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These lecture notes are based on ”Introduction to Linear Elasticity”

by P.L. Gould (see bibliography).

Here:

Mostly linear theory with exception of definition of strain.

(Non–linear theory see ’Introduction to continuum mechanics’.)

Prerequisites:

Statics, strength of materials, mathematics

Additional reading:

see bibliography
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1 Introduction and mathematical

preliminaries

1.1 Vectors and matrices

• A vector is a directed line segment. In a cartesian coordinate system it looks like

depicted in figure 1.1,

z

y

x

P

a

ez

ey

ex
ax

ay

az P

⇔

a

x3

x2

x1

e3

e2

e1

a1

a2

a3

Figure 1.1: Vector in a cartesian coordinate system

e. g., it can mean the location of a point P or a force. So a vector connects direction

and norm of a quantity. For representation in a coordinate system unit basis vectors

ex, ey and ez are used with |ex| = |ey| = |ez| = 1.

| · | denotes the norm, i. e., the length.

Now the vector a is

a = axex + ayey + azez (1.1)
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4 CHAPTER 1. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

with the coordinates (ax, ay, az) =̂ values/length in the direction of the basis vec-

tors/coordinate direction.

More usual in continuum mechanics is denoting the axis with e1, e2 and e3

⇒ a = a1e1 + a2e2 + a3e3 (1.2)

Different representations of a vector are

a =

a1

a2

a3

 = (a1, a2, a3) (1.3)

with the length/norm (Euclidian norm)

|a| =
√
a2

1 + a2
2 + a2

3 . (1.4)

• A matrix is a collection of several numbers

A =


A11 A12 A13 . . . A1n

A21 A22 A23 . . . A2n

...
. . .

...

Am1 Am2 Am3 . . . Amn

 (1.5)

with n columns and m rows, i.e., a (m×n) matrix. In the following mostly quadratic

matrixes n ≡ m are used.

A vector is a one column matrix.

Graphical representation as for a vector is not possible. However, a physical inter-

pretation is often given, then tensors are introduced.

• Special cases:

– Zero vector or matrix: all elements are zero, e.g., a =
(

0
0
0

)
and A =

(
0 0 0
0 0 0
0 0 0

)
– Symmetric matrix A = AT with AT is the ’transposed’ matrix, i.e., all elements

at the same place above and below the main diagonal are identical, e.g., A =(
1 5 4
5 2 6
4 6 3

)
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1.2 Indical Notation

Indical notation is a convenient notation in mechanics for vectors and matrices/tensors.

Letter indices as subscripts are appended to the generic letter representing the tensor

quantity of interest. Using a coordinate system with (e1, e2, e3) the components of

a vector a are ai (eq. 1.7) and of a matrix A are Aij with i = 1, 2, . . . ,m and j =

1, 2, . . . , n (eq. 1.6). When an index appears twice in a term, that index is understood

to take on all the values of its range, and the resulting terms summed. In this so-called

Einstein summation, repeated indices are often referred to as dummy indices, since their

replacement by any other letter not appearing as a free index does not change the meaning

of the term in which they occur. In ordinary physical space, the range of the indices is

1, 2, 3.

Aii =
m∑
i=1

Aii = A11 + A22 + A33 + . . .+ Amm (1.6)

and

aibi = a1b1 + a2b2 + . . .+ ambm. (1.7)

However, it is not summed up in an addition or subtraction symbol, i.e., if ai+bi or ai−bi.

Aijbj =Ai1b1 + Ai2b2 + . . .+ Aikbk (1.8)
↗↑ ↑

free dummy

Further notation:

•
3∏
i=1

ai = a1 · a2 · a3 (1.9)

•
∂ai
∂xj

= ai,j with ai,i =
∂a1

∂x1

+
∂a2

∂x2

+ . . . (1.10)

or
∂Aij
∂xj

=
∂Ai1
∂x1

+
∂Ai2
∂x2

+ . . . = Aij,j (1.11)

This is sometimes called comma convention!
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1.3 Rules for matrices and vectors

• Addition and subtraction

A±B = C Cij = Aij ±Bij (1.12)

component by component, vector similar.

• Multiplication

– Vector with vector

∗ Scalar (inner) product:

c = a · b = aibi (1.13)

∗ Cross (outer) product:

c = a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 (1.14)

Cross product is not commutative.

Using indical notation

ci = εijkajbk (1.15)

with permutations symbol / alternating tensor

εijk =


1 i, j, k even permutation (e.g. 231)

−1 i, j, k odd permutation (e.g. 321)

0 i, j, k no permutation, i.e.

two or more indices have the same value

. (1.16)

∗ Dyadic product:

C = a⊗ b (1.17)

– Matrix with matrix – Inner product:

C = AB (1.18)

Cik = AijBjk (1.19)

Inner product of two matrices can be done with Falk scheme (fig. 1.2(a)). To

get one component Cij of C, you have to do a scalar product of two vectors ai
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and bj, which are marked in figure 1.2 with a dotted line. It is also valid for

the special case of one–column matrix (vector) (fig. 1.2(b))

c = Ab ci = Aijbj . (1.20)

Bij

Aij Cij

(a) Product of matrix with matrix

bj

Aij ci

(b) Product of matrix with vector

Figure 1.2: Falk scheme

Remarks on special matrices:

• Permutation symbol (see 1.16)

εijk =
1

2
(i− j)(j − k)(k − i) (1.21)

• Kronecker delta

δij =

1 if i = j

0 if i 6= j
(1.22)

so

λδij ⇔
(
λ 0 0
0 λ 0
0 0 λ

)
for i, j = 1, 2, 3 (1.23)

δijai = aj δijDjk = Dik (1.24)

• Product of two unit vectors

ei · ej = δij (orthogonal basis) (1.25)

• Decomposition of a matrix

Aij =
1

2
(Aij + Aji)︸ ︷︷ ︸
symmetric

+
1

2
(Aij − Aji)︸ ︷︷ ︸

anti-symmetric/skrew symmetric

(1.26)
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1.4 Coordinate transformation

Assumption:

2 coordinate systems in one origin rotated against each other (fig. 1.3).

x1

x′1

x2

x′2

x3x′3

Figure 1.3: Initial (x1, x2, x3) and rotated (x′1, x
′
2, x
′
3) axes of transformed coordinate sys-

tem

The coordinates can be transformed

x′1 = α11x1 + α12x2 + α13x3 = α1jxj (1.27)

x′2 = α2jxj (1.28)

x′3 = α3jxj (1.29)

⇒ x′i = αijxj (1.30)

with the ’constant’ (only constant for cartesian system) coefficients

αij = cos(x′i, xj)︸ ︷︷ ︸
direction cosine

=
∂xj
∂x′i

= cos(e′i, ej) = e′i · ej. (1.31)

In matrix notation we have

x′ = R︸︷︷︸
rotation matrix

x. (1.32)

Rij = xi,j (1.33)

So the primed coordinates can be expressed as a function of the unprimed ones

x′i = x′i(xi) x′ = x′(x). (1.34)
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If J = |R| does not vanish this transformation possesses a unique inverse

xi = xi(x
′
i) x = x(x′). (1.35)

J is called the Jacobian of the transformation.

1.5 Tensors

Definition:

A tensor of order n is a set of Nn quantities which transform from one coordinate system

xi to another x′i by

n order transformation rule

0 scalar a a(x′i) = a(xi)

1 vector xi x′i = αijxj

2 tensor Tij T ′ij = αikαjlTkl

with the αij as given in chapter 1.4 (αij = xi,j). So a vector is a tensor of first order which

can be transformed following the rules above.

Mostly the following statement is o.k.:

A tensor is a matrix with physical meaning. The values of this matrix are depending on

the given coordinate system.

It can be shown that

A′ = RART . (1.36)

Further, a vector is transformed by

x′i = αijxj or xj = αijx
′
i (1.37)

so

xj = αijαi`x` (1.38)

which is only valid if

αijαi` = δj` . (1.39)

This is the orthogonality condition of the direction cosines. Therefore, any transformation

which satisfies this condition is said to be an orthogonal transformation. Tensors satisfying

orthogonal transformation are called cartesian tensors.
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Another ’proof’ of orthogonality: Basis vectors in an orthogonal system give

δij = e′i · e′j (1.40)

= (αikek) · (αj`e`) (1.41)

= αikαj`ek · e` (1.42)

= αikαj`δk` (1.43)

= αikαjk (1.44)

= ei · ej (1.45)

= (αkie
′
k) · (α`je′`) (1.46)

= αkiα`jδk` (1.47)

= αkiαkj (1.48)

.

1.6 Scalar, vector and tensor fields

A tensor field assigns a tensor T(x, t) to every pair (x, t) where the position vector x

varies over a particular region of space and t varies over a particular interval of time.

The tensor field is said to be continuous (or differentiable) if the components of T(x, t)

are continuous (or differentiable) functions of x and t. If the tensor T does not depend

on time the tensor field is said to be steady (T (x)).

1. Scalar field: Φ = Φ(xi, t) Φ = Φ(x, t)

2. Vector field: vi = vi(xi, t) v = v(x, t)

3. Tensor field: Tij = Tij(xi, t) T = T(x, t)

Introduction of the differential operator ∇: It is a vector called del or Nabla–Operator,

defined by

∇ = ei
∂

∂xi
and ∇2 = ∆︸︷︷︸

Laplacian operator

= ∇ · ∇ =
∂

∂xi
· ∂
∂xi

. (1.49)

A few differential operators on vectors or scalar:

grad Φ = ∇Φ = Φ,iei (result: vector) (1.50)

div v = ∇ · v = vi,i (result: scalar) (1.51)

curl v = ∇× v = εijkvk,j (result: vector) (1.52)



1.7. DIVERGENCE THEOREM 11

Similar rules are available for tensors/vectors.

1.7 Divergence theorem

For a domain V with boundary A the following integral transformation holds for a first-

order tensor g ∫
V

divgdV =

∫
V

∇ · gdV =

∫
A

n · gdA (1.53)

∫
V

gi,idV =

∫
A

gi · nidA (1.54)

and for a second-order tensor σ ∫
V

σji,jdV =

∫
A

σjinjdA (1.55)

∫
V

divσdV =

∫
V

∇ · σdV =

∫
A

σndA. (1.56)

Here, n = niei denotes the outward normal vector to the boundary A.

1.8 Summary of chapter 1

Vectors

a =

a1

a2

a3

 = a1 · e1 + a2 · e2 + a3 · e3 = a1

1

0

0

+ a2

0

1

0

+ a3

0

0

1


Magnitude of a:

|a| =
√
a2

1 + a2
2 + a2

3 is the length of a

Vector addition: a1

a2

a3

+

b1

b2

b3

 =

a1 + b1

a2 + b2

a3 + b3
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Multiplication with a scalar:

c ·

a1

a2

a3

 =

c · a1

c · a2

c · a3



Scalar (inner, dot) product:

a · b = |a||b| · cosϕ = a1 · b1 + a2 · b2 + a3 · b3

Vector (outer, cross) product:

a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ = e1

∣∣∣∣a2 a3

b2 b3

∣∣∣∣− e2

∣∣∣∣a1 a3

b1 b3

∣∣∣∣+ e3

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


Rules for the vector product:

a× b = −(b× a)

(c · a)× b = a× (c · b) = c(a× b)

(a + b)× c = a× c + b× c
a× (b× c) = (a · c) · b− (a · b) · c

Matrices

A =


A11 A12 A13 ... A1n

A21 A22 A23 ... A2n

...
...

...
...

Am1 Am2 Am3 ... Amn

 = Aik

Multiplication of a matrix with a scalar:

c ·A = A · c = c · Aik e.g.: c ·

(
A11 A12

A21 A22

)
=

(
c · A11 c · A12

c · A21 c · A22

)
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Addition of two matrices:

A + B = B + A = (Aik) + (Bik) = (Aik +Bik)

e.g.: (
A11 A12

A21 A22

)
+

(
B11 B12

B21 B22

)
=

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
Rules for addition of matrices:

(A + B) + C = A + (B + C) = A + B + C

Multiplication of two matrices:

Cik = Ai1B1k + Ai2B2k + ...+ AilBlk =
l∑

j=1

AijBjk i = 1, ...,m k = 1, ..., n

e.g.:

(
B11 B12

B21 B22

)
(
A11 A12

A21 A22

) (
A11B11 + A12B12 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

Rules for multiplication of two matrices:

A(BC) = (AB)C = ABC

AB 6= BA

Distributive law:

(A + B) ·C = A ·C + B ·C

Differential operators for vector analysis

Gradient of a scalar field f(x, y, z)

grad f(x1, x2, x3) =


∂f(x1,x2,x3)

∂x1
∂f(x1,x2,x3)

∂x2
∂f(x1,x2,x3)

∂x3


Derivative into a certain direction:

∂f

∂a
(x1, x2, x3) =

a

|a|
· grad f(x1, x2, x3)
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Divergence of a vector field

div v(X(x1, x2, x3), Y (x1, x2, x3), Z(x1, x2, x3)) =
∂X

∂x1

+
∂Y

∂x2

+
∂Z

∂x3

Curl of a vector field

curl v(X(x1, x2, x3), Y (x1, x2, x3), Z(x1, x2, x3)) =


∂Z
∂x2
− ∂Y

∂x3
∂X
∂x3
− ∂Z

∂x1
∂Y
∂x1
− ∂X

∂x2


Nabla (del) Operator ∇

∇ =


∂
∂x1
∂
∂x2
∂
∂x3


∇f(x1, x2, x3) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 = grad f(x1, x2, x3)

∇v(X(x1, x2, x3), Y (x1, x2, x3), Z(x1, x2, x3)) = ∂X
∂x1

+ ∂Y
∂x2

+ ∂Z
∂x3

= div v

∇× v =

∣∣∣∣∣∣∣
e1 e2 e3

∂
∂x1

∂
∂x2

∂
∂x3

X Y Z

∣∣∣∣∣∣∣ = curl v

Laplacian operator ∆

∆u = ∇ · ∇ = div gradu =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

Indical Notation – Summation convention

A subscript appearing twice is summed from 1 to 3.

e.g.:

aibi =
3∑
i=1

aibi

= a1b1 + a2b2 + a3b3

Djj = D11 +D22 +D33



1.9. EXERCISE 15

Comma-subscript convention

The partial derivative with respect to the variable xi is represented by the so-called

comma-subscript convention e.g.:

∂φ

∂xi
= φ,i = gradφ

∂vi
∂xi

= vi,i = divv

∂vi
∂xj

= vi,j

∂2vi
∂xj∂xk

= vi,jk

1.9 Exercise

1. given: scalar field

f(x1, x2, x3) = 3x1 + x1e
x2 + x1x2e

x3

(a)

gradf(x1, x2, x3) =?

(b)

gradf(3, 1, 0) =?

2. given: scalar field

f(x1, x2, x3) = x2
1 +

3

2
x2

2

Find the derivative of f in point/position vector
(

5
2
8

)
in the direction of a

(
3
0
4

)
.

3. given: vector field

V =

 x1 + x2
2

ex1x3 + sinx2

x1x2x3


(a)

divV(X(x1, x2, x3), Y (x1, x2, x3), Z(x1, x2, x3)) =?

(b)

divV(1, π, 2) =?
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4. given: vector field

V =

 x1 + x2

ex1+x2 + x3

x3 + sinx1


(a)

curlV(x1, x2, x3) =?

(b)

curlV(0, 8, 1) =?

5. Expand and, if possible, simplify the expression Dijxixj for

(a) Dij = Dji

(b) Dij = −Dji.

6. Determine the component f2 for the given vector expressions

(a) fi = ci,jbj − cj,ibj

(b) fi = Bijf
∗
j

7. If r2 = xixi and f(r) is an arbitrary function of r, show that

(a) ∇(f(r)) = f ′(r)x
r

(b) ∇2(f(r)) = f ′′(r) + 2f ′(r)
r

,

where primes denote derivatives with respect to r.



2 Traction, stress and equilibrium

2.1 State of stress

Derivation of stress at any distinct point of a body.

2.1.1 Traction and couple–stress vectors

∆Mn

n

∆Fn

∆An

Figure 2.1: Deformable body under loading

Assumption: Deformable body

Possible loads:

• surface forces: loads from exterior

• body forces: loads distributed within the interior, e.g., gravity force

17
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At any element ∆An in or on the body (n indicates the orientation of this area) a resultant

force ∆Fn and/or moment ∆Mn produces stress.

lim
∆An→0

∆Fn

∆An
=
dFn

dAn
= tn stress vector/traction (2.1)

lim
∆An→0

∆Mn

∆An
=
dMn

dAn
= Cn couple stress vector (2.2)

The limit ∆An → 0 expresses that every particle has it’s ’own’ tractions or, more precise,

the traction vector varies with position x. In usual continuum mechanics we assume

Cn ≡ 0 at any point x. As a consequence of this assumption every particle can have

only translatory degrees of freedom. The traction vector represents the stress intensity at

a distinct point x for the particular orientation n of the area element ∆A. A complete

description at the point requires that the state of stress has to be known for all directions.

So tn itself is necessary but not sufficient.

Remark:

Continua where the couple stress vector is not set equal to zero can be defined. They are

called Cosserat–Continua. In this case each particle has additionally to the translatory

degrees of freedom also rotary ones.

2.1.2 Components of stress

Assumption:

Cartesian coordinate system with unit vectors ei infinitesimal rectangular parallelepiped;

ti are not parallel to ei whereas the surfaces are perpendicular to the ei, respectively (fig.

2.2). So, all ei represents here the normal ni of the surfaces.

Each traction is separated in components in each coordinate direction

ti = σi1e1 + σi2e2 + σi3e3 (2.3)

ti = σijej. (2.4)

With these coefficients σij a stress tensor can be defined

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 = σij , (2.5)

with the following sign–convention:
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x1

x2

x3

e1

e2

e3

t1

t2

t3

σ11

σ12

σ13

Figure 2.2: Tractions ti and their components σij on the rectangular parallelepiped sur-

faces of an infinitesimal body

1. The first subscript i refers to the normal ei which denotes the face on which ti acts.

2. The second subscript j corresponds to the direction ej in which the stress acts.

3. σii (no summation) are positive (negative) if they produce tension (compression).

They are called normal components or normal stress

σij (i 6= j) are positive if coordinate direction xj and normal ei are both positive

or negative. If both differ in sign, σij (i 6= j) is negative. They are called shear

components or shear stress.

2.1.3 Stress at a point

Purpose is to show that the stress tensor describes the stress at a point completely.

In fig. 2.3, f is a body force per unit volume and

dAi = dAn cos(n, ei) = dAnn · ei (2.6)

→ dAn =
dAi
n · ei

=
dAi
ni

(2.7)

with n · ei = njej · ei = njδij
!

= ni. (2.8)

Equilibrium of forces at tetrahedron (fig. 2.3):

tndAn − tidAi + f

(
1

3
hdAn

)
︸ ︷︷ ︸

volume of the tetrahedron

= 0 (2.9)
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t1

t2

t3

tn

n

x1

x2

x3

dA1

dA2

dA3

dAn

f

Figure 2.3: Tractions of a tetrahedron

→
(

tn − niti + f
h

3

)
dAn = 0 (2.10)

Now, taking the limit dAn → 0, i.e., h→ 0 reduces the tetrahedron to a point which gives

tn = tini = σjieinj . (2.11)

Resolving tn into cartesian components tn = tiei yields the Cauchy theorem

tiei = σjieinj ⇒ ti = σjinj (2.12)

with the magnitude of the stress vector

|tn| =
√

(titi). (2.13)

Therefore, the knowledge of ti = σjinj is sufficient to specify the state of stress at a point

in a particular cartesian coordinate system. As σ is a tensor of 2. order the stress tensor

can be transformed to every rotated system by

σ′ji = αikαjlσkl (2.14)

with the direction cosines αij = cos(x′i, xj).
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dAn
s

tn
n

Figure 2.4: Normal and tangential component of tn

2.1.4 Stress on a normal plane

Interest is in the normal and tangential component of tn (fig. 2.4).

Normalvector: n = niei

Tangentialvector: s = siei (two possibilities in 3-D)

⇒ Normal component of stress tensor with respect to plane dAn:

σnn = tn · n = σijniej · nkek
= σijninkδjk = σijnjni

(2.15)

⇒ Tangential component:

σns = tn · s = σijniej · skek = σijnisj (2.16)

2.2 Equilibrium

2.2.1 Physical principles

Consider an arbitrary body V with boundary A (surface) (fig. 2.5).

In a 3-d body the following 2 axioms are given:

1. The principle of linear momentum is∫
V

f dV +

∫
A

t dA =

∫
V

ρ
d2

dt2
u dV (2.17)

with displacement vector u and density ρ.

2. The principle of angular momentum (moment of momentum)∫
V

(r× f) dV +

∫
A

(r× t) dA =

∫
V

(r× ρü) dV (2.18)
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x1

x2

x3

f
r

t

P

Figure 2.5: Body V under loading f with traction t acting normal to the boundary of the

body

Considering the position vector r to point P (x)

r = xjej (2.19)

and further

r× f = εijkxjfkei (2.20)

r× t = εijkxjtkei (2.21)

The two principles, (2.17) and (2.18), are in indical notation∫
V

fidV +

∫
A

σjinjdA = ρ

∫
V

üidV

[
note, that (̈ ) =

d2

dt2
()

]
(2.22)

∫
V

εijkxjfkdV +

∫
A

εijkxjσlknldA = ρ

∫
V

εijkxjükdV, (2.23)

where the Cauchy theorem (2.12) has been used. In the static case, the inertia terms on

the right hand side, vanish.

2.2.2 Linear momentum

Linear momentum is also called balance of momentum or force equilibrium. With the

assumption of a C1 continuous stress tensor σ we have∫
V

(f +∇ · σ)dV =

∫
V

ρüdV (2.24)
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or ∫
V

(fi + σji,j)dV = ρ

∫
V

üidV (2.25)

using the divergence theorem (1.56). The above equation must be valid for every element

in V , i.e., the dynamic equilibrium is fulfilled. Consequently, because V is arbitrary the

integrand vanishes. Therefore,

∇ · σ + f = ρü (2.26)

σji,j + fi = ρüi (2.27)

has to be fulfilled for every point in the domain V . These equations are the linear

momentum.

2.2.3 Angular momentum

Angular momentum is also called balance of moment of momentum or momentum equi-

librium. We start in indical notation by applying the divergence theorem (1.55) to∫
V

[εijkxjfk + (εijkxjσlk),l]dV =

∫
V

ρεijkxjükdV . (2.28)

With the product rule

(εijkxjσlk),l = εijk[xj,lσlk + xjσlk,l] (2.29)

and the property xj,l = δjl, i.e., the position coordinate derivated by the position coordi-

nate vanishes if it is not the same direction, yields∫
V

εijk[xjfk + δjlσlk + xjσlk,l]dV =

∫
V

ρεijkxjükdV . (2.30)

Applying the linear momentum (2.25)

εijkxj(fk + σlk,l − ρük) = 0 (2.31)

the above equation is reduced to ∫
V

εijkδjlσlkdV = 0 (2.32)
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which is satisfied for any region dV if

εijkσjk = 0 (2.33)

holds.

Now, if the last equation is evaluated for i = 1, 2, 3 and using the properties of the

permutation symbol, it is found the condition

σij = σji σ = σT (2.34)

fulfills (2.33).

This statement is the symmetry of the stress tensor. This implies that σ has only six

independent components instead of nine components. With this important property of

the stress tensor the linear momentum in indical notation can be rewritten

σij,j + fi = ρüi , (2.35)

and also Cauchy’s theorem

ti = σijnj . (2.36)

This is essentially a boundary condition for forces/tractions. The linear momentum are

three equations for six unknowns, and, therefore, indeterminate. In chapter 3 and 4 the

missing equations will be given.

2.3 Principal stress

2.3.1 Maximum normal stress

Question: Is there a plane in any body at any particular point where no shear stress

exists?

Answer: Yes

For such a plane the stress tensor must have the form

σ =

σ(1) 0 0

0 σ(2) 0

0 0 σ(3)

 (2.37)
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with three independent directions n(k) where the three principal stress components act.

Each plane given by these principal axes n(k) is called principal plane. So, it can be

defined a stress vector acting on each of these planes

t = σ(k)n (2.38)

where the tangential stress vector vanishes. To find these principal stresses and planes

(k = 1, 2, 3)

σijnj − σ(k)ni
!

= 0 (2.39)

must be fulfilled. Using the Kronecker delta yields

(σij − σ(k)δij)nj
!

= 0 (2.40)

This equation is a set of three homogeneous algebraic equations in four unknowns (ni

with i = 1, 2, 3 and σ(k)). This eigenvalue problem can be solved if

|σij − σ(k)δij| = 0 (2.41)

holds, which results in the eigenvalues σ(k), the principal stresses. The corresponding

orientation of the principal plane n(k) is found by inserting σ(k) back in equation (2.40)

and solving the equation system. As this system is linearly dependent (cf. equation

(2.40)) an additional relationship is necessary. The length of the normal vectors

n
(k)
i n

(k)
i = 1 (2.42)

is to unify and used as additional equation. The above procedure for determining the

principal stress and, subsequently, the corresponding principal plane is performed for

each eigenvalue σ(k) (k = 1, 2, 3).

The three principal stresses are usually ordered as

σ(1) 6 σ(2) 6 σ(3). (2.43)

Further, the calculated n(k) are orthogonal. This fact can be concluded from the following.

Considering the traction vector for k = 1 and k = 2

σijn
(1)
j = σ(1)n

(1)
i σijn

(2)
j = σ(2)n

(2)
i (2.44)

and multiplying with n
(2)
i and n

(1)
i , respectively, yields

σijn
(1)
j n

(2)
i = σ(1)n

(1)
i n

(2)
i
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σijn
(2)
j n

(1)
i = σ(2)n

(2)
i n

(1)
i .

Using the symmetry of the stress tensor and exchanging the dummy indices i and j, the

left hand side of both equations is obviously equal. So, dividing both equations results in

0 = (σ(1) − σ(2))n
(1)
i n

(2)
i . (2.45)

Now, if σ(1) 6= σ(2) the orthogonality of n(1) and n(2) follows. The same is valid for other

combinations of n(k).

To show that the principal stress exists at every point, the eigenvalues σ(k) (the principal

stresses) are examined. To represent a physically correct solution σ(k) must be real-valued.

Equation (2.41) is a polynomial of third order, therefore, three zeros exist which are not

necessarily different. Furthermore, in maximum two of them can be complex because

zeros exist only in pairs (conjugate complex). Let us assume that the real one is σ(1) and

the n(1)–direction is equal to the x1–direction. This yields the representation

σ =

σ(1) 0 0

0 σ22 σ23

0 σ23 σ33

 (2.46)

of the stress tensor and, subsequently, equation (2.41) is given as

(σ(1) − σ(k)){(σ22 − σ(k))(σ33 − σ(k))− σ2
23} = 0. (2.47)

The two solutions of the curly bracket are

(σ(k))2 − (σ22 + σ33)σ(k) + (σ22σ33 − σ2
23) = 0 (2.48)

⇒ σ(2,3) =
1

2

{
(σ22 + σ33)±

√
(σ22 + σ33)2 − 4(σ22σ33 − σ2

23)

}
. (2.49)

For a real-valued result the square-root must be real yielding

(σ22 + σ33)2 − 4(σ22σ33 − σ2
23) = (σ22 − σ33)2 + 4σ2

23

!

> 0. (2.50)

With equation (2.50) it is shown that for any arbitrary stress tensor three real eigenvalues

exist and, therefore, three principal values.
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2.3.2 Stress invariants and special stress tensors

In general, the stress tensor at a distinct point differ for different coordinate systems.

However, there are three values, combinations of σij, which are the same in every co-

ordinate system. These are called stress invariants. They can be found in performing

equation (2.41)

|σij − σ(k)δij| = (σ(k))3 − I1(σ(k))2 + I2σ
(k) − I3

!
= 0 (2.51)

with

I1 = σii = trσ (2.52)

I2 =
1

2
(σiiσjj − σijσij) (2.53)

I3 = |σij| = detσ (2.54)

and represented in principal stresses

I1 = σ(1) + σ(2) + σ(3) (2.55)

I2 = (σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1)) (2.56)

I3 = σ(1)σ(2)σ(3), (2.57)

the first, second, and third stress invariant is given. The invariance is obvious because

all indices are dummy indices and, therefore, the values are scalars independent of the

coordinate system.

The special case of a stress tensor, e.g., pressure in a fluid,

σ = σ0

1 0 0

0 1 0

0 0 1

 σij = σ0δij (2.58)

is called hydrostatic stress state. If one assumes σ0 = σii

3
= σm of a general stress state,

where σm is the mean normal stress state, the deviatoric stress state can be defined

S = σ − σmI =

σ11 − σm σ12 σ13

σ12 σ22 − σm σ23

σ13 σ23 σ33 − σm

 . (2.59)
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In indical notation (I = δij: itendity-matrix (3x3)):

sij = σij − δij
σkk
3

(2.60)

where σkk/3 are the components of the hydrostatic stress tensor and sij the components

of the deviatoric stress tensor.

The principal directions of the deviatoric stress tensor S are the same as those of the

stress tensor σ because the hydrostatic stress tensor has no principal direction, i.e., any

direction is a principal plane. The first two invariants of the deviatoric stress tensor are

J1 = sii = (σ11 − σm) + (σ22 − σm) + (σ33 − σm) = 0 (2.61)

J2 = −1

2
sijsij =

1

6
[(σ(1) − σ(2))2 + (σ(2) − σ(3))2 + (σ(3) − σ(1))2], (2.62)

where the latter is often used in plasticity.

Remark: The elements on the main diagonal of the deviatoric stress tensor are mostly

not zero, contrary to the trace of s.

2.4 Summary of chapter 2

Stress

Tractions

ti = σij ej

t1
t2

t3

σ11

σ12

σ13

σ21

σ22

σ23
σ31

σ32

σ33

Stress Tensor

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 σ11, σ22, σ33 : normal components

σ12, σ13, σ23
: shear components

σ21, σ31, σ32
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Stress at a point

ti = σjinj

Transformation in another cartesian coordinate system

σ′ij = αikαjlσkl = αikσklαlj

with direction cosine: αij = cos (x′i, xj)

Stress in a normal plane

Normal component of stress tensor: σnn = σijnjni

Tangential component of stress tensor: σns = σijnisj =
√
titi − σ2

nn

Equilibrium

σij = σji σ = σT

⇒ σij,j +fi = 0 (static case)

with boundary condition: ti = σijnj

Principal Stress

In the principal plane given by the principal axes n(k) no shear stress exists.

Stress tensor referring to principal stress directions:

σ =

σ(1) 0 0

0 σ(2) 0

0 0 σ(3)

 with σ(1) ≤ σ(2) ≤ σ(3)

Determination of principal stresses σ(k) with:

|σij − σ(k)δij|
!

= 0 ⇐⇒∣∣∣∣∣∣∣
σ11 − σ(k) σ12 σ13

σ21 σ22 − σ(k) σ23

σ31 σ32 σ33 − σ(k)

∣∣∣∣∣∣∣ !
= 0
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with the Kronecker delta δ:

δij =

{
1 if i = j

0 if i 6= j

Principal stress directions n(k):

(σij − σ(k)δij)n
(k)
j = 0 ⇐⇒

(σ11 − σ(k)n
(k)
1 + σ12 n

(k)
2 + σ13 n

(k)
3 = 0

σ21 n
(k)
1 +(σ22 − σ(k))n

(k)
2 + σ23 n

(k)
3 = 0

σ31 n
(k)
1 + σ32 n

(k)
2 + (σ33 − σ(k))n

(k)
3 = 0

Stress invariants

The first, second, and third stress invariant is independent of the coordinate system:

I1 = σii = trσ = σ11 + σ22 + σ33

I2 =
1

2
(σiiσjj − σijσij)

= σ11σ22 + σ22σ33 + σ33σ11 − σ12σ12 − σ23σ23 − σ31σ31

I3 = |σij| = detσ

Hydrostatic and deviatoric stress tensors

A stress tensor σij can be split into two component tensors, the hydrostatic stress tensor

σM = σM

1 0 0

0 1 0

0 0 1

 ⇐⇒ σMij = σMδij with σM =
σkk
3

and the deviatoric tensor

S = σ − σMI =

σ11 − σM σ12 σ13

σ21 σ22 − σM σ23

σ31 σ32 σ33 − σM

 ⇐⇒

σij = δij
σkk
3

+ Sij.
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2.5 Exercise

1. The state of stress at a point P in a structure is given by

σ11 = 20000

σ22 = −15000

σ33 = 3000

σ12 = 2000

σ23 = 2000

σ31 = 1000 .

(a) Compute the scalar components t1, t2 and t3 of the traction t on the plane

passing through P whose outward normal vector n makes equal angles with

the coordinate axes x1, x2 and x3.

(b) Compute the normal and tangential components of stress on this plane.

2. Determine the body forces for which the following stress field describes a state of

equilibrium in the static case:

σ11 = −2x2
1 − 3x2

2 − 5x3

σ22 = −2x2
2 + 7

σ33 = 4x1 + x2 + 3x3 − 5

σ12 = x3 + 4x1x2 − 6

σ13 = −3x1 + 2x2 + 1

σ23 = 0

3. The state of stress at a point is given with respect to the Cartesian axes x1, x2 and

x3 by

σij =

 2 −2 0

−2
√

2 0

0 0 −
√

2

 .

Determine the stress tensor σ′ij for the rotated axes x′1, x′2 and x′3 related to the

unprimed axes by the transformation tensor

αik =

 0 1√
2

1√
2

1√
2

1
2
−1

2

− 1√
2

1
2
−1

2

 .
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4. In a continuum, the stress field is given by the tensor

σij =

 x2
1x2 (1− x2

2)x1 0

(1− x2
2)x1

(x3
2−3x2)

3
0

0 0 2x2
3

 .

Determine the principal stress values at the point P (a, 0, 2
√
a) and the correspond-

ing principal directions.

5. Evaluate the invariants of the stress tensors σij and σ′ij, given in example 3 of chapter

2.

6. Decompose the stress tensor

σij =

 3 −10 0

−10 0 30

0 30 −27


into its hydrostatic and deviator parts and determine the principal deviator stresses!

7. Determine the principal stress values for

(a)

σij =

0 1 1

1 0 1

1 1 0


and

(b)

σij =

2 1 1

1 2 1

1 1 2


and show that both have the same principal directions.



3 Deformation

3.1 Position vector and displacement vector

Consider the undeformed and the deformed configuration of an elastic body at time t = 0

and t = t, respectively (fig. 3.1).

x1X1

x2X2

x3X3

x

P (x) u p(X)

X

undeformed
deformed

t = 0 t = t

Figure 3.1: Deformation of an elastic body

It is convenient to designate two sets of Cartesian coordinates x and X, called material

(initial) coordinates and spatial (final) coordinates, respectively, that denote the unde-

formed and deformed position of the body. Now, the location of a point can be given in

material coordinates (Lagrangian description)

P = P(x, t) (3.1)

and in spatial coordinates (Eulerian description)

p = p(X, t). (3.2)

Mostly, in solid mechanics the material coordinates and in fluid mechanics the spatial

coordinates are used. In general, every point is given in both

X = X(x, t) (3.3)

33
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or

x = x(X, t) (3.4)

where the mapping from one system to the other is given if the Jacobian

J =

∣∣∣∣∂Xi

∂xj

∣∣∣∣ = |Xi,j| (3.5)

exists.

So, a distance differential is

dX∗i =
∂Xi

∂xj
dx∗j (3.6)

where ( )∗ denotes a fixed but free distance. From figure 3.1 it is obvious to define the

displacement vector by

u = X− x ui = Xi − xi. (3.7)

Remark: The Lagrangian or material formulation describes the movement of a particle,

where the Eulerian or spatial formulation describes the particle moving at a location.

3.2 Strain tensor

Consider two neighboring points p(X) and q(X) or P (x) and Q(x) (fig. 3.2) in both

configurations (undeformed/deformed)

x1X1

x2X2

x3X3

ds

Q(x + dx)

P (x)

u + du q(X + dX)

p(X)
u

dS

Figure 3.2: Deformation of two neighboring points of a body

which are separated by differential distances ds and dS, respectively. The squared length

of them is given by

|ds|2 = dxidxi (3.8)

|dS|2 = dXidXi. (3.9)
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With the Jacobian of the mapping from one coordinate representation to the other these

distances can be expressed by

|ds|2 = dxidxi =
∂xi
∂Xj

∂xi
∂Xk

dXjdXk (3.10)

|dS|2 = dXidXi =
∂Xi

∂xj

∂Xi

∂xk
dxjdxk. (3.11)

To define the strain we want to express the relative change of the distance between the

point P and Q in the undeformed and deformed body. From figure 3.2 it is obvious that

ds + u + du− dS− u = 0

⇒ du = dS− ds.
(3.12)

Taking the squared distances in material coordinates yield to

|dS|2 − |ds|2 = Xi,jXi,kdxjdxk − dxidxi
= (Xi,jXi,k − δjk)︸ ︷︷ ︸

=2εLjk

dxjdxk (3.13)

with the Green or Lagrangian strain tensor εLjk, or in spatial coordinates

|dS|2 − |ds|2 = dXidXi −
∂xi
∂Xj

∂xi
∂Xk

dXjdXk

= (δjk −
∂xi
∂Xj

∂xi
∂Xk

)︸ ︷︷ ︸
=2εEjk

dXjdXk
(3.14)

with the Euler or Almansi strain tensor εEjk.

Beware that in general (especially for large displacements) ∂xi

∂Xj
6= xi,j

Taking into account that

∂ui
∂xk

=
∂Xi

∂xk
− ∂xi
∂xk

= Xi,k − δik ⇒ Xi,k = ui,k + δik (3.15)

or
∂ui
∂Xk

=
∂Xi

∂Xk

− ∂xi
∂Xk

= δik −
∂xi
∂Xk

⇒ ∂xi
∂Xk

= δik −
∂ui
∂Xk

(3.16)
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the Green strain tensor is

εLjk =
1

2
[(ui,j + δij)(ui,k + δik)− δjk]

=
1

2
[ui,jui,k + ui,jδik + δijui,k + δjk − δjk]

=
1

2
[uk,j + uj,k + ui,jui,k]

with ui,j =
∂ui
∂xj

(3.17)

and the Almansi tensor is

εEjk =
1

2

[
δjk − (δij −

∂ui
∂Xj

)(δik −
∂ui
∂Xk

)

]
=

1

2

[
∂uk
∂Xj

+
∂uj
∂Xk

− ∂ui
∂Xj

∂ui
∂Xk

] (3.18)

3.3 Stretch ratio–finite strains

The relative change of deformation, the unit extension ε, corresponds to the strain in a

particular direction. The definition in the undeformed configuration is

|dS| − |ds|
|ds|

=: ε(e) (3.19)

with the direction e = ds
|ds| = dx

|dx| . The strain tensor was defined by the absolute distance

|dS|2 − |ds|2. Relating them to either the undeformed or deformed configuration yields

|dS|2 − |ds|2

|ds|2
= 2

dxj
|dxi|

εLjk
dxk
|dxi|

= 2eT · EL · e (3.20)

or
|dS|2 − |ds|2

|dS|2
= 2

dXj

|dXi|
εEjk

dXk

|dXi|
= 2eT · EE · e . (3.21)

Now with the trick

|dS|2 − |ds|2

|ds|2
=

(
|dS| − |ds|
|ds|

) (
|dS|+ |ds|
|ds|

)
︸ ︷︷ ︸

|dS|−|ds|
|ds| +2

|ds|
|ds|=

|dS|+|ds|
|ds|

= ε · (ε+ 2) (3.22)

the unit extension is given as root of

ε2 + 2ε− 2eT · EL · e = 0 (3.23)
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i.e.,

ε(e) = −1
+

(−)
√

1 + 2eT · EL · e (3.24)

where the minus sign is physically nonsense as there are no negative extensions. An

analogous calculation for the deformed configuration gives

ε(e) = 1−
√

1− 2eT · EE · e . (3.25)

3.4 Linear theory

If small displacement gradients are assumed, i.e.

ui,juk,l � ui,j (3.26)

the non-linear parts can be omitted:

εLij = 1
2
(ui,j + uj,i) (3.27)

εEij = 1
2
( ∂ui

∂Xj
+

∂uj

∂Xi
) (3.28)

Furthermore,

ui,j << 1⇒ ui,j ≈
∂ui
∂Xj

(3.29)

and the strain tensors of both configurations are equal.

εij = εLij = εEij =
1

2
(ui,j + uj,i) (3.30)

εij is called linear or infinitesimal strain tensor. This is equivalent to the assumption of

small unit extensions ε2 � ε, yielding

2ε(e) = 2eT · EL · e = 2eT · EE · e . (3.31)

With both assumptions the linear theory is established and no distinction between the

configurations respective coordinate system is necessary. The components on the main

diagonal are called normal strain and all other are the shear strains. The shear strains

here

εij =
1

2
(ui,j + uj,i) =

1

2
γij (3.32)
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are equal to one–half of the familiar ’engineering’ shear strains γij. However, only with

the definitions above the strain tensor

ε =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 (3.33)

has tensor properties. By the definition of the strains the symmetry of the strain tensor

is obvious.

3.5 Properties of the strain tensor

3.5.1 Principal strain

Besides the general tensor properties (transformation rules) the strain tensor has as the

stress tensor principal axes. The principal strains ε(k) are determined from the character-

istic equation

|εij − ε(k)δij| = 0 k = 1, 2, 3 (3.34)

analogous to the stress. The three eigenvalues ε(k) are the principal strains. The corre-

sponding eigenvectors designate the direction associated with each of the principal strains

given by

(εij − ε(k)δij)n
(k)
i = 0 (3.35)

These directions n(k) for each principal strain ε(k) are mutually perpendicular and, for

isotropic elastic materials (see chapter 4), coincide with the direction of the principal

stresses.

3.5.2 Volume and shape changes

It is sometimes convenient to separate the components of strain into those that cause

changes in the volume and those that cause changes in the shape of a differential element.

Consider a volume element V (a× b× c) oriented with the principal directions (fig. 3.3),

then the principal strains are

ε(1) =
∆a

a
ε(2) =

∆b

b
ε(3) =

∆c

c
(3.36)
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a

b
c

3 2

1

Figure 3.3: Volume V oriented with the principal directions

under the assumption of volume change in all three directions.

The volume change can be calculated by

V + ∆V = (a+ ∆a)(b+ ∆b)(c+ ∆c)

= abc

(
1 +

∆a

a
+

∆b

b
+

∆c

c

)
+O(∆2)

= V + (ε(1) + ε(2) + ε(3))V +O(∆2).

(3.37)

With the assumptions of small changes ∆, finally,

∆V

V
= ε(1) + ε(2) + ε(3) = εii (3.38)

and is called dilatation. Obviously, from the calculation this is a simple volume change

without any shear. It is valid for any coordinate system. The dilatation is also the first

invariant of the strain tensor, and also equal to the divergence of the displacement vector:

∇ · u = ui,i = εii (3.39)

Analogous to the stress tensor, the strain tensor can be divided in a hydrostatic part

εM =

εM 0 0

0 εM 0

0 0 εM

 εM =
εii
3

(3.40)

and a deviatoric part

εD =

ε11 − εM ε12 ε13

ε12 ε22 − εM ε23

ε13 ε23 ε33 − εM

 . (3.41)
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The mean normal strain εM corresponds to a state of equal elongation in all directions

for an element at a given point. The element would remain similar to the original shape

but changes volume. The deviatoric strain characterizes a change in shape of an element

with no change in volume. This can be seen by calculating the dilatation of εD:

trεD = (ε11 − εM) + (ε22 − εM) + (ε33 − εM) = 0 (3.42)

3.6 Compatibility equations for linear strain

If the strain components εij are given explicitly as functions of the coordinates, the six

independent equations (symmetry of ε)

εij =
1

2
(ui,j + uj,i)

are six equations to determine the three displacement components ui. The system is

overdetermined and will not, in general, possess a solution for an arbitrary choice of the

strain components εij. Therefore, if the displacement components ui are single–valued and

continuous, some conditions must be imposed upon the strain components. The necessary

and sufficient conditions for such a displacement field are expressed by the equations (for

derivation see [2] )

εij,km + εkm,ij − εik,jm − εjm,ik = 0. (3.43)

These are 81 equations in all but only six are distinct

1.
∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2

2.
∂2ε22

∂x2
3

+
∂2ε33

∂x2
2

= 2
∂2ε23

∂x2∂x3

3.
∂2ε33

∂x2
1

+
∂2ε11

∂x2
3

= 2
∂2ε31

∂x3∂x1

4.
∂

∂x1

(
−∂ε23

∂x1

+
∂ε31

∂x2

+
∂ε12

∂x3

)
=

∂2ε11

∂x2∂x3

5.
∂

∂x2

(
∂ε23

∂x1

− ∂ε31

∂x2

+
∂ε12

∂x3

)
=

∂2ε22

∂x3∂x1

6.
∂

∂x3

(
∂ε23

∂x1

+
∂ε31

∂x2

− ∂ε12

∂x3

)
=

∂2ε33

∂x1∂x2



or ∇x × E×∇ = 0. (3.44)

The six equations written in symbolic form appear as

∇× E×∇ = 0 (3.45)
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Even though we have the compatibility equations, the formulation is still incomplete in

that there is no connection between the equilibrium equations (three equations in six

unknowns σij), and the kinematic equations (six equations in nine unknowns εij and ui).

We will seek the connection between equilibrium and kinematic equations in the laws of

physics governing material behavior, considered in the next chapter.

Remark on 2–D:

For plane strain parallel to the x1 − x2 plane, the six equations reduce to the single

equation

ε11,22 + ε22,11 = 2ε12,12 (3.46)

or symbolic

∇× E×∇ = 0. (3.47)

For plane stress parallel to the x1−x2 plane, the same condition as in case of plain strain

is used, however, this is only an approximative assumption.

3.7 Summary of chapter 3

Deformations

Linear (infinitesimal) strain tensor ε:

εLij = εEij = εij =
1

2
(ui,j + uj,i) ⇐⇒

ε =

 u1,1
1
2
(u1,2 + u2,1) 1

2
(u1,3 + u3,1)

1
2
(u1,2 + u2,1) u2,2

1
2
(u2,3 + u3,2)

1
2
(u1,3 + u3,1) 1

2
(u2,3 + u3,2) u3,3

 =

 ε11
1
2
γ12

1
2
γ13

1
2
γ21 ε22

1
2
γ23

1
2
γ31

1
2
γ32 ε33



Principal strain values ε(k):

|εij − ε(k)δij|
!

= 0

Principal strain directions n(k):

(εij − ε(k)δij)n
(k)
j = 0
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Hydrostatic and deviatoric strain tensors

A stress tensor σij can be split into two component tensors, the hydrostatic stain tensor

εM = εM

1 0 0

0 1 0

0 0 1

 ⇐⇒ εMij = εMδij with εM =
εkk
3

and the deviatoric strain tensor

ε(D) = ε− εMI =

ε11 − εM ε12 ε13

ε21 ε22 − εM ε23

ε31 ε32 ε33 − εM



Compatibility:

εlm,ln + εln,lm − εmn,ll = εll,mn ⇐⇒

ε11,22 + ε22,11 = 2ε12,12 = γ12,12

ε22,33 + ε33,22 = 2ε23,23 = γ23,23

ε33,11 + ε11,33 = 2ε31,31 = γ31,31

ε12,13 + ε13,12 − ε23,11 = ε11,23

ε23,21 + ε21,23 − ε31,22 = ε22,31

ε31,32 + ε32,31 − ε12,33 = ε33,12

3.8 Exercise

1. The displacement field of a continuum body is given by

X1 = x1

X2 = x2 + Ax3

X3 = x3 + Ax2

where A is a constant. Determine the displacement vector components in both the

material and spatial form.
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2. A continuum body undergoes the displacement

u =

3x2 − 4x3

2x1 − x3

4x2 − x1

 .

Determine the displaced position of the vector joining particles A(1, 0, 3) and

B(3, 6, 6).

3. A displacement field is given by u1 = 3x1x
2
2, u2 = 2x3x1 and u3 = x2

3 − x1x2. De-

termine the strain tensor εij and check whether or not the compatibility conditions

are satisfied.

4. A rectangular loaded plate is clamped along the x1- and x2-axis (see fig. 3.4). On

the basis of measurements, the approaches ε11 = a(x2
1x2 + x3

2); ε22 = bx1x
2
2 are

suggested.
x2, u2

x1, u1

Figure 3.4: Rectangular plate

(a) Check for compatibility!

(b) Find the displacement field and

(c) compute shear strain γ12.



4 Material behavior

4.1 Uniaxial behavior

Constitutive equations relate the strain to the stresses. The most elementary description

is Hooke’s law, which refers to a one–dimensional extension test

σ11 = Eε11 (4.1)

where E is called the modulus of elasticity, or Young’s modulus.

Looking on an extension test with loading and unloading a different behavior is found

(fig. 4.1).
σ

ε

À

Á

Â

Ã

Figure 4.1: σ-ε diagram of an extension test

There À is the linear area governed by Hooke’s law. In Á yielding occure which must be

governed by flow rules. Â is the unloading part where also in pressure yielding exist Ã.

Finally, a new loading path with linear behavior starts. The region given by this curve is

known as hysteresis loop and is a measure of the energy dissipated through one loading

and unloading circle.

44
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Nonlinear elastic theory is also possible. Then path À is curved but in loading and

unloading the same path is given.

4.2 Generalized Hooke’s law

4.2.1 General anisotropic case

As a prerequisite to the postulation of a linear relationship between each component of

stress and strain, it is necessary to establish the existence of a strain energy density W

that is a homogeneous quadratic function of the strain components. The density function

should have coefficients such that W > 0 in order to insure the stability of the body, with

W (0) = 0 corresponding to a natural or zero energy state. For Hooke’s law it is

W =
1

2
Cijkmεijεkm. (4.2)

The constitutive equation, i.e., the stress–strain relation, is a obtained by

σij =
∂W

∂εij
(4.3)

yielding the generalized Hooke’s law

σij = Cijkmεkm. (4.4)

There, Cijkm is the fourth–order material tensor with 81 coefficients. These 81 coefficients

are reduced to 36 distinct elastic constants taking the symmetry of the stress and the strain

tensor into account. Introducing the notation

σ = (σ11 σ22 σ33 σ12 σ23 σ31)T (4.5)

and

ε = (ε11 ε22 ε33 2ε12 2ε23 2ε31)T (4.6)

Hooke’s law is

σK = CKMεM K,M = 1, 2, . . . , 6 (4.7)

and K and M represent the respective double indices:

1 =̂ 11, 2 =̂ 22, 3 =̂ 33, 4 =̂ 12, 5 =̂ 23, 6 =̂ 31.

From the strain energy density the symmetry of the material–tensor

Cijkm = Ckmij or CKM = CMK (4.8)

is obvious yielding only 21 distinct material constants in the general case. Such a material

is called anisotropic.
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4.2.2 Planes of symmetry

Most engineering materials possess properties about one or more axes, i.e., these axes

can be reversed without changing the material. If, e.g., one plane of symmetry is the

x2 − x3–plane the x1–axis can be reversed (fig. 4.2),

x1

x2

x3

(a) Original coordinate system

x′1

x′2

x′3

(b) One–symmetry plane

x2
′′

x1
′′

x3
′′

(c) Two–symmetry planes

Figure 4.2: Coordinate systems for different kinds of symmetry

yielding a transformation

x =

−1 0 0

0 1 0

0 0 1

x′. (4.9)

With the transformation property of tensors

σ′ij = αikαjlσkl (4.10)

and

ε′ij = αikαjlεkl (4.11)

it is 

σ′11

σ′22

σ′33

σ′12

σ′23

σ′31


=



σ11

σ22

σ33

−σ12

σ23

−σ31


= C



ε′11

ε′22

ε′33

2ε′12

2ε′23

2ε′31


= C



ε11

ε22

ε33

−2ε12

2ε23

−2ε31


. (4.12)
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The above can be rewritten

σ =



C11 C12 C13 −C14 C15 −C16

C22 C23 −C24 C25 −C26

C33 −C34 C35 −C36

C44 −C45 C46

sym. C55 −C56

C66


ε (4.13)

but, since the constants do not change with the transformation, C14, C16, C24, C26, C34,

C36, C45, C56
!

= 0 leaving 21− 8 = 13 constants. Such a material is called monocline.

The case of three symmetry planes yields an orthotropic material written explicitly as

σ =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym. C55 0

C66


ε (4.14)

with only 9 constants. Further simplifications are achieved if directional independence,

i.e., axes can be interchanged, and rotational independence is given. This reduces the

numbers of constants to two, producing the familiar isotropic material. The number of

constants for various types of materials may be listed as follows:

• 21 constants for general anisotropic materials;

• 9 constants for orthotropic materials;

• 2 constants for isotropic materials.

We now summarize the elastic constant stiffness coefficient matrices for a few selected

materials.

Orthotropic: 9 constants

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym. C55 0

C66

(4.15)
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Isotropic: 2 constants

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0
1
2
(C11 − C12) 0 0

sym. 1
2
(C11 − C12) 0

1
2
(C11 − C12)

(4.16)

A number of effective modulus theories are available to reduce an inhomogeneous multi-

layered composite material to a single homogeneous anisotropic layer for wave propagation

and strength considerations.

4.2.3 Isotropic elastic constitutive law

Using the Lamé constants λ, µ the stress strain relationship is

σ =



2µ+ λ λ λ 0 0 0

2µ+ λ λ 0 0 0

2µ+ λ 0 0 0

2µ 0 0

sym. 2µ 0

2µ





ε11

ε22

ε33

ε12

ε23

ε31


(4.17)

or in indical notation using the stress and strain tensors

σij = 2µεij + λδijεkk (4.18)

or vice versa

εij =
σij
2µ
− λδijσkk

2µ(2µ+ 3λ)
. (4.19)

Other choices of 2 constants are possible with

• the shear modulus

µ = G =
E

2(1 + ν)
, (4.20)

•
λ =

νE

(1 + ν)(1− 2ν)
, (4.21)
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• Young’s modulus

E =
µ(2µ+ 3λ)

µ+ λ
, (4.22)

• Poisson’s ratio

ν =
λ

2(µ+ λ)
, (4.23)

• bulk modulus

K =
E

3(1− 2ν)
=

3λ+ 2µ

3
. (4.24)

From equation (4.21) it is obvious −1 < ν < 0.5 if λ remains finite. This is, however, true

only in isotropic elastic materials. With the definition of Poisson’s ratio

ν = −ε22

ε11

= −ε33

ε11

(4.25)

a negative value produces a material which becomes thicker under tension. These mate-

rials can be produced in reality.

The other limit ν = 0.5 can be discussed as: Taking the 1–principal axes as ε(1) = ε then

both other are ε(2) = ε(3) = −νε (see equation (4.25)). This yields the volume change

∆V

V
= εii = ε(1− 2ν) (4.26)

Now, ν = 0.5 gives a vanishing volume change and the material is said to be incompress-

ible. Rubber–like materials exhibit this type of behavior.

Finally, using the compression/bulk modulus K and the shear modulus G and further

the decomposition of the stress and strain tensor into deviatoric and hydrostatic part,

Hooke’s law is a given (eij are the components of εD)

σkk = 3Kεkk sij = 2Geij. (4.27)

4.2.4 Thermal strains

In the preceeding an isothermal behavior was assumed. For temperature change, it is

reasonable to assume a linear relationship between the temperature difference and the

strain

εij(T ) = α(T − T0)δij (4.28)
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with the reference temperature T0 and the constant assumed coefficient of thermal expan-

sion. So, Hooke’s law becomes

εij =
1

E
[(1 + ν)σij − νδijσkk] + αδij(T − T0) (4.29)

or in stresses

σij = 2µεij + λεkkδij − αδij(3λ+ 2µ)(T − T0). (4.30)

Here, it is assumed that the other material constants, e.g., E and ν, are independent of

temperature which is valid only in a small range.

4.3 Elastostatic/elastodynamic problems

In an elastodynamic problem of a homogenous isotropic body, certain field equations,

namely

1. Equilibrium

σij,j + fi = ρüi ∇ · σ + f = ρü (4.31)

2. Hooke’s law

σij = λδijεkk + 2µεij σ = λI3εM + 2µE (4.32)

3. Strain–displacement relations

εij =
1

2
(ui,j + uj,i) E =

1

2
(u∇T +∇uT ) (4.33)

must be satisfied at all interior points of the body. Also, prescribed conditions on stress

and/or displacements must be satisfied on the surface of the body. In case of elastody-

namics also initial conditions must be specified. The case of elastostatic is given when

ρüi can be neglected.

4.3.1 Displacement formulation

With a view towards retaining only the displacements ui the strains are eliminated in

Hooke’s law by using the strain–displacement relations

σij = λδijuk,k + µ(ui,j + uj,i) . (4.34)
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Taking the divergence of σij(= σij,j) the equilibrium is given in displacements

λuk,ki + µ(ui,jj + uj,ij) + fi = ρüi . (4.35)

Rearranging with respect to different operators yields

µui,jj + (λ+ µ)uj,ij + fi = ρüi (4.36)

or

µ∇2u + (λ+ µ)∇∇ · u + f = ρü . (4.37)

These equations governing the displacements of a body are called Lamé/Navier equations.

If the displacement field ui(xi) is continuous and differentiable, the corresponding strain

field εij always satisfy the compatibility constrains.

4.3.2 Stress formulation

An alternative representation is to synthesize the equation in terms of the stresses. Com-

bining the compatibility constraints with Hooke’s law and inserting them in the static

equilibrium produce the governing equations

σij,kk +
σkk,ij
1 + ν

+ fi,j + fj,i +
ν

1− ν
δijfk,k = 0 (4.38)

which are called the Beltrami–Michell equations of compatibility. To achieve the above

six equations from the 81 of the compatibility constrains several operations are necessary

using the equilibrium and its divergence. Any stress state fulfilling this equation and the

boundary conditions

t = σn (4.39)

is a solution for the stress state of a body loaded by the forces f .

4.4 Summary of chapter 4

Material behavior

Generalized Hooke’s Law

σij = Cijkm εkm ⇐⇒ σK = CKM εM
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with K,M = 1, 2, ..., 6 and K,M represent the respective double indices:

1=̂11, 2=̂22, 3=̂33, 4=̂12, 4=̂23, 6=̂31

σ11

σ22

σ33

σ12

σ23

σ31


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


·



ε11

ε22

ε33

ε12

ε23

ε31


Orthotropic material

σ11

σ22

σ33

σ12

σ23

σ31


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


·



ε11

ε22

ε33

ε12

ε23

ε31


Isotropic material

σ11

σ22

σ33

σ12

σ23

σ31


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


·



ε11

ε22

ε33

ε12

ε23

ε31
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Relation between Lamé constants λ, µ and engineering constants:

µ = G =
E

2(1 + ν)

E =
µ(2µ+ 3λ)

µ+ λ

λ =
νE

(1 + ν)(1− 2ν)

ν =
λ

2(µ+ λ)

K =
E

3(1− 2ν)

=
3λ+ 2µ

3

Thermal strains:

εij(T ) = α(T − T0)δij

σij = 2µεij + λεkkδij − αδij(3λ+ 2µ)(T − T0)

4.5 Exercise

1. Determine the constitutive relations governing the material behavior of a point hav-

ing the properties described below. Would the material be classified as anisotropic,

orthotropic or isotropic?

(a) state of stress:

σ11 = 10.8; σ22 = 3.4; σ33 = 3.0; σ12 = σ13 = σ23 = 0

corresponding strain components:

ε11 = 10 · 10−4; ε22 = 2 · 10−4; ε33 = 2 · 10−4; ε12 = ε23 = ε31 = 0

(b) state of stress:

σ11 = 10; σ22 = 2; σ33 = 2; σ12 = σ23 = σ31 = 0

corresponding strains:

ε11 = 10 · 10−4; ε22 = ε33 = ε12 = ε23 = ε31 = 0

(c) state of stress:

When subjected to a shearing stress σ12, σ13 or σ23 of 10, the material develops

no strain except the corresponding shearing strain, with tensor component ε12,

ε13 or ε23, of 20 · 10−4.
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2. A linear elastic, isotropic cuboid is loaded by a homogeneous temperature change.

Determine the stresses and strains of the cuboid, if

(a) expansion in x1 and x2-direction is prevented totally and if there is no preven-

tion in x3-direction.

(b) only in x1-direction, the expansion is prevented totally.

3. For steel E = 30 · 106 and G = 12 · 106. The components of strain at a point within

this material are given by

εεε =

0.004 0.001 0

0.001 0.006 0.004

0 0.004 0.001

 .

Compute the corresponding components of the stress tensor σij.



5 Two–dimensional elasticity

Many problems in elasticity may be treated satisfactory by a two–dimensional, or plane

theory of elasticity. In general, two cases exists.

1. The geometry of the body is essentially that of a plate, i.e., one dimension is much

smaller than the others and the applied load is uniformly over the thickness dis-

tributed and act in that plane. This case is called plane stress (fig. 5.1).

x1

x2
x2

x3

Figure 5.1: Plane stress: Geometry and loading

2. The geometry of the body is essentially that of a prismatic cylinder with one dimen-

sion much larger than the others. The loads are uniformly distributed with respect

to the large dimension and act perpendicular to it. This case is called plane strain

(fig. 5.2).

55
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x1

x2

x3

Figure 5.2: Plane strain: Geometry and loading

5.1 Plane stress

Under the assumptions given above the stress components in x3–direction vanish

σ33 = σ13 = σ23
!

= 0 (5.1)

and the others are σ = σ(x1, x2) only. Accordingly, the field equations for plane stress

are

σij,j + fi = ρüi i, j = 1, 2 (5.2)

and

f3
!

= 0 . (5.3)

Hooke’s law is under the condition of σi3 = 0

εij =
1 + ν

E
σij −

ν

E
δijσkk i, j, k = 1, 2 (5.4)

and

ε33 = − ν
E
σkk . (5.5)
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This result is found by simply inserting the vanishing stress components in the generalized

Hooke’s law (4.19). So, the stress and strain tensors are

σ =

σ11 σ12 0

σ12 σ22 0

0 0 0

 (5.6)

ε =

ε11 ε12 0

ε12 ε22 0

0 0 ε33

 . (5.7)

The εi3, i = 1, 2, are only zero in case of isotropic materials. In terms of the displacement

components ui, the field equations may be combined to give the governing equation

E

2(1 + ν)
ui,jj +

E

2(1− ν)
uj,ji + fi = ρüi i, j = 1, 2 . (5.8)

Due to the particular form of the strain tensor, the six compatibility constraints would

lead to a linear function ε33 and, subsequent t0, a parabolic distribution of the stress over

the thickness. This is a too strong requirement. Normally, only,

ε11,22 + ε22,11 = 2ε12,12 (5.9)

is required as an approximation.

5.2 Plane strain

In case of plane strain, no displacements and also no strains in x3–direction can appear

due to the long extension,

u =

u1(x1, x2)

u2(x1, x2)

0

 (5.10)

ε33 = ε13 = ε23 = 0. (5.11)

This yields the field equations

σij,j + fi = ρüi i, j = 1, 2 (5.12)

and

f3
!

= 0 . (5.13)
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Hooke’s law is then

σij = λδijεkk + 2µεij i, j, k = 1, 2 (5.14)

and

σ33 = νσkk, k = 1, 2 (5.15)

where the last condition is concluded from the fact ε33 = 0. This is inserted to Hooke’s

law (4.19) and taken to express σ33. The tensors look

σ =

σ11 σ12 0

σ12 σ22 0

0 0 σ33

 (5.16)

ε =

ε11 ε12 0

ε12 ε22 0

0 0 0

 . (5.17)

The zero–valued shear forces σ13 = σ23 = 0 are a consequence of zero shear strains

ε23 = ε13 = 0. Hooke’s law can also be expressed in strains

εij =
1 + ν

E
σij −

(1 + ν)ν

E
δijσkk . (5.18)

Subsequent, for plane strain problems the Navier equation reads

E

2(1 + ν)
ui,jj +

E

2(1 + ν)(1− 2ν)
uj,ji + fi = ρüi . (5.19)

From this equation, or more obvious from Hooke’s law, it is seen that exchanging E
1−ν2 with

E and ν
1−ν with ν in plane strain or plane stress problems, respectively, allows to treat

both problems by the same equations. Contrary to plane stress, here, all compatibility

constraints are fulfilled, and only

ε11,22 + ε22,11 = 2ε12,12 (5.20)

remains to be required.
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5.3 Airy’s stress function

First, assuming plane stress equation and introducing a potential function

f = −∇V fi = −V,i . (5.21)

Forces which can be expressed in the above way are called conservative forces. Introducing

further some scalar function φ(x) with

σ11 = φ,22 + V (5.22a)

σ22 = φ,11 + V (5.22b)

σ12 = −φ,12 (5.22c)

then Hooke’s law is

ε11 =
1

E
[(φ,22 − νφ,11) + (1− ν)V ]

ε22 =
1

E
[(φ,11 − νφ,22) + (1− ν)V ]

ε12 = − 1

2G
φ,12

ε33 = − ν
E

[(φ,11 + φ,22) + 2V ] .

(5.23)

Inserting these strain representations in the compatibility constraints yields

1

E
[φ,2222 − νφ,1122 + (1− ν)V,22 + φ,1111 − νφ,1122 + (1− ν)V,11] = − 1

G
φ,1212 . (5.24)

Rearranging and using E
G

= 2(1 + ν) the equation

∇4φ = −(1− ν)∇2V (plane stress) (5.25)

with

∇4( ) = ( ),1111 + 2( ),1122 + ( ),2222 (5.26)

is achieved. In the case of plane strain, the corresponding equation is

∇4φ = −(1− 2ν)

(1− ν)
∇2V (plane strain). (5.27)

For vanishing potentials V , i.e., vanishing or constant body forces, equations (5.25) and

(5.27) are identical to

∇4φ = 0 (5.28)
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.

Further, φ are called Airy stress function. These functions satisfy the equilibrium and the

compatibility constraints. The solution to the biharmonic problem in Cartesian coordi-

nates is most directly written in terms of polynomials having the general form

φ =
∑
m

∑
n

Cmnx
m
1 x

n
2 . (5.29)

This function has then to be applied to the boundary conditions.

5.4 Summary of chapter 5

Plane stress

σ33 = σ13 = σ23
!

= 0

σ =

σ11 σ12 0

σ12 σ22 0

0 0 0

 ε =

ε11 ε12 0

ε12 ε22 0

0 0 ε33


Plane strain

u3 = 0 ⇒ ε33 = ε13 = ε23
!

= 0

σ =

σ11 σ12 0

σ12 σ22 0

0 0 σ33

 ε =

ε11 ε12 0

ε12 ε22 0

0 0 0


Airy’s stress function

The solution of an elastic problem is found, if the Airy’s stress φ function is known, which

• fulfills the biharmonic equation

∆∆φ = ∇4φ =
∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1∂x

2
2

+
∂4φ

∂x4
2

= 0

• fulfills the boundary conditions of the problem

⇒ Stresses:

σ11 =
∂2φ

∂x2
2

= φ,22 σ22 =
∂2φ

∂x2
1

= φ,11 σ12 = − ∂2φ

∂x1∂x2

= −φ,12
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Boundary conditions:

You have to distinguish between stress boundary conditions and displacement boundary

conditions.

Generally, at every boundary you can give either a statement about stresses or displace-

ments.

i.e.:

• At a free boundary all stresses are known (σ = 0), the displacements are not known

a priori.

• At a clamped boundary the displacements are known (u = 0), the stresses have to

be evaluated.

Surface tractions t at the boundary:

σijnj = tni

σ11n1 + σ12n2 = t1

σ12n1 + σ22n2 = t2
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5.5 Exercise

1. Which problem can be described by the stress function

φ = −F
d3
x1x

2
2(3d− 2x2)

with the limits 0 6 x1 6 5d, 0 6 x2 6 d?

2. A disc (fig. 5.3) is loaded by forces F and P . The following parameters are known:

l, h, thickness t of the disc which yields t� l, h

2h

l

x1 x3

x2

F

P

Figure 5.3: Clamped disc under loading

(a) Determine the stress boundary conditions for all boundaries.

(b) Determine the stress field of the disc using the Airy’s stress function.



6 Energy principles

Energy principles are another representation of the equilibrium and boundary conditions

of a continuum. They are mostly used for developing numerical methods as, e.g., the

FEM.

6.1 Work theorem

Starting from the strain energy density of linear elastic material W = 1
2
σijεij integrated

over the volume leads to the total strain energy in the mixed form

ES =
1

2

∫
V

σijεijdV . (6.1)

Introducing Hooke’s law (4.4) yields the representation in strains

ES =

∫
V

WdV =
1

2

∫
V

εijCijkmεkmdV (see equation (4.2)) (6.2)

or with the inverse of the material tensor

ES =
1

2

∫
V

σijC
−1
ijklσkldV (6.3)

represented in stresses. The equivalence of equation (6.2) and equation (6.3) is valid only

for Hooke’s law. Assuming a linear strain–displacement relation εij = 1
2
(ui,j + uj,i) the

total strain energy can be reformulated

2ES =

∫
V

σij
1

2
(ui,j + uj,i)dV =

∫
V

σijui,jdV . (6.4)

63
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In the last integral the symmetry of the stress tensor and interchanging of the indices

σijui,j = σjiuj,i is used. Next, partial integration and the Gaussian integral theorem

yields ∫
V

[σij,jui + σijui,j]dV =

∫
V

(σijui),jdV =

∫
A

σijuinjdA . (6.5)

Introducing the boundary condition σijnj = ti and the static equilibrium σij,j = −fi it

reads

2ES =

∫
A

σijuinjdA−
∫
V

σij,juidV

=

∫
A

tiuidA+

∫
V

fiuidV .

(6.6)

This expression is called work theorem which is in words:

Twice the total strain energy is equal to the work of the ’inner force’, i.e., the

body force f , and of the ’outer’ force, i.e., the surface traction, t, on the

displacements.

Assuming now an elastic body loaded by two different surface tractions or body forces

t(1) and t(2) or f (1) and f (2), respectively, results in two states of deformation:

t
(1)
i and f

(1)
i → σ

(1)
ij , ε

(1)
ij , u

(1)
i (6.7)

t
(2)
i and f

(2)
i → σ

(2)
ij , ε

(2)
ij , u

(2)
i (6.8)

Defining the interaction energy of such a body with the stresses due to the first loading

and the strains of the second loading:

W12 =

∫
V

σ
(1)
ij ε

(2)
ij dV =

∫
A

t
(1)
i u

(2)
i dA+

∫
V

f
(1)
i u

(2)
i dV (6.9)

With Hooke’s law it is obvious

σ
(1)
ij ε

(2)
ij = ε

(1)
kl Cklijε

(2)
ij = ε

(1)
kl σ

(2)
lk (6.10)

taking the symmetry of the material tensor into account. So, concluding from this the

interaction energy is

W12 =

∫
V

σ
(1)
ij ε

(2)
ij dV =

∫
V

σ
(2)
ij ε

(1)
ij = W21 (6.11)
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t
A1

A2

u

Figure 6.1: Elastic body with two different boundary conditions

and, subsequently, it holds∫
A

t
(1)
i u

(2)
i dA+

∫
V

f
(1)
i u

(2)
i dV =

∫
A

t
(2)
i u

(1)
i dA+

∫
V

f
(2)
i u

(1)
i dV , (6.12)

i.e., the work of the surface forces and body forces of state ’1’ on the displacements

of state ’2’ is equal to the work of the surface forces and body forces of state ’2’ on the

displacements of state ’1’. This is called the Theorem of Betti or Reciprocal work theorem.

6.2 Principles of virtual work

6.2.1 Statement of the problem

An elastic body V with boundary A = A1 +A2 (see fig. 6.1) is governed by the boundary

value problem

1. the equilibrium – static conditions

σij,j = −f i in V (6.13)

and the boundary conditions

σijnj = ti on A1 (6.14)

and

2. the compatibility constraints – geometric conditions

∇× E×∇ = 0 in V (6.15)
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with the boundary conditions

ui = ui on A2 (6.16)

but these are identically satisfied when the strains are desired by differentiation from the

displacements, i.e.,

εij =
1

2
(ui,j + uj,i) (6.17)

when the differentiability of the displacements is given.

In the above the bar (̄) denotes given values.

For approximations which satisfy only

1. the ’geometric’ condition are called geometrical admissible approximations u∼i

u∼i = uexacti + δui (6.18)

with δui small ’virtual’ displacement satisfying δui
!

= 0 on A2.

2. the ’static’ conditions are called statically admissible approximations σ∼ij

σ∼ij = σexactij + δσij (6.19)

with δσijnj = 0 on A1

The virtual changes δ of the displacements or stresses are small, i.e., infinitesimal, and real

but possible. Based on these preliminaries the principles of virtual work can be defined

either by assuming virtual displacements or virtual forces inserted in the work theorem.

6.2.2 Principle of virtual displacements

The virtual work due to a virtual displacement is given by

δW =

∫
A

tiδuidA+

∫
V

fiδuidV . (6.20)

Using the property δui,j = (δui),j and the definition of surface loads ti = σijnj the first

integral reads ∫
A

tiδuidA =

∫
A

σijδuinjdA =

∫
V

(σijδui),jdV (6.21)

=

∫
V

σij,jδuidV +

∫
V

σijδui,jdV . (6.22)
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Substituting this result in the virtual work expression yields

δW =

∫
V

(σij,j + fi)δuidV +

∫
V

σijδui,jdV . (6.23)

Since, the equilibrium σij,j + fi = 0 is valid one finds∫
A

tiδuidA+

∫
V

fiδuidV︸ ︷︷ ︸
δWexternal

=

∫
V

σijδui,jdV︸ ︷︷ ︸
δWinternal

(6.24)

the equivalence of the virtual work of external forces δWexternal and the virtual work of

internal forces δWinternal. The virtual work of internal forces are found to be∫
V

σijδui,jdV =

∫
V

σijδεijdV =

∫
V

εklCklijδεijdV (6.25)

=

∫
V

δ

(
1

2
εklCklijεij

)
dV = δWinternal . (6.26)

In the last rearrangement it is used

δ

(
1

2
εklCklijεij

)
=

1

2
δεklCklijεij +

1

2
εklCklijδεij (6.27)

= εklCklijδεij (6.28)

based on the product rule and the symmetry of the material tensor. Implementing in the

equivalence δWexternal = δWinternal the displacement boundary condition, i.e., assuming

admissible virtual displacements the surface integral over A in δWexternal is reduced to an

integral over A1 yielding∫
V

δ

(
1

2
εklCklijεij

)
dV −

∫
A1

tiδuidA−
∫
V

f iδuidV = 0 (6.29)

or in a complete displacement description with εij = 1
2
(ui,j + uj,i)∫

V

δ

(
1

2
uk,lCklijui,j

)
dV −

∫
A1

tiδuidA−
∫
V

f iδuidV = 0 . (6.30)

The above given integral equation is called the Principle of virtual displacements where

with the bar the given values are indicated. Taking into account that the volume V and
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also the surface A of the elastic body will not change due to the ’virtual’ displacement,

and, also, that the prescribed boundary traction ti as well as the body forces f i will not

change, the variation, i.e., the sign δ, can be shifted out of the integrals, resulting in

δ

∫
V

(
1

2
uk,lCklijui,j

)
dV −

∫
A1

tiuidA−
∫
V

f iuidV


︸ ︷︷ ︸

Π(ui)

= 0 . (6.31)

The expression between the brackets is called total potential energy Π(ui). The condition

above

δΠ(ui) = 0 (stationary potential energy) (6.32)

is a variational equation stating that the exact solution uexacti gives the total potential

energy an extremum. It can be proven to be a minimum. If uhi denotes an approximative

solution where h means the discretization it must be valid

Π(uh2
i ) < Π(uh1

i ) if h2 < h1 (6.33)

i.e., the principle of minimum total potential energy.

6.2.3 Principle of virtual forces

Next the complementary principle of the above is given. Instead of varying the displace-

ments, i.e., the geometric conditions, the forces, i.e., the statical condition, are varied. As

defined, virtual forces

δti = δσijnj (6.34)

have to satisfy

δti = 0 on A1 (6.35)

to be admissible, and, further, due to the equilibrium

δσij,j = 0 in V . (6.36)

This is caused by the fact that the prescribed body forces f i are not varied δf i ≡ 0.

Inserting these preliminaries into the work theorem (6.6) and performing the variation

δti, it holds

δW ∗
external =

∫
A2

uiδtidA . (6.37)
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The internal virtual work produced by virtual stresses δσij is

δW ∗
internal =

∫
V

εijδσijdV . (6.38)

Expressing εij with Hooke’s law by stresses and the inverse material tensor yields

δW ∗
internal =

∫
V

σklC
−1
klijδσijdV . (6.39)

As before, the variation can be extracted from the integral∫
V

σklC
−1
klijδσijdV =

∫
V

[
1

2
δσklC

−1
klijσij +

1

2
σklC

−1
klijδσij

]
dV (6.40)

=

∫
V

δ

[
1

2
σklC

−1
klijσij

]
dV = δW ∗

internal . (6.41)

Now, with the equivalence δW ∗
internal = δW ∗

external and the same argumentation as given

for virtual displacement formulation it is

δ

∫
V

1

2
σklC

−1
klijσijdV −

∫
A2

uitidA


︸ ︷︷ ︸

−Πc(σij)

= 0 (6.42)

where Πc(σij) is called complementary total potential energy. Note, in (6.42) it is defined

with a negative sign. The variational equation

δΠc(σij) = 0 (6.43)

is as in case of virtual displacements an extremum of the total potential energy. Contrary

to there, here, due to the negative sign in the definition of Πc it can be proven to be a

maximum. So, for static admissible approximations σ̃ij it holds

Πc(σ̃ij) 6 Πc(σ
exact
ij ) . (6.44)

Clearly, for the exact solutions uexacti and σexactij it is valid

Π(uexacti ) = Πc(σ
exact
ij ) . (6.45)
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Inserting the expression of both energies∫
V

1

2
εklCklij︸ ︷︷ ︸

σij

εijdV −
∫
A1

tiuidA−
∫
V

f̄iuidV = −
∫
V

1

2
σklC

−1
klij︸ ︷︷ ︸

εij

σijdV +

∫
A2

uitidA (6.46)

yields the general theorem∫
V

σijεijdV =

∫
V

f̄iuidV +

∫
A1

tiuidA+

∫
A2

uitidA , (6.47)

i.e., the work of the external and internal forces at the displacements is equal to twice the

strain energy.

6.3 Approximative solutions

To solve problems with Energy principles for realistic geometries require mostly approx-

imative solutions. Trial functions for the unknowns are defined often by polynomials. If

these functions are admissible such an approximation is called Ritz approximation, e.g.,

for the displacements

ũ(x) = φc , (6.48)

i.e.,

ũi(xi) = φi1(xi)c1 + φi2(xi)c2 + . . .+ φin(xi)cn (6.49)

for i = 1, 2, 3 in 3–D or i = 1, 2 in 2–D or i = 1 in 1–D. The number n can be chosen

arbitrarily, however, it must be checked whether ũ(x) is admissible, i.e., the geometrical

boundary conditions must be fulfilled. Using a symbolic notation and with the differential

operator matrix D from

ε = Du (6.50)

(ε see chapter 4) the total potential energy is

Π(u) =
1

2

∫
V

(Du)TC(4)DudV −
∫
A1

t̄TudA−
∫
V

f̄TudV . (6.51)

Inserting there the Ritz approach yields

Π(ũ) =
1

2
cT
∫
V

(Dφ)TC(4)(Dφ)dV

︸ ︷︷ ︸
Rh

c−

∫
V

f̄TφdV +

∫
A1

t̄TφdA


︸ ︷︷ ︸

pT
h

c (6.52)

=
1

2
cTRhc− pThc . (6.53)
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In case of the simply supported beam (see exercise 6.5) it was

w̃(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 (6.54)

⇒ c =


a0

a1

a2

a3

a4

 (6.55)

φ = (1, x, x2, x3, x4) (6.56)

or after inserting the geometric boundary conditions

w̃(x) =
wB
l2
x2 + a3(x3 − lx2) + a4(x4 − l2x2) (6.57)

= [x2, x3 − lx2, x4 − l2x2]︸ ︷︷ ︸
φ


wB

l2

a3

a4


︸ ︷︷ ︸

c

. (6.58)

To determine the unknown coefficients c the principle of virtual displacements is used

δΠ =
∂Π

∂c
δc = 0 (6.59)

yielding the equation system

Rhc = ph . (6.60)

Hence, by inserting this result in the total energy the approximative solution u∼(x) gives

Π(ũ) = −1

2
cT ph , (6.61)

when the system of equations Rhc = ph is exactly solved.

The same procedure can be introduced for the complementary total potential energy.

With the admissible trial function for the stresses

σ̃(x) = φc (6.62)

and

t̃(x) = nφc (6.63)
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the complementary total potential energy in symbolic notation

Πc = −1

2

∫
V

σTC−1σdV +

∫
A2

ūT tdA (6.64)

is approximated by

Πc(σ̃) = −1

2
cT
∫
V

φTC−1φdV

︸ ︷︷ ︸
Fh

c +

∫
A2

ūTnφdA

︸ ︷︷ ︸
uT

h

c (6.65)

= −1

2
cTFhc + uThc . (6.66)

The variation following the principle of virtual forces

δΠc = 0 (6.67)

yields the equation system

Fhc = uh (6.68)

to determine the coefficients c. If this equation system is solved exactly the approximated

complementary total energy is

Πc(σ̃) =
1

2
cTuh . (6.69)

6.3.1 Application: FEM for beam

Starting point is the total potential energy for a beam

Πbeam =
EI

2

l∫
0

(w′′(x))2dx−
l∫

0

q(x)w(x)dx−
n∑
i=1

F (xi)w(xi) +
m∑
j=1

M(xj)w
′(xj) . (6.70)

The next question is on the approximation for the deflection w(x). First, the beam is

divided in elements Γe = [xe, xe+1] wherein each a cubic polynomial is used for the

unknowns we and w
′e, i.e., for the geometric boundary conditions. The transformation

from the global coordinate x ∈ [xe, xe+1] to the local 0 < ξ < 1 is

ξ =
x− xe
∆xe

=
x− xe
le

(6.71)
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with the element-length le. So, the approximation in Γe is

w(e)(x) = we1N1

(
x− xe
le

)
+w

′e
1 N2

(
x− xe
le

)
+we2N3

(
x− xe
le

)
+w

′e
2 N4

(
x− xe
le

)
(6.72)

The test functions Ni are

N1(ξ) = 1− 3ξ2 + 2ξ3 (6.73)

N2(ξ) = le(ξ − 2ξ2 + ξ3) (6.74)

N3(ξ) = 3ξ2 − 2ξ3 (6.75)

N4(ξ) = le(−ξ2 + ξ3) (6.76)

Ni

N1

N2

N3

N4

1

45◦

45◦

ξ = 0
x = xe

ξ = 1
x = xe+1

Figure 6.2: Test functions of one element

with

N1(ξ = 0) = 1 N1(ξ = 1) = 0

N2(ξ = 0) = 0 N2(ξ = 1) = 0

N3(ξ = 0) = 0 N3(ξ = 1) = 1

N4(ξ = 0) = 0 N4(ξ = 1) = 0

N ′1(ξ = 0) = 0 N ′1(ξ = 1) = 0

N ′2(ξ = 0) = 1 N ′2(ξ = 1) = 0

N ′3(ξ = 0) = 0 N ′3(ξ = 1) = 0

N ′4(ξ = 0) = 0 N ′4(ξ = 1) = 1
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Inserting them in the energy, e.g., the strain energy is

EI

2

l∫
0

(w′′(x))2dx =
EI

2

N∑
e=1

xe+1∫
xe

[
d2

dx2
[we1N1(ξ) + we

′

1 N2(ξ) + we2N3(ξ) + we
′

2 N4(ξ)]

]2

dx

(6.77)

for N elements. To find the N–sets of nodal values we1, we
′

1 , we2 and we
′

2 the variation

δΠ =
∂Π

∂we1
δwe1 +

∂Π

∂we
′

1

δwe
′

1 +
∂Π

∂we2
δwe2 +

∂Π

∂we
′

2

δwe
′

2 = 0 (6.78)

is performed taking each summand independently to zero. Taking into account

d2

dx2
=

1

l2e

d2

dξ2
(6.79)

and
xe+1∫
xe

(
d2

dx2
[. . .]

)2

dx =

1∫
0

1

l4e

(
d2

dξ2
[. . .]

)2

ledξ (6.80)

the above variation yields for the strain energy term

∂

∂we1
:

EI

2

le
l4e
· 2

1∫
0

{we1(−6 + 12ξ) + we
′

1 le(−4 + 6ξ) + we2(6− 12ξ) + we
′

2 le(−2 + 6ξ)}

(6.81)

· (−6 + 12ξ)dξ (6.82)

∂

∂we
′

1

:
EI

l3e
·

1∫
0

{. . .} · le(−4 + 6ξ)dξ (6.83)

∂

∂we2
:

EI

l3e
·

1∫
0

{. . .} · (6− 12ξ)dξ (6.84)

∂

∂we
′

2

:
EI

l3e
·

1∫
0

{. . .} · le(6ξ − 2)dξ . (6.85)
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Performing these integrals and gathering the four equations in a matrix the system

EI

l3e


12 −12 6le 6le

−12 12 −6le −6le

6le −6le 4l2e 2l2e
6le −6le 2l2e 4l2e



we1
we2
we
′

1

we
′

2

 = Kewe (6.86)

is obtained with the element stiffness matrix Ke. Equation (6.86) can be reordered in

such a manner that degrees of freedom of each node are consecutive

EI

l3e


12 6le −12 6le

6le 4l2e −6le 2l2e
−12 −6le 12 −6le

6le 2l2e −6le 4l2e



we1
we
′

1

we2
we
′

2

 =

[
K11 K12

K21 K22

]
= Kewe. (6.87)

The right hand side, i.e., the loading term in the total potential energy is found similar

l∫
0

q(x)w(x)dx =
N∑
e=1

xe+1∫
xe

q(x)we(x)dx . (6.88)

After variation and integration one obtains

∂

∂we1
:

q0le
2

(6.89)

∂

∂we
′

1

:
q0l

2
e

12
(6.90)

∂

∂we2
:

q0le
2

(6.91)

∂

∂we
′

2

: −q0l
2
e

12
(6.92)

Now, collecting all N elements in one system and taking into account that at adjacent

elements transition conditions (fig. 6.3) holds.
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Γe Γe+1

we1 we2 = we+1
1

and

we
′

2 = we+1′

1

we+1
2

Figure 6.3: Transition conditions at adjacent elements

Further, for simplification, all elements will have the same length le it is

EI

l3e



12 −12 0 0 · · · 6le 6le 0 0 · · ·
−12 12 + 12 −12 0 · · · −6le −6le + 6le 6le 0 · · ·

0 −12 24 −12 · · · 0 −6le 0 6le · · ·
0 0 −12

. . . · · · ...
...

...
...

. . .
...

...
...

...

4l2e 2l2e 0 · · ·
2l2e 4l2e + 4l2e 2l2e · · ·

sym. 0 2l2e 8l2e 2l2e
...

...
...

...
. . .


︸ ︷︷ ︸

K



we1
we2
we3
...

weN

we
′

1

we
′

2

we
′

3
...

we
′
N


︸ ︷︷ ︸

wh

= q0le



1
2

1
2

+ 1
2

1
...
1
2

le
12

− le
12

+ le
12

0
...
le
12



∂
∂we

1
∂
∂w2

2
= ∂

∂we+1
1

...

∂
∂wN

2

∂

∂w
′1
1

∂

∂w
′1
2

= ∂

∂w
′2
1

∂

∂w
′N
2

. (6.93)



6.4. SUMMARY OF CHAPTER 6 77

If we reorder the element matrices Ke
i like in (6.87) we obtain

K =


K11

1 K12
1 0 0

K21
1 K22

1 + K11
2 K12

2 0

0 K21
2 K22

2 + K11
3 K12

3

0 0 K21
3 K22

3

 (6.94)

6.4 Summary of chapter 6

Energy Principles

Work theorem

2E =

∫
A

σijuinjdA−
∫
V

σij,juidV

=

∫
A

tiuidA+

∫
A

fiuidV

Geometric admissible approximations: ũi = uexact
i + δui

Statically admissible approximations: σ̃ij = σexact
ij + δσij

Principle of virtual displacements

δWexternal = δWinternal∫
A

t̄iδuidA+

∫
V

f̄iδuidV =

∫
V

σijδui,j =

∫
V

σijδεijdV

Principle of virtual forces

δW ∗
external = δW ∗

internal ⇐⇒
∫
A

ūiδtidA =

∫
V

εijδσijdV

Variational Principles

Principle of minimum total potential energy:

δΠ(ui)
!

= 0

δ

[∫
V

1

2
uk,l Cklij ui,j dV −

∫
A

t̄iuidA−
∫
V

fiuidV

]
!

= 0
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1D:

Strain energy:

1

2
uk,l Cklij ui,j =

1

2
σxxεxx =

E

2
(u,x)

2 =
E

2
(zψ(x))2 =

E

2
z2(w′′(x))2

⇒ with dV = Adx = b dz dx:∫
V

1

2
uk,l Cklij ui,j dV =

∫ h
2

z=−h
2

∫ `

x=0

E

2
z2(w′′(x))2bdxdz

=
Eb

2

∫ h
2

−h
2

z2dz

∫ `

x=0

(w′′(x))2dx =
Ebh3

2 · 12

∫ `

0

(w′′(x))2dx

=
EIy

2

∫ `

0

(w′′(x))2dx

Loading:

p̄(x) =
q̄(x)

hb
⇒

∫
V

p̄(x)w(x)dV =

∫ `

0

q(x)

A
w(x)Adx =

∫ `

0

q(x)w(x)dx

single forces F̄ (xi) : ⇒ −
∑n

i=0 F̄ (xi)w(xi)

single moments M̄(xj) : ⇒ +
∑m

j=0 M̄(xj)w
′(xj)

Πbeam(w) =
EIy

2

∫ `

0

(w′′(x))2dx−
∫ `

0

q(x)w(x)dx

−
n∑
i=0

F̄ (xi)w(xi) +
m∑
j=0

M̄(xj)w
′(xj)

Principle of minimum complementary energy:

δΠ∗(σij)
!

= 0

δ

[∫
V

1

2
σkl C

−1
klij σijdV −

∫
A

ūitidA

]
!

= 0

1D:

∫
V

1

2
σkl C

−1
klij σijdV =

∫ `

x=0

∫ h
2

z=−h
2

1

2
σxx

1

E
σxxbdzdx

with σxx =
My(x)

Iy
z :

=

∫ `

x=0

1

2

M2
y (x)

EI2
y

dx

∫ h
2

z=−h
2

z2dA =
1

2EIy

∫ `

x=0

M2
y (x)dx
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prescr. boundary bending w̄(xi): ⇒ −
∑n

i=0 F (xi)w̄(xi)

prescr. boundary incline w̄′(xj) : ⇒ +
∑m

j=0M(xj)w̄
′(xj)

−Π∗beam(M) =
1

2EI

∫ `

x=0

M2
y (x)dx

−
n∑
i=0

F (xi)w̄(xi) +
m∑
j=0

M(xj)w̄
′(xj)

6.5 Exercise

1. Consider a beam under constant loading q(x) = q0, which is clamped at x = 0 and

simply supported at x = l, where this support is moved in z-direction for a certain

value, i.e. w(x = l) = w̄B (fig. 6.4)!

z

x

wB

q(x) = q0

Figure 6.4: Beam under loading

(a) Solve via Principle of minimum total potential energy!

(b) Solve via Principle of minimum complementary energy!



A Solutions

A.1 Chapter 1

1. (a)

gradf(x1, x2, x3) =


∂f(x1,x2,x3)

∂x1
∂f(x1,x2,x3)

∂x2
∂f(x!,x2,x3)

∂x3

 =

3 + ex2 + x2e
x3

x1e
x2 + x1e

x3

x1x2e
x3


(b)

gradf(3, 1, 0) =

3 + e1 + 1e0

3e1 + 3e0

3 · 1 · e0

 =

4 + e

3 + e

3


2. general:

∂f

∂a
(p1, p2, p3) =

a

|a|
· gradf(p1, p2, p3)

with magnitude |a| =
√
a2

1 + a2
2 + a2

3

here:

gradf(x1, x2, x3) =

2x1

3x2

0



gradf(5, 2, 8) =

10

6

0



⇒

(
3
0
4

)
√

32 + 02 + 42
·

10

6

0

 =
1

5

3

0

4

 ·
10

6

0

 =
1

5
(30 + 0 + 0) = 6

80
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3. (a)

div

 x1 + x2
2

ex1x3 + sinx2

x1x2x3

 = 1 + cosx2 + x1x2

(b)

div

X(1, π, 2)

Y (1, π, 2)

Z(1, π, 2)

 = 1 + cos π + 1 · π = π

4. (a)

curl

 x1 + x2

ex1+x2 + x3

x3 + sinx1

 = ∇×

 x1 + x2

ex1+x2 + x3

x3 + sinx1


=


∂
∂x2

(x3 + sinx1)− ∂
∂x3

(ex1+x2 + x3)
∂
∂x3

(x1 + x2)− ∂
∂x1

(x3 + sinx1)
∂
∂x1

(ex1+x2 + x3)− ∂
∂x2

(x1 + x2)

 =

 −1

− cosx1

ex1+x2 − 1


(b)

curl

X(0, 8, 1)

Y (0, 8, 1)

Z(0, 8, 1)

 =

 −1

−1

e8 − 1


5. expansion of Dijxixj:

Dijxixj = D1jx1xj +D2jx2xj +D3jx3xj

= D11x1x1 +D12x1x2 +D13x1x3

+D21x2x1 +D22x2x2 +D23x2x3

+D31x3x1 +D32x3x2 +D33x3x3

simplifying:

(a) Dij = Dji

Dijxixj = D11(x1)2 +D22(x2)2 +D33(x3)2 + 2D12x1x2 + 2D13x1x3 + 2D23x2x3

(b) Dij = −Dji

Dijxixj = D11(x1)2 +D22(x2)2 +D33(x3)2 = 0

because D12 = D21, D13 = D31, D23 = D32 and D11 = −D11, D22 = −D22,

D33 = −D33
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6. (a)

f2 = c2,1b1 − c1,2b1

+ c2,2b2 − c2,2b2

+ c2,3b3 − c3,2b3

= (c2,1 − c1,2)b1 + (c2,3 − c3,2)b3

(b)

f2 = B21f
∗
1 +B22f

∗
2 +B23f

∗
3

7. (a)

∇f = f,i =
∂f

∂xi
=
∂f

∂r
· ∂r
∂xi

with

∂r

∂xi
=

∂

∂xi
(xi · xi)

1
2 =

1

2
(xi · xi)−

1
2 (
∂xi
∂xi
· xi + xi

∂

∂xi
) =

1

2
(xi · xi)−

1
2 2xi

=
xi√
xixi

=
xi
r

follows

∇f =
∂f

∂r
· xi
r

=
f ′(r)x

r

or expanded:

r2 = x2
1 + x2

2 + x2
3

∇f =
∂f

∂r
· ∂r
∂xi

with

∂r

∂xi
=

r,1r,2
r,3

 =


(x2

1 + x2
2 + x2

3)
1
2
,1

(x2
1 + x2

2 + x2
3)

1
2
,2

(x2
1 + x2

2 + x2
3)

1
2
,3

 =


1
2
(x2

1 + x2
2 + x2

3)
− 1

2
,1

1
2
(x2

1 + x2
2 + x2

3)
− 1

2
,2

1
2
(x2

1 + x2
2 + x2

3)
− 1

2
,3

 =


x1

r
x2

r
x3

r


follows

∇f =
∂f

∂r
· x
r
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(b)

∇2f = f,ii = (f,i),i =

(
f ′(r) · xi

r

)
,i

=
(f ′(r) · xi),i · r − f ′(r) · xi · r,i

r2

=
f ′(r),i · xi · r + f ′(r) · xi,i · r − f ′(r) · xi · r,i

r2

=
f ′′(r) · ∂r

∂xi
xi · r + f ′(r) · xi,i · r − f ′(r) · xi · ∂r∂xi

r2

=
f ′′(r) · xi

r
xi · r + f ′(r) · xi,i · r − f ′(r) · xi · xi

r

r2

= f ′′(r) + 3f ′(r)
1

r
− f ′(r)1

r

= f ′′(r) +
2

r
f ′(r)
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A.2 Chapter 2

1. (a)

ti = σjiej = σijej (σij = σji)

t =

20000 2000 1000

2000 −15000 2000

1000 2000 3000

 · 1√
3

1

1

1

 =
1√
3

 23000

−11000

6000


(b) normal component: σnn = σijnj = tini

σnn = ti · ni =
1√
3

 23000

−11000

6000

 · 1√
3

1

1

1

 =
1

3
(23000− 11000 + 6000) = 6000

tangential component: σns = σijnisj =
√
titi − σ2

nn

σns =

√√√√√√ 1√
3

 23000

−11000

6000

 1√
3

 23000

−11000

6000

− 60002

=

√
1

3
[230002 + (−11000)2 + 60002]− 60002 = 13880.44

2. static problem σij,j + fi = 0

σij =

−2x2
1 − 3x2

2 − 5x3 x3 + 4x1x2 − 6 −3x1 + 2x2 + 1

x3 + 4x1x2 − 6 −2x2
2 + 7 0

−3x1 + 2x2 + 1 0 4x1 + x2 + 3x3 − 5


σij,j + fi = 0

i = 1 : σ11,1 + σ12,2 + σ13,3 + f1 = 0

i = 2 : σ21,1 + σ22,2 + σ23,3 + f2 = 0

i = 3 : σ31,1 + σ32,2 + σ33,3 + f3 = 0

−4x1 + 4x1 + 0 + f1 = 0 ⇒ f1 = 0

4x2 − 4x2 + 0 + f2 = 0 ⇒ f2 = 0

−3 + 0 + 3 + f3 = 0 ⇒ f3 = 0

⇒ f = 0
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3. σ′ij = αik · αjl · σkl = αik · σkl · αjl

calculation of σ′ using Falk scheme:
σ αT

α σ′

2 −2 0 0 1√
2

− 1√
2

−2
√

2 0 1√
2

1
2

1
2

0 0 −
√

2 1√
2

−1
2

−1
2

0 1√
2

1√
2

− 2√
2

1 −1 0 0 2
1√
2

1
2
−1

2
2√
2
− 1 − 2√

2
+
√

2
2

√
2

2
0 1−

√
2 −1

− 1√
2

1
2
−1

2
− 2√

2
− 1 2√

2
+
√

2
2

√
2

2
2 −1 1 +

√
2

4. stress tensor at point P :

σij =

0 a 0

a 0 0

0 0 8a


principal stress values:|σij − σ(k)δij|

!
= 0∣∣∣∣∣∣∣

0− σ(k) a 0

a 0− σ(k) 0

0 0 8a− σ(k)

∣∣∣∣∣∣∣
=− σ(k)

∣∣∣∣∣σ(k) 0

0 8a− σ(k)

∣∣∣∣∣− a
∣∣∣∣∣a 0

0 8a− σ(k)

∣∣∣∣∣+ 0

=σ(k)28a− σ(k)3 − 8a3 + a2σ(k) !
= 0 ⇒ σ(1)= a

⇔ (−σ(k)2 + σ(k)7a+ 8a2)︸ ︷︷ ︸
=0⇒σ(2);σ(3)

· (σ(k) − a)︸ ︷︷ ︸
=0⇒σ(1)=a

!
= 0

σ(k)2 − σ(k) · 7a− 8a2 !
= 0

σ(2,3) = +
7a

2
±

√(
7a

2

)2

+ 8a2

σ(2)= −a
σ(3)= 8a

principal direction cor. to σ(1) = a:

(σij − σ(k)δij)n
(k)
j = 0
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(σ11 − σ(1))n
(1)
1 + σ12n

(1)
2 + σ13n

(1)
3 = 0

σ21n
(1)
1 + (σ22 − σ(1))n

(1)
2 + σ23n

(1)
3 = 0

σ31n
(1)
1 + σ32n

(1)
2 + (σ33 − σ(1))n

(1)
3 = 0

(0− a)n
(1)
1 + an

(1)
2 + 0 = 0 (1)

an
(1)
1 + (0− a)n

(1)
2 + 0 = 0 (2)

0 + 0 + (8a− a)n
(1)
3 = 0 (3)

(3) : n
(1)
3 = 0

(2) : n
(1)
1 = n

(1)
2

(1) : n
(1)
1 = n

(1)
2

n(1) =


1√
2

1√
2

0


principal direction cor. to σ(2) = −a:

(0 + a)n
(2)
1 + an

(2)
2 + 0 = 0 (1)

an
(2)
1 + an

(2)
2 + 0 = 0 (2)

0 + 0 + (8a+ a)n
(2)
3 = 0 (3)

(3) : n
(2)
3 = 0

(2) : n
(2)
1 = −n(2)

2

(1) : n
(2)
1 = −n(2)

2

n(2) =


1√
2

− 1√
2

0


principal direction cor. to σ(3) = 8a:

−8an
(3)
1 + an

(3)
2 + 0 = 0 (1)

an
(3)
1 − 8an

(3)
2 + 0 = 0 (2)

0 + 0 + 0n
(3)
3 = 0 (3)
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(3) : n
(3)
3 = arbitrary

(2) : 8n
(3)
2 = n

(3)
1

(1) : n
(3)
2 = 8n

(3)
1

n(3) =

0

0

1


5.

σij =

 2 −2 0

−2
√

2 0

0 0 −
√

2


I1 = σii = σ11 + σ22 + σ33 = 2 +

√
2−
√

2 = 2

I2 =
1

2
(σiiσjj − σijσij)

= σ11σ22 + σ22σ33 + σ33σ11 − σ12σ12 − σ23σ23 − σ31σ31

= −6

I3 =

∣∣∣∣∣∣∣
2 −2 0

−2
√

2 0

0 0 −
√

2

∣∣∣∣∣∣∣ = −4 + 4
√

2

σ′ij =

0 0 2

0 1−
√

2 −1

2 −1 1 +
√

2


I1 = 0 + 1−

√
2 + 1 +

√
2 = 2

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ12σ12 − σ23σ23 − σ31σ31

= −6
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I3 =

∣∣∣∣∣∣∣
0 0 2

0 1−
√

2 −1

2 −1 1 +
√

2

∣∣∣∣∣∣∣ = −4 + 4
√

2

6.

σ11 =
σ11 + σ22 + σ33

3
= −8

⇒ hydrostatic stress tensor:

σ(h) =

−8 0 0

0 −8 0

0 0 −8


⇒ deviatoric stress tensor

S =

3− σM −10 0

−10 0− σM 30

0 30 −27− σM

 =

 11 −10 0

−10 8 30

0 30 −19



⇒ σij =

−8 0 0

0 −8 0

0 0 −8

+

 11 −10 0

−10 8 30

0 30 −19


control: tr(S)

!
= 0 = 11 + 8− 19

principal deviatoric stress:

|Sij − S(k)δij|
!

= 0

∣∣∣∣∣∣∣
11− S(k) −10 0

−10 8− S(k) 30

0 30 −19− S(k)

∣∣∣∣∣∣∣
=(11− S(k))

∣∣∣∣∣8− S(k) 30

30 −19− S(k)

∣∣∣∣∣+ 10

∣∣∣∣∣−10 30

0 −19− S(k)

∣∣∣∣∣+ 0

=− S(k)3 + 1273S(k) − 9672

=(S(k) − 31)(S(k) − 8)(S(k) + 39)
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S(1) = −39

S(2) = 8

S(3) = 31

7. principal stresses:

(a)

|σij − σ(k)δij|
!

= 0

∣∣∣∣∣∣∣
0− σ(k) 1 1

1 0− σ(k) 1

1 1 0− σ(k)

∣∣∣∣∣∣∣
=− σ(k)3 + 3σ(k) + 2

!
= 0 ⇒ σ(1)= −1

⇒ (−σ(k)3 + 3σ(k) + 2) = (σ(k) + 1) · (−σ(k)2 + σ(k) + 2)
!

= 0

⇒ −σ(k)2 + σ(k) + 2
!

= 0

σ(k)2 − σ(k) − 2 = 0

σ(2,3) =
1

2
±

√(
1

2

)2

− (−2)

σ(2)= −1

σ(3)= 2

(b) ∣∣∣∣∣∣∣
2− σ(k) 1 1

1 2− σ(k) 1

1 1 2− σ(k)

∣∣∣∣∣∣∣
=(2− σ(k))

∣∣∣∣∣2− σ(k) 1

1 2− σ(k)

∣∣∣∣∣−
∣∣∣∣∣1 1

1 2− σ(k)

∣∣∣∣∣+

∣∣∣∣∣1 2− σ(k)

1 1

∣∣∣∣∣
=− σ(k)3 + 6σ(k)2 − 9σ(k) + 4

!
= 0 ⇒ σ(1)= 1
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⇒ (σ(k)2 − 5σ(k) + 4) · (σ(1) − 1)
!

= 0

(σ(k)2 − 5σ(k) + 4)
!

= 0

σ(2,3) =
5

2
±

√(
5

2

)2

− 4

=
5

2
±
√

9

4

σ(2)= 1

σ(3)= 4

principal directions:

(a) principal direction corresponding with σ(1):

(σ11 − σ(1))n
(1)
1 + σ12n

(1)
2 + σ13n

(1)
3 = 0

σ21n
(1)
1 + (σ22 − σ(1))n

(1)
2 + σ23n

(1)
3 = 0

σ31n
(1)
1 + σ32n

(1)
2 + (σ33 − σ(1))n

(1)
3 = 0

1n
(1)
1 + 1n

(1)
2 + 1n

(1)
3 = 0 (1)

1n
(1)
1 + 1n

(1)
2 + 1n

(1)
3 = 0 (2)

1n
(1)
1 + 1n

(1)
2 + 1n

(1)
3 = 0 (3)

⇒ n(1) =


1√
2

− 1√
2

0

 ⇒ n(2) =

−
1√
2

1√
2

0


−2n

(3)
1 + 1n

(3)
2 + 1n

(3)
3 = 0

1n
(3)
1 − 2n

(3)
2 + 1n

(3)
3 = 0

1n
(3)
1 + 1n

(3)
2 − 2n

(3)
3 = 0

⇒ n(3) =


1√
3

1√
3

1√
3
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A.3 Chapter 3

1.

u = X− x

material description: u(x)

u1 = X1 − x1 = x1 − x1 = 0

u2 = X2 − x2 = x2 + Ax3 − x2 = Ax3

u3 = X3 − x3 = x3 + Ax2 − x3 = Ax2

spatial description: u(X)

inverting given displacement relations

(1) x1 = X1

(2) x2 = X2 − Ax3

(3) x3 = X3 − Ax2

(3) in (2):

x2 = X2 − AX3 + A2x2

⇒ x2 =
X2 − AX3

1− A2

in (3):

x3 = X3 − A
X2 − AX3

1− A2

⇒ x3 =
X3 − AX2

1− A2

displacement vector:

u1 = X1 − x1 = X1 −X1 = 0

u2 = X2 − x2 = X2 −
X2 − AX3

1− A2
=
−X2A

2 + AX3

1− A2

u3 = X3 − x3 = X3 −
X3 − AX2

1− A2
=
−X3A

2 + AX2

1− A2
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2.

u = X− x

3x2 − 4x3

2x1 − x3

4x2 − x1

 =

X1

X2

X3

−
x1

x2

x3


∣∣∣∣∣∣∣+

x1

x2

x3



⇒

X1

X2

X3

 =

x1 + 3x2 − 4x3

2x1 + x2 − x3

−x1 + 4x2 + x3



B′ = X(B) =

3 + 3 · 6− 4 · 6
2 · 3 + 6− 6

−3 + 4 · 6 + 6

 =

−3

6

27



−−→
A′B′ = B′ −A′ =

−3

6

27

−
−11

−1

2

 =

 8

7

25


3. strain tensor:

εij =

 ε11
1
2
γ12

1
2
γ13

1
2
γ21 ε22

1
2
γ23

1
2
γ31

1
2
γ32 ε33


=

 u1,1
1
2
(u1,2 + u2,1) 1

2
(u1,3 + u3,1)

1
2
(u1,2 + u2,1) u2,2

1
2
(u2,3 + u3,2)

1
2
(u1,3 + u3,1) 1

2
(u2,3 + u3,2) u3,3


=

 3x2
2 3x1x2 + x3 −1

2
x2

3x1x2 + x3 0 1
2
x1

−1
2
x2

1
2
x1 2x3



compatibility:

ε11,22 + ε22,11 = 2ε12,12

6 + 0 = 2 · 3 √
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ε22,33 + ε33,22 = 2ε23,23

0 + 0 = 0
√

ε33,11 + ε11,33 = 2ε31,31

0 + 0 = 0
√

ε12,13 + ε13,12 − ε23,11 = ε11,23

0 + 0− 0 = 0
√

ε23,21 + ε21,23 − ε31,22 = ε22,31

0 + 0− 0 = 0
√

ε31,32 + ε32,31 − ε12,33 = ε33,12

0 + 0− 0 = 0
√

4. given:

(1) ε11 = u1,1 = a(x2
1x2 + x3

2)

(2) ε22 = u2,2 = bx1x
2
2

• integration ⇒ displacement field: (ε11 = u1,1;ε22 = u2,2)

(1) :

∫
ε11 dx1 =

∫
u1,1 dx1 ⇒u1 =

1

3
ax3

1x2 + ax1x
3
2 + f(x2)

(2) :

∫
ε22 dx2 =

∫
u2,2 dx1 ⇒u2 =

1

3
bx1x

3
2 + g(x1)

determine integration constants f(x2), g(x1) by applying boundary conditions:

u1(x1 = 0, x2) = u1(x1, x2 = 0)
!

= 0

in (1) : 0 + f(x2) = 0 + f(x2) = 0 ⇒ f(x2) = 0

u2(x1 = 0, x2) = u2(x1, x2 = 0)
!

= 0

in (2) : 0 + g(x1) = 0 + g(x1) = 0 ⇒ g(x1) = 0
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• shear strain γ12

γ12 = (u1,2 + u2,1)

=
1

3
ax3

1 + 3ax1x
2
2 +

1

3
bx3

2

• check compatibility:

2D : ε11,22 + ε22,11
!

= 2ε12,12 = γ12,12

6ax2 + 0 = 6ax2

⇒ a = a
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A.4 Chapter 4

1.

σK = CKM · εM

(a) 

10, 8

3, 4

3, 0

0

0

0


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0

0 0 0 ?

0 0 0


·



10 · 10−4

2 · 10−4

2 · 10−4

0

0

0


(b) 

10

2

2

0

0

0


=



104 0, 2 · 104 0, 2 · 104 0 0 0

0, 2 · 104

0, 2 · 104

0

0

0


·



10 · 10−4

0

0

0

0

0


(c) 10

10

10


=

 0, 5 · 104 0 0

0 0, 5 · 104 0

0 0 0, 5 · 104


·

20 · 10−4

20 · 10−4

20 · 10−4


(a) with (b)/(c)

C =



104 0, 2 · 104 0, 2 · 104 0 0 0

0, 2 · 104 C22 C23 C24 C25 C26

0, 2 · 104 C32 C33 C34 C35 C36

0 C42 C43 0, 5 · 104 0 0

0 C52 C53 0 0, 5 · 104 0

0 C62 C63 0 0 0, 5 · 104
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(a) ⇒

10, 8 = 104 · 10 · 10−4 + 0, 2 · 104 · 2 · 10−4 + 0, 2 · 104 · 2 · 10−4

3, 4 = 0, 2 · 104 · 10 · 10−4 + C22 · 2 · 10−4 + C23 · 2 · 10−4

3, 0 = 0, 2 · 104 · 10 · 10−4 + C23 · 2 · 10−4 + C33 · 2 · 10−4

10, 8 = 10, 8

1, 4 = C22 · 2 · 10−4 + C23 · 2 · 10−4

1, 0 = C23 · 2 · 10−4 + C33 · 2 · 10−4

⇒ 3 unknowns /2 equations!

(b) in (a): C24 = −C34; C25 = −C35; C26 = −C36; 0 = C24 ·2 ·10−4 +C34 ·2 ·10−4; ...

suggestion: material isotropic?

C =



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


check:

C11 = 104 = 2µ+ λ

C12 = 0, 2 · 104 = λ

C44 = 0, 5 · 104 = 2µ

}
⇒ 2µ+ λ = 0, 7 · 104 6= 104 ⇒ not isotropic!

It is an orthotropic material! (C22 and C33 are still unknown!)

2. (a) 

σ11

σ22

0

σ12

σ23

σ31


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





0

0

ε33

0

0

0


−



α(3λ+ 2µ)(T − T0)

α(3λ+ 2µ)(T − T0)

α(3λ+ 2µ)(T − T0)

0

0

0
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σ11 = λε33 − α(3λ+ 2µ)(T − T0) (1)

σ22 = λε33 − α(3λ+ 2µ)(T − T0) (2)

0 = (2µ+ λ)ε33 − α(3λ+ 2µ)(T − T0) (3)

(3) : ε33 =
α(3λ+ 2µ) · (T − T0)

(2µ+ λ)

= α(T − T0) · E

(1− 2ν)
· 1

E
(1−ν)

+ νE
(1+ν)(1−2ν)

= α(T − T0) · E

(1− 2ν)
· (1− 2ν)(1 + ν)

E(1− 2ν) + νE

= α(T − T0) · (1 + ν)

(1− ν)

in (1) : σ11 = λ · α(3λ+ 2µ)(T − T0)

2µ+ λ
− α(3λ+ 2µ)(T − T0)

=
νE

(1 + ν)(1− 2ν)
α(T − T0)

(1 + ν)

(1− ν)
− α(T − T0)

E

(1− 2ν)

= α(T − T0)

[
νE − E(1− ν)

(1− 2ν)(1− ν)

]
= α(T − T0)

E(−1 + 2ν)

(1− 2ν)(1− ν)

= −α(T − T0)
E

1− ν

(2) : = σ22

σ12 = σ23 = σ31 = 0

(b) 

σ11

0

0

σ12

σ23

σ31


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





0

ε22

ε33

ε12

ε23

ε31


−



α(3λ+ 2µ)(T − T0)

α(3λ+ 2µ)(T − T0)

α(3λ+ 2µ)(T − T0)

0

0

0
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σ11 = λ(ε22 + ε33) − α(3λ+ 2µ)(T − T0) (1)

0 = (2µ+ λ)ε22 + λε33 − α(3λ+ 2µ)(T − T0) (2)

0 = λε22 + (2µ+ λ)ε33 − α(3λ+ 2µ)(T − T0) (3)

(2)− (3) : ε22(2µ+ λ− λ) + ε33(λ− 2µ− λ) = 0

ε22 = ε33

in (2) : (2µ+ λ+ λ)ε22 − α(3λ+ 2µ)(T − T0) = 0

ε22 = α(T − T0) · (3λ+ 2µ)

2µ+ 2λ

= α(T − T0)
E

1− 2ν
· ν
λ

= α(T − T0)
E

1− 2ν
· ν(1 + ν)(1− 2ν)

λE

= α(T − T0)(1 + ν)

= ε33

σ11 = λ · 2α(T − T0) · 3λ+ 2µ

2µ+ 2λ
− α(T − T0) · (3λ+ 2µ)

=
νE

(1 + ν)(1− 2ν)
2α(T − T0)(1 + ν)− α(T − T0)

E

(1− 2ν)

= α(T − T0) ·
(
E(2ν − 1)

(1− 2ν)

)
= −Eα(T − T0)

σ12 = σ23 = σ13 = 0

ε12 = ε23 = ε31 = 0

3.

σij = 2µεij + λδijεkk

λ =
νE

(1 + ν)(1− 2ν)
µ = G =

E

2(1 + ν)
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⇒ν =
E

2G
− 1 =

30 · 106

2 · 12 · 106
− 1 = 0.25

⇒λ =
0.25 · 30 · 106

(1 + 0.25)(1− 2 · 0.25)
= 12 · 106

σ11 = 2µε11 + λδ11 (ε11 + ε22 + ε33) = 228000

σ22 = 2µε22 + λδ22 (ε11 + ε22 + ε33) = 276000

σ33 = 2µε33 + λδ33 (ε11 + ε22 + ε33) = 156000

σ12 = 2µε12 = 24000

σ13 = 2µε13 = 0

σ23 = 2µε23 = 96000

⇒ σσσ =

228000 24000 0

24000 276000 96000

0 96000 156000
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A.5 Chapter 5

1. (a) biharmonic equation:

∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1∂x

2
2

+
∂4φ

∂x4
2

= 0

∂φ

∂x1

= −F
d3
x2

2(3d− 2x2)

∂2φ

∂x2
1

=
∂3φ

∂x3
1

=
∂4φ

∂x4
1

= 0

∂φ

∂x1

= −6F

d3
x1 · dx2 +

6F

d3
x1x

2
2

∂2φ

∂x2
2

= −6F

d3
x1 · d+

12F

d3
x1x2

∂3φ

∂x3
2

=
12F

d3
x1

∂4φ

∂x4
2

= 0

⇒ 0 + 2 · 0 + 0 = 0 biharmonic equation is fulfilled

(b) stresses:

σ11 = σ11 =
∂2φ

∂x2
2

= −F
d3

(6dx1 − 12x1x2)

σ22 = σ22 =
∂2φ

∂x2
1

= 0

σ12 = σ12 = − ∂2φ

∂x1∂x2

=
F

d3
(6dx2 − 6x2

2) =
6Fx2

d3
(d− x2)
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3F
2d

t2

n4 = ( −1
0 )

0

d

x2

n1 = ( 0
−1 )

n3 = ( 0
1 )

5d

n2 = ( 1
0 )

x1 30F
d

30F
d t1

3F
2d

t2

boundary 1: x2 = 0; 0 6 x1 6 5d; n1 = ( 0
−1 )

tn1 = σ11n1 + σ12 · n2 = σ11 · 0 + σ12 · (−1)⇒ tn1 = −σ12(x1, 0) = 0

tn2 = σ21n1 + σ2 · n2 = σ12 · 0 + σ22 · (−1)⇒ tn2 = −σ22(x1, 0) = 0

boundary 2: x1 = 5d; 0 6 x2 6 d; n2 = ( 1
0 )

tn1 = σ11 · 1 + σ12 · 0 = σ11(5d, x2) = −F
d3

(6d · 5d− 12 · 5d · x2) = −30F

d2
(d− 2x2)

tn2 = σ21 · 1 + σ22 · 0 = σ21(5d, x2) =
6Fy

d3
(d− x2)

boundary 3: x2 = d; 0 6 x1 6 5d; n3 = ( 0
1 )

tn1 = σ11 · 0 + σ12 · 1 = σ12(x1, d) = −6Fd

d3
(d− d) = 0

tn2 = σ21 · 0 + σ22 · 1 = 0

boundary 4: x1 = 0; 0 6 x2 6 d; n4 = ( −1
0 )

tn1 = σ11 · (−1) + σ12 · 0 = −σ11(0, x2) = 0

tn2 = σ21 · (−1) + σ22 · 0 = −σ21 =
6Fx2

d3
(−d+ x2)

(c) deformations and displacements (assumption: plane stress)

(1) ε11 =
1

E
(σ11 − νσ22) = − 6F

Ed3
x(d− 2x2) =

∂u1

∂x1

(2) ε22 =
1

E
(σ22 − νσ11) =

6Fν

Ed3
x1(d− 2x2) =

∂u2

∂x2

(3) γ12 =
2(1 + ν)

E
σ12 =

2(1 + ν)

E

6Fx2

d3
(d− x2) =

∂u1

∂x2

+
∂u2

∂x1
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integration:

(1) − 6F

Ed3
(d− 2x2) · x

2
1

2
+ C1(x2) = u1

(2)
6Fν

Ed3
x(dx2 −

2x2
2

2
) + C2(x1) = u2

in (3)
∂u1

∂x2

=
6F

Ed3
x2

1 +
∂C1(x2)

∂x2

;

∂u2

∂x1

=
6Fν

Ed3
(dx2 −

2x2
2

2
) +

∂C2(x1)

∂x1

⇒ 2(1 + ν)

E

6Fx2

d3
(d− x2)

!
=

(
6F

Ed3
x2

1 +
∂C1(x2)

∂x2

)
+

(
6Fν

Ed3

(
dx2 −

2x2
2

2

)
+
∂C2(x1)

∂x1

)
⇔ F

Ed3
6x2

1 +
∂C2(x1)

∂x1︸ ︷︷ ︸
f(x1):=K1

=
2 + ν

E

F

d3
(6dx2 − 6x2

2)− ∂C1(x2)

∂x2︸ ︷︷ ︸
f(x2):=K2

⇒ ∂C2(x1)

∂x1

= K2 −
F

Ed3
6x2

1

⇒ ∂C1(x2)

∂x2

= −K1 +
2 + ν

E

F

d3
(6dx2 − 6x2

2)

integration:

C1(x2) =
2 + ν

E

F

d3
(6
dx2

2

2
− 6

x3
2

3
)−K1x2 +K2 ⇒ u1

C2(x1) = − F

Ed3

6

3
x3

1 +K1x1 +K3 ⇒ u2

K1, K2, K3 and K4 can be determined by evaluating the geometric bound-

ary conditions (not given here). These boundary conditions are necessary to

prevent rigid body displacement.
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2. (a) thin disc + loading in x1x2-plane ⇒ plane stress can be assumed

⇒ σ33 = σ13 = σ23 = 0

2h

l

x1 x3

x2

F

P
Γ4

Γ1

Γ2

Γ3

boundary Γ1: (x2 = −h)

σ22(x2 = −h) = 0 (1)

σ12(x2 = −h) = 0 (2)

σ11

σ22

σ12

σ11

boundary Γ2: (x2 = h)

σ22(x2 = h) = 0 (3)

σ12(x2 = h) = 0 (4) σ11

σ22

σ12

σ11

boundary Γ3: (x1 = 0)

P =

∫
A

σ11(x1 = 0) dA = t

h∫
x2=−h

σ11(x1 = 0) dx2 (5)

F = −
∫
A

σ12(x1 = 0) dA = −t
h∫

x2=−h

σ12(x1 = 0) dx2 (6)

σ11

Fσ12

P

boundary Γ4: (x1 = l) (clamped boundary)

u1(x1 = l) = 0

u2(x1 = l) = 0
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(7) F = −t
h∫

−h

σ12(x1 = l) dx2

(8) P = t

h∫
−h

σ11(x1 = l)dx2

(9) F · l = −t
h∫

−h

σ11(x1 = l)x2 dx2

σ11

M = F · l

F
σ12

P

(b) estimate a admissible stress function

• loading P ⇒ normal stress

x1

x2 σ22, σ12 = 0

σN11

• loading F ⇒ bending stress

x1

x2

σB11(x1 = 0) = 0

σB11

M(x1) = F · x1 ⇒ σB11 grows linearly with x1 ⇒ shearing stress

x1

x2

σ12 σ12

σ22 = 0

σ12 does not vary with x1 (linear Moment M ⇒ constant shearing force)



A.5. CHAPTER 5 105

Ansatz:

σ11 = σN11 + σB11 = a1 + a2x1x2 = φσ11
,22

⇒ φσ11 =
a1

2
x2

2 +
a2

6
x1x

3
2

σ12 = a3 · x2
2 + a4 = −φσ12

,12

⇒ φσ12 =
a3

3
x1 · x3

2 + a4x1x2

φ = φσ11 + φσ12 = b1x
2
2 + b2x1x

3
2 + b3x1x2

check:

σ11 = φ,22 = 2b1 + 6b2x1x2

σ22 = φ,11 = 0

σ12 = −φ,12 = −3b2x
2
2 − b3

compatibility:

∆∆φ = 0

0 =
∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1∂x

2
2

+
∂4φ

∂x4
2

= 0 + 0 + 0 = 0

With boundary conditions (1) - (9):

[φ = b1x
2
2 + b2x1x

3
2 + b3x1x2]
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Constants b1, b2, b3 from boundary conditions:

(1) σ22(x2 = −h) = 0 validate assumption σ22(x1, x2) = 0

(2) σ12(x2 = −h) = −3b2 · h2 − b3

⇒ b3 = −3b2h
2

(3) see (1)

(4) see (2)

(5) P = t

h∫
x2=−h

σ11(x1 = 0) dx2 = t

h∫
−h

2b1 dx2 = t [2b1x2]h−h

= t[2b1h+ 2b1h] = 4tb1h

⇒ b1 =
P

4th

(6) F = −t
h∫

x2=−h

σ12(x1 = 0) dx2 = −t
h∫

−h

(−3b2x
2
2 − b3) dx2 = −t[−b2x

3
2 − b3x2]h−h

= −t(−b2h
3 − b3h− (b2h

3 + b3h)) = 2b2th
3 + 2b3th

mit (2) F = 2b2th
3 + 2 · (−3b2h

2)th = −4b2th
3

⇒ b2 =
−F
4th3

⇒ b3 =
3F

4th

(7) F = −t
h∫

−h

σ12(x1 = l) dx2 = −t
h∫

x2=−h

(−3b2x
2
2 − b3) dx2 see (6)

(8) P = t

h∫
−h

σ11(x1 = l) dx2 = t

h∫
−h

(2b1 + 6b2lx2) dx2 = δ[2b1x2 + 3b2lx
2
2]h−h

= t[2b1h+ 3b2lh
2 − (−2b1h+ 3b2lh

2)] = t4b1h see (5)

(9) F · l = −t
h∫

−h

σ11(x1 = l)x2 dx2 = −t
h∫

−h

(2b1 + 6b2lx2) · x2 dx2

= −t[b1x
2
2 + 2b2lx

3
2]h−h = −t(b1h

2 + 2b2lh
3 − (b1h

2 − 2b2lh
3)) = −t4b2lh

3

⇒ b2 = − F

4th3
see (6)
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The stress boundary conditions validate the Ansatz functions and give the

constants b1, b2, b3.

⇒ Stress functions:

σ11 =
P

2th
− 3

2

F

th3
x1x2

σ22 = 0

σ12 =
3

4

F

th3
· x2

2 −
3

4

F

th
=

3

4

F

th3
(x2

2 − h2)
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A.6 Chapter 6

1-D-Beam:

z
u

tanψ

σxx = E · εxx = E · u,x
u = z · tanψ ≈ z · ψ(x)

⇒ σxx = Ezψ′(x)

σxx = −Ezw′′(x)

My =

∫
A

zσxxdA = −Ew′′(x)

∫
A

z2dA

︸ ︷︷ ︸
:=Iy (moment of inertia)

⇒ My = −EIyw
′′
(x)

Principle of minimum total potential energy:

Π(w)beam =
EIy

2

l∫
0

(w′′(x))2dx−
l∫

0

q(x)w(x)dA

admissible ’ansatz’ has to satisfy all geometrical conditions of the problem

w̃(x = 0) = 0 (1)

w̃′(x = 0) = 0 (2)

w̃(x = l) = wB (3)
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⇒ chosen global polynomial:

w̃(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

with (1) : w̃(x = 0) = 0 = a0

w̃′(x) = a1 + a22x+ 3a3x
2 + 4a4x

3

with (2) : w̃′(x = 0) = 0 = a1

with (3) : w̃(x = l) = wB = a2l
2 + a3l

3 + a4l
4

⇒ a2 =
wB
l2
− a3l − a4l

2

⇒ w̃(x) =
wB
l2
x2 + a3(x3 − lx2) + a4(x4 − l2x2)

The condition for the potential energy to reach an extremum for the exact solutions:

δΠ(w̃) =
∂Π(w̃)

∂a3

δa3 +
∂Π(w̃)

∂a4

δa4 = 0

∂Π(w̃)

∂a3

= 0 and
∂Π(w̃)

∂a4

= 0

The explicit form of Π(w̃) is here:

with:

w̃′(x) = 2x
wB
l2

+ a3(3x2 − 2lx) + a4(4x3 − 2l2x)

w̃′′(x) = 2
wB
l2

+ a3(6x− 2l) + a4(12x2 − 2l2)

Π(w̃) =
EI

2

l∫
0

{
2
wB
l2

+ a3(6x− 2l) + a4(12x2 − 2l2)

}2

dx

− q0

l∫
0

{
wB
l2
x2 + a3(x3 − lx2) + a4(x4 − l2x2)

}
dx
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(1) ⇒ ∂Π(w̃)

∂a3

!
= 0 =

EI

2
2

l∫
0

{
2
w2
B

l2
+ a3(6x− 2l) + a4(12x2 − 2l2)

}
(6x− 2l)dx

− q0

l∫
0

(x3 − lx2)dx

(2) ⇒ ∂Π(w̃)

∂a4

!
= 0 =

EI

2
2

l∫
0

{
2
w2
B

l2
+ a3(6x− 2l) + a4(12x2 − 2l2)

}
(12x2 − 2l2)dx

− q0

l∫
0

(x4 − l2x2)dx

explicit integration for (1):

EI

l∫
0

{
2
wB
l2

(6x− 2l) + a3(36x2 − 24lx+ 4l2) + a4(72x3 − 24lx2 − 12l2x+ 4l3)

}
dx

= q0

l∫
0

(x3 − lx2)dx

⇔ EI

[
6
wB
l2
x2 − 4

wB
l
x+ 12a3x

3 − 12a3x
2 + 4l2x+ 18a4x

4 − 8a4lx
3 − 6a4l

2x2 + 4a4l
3x

]l
0

= q0

[
1

4
x4 − l

3
x3

]l
0

⇔ EI(6wB − 4wB + 12a3l
3 − 12a3l

3 + 4a3l
3 + 18a4l

4 − 8a4l
4 − 6a4l

4 + 4a4l
4)

= q0
1

4
l4 − 1

3
q0l

4

(1) a3 + 2la4 = − q0l

48EI
− wB

2l3

(2) a3 +
21

10
la4 = − q0l

60EI
− wB

2l3
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a4 · 1(2− 21

10
) =

q0l

EI

(
− 1

48
+

1

60

)
⇒ a4 =

q0

24EI

in (1): a3 = − q0l

48EI
− wB

2l3
− 2l · q0

24EI

a3 = − 5

48

q0l

EI
− wB

2l3

⇒ the ’approximative solution’ is:

w̃(x) =
wB
l3
x2 −

(
5

48

q0l

EI
− wB

2l3

)
(x3 − lx2) +

q0l

24EI
(x4 − l2x2)

= wB
x2

2l3
(3l − x) +

q0x
2

48EI
(2x2 + 3l2 − 5xl)



112 APPENDIX A. SOLUTIONS

Principle of minimum complementary energy:

−Π∗(M,B) =
1

2EI

l∫
x=0

M2
y (x)dx− wB ·Q(x = l)

where Q(x = l) = M ′(x = l)

test function for the bending moment M(x):

q(x) is constant so the test function M̃(x) has to be a polynominal of second order

M̃(x) = a0 + a1x+ a2x
2

M̃ ′(x) = Q(x) = a1 + 2a2x

M̃ ′′(x) = 2a2

By comparison of the coefficients one obtains:

2a2 = −q0 ⇒ s2 = −q0

2

statically admissible approximation has to satisfy the equilibrium equation

⇒ M̃y(x) = a0 + a1x− q0
x2

2

test function has to satisfy static boundary conditions:

M̃(x = l) = 0

⇒ 0 = a0 + a1 · l −
q0 · l2

2

⇒ a0 =
q0l

2

2
− a1 · l

⇒ M̃y(x) = a1(x− l)− q0

2
(x2 − l2)

Q̃y(x) = M̃ ′
y(x) = a1 − q0x

Q̃y(x = l) = a1 − q0l

⇒ −Π∗(M̃y) =
1

2EI

l∫
x=0

{
a1(x− l)− q0

2
(x2 − l2)

}2

dx− wB · (a1 − q0 · l)

∂Π∗(My) =
∂Π∗(My)

∂a1

δa1
!

= 0
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1

2EI

l∫
x=0

2
{
a1(x− l)− q0

2
(x2 − l2)

}
(x− l)dx− wB = 0

a1

l∫
x=0

(x− l)2dx− q0

2

l∫
0

(x2 − l2)(x− l)dx = EI · wB

a1

l∫
x=0

(x2 − 2xl + l2)dx− q0

2

l∫
0

(x3 − x2l − l2 + l3)dx = EI · wB

a1

[
x3

3
− x2l + l2x

]l
0

− q0

2

[
x4

4
− x3

3
l − l2x

2

2
+ l3x

]l
0

= EI · wB

a1
l3

3
− 5

24
q0l

4 = EI · wB

⇒ a1 =
3EI

l3
wB +

5

8
q0l

⇒ M̃y(x) =
3EI

l3
wB(x− l) +

5

8
q0l(x− l)−

q0

2
(x2 − l2)

M̃y(x) =
3EI

l3
wB(x− l) +

q0(l − 4x)

8
(x− l)


