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Abstract

Following the model proposed by the polytropic gas sphere which model a simple star structure, the heavy stars (M >

M�)1 that constitute the upper main sequence is studied by a proposed composite model consisting of a convective core
and a radiative envelope extending right up to the star surface. In order to understand well the mathematical implications
involving the numerical solution of such model a sequence of steps are easily explained which also contribute to build up a
didactic exposition for a better understanding of the present model.

1 Introduction

The purpose of the present paper is to investigate a more elaborate star interior model as has been done in
the article [1]. So, the present work follow as part II of that article and still keeps the main objective which is
make easy the understanding of the numerical simulation for the two process: the convective core and radiative
envelop, as part of the present star model.

The heavy stars ( M > M�) derive their energy from the CNO2 cycle and, as result, develop convective
core. These stars, in their early main sequence stage, at least, may conform to a composite model consisting of a
convective core and a radiative envelop which extend till to the star surface.

One shall assume that the chemical composition is uniform throughout the model, it can then represent only
the initial state of these main sequence stars, the state in which they just begin to generate energy through
thermonuclear reactions.

This assumptions do not take into account the energy released in the form of neutrinos, which escape from
the star without contributing to the energy balance considered. In the present work will be discussed, from the
proposed model, the numerical simulation procedure which describe the thermonuclear proprieties of the present
star model. In this study the temperature range is considered as given by two energy mechanisms cycles which
are the \pp" and \CNO" cycles.

2 The Physical Characteristics of the Model

As were discussed in [1], here called as part I, the basic equations which describe the polytropic star has
already been presented and as shown are the so called Lane-Emden equations. However, in the present model

�Internal report presented at IPD, 1996.
1
M is the star mass and M� is the solar mass.

2Carbon-Nitrogen-Oxygen, temperature between about 12x106K and 50x106K.
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the pressure in the star interior consists of gas pressure and the radiation pressure, which di�er a little of the
model described in [1]. Also the temperature is so high that the corresponding radiation pressure represents a
important contribution for the total pressure value. Based on these facts, the total pressure is written as

P =
R:�:T

�
+

1

3
:a:T 4 (1)

where

� � = the mean molecular weight and has the same value in the star core as in the envelop as well

� R = the gas constant = 8.314 x107 (erg/mol/K)

� a = the Stefan-Boltzmann constant = 7.56464 x 10�15 (erg/cm3/K4)

� T = temperature in Kelvin (K)

As one can write P = Pg + Pr it is convenient to express the gas pressure (Pg) and radiation pressure (Pr)
in units of the total pressure (P ) by making use of a new parameter called (�) as:

Pg = �P

Pr = (1� �)P

P =
R�T

��

Then

� for M considered low as compared with M� � is close to 1

� for M considered high as compared M� � is close to 0.95

In the star interiors the atoms are almost completely ionized and one can assume, in �rst approximation, that
is dealing with a state of complete ionization. Let shall X be the mass in grams of H (hydrogen) contained
(before ionization) in one gram of the mixture, and Y be the mass in grams of the He (helion) contained (before
ionization) in one gram of the mixture. Finally, let Z = 1�X � Y be the mass of all elements other than H and
He contained in one gram of the mixture. Lets shall apply the galactic abundance normally used in almost all
models as :

X = 0:70! hydrogen

Y = 0:27! helium

Z = 0:03! other elements

The mean molecular weight is given by

� =
1

0:25Y + 1:5X + 0:5
(2)

If in the core only hydrogen were present Y = Z = 0 and X = 1 which implies in � = 0:5 or m = mH=2.
This result is known; which say the equivalent mass of hydrogen plasma is the half of the mass of hydrogen



nucleus. If were present in the core only He � = 1:33. Other situation could be as all component were metals
then � will be � = 2. But in real conditions one can have 0:7 � � � 2.

Based on the fact of the present study is related to the polytropes, the temperature can be computed by the
equation (1). Starting from initial value for T which is given by:

T0 =
�P

R�
(3)

The temperature is calculated by iteration process using the recursive relation

T(i+1) =
�

R�

�
P �

1

3
aT 4

i

�
(4)

So, for given values of �; � and P is possible calculate the temperature by this iterative algorithm.

The energy production, or luminosity, depends essentially on the composition, the temperature T , and the
mass density � of the star mixture at a distance r from de centre. It also can be considered that for temperatures
of the order of 107K [2] (precisely between 4x106 and 50x106K), the only long-term equations possible under the
present star conditions are:

� the pp - chain (4x106 and 25x106K)

� the CNO cycle (12x106 and 50x106K)

The pp chain (proton-proton) and CNO (carbon-nitrogen-oxygen) cycle are two di�erent models of fusion of
protons into �-particles [2].

Following the approximated calculation procedure given in [3] the energy production involving the pp chain
and CNO cycle is written as:

t =

�
T

109

�1=3

P1 = 1 + 0:133t+ 1:09t2 + 0:938t3

P2 = 1 + 0:027t� 0:788t2 � 0:149t3 + 0:261t4 + 0:127t5

Epp = 2:37x104t�2P1 exp(
�3:38

t
)

ECNO = 8:66651x1025t�2P2 exp(
�15:228

t
�

t6

9:5481
)

and the �nal relation for the energy production is

E = �X2Epp + 0:02 �XECNO (5)

Where E is the energy production of 1 gram of star matter, the energy increase in a shell with size dr at
distance r from the stellar centre is given by

dLr = 4�Er2dr (6)

The total energy production of the star (the Luminosity) is the sum of the contributions dLr of all the
subsequent shells throughout the star.



3 The Polytrope Fitting Scheme

The set of equations as de�ned before is already completed, however there are some equations which need be
understood.

3.1 Determination of The Polytrope Index in The Star Core

In general the temperature in the core for stars (M >M�) is proportional to the pressure variations, and one
can write:

dT

dr
= �(�)

�
T

�

�
dP

dr
(7)

where

�(�) =
8� 6�

32� 24� � 3�2

or

dT

dr
=

1

n

�
T

�

�
dP

dr
(8)

so,

n =
1� �(�)

�(�)
(9)

If � = 1 ! n = 1:5 as it should be for a convective index in the absence of radiation pressure. However, in
the present application � will vary from 1 to 0.9, which will cause  vary from 5/33 to 12/10 for 15M� star. The
ratio speci�c heats  is given by  = 1+n

n [1].

In terms of practical numerical procedure, �rst of all one must compute the central gas and radiation pressures
from the central density and temperature. However, � will be put constant for the whole core, being considered
as average value of the core [3]. By this consideration � is de�ned as:

� = 1�
2

3
(1� �c) (10)

where

�c =
Pg;c

Pg;c + Pr;c

3.2 The Boundary Transition Zone

The boundary happens in the present model at the interface when the two polytropes meets, the convective
zone and radiative zone. In this transition zone the polytrope index change from n = 1:5 to n = 3:0, so this zone
marks the boundary of convective core to the radiative shell which involve the convective core. The temperature
relation in the radiative zone is given by

3For a monoatomic gas, such as helium.



dT

dr
= �

�
3�k

4acT 3

�
Lr
4�r2

(11)

where

� k = absorption coeÆcient. In professional models such variable index have a very complicated expression
as can be seen in [2], but for now on will be adopted k = 0:2(1 +X) as stated in [3], which is independent
of density and temperature.

� c = the speed of light = 3x1010(cm/s)

At the boundary zone the equations (7) and (11) should be equal, and as the iterative process goes on the
relation obtained will converge to a value less than one indicating that the boundary has been passed. Once this
has been reached, a interpolation process can be used in order to calculate precisely the transition zone, where
the relation is bigger than one and or less than one. Doing such proceeding the mass of the convective core is
then determined with enough precision.

3.3 Fitting the Convective - Radiative Polytropes

Since the calculation reached the boundary layer4, the physical proprieties are known and is need to calculate
the initial values and conditions for the radiative zone. However, the polytrope can not be initiated at x = 0
since the boundary is not any more the star centre. So, is need choose �ve initial parameters such as x; F;H; Pc

5

and �c in order to start the calculation in the radiative shell. Is important to say that all these parameters can
not be chosen independently from each other and the following numerical procedure is used6:

Pb = PcF
(n+1) (12)

�b = �cF
n (13)

Mr;b = �4�r3n�cx
2H (14)

rn =

s
Pc

�G�2c
(15)

rb = rnx (16)

There are four equations (12) (13), (14) and (16) which one know the variables (Pb; �b;Mr;b and rb) and
�ve parameters (x; F;H; Pc and �c) which need be determined. The adopted scheme allow to choose freely F
(Lane{Emden function). The value of F can be choose as indicated below [3]:

De�ning

w = log(M)

and

logTc = 7:23937+ 0:274354w� 0:0401771w2 (17)

log �c = 2:27899� 1:658707w+ 0:29329095w2 (18)

4Interface between the convective and radiative zone
5See [1] for the de�nition of x, F and H.
6G is the gravitational constant.



For

M < 4 ! F = 9

4 < M < 10 ! F = 19:58791� 17:58794w (19)

M > 10 ! F = 2

4 Numerical Procedure

The full procedure designed to solve the polytrope star has already been given in [1], although the algorithm
is basically the same, some considerations are need to be commented towards the total numerical solution of the
presented convective{radiative model.

In the convective zone the spatial step size is taken equal to dx = 0:1 for all simulations. Is known that, out
side of the convective zone to the radiative shell the density decreases towards zero (as the boundary condition
specify [1]) at the surface. The spatial step size used to start up the numerical calculation in the radiative shell
is taken equal to dx = 0:3 and increased to value of 10% in each iteration.

The initial calculation can be started as is done in [3] and is shown as follow:

� compute the initial central temperature by eq(17)

� compute the central density by eq (18)

� compute the central pressure, the �rst term of eq(1) for the gas pressure and radiative pressure given by
the second term of eq(1)

� compute the total pressure by eq(1)

� compute the value of � for the convective core eq(1) and eq(10)

� compute the �(�) as de�ned by eq(7)

� compute the core polytrope index given by eq(9)

� compute the distance parameter of the convective core using the relation (20) given in [1]

� compute the initial conditions of the Lane-Emden equation for x = 0;F = 1 and 
 = 0 [1]

� compute the value of F related to the outer boundary of the polytrope using one relation given by eq(19)

� compute the central nuclear energy production given by relation (5) from Tc (17) e �c (18)

At the centre all values are set as: M = r = L = 0. The �rst step from this initial conditions is calculated by
x=dx and should follow the same procedure already described in [1].

5 Results

-----------------------------------------------------

Initial Values Used in This Calculations

-----------------------------------------------------

M initial (in solar mass) = 5.0

G (cm3/g/s2) = 6.673000E-008

a (erg/cm3/K4) = 7.564640E-015

R (erg/mol/K) = 83140000.0000000

X (hydrogen) = 7.000000E-001

Y (helium) = 2.700000E-001

Z (all other elements) = 3.000000E-002



mi = 6.182380E-001

Solar Mass (g) = 2.000000E+033

Solar Radius (cm) = 6.960000E+010

Solar Luminosity(erg/s) = 3.830000E+033

Solar Density (g/cm3) = 1.4200000

Speed of light (cm/s) = 3.000000E+010

Central value of Temperature and Density

Temperature (log(T)) = 7.4101650

Density (log(Ro)) = 1.2628940

----------------------------------------------------------------------------------------------------------

i M log(P) log(T) log(R0) r/r0 log(E) log(L) x f h

----------------------------------------------------------------------------------------------------------

0 .00000 16.80921 7.41017 1.26289 .00000 3.97381 .00000 .00000 1.00000 .00000

1 .00055 16.80734 7.40946 1.26175 .03494 3.96103 .43348 .10000 .99833 -.03328

2 .00439 16.80172 7.40733 1.25831 .06989 3.92261 1.29862 .20000 .99335 -.06626

3 .01469 16.79235 7.40379 1.25257 .10483 3.85840 1.79127 .30000 .98509 -.09861

4 .03444 16.77923 7.39882 1.24453 .13977 3.76819 2.11257 .40000 .97363 -.13002

5 .06632 16.76235 7.39243 1.23418 .17471 3.65167 2.33449 .50000 .95909 -.16023

6 .11263 16.74170 7.38461 1.22153 .20966 3.50844 2.49031 .60000 .94159 -.18896

7 .17523 16.71727 7.37534 1.20655 .24460 3.33804 2.59896 .70000 .92130 -.21600

8 .25550 16.68903 7.36463 1.18925 .27954 3.14001 2.67295 .80000 .89839 -.24113

9 .35427 16.65697 7.35246 1.16960 .31448 2.91391 2.72152 .90000 .87307 -.26417

10 .47184 16.62105 7.33882 1.14760 .34943 2.65956 2.75189 1.00000 .84556 -.28499

11 .60797 16.58124 7.32369 1.12320 .38437 2.37736 2.76981 1.10000 .81607 -.30348

12 .76190 16.53750 7.30704 1.09640 .41931 2.06908 2.77975 1.20000 .78486 -.31957

13 .93236 16.48977 7.28887 1.06715 .45425 1.73938 2.78492 1.30000 .75216 -.33322

Boundary of convective zone is reached

The Fitting Parameters

New Center Press. = 1.090910E+013

New Center Densi. = 3.007211E-002

xfit = 1.317993E-001

ffit = 7.2944970

hfit = -20.5793100

new rn = 2.398806E+011

Radiative zone

----------------------------------------------------------------------------------------------------------

i M log(P) log(T) log(R0) r/r0 log(E) log(L) x f h

----------------------------------------------------------------------------------------------------------

14 1.69178 16.26539 7.23277 .89887 .59212 1.73938 2.78492 .17180 6.41064 -21.97721

15 2.56082 15.97900 7.16117 .68407 .74377 1.73938 2.78492 .21580 5.43628 -21.08382

16 3.40519 15.63377 7.07486 .42515 .91058 1.73938 2.78492 .26420 4.45652 -18.70462

17 4.11995 15.23180 6.97437 .12367 1.09407 1.73938 2.78492 .31744 3.53592 -15.67621

18 4.65569 14.77057 6.85907 -.22225 1.29592 1.73938 2.78492 .37600 2.71142 -12.62617

19 5.01345 14.23846 6.72604 -.62134 1.51795 1.73938 2.78492 .44042 1.99603 -9.90984

20 5.22581 13.60586 6.56789 -1.09578 1.76218 1.73938 2.78492 .51129 1.38681 -7.66472

21 5.33833 12.80054 6.36656 -1.69978 2.03083 1.73938 2.78492 .58923 .87234 -5.89521

22 5.39619 11.60361 6.06732 -2.59747 2.32635 1.73938 2.78492 .67498 .43798 -4.54128

23 5.43447 8.39657 5.26557 -5.00275 2.65143 1.73938 2.78492 .76930 .06913 -3.52080

Write Surface data

Mass (in Mo) = 5.4347320

Radius (Ro) = 2.7191030

Luminosity (log(l/lo)) = 2.7849210

Effect Temp. (log) = 4.0000000

This results agree very well as compared with Menzel's [4] results.
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