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Abstract

Based on the polytropic gas sphere which model a star, this can be used in order to evaluate through one{dimensional

equations the variation of pressure, density and mass as a function of the distance from the center of the star. In order to

understand all mathematical implications a sequence of steps are easily explained which also contribute to build a didactic

model for better understanding of this Polytrope star model.

1 Introduction

The purpose of the present paper is to investigate a very simple star model. It should be noted that a polytrope
is not a star but a sphere of gas having a very speci�c type of equilibrium. Also, it does not simulate important
physical process and quantities such nuclear reactions, chemical mixing, energy transport, or mass loss by stellar
wind. Therefore, as a very simple model, it comes as a �rst step in order to understand more complex star models
[3].

What intended is to establish �rst of all the general equations in one{dimensional space for our self{gravitating
polytropic gas sphere and so, by the adoption of some hypothesis reduce such equations to the well known Lane,
Kelvin, Eddington, and Emden simple stellar model. Following this a sequence of steps are described in order to
establish a logical procedure to simulate the pressure, density and mass by numerical means as a function of the
distance from the centre of the polytrope star.

2 Fundamental Equations

The equations governing the spherically symmetrical 
ow of a polytropic gas of adiabatic index 
 under the
in
uence of its own gravitation are [1]:
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Where m(r; t), u(r; t), p(r; t) and �(r; t) denote respectively the mass inside a sphere of radius r, the gas velocity,
pressure and density at a distance r from the centre at time t. By means of equation(4), equation(2) transforms
into
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The expression p = k�
 relate the pressure and density to an adiabatic process in thermodynamic equilibrium
(adiabatic{reversible or isentropic) and is know as law of Poisson.

For the equilibrium state where u = 0, @
@t = 0, one can write: p = p

0

(R); � = �
0

(R); m = m
0

(R); r = R.

then equations(1,3) and equation(4) are reduced to:
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While the equation(2) and equation(5) give merely the relations � = �
0

and p = p
0

in the present case.

It is necessary to make a few remarks about the value of the ratio of speci�c heat 
 or adiabatic index. From
the kinematic theory of gases, one can obtain an expression for the speci�c heat cv as [2].

cv =
f

2

R

mg
(9)

where R is the universal gas constant.

In the equation(9) f is the number of degrees of freedom of a molecule, which has to be considered as a rigid
union of atoms. Using the known relation for the speci�c heat cp de�ned as:

cp � cv =
R

mg
(10)

where m is the dimensionless mole mass1. Thus, the expression for the ratio of the speci�c heat is


 =
cp
cv

= 1 +
2

f
(11)

From which the following values for 
 are obtained:

As stated in the introduction of this work the polytropes are not real stars and also are no longer used in
professional astrophysics. However, in the earlier times polytropes gave very important contributions for the
astronomical and astrophysical development. As a simple model was used as step to understand the more
complicated models in time to come. The following are shown some those classical polytropes:

1The numerical value of mg corresponds to the mass of the gas measured in grams, whose volume is 22.4 l at 0ÆC and 760mm Hg

pressure.



Relation of f with 

Value of f 3 5 6 10


 =
cp
cv

5=3 7=5 4=3 12=10

Table 1: Relation of f with 


� f ! 3 This case was used to model a fully convective star where radiation pressure is not important, also
used for non{relativistic degenerate white dwarf. For mono atomic gases(for example, inert gases). Here,
only the three translational degrees of freedom are considered.

� f ! 5 For diatomic molecules (for example, H2, O2, N2 and air). It is a dumb{bell model in which,
in addition to the three translational degrees of freedom, the two rotational degrees of freedom are also
considered.

� f ! 6 This case was used to state the standard model of Eddington used to describe a fully radiative
star or a white dwarf with relativistic degeneration. For a general arrangement of molecules (for example,
for all multiple atom gases). In this case, three translational and three rotational degrees of freedom are
considered.

� f ! 10 This case was an approximation for the distribution of star in a globular cluster. The model
calculation is done from zero to a certain distance from the star core since for this value of f , the zero
point is located at in�nity as will be discussed in the next sections.

In case, however, one go to extreme states (f > 6), then there is a strong dependence of cp; cv on the tempera-
ture. The reason is the internal energy of the gases contain not only contributions from translation and rotation,
but at higher temperature (at stellar core) there are also contributions from vibration; as well as from dissociation
and ionization. These contributions can be determinated from the quantum theory. The choice of f depends on
the type of star one wants to study. The f parameter is the polytrope index, and can be bigger than 6 in order
to represent such situations.

3 The Lane{Emden Equation

The purpose of this paper is, therefore, by means of a numerical simulation to compute the structure of the
polytrope star given as result the variation of pressure, density and mass as a function of the distance of the
centre to the surface. Such calculations is done for a given total mass, radius and for a given polytrope index f .
Considering the set of equations(6,7 and 8) for a position r, one can now rewrite them as:
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The idea is to merge all three equations into only one ordinary di�erential equation which describe the polytrope
star structure. Following this, one can introduce a function �(r) de�ned as
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Using the relation stated by equation(14) one can combine it with the last equation(15) and obtain
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Where p0, �0 are respectively the pressure and density at the centre of the star, where r = 0. By the use of the
equations(12,15 and 16) one can write the following ordinary di�erential equation:
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When both sides of equation(18) are di�erentiated to x and using dm(x)
dx de�nition given by equation(13) after

change r by x as de�ned before, one get
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In order to make the last coeÆcient on the right hand side as unit, one de�ne
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As was stated, this �nal equation (21) is known as the Lane{Emden equation which describes the complete
structure of a polytrope star.

3.1 Considerations on the �(x) Function

For each value of the 
 a di�erent Lane{Emden equation is obtained as well as another solution of �(x) is also
obtained. The initial conditions of the equation(21) are independent of the adiabatic index 
 as can be seem
by the following relations:

for x = 0 ! �(0) = 1 (�(0) = �c)
for x = 0 ! �0(0) = 0 (�(0) = �c)

(22)

As de�ned before when x = 0 implies to r = 0, which means the stellar center, so �c is the density at the
center. Considering equation(15) one can observe that �(x) is a decreasing function, starting from 1 at x = 0,
until it crosses the x axis at a certain zero point for x(
). The smaller the value of 
, the further the zero
crossing point will be from the origin. Now, is ease to discuss the physical meaning of x(
) at that point when
�(x) becomes zero. If one recall the equations(15 and 16) is clear that density and pressure are zero since �(x)
is also zero, or in other words, one have reached the star surface.

Considering values bigger than f = 10, the solution for �(x) will not be possible and no zero point, or no
intersection would happens. This situation shows that the solution is unable to �nd the star surface. The behavior
of the density, pressure is a decreasing function until reach a minimum value and after start an increasing variation
which reveal a physically meaningless solution.



4 Numerical Integration Procedure

The main goal in this section is seek a numerical procedure in order to integrate the equation(21) under the
initial conditions established by the relations given in equation(22). Adopting an iteration algorithm to solve
equation(21) in such way when �(x) becomes negative would show that the intersection will happens in some
where along the x axis. So, is possible to re�ne the solution and determine in accurate sense the star surface or
where the �(x) becomes zero.

Just to remind, some input parameters are chosen as the total mass m, the total radius R, and the polytrope
index f , but it doesn't have to be an integer. Once one have established such parameters four steps can be de�ned
in order to solve by iteration the equation(21):

1. Integrate from x = 0 to x = dx,

2. Integrate from x = dx until �(x) becomes negative,

3. Calculate the exact location where �(x) = 0, and

4. Calculation of the core pressure and density values.

As equation(21) is a second order ordinary di�erential equation is suitable reduce the order by introducing a
new variable, say 
(x). This will reduce the order, but as result, two �rst order ordinary di�erential equations
will have to be solved together. Doing as follow:

�0(x) = 
(x) (23)

the equation(21) is then rewritten as
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Under this situation the initial condition given by relations (22) are now written as

for x = 0 ! �(0) = 1
for x = 0 ! 
(0) = 0

(25)

Now the set of equations given by (23) and (24) they need to be solved by the some numerical scheme. The
�nite di�erence midpoint scheme is adopted, following a two stage numerical scheme as:
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� Second Step
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As it is ease to be seem these discrete equations are coupled, so the �nal solution of �i+1 carries the variation
of 
i and some additional procedure need to be established in order to re�ne the solution for �i+1 = 0 which
implies in having determinated the star surface for a given problem. Other important point which need to be put
in attention is about the singular point for x = 0 as can be noted in the equation(28). This is discussed in the
next subsection.

4.1 The Singular Point Fix Solution

At the beginning of the iterations is need to calculate the solution for x = 0, but by inspection of equation(28)
and equation(31) is clear the singular division operation at this point. In order to get a solution for such problem
one need de�ne a especial procedure for i = 1. Equation(15) is known for x = 0, as de�ned by the initial condition
given by relations (22) and (25). So, one manner of �nding out this solution is seek an analytic function, lets say,
F (x) which represent �(x) near x = 0.

Based on this fact, F (x) could be represented by the following polynomial; F (x) = c0 + c1x + c2x
2 + c3x

3 +
c4x

4 + ::: which will represent �(x) at the vicinity of x = 0 under the following conditions:
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Doing the necessary algebraic calculation in order to determine the polynomial coeÆcients one get
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Then, for i = 1 the numerical procedure is now established as:

x1 = dx (35)

�1 = 1 �
(dx)2

6
+

(dx)4

120(
 � 1)
(36)


1 = �
dx

3
+

(dx)3

30(
 � 1)
(37)

In order to keep the solution as much accurate as possible dx never should be larger than 0:18 since then the
error of the polynomial expansion will increase too much. Once �1 is determinated, the values of the density and
pressure at xi for i = 1 are obtained from:
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which both comes from equations(15 and 16) respectively.



One can de�ne an auxiliary variable which relates the discrete mass. Using the equation(12) and equation(16)
and doing some algebraic manipulations is possible to get

Lm(x) = �x2
 (40)

where L = 1
4�r3

n
�0

which multiplied by the solar mass will normalize L as a function of solar mass. The three

parameters �0; p0, and L will be calculated at the end of the calculations when the exact location of the zero
point of �(x) and the value of 
(x) are known.

4.2 The Re�nement Solution for the Zero Point

The numerical process described in the item 4 need to be followed in a such way that for each step one need
to check the signal change on the �i+1=2 and �i+1 functions. If a signal change is detected the iteration process
is stopped, which is saying that the � function has already intercepted the x axis. At this stage is suitable to
calculate the exact location of the zero point and also the exact value of � using for it the last point where �(x)
was still positive. Considering the �gure 1

Figure 1: Newton's Method

draw the tangent to the curve y = �(x) at a point near a root of �(x) = 0 and use the intercepted x of this
tangent as an approximation to the root. This process is known as Newton's method which is essentially an
iterative process based on the following formula:

xn = xn�1 �
�(xn�1)


(xn�1)
(41)

Relating to the equation(41) xn�1 is the last point (for the last positive value of �) and lets call �n�1 and

n�1 the values of � and 
 calculated at (n � 1). 
n is also calculated since one have reached, with suÆcient
accuracy, the value of xn. Using the Lane{Emden equation at this point is possible to determine 
 function as:
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As was said before, once has been determinated the value of x and 
 the rest of missing parameters can be
calculated from these results and from the initial data chosen at the beginning. Using express the mass and radius
as solar units the density, pressure and mass in the core of the polytrope star are calculated by the following
equations

mean density �m = 1:42M
R3 (

g

cm3
) (43)

core density �0 = ��m x
3
 (

g

cm3
) (44)

core pressure p0 = 9:048 1014M2(
�1)

2R4
 (

dyne

cm2
) (45)

parameter L = �x2

M (46)

parameter rn = R
x (47)

All the ideas discussed until this point are based on the fact that one knows as input data themass, radius and
the polytrope index. The �nal results are the pressure, density and mass which are calculated by equations(43{
47) at the core. However, another situation is; given the core pressure, density and the polytrope index one would
be able to calculate at each point the pressure, density and mass. Such case is unusual since it is easer to have
a general idea on stellar masses and radii rather than on central pressures and densities. Based on this intuitive
fact was decided to adopt the presented approach which was specifying the mass, radius, and polytrope index as
input data.

5 Application

In order to compute the structure of a polytrope star two cases are numerically simulated.

Numerical simulation of Case 1

INITIAL CONDITIONS (Star Model)

f => 3.0

dx => 0.05

M => 2.0

R => 3.0

The polytrope solution for this initial data as shown in �gure 2, �gure 3 and �gure 4 .

FINAL RESULTS for CASE -- 1 --

Central Pressure => 4.3296406828568E+014

Average Density => 1.0518518200627E-001

Central Density => 6.3058269894623E-001

Mass parameter => 1.35641023207190

Distance unit => 8.2100283372169E-001

x-final => 3.65406777757480 exact = 3.654

-x2ome (final) => 2.71282046414380 exact = 2.714

where -x2ome = 
x-�nal2.

Comparing the present results with the exact values of x-�nal and 
 which can be found in [3] one conclude
that these results are indeed good.
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Figure 2: Pressure

Numerical simulation of Case 2

INITIAL CONDITIONS (Star Model)

f => 5.0

dx => 0.10

M => 3.0

R => 4.0

The polytrope solution for this initial data as shown in �gure 5, �gure 6 and �gure 7 .

FINAL RESULTS for CASE -- 2 --

Central Pressure => 1.5742960359148E+015

Average Density => 6.6562497988343E-002

Central Density => 1.56592360552000

Mass parameter => 7.2828979458985E-001

Distance unit => 7.4592888879470E-001

x-final => 5.36244146069120 exact = 5.355

-x2ome (final) => 2.18486938376960 exact = 2.187
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