
AN OVERVIEW OF NONPROCEDURAL LANGUAGES

Burt M. Leavenworth

and

Jean E. Sammet

IBM Corporation

ABSTRACT

This paper attempts to describe some of the basic
characteristics and issues involving the class of
programming languages commonly referred to as
"nonprocedural" or "very high level". The paper
discusses major issues such as terminology, rela-
tiveness, and arbitrary sequencing. Five features
of nonprocedural languages are described, and a
number of specific languages are discussed br ief-
ly. A short history of the subject is included.

Section I. INTRODUCTION

I t is characteristic of the programming f ie ld
that much time and energy has been, and w i l l con-
tinue to be, spent on terminology. This is per-
haps an indication of the youth as well as the
rapid growth of the f ie ld. As an i l lus t ra t ion of
the confusion in which we find ourselves today,
consider the following l i s t Of terms, each of
which should be followed by the word "languages":

very high level
nonprocedural
less procedural
goal oriented
problem oriented
pattern directed
declarative
functional
relational
problem statement
problem defini t ion
problem description
systems analysis
specification
result specification
task description

In addition to these terms, consider also the
following:

automatic programming
a r t i f i c i a l intell igence

This l i s t is not necessarily a complete set of al l
the terms now being used by one or more groups of
people to convey an in tu i t ive notion of languages
which in some sense are "higher" than FORTP~AN,
COBOL, PL/I, etc. The most common term used for
this concept has been nonprocedural, and the most
common phrase has been "what" rather than "how".
That phrase refers to the (potential) f a c i l i t y of

a user to indicate the goals (= "what") he wishes
to achieve rather than the specific methods of
solution (= "how") that must be used. As Feldman
(1972, p. 15) points out, i f these concepts could
be carried out, then one could write

FIND INTEGERS A,B,C AND N SUCH THAT N > 2 AND

A N + B N = C N
L

which is, of course, Fermat's last theorem.

While i t is not possible to provide concrete defi-
nitions of these terms, this paper attempts to
provide some general principles and characteristics
pertaining to this class of languages. I t is im-
portant to note that data def ini t ion languages are
not included within the scope of this paper. Sec-
tion 2 discusses some of the terminology and fun-
damental concepts of very high level languages.
Section 3 provides highlights of the historical
developments in this area. Section 4 indicates
the major features of nonprocedural languages.
Section 5 discusses various classes of languages,
specif ical ly business applications, nonsequencing,
a r t i f i c i a l intell igence, simulation and set or i-
ented. Section 6 summarizes the key points of the
paper.

Section 2. OVER, ALL VIEW OF TERMINOLOGY AND

FUNDAMENTAL CONCEPTS

2.1 Introduction

I t is not possible (for reasons to be given in
Section 2.2) to assert that a given programming
language is nonprocedural in the absolute sense,
but one can state that i t possesses certain non-
procedural features. What cr i ter ia or features
can be used to perform this characterization? Be-
fore enumerating and discussing such cr i ter ia , i t
is well to review some fundamental properties of
programs and programming languages. The remainder
of this paper uses the terms "programming languages"
and "languages" interchangeably.

In general, a program is a prescription for solving
a particular problem. A procedure is a series of
steps followed in a regular orderly def ini te way.
Procedural programming is based to a great extent
on the necessity to conform to the inherent sequen-
t ia l organization of the conventional (Von Neumann)

digi tal computer. Therefore, a possible def ini-
tion of a nonprocedural program is that i t is a
prescription for solving a problem without regard
to any arbitrary sequencing requirements. (A dis-
cussion of what constitutes arbitrary sequencing
and how i t may be eliminated is given later.) In
a broader context we wi l l say that a nonprocedural
program is a prescription for solving a problem
without regard to details of how i t is solved.
That is, the solution should be specified implic-
i t l y in terms of structures or abstractions which
are relevant to the problem rather than those op-
erations, data and control structures which are
convenient for some machine organization.

2.2 Relativeness

The most important point to note is that the term
nonprocedural is def in i t ive ly relative and changes
as the state of the art changes.

The concept is elusive because nonproceduralness is
not an absolute measurement but rather is an ever-
moving target. Hence, i t is better for everyone
in the f ie ld to recognize this once and for a l l
than to assume a fixed meaning for the term. In
many ways the term "less procedural" i f better be-
cause i t makes very clear the relative nature of
the concept. Note that "less procedural" involves
a comparison of two languages whereas "nonproced-
ural" can apply to only one.

An examination of Figure l should make this clearer.
A comparison of Figures l(a) and l(a*) shows the
difference between assembly language and FORTP~AN-
l ike languages. Prior to the existence of FORTP4~N,
the expression A = (B + C) * D + E * F could be
considered nonprocedural because i t could not be
written as one executable unit and translated by
any program. Similarly, Figures l(b) and l(b*) in-
dicate another level of relativeness since the
FORTRAN program to do matrix mult ipl ication can be
handled by one statement in APL. Finally, the i l -
lustration of Figure l (c) which is a program to
CALCULATE THE SQUARE ROOT OF THE PRIME NUMBERS
FROM 3 TO 95 AND PRINT IN 2 COLUMNS cannot be
handled by any translating system known today.
(I t is essential to realize that the two forms
shown in Figure l (c*) are logical ly equivalent and
the desi rabi l i ty of one form over the other (i .e . ,
formal notation versus English) is a matter of
personal preference.) The ab i l i t y of a system to
"understand English" is not at issue here; phrases
that look l ike English may real ly depend on spe-
c i f i c programming techniques, e.g., pattern match-
ing and macro expansion, rather than English gram-
mar. Putting the same point another way (because
of i ts fundamental significance in this matter),
i t is ent i rely possible to design a formal lan-
guage for doing mathematical problems in which the
statement CALCULATE THE SQUARE ROOT OF THE PRIME
NUMBERS FROM 3 TO 95 AND PRINT IN TWO COLUMNS is
acceptable. At the other extreme, a natural and
elegant looking phrase such as FIND X SUCH THAT

X 2 = 5 is real ly equivalent to invoking a square
root routine.

We actually have two types of relativeness: one
involves the actual hardware and the other involves
the problem or application area. In the case of
the hardware we can only use as the base from which

to measure, some particular machine or class of
machines, e.g., the IBM System/360. As the machine
changes, So does the relativeness. The reason that
one must consider the machine is because certain
terms or f ac i l i t i es which might be available in one
machine are not in another. Thus, prior to the
ava i lab i l i t y of f loating point instructions in any
hardware, the capabil ity had to be included in the
programming language, and thus would be considered
higher level with respect to the machine. Once
floating point became v i r tua l l y universal on a com-
puter i t was removed from serious language consid-
eration. We might consider now the concept of l i s t
processing. I f computers commonly had such instruc-
tions bu i l t in, then they would not be needed in a
so-called higher level language. S t i l l another
hardware example involves the parallel execution of
many statements and there are currently varying
degrees of ava i lab i l i t y of this hardware f a c i l i t y .
Finally, the development of hardwired machines to
implement languages which are high level by today's
standards (e.g., SYMBOL(Chesley and Smith, 1971),

and previously unimplemented proposals (e.g., FOR-
TP~AN (Bashkow, 1967) and ALGOL 60 (Anderson, Ig61))
w i l l require a major rethinking of this whole issue.

The re la t i v i t y to the application area depends on
one's knowledge and experience. For example, i f a
person knows only one method of integration or one
method of solving di f ferent ia l equations, then a
command which says INTEGPJ~TE, or SOLVE this d i f fe r -
ential equation, may be considered to have a certain
level relative to the knowledge of the user. A sys-
tem l ike NAPSS (Synes, 1969) attempts to provide
automatic numerical analysis and thus is very high
level relat ive to the application. Similarly, the
presence or absence of a SORT verb in a data proc-
essing language creates di f ferent levels of proced-
uralness.

The use of top-down programming can be considered
an indication of relativeness while s t i l l using cur-
rent languages. Thus, one uses successive pages and
levels to indicate greater detail of portions of ex-
ecutable code.

One of the f i r s t instances .in which i t was realized
-- albeit with great reluctance -- that nonproced-
uralness was real ly a relative term was by the CODA-
SYL Language Structure Group (1962) which developed
the Information Algebra. That work was or ig ina l ly
viewed as being the development of a language which
would be t ru ly nonprocedural for data processing
problems. The statement of the payroll program as
given in the original report certainly looks on the
surface as i f i t states only what is to be done
rather than the details of how i t is to be done.
However, impl ic i t even in a single equation of the
IA is the notion of sequencing, i . e . , some steps
must be done before others. Since the amount of
sequencing is a major characteristic in distinguish-
ing levels of proceduralness, i t is worth exploring
this point a l i t t l e further.

2.3 Sequencin 9

There is a difference between sequencing across
statements and within one statement. The former
requirements tend to be obvious in a problem. How-
ever, a single statement may or may not have se-
quencing imbedded in i t , and i t is not always obvious

from looking at i t . Sequencing is, of course, in-
herent in any mathematical expression that has
precedence among the operators. Any data depend-
encies which are inherent in the problem state-
ment also affect the sequencing by requiring the
data to be obtained in the correct order. A
t r i v i a l i l lus t ra t ion of this is obvious by merely
noting that one cannot produce outputs unt i l after
one has performed calculations on the inputs.

I t is interesting to note that some of the side
effects which occur in some programming languages
are real ly due to differences in handling the
sequencing of subexpressions within a single
statement. For example, i f A = B + OBL(B) ~ere
DBL is a bu i l t - in function which doubles and up-
dates B, then the sequence of performing the op-
erations w i l l determine whether the original
value of B or i ts double is used to calculate A;
hence, the value of A w i l l depend upon the se-
quence of computations on the r ight hand side.

As another i l lus t ra t ion of the significance and
relevance of sequencing, consider the problem
statement shown in Figure l (c*) . This calculation
could actually be performed in several ways. One
way is to follow each number through the three
"computations", i . e . , test for primeness, and i f
the number is prime, then compute i ts square root
and pr int i t . However, depending upon the part i-
cular hardware and software, i t might be more ef-
f ic ient to f i r s t determine al l the primes, then
calculate al l the square roots of th~ identi f ied
primes, and then do all the printing. Obviously
various combinations of these two extremes are also
possible means of execution. Equally obviously,
this is merely a prototype of a calculation involv-
ing a sequence of tasks each of which supplies
data to the next but where each input datum is
independent of the others. The program given in
Figure l (c) chooses only one of the alternatives;
no discretion is le f t to the translator, whereas
the statement in Figure l (c*) could -- as indica-
ted above -- be translated in several s igni f icant ly
different ways (e.g., using coroutines (Conway,
1963) which could have major impact on efficiency.
The exp l ic i t sequencing used in the program of
Figure l (c) is not required for solution of the
problem. One way of characterizing nonprocedural-
ness is to say that the sequencing of any informa-
tion by the programmer (except that which is in-
herent to the logic of the problem) is irrelevant.

2.4 Miscellaneous Terms

The term "automatic programming" in current term-
inology is at least a partial synonym for nonpro-
cedural, but the former tends to encompass some-
what more. An attempt to indicate what is meant
by automatic programming in today's environment
was made by Balzer (1972). Of the many pages de-
voted to this subject, i t seems most appropriate
to quote the following sentences from page lO:
"There is a continuum between the statement of a
problem in terms of i ts i n i t i a l state and i ts goal
state and a specification of how to do i t in a
machine language. Most of computer language de-
velopment can be viewed as a movement from specify-
ing HOW to do something towards a statement of WHAT
is desired."

The term "problem oriented" serves in part as a
confusion factor. This term has frequently been
used to mean those languages which were specif ical ly
designed for a narrow application area, e.g., c i v i l
engineering, CAI, equipment checkout. These lan-
guages -- which have more appropriately been called
languages for specialized application areas by
Sammet (1972) -- frequently increase the level of
nonproceduralness by comparison with the broader
based languages such as PL/I. However, this is
primarily because the commands are direct ly related
to the problem domain, e.g., DETERMINE AREA, TEST
VOLTAGE. Thus the level of the primitive operations
have an effect on the level of proceduralness. In
this conceptual area, the difference between a very
simple (albeit high level) programming language and
application package is often blurred. A program-
ming language contains a set of commands and has
other features and fac i l i t i es which can be applied
f lex ib ly within the problem domain. On the other
hand, application packages generally (a) have fixed
sets of routines and do not allow new ones to be
added, (b) accept parameters as input, and (c)
specify fixed f i l e and data formats. Application
packages usually have fixed sequences of routines
but some allow the user to specify which routines
are to be used and in what order.

There is actually an existing class of languages
which represents a nontrivial level of nonproced-
uralness by today's standards -- namely the continu-
ous and discrete simulation languages. In both
instances the sequence in which statements are
written is not necessarily the sequence in which
they are executed. Nonproceduralness is also rela-
ted to issues of parallelism and even an inherently
procedural language such as PL/I allows the user to
specify parallelism through the use of multitasking.

2.5 Need for a Metric

The need for metrics of some kind for measuring pro-
gramming languages in general is discussed by Sam-
met (1971). For a given computer, and a specified
level of knowledge about an application area, one
would like to have a metric to indicate various
levels of (high level) languages. For example, one
might decide to consider machine code as having a
measure of l and increase the number as the language
became closer to the problem. One of the many di f -
f i cu l t ies in carrying out such a scheme is that d i f -
ferent features in a language real ly have dif ferent
levels of nonproceduralness.

Other ways of considering measures of nonprocedural-
ness include specifying (a) the number of commands
in the language and indicating which commands can
actually be expressed in terms of others and hence
are not basic; (b) the amount of information about
the application domain that can or must be specified
in the language; and (c) the amount of sequencing or
parallelism that is involved.

Some people feel that i t may be impossible to achieve
any meaningful metric.

2.6 Language Versus Its Implementation

There is obviously a large difference between the
language i t se l f and the methodology or system which
underlies or implements the language. For example,
a particular system may actually provide several

methods of executing a particular task (e.g., sort-
ing, solution of dif ferential equations). These
methods may be imbedded in the system and the
selection actually made by the system i t se l f to
provide the best solution based on an analysis of
the parameters.

I t is clear that a large part of the problem in
implementing nonprocedural languages (or in auto-
matic programming systems), pertains to efficiency.
Thus, we could specify problems and their general
solutions more easily i f we were not so concerned
about the ef f ic ient use of machine time. Clearly,
as the economics continue to shrink machine costs
and increase people costs, thls w i l l no longer be
significant. On the other hand, a less procedural
language might actually increase efficiency by al-
lowing the compiler to optimize for a particular
machine based on a higher level of intent.

2.7 Verification of Objectives

We do not currently -- and probably never w i l l --
have any accurate way of ensuring that the person
states exactly and precisely what he wishes to
accomplish. The inaccuracy occurs at two levels
-- one is the lack of a suitable language in which
to express objectives and the other is the normal
human tendency to be imprecise in knowing what is
wanted. Relating this to current terminology, we
need -- but don't have -- good assertion (= spe-
cif ication) languages. I t is possible that tech-
niques of proving programs correct could be used
to design better specification languages. Note
that at al l levels of proving correctness the
verif ication of the compiler i t se l f is part of
the problem.

What we have is a situation in which the user may
intone the famous phrase, "Do as I say, not as I
do". The paraphrase that would be appropriate for
the computer f ie ld would be, "Do what I want you
to do, not what I asked you to do".

Section 3. HISTORY

I t is beyond the scope of this paper to give a de-
tailed history of the terms and act iv i t ies in this
area, but i t is appropriate to indicate a few high-
l ights. In the very early stages of programming,
i .e . , in the f i r s t half of the 1950's, the phrase
"automatic programming" was used to mean the proc-
ess of writing a program in some higher level lan-
guage. In that context, "higher level" was by
comparison with machine code. As time went on, i t
became clear that the coding was only a portion of
the entire problem solving task and therefore the
phrase "automatic coding" came into use as meaning
the use of a language such as FORTI~AN. Thus, even
in the very early days the proper distinction was
made between coding (which is one aspect of the
entire programming task) and the larger act iv i ty of
programming. One of the f i r s t attempts at provid-
ing general information in a framework that might
be called automatic programming was that by Young
and Kent (1958). Using their work, and other in-
puts (e.g., SHARE Theory of Information Committee)
the CODASYL Language Structure Group (1962) de-
veloped the Information Algebra. I t is essentially
a mathematically-oriented way of describing a data
processing application in terms of the input-output
relationships; these are actually defined by means

of transformations on sets of entit ies called areas
(which are analogous to f i l es) . The Information
Algebra was used experimentally (Katz and McGee,
1963), but has never been developed to the point of
significant implementation. Some extensions and
modifications to these concepts were made by Lincoln
(1971), Kobayashi (1972) and Morgenstern (1973).

A narrow approach, but one that is nevertheless in
the sp i r i t of less proceduralness, is exemplified
in the early work on Report Program Generators and
Decision Tables.

Various individuals and groups addressed parts of
this problem. Homer (1966) proposed a system in
which the user specified the input variables with
their values, the functions involving the variables,
and a l i s t of output variables. The user did not
need to supply this information in the correct se-
quence; the system was responsible for doing that
and specific algorithms for achieving this were
presented. I t is not known to the authors whether
this was ever implemented.

One of the ways to minimize the importance of se-
quencing is to allow the programmer to specif ical ly
designate which sets of statements can be done si-
multaneously. One of the earl iest published sug-
gestions for this is the set of "DO TOGETHER" and
"HOLD" statements suggested by Opler (1965). A sur-
vey of other suggestions is given by Gosden (1966)
which also contains a good bibliography on parallel
processing from the viewpoint of language, operating
systems, and proposed hardware.

By comparison with languages such as FORTP~AN and
COBOL, the string and pattern directed languages
such as COMIT and SNOBOL contained less procedural-
ness .

Various experimental attempts at having the system
do automatic numerical analysis include POSE (Schles-
inger and Sashkin, 1967) and NAPSS (Synes, 1969).

In the late 1960's, a system called Absys l was im-
plemented at the University of Aberdeen by Foster
and Elcock (1969). This language was bui l t on the
concept of having the user specify assertions rather
than commands. Thus, the user would write X = Y,
Y = 2 in any order and the system would automatically
assign the value Of 2 to X. The system also causes
programs to terminate unsuccessfully i f the con-
straints are unsatisfiable.

Aside from these cited act iv i t ies and some related
concepts in a r t i f i c i a l intelligence which are dis-
cussed in later sections, no other major developments
took place. Some specific work started in the late
1960's and early 1970's and is discussed in Section
5. The major areas of current act iv i ty in automatic
programming which are related to nonprocedural lan-
guages are the ISDOS Project at the University of
Michigan and the Automatic Programing Project at MIT.
(The Automatic Programming Laboratory at Harvard
real ly deals with a different class of problems.)

Section 4. FEATURES OF NONPROCEDURAL LANGUAGES

4.1 Introduction

This section discusses 5 features which are deemed of

major importance for inclusion in a programming
language which purports to be nonprocedural, or
which intends to lower the level of procedural-
ness. Some examples of languages possessing some
of these features are given. (To some extent the
material here overlaps sl ight ly the discussion of
terminology and characteristics in Sections 2 and
5, but this is unavoidable. This section concen-
trates on specific features, whereas Section 2 was
emphasizing general characteristics and Section 5
emphasizes specific languages.)

4.2 Associative Referencing

We wi l l use the term associative referencing to
refer to the accessing of data based on some in-
t r insic property of the data. Associative refer-
encing is usually provided in those languages
that contain sets (see Section 5.6) as a data
structure. The operation of selecting elements
from previously defined sets, and of defining new
sets from old based on some property of the mem-
bers is sometimes called the "set former" (see,
for example, SETL (Schwartz, 1973) and MADCAP
(Morris and Wells, 1972)). The importance of
associative referencing in nonprocedural languages
is that the programmer does not have to specify
access paths expl ic i t ly or program an algorithm
to conduct a search for a specific data structure.

The LEAP language (Feldman and Rovner, 1969) is an
important example of a conventional language
(ALGOL) extended to accommodate sets and associa-
t ive referencing. The paper is also interesting
because i t describes a hash-coded software refer-
encing scheme which has been implemented. Lan-
guage constructs were also described by Balzer
(1967) for searching a "data collection" for
members satisfying a given condition, but this
proposal was never implemented to the authors'
knowledge. Associative referencing is also con-
tained in such disparate languages as SIMSCRIPT,
STDS (Childs, 1968), TP~AMP (Ash and Sibley, 1968),
MacAIMS (Strnad, 1971), Codd's ALPHA language
(Codd, 1971), SETL, and undoubtedly many more.

Codd (1972) defines algebraic operations on rela-
tions (Codd, 1970) which give a measure of the
relative power of a language with respect to this
type of data structure. In addition to the tra-
ditional set operations of Cartesian product,
union, intersection, etc., he defines the rela-
tional operations of projection, join, division,
and restriction. These operators (see Aggregate
Operators below) effectively provide various types
of associative referencing.

I t is clear that associative referencing and the
supporting data structures are important compo-
nents of nonprocedural languages, and represent an
area in which much work remains to be done.

4.3 Aggregate Operators

I t is possible to avoid writing loops in some pro-
gramming languages that provide aggregate opera-
tors. The polymorphic operators in APL are ex-
amples of operators that apply equally to scalars
and aggregates, and that distribute over entire
aggregates. In some cases the PL/I programmer can
avoid loops by using certain operators which dis-
tribute over entire arrays or structures. There

seems in general to be a close relationship between
associative referencing and the aggregate operators
we are discussing. I t is certainly clear that the
algebraic operators defined by Codd (see above) on
relations are aggregate operators. I t cannot be
denied that the elimination of expl ic i t sequencing
by the means discussed above is t ruly a nonproced-
ural feature.

Two interesting aggregate operators which are use-
ful in data processing applications are the bundle
and glump operators proposed in the Information
Algebra (CODASYL, 1962). The glump operator par-
t i t ions an area (which is l ike a f i l e) into subsets
called elements such that an element contains al l
entit ies in the area having identical values for
the given glump operator. The glump operation is
used for grouping and summarization purposes, typi-
cal tasks in data processing. The bundle operator
works on an ordered set of areas and, for each mem-
ber of the Cartesian product, selects only those
entit ies meeting a certain condition (such as equal-
i ty of values in a particular domain).

The design and development of suitable aggregate
operators is an important act iv i ty in nonprocedural
languages.

4.4 Elimination of Arbitrary Sequencing

We wi l l define arbitrary sequencing as any sequenc-
ing which is not dictated by the data dependencies
of the application. In a functional program (see
below), data dependencies are shown exp l ic i t ly by
the operator-operand structure of the program.

A functional programming language is one that does
not contain either assignment or goto statements.
As such, "functional" appears to be a synonym for
"nonprocedural" since i t is more involved with
specifying the outcome desired as a function of the
inputs, rather than indicating a step by step se-
quence of program steps. A program in a functional
language such as pure LISP avoids side effects which
are a concomitant of procedural programming. A side
effect is caused in procedural languages by the mod-
i f icat ion of memory by the assignment statement.
Pure functional languages produce no side effects
since they have no assignment operation and cannot
modify memory during expression evaluation.

Landin (1966) characterizes functional programs as a
way of "describing things in terms of other things",
and shows that this approach leads to the elimina-
tion of expl ic i t sequencing. One example of func-
tional programming would be APL "one liners" (with-
out assignments, or without function calls with side
effects). I f a program satisfies the "single assign-
ment" property (Tesler and Enea, 1968), (i .e . , i f no
variable is assigned values by more than one state-
ment), then the order of the statements is immater-
ia l , and the correct program sequence can be deter-
mined by dependency analysis. I t turns out that a
single assignment program is real ly a functional
program in disguise, where the intermediate results
of computation are given expl ic i t names..An inter-
esting class of languages recently defined are the
Red languages (Backus, 1972) which use no variables,
no goto statements, and no bui l t - in comprehension of
recursively defined functions.

The ultimate expression of lack of arbitrary se-
quencing (perhaps we should use the term minimum
sequencing) is a pure data flow programming lan-
guage (see, for example, Kosinski, 1973). In this
formalism, an application is decomposed into a set
of modules which communicate with one another only
at module interfaces. One module cannot consume
a particular value until i t is produced by another
module, and conversely. The sequencing is governed
s t r i c t l y by data dependencies (see, for example,
Figure l (c)) . This type of sequencin~ control can
be provided by a coroutine structure (Conway, 1963).
The best example of a well-known data flow pro-
gramming language is GPSS (General Purpose Systems
Simulator) in which sequencing of a simulation
program is controlled by transactions (data) mov-
ing through the model.

4.5 Nondeterministic Programming and Parallelism

Faci l i t ies for nondeterministic programming appear
in most of the a r t i f i c i a l intelligence languages
(see Section 5.4) and were inspired by Floyd (1967)
who introduced new programming primitives for solv-
ing combinatorial problems. Essentially the prim-
i t ives include the following:

(1) a multiple valued function called choice
(n) whose values are the integers from l
to n

(2) a success function, and

(3) a fai lure function.

The choice function causes a multiple branch in the
execution of the program, each path being concept-
ually computed in paral lel, with i ts own particular
value of the choice as an argument. The success
and fai lure functions label termination points of
the computation. However, only those termination
points labeled as success are considered to be com-
putations of the algorithm. In other respects, a
nondeterministic program using these primitives re-
sembles a conventional program. In this approach,
as described by Floyd, "a process with a very com-
plicated control structure is represented by an
algorithm with a simpler structure for an imaginary
processor, and then converted to a more complicated
algorithm for a conventional processor". This pre-
scription describes a fundamental characteristic of
nonprocedural programming. I t must be emphasized
here that the word "nondeterministic" used in the
present context does not mean probabilistic but
rather having a free choice.

In most cases, nondeterministic programs are exe-
cuted as backtracking algorithms (Golomb and Bau-
mert, 1965), and i t is the hiding of the bookkeep-
ing details of the backtracking (saving and restor-
ing of the values of variables at branch points)
that gives nondeterministic programming its nonpro-
cedural flavor. Backtracking refers to a depth
f i r s t tree search and is an important component of
PLANNER (Hewitt, 1971) and other AI languages.
Another method of implementing nondeterministic al-
gorithms is called multiple-tracking (Irons, 1970)
and refers to a breadth f i r s t search, which is use-
ful in situations where the backtracking process
does not terminate.

There is a close correspondence between nondetermin-
i s t i c programming and parallel programming in that

the multiple paths of the choice function could be
executed in parallel. The existence of inherent
parallelism can be exhibited either naturally in a
data flow language, or can be analyzed and detected
in a more conventional programming language, such
as FORTRAN IV (Russell, 1969 and Volansky, 1970).
Use of statements such as FORK and JOIN (Ander-
son, 1965) provide the user with the f a c i l i t y to
specify allowable parallelism, but simultaneously
increase the amount of information he is supplying
about the problem.

Communication and synchronization between concurrent
processes is an important subject and has been ex-
tensively covered in the l i terature, but with primary
emphasis on operating systems. A fundamental paper
on this topic is by Dijkstra (1968).

Parallel processes appear in the multitasking f a c i l i -
ties of PL/I, the collateral executions of ALGOL 68,
the multiple paths in ECL (Cheatham and Wegbreit,
1972), and in the multiple processes of SAIL (Feld-
man, et a l . , 1972).

4.6 Pattern Directed Structures

The classical example of a pattern directed structure
is given by Markov algorithms. A Markov algorithm
consists of a set of replacement or substitution.
rules which are repeatedly applied to an input string
of symbols. The sequencing algorithm is impl ic i t in
that the rules are always applied in a determined
order. Each rule consists essentially of the direc-
t ive: i f a specified string is contained in the cur-
rent input string, then replace i t with a given
string of symbols. Although replacement rul~s are,
in general, order dependent, pattern matching is non-
procedural in the sense that i ts execution involves
a complicated series of steps. The SNOBOL language
is an extension and enhancement of the Markov algor-
ithm idea where, however, the programmer is allowed
to depart from the normal sequential control. The
pattern directed string replacement rule in SNOBOL is
nonprocedural in the sense that the more detailed
specification of this process in a more "conventional"
language would surely require a nondeterministic
sequence of steps, or an even more complicated de-
terministic program.

The specification of a context free grammar in BNF is
an example of a set of rewriting rules that are order
independent. The CONVERT package (Guzman and Mcln-
tosh, 1966) is an example of the introduction of pat-
tern matching fac i l i t i es into LISP. A more recent ex-
tension to LISP emphasizing the role of pattern direct-
ed structures is embodied in the LISP 70 language de-
veloped at Stanford (Tesler e t a l . , 1973).

Pattern directed structures are incorporated in the
PLANNER language in a fundamental way. Specifically,
PLANNER includes a pattern directed data base search,
and the pattern directed invocation of procedures.
The pattern directed data base search allows the user
to ask for data items called assertions which match a
given pattern, while pattern directed procedure invo-
cation has the capability to in i t ia te tasks of the
form "call a subroutine which wi l l achieve the desired
result at this point" (Sussman, et a l . , 1971). I t is
noteworthy that program m o n i t o r i ~ y be considered
to be a generalization of pattern directed invocation
of procedures where the pattern is being continuously
matched against the object to be monitored (Fisher, 1970).

Pattern matching is intimately associated with
nondeterministic programming, but is probably less
procedural than the lat ter. However, i t may be
that to solve more complicated problems, the pro-
grammer has to give more hints to the program, pos-
sibly in procedural form. I t is clear that pattern
matching is related to, and,conceptually similar
to, associative referencing of data.

Section 5. SPECIFIC LANGUAGES

5.1. Introduction

There are so many languages which exhibit some of
the major characteristics of nonprocedural lan-
guages that i t is not possible to describe them
a l l . Furthermore, since they tend to fa l l into
groupings based on either application area or
technical approach, they are being discussed in
such groups. I t is essential to realize that the
dist inct ion between a "language" and a "language
system" becomes very fuzzy when dealing with these
developments; the reader is cautioned to understand
that the "languages" mentioned may in rea l i ty be a
part of a larger system which is providing s ign i f i -
cant support for the language i t se l f .

5.2 Business Applications Languages

One of the areas in which considerable work has
been done to develop very high level languages is
the area commonly called business data processing.
Depending upon the group doing the work, the lan-
guage(s) may be developed either for this whole
application area or specific portions thereof. In
addition to all the other d i f f i cu l t i es pointed out
in earl ier sections, there is another continuum
which makes i t d i f f i c u l t to make clear-cut dist inc-
tions. At one end is a specific query, while at
the other end is an impl ic i t calculation in which
the system must essentially carry out an unspecified
sequence of computations and/or retrievals to obtain
the desired result. In order to make this continuum
more obvious, consider the following statements in
a restricted form of English:

a) FIND ALL PEOPLE IN DEPARTMENT A WHO MAKE
MORE THAN $B.

b) FIND THE AVERAGE SALARY OF ALL PEOPLE IN
DEPARTMENT A WHO MAKE MORE THAN SB.

In the f i r s t case this is a standard query which can
be answered on most data base management systems.
However, i f only the second statement is given,
there is a great deal of unspecified processing re-
quired because the system must f i r s t f ind al l the
relevant people, then apply the concept of "aver-
age", and then perform the computation. Thus, gen-
eral data base management systems themselves have
many of the characteristics of very high level lan-
guages.

While i t is beyond the scope of this paper to dis-
cuss the issue of communicating with the computer
in English, i t is nevertheless true that this ap-
proach is being taken by most groups working in
this area. This tends to be done in three di f fer-
ent ways -- (i) by a restricted formal language
which looks l ike English; (i i) by a set of impera-
t ive statements or questions in "natural English";
and (i i i) by a questionnaire from the computer to
the person wherein the responses are considerably

limited but s t i l l in English.

Both (i i) and (i i i) are objectives of the MIT Auto-
matic Programming Group under W. Martin which is
developing several levels of language within the
framework of a system called Protosystem I (Project
MAC, 1973). One of these is MAPL, which is a lan-
guage for building relational models of the world.
The la t ter is considered to be made up of a collec-
tion of objects which are divided into subsets and
where the concept "a kind of" is allowed. A sig-
n i f icant part of their approach is the use of a
questionnaire which is carefully designed for a par-
t icu lar specialized application area. The user w i l l
answer the questions, and also communicate more in-
formation about the details of his problem in a
"natural English". From this information the system
w i l l translate to successively lower levels of lan-
guage for eventual execution. I t is expected that
this process w i l l be i terat ive in the sense that the
user may be asked for further details after an in i -
t ia l processing of the questionnaire information.
Furthermore, the user w i l l be given the opportunity
to determine that the program generated by the sys-
tem is what he real ly wants; this is deemed essential
because the user is specifying the "what" and the
system is determining the "how".

The ISDOS project under D. Teichroew and A. Merten
at the University of Michigan emphasizes what they
refer to as "problem statement languages" (which are
essentially the same as what Sammet calls "problem
defining languages"). As with various other concept-
ually similar approaches, they wish to distinguish
carefully between the specifications and requirements
of the problem on one hand, and the method of achiev-
ing these on the other. For example, a requirement
might be that pay checks should be printed in alpha-
betical order, but this is quite dif ferent from hav-
ing a user specify "SORT" as a statement in a program.
The la t ter might be unnecessary as a command i f other
aspects of the system design caused an alphabetical
sequence to occur automatically.

In the framework of the ISDOS project, i t is expected
that users w i l l write a problem description in PSL
(Problem Statement Language) and this w i l l be analyzed
by the PSA (Problem Statement Analyzer). PSL is de-
signed to provide the Problem Definer (i .e . , today's
systems analyst) with a better method of stating the
requirements for an information processing system.
A careful dist inction is made between the lat ter , and
the programs which implement these requirements.
Stating requirements is done in the current version
being developed, namely PSL/II (Hershey, et a l . , 1973),
which allows for 8 sections in the problem statements.
The analyst writes one or more of these sections in a
top-down fashion providing more detail at lower levels.
The intermediate level of ~aving the system make de-
sign decisions on f i l e formats and structure of pro-
grams was being worked on in mid-1973. Relating this
to Section 4, extensions to the Problem Statement Lan-
guage w i l l probably provide some associative reference
and aggregate operators and presumably w i l l concen-
trate heavily on eliminating arbitrary sequencing.

Other languages in this same general area are mention-
ed or described in survey papers by Teichroew (1972)
and Couger (1973) and w i l l not be repeated here. The
major ones mentioned are ADS, Hoskyns System, Infor-
mation Albegra, PSL, and TAG. The key concepts of the

Information Algebra were stated in Sections 3 and 4
of this paper. ADS (Lynch, 1969) and TAG (IBM)
basically consist of a set of forms describing an
entire application which are f i l l ed out by the user
or system analyst and then machine-analyzed for use
by programmers and f i l e designers. I f the forms
could be translated to working programs, then we
would actually have an extension of RPG concepts
from a single program to a whole set of programs,
i .e . , a fu l l application or system. According to
Couger (1973), "the Hoskyns system accepts system
specifications and converts them to COBOL programs
without manual intervention".

5.3 "Nonsequencing" Languages

As stated in Section 4.4, one of the key character-
ist ics of a "less procedural" language is to mini-
mize the amount of sequencing specified by the pro-
grammer. In particular, i t is desiraEble to be able
to distinguish between the order of evaluation and
the ordering of statements in the source program.
While many of the specific languages discussed in
Section 5 have this characteristic, the languages
mentioned here tend to emphasize (directly or in-
directly) this fac i l i t y .

Continuous simulation languages (e.g., CSSL (SCi,
1967), CSMP (IBM)) have had this capability for
years. As a very simple example, the user might
write the following equations, where T is an in-
dependent variable:

X = R cos A

R = 50.0

Z=WT

W= 5.0

The compiler would automatically rearrange these to
be

W=5.0

Z=WT

R = 50.0

X = R cos A

While this is quite t r i v i a l and could be done
equally easily by the user, in large simulations
involving many interrelated equations with many
variables, the rearrangement is laborious and error
prone and can be done more easily by a computer.

Another relevant aspect of the continuous simula-
tion languages is that they are frequently used to
model analog computers which have many computations
occurring simultaneously. To handle this d ig i ta l l y
(and hence, sequentially), the compiler must auto-
matically cause certain computations to be tempor-
a r i l y deferred; this is most noticeable in dealing
with the (numerical) solution of several differen-
t ia l equations.

One of the most significant of the more general lan-
guages with this approach is the interactive lan-
guage ABSET being developed at the Computer Research
Group at the University of Aberdeen, Scotland. (See
Elcock, 1971.) A key element in their language is
the use of sets in which the user is allowed to say
"this is true for al l members of this set" and the
notions of TRUE and FALSE are appropriately applied.

A simple i l lustrat ion of the application of the lat-
ter together with a deduction from the stated asser-
tions is the following:

A + B = 3 AND A = l ;

From this the interpreter deduces that B = 2 since
the meaning of AND requires that the two halves of
the f i r s t statement are both true.

A proposed -- but unimplemented -- approach to this
is Compel (Compute Parallel) described by Tesler
and Enea (l ~ . They pro-pose that al l variables in
each statement belong to two mutually exclusive
groups: Input, Output. All rules on statement se-
quencing are replaced by the rule "The statement that
outputs variable A must be executed before every
statement that either inputs A or inputs some B such
that B depends on A".

5.4 Ar t i f i c ia l Intelligence Languages

Mention has been made before of the distinction be-
tween stating what is to be done and how to do i t .
In stating what is to be done, an individual is in
some sense describing the problem, or stating what
results are required. When we discuss methods of
solving problems, we may be in the domain of a r t i f i -
cial intelligence, which cannot be discussed here for
lack of space. However, languages which have been
developed in the AI f ie ld have features which allow
the user to think about and specify his problem in a
nonprocedural way.

The PLANNER language is important and wi l l be empha-
sized here because i t is the archetype of a class of
nonprocedural and "problem solving" languages in the
a r t i f i c i a l intelligence f ie ld . PLANNER is a mixture
of programming and theorem proving techniques and, as
stated earl ier, incorporates three basic ideas:

automatic backtracking

pattern directed data base search

pattern directed invocation of
procedures

Backtracking has been mentioned previously in Section
4.5.

Pattern directed data base search is a generalization
of associative referencing and allows the user to ask
for data items called assertions in the data base
which match a given pattern.

Pattern directed invocation of procedures allows a pro-
cedure to be invoked not by i ts name but by the func-
tion that i t performs. I t also allows a set of recom-
mendations to be specified which controls the pattern
match algorithm so that alternatives are tr ied in a
particular order. Pattern directed invocation real ly
"constitutes a new view of programming based not on the
traditional hierarchical organization of a set of sub-
routines, but rather on a set of cooperating asynchro-
nous modules". (Balzer, 1972).

CONNIVER (Sussman and McDermott, 1972) is an extension
and modification to PLANNER in which automatic back-
tracking is eliminated. I t is argued that automatic
backtracking almost forces the user to regard al l his
problem solving methods as independent. That is,
backtracking provides a mechanism for generating

alternatives and for erasing the consequences of an
alternative which is later found to be untenable.
CONNIVER provides local environments or contexts
for each alternative to which changes can be made.
CONNIVER is an attempt to exploit al l the "good"
ideas in PLANNER by providing some primitives ori-
ginally hidden in PLANNER, and by concentrating
more on the programming aspects of the language
rather than on the theorem proving orientation.

The QA4 language (Derksen et a l . , 1972) which is
based on QA3 (Green, 1969i ~ m i l a r in many re-
spects to PLANNER (for example, heavy reliance on
pattern matching and bui l t - in backtracking). How-
ever, QA4 relies more on the use of sets, whereas
PLANNER would implement the same features by using
more complex procedures. QA4 also has the concept
of "bags" which are l ike sets except that they
allow several instances of the same element; this
simplifies many arithmetic problems. QA4 also has
a context mechanism which allows the storing of
conditional plans (sequences of operators) under
different contexts or alternative contingencies.

SAIL (Feldman, et a l . , 1972) is a dialect of ALGOL
60 and was developed primarily with the Stanford
Hand-Eye System in mind. I t is based on the asso-
ciative processing features of LEAP but contains
many new features such as backtracking and match-
ing procedures. Matching procedures are somewhat
similar to IPL-V "generators" and are used to gen-
erate strategies, and for coding of complex asso-
ciative contexts. SAIL has sets and l i s ts as data
structures, and a new data type called a "context"
which is useful for state saving and backup. SAIL
contains multiple processes and follows the impor-
tant principle that an occurrence in one process
can influence the flow of control in other process-
es.

REF-ARF (Fikes, 1970) consists of a nondeterministic
language for stating problems and a processor that
attempts to find a successful execution of the non-
deterministic program.

GOL (Pople, 1972) is a LISP extension for nondeter-
ministic programming and is similar to PLANNER in
some respects, except that GOL uses semantic methods
to generate i ts state space, rather than syntactic,
or deductive methods.

The following systems, while more properly described
as application programs than languages, are included
because they i l lust rate problem solving features
which might be useful in nonprocedural programming
languages.

The STRIPS system (Fikes and Nilsson, 1971) is a
problem solving program that attempts to find a se-
quence of operators that transform a given i n i t i a l
model (configuration) into a model in which a given
goal formula is true. STRIPS represents a model as
a collection of formulas in the f i rst-order predi-
cate calculus, and uses a resolution approach (Rob-
inson, 1965) to theorem proving in order to answer
questions about the model.

Another system, called PROW {Waldinger and Lee,
]969), generates programs from descriptions of their
inputs and outputs in the predicate calculus and
also uses a resolution theorem prover. A similar

use of the predicate calculus as a programming lan-
guage, but not using an automatic theorem prover, is
i l lustrated by Manna and Waldinger (1971).

DENDRAL (Feigenbaum, et a l . , 1971), which analyzes
mass spectrograph data, is interesting because i t
demonstrates the effective incorporation of domain
specific information into an a r t i f i c i a l intelligence
environment.

5.5 Simulation Languages

Simulation languages introduced nonprocedural con-
cepts in essentially two areas: associative refer-
encing and the concept of a "process". Although as-
sociative referencing was not a particularly new
idea at the time, SIMSCRIPT introduced the concept
of representing and modeling systems in terms of en-
t i t i es and their attributes, and the referencing and
updating of data items based on indirect addressing
of their properties rather than on an expl ic i t
search. Both LISP and IPL-V used the notion of prop-
erty l i s ts but did not exploit this idea in quite
the same way as SIMSCRIPT.

GPSS has been attractive to nonprogrammers because
of i ts block diagram, or flow graph, orientation and
the fact that sequencing of transactions was deter-
mined by properties of the data and state configura-
tions of the system, rather than by expl ic i t control
flow specification in more conventional programming
ianguages. The process concept, as typif ied by GPSS
and by the original SIMULA (Dahl and Nygaard, 1966),
is a method of discretely simulating concurrency in
the real world, and is nonprocedural because the de-
ta i ls of the sequencing and scheduling of processes
is hidden from the programmer. This style of pro-
gramming, using primitives such as ACTIVATE, HOLD,
WAIT and TERMINATE (in SIMULA) has been called quasi-
parallel programming (Knuth, 1968).

Continuous simulation languages generally involve re-
sequencing of equations specified by the user and are
i l lustrated in Section 5.3.

5.6 Set Oriented Languages

The traditional aggregate data structures in program-
ming languages have been arrays where the concepts of
indexing and sequencing have been important. Lan-
guages which provide sets as data structures do not
rely on the relative position of data items in the
sets for accessing purposes, but make use of associa-
t ive referencing as discussed earl ier.

We wi l l discuss the languages SETL (Schwartz, 1973)
and MADCAP (Morris and Wells, 1972) as representative
of a class of set oriented langauges. (ABSET, which
also has set operations, was mentioned in Section 5.3.)
SETL is a very high level mathematically oriented lan-
guage. Its important composite data structures are
f in i te unordered sets, tuples, and functions. The
set operations in both languages are very similar ex-
cept that SETL allows heterogeneous sets. Functions
in both SETL and MADCAP are not only available in the
conventional sense but can also be represented by sets
of tuples, i . e . , relations.

Both languages have a "set former" capability which is
to say that they provide associative referencing on
the elements of sets. SETL has a "compound operator"
which works very much l ike the APL reduction operator,

and both languages have other constructions which
can be used to obviate loops in most cases.

MADCAP has a backtracking f ac i l i t y (not currently
provided in SETL) as well as a control structure
called an i terat ive expression.

As an example of the power of SETL, consider the
following expression which specifies the prime
numbers between 2 and lO0:

{P,2 <= P <= lO0 + (v 2 <: N < P ÷ (P//N)NE. 0)}

which can be read in English as "the set of P's be-
tween 2 and IO0 such that for every N greater than
or equal to 2 and less than P the remainder of P/N
is not equal to zero".

The above specification is obviously not an e f f i -
cient one; a practical program at the very least
would just consider the odd numbers from 3 to lO0.

Earley (1973) proposes four data structures which
are very similar to those used in SETL and MADCAP:

Tuples (fixed collections of heterogeneous
objects which can be accessed by
name)

Sets (unordered non-repeating collections
of objects)

Relations (sets of tuples)

Sequences (ordered collections of objects)

Earley's major point is that these structures allow
a relational level of description in which data
structures may be described in terms of essential
relationships between the data items, ignoring the
particular access paths between them. This pre-
scription clearly states one of our principles of
nonprocedural programming.

Section 6. SUMMARY

This paper has attempted to describe some of the
basic characteristics and issues arising from the
term "nonprocedural languages". I t has been em-
phasized repeatedly that this is a relative term
that changes as the state of the art changes. Num-
erous other terms are used almost synonymously for
this concept. Among the major issues discussed
were the relativeness of the concept from several
viewpoints, the importance of minimizing unnecessary
sequencing in writing programs or defining problems,
the need for a metric to measure levels of nonpro-
ceduralness, the relation between the language and
i ts implementation, the relationship to work on
verifying the objectives of the user, and the con-
nection with the f ie ld of a r t i f i c i a l intelligence.

A brief history of highlights in this f ie ld was
given. A discussion of the following 5 features
which should be included in languages purporting
to be nonprocedural was given: associative refer-
encing, aggregate operators, the elimination of
arbitrary sequencing, nondeterministic programming
and parallelism, and pattern directed structures.

A number of specific languages were discussed very
br ief ly under the general categories of business
applications, "nonsequencing", a r t i f i c i a l i n t e l l i -
gence, simulation, and set oriented.

CLA B
ADD C
MPY D
STO T
CLA E
MPY F
ADD T
STO A

(a)
FIGURE 1

(a*)

A= (B + C) * D + E* F

(b) (b*)
DO I = l , M A÷B + .x C
D O J = I , N
C (I , J) : 0
DOK=I , P
C(I,J) = C(l,J) + A(I,K) * B(K,J)

(c)
DO I = 3 TO 95 BY 2
IF PRIME (1)

THEN PUT SKIP LIST
(I , SQRT (1));
ELSE RETURN;

END;

(c*)
PRINT (2), SQ(PRIME (3,95))

or

CALCULATE THE SQUARE ROOT
OF THE PRIME NUMBERS
FROM 3 TO 95 AND
PRINT IN 2 COLUMNS

REFERENCES

Anderson, J.P., "A Computer for Direct Execution of
Algorithmic Languages", Proceedings EJCC, Vol. 20
(1961).

Anderson, J.P., "Program Structures for Parallel
Processing", CACM, Vol. 8, No. 12 (Dec. 1965).

Ash, W. and Sibley, E.H., "TP~AMP, an Interpret ive
Associative Processor With Deductive Capabi l i t ies",
Proceedings ACM 23rd National Conference (1968).

Backus, J., Reduction Languages and Variable-Free
Programming, IBM Research Report RJ I010, Yorktown
Heights, N.Y. (Apri l 1972).

Balzer, R.M., "Dataless Programming", Proceedings
FJCC, Vol. 31 (1967).

Balzer, Robert, Automatic Programming, Technical Memo,
Information Sciences Ins t i tu te , University of South-
ern Cal i fornia, (September 1972).

Bashkow, T.R., Sasson, A., and Kronfeld, A., "A Sys-
tem Design of a FORTPJ~N Machine", IEEE Trans. Elec.
Comp., Vol. EC-16, No. 4 (August 196--67)-.--

Cheatham, T.E. Jr. and Wegbreit, Ben, "A Laboratory
for the Study of Automating Programming", Proceedings
SJCC, Vol. 40 (1972).

Chesley, G.D. and Smith, W.R., "The Hardware-lmple-
mented High-LeveiMachlne Language for SYMBOL",
Proceedings SJCC, Vol. 38 (1971).

lO

Childs, D.L., "Description of a Set-Theoretic Data
Structure", Proceedings FJCC, Vol. 33, Part l (1968).

CODASYL Language Structure Group, "An Information
Algebra Phase I Report", CACM, Vol. 5, No. 4
(April 1962).

Codd, E.F., "A Relational Model of Data for Large
Shared Data Banks", CACM, Vol. 13, No. 6 (June 1970).

Codd, E.F., A Data Base Sublanguage Founded on the
Relational Calculus, Report RO 893, IBM Research
Laboratory, San Jose, Calif. (July 1971).

Codd, E.F., Relational Completeness of Data Base
Sublanguages, Report RJ 987, IBM R e s ~ r ~ a ~ -
tory, San Jose, Calif. (March 1972).

Conway, M.E., "Design of a Separable Transition-
Diagram Compiler", CACM, Vol. 6, No. 7 (July 1963).

Couger, J.D., "Evolution of Business System Analy-
sis Techniques", Computin 9 Surveys, Vol. 5, No. 3
(Sept. 1973).

Dahl, Ole-Johan and Nygaard, Kristen, "SIMULA- an
ACGOL-Based Simulation Language", CACM, Vol. 9,
No. 9 (Sept. 1966).

Derksen, Jan, Rulifson, John F., and Waldinger,
Richard J., "The QA4 Language Applied to Robot Plan-
ning", Proceedings FJCC, Vol. 41 (1972).

Dijkstra, E.W., "Cooperating Sequential Processes"
in Programming Languages, (F. Genuys, ed.), Aca-
demic Press, New York (1968).

Earley, Jay, Relational Level Data Structures for
Programming Languages, Computer Science Dep t . ,~ i -
versity of California, Berkeley (March 1973) (sub-
mitted for publication in Acta Informatica).

Elcock, E.W. et al. , "Abset, a Programming Language
Based on Sets: Motivation and Examples" in Machine
Intelligence 6 (B. Meltzer and D. Michie, eds--~.,
American Elsevier (1971).

Feigenbaum, E., Buchannan, B. and Lederberg, J.,
"Generality and Problem Solving: A Case Study Using
the DENDP~AL Program" in Machine Intelligence 6
(B. Meltzer and D. Michie, eT .) , American Elsevier
(1971).

Feldman, J.A., Automatic Programming, Report No. CS-
255, Stanford University Computer Science Dept.
(Feb. 1972).

Feldman, J.A., Low, J.R., Swinehart, D.C., and
Taylor, R.H., "Recent Developments in SAIL - An AL-
GOL-Based Language for Art i f ic ia l Intelligence",
Proceedings FJCC, Vol. 41 (1972).

Feldman, J.A. and Rovner, P.D., "An ALGOL-Based As-
sociative Language", CACM, Vol. 12, No. 8 (Aug. 1969).

Fikes, R., "Ref-Arf: A System for Solving Problems
Stated as Procedures", Art i f ic ia l Intelligence,
Vol. l , No. l (1970).

Fikes, Richard E. and Nilsson, Nils J., "STRIPS: A
New Approach to the Application of Theorem Proving
to Problem Solving", Art i f ic ia l Intelligence , Vol. 2
(1971).

Fisher, David A., Control Structures for Programming
Languages, Ph.D. Thesis, Carnegie Mel~Universi ty
(May 1970).

Floyd, R.W., "Nondeterministic Algorithms", JACM,
Vol. 14 (Oct. 1967).

Foster, J.M. and Elcock, E.W., "ABSYS l: An Incre-
mental Compiler for Assertions: An Introduction" in
Machine Intelligence 4 (B. Meltzer and D. Michie,
eds.~, American Elsevier (1969).

Golomb, S. and Baumert, L., "Backtrack Programming",
JACM, Vol. 12, No. 4 (Oct. 1965).

Gosden, J.A., "Explicit Parallel Processing Descrip-
tion and Control in PRograms for Multi- And Uni-
Processor Computers", Proceedings FJCC, Vo]. 29 (1966).

Green, C., "Theorem-Proving by Resolution as a Basis
for Question-Answering Systems" in Machine In te l l i -
9ence 4 (B. Meltzer and D. Michie, eds~, American
Elsevier (1969).

Guzman, Adolfo and McIntosh, Harold V., "CONVERT",
CACM Vol. 9, No. 8 (Aug. 1966).

Hershey, E.A. et al. , PSL/II Language Specifications,
Version l.O, ISDOS Working Paper No. 68, University
of Michigan, Dept. of Industrial and Operations En-
gineering, Ann Arbor, Michigan (Feb. 1973).

Hewitt, Carl, "PLANNER: A Language for Proving
Theorems in Robots", Proceedings IJCAI (1969).

Hewitt, Carl, "Procedural Embedding of Knowledge in
PLANNER", Proceedings IJCAI 2 (Sept. 1971).

Homer, E.D., "An Algorithm for Selecting and Sequenc-
ing Statements as a Basis for a Problem-Oriented Pro-
gramming System", Proceedings 21st National ACM Con-
ference (1966).

Irons, Edgar T., Multiple-Track Programming, Research
Report NO. 70-I, Department of Computer Science, Yale
University (Ig70).

IBM. System/360 Continuous System Modelin 9 Program:
User's Manual GH 20-0367.

IBM. The Time Automatic Grid System (TAG1: Sales and
Systems Guide GY20-0358 (reprinted in J.F. Kelly
Computerized Management Information System~, MacMillan
(1970)).

Katz, J. and McGee, W.C., "An Experiment in Non-Proced-
ural Programming", Proceedings FJCC, Vol. 24 (1963).

Knuth, Donald E., The Art of Programming, Addison-Wesley,
Reading Mass. (1968-).

Kobayashi, Isamu, "An Algebraic Model of Information
Structure and Information Processing", Proceedings ACM
National Conference (1972).

II

KOsinski, Paul R., A Data Flow Proqramming Lan-
quaqe, Report RC 4264, IBM Research Laboratory,
Yorktown Heights, N.Y. (March 1973).

Landin, P.J., "The Next 700 Programming Languages",
CACM, Vo1. 9, No. 3 (March 1966).

Lincoln, N., "Languages for Parallel Thinkers",
1971 (unpublished; distributed at ACM SIGPLAN
Symposium on Languages for Systems Implementation
(Oct. 1971)).

Lynch, H.J., "ADS: A Technique in System Docu-
mentation", SIGBDP Database, ACM Headquarters,
Vol. I, No. ~ingl--g-T969T.

Manna, Z. and Waldinger, R., "Towards Automatic
Program Synthesis", CACM, Vol. 14, No. 3 (March
1971).

Morgenstern, M., Automating the Design and Optimi-
zation of Information Processing Systems, AUTO-
MATIC PROGRAMMING GROUP Internal Memo lO, Project
MAC, MIT, Cambridge, Mass. (Feb. 1973).

Morris, J.B. and Wells, M.B., "The Specification
of Program Flow in MADCAP VI", Proceedings ACM
25th Annual Conference (1972).

Opler, A., "Procedure Oriented LanguageStatements
to Facilitate Parallel Processing", CACM, Vol. 8,
No. 5 (May 1965).

Pople, Harry E., Jr., "A Goal-Oriented Language for
the Computer" in Representation and Meaning - Ex-
periments With Information Processing Systems
(H.A. Simon and L. Siklossy, eds.), Prentice-Hall,
Englewood Cliffs, N.J. (1972).

Project MAC Annual Progress Report No. lO, Auto-
matic Programming Division, MIT, Cambridge, Mass.
(to be published Dec. 1973).

Robinson, J.A., "A Machine-Oriented Logic Based on
the Resolution Principle", JACM, Vol. 12, No. l
(Jan. 1965).

Russell, E.C., Automatic Program Analysis, Ph.D.
Dissertation, Dept. of Electrical EQgineering,
UCLA (1969).

Sammet, J.E., "Problems In, and a Pragmatic Approach
to Programming Language Measurement", Proceedings
FJCC, Vol. 39 (1971).

Sammet, J.E., "An Overview of Programming Languages
for Specialized Application Areas", Proceedings
SJCC, Vol. 40 (1972).

Schlesinger, S., and Sashkin, L., "POSE: A Lan-
guage for Posing Problems to a Computer", CACM,
Vol. 10, No. 5 (May 1967).

Schwartz, J.T., O__n_n Programming: An Interim RepErt
on the SETL Project -- Installment I: Generalities,
Computer Science Dept., Courant Institute of Mathe-
matical Sciences, New York University (1973).

SCi Simulation Software Committee, "The SCi Continu-
ous System Simulation Language (CSSL)", Simulation,
Vol. 9, No. 6 (Dec. 1967).

Strnad, A.L., "The Relational Approach to the Man-
agement of Data Bases", Proceedings IFIP Congress
(1971).

Sussman, G.J., Winograd, T., and Charniak, E.,
MICRO-PLANNER Reference Manual, MIT AI Memo 203A
(Dec. 1971).

Sussman, Gerald J. and McDermott, Drew V., "From
PLANNER to CONNIVER: A Genetic Approach", Proceed-
ings FJCC, Vol. 41 (1972).

Synes, L.R. and Roman, R.V., Syntactic and Semantic
Description of theNumerical ~ P r o g r a m m i n g

(NA~S), CSD TR II (Revised), Purdue Uni-
versity, Computer Science Dept., Lafayette, Indiana
(Sept. 1969).

Teichroew, Daniel, "A Survey of Languages for Stating
Requirements for Computer-Based Information Systems",
Proceedings FJCC, Vol. 41 (1972).

Tesler, L.G. and Enea, H.J., "A Language Design for
Concurrent Processes", Proceedings SJCC, Vol. 32
(1968).

Tesler L. Enea, H.J. and Smith, D.C., "The LISP 70
Pattern Matching System", Proceedings IJCAI 3 (1973).

Volansky, S.A., Graph Model Analysis and Implementa-
tion of Computational Sequences, Ph.D. Dissertation,
Dept. of Electrical Engineering, UCLA (1970).

Waldinger, Richard J. and Lee, Richard C.T., "PROW:
A Step Toward Automatic Program Writing", Proceedings
IJCAI (1969).

Young, J.W. Jr. and Kent, H.K., "Abstract Formulation
of Data Processing Problems", J. Industrial Engineer-
ing (Nov.-Dec. 195B).

12

