + 40'33 2 0. (250)

With equation (2.50) it is shown that for any arbitrary stress tensor three real eigenvalues

exist and, therefore, three principal values.
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2.3.2 Stress invariants and special stress tensors

In general, the stress tensor at a distinct point differ for different coordinate systems.
However, there are three values, combinations of o;;, which are the same in every co-
ordinate system. These are called stress invariants. They can be found in performing

equation (2.41)

lo5; — 0®5,5] = (0™)3 — I1(6®)2 + Le® — I, 20 (2.51)
with
Il = 0 = tro (252)
1
I = 5(01'1'%‘3' — 050;) (2.53)
I3 = ojj| = deto (2.54)

and represented in principal stresses

L =0 4+06® 450 (2.55)
I = (6Wo® 1 6@ @ 4 5B (2.56)
I =ocWePe®, (2.57)

the first, second, and third stress invariant is given. The invariance is obvious because
all indices are dummy indices and, therefore, the values are scalars independent of the

coordinate system.

The special case of a stress tensor, e.g., pressure in a fluid,

Oi5 = O'(](Sz‘j (258)

Q

Il

S

o
o o ~
o = O
— o o

043

4t = 0y, of a general stress state,

where o, is the mean normal stress state, the deviatoric stress state can be defined

is called hydrostatic stress state. If one assumes oy =

011 — Om 012 013
S=0—o0,1= 012 022 — O 023 . (2'59>

013 023 033 — Om
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In indical notation (I = ¢;;: itendity-matrix (3x3)):

Sij = 045 — 61]% (260)

where oy, /3 are the components of the hydrostatic stress tensor and s;; the components
of the deviatoric stress tensor.
The principal directions of the deviatoric stress tensor S are the same as those of the

stress tensor o because the hydrostatic stress tensor has no principal direction, i.e., any

direction is a principal plane. The first two invariants of the deviatoric stress tensor are

Jl = Sj; — (0'11 — O'm) + (0'22 — O'm) + (0'33 — O'm) =0 (261)
1 1
Jy = —581‘]'81‘]' = 6[(0(1) — 0(2))2 + (0(2) — 0(3))2 + (0(3) — 0(1))2], (2.62)

where the latter is often used in plasticity.

Remark: The elements on the main diagonal of the deviatoric stress tensor are mostly

not zero, contrary to the trace of s.

2.4 Summary of chapter 2

Stress

Tractions

033
Mt

032
031 e
013
012
t;, = 0ij € T =
o011
ty
\/
Stress Tensor
011 012 013 011,022,033 : normal components

g =
e om0 712,013,928 . hear components
031 O3 O -

31 P82 083 021,031,032
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Stress at a point

ti = Ujmj

Transformation in another cartesian coordinate system
/ — J—
045 = QipQji0 = Qg Okl

e o . ;o
with direction cosine: «;; = cos (2}, z,)

Stress in a normal plane
Normal component of stress tensor: Onn = 0NN,
Tangential component of stress tensor: o, = 0;;n;5; = \/titi — 02,
Equilibrium
Uij = Uji g — O'T
= oij.; +fi =0 (static case)

with boundary condition: ¢; = o;;n;

Principal Stress

In the principal plane given by the principal axes n¥) no shear stress exists.

Stress tensor referring to principal stress directions:

o 0 0
o= 0 o@ 0 with o < o® < o®
0 0 o®

Determination of principal stresses ¢*) with:

k !
|Uij —O'( )5Z]| =0 <
k
011 — o) 012 013
1
k _
021 022 —o®) 023 = 0

031 032 033 — a®)

29
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with the Kronecker delta ¢:

{1 if i =j
0ij = e
0 if 1 £ j

Principal stress directions n®:

(o35 — i) n§k) =0 —
(011 — U(k) ngk)+ o1 nék)+ o3 ngk) _0
031 ngk)_|_ 03 nék)-I— (035 — o®) nék) _0

Stress invariants

The first, second, and third stress invariant is independent of the coordinate system:

I, = o4=tro =01+ 0+ 033
1
L = 5(0uoj; = 0ij045)

= 011022 + 022033 + 033011 — 012012 — 023023 — 031031

[3 = |Uij| =deto
Hydrostatic and deviatoric stress tensors
A stress tensor o;; can be split into two component tensors, the hydrostatic stress tensor

Okk

1 00
o =0y |0 1 0 <= O'%:O'M(;ij with oy =
0 01

and the deviatoric tensor

011 —OM 012 013
S:U—O'MI: 091 092 — O\ 0923 <~
031 032 033 — OM
Okk
Uij = (5— + SZJ
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2.5 Exercise

1. The state of stress at a point P in a structure is given by

o11 = 20000
092 = —15000
o33 = 3000
012 = 2000
023 = 2000
031 = 1000 .

(a) Compute the scalar components ¢, to and t3 of the traction t on the plane
passing through P whose outward normal vector n makes equal angles with

the coordinate axes x1, x5 and x3.

(b) Compute the normal and tangential components of stress on this plane.

2. Determine the body forces for which the following stress field describes a state of
equilibrium in the static case:
011 = —23:% — 335% — D3
O99 = —2x§ + 7
o33 =4x1 + 29+ 323 —5
019 = T3+ 4x129 — 6
o13 = =311 + 219 + 1

0'23:0

3. The state of stress at a point is given with respect to the Cartesian axes x1, x5 and
x3 by
2 =2 0
o= | =2 2 0

0 —V2

Determine the stress tensor of; for the rotated axes z7, x3 and zj related to the

unprimed axes by the transformation tensor

S o

Qe =

= N =

= o)
S

N = N

Sl-
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4. In a continuum, the stress field is given by the tensor

127y (1—2dz, 0
3_3p
o= | (1 —ad)p, 2P - 2
0 0 223

Determine the principal stress values at the point P(a,0,2+/a) and the correspond-

ing principal directions.

5. Evaluate the invariants of the stress tensors o;; and 075, given in example 3 of chapter
2.

6. Decompose the stress tensor

3 -10 0
o= 1-10 0 30
0 30 —27

into its hydrostatic and deviator parts and determine the principal deviator stresses!

7. Determine the principal stress values for

(a)

0 1
oy=110 1
1 0
and
(b)
2 1 1
Uij: 1 2 1
1 1 2

and show that both have the same principal directions.



3 Deformation

3.1 Position vector and displacement vector

Consider the undeformed and the deformed configuration of an elastic body at time ¢t = 0

and ¢ = t, respectively (fig. 3.1). deformed

undeformed

r3X3
i

ZE1X1
Figure 3.1: Deformation of an elastic body

It is convenient to designate two sets of Cartesian coordinates x and X, called material
(initial) coordinates and spatial (final) coordinates, respectively, that denote the unde-
formed and deformed position of the body. Now, the location of a point can be given in

material coordinates (Lagrangian description)

P =P(x,t) (3.1)
and in spatial coordinates (Fulerian description)

p =p(X,1). (3.2)

Mostly, in solid mechanics the material coordinates and in fluid mechanics the spatial

coordinates are used. In general, every point is given in both

X = X(x,t) (3.3)

33
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x = x(X,t) (3.4)

where the mapping from one system to the other is given if the Jacobian

0X;
- . - Xz .
7=|5] = 1 (35)
exists.
So, a distance differential is
axr — 9K gy (3.6)
L aJ]j Ij ’

where ()* denotes a fixed but free distance. From figure 3.1 it is obvious to define the

displacement vector by

Remark: The Lagrangian or material formulation describes the movement of a particle,

where the Eulerian or spatial formulation describes the particle moving at a location.

3.2 Strain tensor

Consider two neighboring points p(X) and ¢(X) or P(x) and Q(x) (fig. 3.2) in both

configurations (undeformed/deformed)

r1X1
Figure 3.2: Deformation of two neighboring points of a body

which are separated by differential distances ds and dS, respectively. The squared length

of them is given by
|ds|* = dwdx; (3.8)

|dS|* = dX;dX;. (3.9)
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With the Jacobian of the mapping from one coordinate representation to the other these

distances can be expressed by

Ox; Ox;

|ds’2 = dx;dx; = IX, 0%, dX;dXy (3.10)
X; 0X;
j

To define the strain we want to express the relative change of the distance between the

point P and @ in the undeformed and deformed body. From figure 3.2 it is obvious that

ds+u+du—dS—u=0

(3.12)
= du = dS — ds.
Taking the squared distances in material coordinates yield to
|dS|2 — |dS|2 = XiijLkdlL'deTk — dl’ldl'l
= \(Xi,in,k — 5jkld$]dl’k (313)
ozt
with the Green or Lagrangian strain tensor 5ij, or in spatial coordinates
Ox; Ox;
2 2 % i
Ox; Ox;
— (i — =L TN AX - AX (3.14)
(O 0X, o) Kl X
_ozE,
with the Fuler or Almansi strain tensor 5;5,9.
Beware that in general (especially for large displacements) gjéj * X
Taking into account that
For = SR v =X — 9 = Xir = Uig + O (3.15)
o 0 0X 0 0 0 0
W 9% 0% s OFi i i (3.16)

X,  0X. OXy Tox. ox. U7 ax,
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the Green strain tensor is

1
Ef = 5 |(uig + 03 (utige + Oik) — Oji]

1
= é[uiJu@k + um&-k + 5ijui,k + 5jk — (5]- ]

(3.17)
= é[um + Uj,k + ui,juhk]
. Ou;
with Ui 5 = a—xj
and the Almansi tensor is
1 ou; ou;
E _ — S Y I L
ch = 5 |9~ 0= 350 = 5]
(3.18)

_1 ouy, n Ou, B ou; Ou;
210X, 0Xy,  0X;0Xy

3.3 Stretch ratio—finite strains

The relative change of deformation, the unit extension e, corresponds to the strain in a

particular direction. The definition in the undeformed configuration is

|dS| — |ds]|
—_— = 3.19
reRERC (3.19)
with the direction e = % = %. The strain tensor was defined by the absolute distance
|dS|? — |ds|?. Relating them to either the undeformed or deformed configuration yields
|dS[* — |ds|? dr;  dxy T wL
=2 - =2e -E”- 3.20
ds[? dai] Fdas] T © (3.20)
o dS|* — |ds|? dX dX
S| — lds|” _ o dX; p dXe o1 gr o (3.21)

dslz ~ “Jax,| kX,
Now with the trick

|dS|* — |ds|* ([ |dS| — |ds| |dS| + |ds]| B
a5 = ) @) =c-(e+2) (3.22)

|dS|—|ds| |ds| __ |dS|+]|ds]|
sl t2(as[= Jas|

the unit extension is given as root of

242 —2"-El.e=0 (3.23)
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ie.,

ele) = —1(i)\/1+2eT-EL.e (3.24)

where the minus sign is physically nonsense as there are no negative extensions. An

analogous calculation for the deformed configuration gives

ele)=1—+1—2" -EF-e. (3.25)

3.4 Linear theory

If small displacement gradients are assumed, i.e.

U jUgy << U j (3.26)
the non-linear parts can be omitted:
el = 3(uiy + uy;) 3.27
ou; Ou;;
-+ (329)
Furthermore,
ou;
Uiy << 1=~ —— (3.29)
J J an
and the strain tensors of both configurations are equal.
1
Eij = 61-Lj = 8Z~Ej = §<Uz‘,j + Ujﬂ‘) (330)

g;; is called linear or infinitesimal strain tensor. This is equivalent to the assumption of

small unit extensions €2 < ¢, yielding

2¢(e) =2’ -El-e=2e" -EF -e. (3.31)

With both assumptions the linear theory is established and no distinction between the
configurations respective coordinate system is necessary. The components on the main
diagonal are called normal strain and all other are the shear strains. The shear strains

here
1

1
gij = 5 Uiy +u0) = 5

2
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are equal to one-half of the familiar ’engineering’ shear strains v;;. However, only with

the definitions above the strain tensor

€11 €12 €13
€= |ci2 €22 €23 (3.33)

€13 €23 £33

has tensor properties. By the definition of the strains the symmetry of the strain tensor

is obvious.

3.5 Properties of the strain tensor

3.5.1 Principal strain

Besides the general tensor properties (transformation rules) the strain tensor has as the
stress tensor principal axes. The principal strains e*) are determined from the character-
istic equation

lei; —eWo;| =0 k=1,2,3 (3.34)

analogous to the stress. The three eigenvalues ¢*) are the principal strains. The corre-
sponding eigenvectors designate the direction associated with each of the principal strains
given by

| (3.35)

)

(e5 — Mdy)n

These directions n®) for each principal strain e*) are mutually perpendicular and, for
isotropic elastic materials (see chapter 4), coincide with the direction of the principal

stresses.

3.5.2 Volume and shape changes

It is sometimes convenient to separate the components of strain into those that cause
changes in the volume and those that cause changes in the shape of a differential element.
Consider a volume element V' (a X b X ¢) oriented with the principal directions (fig. 3.3),

then the principal strains are

Ab A
N ) B

a b c

(3.36)
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3, 2
.

1 b

a

Figure 3.3: Volume V oriented with the principal directions

under the assumption of volume change in all three directions.

The volume change can be calculated by

V 4+ AV = (a4 Aa)(b+ Ab)(c + Ac)
Aa Ab A
:abc(1+7a+76+70)+0(ﬁ) (3.37)

=V + (W +® + OV 4+ 0(A?).

With the assumptions of small changes A, finally,

A
7‘/ = 8(1) + 8(2) + 6(3) = & (338)

and is called dilatation. Obviously, from the calculation this is a simple volume change
without any shear. It is valid for any coordinate system. The dilatation is also the first

invariant of the strain tensor, and also equal to the divergence of the displacement vector:

V-u= U5 = E4j (339)

Analogous to the stress tensor, the strain tensor can be divided in a hydrostatic part

EM 0 0
€ii
ENn — 0 EM 0 6]\/[:? (340)
0 0 EM
and a deviatoric part
€11 — EM €12 €13
€p = €12 €22 —EM €23 . (3'41>

€13 €23 €33 — &M
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The mean normal strain €;; corresponds to a state of equal elongation in all directions
for an element at a given point. The element would remain similar to the original shape
but changes volume. The deviatoric strain characterizes a change in shape of an element

with no change in volume. This can be seen by calculating the dilatation of ep:

trep = (€11 —enm) + (622 —enr) + (33 —enm) =0 (3.42)

3.6 Compatibility equations for linear strain

If the strain components ¢;; are given explicitly as functions of the coordinates, the six

independent equations (symmetry of )
1
eij = 5 (uij + uj;)

are six equations to determine the three displacement components u;. The system is
overdetermined and will not, in general, possess a solution for an arbitrary choice of the
strain components €;;. Therefore, if the displacement components u; are single-valued and
continuous, some conditions must be imposed upon the strain components. The necessary
and sufficient conditions for such a displacement field are expressed by the equations (for

derivation see [2] )

Eijkm T Ekm,ij — Eik,jm — Ejm,ik = 0. (3.43)

These are 81 equations in all but only six are distinct

1 % 82822 _9 82512 )
© 013 03 021014
9 @ 82633 . 82523
© O 013 019013
32833 32511 52531
S o T o = 2 ors0n
! 3 ST or Vu,xExV=0 o (3.44)
4 0 (_8823 i 6631 n 8512) _ 0 €11
01, 0, 0y 03 012013
5 0 (8823 B 6831 n 8812) _ 82622
' (91'2 81‘1 01‘2 8x3 81‘381’1
¢ 0 (8523 N Oez1 8512) _ 0%e33
" Ox3 \ Oxry Ore  Oxs 0x10x3

The six equations written in symbolic form appear as

VXxExV=0 (3.45)
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Even though we have the compatibility equations, the formulation is still incomplete in
that there is no connection between the equilibrium equations (three equations in six
unknowns o;;), and the kinematic equations (six equations in nine unknowns €;; and w;).
We will seek the connection between equilibrium and kinematic equations in the laws of

physics governing material behavior, considered in the next chapter.
Remark on 2-D:

For plane strain parallel to the x; — x5 plane, the six equations reduce to the single
equation
€11,22 + €22.11 = 2€12,12 (3.46)

or symbolic
VxExV=0. (3.47)

For plane stress parallel to the 21 — x5 plane, the same condition as in case of plain strain

is used, however, this is only an approximative assumption.

3.7 Summary of chapter 3

Deformations

Linear (infinitesimal) strain tensor ¢:

1
eiLj = 55 =g = 5(“1] + uji)
U1 s(wia +uzy) g(urg +uzn) SRR Rl
e=| L(uip+ug1) Ug 2 s(uzs +uza) | = | 3721 €2 3
%(UL:} + u3,1) %(u2,3 + u32) 3,3 % 81 % Ja2 cas

Principal strain values £*):

!
i —eMai| =0
k).

Principal strain directions n'

(Eij — E(k)(sz) ngk) =0
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Hydrostatic and deviatoric strain tensors

A stress tensor o;; can be split into two component tensors, the hydrostatic stain tensor

. Ekk
5?;-[ = 5M5ij with EM = —

Q)

=

I

(@)

=
o o ~
R
— o o

and the deviatoric strain tensor

€11 — &M €12 €13
D
el —¢— eyl = €91 €99 —EM €23
€31 €32 €33 — &M
Compatibility:

Eim,In + Eindm — Emn,ll = €llmn <~
€1122 F €211 = 2€12,12 = V12,12
€9233 T €3320 = 2€23923 = V2323
€33,11 + €11,33 = 2€3131 = V31,31

€12,13 T €13,12 — €23,11 = €11,23
€9321 T €21,23 —€31,22 = €2231
€31,32 T €3231 —€12,33 = €33,12

3.8 Exercise

1. The displacement field of a continuum body is given by

Xlzl'l
XQ = $2—|—A.I3
X3 = .1'3+A.Z'2

where A is a constant. Determine the displacement vector components in both the

material and spatial form.
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2. A continuum body undergoes the displacement

31’2 — 4513'3
u = 2$1 — T3
41‘2 — T

Determine the displaced position of the vector joining particles A(1,0,3) and
B(3,6,6).

3. A displacement field is given by u; = 3z123, uy = 2x37; and uz = x% — T1xy. De-
termine the strain tensor €;; and check whether or not the compatibility conditions

are satisfied.

4. A rectangular loaded plate is clamped along the z1- and zy-axis (see fig. 3.4). On
the basis of measurements, the approaches €1 = a(ziwy + 13); €99 = bxyw3 are

suggested.
T2, Us

|

—=T71, U1

Figure 3.4: Rectangular plate

(a) Check for compatibility!
(b) Find the displacement field and

(¢) compute shear strain 7.



4 Material behavior

4.1 Uniaxial behavior

Constitutive equations relate the strain to the stresses. The most elementary description

is Hooke’s law, which refers to a one-dimensional extension test
011 = E€11 (41)

where F is called the modulus of elasticity, or Young’s modulus.

Looking on an extension test with loading and unloading a different behavior is found
(fig. 4.1).

@

Figure 4.1: 0-¢ diagram of an extension test

There @ is the linear area governed by Hooke’s law. In @ yielding occure which must be
governed by flow rules. @ is the unloading part where also in pressure yielding exist @.
Finally, a new loading path with linear behavior starts. The region given by this curve is
known as hysteresis loop and is a measure of the energy dissipated through one loading

and unloading circle.

44
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Nonlinear elastic theory is also possible. Then path @ is curved but in loading and

unloading the same path is given.

4.2 Generalized Hooke’s law

4.2.1 General anisotropic case

As a prerequisite to the postulation of a linear relationship between each component of
stress and strain, it is necessary to establish the existence of a strain energy density W
that is a homogeneous quadratic function of the strain components. The density function
should have coefficients such that W > 0 in order to insure the stability of the body, with

W(0) = 0 corresponding to a natural or zero energy state. For Hooke’s law it is

1
W = iOijkmsijekm. (42)
The constitutive equation, i.e., the stress—strain relation, is a obtained by
ow
o = (4.3)
" 867;]‘

yielding the generalized Hooke’s law
Oij = LijkmEkm- (4.4)

There, Cjkn is the fourth-order material tensor with 81 coefficients. These 81 coefficients
are reduced to 36 distinct elastic constants taking the symmetry of the stress and the strain

tensor into account. Introducing the notation

o = (011 0% 033 012 023 031)T (4.5)
and
€= (611 €22 €33 2e10 2603 2e31)T (4.6)
Hooke’s law is
ox = Cgymen KM=1,2...,6 (4.7)

and K and M represent the respective double indices:
1=11,2=22,3=33,4=12,5 =23, 6 = 31.
From the strain energy density the symmetry of the material-tensor
Cijkm = Crmij or Cxym =Cuxk (4.8)
is obvious yielding only 21 distinct material constants in the general case. Such a material

is called anisotropic.
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4.2.2 Planes of symmetry
Most engineering materials possess properties about one or more axes, i.e., these axes

can be reversed without changing the material. If, e.g., one plane of symmetry is the

x9 — x3—plane the z—axis can be reversed (fig. 4.2),

T

Orlglnal coordinate system ) One— symmetry plane ) Two—symmetry planes

Figure 4.2: Coordinate systems for different kinds of symmetry

yielding a transformation

-1 0 0
x=|0 1 0|x. (4.9)
0 01
With the transformation property of tensors
Oj; = Q0 (4.10)
and
€;j = aikaﬂekl (411)
it is
oy I11 €h 1
05 022 €5 €22
o; o e €
Bl=| P |=c|®|=c| ® | (4.12)

/ /
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The above can be rewritten
[C)y Oy O3 —Ciy Cis —Cig
Cop Oy —Ch Oy —Cy
033 —034 C’35 _036

o= € (4.13)
Cu —Ci5 Cu
sym. Cs5  —Cise
Céo

but, since the constants do not change with the transformation, C\4, Cig, Coy, Cog, Csy,

Cs6, Cus, Csg 20 leaving 21 — 8 = 13 constants. Such a material is called monocline.

The case of three symmetry planes yields an orthotropic material written explicitly as

_Cl 1 Cl 2 Cl 3 0 0 0
022 02 3 O 0 O

o= Cg 000, (4.14)
Cu 0 0
Syml. 055 0

Cos |

with only 9 constants. Further simplifications are achieved if directional independence,
i.e., axes can be interchanged, and rotational independence is given. This reduces the
numbers of constants to two, producing the familiar isotropic material. The number of

constants for various types of materials may be listed as follows:
e 21 constants for general anisotropic materials;
e 9 constants for orthotropic materials;
e 2 constants for isotropic materials.

We now summarize the elastic constant stiflness coeflicient matrices for a few selected

materials.

Orthotropic: 9 constants

011 012 013 0 0 0
022 023 0 0 0
Coz 000 (4.15)
Cy O 0
syml. 055 0

C166
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Isotropic: 2 constants

Cnu Ci Cp 0 0
Cni Chio 0 0
Cu 0 0

2(Cii — Cha) 0

syml. %(Cll — 012

MATERIAL BEHAVIOR

(4.16)

A number of effective modulus theories are available to reduce an inhomogeneous multi-

layered composite material to a single homogeneous anisotropic layer for wave propagation

and strength considerations.

4.2.3 Isotropic elastic constitutive law

Using the Lamé constants A, p the stress strain relationship is

20+ X A A 0 0
24 A A 0 O
2u4+Xx 0 0
g =
2 0
sym. 21

or in indical notation using the stress and strain tensors
Oij = Q[I,Eij + A(sijéfkk

or vice versa
Oij Aaijakk

C2u 2u(2u 3N

Other choices of 2 constants are possible with

e the shear modulus

o O O o O

24

€11
€22
€33
€12

€23

€31

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



4.2. GENERALIZED HOOKE’S LAW 49

e Young’s modulus

2
g 1Cpt 3N ’ (4.22)
[+ A
e Poisson’s ratio \
e aa— 4.23
ERETEDY (423)
e bulk modulus 5 29
K= _ Atk (4.24)
3(1—2v) 3

From equation (4.21) it is obvious —1 < v < 0.5 if A remains finite. This is, however, true

only in isotropic elastic materials. With the definition of Poisson’s ratio

P ] (4.25)

a negative value produces a material which becomes thicker under tension. These mate-

rials can be produced in reality.

The other limit v = 0.5 can be discussed as: Taking the 1-principal axes as e) = & then

both other are 2 = 3 = —ve (see equation (4.25)). This yields the volume change
AV
— =ci =e(1—2v) (4.26)

Now, v = 0.5 gives a vanishing volume change and the material is said to be incompress-
ible. Rubber-like materials exhibit this type of behavior.

Finally, using the compression/bulk modulus K and the shear modulus G and further
the decomposition of the stress and strain tensor into deviatoric and hydrostatic part,

Hooke’s law is a given (eij are the components of ep)

Ok = 3K5kk Sij = 2G6ij. (427)

4.2.4 Thermal strains

In the preceeding an isothermal behavior was assumed. For temperature change, it is
reasonable to assume a linear relationship between the temperature difference and the

strain

gij(T) = (T — To)dy; (4.28)
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with the reference temperature 7 and the constant assumed coefficient of thermal expan-
sion. So, Hooke’s law becomes

1
Eij = E[(l +v)0i; — v0ijom) + oy (T — Tp) (4.29)
or in stresses
Uij = 2M€Z‘j -+ /\6kk6ij — 0452-]- (3)\ + 2,LL) (T — T(]) (430)

Here, it is assumed that the other material constants, e.g., E and v, are independent of

temperature which is valid only in a small range.

4.3 Elastostatic/elastodynamic problems

In an elastodynamic problem of a homogenous isotropic body, certain field equations,

namely

1. Equilibrium

2. Hooke’s law

0ij = Njjerre + 2pei; 0 = M3epy + 2uE (4.32)
3. Strain—displacement relations

1 1
51’]’ = §(um + Ujﬂ) E = §<UVT + VUT) (433)

must be satisfied at all interior points of the body. Also, prescribed conditions on stress
and/or displacements must be satisfied on the surface of the body. In case of elastody-
namics also initial conditions must be specified. The case of elastostatic is given when
pu; can be neglected.

4.3.1 Displacement formulation

With a view towards retaining only the displacements u; the strains are eliminated in
Hooke’s law by using the strain—displacement relations

O35 = )\(Z-juk,k + M(U@j + Ujﬂ') . (434)
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Taking the divergence of ;;(= 0;; ;) the equilibrium is given in displacements
Mg i + p(wi g5+ wiig) + fi = pi; . (4.35)
Rearranging with respect to different operators yields
p jj + (A + pug + fi = pii (4.36)
or
pV*a+ A+ p)VV -u+f = pii . (4.37)

These equations governing the displacements of a body are called Lamé/Navier equations.
If the displacement field w;(z;) is continuous and differentiable, the corresponding strain

field €;; always satisfy the compatibility constrains.

4.3.2 Stress formulation

An alternative representation is to synthesize the equation in terms of the stresses. Com-
bining the compatibility constraints with Hooke’s law and inserting them in the static

equilibrium produce the governing equations

Okk,ij 1%
. TR U — 4.
Ty T fiit =% fks =0 (4.38)

Oijkk +

which are called the Beltrami—Michell equations of compatibility. To achieve the above
six equations from the 81 of the compatibility constrains several operations are necessary
using the equilibrium and its divergence. Any stress state fulfilling this equation and the
boundary conditions

t=on (4.39)

is a solution for the stress state of a body loaded by the forces f.

4.4 Summary of chapter 4

Material behavior
Generalized Hooke’s Law

0ij = Cijkm €km < ok = Ckmem
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with K, M =1,2,...,6 and K, M represent the respective double indices:
1=11,2=22,3=33,4=12,4=23,6=31

011 Cin Cip Cig Cuu Ci5 Cis €1
022 Cira Oy Cy Cy Cos O €22
033 | Ciz Coz Uz U3y C35 Csg ] €33
012 Ciy Cop O3y Cu Cus Cue €12
023 Cis Oy O35 Cys Css Csg €23
031 Cie Oy C3 Cass Css Ceg €31

Orthotropic material

011 Cn Cip Ci3 0 0 0 €11

022 Cia Cyp Cy 0 0 0 €22

033 | Ciz Cy Cs3 0 0 0 €33

ool | 0O 0 0 Cu 0 0 €12

023 0 0 0 0 Cs O €23

031 0 0 0 0 0 Cgs €31

Isotropic material

o11 2+ A A A 0O 0 O €11
T A 2u+X A0 0 0 €9
o3 | A A 2u+X 0 0 O €33
o | 0 0 0 2u 0 0 €12
0923 0 0 0 0 2u 0 €93
o31 0 0 0 0 0 2u £31
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Relation between Lamé constants A, 4 and engineering constants:

E
ne= Gy
g - A2pt3A)

A A
N = vE
(T +v)(1-2v)
A
1% — _—
2(p+A)
E
K = ———
3(1—2v)
3+ 2u
B 3

Thermal strains:
gij(T) = (T —Ty)dy
Oy = 2 + Aeprdij — adij(3A + 2u) (T — Tp)

4.5 Exercise

1. Determine the constitutive relations governing the material behavior of a point hav-
ing the properties described below. Would the material be classified as anisotropic,

orthotropic or isotropic?

(a) state of stress:
011 =10.8; 099 =34; 033=3.0;, 019=013=093=0
corresponding strain components:
enn=10-10"% 695 =2-10"% €33=2-107% cia =693 =64 =0
(b) state of stress:
o1 =10; 022 =2; o033=2; o1p=03=03 =0
corresponding strains:
e11 =10-107% g9 =e33 =10 = €93 =31 =0

(c) state of stress:

When subjected to a shearing stress o9, 013 or g9z of 10, the material develops

no strain except the corresponding shearing strain, with tensor component €15,

£13 OT €93, of 20 - 1074,
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2. A linear elastic, isotropic cuboid is loaded by a homogeneous temperature change.
Determine the stresses and strains of the cuboid, if

(a) expansion in 7 and zo-direction is prevented totally and if there is no preven-
tion in ws-direction.
(b) only in z;-direction, the expansion is prevented totally.

3. For steel E = 30-10° and G = 12-10°. The components of strain at a point within

this material are given by

0.004 0.001 0
€= 10.001 0.006 0.004
0 0.004 0.001

Compute the corresponding components of the stress tensor o;;.



5 Two—dimensional elasticity

Many problems in elasticity may be treated satisfactory by a two—dimensional, or plane

theory of elasticity. In general, two cases exists.

1. The geometry of the body is essentially that of a plate, i.e., one dimension is much
smaller than the others and the applied load is uniformly over the thickness dis-

tributed and act in that plane. This case is called plane stress (fig. 5.1).
/

T T3 ==

/

/ ™~
A

Figure 5.1: Plane stress: Geometry and loading

2. The geometry of the body is essentially that of a prismatic cylinder with one dimen-
sion much larger than the others. The loads are uniformly distributed with respect

to the large dimension and act perpendicular to it. This case is called plane strain
(fig. 5.2).

25
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X2

T

“’l‘l

Figure 5.2: Plane strain: Geometry and loading
5.1 Plane stress

Under the assumptions given above the stress components in x3—direction vanish

!
033 = 013 = 023 = 0 (5.1)

and the others are & = o(x1,23) only. Accordingly, the field equations for plane stress

are

oij; + fi = pl i,7=1,2 (5.2)

and

f3=0. (5.3)

Hooke’s law is under the condition of o;3 = 0

1+v v
_—Uz’j—E

E 5ij0kkz ’i,j, ]{? = 1, 2 (54)

5ij =

and

€33 = —=0kk - (55>



5.2. PLANE STRAIN o7

This result is found by simply inserting the vanishing stress components in the generalized

Hooke’s law (4.19). So, the stress and strain tensors are

o1 o2 0

o= |01 02 0 (5.6)

€= |c12 €2 0 : (5.7)

The €;3, 71 = 1,2, are only zero in case of isotropic materials. In terms of the displacement

components u;, the field equations may be combined to give the governing equation

E

i = pil L7 =1,2. 5.8
2(1 + v) ujzi + fi = pi (2%] (5.8)

LB
Y3 T )

Due to the particular form of the strain tensor, the six compatibility constraints would
lead to a linear function £33 and, subsequent ¢y, a parabolic distribution of the stress over

the thickness. This is a too strong requirement. Normally, only,
€11,22 + €22.11 = 2€12,12 (5.9)

is required as an approximation.

5.2 Plane strain

In case of plane strain, no displacements and also no strains in zz—direction can appear

due to the long extension,

Uy (71, T3)
u = | uy(ry,72) (5.10)
0
€33 = €13 = €23 = 0. (5.11)
This yields the field equations
oijj + fi=pl; 0,5 =1,2 (5.12)

and
fs=0. (5.13)
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Hooke’s law is then

0ij = Aijere +2pgy; 0,5,k =1,2 (5.14)

and

033 = VO, k =1,2 (5.15)

where the last condition is concluded from the fact €33 = 0. This is inserted to Hooke’s

law (4.19) and taken to express o33. The tensors look

o1 o2 O

g — | 012 099 0 (516)
0 0 033
€1 €12 0
€= |ecnp2 €2 0] . (5-17)
0O 0 O
The zero—valued shear forces o153 = 093 = 0 are a consequence of zero shear strains

€93 = €13 = 0. Hooke’s law can also be expressed in strains

1+v (1+v)v
Cij = E Oij — E

0ijOkk - (5.18)

Subsequent, for plane strain problems the Navier equation reads

E
20+ 0" oI =2

From this equation, or more obvious from Hooke’s law, it is seen that exchanging % with
E and * with v in plane strain or plane stress problems, respectively, allows to treat
both problems by the same equations. Contrary to plane stress, here, all compatibility
constraints are fulfilled, and only

€11,22 + €22.11 = 2€12,12 (5.20)

remains to be required.
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5.3 Airy’s stress function

First, assuming plane stress equation and introducing a potential function

f=-VV  fi=-V,. (5.21)

Forces which can be expressed in the above way are called conservative forces. Introducing

further some scalar function ¢(x) with

o =¢n+V (5.22a)
o2 =0¢011+V (5.22Db)
012 = —¢ 12 (5.22¢)

then Hooke’s law is
1
e11 = E[(Gb,m —vou) + (1 -v)V]

n = (61— vo) + (1= )V

] (5.23)
€12 = —%Qﬁ,u
v
€33 = —E[(¢,11 + ¢20) +2V] .
Inserting these strain representations in the compatibility constraints yields
1 1
E[¢,2222 — V@122 + (1 =v)Vor + ¢ 1111 — V@112 + (1 —v)V] = —a¢,1212 . (5.24)
Rearranging and using £ = 2(1 + v) the equation
Vip = —(1—-v)V?V (plane stress) (5.25)
with
V() = (D111 +2( ) 1122 + () 2222 (5.26)
is achieved. In the case of plane strain, the corresponding equation is
1-2
Vi = —MVZV (plane strain). (5.27)

(1-v)

For vanishing potentials V| i.e., vanishing or constant body forces, equations (5.25) and
(5.27) are identical to
Vigp =0 (5.28)
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Further, ¢ are called Airy stress function. These functions satisfy the equilibrium and the
compatibility constraints. The solution to the biharmonic problem in Cartesian coordi-

nates is most directly written in terms of polynomials having the general form
¢= > Copri'al . (5.29)
m n

This function has then to be applied to the boundary conditions.

5.4 Summary of chapter 5

Plane stress

!
033 = 013 = 093 = 0

o1 o012 0 €11 €12 O
o= |012 09 0 €= |c12 €2 0
0 0 0 0 0 £33

Plane strain

!
U3:0 :>€33:€13:€23:O

onn o2 0 €11 €12 0
o = 012 099 0 g = €12 €99 0
0 0 033 0 0 0

Airy’s stress function

The solution of an elastic problem is found, if the Airy’s stress ¢ function is known, which

e fulfills the biharmonic equation

Fo0) 0] R0}
N v _
ARG =V0= T " 25303 T gad ~°
o fulfills the boundary conditions of the problem
= Stresses:
0%¢ 0%¢ 0%¢

011 = 3 5 — ¢,22 022 = 55 — ¢,11 012 = — = —¢,12
ax% (9:10% amlaxQ
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Boundary conditions:

You have to distinguish between stress boundary conditions and displacement boundary

conditions.

Generally, at every boundary you can give either a statement about stresses or displace-

ments.

le.
e At a free boundary all stresses are known (o = 0), the displacements are not known
a priori.

e At a clamped boundary the displacements are known (u = 0), the stresses have to

be evaluated.

Surface tractions t at the boundary:
aijnj = tn

011N + oene = 1

012N + 022N = 1o
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5.5 Exercise

1. Which problem can be described by the stress function

F
—ﬁxlx%(?)d — 21)

¢ =
with the limits 0 < z; < 5d, 0 < 29 < d7

2. A disc (fig. 5.3) is loaded by forces F' and P. The following parameters are known:
[, h, thickness t of the disc which yields ¢t < [, h

4 l |4
A A
K
T T3 P
o — — = — - — 9 =
A r
Ve,

Figure 5.3: Clamped disc under loading

(a) Determine the stress boundary conditions for all boundaries.

(b) Determine the stress field of the disc using the Airy’s stress function.



6 Energy principles

Energy principles are another representation of the equilibrium and boundary conditions

of a continuum. They are mostly used for developing numerical methods as, e.g., the
FEM.

6.1 Work theorem

Starting from the strain energy density of linear elastic material W = %O'ijéij integrated

over the volume leads to the total strain energy in the mixed form

1
ES = 5 /O'ijEijdV . (61)
|4

Introducing Hooke’s law (4.4) yields the representation in strains
1
Eg = /WdV =3 /ajCUkmakde (see equation (4.2)) (6.2)
v v

or with the inverse of the material tensor

Eg = / 05;CrmordV (6.3)
14

N | —

represented in stresses. The equivalence of equation (6.2) and equation (6.3) is valid only

for Hooke’s law. Assuming a linear strain-displacement relation ¢;; = %(u” + u;;) the

total strain energy can be reformulated

1
2Eg = /Uijé(ui,j +uy;)dV = /Uij“ivjdv ' (64)
v \%4

63
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In the last integral the symmetry of the stress tensor and interchanging of the indices

oijui; = ojuj; is used. Next, partial integration and the Gaussian integral theorem

yields
/[O—i]”jUi + ojju; |dV = /(UijUi),jdV = /JijUinjdA : (6.5)
v 1% A
Introducing the boundary condition o;;n; = t; and the static equilibrium o;;; = —f; it
reads

A
/ tiudA + / FaugdV .
A

This expression is called work theorem which is in words:

Twice the total strain enerqy is equal to the work of the “inner force’, i.e., the
body force £, and of the ’outer’ force, i.e., the surface traction, t, on the

displacements.

Assuming now an elastic body loaded by two different surface tractions or body forces

D and t® or f1) and £ respectively, results in two states of deformation:

) and iV = o e uf! (6.7)
7 and £7 = o el (6.8)

Defining the interaction energy of such a body with the stresses due to the first loading

and the strains of the second loading:

Wy = / o edv = / P dA + / FuPav (6.9)
Vv

|4 A

With Hooke’s law it is obvious

US)@(J) = €kz)0km€ =eplol) (6.10)

taking the symmetry of the material tensor into account. So, concluding from this the

interaction energy is

Wu:/ Delay = /ff) D= Wy (6.11)

\% \%
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—

Figure 6.1: Elastic body with two different boundary conditions

and, subsequently, it holds

/ 0uPdA + / FOuPay = / £ dA + / fPuPav, (6.12)
\%4

A A \%

i.e., the work of the surface forces and body forces of state "1’ on the displacements
of state 27 is equal to the work of the surface forces and body forces of state 2’ on the

displacements of state ’1’. This is called the Theorem of Betti or Reciprocal work theorem.

6.2 Principles of virtual work

6.2.1 Statement of the problem

An elastic body V' with boundary A = A; + A (see fig. 6.1) is governed by the boundary

value problem

1. the equilibrium — static conditions

0455 = —f,L inV (613)
and the boundary conditions
Oijhy = %z on Al (614)

and
2. the compatibility constraints — geometric conditions

VXxExV=0 iV (6.15)
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with the boundary conditions

U; = Uy on A2 (616)

but these are identically satisfied when the strains are desired by differentiation from the

displacements, i.e.,

1
§(ui,j + Uj,i) (617)

when the differentiability of the displacements is given.

€z‘j =

In the above the bar () denotes given values.
For approximations which satisfy only
1. the 'geometric’ condition are called geometrical admissible approximations u;”

u; = uft + S, (6.18)

1
with du; small 'virtual’ displacement satisfying du; =0 on As.

2. the ’static’ conditions are called statically admissible approximations o7;

o5 = 07" + 00y (6.19)

ij
with 50’1']'71]' =0on Al

The virtual changes 0 of the displacements or stresses are small, i.e., infinitesimal, and real
but possible. Based on these preliminaries the principles of virtual work can be defined

either by assuming virtual displacements or virtual forces inserted in the work theorem.

6.2.2 Principle of virtual displacements

The virtual work due to a virtual displacement is given by

Using the property ou; ; = (du;),; and the definition of surface loads ¢; = o;;n; the first

integral reads

/ti5uidA—/0w5uznjdA /Uw5uz ),;dV (6.21)

A

A
= /O'ZJ](SU dV + /Uij5ui,jdV . (622)
\%4
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Substituting this result in the virtual work expression yields

oW = /(Uij,j + fl)éuldV + /aijéui,jd‘/ . (623)
\%4

Since, the equilibrium o;; ; + f; = 0 is valid one finds

é V g
6We;t,ernal 6Wi;t,ernal

the equivalence of the virtual work of external forces W, ternat and the virtual work of

internal forces dWinternai- The virtual work of internal forces are found to be

/Oz‘jfsum'd‘/: /%’5%6”/: /5klokzlij5€ijdv (6.25)
1%

\4
/5 ( gk,‘lck‘lljglj) dV = 5Winternal . (626>
v

In the last rearrangement it is used

1 1 1
0 (§€k10kzz'j5ij> = §5€leklz‘j€z‘j + §5kl0kzlij55ij (6.27)

= 5leklij55ij (628)

based on the product rule and the symmetry of the material tensor. Implementing in the
equivalence 0Weriernat = 0Winternat the displacement boundary condition, i.e., assuming
admissible virtual displacements the surface integral over A in 0W, . terna 18 reduced to an

integral over A; yielding
/ ) <%gk,0kmg,-j) dV — / Lidu;dA — / fioudV =0 (6.29)
% Ay v
or in a complete displacement description with €;; = %(uu + uj;)
/ 5 (%uk,lckmum) qv - / FousdA — / wdV =0 (6.30)
v Ay v

The above given integral equation is called the Principle of virtual displacements where

with the bar the given values are indicated. Taking into account that the volume V' and
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also the surface A of the elastic body will not change due to the ’virtual’ displacement,
and, also, that the prescribed boundary traction #; as well as the body forces f, will not

change, the variation, i.e., the sign §, can be shifted out of the integrals, resulting in

1 _ —
) /<§uk,lC;€lijui7]~> dV—/tzuZdA—/flude =0. (631)

\%4 Aq 14

(i)

The expression between the brackets is called total potential energy I1(u;). The condition
above

oll(u;) =0 (stationary potential energy) (6.32)

is a variational equation stating that the exact solution u$** gives the total potential
energy an extremum. It can be proven to be a minimum. If u? denotes an approximative

solution where h means the discretization it must be valid

M(ul?) < TM(u)  if  hy<h (6.33)

i.e., the principle of minimum total potential energy.

6.2.3 Principle of virtual forces

Next the complementary principle of the above is given. Instead of varying the displace-
ments, i.e., the geometric conditions, the forces, i.e., the statical condition, are varied. As

defined, virtual forces

have to satisfy
(5t2 =0 on A1 (635)

to be admissible, and, further, due to the equilibrium

(SO'ijJ‘ =0 inV . (636)

This is caused by the fact that the prescribed body forces f; are not varied §f, = 0.
Inserting these preliminaries into the work theorem (6.6) and performing the variation
0t;, it holds

external —

- / W;btidA . (6.37)

Az
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The internal virtual work produced by virtual stresses do;; is

itzternal = /gijéaijdv . (638)
1%

Expressing €;; with Hooke’s law by stresses and the inverse material tensor yields

internal —

(SVV->|< /ale’kl}jéal-jdV . (639)

v

As before, the variation can be extracted from the integral

1 1
/ale,giljéaijdV :/ |:§50kl0k_li1j0ij + 50’@0&%50‘2‘]‘] dV (640)
%
1
- /5 [aaklclgiljo-ij] dV =9 i));Lternal : (641>
%
Now, with the equivalence 6W} . ..., = 0WZ . . and the same argumentation as given

for virtual displacement formulation it is

1
0 /iale’,mljJijdV—/ﬂitidA =0 (642)
R \%4 Ao
*H:(r%')

where I1.(0;;) is called complementary total potential energy. Note, in (6.42) it is defined

with a negative sign. The variational equation

is as in case of virtual displacements an extremum of the total potential energy. Contrary
to there, here, due to the negative sign in the definition of II. it can be proven to be a

maximum. So, for static admissible approximations o;; it holds

I.(64) < (o) . (6.44)

ij

exact
7

and 7%t it is valid

Clearly, for the exact solutions u i

(™) = T (05) . (6.45)

% i
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Inserting the expression of both energies

1 _ - 1
/ - 5lekl,~j €ijdV — /tZUZdA — /fzuldV = — / - akl(],gil. aijdV + /ﬂitidA (646)
\%4 \%4

|4 Oij Ay £ij Az

yields the general theorem

Vv \4 Al A2
i.e., the work of the external and internal forces at the displacements is equal to twice the

strain energy.

6.3 Approximative solutions

To solve problems with Energy principles for realistic geometries require mostly approx-
imative solutions. Trial functions for the unknowns are defined often by polynomials. If
these functions are admissible such an approximation is called Ritz approximation, e.g.,

for the displacements

u(x) = ¢c , (6.48)

ie.,

fori =1,2,3in3-Dori=1,2in 2-D or ¢ = 1 in 1-D. The number n can be chosen
arbitrarily, however, it must be checked whether ti(x) is admissible, i.e., the geometrical
boundary conditions must be fulfilled. Using a symbolic notation and with the differential

operator matrix D from

e = Du (6.50)
(e see chapter 4) the total potential energy is
1 _ _
M) = 5 / (Du)’'CYDudV — / tTudA — / fTudVv . (6.51)
% Ay v

Inserting there the Ritz approach yields

1 . _
(a) = 5cT / (D@)'CH(De)dV ¢ — / T pdV + / tTpdA| c (6.52)
\4 \%4 Ay
1
= _c'Ryc—pjc. (6.53)

2
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In case of the simply supported beam (see exercise 6.5) it was
W(x) = ap + a1z + axx’® + azx® + g’ (6.54)

Qo
ai

=c=|ay (6.55)
as

aq

¢ = (1, x, 2% 2° a¥) (6.56)

or after inserting the geometric boundary conditions

w(x) = %xQ + az(2® — 12%) + ay(2* — 2?) (6.57)
wp
2
= [2%, 2 — 12, 2* — 2% | ay | . (6.58)
@ aq
——

To determine the unknown coefficients ¢ the principle of virtual displacements is used

o1l
ol = = 0e =0 (6.59)

yielding the equation system
RhC = Ph - (660)
Hence, by inserting this result in the total energy the approximative solution u™(x) gives

) 1
(@) = —5¢" pu , (6.61)

when the system of equations R,c = p;, is exactly solved.

The same procedure can be introduced for the complementary total potential energy.
With the admissible trial function for the stresses

o(x) = ¢c (6.62)

and
t(x) = n¢c (6.63)
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the complementary total potential energy in symbolic notation

1
Me=—3 / o'CladV + / a’tdA (6.64)
\4 Ag
is approximated by
1
.(6) = —écT / ' ClpdV c+ / ' ngpdA c (6.65)
\ ., & ,
1
= _ECTic +ujc. (6.66)

The variation following the principle of virtual forces

ST, =0 (6.67)

yields the equation system
FhC = up (668)

to determine the coefficients c. If this equation system is solved exactly the approximated

complementary total energy is

M.(&) = =Ty . (6.69)

6.3.1 Application: FEM for beam

Starting point is the total potential energy for a beam

l

Wpeam = %I/ )V2dw — /q(x)w(x)dx — ;F(m’z) gﬂ T;)w . (6.70)

0

The next question is on the approximation for the deflection w(x). First, the beam is
divided in elements I'. = [x., Z.;1] wherein each a cubic polynomial is used for the
unknowns w® and w'®, i.e., for the geometric boundary conditions. The transformation
from the global coordinate = € [x., Z.41] to the local 0 < & < 1is

T—Te T — e

£ = A — 3 (6.71)
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with the element-length .. So, the approximation in I, is

w'® (x) = wiN, (

T — T,

) i,

The test functions N; are

T — T e T — T ’e T — T
( / )+w2N3 ( I )+w2 N4 ( I

Ni(§) =1 -3¢ +2¢
No(€) = 1e(€ — 267 + &%)
Ny(€) = 3¢ —2¢°
Ny(€) = (=€ + &)
N;
1 |
1 === Nl N3 77777 i
N, |
45° |
ase\ 7
€0 N, el
=2 T = Tet1
Figure 6.2: Test functions of one element

with

a0
I

Iy
I

Iy
I

Iy
I

Iy
I

Iy
Il

~— ~— — — S ~—S ~— ~—
I
o O =R O O O O =

~~ I~ I~
7% 7008
I I
o o o o o o o O

Zzzzzzzz=

Ni(€=1)=0
No(€=1)=0
N3(§=1) =1
Ny(€=1)=0
N(§=1)=0
Ny(§=1)=0
N3¢ =1)=0
Ny(§=1) =1

73
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Inserting them in the energy, e.g., the strain energy is

EI 2

l N Te+t+1
d2 ’ ’
5 [ =250 [ | uimie + uf N + usha) + ug Ni)l| do
0 e=1 Te

(6.77)

for N elements. To find the N-sets of nodal values w$, w¢', w$ and wS the variation

ol Sws + ol dw§ =0 (6.78)

Con_ ., en . ol
B dws ows

dwy +

oIl —
ows ows

ows +

is performed taking each summand independently to zero. Taking into account

L 1P

and
Te+1

[ o [iGa e

Te

the above variation yields for the strain energy term

1
o  EIL , :
or T2 /{wf(—ﬁ +126) + w le(—4 + 66) + w§(6 — 126) + w l(~2 + 66)}
0
(6.81)
(=6 + 126)d¢ (6.82)
1
o0  EI
A /{...} (=4 + 66)dg (6.83)
0
1
0  EI
5 B {...}-(6—126)d¢ (6.84)
0
1
o  EI
g’ E~/{...}-le(6§—2)d§. (6.85)
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Performing these integrals and gathering the four equations in a matrix the system

12 —12 6l, 6l | [wS
EI |12 12 —6l, —6l.| |ws
3 |6l, —6l, 412 22| |wf

6l, —6l, 202 42| [w§

— K*w* (6.86)

is obtained with the element stiffness matrix K¢. Equation (6.86) can be reordered in

such a manner that degrees of freedom of each node are consecutive

12 6l | —12 6, wy
BI| 6l 42 | -6l 22 || wf | _ [K” Km]_Kewe (6.87)
B —12 —6l.| 12 —6l || wg K* | K* | |
6l 202 | —6l, A ws

The right hand side, i.e., the loading term in the total potential energy is found similar

l N Tetl

/q(x)w(m)dx = Z / q(x)w(z)dz . (6.88)

0 e=1 Te

After variation and integration one obtains

Oif : QOQZE (6.89)
Sur qf—g (6.90)
aig : q";e (6.91)
%S' : —qf—f (6.92)

Now, collecting all N elements in one system and taking into account that at adjacent

elements transition conditions (fig. 6.3) holds.
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‘ Let
e _‘ e+1
and
e e+1’
Wy = Wy

e+1

Wy

Figure 6.3: Transition conditions at adjacent elements

Further, for simplification, all elements will have the same length [, it is

(12 —12 61, 6. 0 0 | [we]
—12 12412 —6l, —6l,+6l, 6. 0 ws
0 —12 0 —6l, 0 6l ws
. . . . . _
EI o
B ,
412 212 0 ws
22 A2 +412 22 .- ws
sym. 0 212 812 22 w§
]
- —~ ———
K who o (6.93)
_ - o)
1 Bt
1 ? 1 % = L_H
3T g | 0wd T ou
1
. 0
2 owl
= qole
1o )
l 12 l ow!
1_60—{_ 1_62 %’21 - w2
A o
L 12 h
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If we reorder the element matrices K¢ like in (6.87) we obtain

K K2 0 0
| K KP+KY O KP 0 604
- 0 K2! K22+K11 K2 ( : )

2 2 3 3

0 0 K2! K2

6.4 Summary of chapter 6

Energy Principles

Work theorem

2F = /JijuinjdA—/aimuidV
A |4

A A

Geometric admissible approximations: u; = uf + Ju;

Statically admissible approximations: 7;; = afj’-‘m + 00

Principle of virtual displacements

6Wexternal = 5Winternal
/fzéu,dA—i—/ﬁéu,dV = /Uij5ui7j:/0ij§€ijdv
A \% \% \%

Principle of virtual forces

5 e*xternal - 6 ;;Lternal — /AﬂlétldA - / gij(so-ijdv
|4

Variational Principles

Principle of minimum total potential energy:

Oll(u;)) =0

1 _
) |:/ = Uk, Cklij Uy, j dV — / tzuldA — / quZdV:| ; 0
\% 2 A 1%
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1D:

Strain energy:
1 _ 1 - E 2 E 2 E 20 1 2
§Uk’l Cklzg U; 5 = §Uxm5xx - 5(“,1:) - E(Zw(l‘)) - 52 (w (:E))

= with dV = Adx = bdz dx:

1
/—uk7leliju,~7jdV = / / bdmdz
v 2
Ebh3 [
= / 2d,z/ (w”(z))*dx = /(w”($))2dx
. o 2.12 J,

2

= T i (w”(fc))zd:v

Loading:

ﬁ(x):% = /Vﬁ(x)w(x)d\/:/o %w(x)fldx:/o q(z)w(z)dx

single forces F(z;) : = =3 Fa)w(z)
single moments M(z;) : =+ " M(x;)w'(x;)

EI,

Hbeam (U}) - 9 o

Principle of minimum complementary energy:

1
5{ / = o Cl 0V — / aitidA] =0
\%4 2 A

1D:

1
/VQJM C’kh] o;dV = /xo/z ) QJM medzdx

M,(x)
Iy

¢ 2 b Y
1 My (l’) 2 9 1 9
— /xzo 3 BI dx /z:—h 2°dA = 2T, /., M, (x)dx
2

with o,, = z:
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prescr. boundary bending w(z;): = — ., F(z;)w(x;)

prescr. boundary incline @'(x;) : =+ 377 M(z;)w'(z;)

* 1 ‘
_Hbeam(M) = E 0 M;(l’)dl’

=3 Flata) + Y M) (@)

6.5 Exercise

1. Consider a beam under constant loading g(x) = gy, which is clamped at z = 0 and

simply supported at x = [, where this support is moved in z-direction for a certain
value, i.e. w(z =1) = wgp (fig. 6.4)!

Figure 6.4: Beam under loading

(a) Solve via Principle of minimum total potential energy!

(b) Solve via Principle of minimum complementary energy!



A Solutions

A.1 Chapter 1

1. (a)
L 3+ €2 + ze™
gradf(z,zq, x3) = —8“%;”22’“:3) = | 21" 4 11"
3f(xé§032,13) T L%
(b)
34 el +1e° 4+4¢
gradf(3,1,0) = | 3el+3e" | =]3+e
3-1-¢" 3
2. general:

0 a
a—i(l?hpmp:a) =17 gradf(php%p?))

al
with magnitude |a] = \/a? + a2 + a2

here:

21‘1

gradf(xy, zo,x3) = | 329

0

10

gradf(5,2,8) = | 6

0

<g> 10 3 10
o g =o| (6] =Lt@osor0) =0

V32407 + 42 o\, 0 b

80
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x1 + 23
div | e*1%3 +-sinaxy | = 1 4+ coszy + x129

X123

X(1,7,2)
div| Y(I,7,2) | =1+cosn+1-m=m
Z(1,m,2)

W5} —+ T2 T + )
curl | e®1722 4 g5 | =V X | e¥1122 4 g4

T3 + sin Ty T3 + sin

%(l’g +sinxy) — 8%3(6“1”2 + x3) -1

— 8%3(;51 + x5) — 3%(353 + sin ) = | —cosz

gy (€772 + w5) — (11 + 12) emtr — 1

X(0,8,1) 1
curl | Y(0,8,1) | = -1
Z(0,8,1) eS—1

5. expansion of D;;z;z;:
Dijilfil'j = Dljxlxj =+ DQj.TQIBj + ngl'gilfj
= Dz + Digxixg + Dizzixs
+ Do1xox1 + Dogwaxs + Dogwoxs

+ Ds1x371 + D3awsxy + Dssrsxs
simplifying:
(a) Dy = Dji
Dijxiv; = Dy1(21)? + Dag(w2)? 4+ Dag(w3)? 4+ 2D127129 + 2D 132173 + 2Dog a3
(b) Dij =—Dj;
D;jxix; = Dy (21)? + Day(29)* 4+ Dss(w3)? = 0

because D1y = Doy, D13 = D31, Doz = D3y and Dy = —Dqy, Doy = —Doo,
D33 = —Ds33



82 APPENDIX A. SOLUTIONS

fo= 02,1b1 - 01,251
+ c22b2 — C2.9bo
+ co3b3 — c32b3

= (c21 — €12)b1 + (c23 — €32)bs3

fo = Barf{ + Baafs + Basfs

7. (a)
_ B af B of or
Vi=fi= 5= o
with
or 0 1 1,0z 1 o
8% axz (xz ‘ .CCz) o (SL’@ xl) (ax, C X+ xza_xz> - Q(xz : xz) 2x;
T T
N €T;T; - T
follows

_0f i f0)x

or r r

Vf

or expanded:

2 2 2 2
T =x] + 25+ 23

0 or
s
or 0x;
with
1 _1
o0 [T (2% + a3+ 23); p(ad oyt ai), o
proiall RN Bl HCAUEC RaE L Bl PTG R OPRE Bl B
T3 (23 + a3 +23)3 (@ +ad+ 3) 3 o
follows
of x
Vf / —

o
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(b)

e
0w f)
) ff'(r) = 0 s
) B+ ) = 0 e
) B ) e )
-

— 1)+ 3110) - £,

= )+ 2f(0)

33
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A.2 Chapter 2

1. (a)

ti = ojie; = oyje; (035 = 05:)
20000 2000 1000 . 1 1 23000
t= ] 2000 —15000 2000|-—= | 1| = — | —11000
3 3
1000 2000 3000 V3 1 V3 6000

(b) normal component: o, = o;;n; = t;n;

| 23000 ] 1 1
Omn =1t;-n;=—=| —11000 | - —= | 1 | = £(23000 — 11000 + 6000) = 6000
V3 6000 V3 1 3( |

: . _ _ 2
tangential component: 0,5 = 0;;n;8; = \/titi — 02,

23000 1 23000

—11000 | —= | —11000 | — 60002

Ons = =
V3 6000 V3 6000

1
= \/§ (230002 + (—11000)2 4+ 60002] — 60002 = 13880.44

2. static problem o;;; + fi =0
—222 — 323 —5x3 w3 +4xiwy—6  —3x; + 2w+ 1
Oi5 = .T3+4$1£L'2 ) —233'%—'—7 0
—3$1+25L’2+1 0 4$1+$2+3$3—5
0ijj +fi=0
t=1: op1+opet+oss+fi=0
i=2: 0911+ 022 +033+ fo=0

i=3: 03,1 +032+t033+ f3=0

—4x1+42,+04+ f1=0 = f1=0
4$2—4$2+0+f220 = f2:o
34043+ f,=0 = f3=0

= =0
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! .
3. 0 = Qik * Qi+ Opg = Qi * Ot - A

T
calculation of ¢’ using Falk scheme: 7 -
«
1 1
2 —2 o L -2
1 1 1
—2 V2 0 'z 3 2
1 1 1
0 0 V2|5 3 —3
1 1 2
o = L[ -3 1 . —f1 0 0 2
1 1 1 2 2 2 2
I tE 0 1-v2 -1
11 1 2 2 2 2
4. stress tensor at point P:
0
Uij = a 0 0
0 0 8a
principal stress values:|o;; — o®)d,] =0
0— ok a 0
a 0— ok 0
0 0  8a—o®
(k) 0 a 0
— o _
-7 0 8a— o aO 8a—a(’“)+0

=o®280 — o3 _ 843 4 a®c™ L0 = oW=4q

& (—0"2 4 670+ 8a%) - (6™ —a) = 0
N ~~ 7 N——
=0=0(2);5(3) =0=0l=¢q

o2 — o0 7q — 842 =

(035 — oMy
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(0’11 — 0(1))71%1) + Ulzngl) + 01371:())1) =0

021n§1> + (099 — 0(1))n(21) + Jggn:(,)l) =0

aglngl) + 032n§” + (033 — 0(1))n§,1) =0

0 —a)n'” +anl’? +0=0 (1)
ant’ + (0—a)n’ +0=0 (2)
0+04+Ba—amn’ =0  (3)

1
¢9) 5
_| 2
R Vo
0
principal direction cor. to ¢® = —a:

0+ a)n'® +anf? +0=0 (1)
an?) + anéQ) +0=0 (2)
04+0+ Ba+any =0 (3)

principal direction cor. to ¢ = 8a:
—8(m§3) + (mg?’) +0=0 (1)
an&g) — Sanf’) +0=0 (2)
0+0+0n =0  (3)
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(3) ng ) = arbitrary

@) s =n
(1 ng” = sn?

0

n® = |0

1

5.

2 =2 0
055 = -2 \/§ 0

0 0 —v2

Li=04=0n+0n+033=2+V2—V2=2

1
I = 5 (0u0j; — 0ij0i;)

= 0110922 + 022033 + 033011 — 012012 — 023023 — 031031
=—6

2 =2 0

Li=[-2 V2 0 |=-4+4V2
0 0 —V2
0 0 2

o.=0 1-v2 —1
2 —1 1442

L=0+1-V2+14+V2=2

Iy = 011092 + 022033 + 033011 — 012012 — 023023 — 031031

=6

87
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0 0 2
L=0 1-v2 —1 |=—-4+4V2
2 -1 14++2

011+ 022+ 033 3
011 = = -

3

= hydrostatic stress tensor:

-8 0 0
c=10 -8 0
0 0 -8
= deviatoric stress tensor
3—om —-10 0 11 —10 O
S = —10 0—oym 30 =1-10 8 30
0 30 =27 — o 0 30 —19
-8 0 0 11 —-10 O
= 0y = 0 -8 0 + 11 -10 8 30
0 0 -8 0 30 —19
control: tr(S) Z0=11+8—19
principal deviatoric stress:
1S5 — S®| = 0
11-—8®  _10 0
—10 8—8W 30
0 30 —19 — S®)
8 — Stk 30 —10 30
=(11 - S® +10 +0
( ) 30 —19— 5% 0 —-19— 90

= — 5®3 4+ 12735®) _ 9672
=(8® = 31)(s™ —8)(s™ + 39)
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S = 39
S@ =3
S — 31

7. principal stresses:

(a)
055 — U(k)(5U| ; 0
0— o 1 1
1 0— o 1
1 1 0—o®
= _o®3 L35k L9 L 0 = oW= _1
= (—O‘(k)3 +30®) 4 2) = (O'(k) +1)- (_O.(k)Z +o® 4 2) 20
R (5 SR () B S
k2 _ k) _9_
1 2
23) _ - 4 ) (o
o (3) -
c@= -1
=2
(b)
2 — gk 1 1
1 2 — gk 1
1 1 2 — ok
— gk (k)
_(2_0(k)) 2—0 1 . 1 1 1 2—90¢
1 2 — gk 1 2—og® 1 1
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principal directions:

APPENDIX A.

(a) principal direction corresponding with o)

5 5\°
(2,3) -~ 4 e —4
=5+ (5)
5! 9
= — 4+ —
2 4
0(2):_
o¥=4
(0'11 — 0(1))7151) + Ulgngl) + O'lgnz(gl) =0

(1)

021n1

(1
0'31n1

1n
1n

1n

=nV=]_-L1

+ (022 —

(1)

) —I— 0'32712

gl) n 1né1)
(11) + 1ngl)
51) " 1ng)

1

V2
1

V2
0

0(1))ngl) + Jggnél) =0

+ (033 — U(l))ngl) =0

+1n’ =0 (1)
+1nd’ =0 (2)
+1n’ =0 (3)

L
V2
1
V2
0

=n® =

—2n§3) + 1n§3) + 1n§3) =

(3)

Iny™” — 2n§3) + 1n§3) =
1n§3) + 1n§3) — 2n§3) =

= n!

3) _

S-S5l

SOLUTIONS
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A.3 Chapter 3

u=X-x
material description: u(x)

U1:X1—$1:JI1—I1:0
U2:X2—$2:$2+A$3—£C2:A5E3

U3:X3—ZE3:ZE3+AI2—J)3:AZE2
spatial description: u(X)
inverting given displacement relations
(1) I = X1
(2) To = X2 — A(L’g
(3) T3 = Xg — sz
(3) in (2):

To = X2 - AX3 + A2l‘2

Xy — AX;
O T
in (3):
Xo— AX
I3:X3—A i—AQS
X3 — AX,
= I3 = 1_ A2

displacement vector:

wm=X7—11=X1—-—X:=0

Xo— AXy  —XoA?+ AX,
1— A2 1 — A2
Xa— AXy  —X3A?+ AX,
1— A2 1— A2

Uy = Xo — 19 = Xy —

uz = X3 — w3 = X3 —
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3.

strain tensor:

compatibility:

APPENDIX A.

u=X-x
31’2 - 4ZE3 X1 T T
21’1 — I3 == X2 - T2 + )
41‘2 — T X3 X3 T3
X T1 + 39 — 43
= X2 = 2231 + o — I3
X3 —1 + 429 + T3
34+3.6-4-6 3
B=XB)=| 2-3+6-6 | =] 6
—3+4-6+4+6 27
-3 —11 8
—
AB =B -A'=|l6|-|-1]|=]|T7
27 2 25

1 1
€11 3712 3713

ij = %721 €22 %723
%731 %732 €33
U1 %(UI,Q + ug1) %(UI,S + u31)
= %(Um + ug1) Ug,2 %(U2,3 + u39)
%(Ul,s + ug 1) %(U2,3 + ug2) U3 3
33 31122 + T3 —3To
= 31'133'2 + I3 0 %33'1
_%IQ %$1 21’3

€11,22 + €22.11 = 2€12,12

6+0=2-3

SOLUTIONS
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€22.33 + €3320 = 2€23 23

0+0=0 /

€3311 + €11,33 = 231,31
0+0=0 \/

€12,13 + €13,12 — €23,11 = €11,23

0+0-0=0 ,/

€923,21 T €21,23 — €31,22 = €22,31

0+0-0=0 ,/

€31,32 + €32.31 — €12,33 = €33,12

0+0-0=0 /
4. gwen:

(1) 11 = Uy = a(x%xz + x%)

(2) €99 = Uy = ba:lx%
e integration = displacement field: (c1; = uy 1;600 = u22)
(1) : /611 dr; = /Ul,l dr; =u; = %ami’xg + az1 75 + f(x2)
(2) : /522 dry = /“2,2 dry =Uu9 = %bmlxg + g(x1)
determine integration constants f(z2), g(x1) by applying boundary conditions:

ui(zy = 0,22) = u1 (1, 12 = 0) = 0

in (1) : 0+ f(z2) =0+ f(z2) =0 = f(x2)=0

uz (71 = 0,79) = uz(21, 29 = 0) = 0

in(2):  O0+4g(x)=0+g(x:)=0 = g(z1)=0
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e shear strain 7,

e check compatibility:

2D :

APPENDIX A. SOLUTIONS

Y2 = (12 + u21)

1 1
= 5‘15’7? + 3az 5 + gbxg’

!
€11,22 + €2211 = 2€12,12 = V12,12
6azxry + 0 = 6axs

= a=a
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A.4 Chapter 4
1.
OK = CKM EM
(a)
10,8 Cyy Crp Ciz 000 10-104
3, 4 Cia Coe 023 0 0 0 2.1074
3,0 o Ci3 Cy Cs3 0 0 O 21074
ol o o o 0
0 0 0 0 ? 0
0 0 0 0 0
(b)
10 0% 0,2-10* 0,2-10* 0 0 0 10- 104
2 0,2-10* 0
2| 0,210 0
0| 0 0
0 0
0 0
(c)
10|~ 0,5-10° 0 0 120104
10 0 0,5-10% 0 201074
10 0 0 0,5-10% 201074
(a) with (b)/(c)
104 0,2-10* 0,2-10 0 0 0
0,2-10% Cao Cas Ca Cas Ca
C o 07 2 : 104 C’32 CS3 C134 C’35 036
B 0 Cio Ci 0,510 0 0
0 Css Cks 0 0,5-10% 0

0 Cé2 Ce3 0 0 0,5-10%

95
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10,8 =10*-10-107*+0,2-10*-2-107*+0,2-10*-2-107*
3,4=0,2-10"-10- 107"+ Cpy - 2- 107 + Cp3-2- 1074
3,0=0,2-10*-10- 1074+ Cy3 - 2- 1074+ Cs5 - 2-1074

10,8 = 10,8
1,4=Chy-2-1074 4+ Cp3-2-1074
1,0=Chy-2-1074 + Cs5-2-107*

= 3 unknowns /2 equations!
(b) in (a): 024 = —034; 025 = —035; 026 = —Cgﬁ; 0= 024 -2- 10_4+Cg4‘2' 10_4;

suggestion: material isotropic?

2+A A A0 0 0

A 2u+4A A 0 0 0

c_| A A 2u+A 0 0 0
0 0 0 2z 0 0

0 0 0 0 2u O

0 0 0 0 0 2u

check:

011:104:2u—|—)\
Cia=0,2-10* =\

o — 05100 — 2 }:>2u+)\:0,7-1047é104:>notisotropic!
44 = U,0 = zft

It is an orthotropic material! (Cy and Css are still unknown!)

(a)

o] [2u+A A A 0 0][0] [aB\+2u)(T—1Tp]

092 A 20+ A A 0 0 0 0 a(3A+2u)(T — To)
0| A A 2u4+X 0 0 0 |ess a3\ +2u)(T — Tp)

ol | O 0 0 2u 0 o]0l 0

023 0 0 0 0 2u 0f]0 0

os] | 0 0 0 0 0 2ull0] [ 0 |
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97
o11 = Aes3 — a(3A +2p)(T — Tp) (1)
092 — )\533 — @(3)\ + 2/,6) (T — To) (2)
0= (2u+ Nesz — a(3A + 2u)(T — To) (3)
a3\ +2u) - (T —Tp)
3): =
A CTESY
E 1
— (T —Tp) - — _
(1—2v) (1-v) + (I+v)(1—2v)
E (1-2v)(1+v)
—a(T =Tp) - :
oT=T) 75y Fa—)+vE
(1+v)
)
. a(3A+2u)(T — T
in (1) : o1 =A\- ( 2;:)_(/\ ) _ a(3A +2u)(T — To)
vE (1+v) E
= T —T; —a(T —T;
T A A T B Gy s 9
(T —T) vE —E(1—v)
(1-=2v)(1—-v)
E(—1+2v)
=a(T —T;
T =T 5500
E
= —a(T - T,
o 0)1 -V
(2) . = 092
012 = 093 =031 =)

o] [2u+A A A 0 0] [0] [aBX+2u)(T-1Tp)
0 A2t A A 0 0 0 |ew| |aBN+20)(T-T)
0| A A 20+A 0 0 0 fess| [a@BA+2u)(T —To)
ol | 0 0 0 21 0 0] |en 0
093 0 0 0 0 2M 0 €93 0

| 031 | L 0 0 0 0 0 2[11_ | €31 i 0
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011 = )\(522 + 633) — 04(3/\ + 2#)(T — TO) (1)
0= (2,u + )\)822 + )\533 — 06(3)\ + 2#)(T — To)
0= Aeaz + (2u + Negz — a(3A +2u)(T — To)

622(2M+ )\ — /\) +€33()\ — 2,u — )\) = O
€29 = €33

(2)-@):

in (2) : (2 4+ A4+ Negg — aBA+2u)(T — Tp) =0
3N+ 2
(T —T)) E v
- T A
B E v(l+v)(1—2v)
=T =T, \E

= (T — Tp)(1 + v)

= &33

3N+ 2u
=\ — . — — . )
011 A 20./(T T()) 2[& TN OZ(T T()) (3)\ + ,u)
vE E
20(T —To)(1+v) — (T — Tp) =2

(1+v)(1 —2v)
E(2v—-1)
—ar -1 (257)

= —Eo(T - Tp)

0122023201322
0

€12 = €23 = €31 =

vE
A:(1+y)(1—2u) n==0=
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_E - 30 - 10°
- 2G - 2.12-106
0.25-30 - 106

=)\ = =12-10°
(1+0.25)(1 —2-0.25)

=V —1=0.25

011 = 2uer + Aopy (611 + €22 + €33) = 228000
O99 = 2UE99 + Aoy (€11 + €22 + £33) = 276000
033 = 2ues3 + Asz (e11 + €22 + €33) = 156000
19 = 2ie 15 = 24000

o13 = 2ue13 =0

093 = 2/1523 = 96000

228000 24000 0
= o= | 24000 276000 96000
0 96000 156000

99
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A.5 Chapter 5

1. (a) biharmonic equation:

4 4 4
8o o' ' _

2 =0
or] * Or20x3  Oxi
[3l0) F
0%¢ _ [3ad0) _ [o0) —0
ox?  0x3 Oz}
0 6F 6F
a—i = _le . dSIZ'Q -+ ﬁl’llg
0? 6F 12F
e L
2
¢ 12F
7
1
99 _,
x5

= 04 2-0+4 0 = 0 biharmonic equation is fulfilled

(b) stresses:

011 = 011 W = —$(6d1‘1 — 121‘1$2)
2
0%¢
022 = 022 = W =0
1
0?¢ 6Fx
o1z =02 = _8x13x2 - $<6d1’2 B 6$§) - d3 : (d B 2)
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x 30F
0 j 5d 1 S
n = (91)
boundary 1: 25 =0; 0 < z; < 5d; n; = ()
tt =o0nuni+o12-ne=011-04+ 012 (—1) =t} = —012(21,0) =0
tg = 021N + 09Ny = 012 * 0+ 0929 * (—1) = tg = —0'22(331,0) =0

boundary 2: z7 = 5d; 0 < 22 < d; ny = ()

F
t? =011 * 1 + 012 - 0= 011(5d,l’2) = ——3(6d 5d — 12 - 5d - 112) =
tg = 091 * 1 + 099 - 0= 0'21(5d, LL’Q) = —(d— 132)

boundary 3: 25 =d; 0 < 21 < 5d; ng = (9)

6£'d

t?2011'0+0—12'1:012(x1,d) :——(d—d):[)

a3
t;LIUQl‘O—i‘O'QQ'l:O

boundary 4: z; =0; 0 < 23 < d; ny = (')

t? =011 " (—1) + 012 - 0= —0'11(0,33'2) =0

6F'x
i (—d + 1)

tg = 091 * (—1) +0’22 -0 = —091 =

(c) deformations and displacements (assumption: plane stress)

1 6F ou
0 en = glon —vom) = —ppeld = 2m) = 50

1 6Fv ou
(2) €22 = 5(022 —voy) = g z1(d — 2x5) = —8;

2(1+v) 2(1 4 1) 6Fxy oy
(3) T2 = E 019 = z e (d—x3) = o

101

(d — 21’2)
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integration:
6F x?
(1) —E—dg(d—ZI‘g) : ?1+01(I2) = Uz
6Fv 212
(2) E_d3$(d$2 - 72) —+ CQ({L‘l) = U2
. (3u1 o 6L 2 601(1’2) )
in (3) Oxg B * Ory
duy  6Fv 222 0Cy(zy)
oo~ BRI T3 T
2(1 + V) 6F{L‘2 ! 6F 2 801(1‘2)
d —_— p—
- 5@ 4o (Edel o
6Ly 2&7% 602(1’1)
* (_Ed3 (d@ B T) o
F 2 802(1‘1) 24 v F 2 801(932)
— — 2 (6dxe — _ )
& Ed36x1 + v, ~ E 7 (6dxy — 6x5) oy
f(ﬂﬁls;Kl f(wzsir:Kz
802(ZL'1) F 2
T o T Ee™
801 ($2) . 24 v F
= O =-K; Tﬁ(fidl’g 6[[‘2)
integration:
24+ v F, dx? x5
Cl($2> = Tﬁ<6 22 —6§2>—K1LL’2+K2 = U1
F 6
02(1‘1) = —E—dggl'?‘l'Kll'l—f—Kg = Uy

Ky, Ky, K3 and K4 can be determined by evaluating the geometric bound-

ary conditions (not given here). These boundary conditions are necessary to

prevent rigid body displacement.
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2. (a) thin disc + loading in zz5-plane = plane stress can be assumed

= 033=013=023 =0

¥ l v
74 Fl
F4 F3
ol — v, owd P
[y Vo,
boundary I'y: (x9 = —h)
01} 011
op(re =—h)=0 (1)
o1a(ry=—h)=0 (2) 1
022
boundary T'y: (o = h) T?
012
o9(ze =h) =0 (3)
op(xe=h)=0 (4) o1 o1

boundary I's: (z; = 0)

h

P:/an(xlz())dA:t / oz = 0)dzs (5)

A wo=—h o1 P
h %J o
F = —/0'12(131 == O) dA = —t / 0'12(ZE1 == 0) dl’g (6) 12 F
A xro=—h

boundary I'y: (z1 =) (clamped boundary)
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h
(7) F=—t 0'12(ZE1 = l) dl’g
/

o
. )a 12 i
11
(8) P = t/O’ll(iEl = l)dl'g —— ‘4’
P
—h
M=F-Il

h
(9) F-l= —t/an(xl = l).fl)'g dl'Q
—h

(b) estimate a admissible stress function

e loading P = normal stress

- T -
- - N
i o1
Z2

B
o k
\ €

X2

O'ﬁ(fﬂl = 0) =0

M(z))=F-z; = oF grows linearly with x; = shearing stress

012 ¢ 012

0'2220

012 does not vary with z; (linear Moment M = constant shearing force)
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Ansatz:
011 = 0'1]\{ + Uﬁ = a1 + AT T2 = 72121
o 3] a2
= ¢’ = Ex% + Exlxg
O1p = az - T3+ as = — %5
a
= @712 = 33.’131 : 37% + 4122
d) = Qban + ¢012 = bll’% + le’lZEg + bg!Ell’Q
check:
o1 = @22 = 2by + 6byx1 72
0922 = ¢,11 =0
012 = —(/5,12 = —3521’3 — b3
compatibility:
AAp =10
B 0o 0o o
- Ot Tox?0xi  Oxd
=0+04+40=0

With boundary conditions (1) - (9):

[ = bﬂ% + bmxi + by 29]

105
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Constants by, by, b3 from boundary conditions:

(1) o99(za = —h) =0 validate assumption o9(z1,22) =0
(2) 0'12(£L‘2 = —h) = —3b2 . h2 — b3
= by = —3b2h2
(3) see (1)
(4) see (2)
h h
(5) P=t / o (21 = 0)dey =t / 2by dry =t [2b129)",
ro=—h —h
= t[2b1h + 2b1h] = 4tb1h
P
b = —
7T
h h
(6) F=—t / 0'12(%1 = 0) deQ = —t/<—362$§ — b3) dCL’Q == —t[—le’g — bgl’g]}ih
ro=—h —h

= —t(—byh® — bsh — (byh® + bsh)) = 2byth® + 2bsth
mit (2) F = 2byth® + 2 (=3byh®)th = —4byth?

S —
4th3
= by = E
4th
h h
(7) F= —t/O'lg(:l?l =1)dry = —t / (—3byxs — b3) dzy  see (6)
“h wy=—h
h h
(8) P= t/all(xl =1)dry = t/(%l + 6bylzy) dxe = 820129 + 3b2l$§]’ih
~h ~h
= t[2byh + 3bylh* — (—2b1h + 3bylh?)] = tdbih  see (5)
h h
9) F-l= —t/all(xl = l)xodry = —t/(2b1 + 6bolxs) - wo dry
~h ~h

= —t[ble% + 2b2l$%]}ih = —t(bth + szlh3 — (blh2 — 2b2lh3)) = —t4b2lh3

F
= by = s e (6)
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The stress boundary conditions validate the Ansatz functions and give the

constants by, by, bs.

= Stress functions:

P 3 F
= _— ———nx
T o T 2t
0'2220
3F , 3F 3F _ ,
T2 = s 4th_4th3(x2 )
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A.6 Chapter 6

1-D-Beam:
_/ Urx:E'gmm:E'u,m
u=z- tany = z - Y(x)
IZ = 0pe = B2/ ()
\+
S Ope = —Ezw"(2)
\ == 4 pr——
tan vy

M, = /zamdA = —Fuw" () /zsz
A A
—_——

:=I, (moment of inertia)

= M, =—-ELuw" (z)

Principle of minimum total potential energy:

(1) — % / (W (z))2dz — / o(x)w(z)dA

0

admissible 'ansatz’ has to satisfy all geometrical conditions of the problem

B(rz=0)=0 (1)
W(x=0)=0 (2
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= chosen global polynomial:

= 0(z) = =222 + ag(2® — 12%) + ay(z* — 1*2?)

The condition for the potential energy to reach an extremum for the exact solutions:

_oTI(w) on(a) .
5H(w) = aa3 5(13 + aa4 5(14 =0
ONl(w) ONl(i)
da; and Day 0

The explicit form of I1(w) is here:

with:

w'(z) = 23:% + a3 (32? — 2[x) + ay(42° — 21%2)

W (z) = 2% + a3 (62 — 21) + ag(122% — 21%)

l
T 2
() = / {2% + as(6x — 20) + a (1222 — 212>} dz

l
— Qo / {%ﬁ + az(2® — [2%) + ay(2* — l2x2)} dx
0

109
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l
n = 81;22”) =0 :%2/ {2% + az(6x — 20) + as(122° — 212)} (62 — 21)da
0
l
— Qo /(ac3 — lz%)dx
0
l
2 = 51;21”) 0 :%2/ {2“;—223 + az(6z — 21) + ay(122° — 252)} (122% — 21°)dx

l

— Qo /(:L'4 — 2% dx

0

explicit integration for (1):
EI/ {2—(633 —21) + a3(362* — 241z + 41?) + ay(722° — 241x* — 120%x + 4l3)} dx

l
= qo /(:1:3 — lz%)dx
0

l

< Bl [ %ﬁ — 4%%’ + 12a32° — 12a32° + 4122 + 18ayx* — Saylz® — 6a,l%2? + 4a4l3x]

1, 1)
afirie]
& EI(6Wp — 4Wp + 12a3l® — 12a3l® + 4asl® + 18a4l* — 8aul* — 6al* 4 4aul")

0

1 1
= QOzll4 - §QOZ4

qol Wp

1 Sy = — _Us
(1) s+ 200 = =057 = 55
21 qu wp

9 2oy = — _ s
() ast qploa =G5 OB
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2. gl [ 1 1
10— 22y = R i
a1 12 =15) = 57 ( BT 60)

_ 9
= M=ol
. qol Wp qo
1): — _YB .
(1) a5 == o 24E]
ge— D @l s
ST U8 EI 23

= the ’approximative solution’ is:

48 ET 203 24E1T1
_a? qox” 2 2
= wBﬁ(?)l — )+ 48EI(2$ + 31 — 5xl)

~ wp 5 ql wp
w(z) = l—3x2 - (—

l
) (2% —12%) + do (z* — 2?)
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Principle of minimum complementary energy:

1
2F1

T

—II*(M, B) = / M (x)dx —wp - Q(z = 1)

where Q(x =1) = M'(z =1)
test function for the bending moment M (z):

q(x) is constant so the test function M (z) has to be a polynominal of second order
M(z) = ag + a1z + azz?
M'(z) = Q(z) = ay + 2asz

M"(z) = 2a,
By comparison of the coefficients one obtains:
2a2 = —qo = §9 = —%

statically admissible approximation has to satisfy the equilibrium equation

2

~ x
= My(il?) :ao—l—alx—qog
test function has to satisfy static boundary conditions:
M(z=1)=0
12
= O=a0+a1-l—qo2
ql?
== ag = T —aq [

Sy = L P g
= (0L = 5 {al(:v ) — 1)} dr — Ty - (a1 — o - )
=0
I (M, |
aH*(My)_a (M) 50, L 0
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l

l l

al/(:v—l — /93 — )z —l)dx = EI -wp

=0 0

al/(x2—2xl+l2)dx—§/(x3—xl—l2+l3)dx:EI-wB

z=0 0

3 l 4 3 2 !
a [x——x2l—|—l2x} _% lx——x—l—12$—+l3x] — EI-wy
0

3 2 |4 3 2 .
P 5
alg — ﬂ(]()rl EI- EB
. _BBL_ 5,
a; = 3 —5—WpB 8(]0
~ 3BT 5
= My(l’) = l—ng(ZL’ - l) + g(]@l(ﬂ') - l) - —(ZE — 12)
~ 3EI qo(l — 4x)
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