
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Robert Lafore

Data Structures
and Algorithms

in24Hours

Teach Yourself

00 72316331 FM 10/31/02 6:54 AM Page i

Sams Teach Yourself Data Structures and
Algorithms in 24 Hours
Copyright © 1999 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-31633-1

Library of Congress Catalog Card Number: 98-83221

Printed in the United States of America

First Printing: May 1999

01 00 99 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability or
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD-
ROM or programs accompanying it.

EXECUTIVE EDITOR

Brian Gill

DEVELOPMENT EDITOR

Jeff Durham

MANAGING EDITOR

Jodi Jensen

PROJECT EDITOR

Tonya Simpson

COPY EDITOR

Mike Henry

INDEXER

Larry Sweazy

PROOFREADERS

Mona Brown
Jill Mazurczyk

TECHNICAL EDITOR

Richard Wright

SOFTWARE DEVELOPMENT

SPECIALIST

Dan Scherf

INTERIOR DESIGN

Gary Adair

COVER DESIGN

Aren Howell

COPY WRITER

Eric Borgert

LAYOUT TECHNICIANS

Brian Borders
Susan Geiselman

00 72316331 FM 10/31/02 6:54 AM Page ii

Contents at a Glance
Introduction 1

PART I INTRODUCING DATA STRUCTURES AND ALGORITHMS 9
Hour 1 Overview of Data Structures and Algorithms 11

2 Arrays 31

3 Ordered Arrays 51

4 The Bubble Sort 75

5 The Insertion Sort 89

PART II ABSTRACT DATA TYPES 105
Hour 6 Stacks 107

7 Queues and Priority Queues 125

8 Linked Lists 145

9 Abstract Data Types 165

10 Specialized Lists 183

PART III RECURSION AND QUICKSORT 205
Hour 11 Recursion 207

12 Applied Recursion 233

13 Quicksort 257

14 Improving Quicksort 279

PART IV TREES 295
Hour 15 Binary Trees 297

16 Traversing Binary Trees 317

17 Red-Black Trees 337

18 Red-Black Tree Insertions 359

19 2-3-4 Trees 379

20 Implementing 2-3-4 Trees 395

00 72316331 FM 10/31/02 6:54 AM Page iii

PART V HASH TABLES 415
Hour 21 Hash Tables 417

22 Quadratic Probing 441

23 Separate Chaining 457

24 When to Use What 475

PART VI APPENDIXES 487
Appendix A Quiz Answers 489

B How to Run the Workshop Applets and Sample Programs 505

C Further Reading 509

Index 513

00 72316331 FM 10/31/02 6:54 AM Page iv

Table of Contents
INTRODUCTION 1

What This Book Is About ..1
What’s Different About This Book..2

Easy to Understand ..2
Workshop Applets ..2
C++ Sample Code ..3

Who This Book Is For ..3
What You Need to Know Before You Read This Book ..4
The Software You Need to Use This Book..4
How This Book Is Organized ..4
Enjoy Yourself! ..6
Conventions Used in This Book ..6

PART I INTRODUCING DATA STRUCTURES AND ALGORITHMS 9

HOUR 1 OVERVIEW OF DATA STRUCTURES AND ALGORITHMS 11

Some Uses for Data Structures and Algorithms..12
Real-World Data Storage..12
Programmer’s Tools..14
Real-World Modeling ..14

Overview of Data Structures ..14
Overview of Algorithms ..15
Some Initial Definitions ..16

Datafile ..16
Record ..16
Field ..16
Key..16
Search Key..17

A Quick Introduction to Object-Oriented Programming18
Problems with Procedural Languages ..18
Objects in a Nutshell ..19
A Runnable Object-Oriented Program ..21
Inheritance and Polymorphism ..24

New C++ Features ..25
The string Class..25
The vector Class..26

Software Engineering ..26
Summary ..27

00 72316331 FM 10/31/02 6:54 AM Page v

Q&A ..28
Workshop ..28

Quiz ..28
Exercise ..29

HOUR 2 ARRAYS 31

The Array Workshop Applet ..31
Deletion ..34
The Duplicates Problem ..35
Slow Array Algorithms ..37

An Array Example ..37
Inserting a New Item ..39
Searching for an Item ..39
Deleting an Item ..39
Displaying the Array Contents ..40
Program Organization ..40

Dividing a Program into Classes ..40
The LowArray Class and main() ..42

Class Interfaces ..43
Making main()’s Job Easier ..43
Who’s Responsible for What?..44
The highArray.cpp Example ..44
The User’s Life Made Easier..48
Abstraction..48

Summary ..48
Q&A ..49
Workshop ..49

Quiz ..49
Exercise ..50

HOUR 3 ORDERED ARRAYS 51

The Ordered Workshop Applet ..51
Demonstrating the Linear Search ..52
Demonstrating the Binary Search ..53

C++ Code for an Ordered Array..55
Conducting a Binary Search with the find() Member Function56
Investigating the OrdArray Class..57
The Advantages of Using Ordered Arrays ..60

Logarithms ..61
An Equation Relating Range Size and Number of Steps62
The Opposite of Raising Two to a Power ..63

Storing Objects ..64

vi Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page vi

Implementing the Person Class..64
Examining the classDataArray.cpp Program ..65

Big O Notation ..69
Inserting into an Unordered Array: Constant ..69
Linear Searching: Proportional to N ..69
Binary Searching: Proportional to log(N) ..70
Eliminating the Constant K ..70

Why Not Use Arrays for Everything? ..72
Summary ..72
Q&A ..72
Workshop ..73

Quiz ..73
Exercise ..73

HOUR 4 THE BUBBLE SORT 75

Sorting..75
Inventing Your Own Sorting Algorithm ..76
Bubble-Sorting the Baseball Players ..77
The bubbleSort Workshop Applet..79

Sorting at Full Speed with the Run Button ..80
Starting a New Sort with the New Button..80
Single-Stepping with the Step Button ..81
Changing the Array Size with the Size Button ..81
Fixing the Picture with the Draw Button ..82

Implementing C++ Code for a Bubble Sort ..83
Invariants..86
Efficiency of the Bubble Sort ..86
Summary ..87
Q&A ..87
Workshop ..88

Quiz ..88
Exercise ..88

HOUR 5 THE INSERTION SORT 89

Insertion Sort on the Baseball Players ..90
Demonstrating Partial Sorting ..90
Inserting the Marked Player in the Appropriate Location90

The insertSort Workshop Applet..92
Implementing the Insertion Sort in C++..94

Invariants in the Insertion Sort ..97
Efficiency of the Insertion Sort..97
Sorting Objects ..98

Implementing C++ Code to Sort Objects ..98

Contents vii

00 72316331 FM 10/31/02 6:54 AM Page vii

Another Feature of Sorting Algorithms: Stability ..101
Comparing the Simple Sorts..102
Summary ..102
Q&A ..103
Workshop ..103

Quiz ..103
Exercise ..103

PART II ABSTRACT DATA TYPES 105

HOUR 6 STACKS 107

A Different Way to Think About Data Structure ..107
Uses for Stacks and Queues: Programmer’s Tools ..108
Stacks and Queues: Restricted Access to Data ..108
Stacks and Queues: More Abstract ..108

Understanding Stacks ..109
Two Real-World Stack Analogies ..109
The Stack Workshop Applet ..111

Implementing a Stack in C++..113
StackX Class Member Functions..114
Error Handling..116

Stack Example 1: Reversing a Word ..116
Stack Example 2: Delimiter Matching ..118

Opening Delimiters on the Stack ..119
C++ Code for brackets.cpp ..120
Using the Stack as a Conceptual Aid ..123

Efficiency of Stacks ..123
Summary ..123
Q&A ..124
Workshop ..124

Quiz ..124
Exercise ..124

HOUR 7 QUEUES AND PRIORITY QUEUES 125

Queues..125
The Queue Workshop Applet ..126
A Circular Queue..130
C++ Code for a Queue ..132
Efficiency of Queues ..137

Priority Queues ..137
The PriorityQ Workshop Applet ..138

viii Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page viii

C++ Code for a Priority Queue ..141
Efficiency of Priority Queues ..143

Summary ..143
Q&A ..144
Workshop ..144

Quiz ..144
Exercise ..144

HOUR 8 LINKED LISTS 145

Understanding Links..146
Structure Defined by Relationship, Not Position ..147

The LinkList Workshop Applet ..147
Inserting a New Link..147
Using the Find Button ..148
Using the Del Button..149
Creating Unsorted and Sorted Lists ..149

Implementing a Simple Linked List ..149
The Link Class..150
The LinkList Class ..151
The insertFirst() Member Function ..151
The removeFirst() Member Function ..153
The displayList() Member Function ..153
The linkList.cpp Program..155

Finding and Removing Specified Links ..157
The find() Member Function..160
The remove() Member Function..161
Avoiding Memory Leaks..162

The Efficiency of Linked Lists ..162
Summary ..163
Q&A ..163
Workshop ..164

Quiz ..164
Exercise ..164

HOUR 9 ABSTRACT DATA TYPES 165

A Stack Implemented By a Linked List ..166
Implementing push() and pop() ..166
Implementing a Stack Based on a Linked List ..167
Focusing on Class Relationships..170

Double-Ended Lists ..170
Accessing Both Ends of a List ..170
Implementing a Double-Ended List ..171
Pointers to Both Ends of the List ..174
Insertion and Deletion Routines ..174

Contents ix

00 72316331 FM 10/31/02 6:54 AM Page ix

x Sams Teach Yourself Data Structures and Algorithms in 24 Hours

Implementing a Queue Using a Linked List ..175
Data Types and Abstraction ..178

What We Mean by Data Types ..178
What We Mean by Abstraction ..179
ADT Lists ..180

Using ADTs as a Design Tool ..180
Abstract is a Relative Term..181
Summary ..181
Q&A ..181
Workshop ..182

Quiz ..182
Exercise ..182

HOUR 10 SPECIALIZED LISTS 183

Sorted Lists ..183
The LinkList Workshop Applet ..184
Implementing an Insertion Function in C++..185
Implementing a Sorted List ..186
Efficiency of Sorted Linked Lists ..189

List Insertion Sort ..189
Doubly Linked Lists ..192

The Problem with Singly Linked Lists ..192
Implementing a Doubly Linked List ..193
C++ Code for a Doubly Linked List ..197

Summary ..202
Q&A ..203
Workshop ..203

Quiz ..203
Exercise ..203

PART III RECURSION AND QUICKSORT 205

HOUR 11 RECURSION 207

Demonstrating Recursion with Triangular Numbers ..208
Finding the nth Term Using a Loop ..208
Finding the nth Term Using Recursion ..209
The triangle.cpp Program..212
What the triangle() Function Is Really Doing..213

Characteristics of Recursive Functions ..215
Is Recursion Efficient? ..215
Mathematical Induction..216

00 72316331 FM 10/31/02 6:54 AM Page x

Contents xi

Demonstrating Recursion with Anagrams ..216
Conceptualizing the Anagram Process ..217
Implementing Anagramming in C++ ..220

Demonstrating Recursion in a Binary Search ..223
Using Recursion to Replace the Loop..223
Understanding Divide-and-Conquer Algorithms ..228

Recursion Versus Stacks ..228
Summary ..230
Q&A ..231
Workshop ..231

Quiz ..231
Exercise ..232

HOUR 12 APPLIED RECURSION 233

The Towers of Hanoi ..233
The Towers Workshop Applet ..234
Moving Subtrees ..235
The Recursive Algorithm ..236
Implementing the Towers of Hanoi in C++ ..238

Mergesort ..240
Merging Two Sorted Arrays ..240
Sorting by Merging ..243
The mergeSort Workshop Applet ..246
Implementing Mergesort in C++..247
Efficiency of the Mergesort ..251

Summary ..254
Q&A ..255
Workshop ..255

Quiz ..255
Exercise ..256

HOUR 13 QUICKSORT 257

Partitioning ..258
The Partition Workshop Applet ..258
The partition.cpp Program..260
The Partition Algorithm..262
Efficiency of the Partition Algorithm ..264

Basic Quicksort..265
The Quicksort Algorithm..265
Choosing a Pivot Value ..266
The quickSort1 Workshop Applet ..272

Summary ..277

00 72316331 FM 10/31/02 6:54 AM Page xi

Q&A ..278
Workshop ..278

Quiz ..278
Exercise ..278

HOUR 14 IMPROVING QUICKSORT 279

Problems with Inversely Sorted Data ..279
Median-of-Three Partitioning ..280
Implementing Median-of-Three Partitioning in C++282
The quickSort2 Workshop Applet ..286

Handling Small Partitions..286
Using an Insertion Sort for Small Partitions ..286
Insertion Sort Following Quicksort ..290

Efficiency of Quicksort..290
Summary ..293
Q&A ..294
Workshop ..294

Quiz ..294
Exercise ..294

PART IV TREES 295

HOUR 15 BINARY TREES 297

Why Use Binary Trees? ..297
Slow Insertion in an Ordered Array ..298
Slow Searching in a Linked List ..298
Trees to the Rescue ..299

What Is a Tree? ..299
Tree Terminology ..300
A Tree Analogy in Your Computer ..303

Basic Binary Tree Operations..304
The Tree Workshop Applet ..304
Representing the Tree in C++ Code ..306

Finding a Node ..308
Using the Workshop Applet to Find a Node ..309
C++ Code for Finding a Node ..310
Efficiency of the Find Operation..311

Inserting a Node ..311
Using the Workshop Applet to Insert a Node ..311
C++ Code for Inserting a Node..312

Deleting a Node ..314
Summary ..314

xii Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page xii

Q&A ..315
Workshop ..315

Quiz ..315
Exercise ..316

HOUR 16 TRAVERSING BINARY TREES 317

Traversing the Tree ..317
Inorder Traversal ..318
C++ Code for Traversing..318
Traversing a 3-Node Tree ..319
Traversing with the Workshop Applet..320
Preorder and Postorder Traversals..322

Finding Maximum and Minimum Values..324
The Efficiency of Binary Trees..326
Duplicate Keys ..327
Implementing a Binary Search Tree in C++..328
Summary ..335
Q&A ..335
Workshop ..335

Quiz ..336
Exercise ..336

HOUR 17 RED-BLACK TREES 337

Our Approach to the Discussion..338
Balanced and Unbalanced Trees..338

Performance Degenerates to O(N) ..339
Balanced Trees to the Rescue ..340
Red-Black Tree Characteristics ..341
The Actions ..342

Using the RBTree Workshop Applet ..343
Clicking on a Node ..343
The Start Button ..343
The Ins Button ..344
The Del Button ..344
The Flip Button ..344
The RoL Button..344
The RoR Button..345
The R/B Button ..345
Text Messages ..345
Where’s the Find Button? ..345

Experimenting..345
Experiment 1: Simple Insertions ..345
Experiment 2: Rotations ..347

Contents xiii

00 72316331 FM 10/31/02 6:54 AM Page xiii

Experiment 3: Color Flips ..348
Experiment 4: An Unbalanced Tree ..349
Experimenting on Your Own..350
The Red-Black Rules and Balanced Trees ..350
Null Children ..350

Rotations ..351
Simple Rotations ..352
The Weird Crossover Node ..352
Subtrees on the Move ..354
Human Beings Versus Computers ..355

Summary ..356
Q&A ..356
Workshop ..357

Quiz ..357
Exercise ..357

HOUR 18 RED-BLACK TREE INSERTIONS 359

Inserting a New Node ..360
Preview of Our Approach ..360
Color Flips on the Way Down..361
Rotations After the Node Is Inserted..363
Rotations on the Way Down ..370

Deletion..373
Efficiency of Red-Black Trees ..374
Implementing the Insertion Process ..374
Other Balanced Trees ..375

AVL Trees ..375
Multiway Trees ..375

Summary ..376
Q&A ..376
Workshop ..376

Quiz ..377
Exercise ..377

HOUR 19 2-3-4 TREES 379

Introduction to 2-3-4 Trees ..379
What’s in a Name? ..380
2-3-4 Tree Organization ..381
Searching for a Data Item ..383
Inserting a New Data Item ..383
Node Splits ..384
Splitting the Root..385
Splitting Nodes on the Way Down ..386

xiv Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page xiv

The Tree234 Workshop Applet ..387
The Fill Button ..388
The Find Button..388
The Ins Button ..389
The Zoom Button ..389
Viewing Different Nodes..390
Experimenting on Your Own..392

Summary ..392
Q&A ..393
Workshop ..393

Quiz ..393
Exercise ..394

HOUR 20 IMPLEMENTING 2-3-4 TREES 395

Implementing a 2-3-4 Tree in C++..395
The DataItem Class ..396
The Node Class..396
The Tree234 Class ..396
The main() Function ..398
Listing for tree234.cpp ..398

2-3-4 Trees and Red-Black Trees ..405
Transformation from 2-3-4 to Red-Black ..406
Operational Equivalence ..406

Efficiency of 2-3-4 Trees ..409
Speed ..410
Storage Requirements ..411
B-Trees and External Storage ..412

Summary ..412
Q&A ..413
Workshop ..413

Quiz ..413
Exercise ..414

PART V HASH TABLES 415

HOUR 21 HASH TABLES 417

Introduction to Hashing ..417
Employee Numbers as Keys ..418
A Dictionary ..420
Hashing ..423
Collisions ..426

Contents xv

00 72316331 FM 10/31/02 6:54 AM Page xv

Linear Probing ..427
The Hash Workshop Applet..427
Duplicates Allowed? ..432
Clustering..432

C++ Code for a Linear Probe Hash Table ..432
Classes in hash.cpp ..436
The find() Member Function..436
The insert() Member Function..437
The remove() Member Function..437
The main() Routine..437

Summary ..438
Q&A ..439
Workshop ..439

Quiz ..439
Exercise ..439

HOUR 22 QUADRATIC PROBING 441

Quadratic Probing ..442
The Step Is the Square of the Step Number ..442
The HashDouble Applet with Quadratic Probes ..442
The Problem with Quadratic Probes ..444

Double Hashing ..444
The HashDouble Applet with Double Hashing..445
C++ Code for Double Hashing ..446
Make the Table Size a Prime Number..451

Efficiency of Open Addressing..451
Linear Probing ..452
Quadratic Probing and Double Hashing ..452
Expanding the Array ..454

Summary ..455
Q&A ..455
Workshop ..456

Quiz ..456
Exercise ..456

HOUR 23 SEPARATE CHAINING 457

The HashChain Workshop Applet ..458
Insertion ..459
Load Factors ..460
Duplicates ..460
Deletion ..460
Table Size ..461
Buckets ..461

xvi Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page xvi

C++ Code for Separate Chaining ..461
Efficiency of Separate Chaining ..466

Searching ..467
Insertion ..467

Open Addressing Versus Separate Chaining..468
Hash Functions ..469

Quick Computation ..469
Random Keys ..469
Non-Random Keys ..469
Hashing Strings ..471

Summary ..473
Q&A ..474
Workshop ..474

Quiz ..474
Exercise ..474

HOUR 24 WHEN TO USE WHAT 475

General-Purpose Data Structures ..476
Speed and Algorithms ..477
Libraries..478
Arrays ..478
Linked Lists ..478
Binary Search Trees..479
Balanced Trees..479
Hash Tables ..479
Comparing the General-Purpose Storage Structures......................................480

Special-Purpose Data Structures..481
Stack ..481
Queue..482
Priority Queue ..482
Comparison of Special-Purpose Structures..483

Sorting..483
Onward ..484

PART VI APPENDIXES 487

APPENDIX A QUIZ ANSWERS 489

Hour 1, “Overview of Data Structures and Algorithms”489
Hour 2, “Arrays” ..490
Hour 3, “Ordered Arrays”..490
Hour 4, “The Bubble Sort” ..491
Hour 5, “The Insertion Sort” ..492

Contents xvii

00 72316331 FM 10/31/02 6:54 AM Page xvii

Hour 6, “Stacks” ..492
Hour 7, “Queues and Priority Queues” ..493
Hour 8, “Linked Lists” ..494
Hour 9, “Abstract Data Types” ..494
Hour 10, “Specialized Lists” ..495
Hour 11, “Recursion” ..496
Hour 12, “Applied Recursion” ..496
Hour 13, “Quicksort” ..497
Hour 14, “Improving Quicksort” ..498
Hour 15, “Binary Trees”..498
Hour 16, “Traversing Binary Trees”..499
Hour 17, “Red-Black Trees”..500
Hour 18, “Red-Black Tree Insertions” ..500
Hour 19, “2-3-4 Trees” ..501
Hour 20, “Implementing 2-3-4 Trees” ..502
Hour 21, “Hash Tables” ..503
Hour 22, “Quadratic Probing” ..503
Hour 23, “Separate Chaining” ..504

APPENDIX B HOW TO RUN THE WORKSHOP APPLETS AND SAMPLE PROGRAMS 505

The Workshop Applets ..506
Opening the Workshop Applets..506
Operating the Workshop Applets..506
Multiple Class Files..507

The Sample Programs..507
Running the Sample Programs ..508
Compiling the Sample Programs..508
Terminating the Sample Programs ..508

APPENDIX C FURTHER READING 509

Data Structures and Algorithms ..509
Object-Oriented Programming Languages ..510
Object-Oriented Design and Software Engineering ..511
Programming Style ..512

INDEX 513

xviii Sams Teach Yourself Data Structures and Algorithms in 24 Hours

00 72316331 FM 10/31/02 6:54 AM Page xviii

About the Author
Robert Lafore has degrees in Electrical Engineering and Mathematics, has worked as a
systems analyst for the Lawrence Berkeley Laboratory, founded his own software com-
pany, and is a best-selling writer in the field of computer programming. Some of his cur-
rent titles are C++ Interactive Course, Object-Oriented Programming in C++, and Data
Structures and Algorithms in Java by all Waite Group Press. Earlier best-selling titles
include Assembly Language Primer for the IBM PC and (back at the beginning of the
computer revolution) Soul of CP/M.

00 72316331 FM 10/31/02 6:54 AM Page xix

Dedication
This book is dedicated to Laurie Cameron, a friend since the Paleolithic era,

and our English teacher Mrs. Mathews. Rule 22! Semicolons separate independent clauses!

Acknowledgments
My primary thanks go to my executive editor at Sams Publishing, Brian Gill, who con-
ceived this book idea and ably shepherded it to completion. My development editor, Jeff
Durham, performed his usual masterful job of expunging inconsistencies, lacunae, and
downright blunders while readying the manuscript for production. Tonya Simpson, the
project editor, did a masterful job of making sure that everyone else's work fit together
into a coherent whole. Mike Henry handled the copy editing very professionally, ensur-
ing that may was always might. Richard Wright, the tech editor, went through everything
with a fine-tooth comb and caught a few whoppers that one else could have. Dan Scherf
put the CD together in his usual competent way. My thanks to you all.

00 72316331 FM 10/31/02 6:54 AM Page xx

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax,
email, or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770

Email: bjones@mcp.com

Mail: Bradley L. Jones
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 72316331 FM 10/31/02 6:54 AM Page xxi

00 72316331 FM 10/31/02 6:54 AM Page xxii

Introduction
This introduction tells you briefly

● What this book is about

● Why it’s different

● Who might want to read it

● What you need to know before you read it

● The software and equipment you need to use it

● How this book is organized

What This Book Is About
This book is about data structures and algorithms as used in computer programming.
Data structures are ways in which data is arranged in your computer’s memory (or stored
on disk). Algorithms are the procedures a software program uses to manipulate the data
in these structures.

Almost every computer program, even a simple one, uses data structures and algorithms.
For example, consider a program that prints address labels. The program might use an
array containing the addresses to be printed, and a simple for loop to step through the
array, printing each address.

The array in this example is a data structure, and the for loop, used for sequential access
to the array, executes a simple algorithm. For uncomplicated programs with small
amounts of data, such a simple approach might be all you need. However, for programs
that handle even moderately large amounts of data, or which solve problems that are
slightly out of the ordinary, more sophisticated techniques are necessary. Simply know-
ing the syntax of a computer language such as C++ isn’t enough.

This book is about what you need to know after you’ve learned a programming lan-
guage. The material we cover here is typically taught in colleges and universities as a
second-year course in computer science, after a student has mastered the fundamentals of
programming.

01 72316331 Intro 10/31/02 6:54 AM Page 1

2 Sams Teach Yourself Data Structures and Algorithms in 24 Hours

What’s Different About This Book
There are dozens of books on data structures and algorithms. What’s different about this
one? Three things:

● Our primary goal in writing this book is to make the topics we cover easy to under-
stand.

● Demonstration programs called Workshop applets bring to life the topics we cover,
showing you step by step, with “moving pictures,” how data structures and algo-
rithms work.

● The sample code is written as clearly and concisely as possible, using C++.

Let’s look at these features in more detail.

Easy to Understand
Typical computer science textbooks are full of theory, mathematical formulas, and
abstruse examples of computer code. This book, on the other hand, concentrates on sim-
ple explanations of techniques that can be applied to real-world problems. We avoid
complex proofs and heavy math. There are lots of figures to augment the text.

Many books on data structures and algorithms include considerable material on software
engineering. Software engineering is a body of study concerned with designing and
implementing large and complex software projects.

However, it’s our belief that data structures and algorithms are complicated enough with-
out involving this additional discipline, so we have deliberately de-emphasized software
engineering in this book. (We’ll discuss the relationship of data structures and algorithms
to software engineering in Hour 1, “Overview of Data Structures and Alogorithms.”)

Of course we use an object-oriented approach, and we discuss various aspects of object-
oriented design as we go along, including a mini-tutorial on OOP in Hour 1. Our primary
emphasis, however, is on the data structures and algorithms themselves.

Workshop Applets
The CD-ROM that accompanies this book includes demonstration programs, in the form
of Java applets, that cover the topics we discuss. These applets, which we call Workshop
applets, will run on most computer systems, using a Web browser. A Web browser for
Microsoft Windows systems is included with the CD-ROM that accompanies this book.
(See the readme file on the CD-ROM for more details on software compatibility.)

01 72316331 Intro 10/31/02 6:54 AM Page 2

The Workshop applets create graphic images that show you in “slow motion” how an
algorithm works.

For example, in one Workshop applet, each time you push a button, a bar chart shows
you one step in the process of sorting the bars into ascending order. The values of vari-
ables used in the sorting algorithm are also shown, so you can see exactly how the com-
puter code works when executing the algorithm. Text displayed in the chart explains
what’s happening.

Another applet models a binary tree. Arrows move up and down the tree, so you can fol-
low the steps involved in inserting or deleting a node from the tree. There is at least one
Workshop applet for each of the major topics in the book.

These Workshop applets make it far more obvious what a data structure really looks like,
or what an algorithm is supposed to do, than a text description ever could. Of course, we
provide a text description as well. The combination of Workshop applets, clear text, and
illustrations should make things easy.

These Workshop applets are standalone graphics-based programs. You can use them as a
learning tool that augments the material in the book. (Note that they’re not the same as
the C++ sample code found in the text of the book, which we’ll discuss next.)

C++ Sample Code
C++ is the programming language most often used today for major software projects. Its
predecessor, C, combined speed and versatility, making it the first higher-level language
that could be used for systems programming. C++ retains these advantages and adds the
capability for object-oriented programming (OOP).

OOP offers compelling advantages over the old-fashioned procedural approach, and is
quickly supplanting it for serious program development. Don’t be alarmed if you aren’t
familiar with OOP. It’s not really that hard to understand. We’ll explain the basics of
OOP in Hour 1.

Who This Book Is For
This book can be used as a text in a data structures and algorithms course, typically
taught in the second year of a computer science curriculum. However, it is also designed
for professional programmers and for anyone else who needs to take the next step up
from merely knowing a programming language. Because it’s easy to understand, it is also
appropriate as a supplemental text to a more formal course.

Introduction 3

01 72316331 Intro 10/31/02 6:54 AM Page 3

What You Need to Know Before You Read
This Book

The only prerequisite for using this book is a knowledge of some programming lan-
guage. Although the sample code is written in C++, you don’t really need to know C++
to follow what’s happening. The text and Workshop applets will give you the big picture.

If you know C++, you can also follow the coding details in the sample programs. C++ is
not hard to understand, and we’ve tried to keep the syntax as general as possible, avoid-
ing dense or obscure usages.

The Software You Need to Use This Book
There are two kinds of software associated with this book: Workshop applets and sample
programs.

To run the Workshop applets you need a Web browser or an applet viewer utility. The
CD-ROM that accompanies this book includes a Web browser that will work in a
Microsoft Windows environment. If you’re not running Windows, the browser on your
system will probably work just as well.

Executable versions of the sample programs are provided on the CD-ROM in the form of
.EXE files. To execute these files you can use the MS-DOS box built into Windows.

Source code for the sample programs is provided on the CD-ROM in the form of .CPP
files. If you have a C++ compiler, you can compile the source code into an executable
program. This allows you to modify the source code and experiment with it. Many manu-
facturers, including Microsoft and Borland, supply excellent C++ compilers.

Appendix B provides details on how to run the Workshop applets and sample programs.
Also, see the readme file on the included CD-ROM for details on supported platforms
and equipment requirements.

How This Book Is Organized
This section is intended for teachers and others who want a quick overview of the con-
tents of the book. It assumes you’re already familiar with the topics and terms involved
in a study of data structures and algorithms.

The first three hours are intended to ease the reader into data structures and algorithms as
painlessly as possible.

4 Sams Teach Yourself Data Structures and Algorithms in 24 Hours

01 72316331 Intro 10/31/02 6:54 AM Page 4

Hour 1 presents an overview of the topics to be discussed and introduces a small number
of terms that will be needed later on. For readers unfamiliar with object-oriented pro-
gramming, it summarizes those aspects of this discipline that will be needed in the bal-
ance of the book.

Hour 2, “Arrays,” and Hour 3, “Ordered Arrays,” focus on arrays. However, there are two
subtexts: the use of classes to encapsulate data storage structures, and the class interface.
Searching, insertion, and deletion in arrays and ordered arrays are covered. Linear
searching and binary searching are explained. Workshop applets demonstrate these algo-
rithms with unordered and ordered arrays.

In Hour 4, “The Bubble Sort,” and Hour 5, “The Insertion Sort,” we introduce basic sort-
ing concepts with two simple (but slow) sorting techniques. Each sorting algorithm is
demonstrated by a Workshop applet.

Hour 6, “Stacks,” and Hour 7, “Queues and Priority Queues,” cover three data structures
that can be thought of as Abstract Data Types (ADTs): the stack, queue, and priority
queue. Each is demonstrated by a Workshop applet. These structures will reappear later
in the book, embedded in various algorithms.

Hour 8, “Linked Lists,” introduces the concepts behind lists. A Workshop applet shows
how insertion, searching, and deletion are carried out. Hour 9, “Abstract Data Types,”
uses implementations of stacks and queues with linked lists to demonstrate ADTs. Hour
10, “Specialized Lists,” describes sorted lists and doubly linked lists.

In Hour 11, “Recursion,” we explain recursion, and in Hour 12, “Applied Recursion,” we
explore several examples of recursion, including the Towers of Hanoi puzzle and the
mergesort.

Hour 13, “Quicksort,” delves into the most popular sorting technique: quicksort.
Workshop applets demonstrate partitioning (the basis of quicksort), and a simple version
of quicksort. Hour 14, “Improving Quicksort,” focuses on some weaknesses of the sim-
ple version and how to improve them. Two more Workshop applets demonstrate how it
works.

In Hour 15, “Binary Trees,” we begin our exploration of trees. This hour covers the sim-
plest popular tree structure: unbalanced binary search trees. A Workshop applet demon-
strates insertion, deletion, and traversal. In Hour 16, “Traversing Binary Trees,” we
discuss traversal and show C++ code for a binary tree.

Hour 17, “Red-Black Trees,” explains red-black trees, one of the most efficient balanced
trees. The Workshop applet demonstrates the rotations and color switches necessary to

Introduction 5

01 72316331 Intro 10/31/02 6:54 AM Page 5

balance the tree. Hour 18, “Red-Black Tree Insertions,” shows how insertions are carried
out using rotations and color changes.

In Hour 19, “2-3-4 Trees,” we cover 2-3-4 trees as an example of multiway trees. A
Workshop applet shows how they work. Hour 20, “Implementing 2-3-4 Trees,” presents
C++ code for a 2-3-4 tree and discusses the relationship of 2-3-4 trees to red-black trees.

Hour 21, “Hash Tables,” introduces this data structure, focusing on linear probing. Hour
22, “Quadratic Probing,” shows improvements that can be made to the linear probing
scheme. Hour 23, “Separate Chaining,” shows a different approach to hash tables.
Workshops applets demonstrate all three approaches.

In Hour 24, “When to Use What,” we summarize the various data structures described in
earlier hours, with special attention to which structure is appropriate in a given situation.

Appendix B, explains how to Run the Workshop applets and sample programs. The
readme file on the included CD-ROM has additional information on these topics.

Appendix C, “Further Reading,” describes some books appropriate for further reading on
data structures and other related topics.

Enjoy Yourself!
We hope we’ve made the learning process as painless as possible. Ideally, it should even
be fun. Let us know if you think we’ve succeeded in reaching this ideal, or if not, where
you think improvements might be made.

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English, and
also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in monospace
type.

It will look like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You should
replace the placeholder with the specific value it represents.

This arrow (➥) at the beginning of a line of code means that a single line of code is too
long to fit on the printed page. Continue typing all characters after the ➥ as though they
were part of the preceding line.

6 Sams Teach Yourself Data Structures and Algorithms in 24 Hours

01 72316331 Intro 10/31/02 6:54 AM Page 6

New Term icons provide clear definitions of new, essential terms. The term
appears in italic.

The Input icon identifies code that you can type in yourself. It usually appears
next to a listing.

The Output icon highlights the output produced by running a program. It usually
appears after a listing.

The Analysis icon alerts you to the author’s line-by-line analysis of a program.

The CD-ROM icon alerts you to information or items that appear on the CD-ROM that
accompanies this book.

To Do tasks help you learn the topic by working hands-on. Follow these steps to create
your own examples.

Introduction 7

A Note presents interesting pieces of information related to the surrounding
discussion.

A Tip offers advice or teaches an easier way to do something.

A Caution advises you about potential problems and helps you steer clear of
disaster.

NEW TERM

INPUT

OUTPUT

ANALYSIS

TO
D

O

01 72316331 Intro 10/31/02 6:54 AM Page 7

01 72316331 Intro 10/31/02 6:54 AM Page 8

Hour
1 Overview of Data Structures and

Algorithms

2 Arrays

3 Ordered Arrays

4 The Bubble Sort

5 The Insertion Sort

PART I
Introducing Data
Structures and Algorithms

02 72316331 pt1 10/31/02 6:54 AM Page 9

02 72316331 pt1 10/31/02 6:54 AM Page 10

HOUR 1
Overview of Data
Structures and Algorithms

Welcome to Sams Teach Yourself Data Structures and Algorithms in 24
Hours! In this first hour you will

● Find out why you need to know about data structures and algorithms

● Discover what data structures and algorithms are

● Learn some terminology we’ll use in the rest of the book

● Review object-oriented programming

As you start this book, you might have some questions:

● What are data structures and algorithms?

● What good will it do me to know about them?

● Why can’t I use simple program features like arrays and for loops to
handle my data?

● When does it make sense to apply what I learn here?

03 72316331 Ch01 10/31/02 7:10 AM Page 11

In this first hour we’ll attempt to answer these questions. We’ll also introduce some
terms you’ll need to know and generally set the stage for the more detailed material to
follow. Finally, for those of you who have not yet been exposed to object-oriented pro-
gramming (OOP), we’ll briefly explain just enough about it to get you started.

Some Uses for Data Structures and
Algorithms

The subjects of this book are data structures and algorithms. A data structure is
an arrangement of data in a computer’s memory (or sometimes on a disk). Data

structures include linked lists, stacks, binary trees, and hash tables, among others.
Algorithms manipulate the data in these structures in various ways, such as inserting a
new data item, searching for a particular item, or sorting the items. You can think of an
algorithm as a recipe: a list of detailed instructions for carrying out an activity.

What sorts of problems can you solve with a knowledge of these topics? As a rough
approximation, we might divide the situations in which they’re useful into three cate-
gories:

● Real-world data storage

● Programmer’s tools

● Modeling

These are not hard-and-fast categories, but they might help give you a feeling for the use-
fulness of this book’s subject matter. You’ll look at them in more detail in the following
sections.

Real-World Data Storage
Many of the structures and techniques you’ll learn are concerned with how to handle
real-world data storage. By real-world data, we mean data that describes physical entities
external to the computer. Some examples are a personnel record that describes an actual
human being, an inventory record that describes an existing car part or grocery item, and
a financial transaction record that describes, say, an actual check written to pay the gro-
cery bill.

A non-computer example of real-world data storage is a stack of index cards. These
cards can be used for a variety of purposes. If each card holds a person’s name, address,
and phone number, the result is an address book. If each card holds the name, location,
and value of a household possession, the result is a home inventory.

12 Hour 1

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 12

Some operating systems come with a utility program that simulates a box of index cards.
Previous versions of Microsoft Windows, for example, included the Cardfile program.
Figure 1.1 shows how this program looked with data on the cards creating an address
book.

Overview of Data Structures and Algorithms 13

1

FIGURE 1.1
The Cardfile program.

The filing cards are represented by rectangles. Above the double line is the card’s title,
called the index line. Below is the rest of the data. In this example a person’s name is
placed above the index line, with the address and phone number placed below.

You can find a card with a given name by selecting GoTo from the Search menu and typ-
ing the name, as it appears on the index line, into a text field. Also, by selecting Find
from the Search menu, you can search for text other than that on the index line, and thus
find a person’s name if you know his phone number or address.

This is all very nice for the program’s user, but suppose you wanted to write a card file
program of your own. You might need to answer questions like this:

● How would you store the data in your computer’s memory?

● Would your method work for a hundred file cards? A thousand? A million?

● Would your method permit quick insertion of new cards and deletion of old ones?

● Would it allow for fast searching for a specified card?

● Suppose you wanted to arrange the cards in alphabetical order. How would you
sort them?

In this book, we will be focusing on data structures that might be used to implement the
Cardfile program or solve similar problems.

As we noted, not all data-storage programs are as simple as the Cardfile program.
Imagine the database the Department of Motor Vehicles uses to keep track of driver’s

03 72316331 Ch01 10/31/02 7:10 AM Page 13

licenses, or an airline reservation system that stores passenger and flight information.
Such systems might include many data structures. Designing such complex systems
requires the application of software engineering, which we’ll mention toward the end of
this hour. Now let’s look at the second major use for data structures and algorithms.

Programmer’s Tools
Not all data storage structures are used to store real-world data. Typically, real-world data
is accessed more or less directly by a program’s user. However, some data storage struc-
tures are not meant to be accessed by the user, but by the program itself. A programmer
uses such structures as tools to facilitate some other operation. Stacks, queues, and prior-
ity queues are often used in this way. We’ll see examples as we go along.

Real-World Modeling
The third use of data structures and algorithms is not as commonly used as the first two.
Some data structures directly model a real-world situation. Stacks, queues, and priority
queues are often used for this purpose. A queue, for example, can model customers wait-
ing in line at a bank, whereas a priority queue can model messages waiting to be trans-
mitted over a local area network.

Overview of Data Structures
Another way to look at data structures is to focus on their strengths and weaknesses. This
section provides an overview, in the form of a table, of the major data storage structures
discussed in this book. This is a bird’s-eye view of a landscape that we’ll be covering
later at ground level, so don’t be alarmed if it looks a bit mysterious. Table 1.1 shows the
advantages and disadvantages of the various data structures described in this book.

TABLE 1.1 CHARACTERISTICS OF DATA STRUCTURES

Data Structure Advantages Disadvantages

Array Quick insertion, very Slow search, slow
fast access if deletion, fixed size.
index known.

Ordered array Quicker search than Slow insertion and
unsorted array. deletion, fixed size.

Stack Provides last-in, Slow access to other
first-out access. items.

Queue Provides first-in, Slow access to other
first-out access. items.

14 Hour 1

03 72316331 Ch01 10/31/02 7:10 AM Page 14

Data Structure Advantages Disadvantages

Linked list Quick insertion, quick Slow search.
deletion.

Binary tree Quick search, insertion, Deletion algorithm is
deletion (if tree complex.
remains balanced).

Red-black tree Quick search, insertion, Complex.
deletion. Tree always
balanced.

2-3-4 tree Quick search, insertion, Complex.
deletion. Tree always
balanced. Similar trees
good for disk storage.

Hash table Very fast access if key Slow deletion, access
known. Fast insertion. slow if key not known,

inefficient memory usage.

Heap Fast insertion, Slow access to other
deletion, items.
access to largest item.

Overview of Algorithms
An algorithm can be thought of as the detailed instructions for carrying out some opera-
tion. In a computer program these instructions take the form of program statements.
Many of the algorithms we’ll discuss apply directly to specific data structures. For most
data structures, you must know how to do the following:

● Insert a new data item.

● Search for a specified item.

● Delete a specified item.

You might also need to know how to traverse through all the items in a data
structure, visiting each one in turn so as to display it or perform some other

action on it.

Another important algorithm category is sorting. There are many ways to sort
data, and we devote Hours 4, 5, 13, and 14 to this topic.

The concept of recursion is important in designing certain algorithms. Recursion
involves a function calling itself. We’ll look at recursion in Hours 11 and 12.

Overview of Data Structures and Algorithms 15

1

NEW TERM

NEW TERM

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 15

Some Initial Definitions
Before we move on to a more detailed look at data structures and algorithms in the chap-
ters to come, let’s look at a few terms that will be used throughout this book.

Datafile
We’ll use the term datafile to refer to a collection of similar data items. As an
example, if you create an address book using the Cardfile program, the collec-

tion of cards you’ve created constitutes a datafile. The word file should not be confused
with the files stored on a computer’s hard disk. A datafile refers to data in the real world,
which might or might not be associated with a computer.

Record
Records are the units into which a datafile is divided. They provide a format for
storing information. In the Cardfile program, each card represents a record. A

record includes all the information about some entity, in a situation in which there are
many such entities. A record might correspond to a person in a personnel file, a car part
in an auto supply inventory, or a recipe in a cookbook file.

Field
A record is usually divided into several fields. A field holds a particular kind of
data. In the Cardfile program there are really only two fields: the index line

(above the double line) and the rest of the data (below the line); both fields hold text.
Generally, each field holds a particular kind of data. In Figure 1.1, we show the index
line field as holding a person’s name.

More sophisticated database programs use records with more fields than Cardfile has.
Figure 1.2 shows such a record, where each line represents a distinct field.

In a C++ program, records are usually represented by objects of an appropriate class. (In
C, records would probably be represented by structures.) Individual data members within
an object represent fields within a record. We’ll return to this later in this hour.

Key
To search for a record within a datafile you must designate one of the record’s
fields as a key. You’ll search for the record with a specific key. For example, in

the Cardfile program you might search in the index-line field for the key Brown. When
you find the record with that key, you’ll be able to access all its fields, not just the key.
We might say that the key unlocks the entire record.

16 Hour 1

NEW TERM

NEW TERM

NEW TERM

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 16

In Cardfile you can also search for individual words or phrases in the rest of the data on
the card, but this is actually all one field. The program searches through the text in the
entire field even if all you’re looking for is the phone number. This kind of text search
isn’t very efficient, but it’s flexible because the user doesn’t need to decide how to divide
the card into fields.

In a more full-featured database program (Microsoft Access, for example), you can usu-
ally designate any field as the key. In Figure 1.2, for example, you could search by, say,
zip code, and the program would find all employees who live in that zip code.

Search Key
Every record has a key. Often you have a key (a person’s last name, for example)
and you want the record containing that key. The key value you’re looking for in

a search is called the search key. The search key is compared with the key field of each
record in turn. If there’s a match, the record can be returned or displayed. If there’s no
match, the user can be informed of this fact.

That’s all the definitions you’ll need for a while. Now we’ll briefly consider a topic that’s
not directly related to data structures and algorithms, but is related to modern program-
ming practice.

Overview of Data Structures and Algorithms 17

1
FIGURE 1.2
A record with multiple
fields.

Employee number:
Social security number:
Last name:
First name:
Street address:
City:
State:
Zip code:
Phone number:
Date of birth:
Date of first employment:
Salary:

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 17

A Quick Introduction to Object-Oriented
Programming

This section is for those of you who have not yet been exposed to object-oriented pro-
gramming. However, caveat emptor. We cannot, in a few pages, do justice to all the inno-
vative new ideas associated with OOP. Our goal is merely to make it possible for you to
understand the sample programs in the text of this book. What we say here won’t trans-
form you into an object-oriented C++ programmer, but it should make it possible for you
to follow the sample programs. (If you know OOP, you can probably skip this section.)

If, after reading this section and examining some of the sample code in the following
hours, you still find the whole OOP business as alien as quantum physics, you might
need a more thorough exposure to OOP. See the reading list in Appendix C, “Further
Reading,” for suggestions.

Problems with Procedural Languages
OOP was invented because procedural languages, like C, Pascal, and BASIC, were found
to be inadequate for large and complex programs. Why was this? The problems have to
do with the overall organization of the program. Procedural programs are organized by
dividing the code into functions (called procedures or subroutines in some languages).
Groups of functions could form larger units called modules or files.

Crude Organizational Units
One difficulty with this kind of function-based organization was that it focused on func-
tions at the expense of data. There weren’t many options when it came to data. To sim-
plify slightly, data could be local to a particular function, or it could be
global—accessible to all functions. There was no way (at least not a flexible way) to
specify that some functions could access a data item and others couldn’t.

This caused problems when several functions needed to access the same data. To be
available to more than one function, such variables had to be global, but global data
could be accessed inadvertently by any function in the program. This led to frequent pro-
gramming errors. What was needed was a way to fine-tune data accessibility, allowing
variables to be available to functions with a need to access the data, but hiding it from
others.

Poor Modeling of the Real World
It is also hard to conceptualize a real-world problem using procedural languages.
Functions carry out a task, and data stores information, but most real-world objects do
both these things. The thermostat on your furnace, for example, carries out tasks (turning

18 Hour 1

03 72316331 Ch01 10/31/02 7:10 AM Page 18

the furnace on and off), but also stores information (the actual current temperature and
the desired temperature).

If you wrote a thermostat control program, you might end up with two functions,
furnace_on() and furnace_off(). But you might also end up with two global variables,
currentTemp (supplied by a thermometer) and desiredTemp (set by the user). However,
these functions and variables wouldn’t form any sort of programming unit; there would
be no unit in the program you could call thermostat. The only such unit would be in the
programmer’s mind.

For large programs, which might contain hundreds of entities like thermostats, this pro-
cedural approach made things chaotic, error-prone, and sometimes impossible to imple-
ment at all.

Objects in a Nutshell
The idea of objects arose in the programming community as a solution to the problems
we just discussed with procedural languages. In this section, we’ll discuss objects,
classes, and several other topics.

Objects
Here’s the amazing breakthrough that is the key to OOP: An object contains both func-
tions and variables. A Thermostat object, for example, would contain not only
furnace_on() and furnace_off() functions, but also currentTemp and desiredTemp
variables.

This new entity, the object, solves several problems simultaneously. Not only does a pro-
gramming object correspond more accurately to objects in the real world, it also solves
the problem engendered by global data in the procedural model. The furnace_on() and
furnace_off() functions can access currentTemp and desiredTemp. However, these
variables are hidden from functions that are not part of thermostat, so they are less
likely to be accidentally changed by a rogue function.

Overview of Data Structures and Algorithms 19

1

Incidentally, before going further we should note that functions within
objects are called member functions in C++. (They’re often called methods in
other languages.) Variables within objects are called data members. (They’re
called instance data or fields in other languages.)

03 72316331 Ch01 10/31/02 7:10 AM Page 19

Classes
You might think that the idea of an object would be enough for one programming revolu-
tion, but there’s more. Early on, it was realized that you might want to make several
objects of the same type. Maybe you’re writing a furnace control program for an entire
apartment house, for example, and you need several dozen Thermostat objects in your
program. It seems a shame to go to the trouble of specifying each one separately. Thus
the idea of classes was born.

A class is a specification—a blueprint—for one or more objects. Listing 1.1
shows how a Thermostat class, for example, might look in C++.

LISTING 1.1 THE Thermostat CLASS

class Thermostat
{
private:

float currentTemp();
float desiredTemp();

public:
void furnace_on()

{
// function body goes here
}

void furnace_off()
{
// function body goes here
}

}; // end class Thermostat

The C++ keyword class introduces the class specification, followed by the name you
want to give the class; here it’s Thermostat. Enclosed in curly brackets are the data
members and member functions (variables and functions) that make up the class. We’ve
left out the body of the member functions; normally there would be many lines of pro-
gram code for each one. C programmers will recognize this syntax as similar to that of a
structure.

Object Creation
Specifying a class doesn’t create any objects of that class. (In the same way specifying a
structure in C doesn’t create any variables.) To actually create objects in C++ you must

20 Hour 1

INPUT

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 20

define them as you do other variables. Here’s how we might create two objects of class
Thermostat:

Thermostat therm1, therm2;

Incidentally, creating an object is also called instantiating it, and an object is
often referred to as an instance of a class.

Accessing Object Member Functions
After you’ve specified a class and created some objects of that class, other parts of your
program must interact with these objects. How do they do that? Typically, other parts of
the program interact with an object’s member functions, not with its data members. For
example, to tell the therm2 object to turn on the furnace, we would say

therm2.furnace_on();

The dot operator is simply a period (.). It associates an object with one of its member
functions (or occasionally with one of its data members).

At this point we’ve covered (rather briefly) several of the most important features of
OOP. To summarize:

● Objects contain both member functions and data members (variables).

● A class is a specification for any number of objects.

● To create an object, you must define it as you would an ordinary variable.

● To invoke a member (usually a function) for a particular object, you use the dot
operator.

These concepts are deep and far-reaching. It’s almost impossible to assimilate them the
first time you see them, so don’t worry if you feel a bit confused. As you see more
classes and what they do, the mist should start to clear.

A Runnable Object-Oriented Program
Let’s look at an object-oriented program that runs and generates actual output. It fea-
tures a class called BankAccount that models a checking account at a bank. The program
creates an account with an opening balance, displays the balance, makes a deposit and a
withdrawal, and then displays the new balance. Listing 1.2 is the code for bank.cpp.

Overview of Data Structures and Algorithms 21

1

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 21

LISTING 1.2 BANK.CPP

//bank.cpp
//demonstrates basic OOP syntax
#include <iostream>
using namespace std;
//
class BankAccount

{
private:

double balance; //account balance
public:

//--
BankAccount(double openingBalance) //constructor

{
balance = openingBalance;
}

//--
void deposit(double amount) //makes deposit

{
balance = balance + amount;
}

//--
void withdraw(double amount) //makes withdrawal

{
balance = balance - amount;
}

//--
void display() //displays balance

{
cout << “Balance=” << balance << endl;
}

}; //end class BankAccount
//
int main()

{
BankAccount ba1(100.00); //create account

cout << “Before transactions, “;
ba1.display(); //display balance

ba1.deposit(74.35); //make deposit
ba1.withdraw(20.00); //make withdrawal

cout << “After transactions, “;
ba1.display(); //display balance
return 0;
} //end main()

22 Hour 1

INPUT

03 72316331 Ch01 10/31/02 7:10 AM Page 22

Here’s the output from this program:

Before transactions, balance=100.00
After transactions, balance=154.35

There are two parts in bank.cpp: The first one is the declaration of the
BankAccount class. It contains the member data and functions for our bank

account. We’ll examine it in detail in a moment. The second part is the function main(),
where control goes when the program starts. The following sections describe each.

The main() Function
The main() function is not part of any class; it stands alone. It creates an object of class
BankAccount, initialized to a value of 100.00, which is the opening balance, with this
statement:

BankAccount ba1(100.00); // create account

The BankAccount object displays its balance with the statement:

ba1.display();

The program then makes a deposit to, and a withdrawal from, the account by calling the
BankAccount object’s deposit() and withdraw() member functions:

ba1.deposit(74.35);
ba1.withdraw(20.00);

Finally, the program displays the new account balance and terminates.

The BankAccount Class
The only member data in the BankAccount class is the amount of money in the account,
called balance. There are three member functions. The deposit() function adds an
amount to the balance, withdrawal() subtracts an amount, and display() displays the
balance.

Constructors
The BankAccount class also features a constructor. A constructor is a special
member function that’s called automatically whenever a new object is created. A

constructor always has exactly the same name as the class, so this one is called
BankAccount(). This constructor has one argument, which is used to set the opening bal-
ance when the account is created.

A constructor allows a new object to be initialized in a convenient way. Without the con-
structor in this program, you would have needed an additional call to deposit() to put
the opening balance in the account.

Overview of Data Structures and Algorithms 23

1
OUTPUT

ANALYSIS

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 23

Public and Private
Notice the keywords public and private in the BankAccount class. These key-
words are access modifiers and determine what members of an object can be

accessed by other parts of the program. The balance data member is preceded by pri-
vate. A data member or member function that is private can only be accessed by mem-
ber functions that are part of the same class. Thus, balance cannot be accessed by
statements in main() because main() is not a member function of BankAccount.

However, all the member functions in BankAccount have the access modifier public, so
they can be accessed by functions in other classes or main(). That’s why statements in
main() can call deposit(), withdrawal(), and display().

Member data in a class is typically made private, whereas functions are made public.
This protects the data; it can’t be accidentally modified by functions in other classes. Any
outside entity that needs to access data in a class must do so using a member function of
the same class. Data is like a queen bee, kept hidden in the middle of the hive, fed and
cared for by worker-bee member functions.

Inheritance and Polymorphism
For completeness we’ll briefly mention two other key features of object-oriented pro-
gramming: inheritance and polymorphism. We won’t be using them in our program
examples, but they are important in OOP.

Inheritance is the creation of one class, called the derived (or child) class, from
another class called the base (or parent) class. The derived class has all the fea-

tures of the base class, plus some additional features. For example, a secretary class
might be derived from a more general employee class, and include a data member called
typingSpeed that the employee class lacked.

Inheritance makes it easy to add features to an existing class and is an important aid in
the design of programs with many related classes. Inheritance thus makes it easy to reuse
classes for a slightly different purpose—a key benefit of OOP.

Polymorphism involves treating objects of different classes in the same way. For
polymorphism to work, these different classes must be derived (inherited) from

the same base class. In practice, polymorphism usually involves a function call that actu-
ally executes different member functions for objects of different classes.

For example, a call to display() for a secretary object would invoke a display function
in the secretary class, whereas the exact same call for a manager object would invoke a
different display function in the manager class. Polymorphism simplifies and clarifies
program design and coding.

24 Hour 1

NEW TERM

NEW TERM

NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 24

For those not familiar with them, inheritance and polymorphism involve significant addi-
tional complexity. To keep the focus on data structures and algorithms, we have avoided
these features in our sample programs. Inheritance and polymorphism are important and
powerful aspects of OOP, but are not necessary for the explanation of data structures and
algorithms.

Now let’s turn our attention to some newer features of C++.

New C++ Features
If you learned C++ some time ago, you might not be acquainted with its latest capabili-
ties. This book uses several features that were introduced with Standard C++: the string
class and the vector class from the Standard Template Library (STL). These features are
a standard part of the C++ language specification, supported by all modern compilers.
Using these features enables you to simplify our sample programs. They are fairly intu-
itive even if you’re unfamiliar with them. In this section we’ll mention a few details
about these features, but for a full description you should consult Appendix C, or access
the help system in your compiler.

The string Class
In pre-standard C++, strings were represented by arrays of type char. This created many
inconveniences. For example, you couldn’t compare strings using the comparison opera-
tors (<, >, and ==), and you couldn’t set one string equal to another with the assignment
operator (=). You also had to create the array yourself and manage its memory allocation.
The string class in Standard C++ solves these problems.

To use the string class you must include the STRING file in your program:

#include <string>

It’s easy to create objects of type string:

string str1, str2(“George”);

You can assign one string to another without worrying whether it’s big enough; it will
obtain the necessary memory automatically:

string str3;
str3 = “amanuensis”;

You can use the [] operator to access specific characters in a string object, just as you
can with an array (provided you use a valid index number):

char ch1 = str2[3];

Overview of Data Structures and Algorithms 25

1

03 72316331 Ch01 10/31/02 7:10 AM Page 25

The string class includes a variety of member functions. For example, str1.size()
returns the number of characters in str1. In most other ways string objects behave simi-
larly to basic C++ variables.

The vector Class
The STL is a group of data structures and algorithms implemented as templatized C++
classes. The data structures include lists, stacks, deques, and vectors. The algorithms
allow you to perform almost any conceivable operation on the data structures.

We don’t use the STL for examples of the data structures and algorithms described in
this book. The source code for the STL is highly specialized and difficult for all but
advanced programmers. Instead, we use homemade classes whose code is easy to under-
stand. However, after you’ve learned about data structures and algorithms, you will cer-
tainly want to consider using the STL in your own programs. It is essentially as efficient
as any code you write yourself, and of course far more convenient.

Although we don’t use the STL to demonstrate concepts, we do use it as a handy
improvement to C++. For example, we frequently use objects of the vector class instead
of arrays. Among other advantages, this allows us to handle the sizing of the vector in
the class constructor.

To use the vector class you’ll need to include the VECTOR file:

#include <vector>

To create a vector you must use the template format, with the data type of the vector’s
contents placed in angle brackets and the vector’s name in parentheses:

vector<double>(vect1);

From then on, you can treat the resulting vector much as you would an array, using
bracket notation like the following to access individual elements in the vector:

vect1[13] = 3.14159;

The vector’s member functions can be used for a variety of purposes. For example,
vect1.empty() returns true if there is no data in a vector, and vect1.size() returns the
number of elements currently in the vector.

Let’s switch gears now from the details of C++ to a more theoretical topic.

Software Engineering
In recent years, it has become fashionable to begin a book on data structures and algo-
rithms with a chapter on software engineering. We don’t follow that approach, but let’s

26 Hour 1

03 72316331 Ch01 10/31/02 7:10 AM Page 26

briefly examine software engineering and see how it fits into the topics discussed in this
book.

Software engineering is the study of how to create large and complex computer
programs involving many programmers. It focuses on the overall design of the

program and on the derivation of that design, beginning with the needs of the end users.
Software engineering is concerned with the life cycle of a software project, which
includes specification, design, verification, coding, testing, production, and maintenance.

It’s not clear that mixing software engineering on one hand, and data structures and algo-
rithms on the other, actually helps a student understand either topic. Software engineer-
ing is rather abstract and is difficult to grasp until you’ve been involved yourself in a
large project. Data structures and algorithms, on the other hand, are nuts-and-bolts disci-
plines concerned with the details of coding and data storage.

Accordingly we focus on the nuts-and-bolts aspects of data structures and algorithms.
How do they really work? What structure or algorithm is best in a particular situation?
What do they look like translated into C++ code? As we noted, our intent is to make the
material in this book as easy to understand as possible. For further reading, we mention
some books on software engineering in Appendix C.

Summary
In this hour, you’ve learned the following:

● A data structure is the organization of data in a computer’s memory (or in a disk
file).

● The correct choice of data structure allows major improvements in program effi-
ciency.

● Examples of data structures are arrays, stacks, and linked lists.

● An algorithm is a procedure for carrying out a particular task.

● Data structures can be used to build datafiles.

● A datafile is a collection of many similar records.

● Examples of datafiles are address books, recipe books, and inventory records.

● Data structures can also be used as programmer’s tools: they help execute an algo-
rithm.

● A record often represents a real-world object, like an employee or a car part.

● A record is divided into fields. Each field stores one characteristic of the object
described by the record.

Overview of Data Structures and Algorithms 27

1
NEW TERM

03 72316331 Ch01 10/31/02 7:10 AM Page 27

● A key is a field that’s used to carry out some operation on the data. For example,
personnel records might be sorted by a LastName field.

● A datafile can be searched for all records whose key field has a certain value. This
value is called a search key.

● An object is a programming construct containing both functions and data.

● A class is a specification for many similar objects.

● Creating an object of a class is similar to creating a variable of a built-in type like
float.

● Generally, an object’s data is accessed by calling its member functions.

Q&A
Q Can I really learn object-oriented programming from the section in this

chapter?

A Our aim is to teach just enough about OOP that someone who hasn’t seen it before
can follow the program examples. There’s a lot more that we don’t touch on, but
what we’ve said should get you started.

Q There are a lot of new terms in this hour, like record, field, and key, but what
is the big picture?

A The big picture is someone trying to store a lot of data in computer memory and
then to access it efficiently. Don’t worry if everything isn’t clear at this point. In
the next few hours you’ll get a better idea what sorts of things we’ll be talking
about.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A, “Quiz
Answers,” for quiz answers.

Quiz
1. What is a data structure?

2. What is an algorithm?

3. Name two things you can use data structures for.

4. Name an algorithm commonly applied to stored data.

5. True or false: There is only one record in a data file.

28 Hour 1

03 72316331 Ch01 10/31/02 7:10 AM Page 28

6. What is one of the problems with procedural languages?

7. True or false: There is only one object of each class.

8. What is the most common use for the dot operator?

Exercise
Imagine a group of data you would like to put in a computer so it could be accessed and
manipulated. For example, if you collect old comic books, you might want to catalog
them so you could search for a particular author or a specific date.

Overview of Data Structures and Algorithms 29

1

03 72316331 Ch01 10/31/02 7:10 AM Page 29

03 72316331 Ch01 10/31/02 7:10 AM Page 30

HOUR 2
Arrays

An array is a number of data items of the same type arranged contiguously
in memory. The array is the most commonly used data storage structure; it’s
built into most programming languages. Because they are so well-known,
arrays offer a convenient jumping-off place for introducing data structures
and for seeing how object-oriented programming and data structures relate
to each other. In this hour we’ll

● Show insertion, search, and deletion in arrays

● Demonstrate a simple, homemade array class

● Find out what a class interface is

● Improve the interface of your array class

The Array Workshop Applet
We’ll start the hour with a Workshop applet that shows insertion, search, and
deletion in an array. Later we’ll show some sample C++ code that carries
out these same operations.

04 72316331 Ch02 10/31/02 7:10 AM Page 31

Suppose that you’re coaching kids-league baseball, and you want to keep track of which
players are present at the practice field. What you need is an attendance-monitoring pro-
gram for your laptop; a program that maintains a datafile of the players who have shown
up for practice. You can use a simple data structure to hold this data. There are several
actions you would like to be able to perform:

● Insert a player into the data structure when the player arrives at the field.

● Check to see if a particular player is present, by searching for their number in the
structure.

● Delete a player from the data structure when the player goes home.

These three operations—insertion, search, and deletion—will be the fundamental opera-
tions in most of the data storage structures we’ll study in this book.

In this book we’ll often begin the discussion of a particular data structure by demonstrat-
ing it with a Workshop applet. This will give you a feeling for what the structure and its
algorithms do, before we launch into a detailed discussion and demonstrate actual sample
code. The Workshop applet called Array shows how an array can be used to implement
insertion, search, and deletion. Start up this applet, as described in Appendix B, “How to
Run the Workshop Applets and Sample Programs.”

Figure 2.1 shows what you’ll see. There’s an array with 20 elements, 10 of which have
data items in them. You can think of these items as representing your baseball players.
Imagine that each player has been issued a team shirt with the player’s number on the
back. To make things visually interesting, the shirts come in a variety of colors. You can
see each player’s number and shirt color in the array.

32 Hour 2

FIGURE 2.1
The Array Workshop
applet.

04 72316331 Ch02 10/31/02 7:10 AM Page 32

This applet demonstrates the three fundamental procedures mentioned above:

● The Ins button inserts a new data item.

● The Find button searches for a specified data item.

● The Del button deletes a specified data item.

Using the New button, you can create a new array of a size you specify. You can fill this
array with as many data items as you want using the Fill button. Fill creates a set of
items and randomly assigns them numbers and colors. The numbers are in the range 0 to
999. You can’t create an array of more than 60 cells, and you can’t, of course, fill more
data items than there are array cells.

Also, when you create a new array, you’ll need to decide whether duplicate items will be
allowed; we’ll return to this question in a moment. The default value is no duplicates and
the No Dups radio button is selected to indicate this.

To Do: Insert Data into the Workshop Applet
1. Start with the default arrangement of 20 cells and 10 data items, and the No Dups

button selected. You insert a baseball player’s number into the array when the
player arrives at the practice field, having been dropped off by a parent.

2. To insert a new item, press the Ins button once. You’ll be prompted to enter the
value of the item:

Enter key of item to insert

3. Type a number, say 678, into the text field in the upper-right corner of the applet.
(Yes, it is hard to get three digits on the back of a kid’s shirt.)

4. Press Ins again and the applet will confirm your choice:

Will insert item with key 678

5. A final press of the button will cause a data item, consisting of this value and a
random color, to appear in the first empty cell in the array. The prompt will say
something like this:

Inserted item with key 678 at index 10

Each button press in a Workshop applet corresponds to a step that an algorithm carries
out. The more steps required, the longer the algorithm takes. In the Array Workshop
applet, the insertion process is very fast, requiring only a single step. This is because a
new item is always inserted in the first vacant cell in the array, and the algorithm knows
where this is because it knows how many items are already in the array. The new item is
simply inserted in the next available space. Searching and deleting, however, are not so
fast.

Arrays 33

2

,
TO

D
O

,

04 72316331 Ch02 10/31/02 7:10 AM Page 33

In no-duplicates mode you’re on your honor not to insert an item with the same key as an
existing item. If you do, the applet displays an error message, but it won’t prevent the
insertion. The assumption is made that you won’t make this mistake.

To Do: Search for a Given Item
1. Click the Find button. You’ll be prompted for the key number of the person you’re

looking for.

2. Pick a number that appears on an item somewhere in the middle of the array.

3. Type the number and repeatedly press the Find button. At each button press, one
step in the algorithm is carried out. You’ll see the red arrow start at cell 0 and move
methodically down the cells, examining a new one each time you push the button.
The index number in the following message will change as you go along:

Checking next cell, index = 2

4. When you reach the specified item, you’ll see the following message or whatever
key value you typed:

Have found item with key 505

Assuming duplicates are not allowed, the search will terminate as soon as an item
with the specified key value is found.

If you have selected a key number that is not in the array, the applet will examine every
occupied cell in the array before telling you that it can’t find that item.

Notice that (again assuming duplicates are not allowed) the search algorithm must look
through an average of half the data items to find a specified item. Items close to the
beginning of the array will be found sooner, and those toward the end will be found later.
If N is the number of items, the average number of steps needed to find an item is N/2.
In the worst-case scenario, the specified item is in the last occupied cell, and N steps will
be required to find it.

As noted, the time an algorithm takes to execute is proportional to the number of steps,
so searching takes much longer on the average (N/2 steps) than insertion (one step).

Deletion
To delete an item you must first find it. After you type the number of the item to be
deleted, repeated button presses will cause the arrow to move, step by step, down the
array until the item is located. The next button press deletes the item and the cell
becomes empty. (Strictly speaking, this step isn’t necessary because we’re going to copy
over this cell anyway, but deleting the item makes it clearer what’s happening.)

34 Hour 2

,
TO

D
O

,

04 72316331 Ch02 10/31/02 7:10 AM Page 34

Implicit in the deletion algorithm is the assumption that holes are not allowed in
the array. A hole is one or more empty cells that have filled cells above them (at

higher index numbers). If holes are allowed, all the algorithms become more complicated
because they must check to see whether a cell is empty before examining its contents.
Also, the algorithms become less efficient because they must waste time looking at unoc-
cupied cells. For these reasons, occupied cells must be arranged contiguously: no holes
allowed.

Therefore, after locating the specified item and deleting it, the applet must shift the con-
tents of each subsequent cell down one space to fill in the hole. Figure 2.2 shows an
example.

Arrays 35

2

NEW TERM

FIGURE 2.2
Deleting an item.

0 1 2 3 4 5 6 7 8 9

84 61 15 73 26 38 11 49 53 32

0 1 2 3 4 5 6 7 8

84 61 15 73 26 11 49 53 32

Item to be
deleted

Contents
shifted
down

❶ ❷ ❹❸

If the item in cell 5 (38, in the figure) is deleted, the item in cell 6 would shift into cell 5,
the item in cell 7 would shift into cell 6, and so on to the last occupied cell. During the
deletion process, after the item is located, the applet will shift down the contents of the
higher-indexed cells as you continue to press the Del button.

A deletion requires (assuming no duplicates are allowed) searching through an average
of N/2 elements, and then moving the remaining elements (an average of N/2 moves) to
fill up the resulting hole. This is N steps in all.

The Duplicates Problem
When you design a data storage structure, you must decide whether items with duplicate
keys will be allowed. If you’re talking about a personnel file and the key is an employee
number, duplicates don’t make much sense; there’s no point in assigning the same num-
ber to two employees. On the other hand, if the key value is last names, there’s a distinct

04 72316331 Ch02 10/31/02 7:10 AM Page 35

possibility several employees will have the same key value, so duplicates should be
allowed.

Of course, for the baseball players, duplicate numbers should not be allowed. It would be
hard to keep track of the players if more than one wore the same number.

The Array Workshop applet lets you select either option. When you use New to create a
new array, you’re prompted to specify both its size and whether duplicates are permitted.
Use the radio button Dups OK or No Dups to make this selection.

If you’re writing a data storage program in which duplicates are not allowed, you might
need to guard against human error during an insertion by checking all the data items in
the array to ensure that none of them already has the same key value as the item being
inserted. This is inefficient, however, and increases the number of steps required for an
insertion from one to N. For this reason, our applet does not perform this check.

Let’s see how allowing duplicates affects our searching, insertion, and deletion algo-
rithms.

Searching with Duplicates
Allowing duplicates complicates the search algorithm, as we noted. Even if it finds a
match, it must continue looking for possible additional matches until the last occupied
cell. This is one approach; you could also stop after the first match. It depends on
whether the question is “Find me everyone with blue eyes” or “Find me someone with
blue eyes.”

When the Dups OK button is selected, the applet takes the first approach, finding all
items matching the search key. This always requires N steps because the algorithm must
go all the way to the last occupied cell.

Insertion with Duplicates
Insertion is the same with duplicates allowed as when they’re not: a single step inserts
the new item. But remember, if duplicates are not allowed, and there’s a possibility the
user will attempt to input the same key twice, you might need to check every existing
item before an insertion.

Deletion with Duplicates
Deletion might be more complicated when duplicates are allowed, depending on exactly
how “deletion” is defined. If it means to delete only the first item with a specified value,
then, on the average, only N/2 comparisons and N/2 moves are necessary. This is the
same as when no duplicates are allowed. However, if deletion means to delete every item
with a specified key value, the same operation might require multiple deletions. This will

36 Hour 2

04 72316331 Ch02 10/31/02 7:10 AM Page 36

require checking N cells and (probably) moving more than N/2 cells. The average
depends on how the duplicates are distributed throughout the array.

The applet assumes the second meaning and deletes multiple items with the same key.
This is complicated because each time an item is deleted, subsequent items must be
shifted farther. For example, if three items are deleted, items beyond the last deletion
must be shifted three spaces. To see how this works, set the applet to Dups OK and insert
three or four items with the same key. Then try deleting them.

Table 2.1 shows the average number of comparisons and moves for the three operations,
first when no duplicates are allowed, and then when they are allowed. N is the number of
items in the array. Inserting a new item counts as one move.

TABLE 2.1 DUPLICATES OK VERSUS NO DUPLICATES

No Duplicates Duplicates OK

Search N/2 comparisons N comparisons

Insertion No comparisons, one move No comparisons, one move

Deletion N/2 comparisons, N/2 moves N comparisons, more than N/2 moves

You can explore these possibilities with the Array Workshop applet.

The difference between N and N/2 is not usually considered very significant, except
when fine-tuning a program. Of more importance, as we’ll discuss in the next hour, is
whether an operation takes one step, N steps, log(N) steps, or N2 steps.

Slow Array Algorithms
One of the significant things to notice when using the Array applet is the slow and
methodical nature of the algorithms. With the exception of insertion, the algorithms
involve stepping through some or all of the cells in the array. Different data structures
offer much faster (but more complex) algorithms. We’ll see one, the binary search on an
ordered array, in the next hour, and others throughout this book.

An Array Example
Let’s look at some sample programs that show how an array can be used. In case you’re
making the transition to OOP, we’ll start with an old-fashioned procedural version, and
then show the equivalent object-oriented approach. Listing 2.1 shows the old-fashioned
version, called array.cpp.

Arrays 37

2

04 72316331 Ch02 10/31/02 7:10 AM Page 37

LISTING 2.1 array.cpp

//array.cpp
//demonstrates arrays
#include <iostream>
using namespace std;
//
int main()

{
int arr[100]; //array
int nElems = 0; //number of items
int j; //loop counter
int searchKey; //key of item to search for

//--
arr[0] = 77; //insert 10 items
arr[1] = 99;
arr[2] = 44;
arr[3] = 55;
arr[4] = 22;
arr[5] = 88;
arr[6] = 11;
arr[7] = 00;
arr[8] = 66;
arr[9] = 33;
nElems = 10; //now 10 items in array

//--
for(j=0; j<nElems; j++) //display items

cout << arr[j] << “ “;
cout << endl;

//--
searchKey = 66; //find item with key 66
for(j=0; j<nElems; j++) //for each element,

if(arr[j] == searchKey) //found item?
break; //yes, exit before end

if(j == nElems) //at the end?
cout << “Can’t find “ << searchKey << endl; //yes

else
cout << “Found “ << searchKey << endl; //no

//--
searchKey = 55; //delete item with key 55
cout << “Deleting “ << searchKey << endl;
for(j=0; j<nElems; j++) //look for it
if(arr[j] == searchKey)

break;
for(int k=j; k<nElems; k++) //move higher ones down

arr[k] = arr[k+1];
nElems--; //decrement size

//--
for(j=0; j<nElems; j++) //display items

cout << arr[j] << “ “;

38 Hour 2

INPUT

04 72316331 Ch02 10/31/02 7:10 AM Page 38

cout << endl;
return 0;
} //end main()

In this program, we create an array called arr, place 10 data items (kids’ num-
bers) in it, search for the item with value 66 (the shortstop, Louisa), display all

the items, remove the item with value 55 (Freddy, who had a dentist appointment), and
then display the remaining nine items. The output of the program looks like this:

77 99 44 55 22 88 11 0 66 33
Found 66
77 99 44 22 88 11 0 66 33

The data we’re storing in this array is type int. We’ve chosen a basic type to simplify the
coding. Generally the items stored in a data structure consist of several data members, so
they are represented by objects rather than basic types. We’ll see an example of this in
the next hour.

Notice that the size of the array is fixed at 100 items. If the array holds fewer items,
memory is wasted. If you try to insert more than 100 items, the program fails. This isn’t
very efficient or safe. We’ll see in the next example how a vector provides a more flexi-
ble approach.

Inserting a New Item
Inserting an item into the array is easy; we use the normal array syntax

arr[0] = 77;

We also keep track of how many items we’ve inserted into the array with the nElems
variable.

Searching for an Item
The searchKey variable holds the value we’re looking for. To search for an item, step
through the array, comparing searchKey with each element. If the loop variable j
reaches the last occupied cell with no match being found, the value isn’t in the array.
Appropriate messages are displayed: Found 66 or Can’t find 27.

Deleting an Item
Deletion begins with a search for the specified item. For simplicity we assume (perhaps
rashly) that the item is present. When we find it, we move all the items with higher index
values down one element to fill in the “hole” left by the deleted element, and we

Arrays 39

2
OUTPUT

ANALYSIS

04 72316331 Ch02 10/31/02 7:10 AM Page 39

decrement nElems. In a real program, we would also take appropriate action if the item
to be deleted could not be found.

Displaying the Array Contents
Displaying all the elements is straightforward: we step through the array, accessing each
one with arr[j] and displaying it.

Program Organization
The organization of array.cpp leaves something to be desired. There are no classes; it’s
just an old-fashioned procedural program. Let’s see if we can make it easier to under-
stand (among other benefits) by making it more object-oriented.

We’re going to provide a gradual introduction to an object-oriented approach, using two
steps. In the first step, we’ll separate the data storage structure (the array) from the rest
of the program by making it into a separate class. The remaining part of the program (the
main() function) will become a user of the structure. In the second step, we’ll improve
the communication between the storage structure and its user. We’ll look at these steps in
the next two sections.

Dividing a Program into Classes
The array.cpp program consisted of one big function. We can reap many benefits by
dividing the program into several parts: The data storage structure itself is one candidate,
and the part of the program that uses this data structure is another. The first part can be
represented as a class, and the second by the special function main(). By dividing the
program into these two parts we can clarify the functionality of the program, making it
easier to design and understand (and, in real programs, easier to modify and maintain).

In array.cpp we used an array as a data storage structure, but we treated it simply as a
language element. Now we’ll encapsulate the array in a class, called LowArray. We’ll
also provide class member functions by which statements in main() can access the array.
These member functions allow communication between LowArray and main().

Our first design of the LowArray class won’t be entirely successful. It’s an improvement
on array.cpp, but it nevertheless demonstrates the need for an even better approach. The
lowArray.cpp program in Listing 2.2 shows how it looks.

LISTING 2.2 THE lowArray.cpp PROGRAM

//lowArray.cpp
//demonstrates array class with low-level interface

40 Hour 2

INPUT

04 72316331 Ch02 10/31/02 7:10 AM Page 40

#include <iostream>
#include <vector>
using namespace std;
//
class LowArray

{
private:

vector<double> v; //vector holds doubles

public:
//--

LowArray(int max) //constructor
{ v.resize(max); } //size the vector

//--
void setElem(int index, double value) //put element into

{ v[index] = value; } //array, at index
//--

double getElem(int index) //get element from
{ return v[index]; } //array, at index

//--
}; //end class LowArray

//
int main()

{
LowArray arr(100); //create a LowArray
int nElems = 0; //number of items
int j; //loop variable

//--
arr.setElem(0, 77); //insert 10 items
arr.setElem(1, 99);
arr.setElem(2, 44);
arr.setElem(3, 55);
arr.setElem(4, 22);
arr.setElem(5, 88);
arr.setElem(6, 11);
arr.setElem(7, 00);
arr.setElem(8, 66);
arr.setElem(9, 33);
nElems = 10; //now 10 items in array

//--
for(j=0; j<nElems; j++) //display items

cout << arr.getElem(j) << “ “;
cout << endl;

//--
int searchKey = 26; //search for item
for(j=0; j<nElems; j++) //for each element,

if(arr.getElem(j) == searchKey) //found item?
break;

if(j == nElems) //no

Arrays 41

2

continues

04 72316331 Ch02 10/31/02 7:10 AM Page 41

LISTING 2.2 CONTINUED

cout << “Can’t find “ << searchKey << endl;
else //yes

cout << “Found “ << searchKey << endl;
//--

double deleteKey = 55; //delete value 55
cout << “Deleting element “ << deleteKey << endl;
for(j=0; j<nElems; j++) //look for it
if(arr.getElem(j) == deleteKey)

break;
for(int k=j; k<nElems; k++) //higher ones down

arr.setElem(k, arr.getElem(k+1));
nElems--; //decrement size

//--
for(j=0; j<nElems; j++) //display items

cout << arr.getElem(j) << “ “;
cout << endl;
return 0;
} //end main()

The output from this program is similar to that from array.cpp, except that we
try to find a non-existent key value (26) before deleting the item with the key

value 55.

77 99 44 55 22 88 11 0 66 33
Can’t find 26
77 99 44 22 88 11 0 66 33

The LowArray Class and main()
In lowArray.cpp, we wrap the class LowArray around an ordinary C++ array.
The array is hidden from the outside world inside the class; it’s private, so only

LowArray class member functions can access it. There are three such functions:
setElem() and getElem(), which insert and retrieve an element, respectively; and a con-
structor, which creates an empty array of a specified size.

Notice that we use a vector to store the data instead of an array. It operates in most ways
like an array, but allows us to specify the vector’s size in the class constructor, using the
resize() member function. This allows an object of class LowArray to hold any amount
of data, unlike an array, which must always hold the same amount of data.

The main() function creates an object of the LowArray class and uses it to store and
manipulate data. Think of LowArray as a tool, and main() as a user of the tool. We’ve
divided the program into two parts with clearly defined roles. This is a valuable first step
in making a program object-oriented.

42 Hour 2

OUTPUT

ANALYSIS

04 72316331 Ch02 10/31/02 7:10 AM Page 42

A class used to store data objects, as is LowArray in the lowArray.cpp program,
is sometimes called a container class. Typically, a container class not only stores

the data, but also provides member functions for accessing the data, and perhaps also
sorting it and performing other complex actions on it.

The problem with the lowArray.cpp program is that main() must do too much work. In
the next section we’ll see how to fix this, and introduce the idea of interfaces.

Class Interfaces
We’ve seen how a program can be divided into separate parts. How do these parts inter-
act with each other? Communication between classes and other parts of the program, and
the division of responsibility between them, are important aspects of object-oriented pro-
gramming. This is especially true when a class might have many different users.
Typically a class can be used over and over by different users (or the same user) for dif-
ferent purposes. For example, it’s possible that someone might use the LowArray class in
some other program to store the serial numbers of her traveler’s checks. The class can
handle this just as well as it can store the numbers of baseball players.

If a class is used by many different programmers, the class should be designed so that it’s
easy to use. The way a class user relates to the class is called the class interface. Because
class data members are typically private, when we talk about the interface we usually
mean the class member functions: what they do and what their arguments are. It’s by
calling these member functions that a class user interacts with an object of the class. One
of the important advantages conferred by object-oriented programming is that a class
interface can be designed to be as convenient and efficient as possible. Figure 2.3 is a
fanciful interpretation of the LowArray interface.

Making main()’s Job Easier
The interface to the LowArray class in lowArray.cpp is not particularly convenient. The
member functions setElem() and getElem() operate on a low conceptual level, perform-
ing exactly the same tasks as the [] operator in an ordinary C++ array. The class user,
represented by the main() function, ends up having to carry out the same low-level oper-
ations it did in the non-class version of an array in the array.cpp program. The only dif-
ference was that it used setElem() and getElem() instead of the [] operator. It’s not
clear that this is an improvement.

Also notice that there’s no convenient way to display the contents of the array. Somewhat
crudely, main() simply uses a for loop and the getElem() member function for this pur-
pose. We could avoid repeated code by writing a separate function that main() could call

Arrays 43

2

NEW TERM

04 72316331 Ch02 10/31/02 7:10 AM Page 43

to display the array contents, but isn’t it really the responsibility of the LowArray class to
provide this function?

44 Hour 2

FIGURE 2.3
The LowArray inter-
face.

se
tE

lem
()

getE
lem

()

lowArray

a

Private Data

Interface

These questions suggest that we might redesign the interface between the class and
main() to obtain more of the advantages of OOP.

Who’s Responsible for What?
In the lowArray.cpp program, the main() routine, which is the user of the data storage
structure LowArray, must keep track of the indices to the array. For some users of an
array, who need random access to array elements and don’t mind keeping track of the
index numbers, this arrangement might make sense. For example, sorting an array, as
we’ll see in Hour 3, can make efficient use of this direct “hands-on” approach.

However, in a typical program, the user of the data storage device won’t find access to
the array indices to be helpful or relevant. In the Cardfile program in Hour 1, for exam-
ple, if the card data were stored in an array and you wanted to insert a new card, it would
be easier not to have to worry about exactly where in the array it is going to go.

The highArray.cpp Example
Our next sample program shows an improved interface for the storage structure class,
called HighArray. Using this interface, the class user, main(), no longer needs to think
about index numbers. The setElem() and getElem() member functions are gone; they
are replaced by insert(), find(), and delete(). These new member functions don’t
require an index number as an argument because the class takes responsibility for han-

04 72316331 Ch02 10/31/02 7:10 AM Page 44

dling index numbers. The user of the class is free to concentrate on the what instead of
the how: what’s going to be inserted, deleted, and accessed, instead of exactly how those
activities are carried out.

Figure 2.4 shows the HighArray interface and Listing 2.3 shows the highArray.cpp
program.

Arrays 45

2FIGURE 2.4
The HighArray inter-
face.

ins
ert ()

de
let

e ()

highArray()

a

Private Data

Interface

Find()

LISTING 2.3 THE highArray.cpp PROGRAM

//highArray.cpp
//demonstrates array class with high-level interface
#include <iostream>
#include <vector>
using namespace std;
//
class HighArray

{
private:

vector<double> v; //vector v
int nElems; //number of data items

public:
//--

HighArray() : nElems(0) //default constructor
{ }

//--
HighArray(int max) : nElems(0) //1-arg constructor

{ v.resize(max); } //size the vector
//--

INPUT

continues

04 72316331 Ch02 10/31/02 7:10 AM Page 45

LISTING 2.3 CONTINUED

bool find(double searchKey) //find specified value
{
int j;
for(j=0; j<nElems; j++) //for each element,

if(v[j] == searchKey) //found item?
break; //exit loop before end

if(j == nElems) //gone to end?
return false; //yes, can’t find it

else
return true; //no, found it

} //end find()
//--

void insert(double value) //put element into array
{
v[nElems] = value; //insert it
nElems++; //increment size
}

//--
bool remove(double value) //remove element from array

{
int j;
for(j=0; j<nElems; j++) //look for it

if(value == v[j])
break;

if(j==nElems) //can’t find it
return false;

else //found it
{
for(int k=j; k<nElems; k++) //move higher ones down

v[k] = v[k+1];
nElems--; //decrement size
return true;
}

} //end delete()
//--

void display() //displays array contents
{
for(int j=0; j<nElems; j++) //for each element,

cout << v[j] << “ “; //display it
cout << endl;
}

//--
}; //end class HighArray

//
int main()

{
int maxSize = 100; //array size
HighArray arr(maxSize); //vector

46 Hour 2

04 72316331 Ch02 10/31/02 7:10 AM Page 46

arr.insert(77); //insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(0);
arr.insert(66);
arr.insert(33);

arr.display(); //display items

int searchKey = 35; //search for item
if(arr.find(searchKey))

cout << “Found “ << searchKey << endl;
else

cout << “Can’t find “ << searchKey << endl;

cout << “Deleting 0, 55, and 99” << endl;
arr.remove(0); //delete 3 items
arr.remove(55);
arr.remove(99);

arr.display(); //display items again
return 0;
} //end main()

The HighArray class is now wrapped around the array (actually a vector). In
main(), we create an object of this class and carry out almost the same opera-

tions as in the lowArray.cpp program: we insert 10 items, search for an item—one that
isn’t there—and display the array contents. Because it’s so easy, we delete three items (0,
55, and 99) instead of one, and finally display the contents again. Here’s the output:

77 99 44 55 22 88 11 0 66 33
Can’t find 35
Deleting 0, 55, and 99
77 44 22 88 11 66 33

Notice how short and simple main() is. The details that had to be handled by main() in
lowArray.cpp are now handled by HighArray class member functions.

1. In the HighArray class, the find() member function looks through the array for
the item whose key value was passed to it as an argument. It returns true or false,
depending on whether it finds the item or not.

2. The insert() member function places a new data item in the next available space
in the array. A data member called nElems keeps track of the number of array cells

Arrays 47

2

ANALYSIS

OUTPUT

04 72316331 Ch02 10/31/02 7:10 AM Page 47

that are actually filled with data items. The main() function no longer needs to
worry about how many items are in the array.

3. The delete() member function searches for the element whose key value was
passed to it as an argument, and when it finds that element, it shifts all the ele-
ments in higher index cells down one cell, thus writing over the deleted value; it
then decrements nElems. We’ve also included a display() member function,
which displays all the values stored in the array.

The User’s Life Made Easier
In lowArray.cpp, the code in main() to search for an item took eight lines; in
highArray.cpp, it takes only one. The class user, represented by main(), need not worry
about index numbers or any other array details. Amazingly, the class user doesn’t even
need to know what kind of data structure the HighArray class is using to store the data.
The structure is hidden behind the interface. In fact, in the next section, we’ll see the
same interface used with a somewhat different data structure.

Abstraction
The process of separating the how from the what—how an operation is performed inside
a class, as opposed to what’s visible to the class user—is called abstraction. Abstraction
is an important aspect of software engineering. By abstracting class functionality we
make it easier to design a program because we don’t need to think about implementation
details at too early a stage in the design process.

Summary
In this hour, you’ve learned the following:

● Unordered arrays offer fast insertion but slow searching and deletion.

● Wrapping an array in a class protects the array from being inadvertently altered.

● A class interface comprises the member functions (and occasionally data members)
that the class user can access.

● A class interface can be designed to make things simpler for the class user
(although possibly harder for the class designer).

48 Hour 2

04 72316331 Ch02 10/31/02 7:10 AM Page 48

Q&A
Q Why should I wrap a class around an array? I’ve been using arrays for years

without going to all this trouble.

A This is our way of introducing the object-oriented approach to data structures. It
might not seem to buy you much in these simple examples, but, as the data struc-
tures become more complicated in later hours, you’ll see a payoff in the simplicity
and robustness of the programming.

Q Is all this talk about interfaces going to be important in understanding data
structures and algorithms?

A It’s not central to how the data structures and algorithms work. However, if you’re
using object-oriented versions of data structures, you’ll be using interfaces all the
time, so it’s helpful to be aware of the concept.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A, “Quiz
Answers,” for quiz answers.

Quiz
1. On average, how many items must be moved to insert a new item into an unsorted

array with N items?

2. On average, how many items must be moved to delete an item from an unsorted
array with N items?

3. On average, how many items must be examined to find a particular item in an
unsorted array with N items?

4. What is a class interface?

5. Why is it important to make things easier for the class user than for the class
designer?

6. What are the advantages of wrapping an array in a class?

7. What’s an example of an operation that’s easier to perform on an array that’s in a
class than on a simple array?

8. What is abstraction?

Arrays 49

2

04 72316331 Ch02 10/31/02 7:10 AM Page 49

Exercise
Imagine ways to improve the interface between an array class and a user of the class
such as the main() function. Dream up some new member functions to add to the class,
such as a function that displays all data members with keys greater than a certain value.
How many such functions would you need in a general-purpose array class? Would too
many such functions become cumbersome?

50 Hour 2

04 72316331 Ch02 10/31/02 7:10 AM Page 50

HOUR 3
Ordered Arrays

In this hour we’ll examine a special kind of array—the ordered array—in
which the data is stored in ascending (or descending) key order. This
arrangement makes possible a fast way of searching for a data item: the
binary search. In this hour you will learn about

● Ordered arrays

● Binary searches

● Measuring the speed of binary searches

● Storing class objects in arrays

● Big O notation

The Ordered Workshop Applet
We’ll start with a Workshop applet that demonstrates ordered arrays and
binary searches.

Imagine an array in which the data items are arranged in order of
ascending key values; that is, with the smallest value at index 0, and

NEW TERM

05 72316331 Ch03 10/31/02 7:11 AM Page 51

each cell holding a value larger than the cell below it. Such an array is called an ordered
array.

When we insert an item into this array, the correct location must be found for the inser-
tion: just above a smaller value and just below a larger one. Then all the larger values
must be moved up to make room. Why would we want to arrange data in order? One
advantage is that we can speed up search times dramatically using a binary search.

Start the Ordered Workshop applet. You’ll see an array; it’s similar to the one in the
Array Workshop applet, but the data is ordered. Figure 3.1 shows how this looks.

52 Hour 3

FIGURE 3.1
The Ordered Workshop
applet.

In the next sections we’ll demonstrate the linear search and the binary search, a faster
approach made possible by ordering the array. In the ordered array we’ve chosen to not
allow duplicates. As we saw earlier, this speeds up searching somewhat but slows down
insertion.

Demonstrating the Linear Search
Two search algorithms are available for the Ordered Workshop applet: linear and binary.
Linear search is the default. Linear searches operate in much the same way as the
searches in the unordered array in the Array applet: the red arrow steps along, looking
for a match. The difference is that in the ordered array, the search quits if an item with a
larger key is found.

05 72316331 Ch03 10/31/02 7:11 AM Page 52

Try this out. Make sure the Linear radio button is selected. Then use the Find button to
search for a non-existent value that, if it were present, would fit somewhere in the middle
of the array. In Figure 3.1, this might be 400. You’ll see that the search terminates when
the first item larger than 400 is reached; it’s 427 in the figure. The algorithm knows
there’s no point looking further.

Try out the Ins and Del buttons as well. Use Ins to insert an item with a key value that
will go somewhere in the middle of the existing items. You’ll see that insertion requires
moving all the items with key values larger than the item being inserted.

Use the Del button to delete an item from the middle of the array. Deletion works much
the same as it did in the Array applet, shifting items with higher index numbers down to
fill in the hole left by the deletion. In the ordered array, however, the deletion algorithm
can quit partway through if it doesn’t find the item, just as the search routine can.

Demonstrating the Binary Search
The payoff for using an ordered array comes when we use a binary search. This kind of
search is much faster than a linear search, especially for large arrays. We’ll start with an
example of the binary search in a non-computer context.

The Guess-a-Number Game
A binary search uses the same approach you did as a kid (if you were smart) to guess a
number in the well-known children’s guessing game. In this game, a friend asks you to
guess a number she’s thinking of between 1 and 100. When you guess a number, she’ll
tell you one of three things: your guess is larger than the number she’s thinking of, it’s
smaller, or you guessed correctly.

To find the number in the fewest guesses, you should always start by guessing the middle
number of the unknown range, in this case, 50. If she says your guess is too low, you
deduce the number is between 51 and 100, so your next guess should be 75 (halfway
between 51 and 100). If she says it’s too high, you deduce the number is between 1 and
49, so your next guess should be 25.

Each guess allows you to divide the range of possible values in half. Finally, the range is
only one number long, and that’s the answer.

Notice how few guesses are required to find the number. If you used a linear search—
guessing first 1, and then 2, and then 3, and so on—on the average, it would take you 50
guesses to find the number. In a binary search each guess divides the range of possible
values in half, so the number of guesses required is far fewer. Table 3.1 shows a game
session when the number to be guessed is 33.

Ordered Arrays 53

3

05 72316331 Ch03 10/31/02 7:11 AM Page 53

TABLE 3.1 GUESSING A NUMBER

Step Number Number Guessed Result Range of Possible Values

0 1–100

1 50 Too high 1–49

2 25 Too low 26–49

3 37 Too high 26–36

4 31 Too low 32–36

5 34 Too high 32–33

6 32 Too low 33–33

7 33 Correct

The correct number is identified in only seven guesses. This is the maximum. You might
get lucky and guess the number before you’ve worked your way all the way down to a
range of one. This would happen if the number to be guessed is 50, for example, or 34.

To Do: Perform a Binary Search in the Ordered Workshop
Applet

1. To perform a binary search with the Ordered Workshop applet, you must use the
New button to create a new array. After the first press you’ll be asked to specify the
size of the array (maximum 60) and which kind of searching scheme you want: lin-
ear or binary. Choose the binary scheme by clicking the Binary radio button.

2. After the array is created, use the Fill button to fill it with data items. When
prompted, type the amount (not more than the size of the array). A few more
presses fill in all the items.

3. After the array is filled, pick one of the values in the array and see how the Find
button can be used to locate it. After a few preliminary presses, you’ll see the red
arrow pointing to the algorithm’s current guess, and you’ll see the range shown by
a vertical blue line adjacent to the appropriate cells. Figure 3.2 depicts the situation
when the range is the entire array.

At each press of the Find button the range is halved and a new guess is chosen in the
middle of the range. Figure 3.3 shows the second range used in the process.

Even with a maximum array size of 60 items, six button presses suffice to locate any
item.

Try using the binary search with different array sizes. Can you figure out, before you run
the applet, how many steps are necessary for a search of a given size? This is an impor-
tant question, and we’ll return to it later in this hour.

54 Hour 3

,
TO

D
O

,

05 72316331 Ch03 10/31/02 7:11 AM Page 54

Notice that the insertion and deletion operations also employ the binary search (when it’s
selected). The place where an item should be inserted is found with a binary search, as is
an item to be deleted. In this applet, items with duplicate keys are not permitted.

Now that we’ve seen how the Workshop applet handles algorithms in an ordered array,
let’s look at how C++ code performs these algorithms behind the scenes.

C++ Code for an Ordered Array
We’ll use the OrdArray class to encapsulate the array and its algorithms. The heart of
this class is the find() member function, which uses a binary search to locate a specified
data item. We’ll examine find() in detail before showing the complete program.

Ordered Arrays 55

3

FIGURE 3.2
The initial range in a
binary search.

FIGURE 3.3
The second range of a
binary search.

05 72316331 Ch03 10/31/02 7:11 AM Page 55

Conducting a Binary Search with the find() Member
Function
The find() member function searches for a specified item by repeatedly dividing in half
the range of array elements to be considered. Listing 3.1 shows how it looks:

LISTING 3.1 THE find() MEMBER FUNCTION

int find(double searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;
int curIn;

while(true)
{
curIn = (lowerBound + upperBound) / 2;
if(v[curIn]==searchKey)

return curIn; //found it
else if(lowerBound > upperBound)

return nElems; //can’t find it
else //divide range

{
if(v[curIn] < searchKey)

lowerBound = curIn + 1; //it’s in upper half
else

upperBound = curIn - 1; //it’s in lower half
} //end else divide range

} //end while
} //end find()

This member function begins by setting the lowerBound and upperBound vari-
ables to the first and last occupied cells in the array. This specifies the range

where the item we’re looking for, searchKey, might be found. Then, within the while
loop, the current index, curIn, is set to the middle of this range.

If we’re lucky, curIn might already be pointing to the desired item, so we first check
whether this is true. If it is, we’ve found the item so we return with its index, curIn.

Each time through the loop we divide the range in half. Eventually it will get so small it
can’t be divided any more. We check for this in the next statement: If lowerBound is
greater than upperBound, the range has ceased to exist. (When lowerBound equals
upperBound the range is one and we need one more pass through the loop.) We can’t
continue the search without a valid range, but we haven’t found the desired item, so we
return nElems, the total number of items. This isn’t a valid index because the last filled

56 Hour 3

INPUT

ANALYSIS

05 72316331 Ch03 10/31/02 7:11 AM Page 56

cell in the array is nElems-1. The class user interprets this value to mean that the item
wasn’t found.

If curIn is not pointing at the desired item, and the range is still big enough, we’re ready
to divide the range in half. We compare the value at the current index, a[curIn], which
is in the middle of the range, with the value to be found, searchKey.

If searchKey is larger, we know we should look in the upper half of the range.
Accordingly, we move lowerBound up to curIn. Actually we move it one cell beyond
curIn because we’ve already checked curIn itself at the beginning of the loop.

If searchKey is smaller than a[curIn], we know we should look in the lower half of the
range. So we move upperBound down to one cell below curIn. Figure 3.4 shows how the
range is altered in these two situations.

Ordered Arrays 57

3
FIGURE 3.4
Dividing the range in a
binary search.

curInlowerBound

lowerBound upperBound
curIn

New range if
searchKey<a[curIn]

New range if
searchKey>a[curIn]

upperBound

lowerBound upperBound
curIn

Investigating the OrdArray Class
In general, the orderedArray.cpp program is similar to highArray.cpp from Hour 2.
The main difference is that find() uses a binary search, as we’ve seen.

We could have used a binary search to locate the position where a new item
will be inserted. This involves a variation on the find() routine, but for sim-
plicity we retain the linear search in insert(). The speed penalty might not
be important because, as we’ve seen, an average of half the items must be
moved anyway when an insertion is performed, so insertion will not be very
fast even if we locate the item with a binary search. However, for the last

05 72316331 Ch03 10/31/02 7:11 AM Page 57

The OrdArray class includes a new getSize() member function, which returns the num-
ber of data items currently in the array. This is helpful for the class user, main(), when it
calls find(). If find() returns nElems, which main() can discover with getSize(), the
search was unsuccessful. Listing 3.2 shows the complete listing for the
orderedArray.cpp program.

LISTING 3.2 THE orderedArray.cpp PROGRAM

//orderedArray.cpp
//demonstrates ordered array class
#include <iostream>
#include <vector>
using namespace std;
//
class OrdArray

{
private:

vector<double> v; //vector v
int nElems; //number of data items

public:
//---
OrdArray(int max) : nElems(0) //constructor

{ v.resize(max); } //size the vector
//---
int getSize() //return number of

{ return nElems; } //elements
//---
int find(double searchKey)

{
int lowerBound = 0;
int upperBound = nElems-1;
int curIn;

while(true)
{
curIn = (lowerBound + upperBound) / 2;
if(v[curIn]==searchKey)

return curIn; //found it
else if(lowerBound > upperBound)

return nElems; //can’t find it
else //divide range

58 Hour 3

ounce of speed, you could change the initial part of insert() to a binary
search (as is done in the Ordered Workshop applet). Similarly, the delete()
member function could call find() to figure out the location of the item to
be deleted.

INPUT

05 72316331 Ch03 10/31/02 7:11 AM Page 58

{
if(v[curIn] < searchKey)

lowerBound = curIn + 1; //it’s in upper half
else

upperBound = curIn - 1; //it’s in lower half
} //end else divide range

} //end while
} //end find()

//---
void insert(double value) //put element into array

{
int j;
for(j=0; j<nElems; j++) //find where it goes

if(v[j] > value) //(linear search)
break;

for(int k=nElems; k>j; k--) //move bigger ones up
v[k] = v[k-1];

v[j] = value; //insert it
nElems++; //increment size
} //end insert()

//---
bool remove(double value)

{
int j = find(value);
if(j==nElems) //can’t find it

return false;
else //found it

{
for(int k=j; k<nElems; k++) //move bigger ones down

v[k] = v[k+1];
nElems--; //decrement size
return true;
}

} //end remove()
//---
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

cout << v[j] << “ “; //display it
cout << endl;
}

//---
}; //end class OrdArray

//
int main()

{
int maxSize = 100; //array size
OrdArray arr(maxSize); //create the array

Ordered Arrays 59

3

continues

05 72316331 Ch03 10/31/02 7:11 AM Page 59

LISTING 3.2 CONTINUED

arr.insert(77); //insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

int searchKey = 55; //search for item
if(arr.find(searchKey) != arr.getSize())

cout << “Found “ << searchKey << endl;
else

cout << “Can’t find “ << searchKey << endl;

arr.display(); //display items

cout << “Deleting 0, 55, and 99” << endl;
arr.remove(00); //delete 3 items
arr.remove(55);
arr.remove(99);

arr.display(); //display items again
return 0;
} //end main()

The Advantages of Using Ordered Arrays
What have we gained by using an ordered array? The major advantage is that search
times are much faster than in an unordered array. The disadvantage is that insertion takes
longer because all the data items with a higher key value must be moved up to make
room. Deletions are slow in both ordered and unordered arrays because items must be
moved down to fill the hole left by the deleted item.

Ordered arrays are therefore useful in situations where searches are frequent, but inser-
tions and deletions are not. An ordered array might be appropriate for a datafile of com-
pany employees, for example. Hiring new employees and laying off existing ones would
probably be infrequent occurrences compared with accessing an existing employee’s
record for information, or updating it to reflect changes in salary, address, and so on.

A retail store inventory, on the other hand, would not be a good candidate for an ordered
array because the frequent insertions and deletions—as items arrived in the store and
were sold—would run slowly.

60 Hour 3

05 72316331 Ch03 10/31/02 7:11 AM Page 60

Now that we’ve seen how binary searches work, we’ll shift gears and look at some of the
mathematics that describe the process.

Logarithms
How many steps are necessary to perform a binary search on a given size array? In this
section we’ll explain how logarithms are used to calculate this number. If you’re a math
major, you can probably skip this section. If math makes you break out in a rash, you can
also skip it, except for taking a long hard look at Table 3.2, which summarizes what you
really need to know.

We’ve seen that a binary search provides a significant speed increase over a linear search.
In the number guessing game, with a range from 1 to 100, it takes a maximum of seven
guesses to identify any number using a binary search; just as in an array of 100 records,
it takes seven comparisons to find a record with a specified key value. How about other
ranges? Table 3.2 shows some representative ranges and the number of comparisons
needed for a binary search.

TABLE 3.2 COMPARISONS NEEDED IN BINARY AND LINEAR SEARCHES

Comparisons Needed Comparisons Needed
Range in Binary Search in Linear Search

10 4 5

100 7 50

1,000 10 500

10,000 14 5,000

100,000 17 50,000

1,000,000 20 500,000

10,000,000 24 5,000,000

100,000,000 27 50,000,000

1,000,000,000 30 500,000,000

Notice the differences between binary search times and linear search times. For very
small numbers of items, the difference isn’t dramatic. Searching 10 items would take an
average of five comparisons with a linear search (N/2), and a maximum of four compar-
isons with a binary search. But the more items there are, the bigger the difference. With
100 items, there are 50 comparisons in a linear search, but only seven in a binary search.
For 1,000 items, the numbers are 500 versus 10, and for 1,000,000 items, they’re
500,000 versus 20. We can conclude that for all but very small arrays, the binary search
is greatly superior.

Ordered Arrays 61

3

05 72316331 Ch03 10/31/02 7:11 AM Page 61

An Equation Relating Range Size and Number of
Steps
You can verify the results of Table 3.2 by repeatedly dividing a range (from the first col-
umn) in half until it’s too small to divide further. The number of divisions this process
requires is the number of comparisons shown in the second column.

Repeatedly dividing the range by two is an algorithmic approach to finding the number
of comparisons. You might wonder whether you could also find the number using a sim-
ple equation. Of course there is such an equation, and it’s worth exploring here because it
pops up from time to time in the study of data structures. This formula involves loga-
rithms. (Don’t panic yet.)

The numbers in Table 3.2 leave out some interesting data. They don’t answer questions
like, “What is the exact size of the maximum range that can be searched in five steps?”
To solve this, we must create a similar table, but one that starts at the beginning, with a
range of one, and works up from there by multiplying the range by two each time. Table
3.3 shows how this looks for the first seven steps.

TABLE 3.3 POWERS OF TWO

Step s, Range Expressed
Same as as Power of
log2(r) Range r 2 (2s)

0 1 20

1 2 21

2 4 22

3 8 23

4 16 24

5 32 25

6 64 26

7 128 27

8 256 28

9 512 29

10 1024 2
10

For our original problem with a range of 100, we can see that six steps don’t produce a
range quite big enough (64), whereas seven steps cover it handily (128). Thus, the seven
steps that are shown for 100 items in Table 3.2 are correct, as are the 10 steps for a range
of 1000.

62 Hour 3

05 72316331 Ch03 10/31/02 7:11 AM Page 62

Doubling the range each time creates a series that’s the same as raising two to a power,
as shown in the third column of Table 3.3. We can express this as an equation. If s repre-
sents steps (the number of times you multiply by two—that is, the power to which two is
raised)—and r represents the range, the equation is

r = 2s

If you know s, the number of steps, this tells you r, the range. For example, if s is 6, the
range is 26, or 64.

The Opposite of Raising Two to a Power
But our original question was the opposite: Given the range, we want to know how many
comparisons it will take to complete a search. That is, given r, we want an equation that
gives us s.

The inverse of raising something to a power is a logarithm. Here’s the formula we want,
expressed with a logarithm:

s = log2(r)

This says that the number of steps (comparisons) is equal to the logarithm to the base 2
of the range. What’s a logarithm? The base-2 logarithm of a number r is the number of
times you must multiply 2 by itself to get r. In Table 3.3, we show that the numbers in
the first column, s, are equal to log2(r).

How do you find the logarithm of a number without doing a lot of dividing? Pocket cal-
culators and most computer languages have a log function. This is usually log to the base
10 (expressed log10), but you can convert easily to base 2 (log2) by multiplying by 3.322.
For example, log10(100) = 2, so log2(100) = 2 times 3.322, or 6.644. Rounded up to the
whole number 7, this is what appears in the column to the right of 100 in
Table 3.3.

Ordered Arrays 63

3

The key point here is to understand the relationship between a number and
its logarithm. Look again at Table 3.2, which compares the number of items
and the number of steps needed to find a particular item. Every time you
multiply the number of items (the range) by a factor of 10, you add only
three or four steps (actually 3.322, before rounding off to whole numbers)
to the number needed to find a particular element. This is because as a
number grows larger, its logarithm doesn’t grow nearly as fast. We’ll com-
pare this logarithmic growth rate with that of other mathematical functions
when we talk about Big O notation later in this hour.

05 72316331 Ch03 10/31/02 7:11 AM Page 63

Next we’ll get away from math and see how objects relate to data structures and algo-
rithms.

Storing Objects
In the C++ examples we’ve shown so far, we’ve stored primitive variables of type double
in our data structures. This simplifies the program examples, but it’s not representative of
how you use data storage structures in the real world. Usually, the data items (records)
you want to store are combinations of many fields. For a personnel record, you would
store last name, first name, age, Social Security number, and possibly many other fields.
For a stamp collection, you would store the name of the country that issued the stamp, its
catalog number, condition, current value, and so on.

In our next C++ example, we’ll show how objects, rather than variables of primitive
types, can be stored.

Implementing the Person Class
In C++, a data record is usually represented by a class object. Let’s examine a typical
class used for storing personnel data. Listing 3.3 shows the code for the Person class:

LISTING 3.3 THE Person CLASS

class Person
{
private:

string lastName;
string firstName;
int age;

public://--
Person(string last, string first, int a) : //constructor

lastName(last), firstName(first), age(a)
{ }

//--
void displayPerson()

{
cout << “ Last name: “ << lastName;
cout << “, First name: “ << firstName;
cout << “, Age: “ << age << endl;
}

//--
string getLast() //get last name

{ return lastName; }
}; //end class Person

64 Hour 3

INPUT

05 72316331 Ch03 10/31/02 7:11 AM Page 64

We show only three data members in this class, a person’s last name, first name,
and age. Of course, records for most applications would contain many additional

fields.

A constructor enables a new Person object to be created and its data members initialized.
The displayPerson() member function displays a Person object’s data, and getLast()
returns the Person’s last name; this is the key data member used for searches.

Examining the classDataArray.cpp Program
The program that makes use of the Person class is similar to the highArray.cpp pro-
gram that stored items of type double in Hour 2, “Arrays.” Only a few changes are nec-
essary to adapt that program to handle Person objects. Here are the major changes:

● The type of the vector v is changed to Person.

● The key data member (the last name) is now a string object. The getLast() mem-
ber function of Person obtains the last name.

● The insert() member function creates a new Person object and inserts it in the
array, instead of inserting a double value.

The main() function has been modified slightly, mostly to handle the increased quantity
of output. We still insert 10 items, display them, search for one, delete three items, and
display them all again. Listing 3.4 shows classDataArray.cpp:

LISTING 3.4 THE classDataArray.cpp PROGRAM

//classDataArray.cpp
//data items as class objects
#include <iostream>
#include <string>
#include <vector>
using namespace std;
//
class Person

{
private:

string lastName;
string firstName;
int age;

public:
//--

Person(string last, string first, int a) : //constructor
lastName(last), firstName(first), age(a)

{ }
//--

Ordered Arrays 65

3

ANALYSIS

INPUT

continues

05 72316331 Ch03 10/31/02 7:11 AM Page 65

LISTING 3.4 CONTINUED

void displayPerson()
{
cout << “ Last name: “ << lastName;
cout << “, First name: “ << firstName;
cout << “, Age: “ << age << endl;
}

//--
string getLast() //get last name

{ return lastName; }
}; //end class Person

//
class ClassDataArray

{
private:

vector<Person*> v; //vector of pointers
int nElems; //number of data items

public:
//--

ClassDataArray(int max) : nElems(0) //constructor
{ v.resize(max); } //create the array

//--
~ClassDataArray() //destructor

{
for(int j=0; j<nElems; j++) //delete each element

delete v[j];
}

//--
Person* find(string searchName)

{ //find specified value
int j;
for(j=0; j<nElems; j++) //for each element,

if(v[j]->getLast() == searchName) //found item?
break; //exit loop before end

if(j == nElems) //gone to end?
return NULL; //yes, can’t find it

else
return v[j]; //no, found it

}; //end find()
//--

//put person into array
void insert(string last, string first, int age)

{
v[nElems] = new Person(last, first, age);
nElems++; //increment size
}

//---
bool remove(string searchName) //delete person from array

{

66 Hour 3

05 72316331 Ch03 10/31/02 7:11 AM Page 66

int j;
for(j=0; j<nElems; j++) //look for it

if(v[j]->getLast() == searchName)
break;

if(j==nElems) //can’t find it
return false;

else //found it
{
delete v[j]; //delete Person object
for(int k=j; k<nElems; k++) //shift down

v[k] = v[k+1];
nElems--; //decrement size
return true;
}

} //end remove()
//---
void displayA() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

v[j]->displayPerson(); //display it
}

//---
}; //end class ClassDataArray

//
int main()

{
int maxSize = 100; //array size
ClassDataArray arr(maxSize); //array

arr.insert(“Evans”, “Patty”, 24); //insert 10 items
arr.insert(“Smith”, “Lorraine”, 37);
arr.insert(“Yee”, “Tom”, 43);
arr.insert(“Adams”, “Henry”, 63);
arr.insert(“Hashimoto”, “Sato”, 21);
arr.insert(“Stimson”, “Henry”, 29);
arr.insert(“Velasquez”, “Jose”, 72);
arr.insert(“Lamarque”, “Henry”, 54);
arr.insert(“Vang”, “Minh”, 22);
arr.insert(“Creswell”, “Lucinda”, 18);

arr.displayA(); //display items

string searchKey = “Stimson”; //search for item
cout << “Searching for Stimson” << endl;
Person* found;
found=arr.find(searchKey);
if(found != NULL)

{
cout << “ Found “;

Ordered Arrays 67

3

continues

05 72316331 Ch03 10/31/02 7:11 AM Page 67

LISTING 3.4 CONTINUED

found->displayPerson();
}

else
cout << “ Can’t find “ << searchKey << endl;

cout << “Deleting Smith, Yee, and Creswell” << endl;
arr.remove(“Smith”); //delete 3 items
arr.remove(“Yee”);
arr.remove(“Creswell”);

arr.displayA(); //display items again
return 0;
} //end main()

Here’s the output of this program:

Last name: Evans, First name: Patty, Age: 24
Last name: Smith, First name: Lorraine, Age: 37
Last name: Yee, First name: Tom, Age: 43
Last name: Adams, First name: Henry, Age: 63
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Lamarque, First name: Henry, Age: 54
Last name: Vang, First name: Minh, Age: 22
Last name: Creswell, First name: Lucinda, Age: 18

Searching for Stimson
Found Last name: Stimson, First name: Henry, Age: 29

Deleting Smith, Yee, and Creswell
Last name: Evans, First name: Patty, Age: 24
Last name: Adams, First name: Henry, Age: 63
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Lamarque, First name: Henry, Age: 54
Last name: Vang, First name: Minh, Age: 22

This program shows that class objects can be handled by data storage structures
in much the same way as primitive types. (Note that a program intended for pub-

lic use, using the last name as a key would need to account for duplicate last names,
which would complicate the programming, as discussed earlier.)

Now we’ll move on to a key topic in the discussion of algorithms: a concise and useful
way to describe algorithm efficiency.

68 Hour 3

ANALYSIS

OUTPUT

05 72316331 Ch03 10/31/02 7:11 AM Page 68

Big O Notation
Automobiles are divided by size into several categories: subcompacts, compacts, mid-
size, and so on. These categories provide a quick idea of what size car you’re talking
about, without mentioning actual dimensions. Similarly, it’s useful to have a shorthand
way to say how efficient a computer algorithm is. In computer science, this rough mea-
sure is called “Big O” notation.

You might think that in comparing algorithms you would say things like, “Algorithm A is
twice as fast as algorithm B,” but in fact this sort of statement isn’t too meaningful. Why
not? Because the proportion can change radically as the number of items changes.
Perhaps you increase the number of items by 50%, and now A is three times as fast as B.
Or you have half as many items, and A and B are now equal. What you need is a com-
parison that’s related to the number of items. Let’s see how this looks for the algorithms
we’ve seen so far.

Inserting into an Unordered Array: Constant
Insertion into an unordered array is the only algorithm we’ve seen that doesn’t depend on
how many items are in the array. The new item is always placed in the next available
position, at a[nElems], and nElems is then incremented. This requires the same amount
of time no matter how big N—the number of items in the array—is. We can say that the
time, T, to insert an item into an unsorted array is a constant K:

T = K

In a real situation, the actual time (in microseconds or some other unit of measure)
required by the insertion is related to the speed of the microprocessor, how efficiently the
compiler has generated the program code, and other factors. The constant K in the pre-
ceding equation is used to account for all such factors. To find out what K is in a real sit-
uation, you must measure how long an insertion took. (Software exists for this very
purpose.) K would then be equal to that time.

Linear Searching: Proportional to N
We’ve seen that in a linear search of items in an array, the number of comparisons that
must be made to find a specified item is, on the average, half of the total number of
items. Thus, if N is the total number of items, the search time T is proportional to
half of N:

T = K * N / 2

Ordered Arrays 69

3

05 72316331 Ch03 10/31/02 7:11 AM Page 69

As with insertions, discovering the value of K in this equation would require timing a
search for some (probably large) value of N, and then using the resulting value of T to
calculate K. After you know K, you can calculate T for any other value of N.

For a handier formula, we can lump the 2 into the K. Our new K is equal to the old K
divided by 2. Now we have

T = K * N

This says that average linear search times are proportional to the size of the array. If an
array is twice as big, it will take twice as long to search.

Binary Searching: Proportional to log(N)
Similarly, we can concoct a formula relating T and N for a binary search:

T = K * log2(N)

As we saw in the section on Logarithms, the time is proportional to the base-2 logarithm
of N. Actually, because any logarithm is related to any other logarithm by a constant
(3.322 to go from base 2 to base 10), we can lump this constant into K as well. Then we
don’t need to specify the base:

T = K * log(N)

Eliminating the Constant K
Big O notation looks like the formulas we just examined, but it dispenses with the con-
stant K. When comparing algorithms you don’t really care about the particular micro-
processor chip or compiler; all you want to compare is how T changes for different
values of N, not what the actual numbers are. Therefore, the constant isn’t needed.

Big O notation uses the uppercase letter O, which you can think of as meaning “order
of.” In Big O notation, we would say that a linear search takes O(N) time, and a binary
search takes O(log N) time. Insertion into an unordered array takes O(1), or constant
time. (That’s the numeral 1 in the parentheses.)

Table 3.4 summarizes the running times of the algorithms we’ve discussed so far.

TABLE 3.4 RUNNING TIMES IN BIG O NOTATION

Algorithm Running Time in Big O Notation

Linear search O(N)

Binary search O(log N)

Insertion in unordered array O(1)

70 Hour 3

05 72316331 Ch03 10/31/02 7:11 AM Page 70

Algorithm Running Time in Big O Notation

Insertion in ordered array O(N)

Deletion in unordered array O(N)

Deletion in ordered array O(N)

Figure 3.5 graphs some Big O relationships between time and number of items. Based on
this graph, we might rate the various Big O values (very subjectively) like this: O(1) is
excellent, O(log N) is good, O(N) is fair, and O(N2) is poor. O(N2) occurs in certain sort-
ing algorithms that we’ll look at in Hours 4 and 5.

Ordered Arrays 71

3
FIGURE 3.5
Graph of Big O times.

5

5 10 15 20 25

10

15

20

25

30

35

40

0

N
u
m
b
e
r

o
f

s
t
e
p
s

Number of items (N)

O(N2)

O(N)

O(log N)

O(1)

Remember: The idea in Big O notation isn’t to give an actual figure for running time, but
to convey how running times are affected by the number of items. This is the most mean-
ingful way to compare algorithms, except perhaps actually measuring running times in a
real installation.

05 72316331 Ch03 10/31/02 7:11 AM Page 71

Why Not Use Arrays for Everything?
We’ve looked at two different kinds of arrays used to store data. In the balance of this
book we’ll be looking at various other data structures. But what’s wrong with arrays?
Why not use them for everything?

We’ve already seen some of the disadvantages of arrays. In an unordered array you can
insert items quickly, in O(1) time, but searching takes slow O(N) time. In an ordered
array you can search quickly, in O(log N) time, but insertion takes O(N) time. For both
kinds of arrays, deletion takes O(N) time because half the items (on the average) must be
moved to fill in the hole.

It would be nice if there were data structures that could do everything—insertion, dele-
tion, and searching—quickly, ideally in O(1) time, but if not that fast, then in O(log N)
time. In the hours ahead, we’ll see how closely this ideal can be approached, and the
price that must be paid in complexity.

Summary
Today, you learned the following:

● A binary search can be applied to an ordered array.

● The logarithm to the base B of a number A is (roughly) the number of times you
can divide A by B before the result is less than 1.

● Linear searches require time proportional to the number of items in an array.

● Binary searches require time proportional to the logarithm of the number of items.

● Big O notation provides a convenient way to compare the speed of algorithms.

● An algorithm that runs in O(1) time is the best, O(log N) is good, O(N) is fair, and
O(N2) is pretty bad.

Q&A
Q Do people actually use ordered arrays, or do they always use more sophisti-

cated data structures?

A People actually use them, especially, as we noted, when search speed is important
but insertion and deletion are infrequent.

Q I always confuse algorithms and logarithms. Can you help me?

A An algorithm is a sequence of instructions for carrying out an operation. A loga-
rithm is a mathematical relationship between two numbers.

72 Hour 3

05 72316331 Ch03 10/31/02 7:11 AM Page 72

Q Is it important that I understand Big O notation?

A Yes. At the very least you should memorize the last point in the preceding sum-
mary. It gives you a quick way to compare algorithm efficiency.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Why is an ordered array better than an unordered array?

2. In one sentence, how does a binary search work?

3. What is the maximum number of comparisons necessary when performing a binary
search of 100,000 items?

4. What is the equation that tells you how many steps a binary search will take if you
already know the size of the range to be searched?

5. True or false: Only simple variables like int can be stored in a data structure.

6. What is the purpose of Big O notation?

7. Big O notation specifies a relationship between two variables. What are these vari-
ables?

Exercise
Think of other situations in real life that involve binary searches, or at least searches that
use some of the same principles. For example, when you look up “potato” in a dictio-
nary, you don’t examine every word starting at “aardvark.” Instead, you flip open the dic-
tionary in a likely place, compare what’s there with the word you’re looking for, and then
flip the dictionary open to another place you pick based on the comparison. As a human
you can short-circuit such a search somewhat because you know “p” is closer to the end
of the alphabet than the beginning, but the principle is similar.

Ordered Arrays 73

3

05 72316331 Ch03 10/31/02 7:11 AM Page 73

05 72316331 Ch03 10/31/02 7:11 AM Page 74

HOUR 4
The Bubble Sort

In this hour we’ll introduce the simplest way to sort data: the bubble sort.
You’ll learn

● How the bubble sort algorithm works.

● How to write code for the bubble sort in C++.

● How to measure the efficiency of the bubble sort.

Sorting
As soon as you create a significant collection of data, you’ll probably think
of reasons to sort it. You need to arrange names in alphabetical order, stu-
dents by grade, customers by zip code, house sales by price, cities in order
of increasing population, countries by GNP, stars by magnitude, and so on.

Sorting data may also be a preliminary step to searching it. As we saw in the
last hour, a binary search, which can be applied only to sorted data, is much
faster than a linear search.

Because sorting is so important and potentially so time-consuming, it has
been the subject of extensive research in computer science, and some very

06 72316331 Ch04 10/31/02 7:11 AM Page 75

sophisticated methods have been developed. However, in this hour we’ll look at perhaps
the simplest algorithm: the bubble sort. In Hour 5, “The Insertion Sort,” we’ll look at an
improvement on the bubble sort. In Hour 12, “Applied Recursion,” Hour 13, “Quicksort,”
and Hour 14, “Improving Quicksort,” we’ll examine more powerful sorts. All the sorting
algorithms are demonstrated with their own Workshop applets.

The algorithms described in this and the next hour, although unsophisticated and compar-
atively slow, are nevertheless worth examining. Besides being easier to understand, they
are actually better in some circumstances than more sophisticated algorithms. The inser-
tion sort, for example, is preferable to quicksort for small files and for almost-sorted
files. In fact, an insertion sort is commonly used as a part of a quicksort implementation.

The sample programs in this hour build on the array classes we developed in Hours 2,
“Arrays,” and 3, “Ordered Arrays.” The sorting algorithms are implemented as member
functions of similar array classes.

Be sure to try out the Workshop applets for the bubble sort and other sorting algorithms.
They are more effective in explaining how the sorting algorithms work than prose and
static pictures could ever be.

The bubble sort is notoriously slow, but it’s conceptually the simplest of the sorting algo-
rithms, and for that reason it is a good beginning for our exploration of sorting tech-
niques.

Inventing Your Own Sorting Algorithm
How do you sort a collection of unsorted items? Imagine that your kids-league baseball
team (mentioned in Hour 2) is lined up on the field, as shown in Figure 4.1. The regula-
tion nine players, plus an extra, have shown up for practice. You want to arrange the
players in order of increasing height (with the shortest player on the left) for the team
picture. How would you go about this sorting process?

76 Hour 4

FIGURE 4.1
The unordered base-
ball team.

06 72316331 Ch04 10/31/02 7:11 AM Page 76

As a human being, you have advantages over a computer program. You can see all the kids at
once, and you can pick out the tallest kid almost instantly; you don’t need to laboriously mea-
sure and compare everyone. Also, the kids don’t need to occupy particular places. They can
jostle each other, push each other a little to make room, and stand behind or in front of each
other. After some ad hoc rearranging, you would have no trouble in lining up all the kids, as
shown in Figure 4.2.

The Bubble Sort 77

4

FIGURE 4.2
The ordered baseball
team.

A computer program isn’t able to glance over the data in this way. It can only compare
two players at once because that’s how the C++ comparison operators work. This tunnel
vision on the part of algorithms will be a recurring theme. Things might seem simple to
us humans, but the algorithm can’t see the big picture and must, therefore, concentrate
on the details and follow some simple rules.

The algorithm in the bubble sort involves two steps, executed over and over until the data
is sorted:

1. Compare two adjacent items.

2. If necessary, swap (exchange) them.

Bubble-Sorting the Baseball Players
Imagine that you’re nearsighted (like a computer program) so that you can see only two
of the baseball players at the same time, if they’re next to each other and if you stand
very close to them. Given this impediment, how would you sort them? Let’s assume
there are N players, and the positions they’re standing in are numbered from 0 on the left
to N–1 on the right.

To Do: Bubble-Sort the Baseball Players
1. You start at the left end of the line and compare the two kids in positions 0 and 1.

2. If the kid on the left (in position 0) is taller, you swap them. If the kid on the right
(in position 1) is taller, you don’t do anything.,

TO
D

O

06 72316331 Ch04 10/31/02 7:11 AM Page 77

3. Then you move over one position and compare the kids in positions 1 and 2.
Again, if the kid on the left is taller, you swap them. This is shown in Figure 4.3.

78 Hour 4

,

FIGURE 4.3
Bubble sort: beginning
of first pass.

Swap

No Swap

Swap

0 1 2 3 4 5 6 7 8 9

Swap

Here are the rules you’re following:

1. Compare two players.

2. If the one on the left is taller, swap them.

3. Move one position right.

You continue down the line this way until you reach the right end. You have by no
means finished sorting the kids, but you do know that the tallest kid is on the right.

,

06 72316331 Ch04 10/31/02 7:11 AM Page 78

This must be true because as soon as you encounter the tallest kid, you’ll end up
swapping him every time you compare two kids, until eventually he (or she) will
reach the right end of the line. This is why it’s called the bubble sort: as the algo-
rithm progresses, the biggest items “bubble up” to the top end of the array. Figure
4.4 shows the baseball players at the end of the first pass.

The Bubble Sort 79

4

FIGURE 4.4
Bubble sort: end of
first pass.

Sorted

After this first pass through all the data, you’ve made N–1 comparisons (where N
is the number of players), and somewhere between 0 and N–1 swaps, depending on
the initial arrangement of the players. The item at the end of the array is sorted and
won’t be moved again.

Now you go back and start another pass from the left end of the line, comparing
the players at 0 and 1. Again you go toward the right, comparing and (if necessary)
swapping. However, this time you can stop one player short of the end of the line,
at position N–2 because you know the last position, at N–1, already contains the
tallest player. This rule could be stated as step 4.

4. When you reach the first already-sorted player, start over at the left end of the line.

Continue this process until all the players are in order. This is all much harder to
describe than it is to demonstrate, so let’s watch the bubbleSort Workshop applet at
work.

The bubbleSort Workshop Applet
Start the bubbleSort Workshop applet. You’ll see something that looks like a bar graph,
with the bar heights randomly arranged, as shown in Figure 4.5.

We’ll now explain how to operate the applet.

06 72316331 Ch04 10/31/02 7:11 AM Page 79

Sorting at Full Speed with the Run Button
This is a two-speed graph: you can either let it run by itself, or you can single-step
through the process. To get a quick idea what happens, click the Run button. The algo-
rithm will bubble-sort the bars without pausing between steps. When it finishes, in 10
seconds or so, the bars will be sorted, as shown in Figure 4.6.

80 Hour 4

FIGURE 4.5
The bubbleSort
Workshop applet.

FIGURE 4.6
After the bubble sort.

Starting a New Sort with the New Button
To do another sort, press the New button. New creates a new set of bars and initializes
the sorting routine. Repeated presses of New toggle between two arrangements of bars:

06 72316331 Ch04 10/31/02 7:11 AM Page 80

a random order as shown in Figure 4.5, and an inverse ordering where the bars are sorted
backward. This inverse ordering provides an extra challenge for many sorting algorithms.

Single-Stepping with the Step Button
The real payoff for using the bubbleSort Workshop applet comes when you single-step
through a sort. You’ll be able to see exactly how the algorithm carries out each step.

To Do: Single-Step the Bubble Sort
1. Start by creating a new, randomly arranged graph with New. You’ll see three

arrows pointing at different bars. Two arrows, labeled inner and inner+1, are side-
by-side on the left. Another arrow, outer, starts on the far right. (The names are
chosen to correspond to the inner and outer loop variables in the nested loops used
in the C++ code.)

2. Click once on the Step button. You’ll see the inner and the inner+1 arrows move
together one position to the right, swapping the bars if it’s appropriate. These
arrows correspond to the two players you compared, and possibly swapped, in the
baseball scenario.

A message under the arrows tells you whether the contents of inner and inner+1
will be swapped, but you know this just from comparing the bars: if the taller one
is on the left, they’ll be swapped. Messages at the top of the graph tell you how
many swaps and comparisons have been carried out so far. (A complete sort of 10
bars requires 45 comparisons and, on the average, about 22 swaps.)

3. Continue pressing Step. Each time inner and inner+1 finish going all the way
from 0 to outer, the outer pointer moves one position to the left. At all times dur-
ing the sorting process, all the bars to the right of outer are sorted; those to the left
of (and at) outer are not.

Changing the Array Size with the Size Button
The Size button toggles between 10 bars and 100 bars. Figure 4.7 shows what the 100
random bars look like.You probably don’t want to single-step through the sorting process
for 100 bars, unless you’re unusually patient. Press Run instead, and watch how the blue
inner and inner+1 pointers seem to find the tallest unsorted bar and carry it down the
row to the right, inserting it just to the left of any previously sorted bars.

Figure 4.8 shows the situation partway through the sorting process. The bars to the right
of the red (longest) arrow are sorted. The bars to the left are beginning to look sorted, but
much work remains to be done.

The Bubble Sort 81

4

,
TO

D
O

,

06 72316331 Ch04 10/31/02 7:11 AM Page 81

Fixing the Picture with the Draw Button
Sometimes while running the sorting algorithm at full speed, the computer takes time off
to perform some other task. This can result in some bars not being drawn. If this

82 Hour 4

FIGURE 4.7
The bubbleSort applet
with 100 bars.

FIGURE 4.8
100 partly sorted bars.

If you started a sort with Run and the arrows are whizzing around, you can
freeze the process at any point by pressing the Step button. You can then
single-step to watch the details of the operation, or press Run again to
return to high-speed mode.

06 72316331 Ch04 10/31/02 7:11 AM Page 82

happens, you can press the Draw button to redraw all the bars. Doing so pauses the run,
so you’ll need to press the Run button again to continue.

You can press Draw any time there seems to be a glitch in the display.

Now that we’ve seen what the bubble sort looks like with the Workshop applet, let’s
examine the details of some C++ code that does the same thing.

Implementing C++ Code for a Bubble Sort
In the bubbleSort.cpp program, shown in Listing 4.1, a class called ArrayBub encapsu-
lates a vector v, which holds variables of type double.

In a more serious program, the data would probably consist of objects, but we use a
primitive type for simplicity. (We’ll see how objects are sorted in the objectSort.cpp
program in the next hour.) Also, to reduce the size of the listing, we don’t show find()
and delete() member functions with the ArrayBub class, although they would normally
be part of a such a class.

LISTING 4.1 THE bubbleSort.cpp PROGRAM

//bubbleSort.cpp
//demonstrates bubble sort
#include <iostream>
#include <vector>
using namespace std;
//--
class ArrayBub

{
private:

vector<double> v; //vector v
int nElems; //number of data items

//--
void swap(int one, int two) //private member function

{
double temp = v[one];
v[one] = v[two];
v[two] = temp;
}

//--
public:

//--
ArrayBub(int max) : nElems(0) //constructor

{
v.resize(max); //size the vector

The Bubble Sort 83

4INPUT

continues

06 72316331 Ch04 10/31/02 7:11 AM Page 83

LISTING 4.1 CONTINUED

}
//--

void insert(double value) //put element into array
{
v[nElems] = value; //insert it
nElems++; //increment size
}

//--
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

cout << v[j] << “ “; //display it
cout << endl;
}

//--
void bubbleSort() //sorts the array

{
int out, in;

for(out=nElems-1; out>1; out--) //outer loop (backward)
for(in=0; in<out; in++) //inner loop (forward)

if(v[in] > v[in+1]) //out of order?
swap(in, in+1); //swap them

} //end bubbleSort()
//--

}; //end class ArrayBub
//
int main()

{
int maxSize = 100; //array size
ArrayBub arr(maxSize); //create the array

arr.insert(77); //insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); //display items
arr.bubbleSort(); //bubble sort them
arr.display(); //display them again
return 0;
} //end main()

84 Hour 4

06 72316331 Ch04 10/31/02 7:11 AM Page 84

The constructor and the insert() and display() member functions of this class
are similar to those we’ve seen before. However, there’s a new member function:

bubbleSort(). When this function is invoked from main(), the contents of the array are
rearranged into sorted order.

The main() routine inserts 10 items into the array in random order, displays the
array, calls bubbleSort() to sort it, and then displays it again. Here’s the output:

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

The bubbleSort() member function is only a few lines long. Here it is, extracted from
the listing:

void bubbleSort() //sorts the array
{
int out, in;

for(out=nElems-1; out>1; out--) //outer loop (backward)
for(in=0; in<out; in++) //inner loop (forward)

if(v[in] > v[in+1]) //out of order?
swap(in, in+1); //swap them

} //end bubbleSort()

The idea is to put the smallest item at the beginning of the array (index 0) and the largest
item at the end (index nElems-1). The loop counter out in the outer for loop starts at the
end of the array (on the left), at nElems-1, and decrements itself each time through the
loop. The items at indices greater than out are always completely sorted. The out vari-
able moves left after each pass by in so items that are already sorted are no longer
involved in the algorithm.

The inner loop counter, in, starts at the beginning of the array and increments itself each
cycle of the inner loop, exiting when it reaches out. Within the inner loop, the two array
cells pointed to by in and in+1 are compared, and swapped if the value of in is larger
than the value of in+1.

The Bubble Sort 85

4

ANALYSIS

For clarity, we use a separate swap() member function to carry out the swap.
It simply exchanges the two values in the two array cells, using a temporary
variable to hold the value of the first cell while the first cell takes on the
value in the second, and then setting the second cell to the temporary
value. Actually, using a separate swap() function might not be a good idea
in practice because the function call adds a small amount of overhead. If
you’re writing your own sorting routine, you might prefer to make the swap
instructions “inline” to gain a slight increase in speed.

OUTPUT

06 72316331 Ch04 10/31/02 7:11 AM Page 85

Let’s look at a different sort of idea, one that will pop up in many places besides the bub-
ble sort.

Invariants
In many algorithms there are conditions that remain unchanged as the algorithm
proceeds. These conditions are called invariants. Recognizing invariants can be

useful in understanding an algorithm. In certain situations they might also be helpful in
debugging; you can repeatedly check that the invariant is true, and signal an error if it
isn’t.

In the bubbleSort.cpp program, there’s one invariant: the data items to the right of
outer are sorted. This remains true throughout the run of the algorithm. (On the first
pass, nothing has been sorted yet, and there are no items to the right of outer because it
starts on the rightmost element.)

Efficiency of the Bubble Sort
Typically, after we’ve examined an algorithm such as the bubble sort, we’ll also investi-
gate briefly how efficient it is. (Usually this means how fast.) We’ll do that here and with
other algorithms.

As you can see by watching the Workshop applet with 10 bars, the inner and inner+1
arrows make 9 comparisons on the first pass, 8 on the second, and so on, down to 1 com-
parison on the last pass. For 10 items this is

9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45

In general, where N is the number of items in the array, there are N–1 comparisons on
the first pass, N–2 on the second, and so on. The formula for the sum of such a series is

(N-1) + (N-2) + (N-3) + ... + 1 = N*(N-1)/2

N*(N-1)/2 is 45 when N is 10.

Thus the algorithm makes about N2/2 comparisons (ignoring the –1, which doesn’t make
much difference, especially if N is large).

There are fewer swaps than there are comparisons because two bars are swapped only if
they need to be. If the data is random, a swap is necessary about half the time, so there
will be about N2/4 swaps. (Although in the worst case, with the initial data inversely
sorted, a swap is necessary with every comparison.)

86 Hour 4

NEW TERM

06 72316331 Ch04 10/31/02 7:11 AM Page 86

Both swaps and comparisons are proportional to N2. Because constants don’t count in
Big O notation, we can ignore the divisors 2 and 4 and say that the bubble sort runs in
O(N2) time. This is slow, as you can verify by running the Workshop applet with 100
bars.

Whenever you see nested loops such as those in the bubble sort, you can suspect that an
algorithm runs in O(N2) time. The outer loop executes N times, and the inner loop exe-
cutes N (or perhaps N divided by some constant) times for each cycle of the outer loop.
This means you’re doing something approximately N*N or N2 times.

Summary
In this hour, you’ve learned the following:

● The sorting algorithm in this hour assumes an array as a data storage structure.

● Sorting involves comparing the keys of data items in the array and moving the
items around until they’re in sorted order.

● The bubble sort algorithm executes in O(N2) time.

● An invariant is a condition that remains unchanged while an algorithm runs.

● The bubble sort is the least efficient, but the simplest, sort.

Q&A
Q If the bubble sort is so slow, why are we learning about it?

A It’s an easy way to ease into the various concepts involved in sorting. You’ve
learned about comparisons, swaps, and seen some simple C++ code. Now you’re
ready for more complicated algorithms.

Q How much faster are the more powerful sorting algorithms you mention at the
beginning of the hour?

A The fastest sort, quicksort, operates in O(N*logN) time, which is much better than
O(N2).

The Bubble Sort 87

4

06 72316331 Ch04 10/31/02 7:11 AM Page 87

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A, “Quiz
Answers,” for quiz answers.

Quiz
1. Describe the algorithm for carrying out the bubble sort.

2. How many statements does a C++ program need to carry out the bubble sort?

3. What’s an invariant?

4. Why is the bubble sort so slow?

5. How many comparisons does a bubble sort perform in sorting N items?

6. In the bubbleSort.cpp program, why is the bubbleSort() function a member
function of a class?

Exercise
Extract all the cards of one suit from a deck of cards. Shuffle them and then sort them.
Pay close attention to how you sort them. Write down the steps you follow to carry out
the sort. This is an algorithm. How does this algorithm differ from the bubble sort?

88 Hour 4

06 72316331 Ch04 10/31/02 7:11 AM Page 88

HOUR 5
The Insertion Sort

The bubble sort, described in Hour 4, “The Bubble Sort,” is the easiest sort
to understand, so it’s a good starting place in our discussion of sorting.
However, it’s also the least sophisticated. We can improve it at the cost of
some additional complexity. The result is the insertion sort. In this hour you
will learn

● The insertion sort algorithm

● How to write C++ code for the insertion sort

● How to sort objects rather than simple variables

The insertion sort is substantially better than the bubble sort (and various
other elementary sorts we don’t describe here, such as the selection sort). It
still executes in O(N2) time, but it’s about twice as fast as the bubble sort.
It’s also not too complex, although it’s slightly more involved than the bub-
ble sort. It’s often used as the final stage of more sophisticated sorts, such as
quicksort.

07 72316331 Ch05 10/31/02 7:12 AM Page 89

Insertion Sort on the Baseball Players
Start with your baseball players lined up in random order. (They wanted to play a game,
but clearly there’s no time for that.) It’s easier to think about the insertion sort if we
begin in the middle of the process, when the team is partly sorted.

Demonstrating Partial Sorting
You’ll need a marker to designate one player. Maybe you throw a red T-shirt on the
ground in front of the player. The players to the left (not the right, as in the bubble sort)
of this marker are partially sorted (or internally sorted). This means they are sorted
among themselves; each one is taller than the person to his or her left. However, they
aren’t necessarily in their final positions because they might still need to be moved when
previously unsorted players are inserted between them. The players to the right of the T-
shirt are unsorted.

Note that partial sorting did not take place in the bubble sort. In that algorithm a group of
data items was completely sorted at any given time; in the insertion sort, a group of items
is only partially sorted.

Inserting the Marked Player in the Appropriate
Location
The player where the marker is, whom we’ll call the “marked” player, and all the players
on her right, are as yet unsorted. This is shown in section A in Figure 5.1.

What we’re going to do is insert the marked player in the appropriate place in the (par-
tially) sorted group. However, to do this, we’ll need to shift some of the sorted players to
the right to make room. To provide a space for this shift, we take the marked player out
of line. (In the program this data item is stored in a temporary variable.) This is shown in
section B in Figure 5.1.

Now we shift the sorted players to make room. The tallest sorted player moves one space
right, into the marked player’s spot. Then the next-tallest player moves one space right,
into the tallest player’s spot, and so on.

When does this shifting process stop? Imagine that you and the marked player are walk-
ing down the line to the left. At each position you shift another player to the right, but
you also compare the marked player with the player about to be shifted. The shifting
process stops when you’ve shifted the last player who is taller than the marked player.
The last shift opens up the space where the marked player, when inserted, will be in (par-
tially) sorted order. This is shown in section C in Figure 5.1.

90 Hour 5

07 72316331 Ch05 10/31/02 7:12 AM Page 90

Now the partially sorted group has one more player, and the unsorted group has one
fewer. The marker T-shirt is moved one space to the right, so it’s again in front of the
leftmost, unsorted player. This process is repeated until all the unsorted players have
been inserted (hence the name insertion sort) into the appropriate place in the partially
sorted group.

The Insertion Sort 91

5

FIGURE 5.1
The insertion sort on
baseball players.

Internally
Sorted

"Marked" player

a)

To be shifted
(Taller than marked player)

Empty space

"Marked" playerInserted

b)

Shifted

Internally sorted

c)

07 72316331 Ch05 10/31/02 7:12 AM Page 91

The insertSort Workshop Applet
Use the insertSort Workshop applet to demonstrate the insertion sort. Unlike the other
sorting applets, it’s probably more instructive to begin with 100 random bars rather
than 10.

To Do: Sort 100 Bars
1. Change to 100 bars with the Size button.

2. Click Run to watch the bars sort themselves before your very eyes.

3. You’ll see that the short red outer arrow marks the dividing line between the par-
tially sorted bars to the left and the unsorted bars to the right.

4. The blue inner arrow keeps starting from outer and zipping to the left, looking
for the proper place to insert the marked bar.

Figure 5.2 shows how this looks when about a third of the bars are partially sorted.

92 Hour 5

,
TO

D
O

,

FIGURE 5.2
The insertSort
Workshop applet with
100 bars.

The marked bar is stored in the temporary variable pointed to by the magenta arrow at
the right end of the graph, but the contents of this variable are replaced so often it’s hard
to see what’s there (unless you slow down to single-step mode).

Sorting 100 bars gives us a big-picture view of the process. Sorting 10 bars lets us focus
on the details.

To Do: Sort 10 Bars
Use Size to switch to 10 bars. (If necessary, use New to make sure the bars are in ran-
dom order.)

07 72316331 Ch05 10/31/02 7:12 AM Page 92

1. At the beginning, inner and outer point to the second bar from the left (array
index 1), and the first message is Will copy outer to temp. This will make
room for the shift. (There’s no arrow for inner-1, but of course it’s always one bar
to the left of inner.)

2. Click the Step button. The bar at outer will be copied to temp. A copy means that
there are now two bars with the same height and color shown on the graph. This is
slightly misleading because a real C++ program would probably have two pointers
pointing to the same object, not two objects. However, showing two identical bars
is meant to convey the idea of copying the pointer.

3. What happens next depends on whether the first two bars are already in order
(smaller on the left). If they are, you’ll see Have compared inner-1 and temp,
no copy necessary.

4. If the first two bars are not in order, the message is Have compared inner-1 and
temp, will copy inner-1 to inner. This is the shift that’s necessary to make
room for the value in temp to be reinserted. There’s only one such shift on this first
pass; more shifts will be necessary on subsequent passes. The situation is shown in
Figure 5.3.

The Insertion Sort 93

5

,
TO

D
O

FIGURE 5.3
The insertSort
Workshop applet with
10 bars.

5. On the next click, you’ll see the copy take place from inner-1 to inner. Also, the
inner arrow moves one space left. The new message is Now inner is 0, so no
copy necessary. The shifting process is complete.

6. No matter which of the first two bars was shorter, the next click will show you
Will copy temp to inner. This will happen, but if the first two bars were ini-
tially in order, you won’t be able to tell a copy was performed because temp and,

07 72316331 Ch05 10/31/02 7:12 AM Page 93

inner hold the same bar. Copying data over the top of the same data might seem
inefficient, but the algorithm runs faster if it doesn’t check for this possibility,
which happens comparatively infrequently.

7. Now the first two bars are partially sorted (sorted with respect to each other), and
the outer arrow moves one space right, to the third bar (index 2). The process
repeats, with the Will copy outer to temp message. On this pass through the
sorted data, there might be no shifts, one shift, or two shifts, depending on where
the third bar fits among the first two.

8. Continue to single-step the sorting process. Again, it’s easier to see what’s happen-
ing after the process has run long enough to provide some sorted bars on the left.
Then you can see how just enough shifts take place to make room for the reinser-
tion of the bar from temp into its proper place.

Now that we’ve seen how the insertion sort works, let’s look at how it is implemented
in C++.

Implementing the Insertion Sort in C++
Listing 5.1 shows the member function that carries out the insertion sort, extracted from
the insertSort.cpp program.

LISTING 5.1 THE insertionSort() MEMBER FUNCTION

void insertionSort()
{
int in, out;

for(out=1; out<nElems; out++) //out is dividing line
{
double temp = v[out]; //remove marked item
in = out; //start shifts at out
while(in>0 && v[in-1] >= temp) //until one is smaller,

{
v[in] = v[in-1]; //shift item to right
--in; //go left one position
}

v[in] = temp; //insert marked item
} //end for

} //end insertionSort()

In the outer for loop, out starts at 1 and moves right; it marks the leftmost
unsorted data. In the inner while loop, in starts at out and moves left, until

94 Hour 5

,

,

INPUT

ANALYSIS

07 72316331 Ch05 10/31/02 7:12 AM Page 94

either temp is smaller than the array element there, or it can’t go left any further. Each
pass through the while loop shifts another sorted element one space right.

It might be hard to see the relationbetween the steps in the Workshop applet and the
code, so Figure 5.4 presents a flow diagram of the insertionSort() member function,
with the corresponding messages from the insertSort Workshop applet. Listing 5.2 shows
the complete insertSort.cpp program.

The Insertion Sort 95

5

FIGURE 5.4
The flow diagram for
insertSort(). Start

Exit

outer = 1

Outer
= =

nElems
?

temp = a [outer]
inner = outer

inner > 0
?

a[inner-1]
>=

temp
?

a[inner] = a[inner-1]
-- inner

"Will copy
outer to
temp"

"Will copy
 temp to
inner"

a[inner] = temp
outer ++

"Have compared
inner-1 and temp.

No copy necessary"

"Have compared
inner-1 and temp.
Will copy inner-1

to Inner"

Yes

Yes

Yes

No

No

No

07 72316331 Ch05 10/31/02 7:12 AM Page 95

LISTING 5.2 THE insertSort.cpp PROGRAM

//insertSort.cpp
//demonstrates insertion sort
#include <iostream>
#include <vector>
using namespace std;
//--
class ArrayIns

{
private:

vector<double> v; //vector v
int nElems; //number of data items

//--
public:
ArrayIns(int max) : nElems(0) //constructor

{
v.resize(max); //size the vector
}

//--
void insert(double value) //put element into array

{
v[nElems] = value; //insert it
nElems++; //increment size
}

//--
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

cout << v[j] << “ “; //display it
cout << endl;
}

//--
void insertionSort()

{
int in, out;

for(out=1; out<nElems; out++) //out is dividing line
{
double temp = v[out]; //remove marked item
in = out; //start shifts at out
while(in>0 && v[in-1] >= temp) //until one is smaller,

{
v[in] = v[in-1]; //shift item to right
--in; //go left one position
}

v[in] = temp; //insert marked item
} //end for

} //end insertionSort()
//--

96 Hour 5

INPUT

07 72316331 Ch05 10/31/02 7:12 AM Page 96

}; //end class ArrayIns
//
int main()

{
int maxSize = 100; //array size
ArrayIns arr(maxSize); //create array

arr.insert(77); //insert 10 items
arr.insert(99);
arr.insert(44);
arr.insert(55);
arr.insert(22);
arr.insert(88);
arr.insert(11);
arr.insert(00);
arr.insert(66);
arr.insert(33);

arr.display(); //display items
arr.insertionSort(); //insertion-sort them
arr.display(); //display them again
return 0;
} //end main()

Here’s the output from the insertSort.cpp program; it’s the same as that from
the bubbleSort.cpp program in Hour 4.

77 99 44 55 22 88 11 0 66 33
0 11 22 33 44 55 66 77 88 99

Invariants in the Insertion Sort
At the end of each pass, following the insertion of the item from temp, the data items
with smaller indices than outer are partially sorted.

Efficiency of the Insertion Sort
How many comparisons and copies does this algorithm require? On the first pass, it com-
pares a maximum of one item. On the second pass, it’s a maximum of two items, and so
on, up to a maximum of N–1 comparisons on the last pass. This is

1 + 2 + 3 + ... + N-1 = N*(N-1)/2

However, because on each pass an average of only half of the maximum number of items
are actually compared before the insertion point is found, we can divide by 2, which
gives the following equation:

N*(N-1)/4

The Insertion Sort 97

5

OUTPUT

07 72316331 Ch05 10/31/02 7:12 AM Page 97

In any case, like the bubble sort, the insertion sort runs in O(N2) time for random data.

For data that is already sorted or almost sorted, the insertion sort does much better. When
data is in order, the condition in the while loop is never true, so it becomes a simple
statement in the outer loop, which executes N–1 times. In this case the algorithm runs in
O(N) time. If the data is almost sorted, insertion sort runs in almost O(N) time, which
makes it a simple and efficient way to order a file that is only slightly out of order.

However, for data arranged in inverse sorted order, every possible comparison and shift is
carried out, so the insertion sort runs no faster than the bubble sort. You can check this
using the reverse-sorted data option (toggled with New) in the insertSort Workshop
applet.

Let’s change our focus from the sorting algorithm to what is being sorted.

Sorting Objects
For simplicity we’ve applied the sorting algorithms we’ve looked at thus far to a primi-
tive data type: double. However, sorting routines will more likely be applied to objects
than to primitive types. Accordingly, we show a C++ program, objectSort.cpp, that
sorts an array of Person objects (last seen in the classDataArray.cpp program in Hour
3, “Ordered Arrays”).

Implementing C++ Code to Sort Objects
The algorithm used is the insertion sort from the last section. The Person objects are
sorted by lastName; this is the key data member, represented by a variable of the C++
class string. The objectSort.cpp program is shown in Listing 5.3.

LISTING 5.3 THE objectSort.cpp PROGRAM

//objectSort.cpp
//demonstrates sorting objects (uses insertion sort)
#include <iostream>
#include <string>

98 Hour 5

Notice that the insertion sort algorithm involves copying rather than swap-
ping. A swap requires three copies (A to temp, B to A, and temp to B). The
number of copies is approximately the same as the number of comparisons.
However, a copy isn’t as time-consuming as a swap, so for random data the
insertion sort algorithm runs more than twice as fast as the bubble sort.

INPUT

07 72316331 Ch05 10/31/02 7:12 AM Page 98

#include <vector>
using namespace std;
//
class Person

{
private:

string lastName;
string firstName;
int age;

public:
//--

Person(string last, string first, int a) : //constructor
lastName(last), firstName(first), age(a)

{ }
//--

void displayPerson()
{
cout << “ Last name: “ << lastName;
cout << “, First name: “ << firstName;
cout << “, Age: “ << age << endl;
}

//--
string getLast() //get last name

{ return lastName; }
}; //end class Person

//
class ArrayInOb

{
private:

vector<Person*> v; //vect of ptrs to Persons
int nElems; //number of data items

public:
//--

ArrayInOb(int max) : nElems(0) //constructor
{
v.resize(max); //size the vector
}

//--
//put person into array

void insert(string last, string first, int age)
{
v[nElems] = new Person(last, first, age);
nElems++; //increment size
}

//--
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

v[j]->displayPerson(); //display it

The Insertion Sort 99

5

continues

07 72316331 Ch05 10/31/02 7:12 AM Page 99

LISTING 5.3 CONTINUED

}
//--

void insertionSort()
{
int in, out;

for(out=1; out<nElems; out++)
{
Person* temp = v[out]; //out is dividing line
in = out; //start shifting at out

//until smaller one found,
while(in>0 && v[in-1]->getLast() > temp->getLast())

{
v[in] = v[in-1]; //shift item to the right
--in; //go left one position
}

v[in] = temp; //insert marked item
} //end for

} //end insertionSort()
//--

}; //end class ArrayInOb
//
int main()

{
int maxSize = 100; //array size
ArrayInOb arr(maxSize); //create array

arr.insert(“Evans”, “Patty”, 24);
arr.insert(“Smith”, “Doc”, 59);
arr.insert(“Smith”, “Lorraine”, 37);
arr.insert(“Smith”, “Paul”, 37);
arr.insert(“Yee”, “Tom”, 43);
arr.insert(“Hashimoto”, “Sato”, 21);
arr.insert(“Stimson”, “Henry”, 29);
arr.insert(“Velasquez”, “Jose”, 72);
arr.insert (“Vang”, “Minh”, 22);
arr.insert(“Creswell”, “Lucinda”, 18);

cout << “Before sorting:” << endl;
arr.display(); //display items

arr.insertionSort(); //insertion-sort them

cout << “After sorting:” << endl;
arr.display(); //display them again
return 0;
} //end main()

100 Hour 5

07 72316331 Ch05 10/31/02 7:12 AM Page 100

Here’s the output of this program:

Before sorting:
Last name: Evans, First name: Patty, Age: 24
Last name: Smith, First name: Doc, Age: 59
Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Yee, First name: Tom, Age: 43
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Stimson, First name: Henry, Age: 29
Last name: Velasquez, First name: Jose, Age: 72
Last name: Vang, First name: Minh, Age: 22
Last name: Creswell, First name: Lucinda, Age: 18

After sorting:
Last name: Creswell, First name: Lucinda, Age: 18
Last name: Evans, First name: Patty, Age: 24
Last name: Hashimoto, First name: Sato, Age: 21
Last name: Smith, First name: Doc, Age: 59
Last name: Smith, First name: Lorraine, Age: 37
Last name: Smith, First name: Paul, Age: 37
Last name: Stimson, First name: Henry, Age: 29
Last name: Vang, First name: Minh, Age: 22
Last name: Velasquez, First name: Jose, Age: 72
Last name: Yee, First name: Tom, Age: 43

Another Feature of Sorting Algorithms:
Stability

Sometimes it matters what happens to data items that happen to have equal keys. For
example, you might have employee data arranged alphabetically by last names. (That is,
the last names were used as key values in the sort.) Now you want to sort the data by zip
code, but you want all the items with the same zip code to continue to be sorted by last
names. You want the algorithm to sort only what needs to be sorted, and to leave every-
thing else in its original order. Some sorting algorithms retain this secondary ordering;
they’re said to be stable.

The insertion sort, like the bubble sort in the last hour, is stable. For example, notice the
output of the objectSort.cpp program. There are three persons with the last name of
Smith. Initially the order is Doc Smith, Lorraine Smith, and Paul Smith. After the sort,
this ordering is preserved, despite the fact that the various Smith objects have been
moved to new locations.

The Insertion Sort 101

5

OUTPUT

07 72316331 Ch05 10/31/02 7:12 AM Page 101

Comparing the Simple Sorts
There’s probably no point in using the bubble sort, unless you don’t have your algorithm
book handy. The bubble sort is so simple you can write it from memory. Even so, it’s
practical only if the amount of data is small. (For a discussion of what “small” means,
see Hour 24, “When to Use What.”)

The insertion sort is the most versatile of the basic sorts, and is the best bet in most situa-
tions, assuming the amount of data is small or the data is almost sorted. For larger
amounts of data, quicksort is generally considered the fastest approach; we’ll examine it
in Hour 13, “Quicksort.”

We’ve compared the sorting algorithms in terms of speed. Another consideration for any
algorithm is how much memory space it needs. Both the bubble sort and the insertion
sort carry out their operations in place, meaning that beside the initial array, very little
extra memory is required. Both sorts require an extra variable to store an item temporar-
ily while it’s being swapped or moved.

102 Hour 5

You can recompile the sample programs, such as bubbleSort.cpp, to sort
larger amounts of data. By timing them for larger sorts, you can get an idea
of the differences between them, and how long it takes to sort different
amounts of data on your particular system.

Summary
In this hour, you’ve learned the following:

● Although all the simple sorts execute in O(N2) time, some can be substantially
faster than others.

● The insertion sort is the most commonly used of the O(N2) sorts.

● A sort is stable if the order of elements with the same key is retained.

● None of the basic sorts require more than a single temporary variable in addition
to the original array.

07 72316331 Ch05 10/31/02 7:12 AM Page 102

Q&A
Q If both the bubble sort and the insertion sort run in O(N2) time, why not use

the bubble sort, which is simpler to program?

A Besides being somewhat faster for random data, the insertion sort is much faster
for data that is only slightly out of order.

Q Is there special code in the insertion sort to keep it from “unordering” items
with the same key? In other words, why is it stable?

A There’s no special code. Stability is just a fringe benefit of the insertion sort. The
algorithm doesn’t need to make any special effort.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A, “Quiz
Answers,” for quiz answers.

Quiz
1. What does partially sorted mean?

2. During the insertion sort, where is the marked item placed?

3. What is one reason the insertion sort is more efficient than the sorted group?

4. True or false: When using the insertion sort on N items, memory space for N*2
items is required.

5. True or false: The insertion sort runs in O(N2) time, the same as the bubble sort.

6. Define the term stable as applied to sorting.

7. When would you use a bubble sort as opposed to an insertion sort?

Exercise
Take the numbered cards from one suit of a deck of cards. Assume the ace is 1. Shuffle
these 10 cards and lay them out in a line. Now sort them using the insertion sort algo-
rithm. You can use a penny to designate the marked card.

The Insertion Sort 103

5

07 72316331 Ch05 10/31/02 7:12 AM Page 103

07 72316331 Ch05 10/31/02 7:12 AM Page 104

Hour
6 Stacks

7 Queues and Priority Queues

8 Linked Lists

9 Abstract Data Types

10 Specialized Lists

PART II
Abstract Data Types

08 72316331 pt2 10/31/02 6:55 AM Page 105

08 72316331 pt2 10/31/02 6:55 AM Page 106

HOUR 6
Stacks

So far we’ve been looking at one kind of data structure: the array (often
implemented as a vector). In this chapter we’ll examine a different kind of
structure: a stack. You’ll learn

● How stacks differ philosophically from arrays

● How a stack operates

● How to create stacks in C++

● Some applications for stacks

A Different Way to Think About Data
Structure

Stacks, which we’ll discuss in this hour, and queues, which we’ll talk about
in Hour 7, “Queues and Priority Queues,” are similar in many ways.
However, there are significant differences between stacks and queues on the
one hand and on the other hand the data structure (arrays) we’ve seen in pre-
vious hours. We’ll discuss three of these differences before we examine the

09 72316331 Ch06 10/31/02 6:55 AM Page 107

details of stacks. The differences are the common uses for the data structures, the way
the structures are accessed, and their degree of abstraction.

Uses for Stacks and Queues: Programmer’s Tools
The array—the data storage structure we’ve been examining thus far—as well as many
other structures we’ll encounter later in this book (linked lists, trees, and so on), are
appropriate for the kind of data you might find in a database application. They’re typi-
cally used for personnel records, inventories, financial data, and so on—data that corre-
sponds to real-world objects or activities. These structures facilitate access to data: They
make it easy to insert, delete, and search for particular items.

The structures and algorithms we’ll examine in this hour and the next, on the other hand,
are more often used as programmer’s tools. They’re primarily conceptual aids rather than
full-fledged data storage devices. Their lifetime is typically shorter than that of the data-
base-type structures. They are created and used to carry out a particular task during the
operation of a function within a program; when the task is completed, they’re discarded.

Stacks and Queues: Restricted Access to Data
In an array, any item can be accessed, either immediately—if its index number is
known—or by searching through a sequence of cells until it’s found. In stacks and
queues, however, access is restricted: Only one item can be read or removed at a given
time.

The interface of these structures is designed to enforce this restricted access. Access to
other items is (in theory) not allowed.

Stacks and Queues: More Abstract
Stacks and queues are more abstract entities than arrays and many other data storage
structures. They’re defined primarily by their interface—the permissible operations that
can be carried out on them. The underlying mechanism used to implement them is typi-
cally not visible to their users.

For example, the underlying mechanism for a stack can be an array, as we will show in
this chapter, or it can be a linked list. We’ll return to the topic of one data structure being
implemented by another when we discuss Abstract Data Types (ADTs) in Hour 9,
“Abstract Data Types.”

To better understand these ideas, let’s look at how stacks work.

108 Hour 6

09 72316331 Ch06 10/31/02 6:55 AM Page 108

Understanding Stacks
A stack allows access to only one data item: the last item inserted. If you remove this
item, you can access the next-to-last item inserted, and so on. This is a useful capability
in many programming situations. In this section, we’ll see how a stack can be used to
check whether parentheses, braces, and brackets are balanced in a computer program
source file. Stacks also play a vital role in parsing (analyzing) arithmetic expressions
such as 3*(4+5).

A stack is also a handy aid when you’re programming algorithms for certain complex
data structures. In Hour 16, “Traversing Binary Trees,” for example, we’ll see a stack is
used in the code that traverses the nodes of a tree.

Most microprocessors (like the one in your computer) use a stack-based architecture.
When a member function is called, its return address and arguments are pushed onto a
stack, and when the function returns they’re popped off. The stack operations are built
into the microprocessor.

Some older pocket calculators used a stack-based paradigm. Instead of entering arith-
metic expressions using parentheses, you pushed intermediate results onto a stack.

Two Real-World Stack Analogies
To understand the idea of a stack, let’s look at some analogies. The first one is provided
by the U.S. Postal Service. Many people, when they get their mail, toss it onto a stack on
the hall table, or into an “in” basket at work. Then, when they have a spare moment, they
process the accumulated mail from the top down. First they open the letter on the top of
the stack and take appropriate action—paying the bill, throwing it away, or whatever.
When the first letter has been disposed of, they examine the next letter down, which is
now the top of the stack, and deal with that. Eventually they work their way down to the
letter on the bottom of the stack (which is now the top). Figure 6.1 shows a stack of mail.

This “do the top one first” approach works all right as long as you can easily process all
the mail in a reasonable time. If you can’t, there’s the danger that letters on the bottom of
the stack won’t be examined for months, and the bills they contain will become overdue.

Of course, many people don’t rigorously follow this top-to-bottom approach. They may,
for example, take the mail off the bottom of the stack, so as to process the oldest letter
first. Or they might shuffle through the mail before they begin processing it and put
higher-priority letters on top. In these cases, their mail system is no longer a stack in the
computer-science sense of the word. If they take letters off the bottom, it’s a queue; and
if they prioritize it, it’s a priority queue. We’ll look at these possibilities in the next hour.

Stacks 109

6

09 72316331 Ch06 10/31/02 6:55 AM Page 109

Another stack analogy is the tasks you perform during a typical workday. You’re busy on
a long-term project (A), but you’re interrupted by a coworker asking you for temporary
help with another project (B). While you’re working on B, someone from Accounting
stops by for a meeting about travel expenses (C), and during this meeting you get an
emergency call from someone in Sales and spend a few minutes troubleshooting a bulky
product (D). When you’re finished with call D, you resume meeting C; when you’re fin-
ished with C, you resume project B, and when you’re finished with B you can (finally!)
get back to project A. Lower-priority projects are “stacked up” waiting for you to return
to them.

Placing a data item on the top of the stack is called pushing it. Removing it from
the top of the stack is called popping it. These are the primary stack operations.

A stack is said to be a Last-In-First-Out (LIFO) storage mechanism because the last item
inserted is the first one to be removed.

110 Hour 6

FIGURE 6.1
A stack of letters.

Newly arrived
letters placed

on top of
stack

This letter
processed first

NEW TERM

09 72316331 Ch06 10/31/02 6:55 AM Page 110

The Stack Workshop Applet
Let’s use the Stack Workshop applet to get an idea what stacks do. When you start this
applet, you’ll see four buttons: New, Push, Pop, and Peek, as shown in Figure 6.2. We’ll
cover these next.

Stacks 111

6

FIGURE 6.2
The Stack Workshop
applet.

The Stack Workshop applet is based on an array, so you’ll see an array of data items.
Although it’s based on an array, a stack restricts access, so you can’t access any data
item as you would an array.

New
The stack in the Workshop applet starts with four data items already inserted. If you
want to start with an empty stack, the New button creates a new stack with no items. The
next three buttons carry out the significant stack operations.

Push
To insert a data item on the stack, use the button labeled Push. After the first press of this
button, you’ll be prompted to enter the key value of the item to be pushed. After typing it
into the text field, a few more presses will insert the item on the top of the stack.

A red arrow always points to the top of the stack; that is, the last item inserted. Notice
how during the insertion process, one step (button press) increments (moves up) the Top
arrow, and the next step actually inserts the data item into the cell. If you reversed the

09 72316331 Ch06 10/31/02 6:55 AM Page 111

order, you would overwrite the existing item at Top. When writing the code to implement
a stack, it’s important to keep in mind the order in which these two steps are executed.

If the stack is full and you try to push another item, you’ll get the Can’t insert: stack
is full message. (Theoretically, an ADT stack doesn’t become full, but the array imple-
menting it does.)

Pop
To remove a data item from the top of the stack, use the Pop button. The value popped
appears in the Number text field; this corresponds to a pop() routine returning a value.

Again, notice the two steps involved: First, the item is removed from the cell pointed to
by Top, and then Top is decremented to point to the highest occupied cell. This is the
reverse of the sequence used in the push operation.

The pop operation shows an item actually being removed from the array, and the cell
color becoming gray to show the item has been removed. This is a bit misleading in
terms of operations on computer memory, in that deleted items actually remain in the
array until written over by new data. However, they cannot be accessed after the Top
marker drops below their position, so conceptually they are gone, as the applet shows.

When you’ve popped the last item off the stack, the Top arrow points to –1, below the
lowest cell. This indicates that the stack is empty. If the stack is empty and you try to
pop an item, you’ll get the Can’t pop: stack is empty message.

Peek
Push and pop are the two primary stack operations. However, it’s sometimes useful to be
able to read the value from the top of the stack without removing it. The peek operation
does this. By pushing the Peek button a few times, you’ll see the value of the item at Top
copied to the Number text field, but the item is not removed from the stack, which
remains unchanged.

Notice that you can only peek at the top item. By design, all the other items are invisible
to the stack user.

Stack Size
Stacks are typically small, temporary data structures, which is why we’ve shown a stack
of only 10 cells. Of course, stacks in real programs might need a bit more room than this,
but it’s surprising how small a stack needs to be. A very long arithmetic expression, for
example, can be parsed with a stack of only a dozen or so cells.

Now that we’ve seen what stacks do, let’s see how they’re implemented in C++.

112 Hour 6

09 72316331 Ch06 10/31/02 6:55 AM Page 112

Implementing a Stack in C++
Let’s examine a program, Stack.cpp, that implements a stack using a class called
StackX. Listing 6.1 contains this class and a short main() routine to exercise it.

LISTING 6.1 THE Stack.cpp PROGRAM

//Stack.cpp
//demonstrates stacks
#include <iostream>
#include <vector>
using namespace std;
//
class StackX

{
private:

int maxSize; //size of stack vector
vector<double> stackVect; //stack vector
int top; //top of stack

public:
//--

StackX(int s) : maxSize(s), top(-1) //constructor
{
stackVect.reserve(maxSize); //size the vector
}

//--
void push(double j) //put item on top

{
stackVect[++top] = j; //increment top,
} //insert item

//--
double pop() //take item from top

{
return stackVect[top--]; //access item,
} //decrement top

//--
double peek() //peek at top of stack

{
return stackVect[top];
}

//--
bool isEmpty() //true if stack is empty

{
return (top == -1);
}

//--
bool isFull() //true if stack is full

Stacks 113

6

INPUT

continues

09 72316331 Ch06 10/31/02 6:55 AM Page 113

LISTING 6.1 CONTINUED

{
return (top == maxSize-1);
}

//--
}; //end class StackX

//
int main()

{
StackX theStack(10); //make new stack, size 10
theStack.push(20); //push items onto stack
theStack.push(40);
theStack.push(60);
theStack.push(80);

while(!theStack.isEmpty()) //until it’s empty,
{ //delete item from stack
double value = theStack.pop();
cout << value << “ “; //display it
} //end while

cout << endl;
return 0;
} //end main()

The main() function creates a stack that can hold 10 items, pushes 4 items onto
the stack, and then displays all the items by popping them off the stack until it’s

empty. Here’s the output:

80 60 40 20

Notice how the order of the data is reversed. Because the last item pushed is the first one
popped, the 80 appears first in the output.

This version of the StackX class holds data elements of type double. As noted in the last
hour, you can change this to any other type, including object types.

StackX Class Member Functions
As in previous programs, the data storage mechanism within the class is a vector. Here
it’s called stackVect.

The constructor creates a new stack of a size specified in its argument. The data mem-
bers of the stack are a variable to hold its maximum size (the size of the vector), the vec-
tor itself, and a variable, top, which stores the index of the item on the top of the stack.

114 Hour 6

OUTPUT

09 72316331 Ch06 10/31/02 6:55 AM Page 114

The push() member function increments top so it points to the space just above the pre-
vious top, and stores a data item there. Notice that top is incremented before the item is
inserted.

The pop() member function returns the value at top and then decrements top. This
effectively removes the item from the stack; it’s inaccessible, although the value remains
in the vector (until another item is pushed into the cell).

The peek() member function simply returns the value at top, without changing the
stack.

The isEmpty() and isFull() member functions return true if the stack is empty or full,
respectively. The top variable is at -1 if the stack is empty and maxSize-1 if the stack is
full.

Figure 6.3 shows how push() and pop() work.

Stacks 115

6

FIGURE 6.3
Operation of the
StackX class member
functions.

49

27

3

92

64

14

New item pushed on stack

Two items popped from stack

27

14

92

64

3

Top

Top

49

49

27

3

92

64

14

Top

Top

Top

27

14

92

64

3

14

92

64

3

49

27

09 72316331 Ch06 10/31/02 6:55 AM Page 115

Error Handling
There are different philosophies about how to handle stack errors. What happens if you
try to push an item onto a stack that’s already full? Or pop an item from a stack that’s
empty?

In Stack.cpp we’ve left the responsibility for handling such errors up to the class user.
The user should always check to be sure the stack is not full before pushing a new item:

if(!theStack.isFull())
theStack.push(item);

else
cout << “Can’t insert, stack is full”;

In the interest of simplicity, we’ve left this code out of the main() routine (and anyway,
in this simple program, we know the stack isn’t full because it has just been initialized).
We do include the check for an empty stack when main() calls pop().

Many stack classes check for these errors internally, in the push() and pop() member
functions. This is the preferred approach. In C++, a good solution for a stack class that
discovers such errors is to throw an exception, which can then be caught and processed
by the class user.

Now that we’ve seen how to program a stack in general, let’s look at some programs that
solve real problems by using a stack.

Stack Example 1: Reversing a Word
For our first example of using a stack, we’ll examine a very simple task: reversing a
word. When you run the program, it asks you to type in a word. When you press Enter, it
displays the word with the letters in reverse order.

A stack is used to reverse the letters. First the characters are extracted one by one from
the input string and pushed onto the stack. Then they’re popped off the stack and dis-
played. Because of its last-in-first-out characteristic, the stack reverses the order of the
characters. Listing 6.2 shows the code for the reverse.cpp program.

LISTING 6.2 THE reverse.cpp PROGRAM

//reverse.cpp
//stack used to reverse a word
#include <iostream>
#include <vector>
#include <string>
using namespace std;

116 Hour 6

INPUT

09 72316331 Ch06 10/31/02 6:55 AM Page 116

//
class StackX

{
private:

int maxSize;
vector<char> stackVect; //vector holds stack
int top;

public:
//--

StackX(int max) : maxSize(max), top(-1) //constructor
{
stackVect.resize(maxSize); //size the vector
}

//--
void push(char j) //put item on top of stack

{ stackVect[++top] = j; }
//--

char pop() //take item from top of stack
{ return stackVect[top--]; }

//--
char peek() //peek at top of stack

{ return stackVect[top]; }
//--

bool isEmpty() //true if stack is empty
{ return (top == -1); }

//--
}; //end class StackX

//
class Reverser

{
private:

string input; //input string
string output; //output string

public:
//--

Reverser(string in) : input(in) //constructor
{ }

//--
string doRev() //reverse the word

{
int stackSize = input.length(); //get max stack size
StackX theStack(stackSize); //make stack

for(int j=0; j<input.length(); j++)
{
char ch = input[j]; //get a char from input
theStack.push(ch); //push it
}

output = “”;
while(!theStack.isEmpty())

Stacks 117

6

continues

09 72316331 Ch06 10/31/02 6:55 AM Page 117

LISTING 6.2 CONTINUED

{
char ch = theStack.pop(); //pop a char,
output = output + ch; //append to output
}

return output;
} //end doRev()

//--
}; //end class Reverser

//
int main()

{
string input, output;

while(true)
{
cout << “Enter a word: “;
cin >> input; //read a word from kbd
if(input.length() < 2) //quit if one character

break;
//make a Reverser

Reverser theReverser(input);
output = theReverser.doRev(); //use it
cout << “Reversed: “ << output << endl;
} //end while

return 0;
} //end main()

We’ve created a class Reverser to handle the reversing of the input string. Its
key component is the member function doRev(), which carries out the reversal,

using a stack. The stack is created within doRev(), which sizes it according to the length
of the input string.

In main() we get a string from the user, create a Reverser object with this string as an
argument to the constructor, call this object’s doRev() member function, and display the
return value, which is the reversed string. Here’s some sample interaction with the pro-
gram:

Enter a word: part
Reversed: trap
Enter a word:

Stack Example 2: Delimiter Matching
One common use for stacks is to parse certain kinds of text strings. Typically the strings
are lines of code in a computer language, and the programs parsing them are compilers.

118 Hour 6

ANALYSIS

INPUT/
OUTPUT

09 72316331 Ch06 10/31/02 6:55 AM Page 118

To give the flavor of what’s involved, we’ll show a program that checks the delimiters in
a line of text typed by the user. This text doesn’t need to be a line of real C++ code
(although it could be), but it should use delimiters the same way C++ does. The delim-
iters are the braces { and }, brackets [and], and parentheses (and). Each opening or
left delimiter should be matched by a closing or right delimiter; that is, every ‘{‘ should
be followed by a matching ‘}’, and so on. Also, opening delimiters that occur later in the
string should be closed before those occurring earlier. Here are some examples:

c[d] // correct
a{b[c]d}e // correct
a{b(c]d}e // not correct;] doesn’t match (
a[b{c}d]e} // not correct; nothing matches final }
a{b(c) // not correct; Nothing matches opening {

Opening Delimiters on the Stack
The program works by reading characters from the string one at a time and placing open-
ing delimiters, when it finds them, on a stack. When the program reads a closing delim-
iter from the input, it pops the opening delimiter from the top of the stack and attempts
to match it with the closing delimiter. If the delimiters are not the same type (there’s an
opening brace but a closing parenthesis, for example), an error has occurred. Also, if
there is no opening delimiter on the stack to match a closing one, or if a delimiter
remains on the stack when the parse has ended, an error has occurred.

Let’s see what happens on the stack for a typical correct string:

a{b(c[d]e)f}

Table 6.1 shows how the stack looks as each character is read from this string. The
entries in the second column show the stack contents, reading from the bottom of the
stack on the left to the top on the right.

As it’s read, each opening delimiter is placed on the stack. Each closing delimiter read
from the input is matched with the opening delimiter popped from the top of the stack. If
they form a pair, all is well. Nondelimiter characters are not inserted on the stack; they’re
ignored.

TABLE 6.1 STACK CONTENTS IN DELIMITER MATCHING

Character Read Stack Contents

a

{ {

b {

Stacks 119

6

continues

09 72316331 Ch06 10/31/02 6:55 AM Page 119

TABLE 6.1 CONTINUED

Character Read Stack Contents

({(

c {(

[{([

d {([

] {(

e {(

) {

f {

}

This approach works because pairs of delimiters that are opened last should be closed
first. This matches the last-in-first-out property of the stack.

C++ Code for brackets.cpp
The code for the parsing program, brackets.cpp, is shown in Listing 6.3. We’ve placed
check(), the member function that does the parsing, in a class called BracketChecker.

LISTING 6.3 THE brackets.cpp PROGRAM

//brackets.cpp
//stacks used to check matching brackets
#include <iostream>
#include <string>
#include <vector>
using namespace std;
//
class StackX

{
private:

int maxSize; //size of vector
vector<char> stackVect; //vector for stack
int top; //top of stack

public:
//--

StackX(int s) : maxSize(s), top(-1) //constructor
{ stackVect.resize(maxSize); }

//--
void push(char j) //put item on top of stack

{ stackVect[++top] = j; }
//--

120 Hour 6

INPUT

09 72316331 Ch06 10/31/02 6:55 AM Page 120

char pop() //take item from top of stack
{ return stackVect[top--]; }

//--
char peek() //peek at top of stack

{ return stackVect[top]; }
//--

bool isEmpty() //true if stack is empty
{ return (top == -1); }

//--
}; //end class StackX

//
class BracketChecker

{
private:

string input; //inputstring
public:

//--
BracketChecker(string in) : input(in) //constructor

{ }
//--

void check()
{
int stackSize = input.length(); //get max stack size
StackX theStack(stackSize); //make stack
bool isError = false; //error flag

for(int j=0; j<input.length(); j++) //get chars in turn
{
char ch = input[j]; //get char
switch(ch)

{
case ‘{‘: //opening symbols
case ‘[‘:
case ‘(‘:

theStack.push(ch); //push them
break;

case ‘}’: //closing symbols
case ‘]’:
case ‘)’:

if(!theStack.isEmpty()) //if stack not empty,
{
char chx = theStack.pop(); //pop and check
if((ch==’}’ && chx!=’{‘) ||

(ch==’]’ && chx!=’[‘) ||
(ch==’)’ && chx!=’(‘))
{
isError = true;
cout << “Mismatched delimeter: “

<< ch << “ at “ << j << endl;

Stacks 121

6

continues

09 72316331 Ch06 10/31/02 6:55 AM Page 121

LISTING 6.3 CONTINUED

}
}

else //prematurely empty
{
isError = true;
cout << “Misplaced delimiter: “

<< ch << “ at “ << j << endl;
}

break;
default: //no action on other characters

break;
} //end switch

} //end for
//at this point, all characters have been processed
if(!theStack.isEmpty())

cout << “Missing right delimiter” << endl;
else if(!isError)

cout << “OK” << endl;
} //end check()

//--
}; //end class BracketChecker

//
int main()

{
string input;
while(true)

{
cout << “Enter string containing delimiters “

<< “(no whitespace): “;
cin >> input; //read a string from kbd
if(input.length() == 1) //quit if ‘q’, etc.

break;
//make a BracketChecker

BracketChecker theChecker(input);
theChecker.check(); //check brackets
} //end while

return 0;
} //end main()

The check() routine uses the StackX class from the last program. Notice how
easy it is to reuse this class. All the code you need is in one place. This is one of

the payoffs for object-oriented programming.

The main() routine repeatedly reads a line of text from the user, creates a
BracketChecker object with this text string as an argument, and then calls the check()

122 Hour 6

ANALYSIS

09 72316331 Ch06 10/31/02 6:55 AM Page 122

member function for this BracketChecker object. If it finds any errors, the check()
member function displays them; otherwise, the syntax of the delimiters is correct.

If it can, the check() function reports the character number where it discovered the error
(starting at 0 on the left), and the incorrect character it found there. For example, for the
input string

a{b(c]d}e

the output from check() will be

Mismatched delimeter:] at 5

Using the Stack as a Conceptual Aid
Notice how convenient the stack is in the brackets.cpp program. You could have set up
an array to do what the stack does, but you would have had to worry about keeping track
of an index to the most recently added character, as well as other bookkeeping tasks. The
stack is conceptually easier to use. By providing limited access to its contents, using the
push() and pop() member functions, the stack has made your program easier to under-
stand and less error-prone. (Carpenters will also tell you it’s safer to use the right tool for
the job.)

Efficiency of Stacks
Items can be both pushed and popped from a stack in constant O(1) time. That is, the
time is not dependent on how many items are in the stack, and is therefore very quick.
No comparisons or moves are necessary. Of course access is, by design, restricted to a
single item.

Summary
In this hour, you’ve learned the following:

● A stack allows access to the last item inserted, at the top of the stack.

● The important stack operations are pushing (inserting) an item onto the top of the
stack and popping (removing) the item from the top.

● A stack is often helpful in parsing a string of characters, among other applications.

● A stack can be implemented with an array or with another mechanism, such as a
linked list.

Stacks 123

6

09 72316331 Ch06 10/31/02 6:55 AM Page 123

Q&A
Q What do stacks have to do with sorting, which you talked about in the last

hour?

A Well, not too much. A stack is a data structure, whereas sorting is an algorithm.
The only reason they’re close together in this book is that they’re about the same
degree of difficulty.

Q Wouldn’t it be more efficient for main() just to use an array or vector of its
own, and keep track of the indices itself?

A It might be slightly more efficient, but the point of using a separate stack class is to
make programs easier to write and less error-prone.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. True or false: A stack works on the first-in-first-out (FIFO) principle.

2. Name two ways stacks and queues differ from arrays.

3. True or false: A good analogy for a stack is the line of people waiting at the bank
teller’s window.

4. Define push and pop.

5. True or false: If there’s only one item in a stack, the bottom of the stack is the
same as the top.

6. In the C++ code that pushes an item onto a stack, should you insert the item first or
increment the top first?

Exercise
Think of at least one real-world situation (other than those discussed in this hour) that
uses the stack principle. What corresponds to the push and pop operations in this
situation?

124 Hour 6

09 72316331 Ch06 10/31/02 6:55 AM Page 124

HOUR 7
Queues and Priority
Queues

A queue is similar to a stack, except that you put items into one end of a
queue and remove them from the other. A priority queue is a specialized
queue in which the items are stored in order. In this hour you’ll learn

● How a queue works

● How to create a queue in C++

● How a priority queue works

● How to create a priority queue in C++

Queues
The word queue is British for line (the kind you wait in). In Britain,
to “queue up” means to get in line. In computer science a queue is a

data structure that is similar to a stack, except that in a queue the first item
inserted is the first to be removed (FIFO). In a stack, as we’ve seen, the last
item inserted is the first to be removed (LIFO).

NEW TERM

10 72316331 Ch07 10/31/02 7:12 AM Page 125

A queue works like the line at the movies: the first person to join the rear of the line is
the first person to reach the front of the line and buy a ticket. The last person to line up is
the last person to buy a ticket (or—if the show is sold out—to fail to buy a ticket). Figure
7.1 shows how this looks.

126 Hour 7

FIGURE 7.1
A queue of people.

People join the
queue at the rear

People leave the
queue at the front

Queues are used as a programmer’s tool as stacks are. They’re also used to model real-
world situations such as people waiting in line at a bank, airplanes waiting to take off, or
data packets waiting to be transmitted over the Internet.

There are various queues quietly doing their job in your computer’s (or the network’s)
operating system. There’s a printer queue where print jobs wait for the printer to be
available. A queue also stores keystroke data as you type at the keyboard. This way, if
you’re using a word processor but the computer is briefly doing something else when
you hit a key, the keystroke won’t be lost; it waits in the queue until the word processor
has time to read it. Using a queue guarantees the keystrokes stay in order until they can
be processed.

The Queue Workshop Applet
Start up the Queue Workshop applet. You’ll see a queue with four items preinstalled, as
shown in Figure 7.2.

This applet demonstrates a queue based on an array. This is a common approach,
although linked lists are also commonly used to implement queues. (We’ll explore this
issue in Hour 9, “Abstract Data Types.”)

The two basic queue operations are inserting an item, which is placed at the rear of the
queue, and removing an item, which is taken from the front of the queue. This is similar

10 72316331 Ch07 10/31/02 7:12 AM Page 126

to a person joining the rear of a line of moviegoers, and, having arrived at the front of the
line and purchased a ticket, removing himself from the front of the line.

Queues and Priority Queues 127

7

FIGURE 7.2
The Queue Workshop
applet.

The terms for insertion and removal in a stack are fairly standard; everyone says push
and pop. Standardization hasn’t progressed this far with queues. Insert is also called put
or add or enque, whereas remove might be called delete or get or de-que. The rear of the
queue, where items are inserted, is also called the back or tail or end. The front, where
items are removed, might also be called the head. We’ll use the terms insert, remove,
front, and rear.

Inserting a New Item
By repeatedly pressing the Ins button in the Queue Workshop applet, you can insert a
new item. After the first press, you’re prompted to enter a key value for a new item into
the Number text field; this should be a number from 0 to 999. Subsequent presses will
insert an item with this key at the rear of the queue, and increment the Rear arrow so it
points to the new item.

Removing an Item
Similarly, you can remove the item at the front of the queue using the Rem button. The
item is removed, the item’s value is stored in the Number field (corresponding to the
remove() member function returning a value), and the Front arrow is incremented. In the
applet, the cell that held the deleted item is grayed to show it’s gone. In a normal imple-
mentation, it would remain in memory but would not be accessible because Front had
moved past it. The insert and remove operations are shown in Figure 7.3.

10 72316331 Ch07 10/31/02 7:12 AM Page 127

Unlike the situation in a stack, the items in a queue don’t always extend all the way
down to index 0 in the array. After some items are removed, Front will point at a cell
with a higher index, as shown in Figure 7.4.

Notice that in this figure Front lies below Rear in the array; that is, Front has a lower
index. As we’ll see in a moment, this isn’t always true.

Peeking at an Item
We show one other queue operation, peek. This finds the value of the item at the front of
the queue without removing the item. (Like insert and remove, when applied to a queue,
peek is also called by a variety of other names.) If you press the Peek button, you’ll see

128 Hour 7

FIGURE 7.3
Operation of the Queue
class member func-
tions.

6

80

96

26

59

12

New item inserted at rear of queue

Two items removed from front of queue

80

12

26

59

94

Rear

FrontFront

Rear

6

6

80

94

26

59

12

Rear

Front

Rear Rear

Front

Front

6

80

94

26

12

6

12

94

80

59

26

10 72316331 Ch07 10/31/02 7:12 AM Page 128

the value at Front transferred to the Number box. The queue is unchanged. This peek()
member function returns the value at the front of the queue. Some queue implementa-
tions have a rearPeek() and a frontPeek() member function, but usually you want to
know what you’re about to remove, not what you just inserted.

Queues and Priority Queues 129

7

FIGURE 7.4
A queue with some
items removed.

MaxSize-1

Rear

9

8

7 79

32

80

12

6

6

5

4

3

2

1

0

Front

Empty cells

Empty cells

Creating a New Queue with New
If you want to start with an empty queue, you can use the New button to create one.

The Empty and Full Errors
If you try to remove an item when there are no more items in the queue, you’ll get the
Can’t remove, queue is empty error message. If you try to insert an item when all
the cells are already occupied, you’ll get the Can’t insert, queue is full message.

10 72316331 Ch07 10/31/02 7:12 AM Page 129

A Circular Queue
When you insert a new item in the queue in the Workshop applet, the Front arrow moves
upward, toward higher numbers in the array. When you remove an item, Rear also moves
upward. Try these operations with the Workshop applet to convince yourself it’s true.

130 Hour 7

You might find the way a queue works counter-intuitive because the people
in a line at the movies all move forward, toward the front, when a person
leaves the line. We could move all the items in a queue whenever we
deleted one, but that wouldn’t be very efficient. Instead we keep all the
items in the same place and move the front and rear of the queue.

The trouble with moving the front and rear forward is that pretty soon the rear of the
queue is at the end of the array (the highest index). Even if there are empty cells at the
beginning of the array, because you’ve removed them with Rem, you still can’t insert a
new item because Rear can’t go any further. Or can it? This situation is shown in Figure 7.5.

FIGURE 7.5
Rear arrow at the end
of the array.

MaxSize-1 Rear9

8

7

44

63

21

79

32

80

12

6

6

5

4

3

2

1

0

Front

New item:
Where can

it go?

10 72316331 Ch07 10/31/02 7:12 AM Page 130

Wrapping Around
To avoid the problem of not being able to insert more items into the queue even
when it’s not full, the Front and Rear arrows wrap around to the beginning of the

array. The result is a circular queue (sometimes called a ring buffer).

To Do: Investigate Wraparound with the Workshop Applet
1. Insert enough items to bring the Rear arrow to the top of the array (index 9).

2. Remove some items from the front of the array.

3. Insert another item.

4. You’ll see the Rear arrow wrap around from index 9 to index 0; the new item will
be inserted there. This is shown in Figure 7.6.

Queues and Priority Queues 131

7

NEW TERM

TO
D

O

,

FIGURE 7.6
Rear arrow wraps
around.

MaxSize-1

Rear

9

8

7

44

21

79

32

80

12

63

6

6

5

4

3

2

1

0

Front

10 72316331 Ch07 10/31/02 7:12 AM Page 131

Insert a few more items. The Rear arrow moves upward as you would expect.
Notice that after Rear has wrapped around, it’s now below Front, the reverse of

the original arrangement. You can call this a broken sequence: the items in the queue are
in two different sequences in the array.

Delete enough items so that the Front arrow also wraps around. Now you’re back
to the original arrangement, with Front below Rear. The items are in a single

contiguous sequence.

Now that we’ve seen how queues work, let’s look at some C++ code that implements a
queue.

C++ Code for a Queue
The queue.cpp program features a Queue class with insert(), remove(), peek(),
isFull(), isEmpty(), and size() member functions.

The main() program creates a queue of five cells, inserts four items, removes three
items, and inserts four more. The sixth insertion invokes the wraparound feature. All the
items are then removed and displayed. The output looks like this:

40 50 60 70 80

Listing 7.1 shows the Queue.cpp program.

LISTING 7.1 THE Queue.cpp PROGRAM

//Queue.cpp
//demonstrates queue
#include <iostream>
#include <vector>
using namespace std;
//
class Queue

{
private:

int maxSize;
vector<int> queVect;
int front;
int rear;
int nItems;

public:
//--

//constructor
Queue(int s) : maxSize(s), front(0), rear(-1), nItems(0)

{ queVect.resize(maxSize); }
//--

132 Hour 7

NEW TERM

INPUT

NEW TERM

10 72316331 Ch07 10/31/02 7:12 AM Page 132

void insert(int j) //put item at rear of queue
{
if(rear == maxSize-1) //deal with wraparound

rear = -1;
queVect[++rear] = j; //increment rear and insert
nItems++; //one more item
}

//--
int remove() //take item from front of queue

{
int temp = queVect[front++]; //get value and incr front
if(front == maxSize) //deal with wraparound

front = 0;
nItems--; //one less item
return temp;
}

//--
int peekFront() //peek at front of queue

{ return queVect[front]; }
//--

bool isEmpty() //true if queue is empty
{ return (nItems==0); }

//--
bool isFull() //true if queue is full

{ return (nItems==maxSize); }
//--

int size() //number of items in queue
{ return nItems; }

//--
}; //end class Queue

//
int main()

{
Queue theQueue(5); //queue holds 5 items

theQueue.insert(10); //insert 4 items
theQueue.insert(20);
theQueue.insert(30);
theQueue.insert(40);

theQueue.remove(); //remove 3 items
theQueue.remove(); // (10, 20, 30)
theQueue.remove();

theQueue.insert(50); //insert 4 more items
theQueue.insert(60); // (wraps around)
theQueue.insert(70);
theQueue.insert(80);

Queues and Priority Queues 133

7

continues

10 72316331 Ch07 10/31/02 7:12 AM Page 133

LISTING 7.1 CONTINUED

while(!theQueue.isEmpty()) //remove and display
{ // all items
int n = theQueue.remove(); //(40, 50, 60, 70, 80)
cout << n << “ “;
}

cout << endl;
return 0;
} //end main()

We’ve chosen an approach in which Queue class data members include not only front
and rear, but also the number of items currently in the queue: nItems. Some queue
implementations don’t use this data member; we’ll show this alternative later.

The insert() Member Function
The insert() member function assumes that the queue is not full. We don’t show it in
main(), but normally you should call insert() only after calling isFull() and getting a
return value of false. (It’s usually preferable to place the check for fullness in the
insert() routine, and cause an exception to be thrown if an attempt was made to insert
into a full queue.)

Normally, insertion involves incrementing rear and inserting at the cell rear now points
to. However, if rear is at the top of the array (actually a vector), at maxSize-1, then it
must wrap around to the bottom of the array before the insertion takes place. This is
done by setting rear to –1, so when the increment occurs rear will become 0, the bot-
tom of the array. Finally nItems is incremented.

The remove() Member Function
The remove() member function assumes that the queue is not empty. You should call
isEmpty() to ensure this is true before calling remove(), or build this error-checking into
remove().

Removal always starts by obtaining the value at front and then incrementing front.
However, if this puts front beyond the end of the array, it must then be wrapped around
to 0. The return value is stored temporarily while this possibility is checked. Finally,
nItems is decremented.

The peek() Member Function
The peek() member function is straightforward: it returns the value at front. Some
implementations allow peeking at the rear of the array as well; such routines are called
something like peekFront() and peekRear() or just front() and rear().

134 Hour 7

10 72316331 Ch07 10/31/02 7:12 AM Page 134

The isEmpty(), isFull(), and size() Member Functions
The isEmpty(), isFull(), and size() member functions provide the information
implied by their names. They all rely on the nItems data member, respectively checking
whether it’s 0, whether it’s maxSize, or returning its value.

Implementing the Queue Class Without an Item Count
The inclusion of the data member nItems in the Queue class imposes a slight overhead
on the insert() and remove() member functions in that they must respectively incre-
ment and decrement this variable. This might not seem like an excessive penalty, but if
you’re dealing with huge numbers of insertions and deletions, it might influence perfor-
mance.

Accordingly, some implementations of queues do without an item count and rely on the
front and rear data members to figure out whether the queue is empty or full and how
many items are in it. When this is done, the isEmpty(), isFull(), and size() routines
become surprisingly complicated because the sequence of items may be either broken or
contiguous, as we’ve seen.

Also, a strange problem arises. The front and rear pointers assume certain positions
when the queue is full, but they can assume these exact same positions when the queue is
empty. The queue can then appear to be full and empty at the same time.

This problem can be solved by making the array (vector) one cell larger than the maxi-
mum number of items that will be placed in it. Listing 7.2 shows a Queue class that
implements this no-count approach. This class uses the no-count implementation.

LISTING 7.2 THE Queue CLASS WITHOUT nItems

class Queue
{
private:

int maxSize;
vector<int>(queVect);
int front;
int rear;

public:
//--

//constructor
Queue(int s) : maxSize(s+1), front(0), rear(-1)

{
queVect.resize(maxSize);
}

//--

Queues and Priority Queues 135

7

INPUT

continues

10 72316331 Ch07 10/31/02 7:12 AM Page 135

LISTING 7.2 CONTINUED

void insert(int j) //put item at rear of queue
{
if(rear == maxSize-1)

rear = -1;
queVect[++rear] = j;
}

//--
int remove() //take item from front of queue

{
int temp = queVect[front++];
if(front == maxSize)

front = 0;
return temp;
}

//--
int peek() //peek at front of queue

{
return queVect[front];
}

//--
bool isEmpty() //true if queue is empty

{
return (rear+1==front || (front+maxSize-1==rear));
}

//--
bool isFull() //true if queue is full

{
return (rear+2==front || (front+maxSize-2==rear));
}

//--
int size() //(assumes queue not empty)

{
if(rear >= front) //contiguous sequence

return rear-front+1;
else //broken sequence

return (maxSize-front) + (rear+1);
}

//--
}; //end class Queue

Notice the complexity of isFull(), isEmpty(), and size() member functions. This no-
count approach is seldom needed in practice, so we’ll refrain from discussing it in detail.

136 Hour 7

10 72316331 Ch07 10/31/02 7:12 AM Page 136

Efficiency of Queues
As with a stack, items can be inserted and removed from a queue in O(1) time. Because
of the wraparound feature, some insertions and deletions might actually take substan-
tially longer than others, but this doesn’t change the Big O time.

Queues and Priority Queues 137

7

A deque is a double-ended queue. You can insert items at
either end, and delete them from either end. The member

functions might be called insertLeft() and insertRight(), and
removeLeft() and removeRight().

If you restrict yourself to insertLeft() and removeLeft() (or their equiva-
lents on the right), the deque acts like a stack. If you restrict yourself to
insertLeft() and removeRight(), (or the opposite pair), it acts like a queue.

A deque provides a more versatile data structure than either a stack or a
queue, and is sometimes used in container class libraries to serve both pur-
poses. However, it’s not used as often as stacks and queues, so we won’t
explore it further here.

Let’s move from queues to this hour’s second major topic, a related data structure called
a priority queue.

Priority Queues
A priority queue is a more specialized data structure than a stack or a queue. However,
it’s a useful tool in a surprising number of situations. Like an ordinary queue, a priority
queue has a front and a rear, and items are inserted in the rear and removed from the
front. However, in a priority queue, items are ordered by key value, so that the item with
the lowest key (or in some implementations the highest key) is always at the front. Items
are inserted in the proper position to maintain the order.

Here’s how the mail sorting analogy applies to a priority queue. Every time the postman
hands you a letter, you insert it into your pile of pending letters according to its priority.
If it must be answered immediately (the phone company is about to disconnect your
modem line), it goes on top, but if it can wait for a leisurely answer (a letter from your
Aunt Mabel), it goes on the bottom.

When you have time to answer your mail, you start by taking the letter off the top (the
front of the queue), thus ensuring that the most important letters are answered first. This
is shown in Figure 7.7.

NEW TERM

10 72316331 Ch07 10/31/02 7:12 AM Page 137

Like stacks and queues, priority queues are often used as programmer’s tools. They are
used in various ways in certain computer systems. In a preemptive multitasking operating
system, for example, programs may be placed in a priority queue so the highest-priority
program is the next one to receive a time-slice that allows it to execute.

In many situations you want access to the item with the lowest key value (which might
represent the cheapest or shortest way to do something). Thus the item with the smallest
key has the highest priority. Somewhat arbitrarily, we’ll assume that’s the case in this dis-
cussion, although there are other situations in which the highest key has the highest pri-
ority.

Besides providing quick access to the item with the smallest key, you also want a priority
queue to provide fairly quick insertion. For this reason, priority queues are, as we noted
earlier, often implemented with a data structure called a heap. However, we’ll show a pri-
ority queue implemented by a simple array. This implementation suffers from slow inser-
tion, but it’s simpler and is appropriate when the number of items isn’t high or insertion
speed isn’t critical.

The PriorityQ Workshop Applet
The PriorityQ Workshop applet implements a priority queue with an array, in
which the items are kept in sorted order. It’s an ascending-priority queue, in

138 Hour 7

FIGURE 7.7
Letters in a priority
queue.

Letter on top
is always
processed

first

More urgent letters are
inserted higher

Less urgent letters are
inserted lower

NEW TERM

10 72316331 Ch07 10/31/02 7:12 AM Page 138

which the item with the smallest key has the highest priority and is the one accessed with
remove(). (If the highest-key item were accessed, it would be a descending-priority
queue.)

The minimum-key item is always at the top (highest index) in the array, and the largest
item is always at index 0. Figure 7.8 shows the arrangement when the applet is started.
Initially there are five items in the queue.

Queues and Priority Queues 139

7

FIGURE 7.8
The PriorityQ
Workshop applet.

Inserting a New Item
Try inserting an item. You’ll be prompted to type the new item’s key value into the
Number data member. Choose a number that will be inserted somewhere in the middle
of the values already in the queue. For example, in Figure 7.8 you might choose 300.
Then, as you repeatedly press Ins, you’ll see that the items with smaller keys are shifted
up to make room. A black arrow shows which item is being shifted. After the appropriate
position is found, the new item is inserted into the newly created space.

Notice that there’s no wraparound in this implementation of the priority queue. Insertion
is slow of necessity because the proper in-order position must be found, but deletion is
fast. A wraparound implementation wouldn’t improve the situation. Note too that the
Rear arrow never moves; it always points to index 0 at the bottom of the array.

Deleting an Item
The item to be removed is always at the top of the array (in both ascending and descend-
ing queues), so removal is quick and easy; the item is removed and the Front arrow

10 72316331 Ch07 10/31/02 7:12 AM Page 139

moves down to point to the new top of the array. No comparisons or shifting are
necessary.

140 Hour 7

FIGURE 7.9
Operation of the
PriorityQ class mem-
ber functions.

Rear

43

109

500

632

841

320

Front

Rear

New item inserted in priority queue

Two items removed from front of priority queue

43

109

632

841

320

Front

500

Rear

43

109

500

632

841

320

Front

Rear

109

320

632

841

500

Front

Rear

320

632

841

500

Front

43

109

In the PriorityQ Workshop applet, we show Front and Rear arrows to provide a compari-
son with an ordinary queue, but they’re not really necessary. The algorithms know that
the front of the queue is always at the top of the array at nItems-1, and they insert items
in order, not at the rear. Figure 7.9 shows the operation of the PriorityQ class member
functions.

Peek and New
You can peek at the minimum item (find its value without removing it) with the Peek
button, and you can create a new, empty, priority queue with the New button.

10 72316331 Ch07 10/31/02 7:12 AM Page 140

C++ Code for a Priority Queue
The C++ code for a simple array-based priority queue is shown in Listing 7.3.

LISTING 7.3 THE priorityQ.cpp PROGRAM

//priorityQ.cpp
//demonstrates priority queue
#include <iostream>
#include <vector>
using namespace std;
//
class PriorityQ

{
//vector in sorted order, from max at 0 to min at size-1
private:

int maxSize;
vector<double> queVect;
int nItems;

public:
//---

PriorityQ(int s) : maxSize(s), nItems(0) //constructor
{ queVect.resize(maxSize); }

//---
void insert(double item) //insert item

{
int j;

if(nItems==0) //if no items,
queVect[nItems++] = item; //insert at 0

else //if items,
{
for(j=nItems-1; j>=0; j--) //start at end,

{

Queues and Priority Queues 141

7

The implementation shown in the PriorityQ Workshop applet isn’t very effi-
cient for insertion, which involves moving an average of half the items.

Another approach, which also uses an array, makes no attempt to keep the
items in sorted order. New items are simply inserted at the top of the array.
This makes insertion very quick, but unfortunately it makes deletion slow
because the smallest item must be searched for. This requires examining all
the items and shifting half of them, on the average, down to fill in the hole.
Generally, the quick-deletion approach shown in the Workshop applet is
preferred.

INPUT

continues

10 72316331 Ch07 10/31/02 7:12 AM Page 141

LISTING 7.3 CONTINUED

if(item > queVect[j]) //if new item larger,
queVect[j+1] = queVect[j]; //shift upward

else //if smaller,
break; //done shifting

} //end for
queVect[j+1] = item; //insert it
nItems++;
} //end else (nItems > 0)

} //end insert()
//---

double remove() //remove minimum item
{ return queVect[--nItems]; }

//---
double peekMin() //peek at minimum item

{ return queVect[nItems-1]; }
//---

bool isEmpty() //true if queue is empty
{ return (nItems==0); }

//---
bool isFull() //true if queue is full

{ return (nItems == maxSize); }
//---

}; //end class PriorityQ
//
int main()

{
PriorityQ thePQ(5); //priority queue, size 5

thePQ.insert(30); //unsorted insertions
thePQ.insert(50);
thePQ.insert(10);
thePQ.insert(40);
thePQ.insert(20);

while(!thePQ.isEmpty())
{ //sorted removals
double item = thePQ.remove();
cout << item << “ “; //10, 20, 30, 40, 50
} //end while

cout << endl;
return 0;
} //end main()

In main() we insert five items in random order, and then remove and display
them. The smallest item is always removed first, so the output is

10, 20, 30, 40, 50

142 Hour 7

OUTPUT

10 72316331 Ch07 10/31/02 7:12 AM Page 142

The insert() member function checks whether there are any items; if not, it
inserts one at index 0. Otherwise, the function starts at the top of the array and

shifts existing items upward until it finds the place where the new item should go. Then
it inserts the new item and increments nItems. Note that if there’s any chance the priority
queue is full you should check for this possibility with isFull() before using insert().

The front and rear data members aren’t necessary as they were in the Queue class
because, as we noted, front is always at nItems-1 and rear is always at 0.

The remove() member function is simplicity itself: it decrements nItems and returns the
item from the top of the array. The peekMin() member function is similar, except it does-
n’t decrement nItems. The isEmpty() and isFull() member functions check whether
nItems is 0 or maxSize, respectively.

Efficiency of Priority Queues
In the priority-queue implementation we show here, insertion runs in O(N) time, whereas
deletion takes O(1) time because of the need to shift items to fill the hole left by the
deleted item.

Summary
In this hour, you’ve learned the following:

● Queues and priority queues, like stacks, are data structure usually used to simplify
certain programming operations.

● In these data structures, only one data item can be immediately accessed.

● A queue allows access to the first item that was inserted.

● The important queue operations are inserting an item at the rear of the queue and
removing the item from the front of the queue.

● A queue can be implemented as a circular queue, which is based on an array in
which the indices wrap around from the end of the array to the beginning.

● A priority queue allows access to the smallest (or sometimes the largest) item.

● The important priority queue operations are inserting an item in sorted order and
removing the item with the smallest key.

Queues and Priority Queues 143

7

ANALYSIS

10 72316331 Ch07 10/31/02 7:12 AM Page 143

Q&A
Q The code for the circular queue, with the wraparound feature, seems pretty

complicated. Do I really need to know how to write this code?

A That depends. If you’re using an existing queue class, like the one in the C++ STL,
you don’t need to know anything about how it works. But if you’re writing your
own container classes, you’ll need to understand the details.

Q How often will I really need to use queues and priority queues in my code?

A After you know about the concepts, it’s surprising how often you’ll find them use-
ful. It depends on the kind of programming you do, of course. In some projects
they’ll never be necessary. But if you’re working in systems programming, com-
piler design or simulations, they’re used frequently. They’re also used in more
advanced data structures, such as graphs (which are beyond the scope of this book).

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Give a one-sentence description of how a queue works.

2. In the C++ code for a queue, when you insert an item, which do you do first: insert
the item, increment Rear, or check whether Rear is at the end of the array?

3. Why is wraparound necessary for (at least some implementations of) queues but
not for stacks?

4. What does it mean when we say the remove() member function for a queue
“assumes” the queue is not empty?

5. What’s the difference between a queue and a priority queue?

6. Why is wraparound necessary in priority queues?

7. True or false: Assuming array implementations, insertion and deletion in queues
and priority queues operate in O(1) time.

Exercise
We all use queues and priority queues conceptually in our daily lives to decide what
activities to execute next. Think of some examples where you apply these concepts in
your own life. For example, if three different people at work ask you to do different
things, which do you do first? Is the arrangement you chose a queue or a priority queue?

144 Hour 7

10 72316331 Ch07 10/31/02 7:12 AM Page 144

HOUR 8
Linked Lists

Linked lists are versatile data structures that feature fast insertion and dele-
tion. In this hour we’ll learn

● The advantages and disadvantages of linked lists

● How linked lists works

● How to create a linked list in C++

In Hours 2, “Arrays” and 3, “Ordered Arrays,” we saw that arrays had cer-
tain disadvantages as data storage structures. In an unordered array, search-
ing is slow, whereas in an ordered array, insertion is slow. In both kinds of
arrays deletion is slow. Also, the size of an array can’t be changed after it’s
created (although it can be changed in a vector).

The linked list solves some of these problems. Linked lists are probably the
second most commonly used general-purpose storage structures after arrays.

The linked list is a versatile mechanism suitable for use in many kinds of
general-purpose data-storage applications. It can also replace an array as the
basis for other storage structures such as stacks and queues. In fact, you can
use a linked list in many cases where you use an array. By doing so you can
greatly improve insertion and deletion performance.

11 72316331 Ch08 10/31/02 7:12 AM Page 145

Linked lists aren’t the solution to all data storage problems, but they are surprisingly ver-
satile and conceptually simpler than some other popular structures such as trees.

We’ll devote three hours to linked lists. In this hour we’ll look at simple linked lists. In
Hour 9, “Abstract Data Types,” we’ll see how using linked lists to implement stacks and
queues demonstrates the idea of Abstract Data Types (ADTs). In Hour 10, “Specialized
Lists,” we’ll examine sorted lists and doubly linked lists.

Understanding Links
In a linked list, each data item is embedded in a link. A link is an object of a
class called something like Link. Because there are many similar links in a list, it

makes sense to use a separate class for them, distinct from the linked list itself. Each link
object contains a pointer (which we’ll call pNext) to the next link in the list. A data
member in the list itself contains a pointer to the first link. This is shown in Figure 8.1.

146 Hour 8

NEW TERM

FIGURE 8.1
Links in a list.

Linked List

first

Data

Link

next

Data

Link

next

Data

Link

next

Data

Link

next

Null

Here’s part of the definition of a class Link. It contains some data and a pointer to the
next link:

class Link
{
public:
int iData; //data
double dData; //data
Link* pNext; //pointer to next link
};

This kind of class definition is sometimes called self-referential because it con-
tains a data member—pNext in this case—which is a pointer to the same type

as itself.

NEW TERM

11 72316331 Ch08 10/31/02 7:12 AM Page 146

We show only two data items in the link: an int and a double. In a typical application
there would be many more. A personnel record, for example, might have name, address,
Social Security number, title, salary, and many other fields. Often a pointer to an object
that contains this data is used instead of the data items themselves:

class Link
{
public:
inventoryItem* pItem; //pointer to object holding data
Link* pNext; //pointer to next link
};

Structure Defined by Relationship, Not Position
Let’s examine one of the major ways in which linked lists differ from arrays. In an array
each item occupies a particular position. This position can be directly accessed using an
index number. It’s like a row of houses: you can find a particular house using its address.

In a list the only way to find a particular element is to follow along the chain of links.
It’s more like human relations. Maybe you ask Harry where Bob is. Harry doesn’t know,
but he thinks Jane might know, so you go and ask Jane. Jane saw Bob leave the office
with Sally, so you call Sally’s cell phone. She dropped Bob off at Peter’s office, so…but
you get the idea. You can’t access a data item directly; you must use relationships
between the items to locate it. You start with the first item, go to the second, and then the
third, and so on, until you find what you’re looking for. Let’s see how a Workshop applet
demonstrates lists.

The LinkList Workshop Applet
The LinkList Workshop applet provides three list operations. You can insert a new data
item, search for a data item with a specified key, and delete a data item with a specified
key. These operations are the same ones we explored in the Array Workshop applet in
Hour 2; they’re suitable for a general-purpose database application. However, the way
these operations are implemented is quite different.

Figure 8.2 shows how the LinkList Workshop applet looks when it’s started up. Initially
there are 13 links on the list.

Inserting a New Link
If you think 13 is an unlucky number, you can insert a new link. Click on the Ins button,
and you’ll be prompted to enter a key value between 0 and 999. Subsequent presses will
generate a link with this data in it, as shown in Figure 8.3.

Linked Lists 147

8

11 72316331 Ch08 10/31/02 7:12 AM Page 147

In this version of a linked list, new links are always inserted at the beginning of the list.
This is the simplest approach, although it’s also possible to insert links anywhere in the
list, as we’ll see later in this hour in the section “Finding and Removing Specific Links.”

A final press on Ins will redraw the list so the newly inserted link lines up with the other
links. This redrawing doesn’t represent anything happening in the list itself, it just makes
the display look neater.

Using the Find Button
Here’s how to use the Find button to find a link with a key value you specify.

148 Hour 8

FIGURE 8.2
The LinkList Workshop
applet.

FIGURE 8.3
A new link being
inserted.

11 72316331 Ch08 10/31/02 7:12 AM Page 148

To Do: Find a Link
1. The Find button allows you to find a link with a specified key value.

2. When prompted, type in the value of an existing link, preferably one somewhere in
the middle of the list.

3. As you continue to press the button, you’ll see the red arrow move along the list,
looking for the link. A message informs you when the link is found.

4. If you type a nonexistent key value, the arrow will search all the way to the end of
the list before reporting that the item can’t be found.

Using the Del Button
Using the Del button, you can also delete a link with a specified key value.

To Do: Delete a Link
1. Type in the value of an existing link, and repeatedly press Del.

2. Again the arrow will move along the list, looking for the link.

3. When it finds the link, it simply removes it and connects the arrow from the previ-
ous link straight across to the following link. This is how links are removed: the
pointer to the preceding link is changed to point to the following link.

4. A final key press redraws the picture, but again this just provides evenly spaced
links for aesthetic reasons; the length of the arrows doesn’t correspond to anything
in the program.

Creating Unsorted and Sorted Lists
The LinkList Workshop applet can create both unsorted and sorted lists. Unsorted is the
default. We’ll show how to use the applet for sorted lists when we discuss them in
Hour 10.

Now that we’ve seen how linked lists look, let’s examine how they’re implemented
in C++.

Implementing a Simple Linked List
Our first sample program, linkList.cpp, demonstrates a simple linked list. The only
operations allowed in this version of a list are

● Inserting an item at the beginning of the list

● Removing the item at the beginning of the list

● Iterating through the list to display its contents

Linked Lists 149

8

,
TO

D
O

,

,
TO

D
O

,

11 72316331 Ch08 10/31/02 7:13 AM Page 149

These operations are fairly easy to carry out, so we’ll start with them. (As we’ll see in
Hour 9, “Abstract Data Types,” these operations are also all you need to use a linked list
as the basis for a stack.)

Before we get to the complete linkList.cpp program, we’ll look at some important
parts of the Link and LinkList classes.

The Link Class
You’ve already seen the data part of the Link class. Listing 8.1 shows the complete class
definition:

LISTING 8.1 THE Link CLASS

class Link
{
public:

int iData; //data item
double dData; //data item
Link* pNext; //ptr to next link in list

//---
Link(int id, double dd) : //constructor

iData(id), dData(dd), pNext(NULL)
{ }

//---
void displayLink() //display ourself {22, 2.99}

{
cout << “{“ << iData << “, “ << dData << “} “;
}

//---
}; //end class Link

In addition to the data, there’s a constructor and a member function,
displayLink(), that displays the link’s data in the format {22, 2.99}. Object

purists would probably object to naming this member function displayLink(), arguing
that it should be simply display(). This would be in the spirit of polymorphism, but it
makes the listing somewhat harder to understand when you see a statement like the fol-
lowing and you’ve forgotten whether pCurrent points to a Link object, a LinkList
object, or something else:

pCurrent->display();

The constructor initializes the data. There’s no need to initialize the pNext data member
because it’s automatically set to NULL when it’s created. (Although it could be set to NULL

150 Hour 8

INPUT

ANALYSIS

11 72316331 Ch08 10/31/02 7:13 AM Page 150

explicitly, for clarity.) The NULL value means it doesn’t refer to anything, which is the
situation until the link is connected to other links.

Linked Lists 151

8

The LinkList Class
The LinkList class contains only one data item: a pointer to the first link on the list (see
Listing 8.2). This pointer is called pFirst. It’s the only permanent information the list
maintains about the location of any of the links. It finds the other links by following the
chain of pointers from pFirst, using each link’s pNext data member.

LISTING 8.2 THE LinkList CLASS

class LinkList
{
private:

Link* pFirst; //ptr to first link on list
public:

//---
LinkList() : pFirst(NULL) //constructor

{ } //(no links on list yet)
//---

bool isEmpty() //true if list is empty
{ return pFirst==NULL; }

//---
... //other methods go here

}; //end class LinkList

The constructor for LinkList sets pFirst to NULL. When pFirst has the value
NULL, we know there are no items on the list. If there were any items, pFirst

would contain a pointer to the first one. As we’ll see, the isEmpty() member function
uses this fact to determine if the list is empty.

The insertFirst() Member Function
The insertFirst() member function of LinkList inserts a new link at the beginning of
the list. This is the easiest place to insert a link because pFirst already points to the first

We’ve made the storage type of the Link fields (iData and so on) public. If
they were private we would need to provide public methods to access them,
which would require extra code, thus making the listing longer and harder
to read. Ideally, for security we would probably want to restrict Link-object
access to public methods of the LinkList class.

INPUT

ANALYSIS

11 72316331 Ch08 10/31/02 7:13 AM Page 151

link. To insert the new link, we need only set the pNext data member in the newly cre-
ated link to point to the old first link, and then change pFirst so it points to the newly
created link. This is shown in Figure 8.4.

152 Hour 8

FIGURE 8.4
Inserting a new link.

a) Before Insertion

b) After Insertion

first next next next next

first next next next next

Null

Null

42 98 147

42

Link

next

33

98 147

42 98 147

❶

❷

In insertFirst() we begin by creating the new link using the data passed as arguments.
Then we change the link pointers as we just noted.

//insert at start of list
void insertFirst(int id, double dd)

{ //make new link
Link* pNewLink = new Link(id, dd);
pNewLink->pNext = pFirst; //newLink-->old first
pFirst = pNewLink; //first-->newLink
}

The arrows --> in the comments in the last two statements mean that a link (or
the pFirst data member) connects to the next (downstream) link. (In doubly

linked lists we’ll see upstream connections as well, symbolized by <-- arrows.) Compare
these two statements with Figure 8.4. Make sure you understand how the statements

ANALYSIS

11 72316331 Ch08 10/31/02 7:13 AM Page 152

cause the links to be changed, as shown in the figure. This kind of pointer-manipulation
is the heart of linked list algorithms.

Notice that we’ve created a new link with new. This implies we’ll need to delete the link
from memory if at some point we remove it from the list.

The removeFirst() Member Function
In the LinkList Workshop applet we used the term “delete” to describe removing a link
from a list. When we talk about a C++ implementation of a linked list we must be care-
ful with our terminology. In C++, delete is an operator used to remove an object from
memory. In listings we’ll use the term “remove” to refer to a link being taken out of a
list.

The removeFirst() member function is the reverse of insertFirst(). It disconnects the
first link by rerouting pFirst to point to the second link. This second link is found by
looking at the pNext data member in the first link.

void removeFirst() //delete first link
{ //(assumes list not empty)
Link* pTemp = pFirst; //save first
pFirst = pFirst->pNext; //unlink it: first-->old next
delete pTemp; //delete old first
}

The second statement is all you need to remove the first link from the list. Figure
8.5 shows how pFirst is rerouted to delete the object. We also need to delete the

removed link from memory, so we save a pointer to it in pTemp, and then delete it in the
last statement. This prevents a “memory leak” caused by an accumulation of links
deleted from the list but still taking up space in memory. (We’ll examine memory leaks
again in the next program.)

Notice that the removeFirst() member function assumes the list is not empty. Before
calling it, your program should verify this with the isEmpty() member function.

The displayList() Member Function
To display the list, you start at pFirst and follow the chain of pointers from link to link.
A variable pCurrent points to each link in turn. It starts off pointing to pFirst, which
holds a pointer to the first link. The following statement changes pCurrent to point to
the next link because that’s what’s in the pNext data member in each link:

pCurrent = pCurrent->pNext;

Linked Lists 153

8

ANALYSIS

11 72316331 Ch08 10/31/02 7:13 AM Page 153

Here’s the entire displayList() member function:

void displayList()
{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

The end of the list is indicated by the pNext data member in the last link point-
ing to NULL rather than another link. How did this data member get to be NULL? It

started that way when the link was constructed and was never given any other value
because it was always at the end of the list. The while loop uses this condition to termi-
nate itself when it reaches the end of the list. Figure 8.6 shows how pCurrent steps along
the list.

At each link, the displayList() member function calls the displayLink() member
function to display the data in the link.

154 Hour 8

FIGURE 8.5
Deleting a link.

a) Before Deletion

b) After Deletion

first

first

Null

Null

27 6 3394

6 3394

ANALYSIS

11 72316331 Ch08 10/31/02 7:13 AM Page 154

The linkList.cpp Program
Listing 8.3 shows the complete linkList.cpp program. You’ve already seen all the
components except the main() routine.

LISTING 8.3 THE linkList1.cpp PROGRAM

//linkList.cpp
//demonstrates linked list
#include <iostream>
using namespace std;
//
class Link

{
public:

int iData; //data item
double dData; //data item
Link* pNext; //ptr to next link in list

//---
Link(int id, double dd) : //constructor

iData(id), dData(dd), pNext(NULL)
{ }

//---
void displayLink() //display ourself {22, 2.99}

Linked Lists 155

8
FIGURE 8.6
Stepping along the list.

first next next next next
Null

current

first next next next next
Null

current

a)Before pCurrent = pCurrent pNext;

a)After pCurrent = pCurrent pNext;

INPUT

continues

11 72316331 Ch08 10/31/02 7:13 AM Page 155

LISTING 8.3 CONTINUED

{
cout << “{“ << iData << “, “ << dData << “} “;
}

//---
}; //end class Link

//
class LinkList

{
private:

Link* pFirst; //ptr to first link on list
public:

//---
LinkList() : pFirst(NULL) //constructor

{ } //(no links on list yet)
//---

bool isEmpty() //true if list is empty
{ return pFirst==NULL; }

//---
//insert at start of list

void insertFirst(int id, double dd)
{ //make new link
Link* pNewLink = new Link(id, dd);
pNewLink->pNext = pFirst; //newLink-->old first
pFirst = pNewLink; //first-->newLink
}

//---
Link* getFirst() //return first link

{ return pFirst; }
//---

void removeFirst() //delete first link
{ //(assumes list not empty)
Link* pTemp = pFirst; //save first
pFirst = pFirst->pNext; //unlink it: first-->old next
delete pTemp; //delete old first
}

//---
void displayList()

{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

//---

156 Hour 8

11 72316331 Ch08 10/31/02 7:13 AM Page 156

}; //end class LinkList
//
int main()

{
LinkList theList; //make new list

theList.insertFirst(22, 2.99); //insert four items
theList.insertFirst(44, 4.99);
theList.insertFirst(66, 6.99);
theList.insertFirst(88, 8.99);

theList.displayList(); //display list

while(!theList.isEmpty()) //until it’s empty,
{
Link* pTemp = theList.getFirst(); //get first link

//display its key
cout << “Removing link with key “ << pTemp->iData << endl;
theList.removeFirst(); //remove it
}

theList.displayList(); //display empty list
return 0;
} //end main()

In main() we create a new list, insert four new links into it with insertFirst(),
and display it. Then, in the while loop, we repeatedly display the first item with

getFirst() and remove it with removeFirst() until the list is empty. The empty list is
then displayed.

Here’s the output from linkList.cpp:

List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22, 2.99}
Removing link with key 88
Removing link with key 66
Removing link with key 44
Removing link with key 22
List (first-->last):

We’ve examined a barebones linked list program. Now let’s look at a program with some
additional features.

Finding and Removing Specified Links
Our next sample program adds methods to search a linked list for a data item with a
specified key value, and to remove an item with a specified key value. These, along with
insertion at the start of the list, are the same operations carried out by the LinkList
Workshop applet. The complete linkList2.cpp program is shown in Listing 8.4.

Linked Lists 157

8

ANALYSIS

OUTPUT

11 72316331 Ch08 10/31/02 7:13 AM Page 157

LISTING 8.4 THE linkList2.cpp PROGRAM

//linkList2.cpp
//demonstrates linked list
#include <iostream>
using namespace std;
//
class Link

{
public:

int iData; //data item (key)
double dData; //data item
Link* pNext; //next link in list

//---
Link(int id, double dd) : //constructor

iData(id), dData(dd), pNext(NULL)
{ }

//---
void displayLink() //display ourself: {22, 2.99}

{
cout << “{“ << iData << “, “ << dData << “} “;
}

}; //end class Link
//
class LinkList

{
private:

Link* pFirst; //ptr to first link on list
public:

//---
LinkList() : pFirst(NULL) //constructor

{ } //(no links on list yet)
//---

~LinkList() //destructor (deletes links)
{
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
Link* pOldCur = pCurrent; //save current link
pCurrent = pCurrent->pNext; //move to next link
delete pOldCur; //delete old current
}

}
//---

void insertFirst(int id, double dd)
{ //make new link
Link* pNewLink = new Link(id, dd);
pNewLink->pNext = pFirst; //it points to old first link
pFirst = pNewLink; //now first points to this
}

158 Hour 8

INPUT

11 72316331 Ch08 10/31/02 7:13 AM Page 158

//---
Link* find(int key) //find link with given key

{ //(assumes non-empty list)
Link* pCurrent = pFirst; //start at ‘first’
while(pCurrent->iData != key) //while no match,

{
if(pCurrent->pNext == NULL) //if end of list,

return NULL; //didn’t find it
else //not end of list,

pCurrent = pCurrent->pNext; //go to next link
}

return pCurrent; //found it
}

//---
bool remove(int key) //remove link with given key

{ //(assumes non-empty list)
Link* pCurrent = pFirst; //search for link
Link* pPrevious = pFirst;
while(pCurrent->iData != key)

{
if(pCurrent->pNext == NULL)

return false; //didn’t find it
else

{
pPrevious = pCurrent; //go to next link
pCurrent = pCurrent->pNext;
}

} //found it
if(pCurrent == pFirst) //if first link,

pFirst = pFirst->pNext; //change first
else //otherwise,

pPrevious->pNext = pCurrent->pNext; //bypass it
delete pCurrent; //delete link
return true; //successful removal
}

//---
void displayList() //display the list

{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

//---
}; //end class LinkList

Linked Lists 159

8

continues

11 72316331 Ch08 10/31/02 7:13 AM Page 159

LISTING 8.4 CONTINUED

//
int main()

{
LinkList theList; //make list

theList.insertFirst(22, 2.99); //insert 4 items
theList.insertFirst(44, 4.99);
theList.insertFirst(66, 6.99);
theList.insertFirst(88, 8.99);

theList.displayList(); //display list

int findKey = 44; //find item
Link* pFind = theList.find(findKey);
if(pFind != NULL)

cout << “Found link with key “ << pFind->iData << endl;
else

cout << “Can’t find link” << endl;

int remKey = 66; //remove item
bool remOK = theList.remove(remKey);
if(remOK)

cout << “Removed link with key “ << remKey << endl;
else

cout << “Can’t remove link” << endl;

theList.displayList(); //display list
return 0;
} //end main()

The main() routine makes a list, inserts four items, and displays the resulting
list. It then searches for the item with key 44, removes the item with key 66, and

displays the list again.

Here’s the output:

List (first-->last): {88, 8.99} {66, 6.99} {44, 4.99} {22, 2.99}
Found link with key 44
Deleted link with key 66
List (first-->last): {88, 8.99} {44, 4.99} {22, 2.99}

The find() Member Function
The find() member function works much like the displayList() member function seen
in the linkList.cpp program. The pointer pCurrent initially points to pFirst, and then
steps its way along the links by setting itself repeatedly to pCurrent->pNext. At each

160 Hour 8

ANALYSIS

OUTPUT

11 72316331 Ch08 10/31/02 7:13 AM Page 160

link, find() checks whether that link’s key is the one it’s looking for. If it is, it returns
with a pointer to that link. If it reaches the end of the list without finding the desired link,
it returns NULL.

The remove() Member Function
The remove() member function is similar to find() in the way it searches for the link to
be removed. However, it needs to maintain a pointer not only to the current link
(pCurrent), but to the link preceding the current link (pPrevious). This is because if it
removes the current link, it must connect the preceding link to the following link, as
shown in Figure 8.7. The only way to remember the location of the preceding link is to
maintain a pointer to it.

Linked Lists 161

8

FIGURE 8.7
Removing a specified
link.

a) Before deletion

b) After deletion

First Next Next Next

Previous Current

Next

Null

First

Null

Previous Current

17 98 7344

44 7317

Next Next Next

17 44 98 73

17 44 73

At each cycle through the while loop, just before pCurrent is set to pCurrent->pNext,
pPrevious is set to pCurrent. This keeps it pointing at the link preceding pCurrent.

To remove the current link after it’s found, the pNext data member of the previous link is
set to the next link. A special case arises if the current link is the first link because the
first link is pointed to by the LinkList’s pFirst data member and not by another link. In
this case the link is removed by changing pFirst to point to pFirst->pNext, as we saw
in the linkList2.cpp program with the removeFirst() member function. Here’s the
code that covers these two possibilities:

if(pCurrent == pFirst) //if first link,
pFirst = pFirst->pNext; // change first

else //otherwise,
pPrevious->pNext = pCurrent->pNext; // bypass it

11 72316331 Ch08 10/31/02 7:13 AM Page 161

Avoiding Memory Leaks
To create a linked list, the LinkList program creates a LinkList object. During the oper-
ation of the linked list, the insertFirst() member function of this object creates Link
objects using the C++ new operator. When the LinkList object is destroyed (in this pro-
gram because it goes out of scope when main() terminates), the Link objects that have
been created will remain in memory unless we take steps to delete them.

Accordingly, in the destructor for the LinkList class, we install code to step through the
list and apply the delete operator to each link. For the same reason, the remove() mem-
ber function must delete a link after it has been removed from the list.

162 Hour 8

We’ve seen methods to insert and remove items at the start of a list, and to
find a specified item and remove a specified item. You can imagine other
useful list methods. For example, an insertAfter() member function could
find a link with a specified key value and insert a new link following it.

The Efficiency of Linked Lists
Insertion and deletion at the beginning of a linked list are very fast. They involve chang-
ing only one or two pointers, which takes O(1) time.

Finding or deleting a specified item requires searching through, on the average, half the
items in the list. This requires O(N) comparisons. An array is also O(N) for these opera-
tions, but the linked list is nevertheless faster because nothing needs to be moved when
an item is inserted or removed. The increased efficiency can be significant, especially if a
copy takes much longer than a comparison.

Of course, another important advantage of linked lists over arrays is that the linked list
uses exactly as much memory as it needs, and can expand to fill all available memory.
The size of an array is fixed when it’s created; this usually leads to inefficiency because
the array is too large, or to running out of room because the array is too small. Vectors,
which are expandable arrays, might solve this problem to some extent, but they usually
expand in fixed-sized increments (such as doubling the size of the array whenever it’s
about to overflow). This use of memory is still not as efficient as a linked list.

11 72316331 Ch08 10/31/02 7:13 AM Page 162

Summary
In this hour, you’ve learned the following:

● A linked list consists of one linkedList object and a number of link objects.

● The linkedList object contains a pointer, often called pFirst, to the first link in
the list.

● Each link object contains data and a pointer, often called pNext, to the next link in
the list.

● A pNext value of NULL signals that a link is the last one on the list.

● Inserting an item at the beginning of a linked list involves setting the new link’s
pNext data member to point to the old first link, and changing pFirst to point to
the new link.

● Deleting a link at the beginning of a list involves setting pFirst to point to
pFirst->pNext.

● When a link is removed from a list it must also be deleted from memory to avoid a
memory leak.

● To traverse a linked list, you start at pFirst; then go from link to link, using each
link’s pNext data member to find the next link.

● A link with a specified key value can be found by traversing the list. After it is
found, an item can be displayed, removed, or operated on in other ways.

● A new link can be inserted before or after a link with a specified key value, follow-
ing a traversal to find this link.

Q&A
Q How do I know when to use a linked list instead of an array?

A You should consider a linked list when there will be lots of insertions of new data
items or deletions of existing items.

Q When shouldn’t I use a linked list?

A Don’t use a linked list if you need frequent access to data items with a specified
key, or to arbitrary items in the list (such as the access provided by array indices).

Linked Lists 163

8

11 72316331 Ch08 10/31/02 7:13 AM Page 163

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. What one piece of data must be included in a link class?

2. What one piece of data must be included in a linked list class?

3. Deleting a link from a linked list involves only one change in the list’s structure.
What is it?

4. How do you get from the current link to the next link?

5. What task must be carried out by both the find(int key) and remove(int key)
member functions?

6. How many objects of the linked list class are normally used to implement a linked
list?

7. What task should be carried out by the destructor of a linked list class in a C++
program?

Exercise
There’s a somewhat imperfect analogy between a linked list and a railroad train, where
individual cars represent links. Imagine how you would carry out various linked list
operations, such as those implemented by the member functions insertFirst(),
removeFirst(), and remove(int key) from the LinkList class in this hour. Also imple-
ment an insertAfter() function. You’ll need some sidings and switches. You can use a
model train set if you have one. Otherwise, try drawing tracks on a piece of paper and
using business cards for train cars.

164 Hour 8

11 72316331 Ch08 10/31/02 7:13 AM Page 164

HOUR 9
Abstract Data Types

In this hour we’ll shift gears and discuss a topic that’s more general than
linked lists or arrays: Abstract Data Types (ADTs). What is an ADT?
Roughly speaking, it’s a way of looking at a data structure: focusing on what
it does, and ignoring how it does it.

In an ADT the concept of a certain kind of data structure is separated from
the underlying implementation. Stacks and queues can be considered exam-
ples of abstract data types. We’ve already seen stacks and queues imple-
mented by arrays (actually vectors).

To clarify the separation of a data structure and its implementation, we’ll
show how stacks and queues can be implemented as linked lists rather than
arrays. This will demonstrate the “abstract” nature of stacks and queues.
After we’ve explored these specific examples, we’ll discuss the concept of
abstract data types. In this hour you’ll learn

● How to implement a stack using a linked list

● How to create a double-ended linked list

● How to implement a queue using a double-ended linked list

12 72316331 Ch09 10/31/02 7:13 AM Page 165

● How implementing one data structure with another demonstrates the concept
of ADTs

● How the concept of ADTs aids in program design

166 Hour 9

This hour is unusual. In previous hours we talked about specific data struc-
tures such as arrays and linked lists. We demonstrated these data structures
by showing how they could be implemented and used. In this hour we’ll be
talking about something less concrete: the concepts of abstraction and
abstract data types. Here we’ll demonstrate abstraction by showing the rela-
tionships between data structures.

A Stack Implemented By a Linked List
Let’s see how a stack can be implemented by a linked list rather than an array. As we’ll
see later, this (and the following example) will demonstrate the idea of abstraction.

Implementing push() and pop()
When we created a stack in Hour 6, “Stacks,” we used a C++ vector (which is basically
an array) to hold the stack’s data. The stack’s push() and pop() operations were carried
out by vector operations such as

stackVect[++top] = data;

and

data = stackVect[top--];

which insert data into, and take it out of, a vector.

We can also use a linked list to hold a stack’s data. In this case the push() and pop()
operations would be carried out by operations like

theList.insertFirst(data)

and

data = theList.deleteFirst()

The user of the stack class calls push() and pop() to insert and delete items, without
knowing, or needing to know, whether the stack is implemented as an array or as a
linked list.

12 72316331 Ch09 10/31/02 7:13 AM Page 166

Implementing a Stack Based on a Linked List
Listing 9.1 shows how a stack class called LinkStack can be implemented using the
LinkList class instead of an array. (Object purists would argue that the name LinkStack
should be simply Stack because users of this class shouldn’t need to know that it’s
implemented as a list.)

LISTING 9.1 THE linkStack() PROGRAM

//linkStack.cpp
//demonstrates a stack implemented as a list
#include <iostream>
using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //next link in list

//---
Link(double dd) : dData(dd), pNext(NULL)

{ } //constructor
//---

void displayLink() //display ourself
{ cout << dData << “ “; }

//---
}; //end class Link

//
class LinkList

{
private:

Link* pFirst; //ptr to first item on list
public:

//---
LinkList() : pFirst(NULL) //constructor

{ }
//---

~LinkList() //destructor (deletes links)
{
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
Link* pOldCur = pCurrent; //save current link
pCurrent = pCurrent->pNext; //move to next link
delete pOldCur; //delete old current
}

}
//---

Abstract Data Types 167

9INPUT

continues

12 72316331 Ch09 10/31/02 7:13 AM Page 167

LISTING 9.1 CONTINUED

bool isEmpty() //true if list is empty
{ return (pFirst==NULL); }

//---
void insertFirst(double dd) //insert at start of list

{ //make new link
Link* pNewLink = new Link(dd);
pNewLink->pNext = pFirst; //newLink --> old first
pFirst = pNewLink; //first --> newLink
}

//---
double deleteFirst() //delete first item

{ //(assumes list not empty)
Link* pTemp = pFirst; //save old first link
pFirst = pFirst->pNext; //remove it: first-->old next
double key = pTemp->dData; //remember data
delete pTemp; //delete old first link
return key; //return deleted link’s data
}

//---
void displayList() //display all links

{
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

//---
}; //end class LinkList

//
class LinkStack

{
private:

LinkList* pList; //pointer to linked list
public:

//--
LinkStack() //constructor

{ pList = new LinkList; } //make a linked list
//--

~LinkStack() //destructor
{ delete pList; } //delete the linked list

//--
void push(double j) //put item on top of stack

{ pList->insertFirst(j); }
//--

double pop() //take item from top of stack

168 Hour 9

12 72316331 Ch09 10/31/02 7:13 AM Page 168

{ return pList->deleteFirst(); }
//--

bool isEmpty() //true if stack is empty
{ return (pList->isEmpty()); }

//--
void displayStack()

{
cout << “Stack (top-->bottom): “;
pList->displayList();
}

//--
}; //end class LinkStack

//
int main()

{
LinkStack theStack; //make stack

theStack.push(20); //push items
theStack.push(40);

theStack.displayStack(); //display stack (40, 20)

theStack.push(60); //push items
theStack.push(80);

theStack.displayStack(); //display (80, 60, 40, 20,)

theStack.pop(); //pop items (80, 60)
theStack.pop();

theStack.displayStack(); //display stack (40, 20)
return 0;
} //end main()

The main() routine creates a stack object, pushes two items on it, displays the
stack, pushes two more items, and displays it again. Finally it pops two items

and displays the stack again.

Here’s the output:

Stack (top-->bottom): 40 20
Stack (top-->bottom): 80 60 40 20
X-80
X-60
Stack (top-->bottom): 40 20
X-40
X-20

Abstract Data Types 169

9

ANALYSIS

OUTPUT

12 72316331 Ch09 10/31/02 7:13 AM Page 169

Focusing on Class Relationships
Notice the overall organization of this program. The main() routine relates only to the
LinkStack class. The LinkStack class relates only to the LinkList class. There’s no
communication between main() and the LinkList class.

More specifically, when a statement in main() calls the push() operation in the
LinkStack class, this member function in turn calls insertFirst() in the LinkList
class to actually insert data. Similarly, pop() calls deleteFirst() to delete an item, and
displayStack() calls displayList() to display the stack. To the class user, writing
code in main(), there’s no difference between using the list-based LinkStack class and
using the array-based stack class from the Stack.cpp program in Hour 6.

Implementing a stack with a linked list rather than an array shows how we can discon-
nect what the user of a class sees (the interface) from the underlying implementation.
We’ll look at another example in the next two sections.

Double-Ended Lists
In the next section, “Implementing a Queue Using a Linked List,” we’ll show a queue
implemented with a linked list. However, it’s hard to implement a queue using the simple
linked list we saw in the last hour. A specialized kind of linked list, called a double-
ended list, is much more satisfactory. Accordingly, we’ll explore the double-ended list
first.

Accessing Both Ends of a List
A double-ended list is similar to an ordinary linked list, but it has one additional feature:
a reference to the last link as well as to the first. Figure 9.1 shows what this looks like.

170 Hour 9

FIGURE 9.1
A double-ended list.

first

last

next next next next
Null

12 72316331 Ch09 10/31/02 7:13 AM Page 170

The reference to the last link permits you to insert a new link directly at the end of the
list just as easily as at the beginning. Of course you can insert a new link at the end of an
ordinary single-ended list by iterating through the entire list until you reach the end, but
this is very inefficient.

Access to the end of the list as well as the beginning makes the double-ended list suitable
for certain situations that a single-ended list can’t handle efficiently, such as implement-
ing a queue.

Implementing a Double-Ended List
Listing 9.2 contains the firstLastList.cpp program, which demonstrates a double-
ended list. (Incidentally, don’t confuse the double-ended list with the doubly linked list,
which we’ll explore later in Hour 10, “Specialized Lists.”)

LISTING 9.2 THE firstLastList.cpp PROGRAM

//firstLastList.cpp
//demonstrates list with first and last references
#include <iostream>
using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //ptr to next link in list

//---
Link(double d) : dData(d), pNext(NULL) //constructor

{ }
//---

void displayLink() //display this link
{ cout << dData << “ “; }

//---
}; //end class Link

//
class FirstLastList

{
private:

Link* pFirst; //ptr to first link
Link* pLast; //ptr to last link

public:
//---

FirstLastList() : pFirst(NULL), pLast(NULL) //constructor

Abstract Data Types 171

9

INPUT

continues

12 72316331 Ch09 10/31/02 7:13 AM Page 171

LISTING 9.2 CONTINUED

{ }
//---

~FirstLastList() //destructor
{ // (deletes all links)
Link* pCurrent = pFirst; //start at beginning
while(pCurrent != NULL) //until end of list,

{
Link* pTemp = pCurrent; //remember current
pCurrent = pCurrent->pNext; //move to next link
delete pTemp; //delete old current
}

}
//---

bool isEmpty() //true if no links
{ return pFirst==NULL; }

//---
void insertFirst(double dd) //insert at front of list

{
Link* pNewLink = new Link(dd); //make new link

if(isEmpty()) //if empty list,
pLast = pNewLink; //newLink <-- last

pNewLink->pNext = pFirst; //newLink --> old first
pFirst = pNewLink; //first --> newLink
}

//---
void insertLast(double dd) //insert at end of list

{
Link* pNewLink = new Link(dd); //make new link
if(isEmpty()) //if empty list,

pFirst = pNewLink; //first --> newLink
else

pLast->pNext = pNewLink; //old last --> newLink
pLast = pNewLink; //newLink <-- last
}

//---
void removeFirst() //remove first link

{ //(assumes non-empty list)
Link* pTemp = pFirst; //remember first link
if(pFirst->pNext == NULL) //if only one item

pLast = NULL; //NULL <-- last
pFirst = pFirst->pNext; //first --> old next
delete pTemp; //delete the link
}

//---
void displayList()

{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning

172 Hour 9

12 72316331 Ch09 10/31/02 7:13 AM Page 172

while(pCurrent != NULL) //until end of list,
{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

//---
}; //end class FirstLastList

//
int main()

{
FirstLastList theList; //make a new list

theList.insertFirst(22); //insert at front
theList.insertFirst(44);
theList.insertFirst(66);

theList.insertLast(11); //insert at rear
theList.insertLast(33);
theList.insertLast(55);

theList.displayList(); //display the list

cout << “Deleting first two items” << endl;
theList.removeFirst(); //remove first two items
theList.removeFirst();

theList.displayList(); //display again
return 0;

} //end main()

For simplicity, in this program we’ve reduced the number of data items in each
link from two to one. This makes it easier to display the link contents.

(Remember that in a serious program there would be many more data items, or perhaps a
pointer to another object containing many data items.)

This program inserts three items at the front of the list, inserts three more at the end, and
displays the resulting list. It then deletes the first two items and displays the list again.

Here’s the output from Listing 9.2:

List (first-->last): 66 44 22 11 33 55
Deleting first two items
List (first-->last): 22 11 33 55

Notice how repeated insertions at the front of the list reverse the order of the items,
whereas repeated insertions at the end preserve the order.

Abstract Data Types 173

9

ANALYSIS

OUTPUT

12 72316331 Ch09 10/31/02 7:13 AM Page 173

Pointers to Both Ends of the List
The double-ended list class is called the FirstLastList. As discussed, it has two data
items, first and last, which point to the first item and the last item in the list. If there
is only one item in the list, both first and last point to it, and if there are no items,
they are both NULL.

The class has a new member function, insertLast(), that inserts a new item at the end
of the list. This involves modifying pLast->pNext to point to the new link, and then
changing pLast to point to the new link, as shown in Figure 9.2.

174 Hour 9

FIGURE 9.2
Insertion at the end of
a list.

first

last

First

next next next next
Null

a) Before insertion

first

last

next next next next

Null

b) After insertion
❶

❷

Insertion and Deletion Routines
The insertion and deletion routines are similar to those in a single-ended list. However,
both insertion routines must watch out for the special case when the list is empty prior to
the insertion. That is, if isEmpty() is true, insertFirst() must set pLast to the new
link, and insertLast() must set pFirst to the new link.

If you are inserting at the beginning with insertFirst(), pFirst is set to point to the
new link, although when inserting at the end with insertLast(), pLast is set to point to

12 72316331 Ch09 10/31/02 7:13 AM Page 174

the new link. Deleting from the start of the list is also a special case if it’s the only item
on the list: pLast must be set to point to NULL in this case.

Unfortunately, making a list double-ended doesn’t help you to delete the last link
because there is still no reference to the next-to-last link, whose pNext field would need
to be changed to NULL if the last link were deleted. To conveniently delete the last link,
you would need a doubly linked list, which we’ll look at in Hour 10. (Of course, you
could also traverse the entire list to find the last link, but that’s not very efficient.)

Now that we understand double-ended lists, let’s see how to use one to implement a
queue.

Implementing a Queue Using a Linked List
Listing 9.3 shows a queue implemented as a double-ended linked list. You can compare
this with the Queue.cpp program in Hour 7, “Queues and Priority Queues.”

LISTING 9.3 THE linkQueue() PROGRAM

//linkQueue.cpp
//demonstrates queue implemented as double-ended list
#include <iostream>
using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //ptr to next link in list

//---
Link(double d) :dData(d), pNext(NULL) //constructor

{ }
//---

void displayLink() //display this link
{ cout << dData << “ “; }

//---
}; //end class Link

//
class FirstLastList

{
private:

Link* pFirst; //ptr to first link
Link* pLast; //ptr to last link

public:
//---

Abstract Data Types 175

9

INPUT

continues

12 72316331 Ch09 10/31/02 7:13 AM Page 175

LISTING 9.3 CONTINUED

FirstLastList() : pFirst(NULL), pLast(NULL) //constructor
{ }

//---
~FirstLastList() //destructor

{ // (deletes all links)
Link* pCurrent = pFirst; //start at beginning
while(pCurrent != NULL) //until end of list,

{
Link* pTemp = pCurrent; //remember current
pCurrent = pCurrent->pNext; //move to next link
delete pTemp; //delete old current
}

}
//---

bool isEmpty() //true if no links
{ return pFirst==NULL; }

//---
void insertLast(double dd) //insert at end of list

{
Link* pNewLink = new Link(dd); //make new link
if(isEmpty()) //if empty list,

pFirst = pNewLink; //first --> newLink
else

pLast->pNext = pNewLink; //old last --> newLink
pLast = pNewLink; //newLink <-- last
}

//---
double removeFirst() //delete first link

{ //(assumes non-empty list)
Link* pTemp = pFirst; //remember first link
double temp = pFirst->dData;
if(pFirst->pNext == NULL) //if only one item

pLast = NULL; //null <-- last
pFirst = pFirst->pNext; //first --> old next
delete pTemp; //delete the link
return temp;
}

//---
void displayList()

{
Link* pCurrent = pFirst; //start at beginning
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;

176 Hour 9

12 72316331 Ch09 10/31/02 7:13 AM Page 176

}
//---

}; //end class FirstLastList
//class
LinkQueue

{
private:

FirstLastList theList;
public:

//--
bool isEmpty() //true if queue is empty

{ return theList.isEmpty(); }
//--

void insert(double j) //insert, rear of queue
{ theList.insertLast(j); }

//--
double remove() //remove, front of queue

{ return theList.removeFirst(); }
//--

void displayQueue()
{
cout << “Queue (front-->rear): “;
theList.displayList();
}

//--
}; //end class LinkQueue

//
int main()

{
LinkQueue theQueue; //make a queue

theQueue.insert(20); //insert items
theQueue.insert(40);

theQueue.displayQueue(); //display queue (20, 40)

theQueue.insert(60); //insert items
theQueue.insert(80);

theQueue.displayQueue(); //display queue (20, 40, 60, 80)

cout << “Removing two items” << endl;
theQueue.remove(); //remove items (20, 40)
theQueue.remove();

theQueue.displayQueue(); //display queue (60, 80)
return 0;
} //end main()

Abstract Data Types 177

9

12 72316331 Ch09 10/31/02 7:13 AM Page 177

The program creates a queue, inserts two items, inserts two more items, and
removes two items; following each of these operations the queue is displayed.

Here’s the output:

Queue (front-->rear): 20 40
Queue (front-->rear): 20 40 60 80
Removing two items
X-20
X-40
Queue (front-->rear): 60 80
X-60
X-80

Here the member functions insert() and remove() in the LinkQueue class are imple-
mented by the insertLast() and deleteFirst() member functions of the
FirstLastList class. We’ve substituted a linked list for the array used to implement the
queue in the Queue program of Hour 7.

Data Types and Abstraction
The LinkStack and LinkQueue programs emphasize that stacks and queues are concep-
tual entities, separate from their implementations. Stacks and queues can be implemented
equally well by arrays or by linked lists. What’s important about a stack is the push()
and pop() operations and how they’re used, not the underlying mechanism used to
implement these operations. Similarly, what’s important about a queue is the insert()
and remove() functions seen by the class user.

The LinkStack and LinkQueue programs demonstrate the concept of abstract data types.
Now that we’ve seen examples of the concept, let’s explore the concept itself.

Where does the term Abstract Data Type come from? Let’s look at the “data type” part
of it first, and then return to “abstract.”

What We Mean by Data Types
The phrase “data type” covers a lot of ground. It was first applied to built-in types such
as int and double. This is probably what you first think of when you hear the term.

When you talk about a primitive type, you’re actually referring to two things: a data item
with certain characteristics, and permissible operations on that data. For example, type
int variables in C++ can have whole-number values in a certain range (for example,
between –2,147,483,648 and +2,147,483,647 in some implementations), and the opera-
tors +, -, *, /, and so on can be applied to them. The data type’s permissible operations
are an inseparable part of its identity; understanding the type means understanding what
operations can be performed on it.

178 Hour 9

ANALYSIS

OUTPUT

12 72316331 Ch09 10/31/02 7:13 AM Page 178

With the advent of C++, it became possible to create your own data types using classes.
Some of these data types represent numerical quantities that are used in ways similar to
primitive types. You can, for example, define a class for time (with data members for
hours, minutes, and seconds), a class for fractions (with numerator and denominator data
members), and a class for extra-long numbers (with characters in a string representing
the digits). All these can be added and subtracted like int and double.

The phrase “data type” seems to fit naturally with such quantity-oriented classes.
However, it is also applied to classes that don’t have this quantitative aspect. In fact, any
class represents a data type, in the sense that a class comprises data (data members) and
permissible operations on that data (member functions).

By extension, when a data storage structure like a stack or queue is represented by a
class, it too can be referred to as a data type. A stack is different in many ways from an
int, but they are both defined as a certain arrangement of data and a set of operations on
that data.

What We Mean by Abstraction
The word abstract means “considered apart from detailed specifications or
implementation.” An abstraction is the essence or set of important characteristics

of some entity. The office of president, for example, is an abstraction, considered apart
from the individual who happens to occupy that office. The powers and responsibilities
of the office remain the same, while individual office-holders come and go.

Abstract Data Types and OOP
In object-oriented programming, then, an abstract data type is a class considered without
regard to its implementation. It’s a description of the data in the class (data members), a
list of operations (member functions) that can be carried out on that data, and instruc-
tions on how to use those operations. Specifically excluded are the details of how the
member functions carry out their tasks. As a class user, you’re told what member func-
tions to call, how to call them, and the results you can expect, but not how they work.

Abstract Data Types and Data Structures
The meaning of abstract data type is further extended when it’s applied to data structures
like stacks and queues. As with any class, it means the data and the operations that can
be performed on it, but in this context even the fundamentals of how the data is stored
become invisible to the user. Users not only don’t know how the member functions work,
they also don’t know what structure is used to store the data.

For the stack, the user knows that push() and pop() (and perhaps a few other member
functions) exist and how they work. The user doesn’t (at least not usually) need to know

Abstract Data Types 179

9

NEW TERM

12 72316331 Ch09 10/31/02 7:13 AM Page 179

how push() and pop() work, or whether data is stored in an array, a linked list, or some
other data structure like a tree.

The Interface
An ADT specification is often called an interface. It’s what the class user sees;
usually its public member functions. In a stack class, push(), pop(), and similar

member functions form the interface.

ADT Lists
Now that we know what an abstract data type is, we can mention another one:
the list. A list (sometimes called a linear list) is a group of items arranged in a

linear order. That is, they’re lined up in a certain way, like beads on a string or houses on
a street. Lists support certain fundamental operations. You can insert an item, delete an
item, and usually read an item from a specified location (the third item, for example).

Don’t confuse the ADT list with the linked list we’ve been discussing in this hour. A list
is defined by its interface: the specific member functions used to interact with it. This
interface can be implemented by various structures, including arrays and linked lists. The
list is an abstraction of such data structures.

Using ADTs as a Design Tool
The ADT concept is a useful aid in the software design process. If you need to store data,
start by considering the operations that need to be performed on that data. Do you need
access to the last item inserted? The first one? An item with a specified key? An item in a
certain position? Answering such questions leads to the definition of an ADT. Only after
the ADT is completely defined should you worry about the details of how to represent
the data and how to code the member functions that access the data.

By decoupling the specification of the ADT from the implementation details, you can
simplify the design process. You also make it easier to change the implementation at
some future time. If the users relate only to the ADT interface, you should be able to
change the implementation without “breaking” the user’s code.

Of course, after the ADT has been designed, the underlying data structure must be care-
fully chosen to make the specified operations as efficient as possible. If you need random
access to element N, for example, the linked-list representation isn’t so good because
random access isn’t an efficient operation for a linked list. You’d be better off with an
array.

180 Hour 9

NEW TERM

NEW TERM

12 72316331 Ch09 10/31/02 7:13 AM Page 180

Abstract is a Relative Term
Remember that the ADT concept is only a conceptual tool. Data storage structures are
not divided cleanly into some that are ADTs and some that are used to implement ADTs.
A linked list, for example, doesn’t need to be wrapped in a list interface to be useful; it
can act as an ADT on its own, or it can be used to implement another data type such as a
queue. A linked list can be implemented using an array, and an array-type structure can
be implemented using a linked list. What’s an ADT and what’s a more basic structure
must be determined in a given context.

Summary
In this hour, you’ve learned the following:

● An Abstract Data Type (ADT) is a class considered without reference to its imple-
mentation.

● Stacks and queues are examples of ADTs. They can be implemented using either
arrays or linked lists.

● An ADT simplifies program design by allowing you focus on the essentials of a
data storage structure, without worrying (at least initially) about its implementa-
tion.

● A double-ended list allows easy insertion at the end of the list.

● A double-ended list maintains a pointer to the last link in the list, often called
last, as well as to the first.

Q&A
Q I’m a little unclear on the point of all this ADT stuff.

A In large programming projects it’s helpful to start designing a program by focusing
on the interface a class will present to its users, without worrying until later how it
will be implemented. You don’t need to know too much about ADTs and the phi-
losophy behind them to understand this book, which is more concerned with the
nuts and bolts of how data structures work. But the idea of ADTs is important in
software engineering.

Q How do I decide whether to implement a stack or queue as a vector or a
linked list?

A In many cases it doesn’t matter how you implement a stack or queue. Both vectors
and linked lists provide fast O(1) performance for insertion and deletion. A priority

Abstract Data Types 181

9

12 72316331 Ch09 10/31/02 7:13 AM Page 181

queue is a different matter because you need to rearrange the elements to keep
them in sorted order when you insert a new one. Here a linked list might be a bet-
ter choice because you don’t need to move half the elements (on average) to insert
a new one.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. When you implement a stack using a linked list rather than an array, what is the

chief difference noticed by a user of the stack class?

2. True or false: An abstract C++ class is one whose interface is not yet clearly
defined.

3. What does implementation mean?

4. What is an ADT?

5. Is a stack an example of an ADT?

6. Would it make sense to implement an array using a stack?

7. Is a linked list an example of an ADT?

Exercise
Write a C++ program that uses a linked list to implement a priority queue. You can mod-
ify the priorityQ.cpp program from Hour 7. This linked list could be the LinkList
class from the linkStack.cpp program in this hour.

182 Hour 9

12 72316331 Ch09 10/31/02 7:13 AM Page 182

HOUR 10
Specialized Lists

In this hour we’ll look at two specialized linked lists: sorted lists and doubly
linked lists. Sorted lists are used as implementations of ADTs such as prior-
ity queues. They’re also used for sorting. Doubly linked lists are a more ver-
satile (although more complex) variation on ordinary lists. (Don’t confuse
them with double-ended lists, which we discussed in Hour 9, “Abstract Data
Types.”) In this hour you’ll learn

● How a sorted list works

● How to create a sorted list

● How a sorted list can be used to sort data

● How a doubly linked list works

● How to create a doubly linked list

Sorted Lists
In the linked lists we’ve seen thus far, there was no requirement that
data be stored in order. However, for certain applications it’s useful to

maintain the data in sorted order within the list. A list with this characteristic
is called a sorted list.

NEW TERM

13 72316331 Ch10 10/31/02 7:13 AM Page 183

In a sorted list, the items are arranged in sorted order by key value. Deletion is often lim-
ited to the smallest (or the largest) item in the list, which is at the start of the list,
although sometimes find() and remove() member functions, which search through the
list for specified links, are used as well.

In general you can use a sorted list in most situations where you use a sorted array. The
advantages of a sorted list over a sorted array are speed of insertion (because elements
don’t need to be moved) and the fact that a list can expand to fill available memory,
whereas an array is limited to a fixed size. (A vector eliminates the second problem.)
However, a sorted list is somewhat more difficult to implement than a sorted array.

Later in this hour we’ll look at one application for sorted lists: sorting data. A sorted list
can also be used to implement a priority queue.

The LinkList Workshop Applet
The LinkList Workshop applet introduced in Hour 8, “Linked Lists,” demonstrates sorted
as well as unsorted lists. Let’s see how to insert data in a sorted list.

To Do: Insert Data into the Sorted List
1. Use the New button to create a new list with about 20 links, and when prompted,

click on the Sorted button. The result is a list with data in sorted order, as shown in
Figure 10.1.

184 Hour 10

,
TO

D
O

FIGURE 10.1
The LinkList Workshop
applet with a sorted
list.

2. Use the Ins button to insert a new item. Type in a value that will fall somewhere in
the middle of the list.,

13 72316331 Ch10 10/31/02 7:13 AM Page 184

3. Watch as the algorithm traverses the links, looking for the appropriate insertion
place.

4. When it finds it, it inserts the new link, as shown in Figure 10.2.

Specialized Lists 185

10

FIGURE 10.2
A newly inserted link.

With the next press of Ins, the list will be redrawn to regularize its appearance. You can
also find a specified link using the Find button, and delete a specified link using the Del
button.

Implementing an Insertion Function in C++
The insertion function is more complicated for sorted lists than for unsorted lists. To
insert an item into a sorted list, the algorithm must first search through the list until it
finds the appropriate place to put the item. This place is just before the first item that’s
larger, as shown in Figure 10.2.

After the algorithm finds where to put the item, it can be inserted in the usual way by
changing pNext in the new link to point to the next link, and changing pNext in the pre-
vious link to point to the new link. However, there are some special cases to consider:
The link might need to be inserted at the beginning of the list, or it might need to go at
the end. Let’s look at the code:

void insert(double key) //insert, in order
{
Link* pNewLink = new Link(key); //make new link
Link* pPrevious = NULL; //start at first
Link* pCurrent = pFirst;

//until end of list,
while(pCurrent != NULL && key > pCurrent->dData)

,

,

13 72316331 Ch10 10/31/02 7:13 AM Page 185

{ //or key > current,
pPrevious = pCurrent;
pCurrent = pCurrent->pNext; //go to next item
}

if(pPrevious==NULL) //at beginning of list
pFirst = pNewLink; //first --> newLink

else //not at beginning
pPrevious->pNext = pNewLink; //old prev --> newLink

pNewLink->pNext = pCurrent; //newLink --> old current
} //end insert()

We need to maintain a pPrevious pointer as we move along, so we can modify
the previous link’s pNext data member to point to the new link. After creating the

new link, we prepare to search for the insertion point by setting pCurrent to pFirst in
the usual way. We also set pPrevious to NULL; this is important because later we’ll use
this null value to determine if we’re still at the beginning of the list.

The while loop is similar to those we’ve used before to search for the insertion point, but
there’s an added condition. The loop terminates when the key of the link currently being
examined (pCurrent->dData) is no longer smaller than the key of the link being inserted
(key). This is the most usual case, where a key is inserted somewhere in the middle of
the list.

However, the while loop also terminates if pCurrent is NULL. This happens at the end of
the list (the pNext data member of the pLast element is NULL), or if the list is empty to
begin with (pFirst is NULL). Thus when the while loop terminates, we might be at the
beginning, the middle, or the end of the list, or the list might be empty. If we’re at the
beginning or the list is empty, pPrevious will be NULL, so we set pFirst to the new link.
Otherwise, we’re in the middle of the list, or at the end, and we set pPrevious->pNext to
the new link. In any case we set the new link’s pNext data member to pCurrent. If we’re
at the end of the list, pCurrent is NULL, so the new link’s pNext data member is appropri-
ately set to this value.

Implementing a Sorted List
The sortedList.cpp example shown in Listing 10.1 presents a SortedList class with
insert(), remove(), and displayList() member functions. Only the insert() routine
is different from its counterpart in unsorted lists.

LISTING 10.1 THE sortedList.cpp PROGRAM

//sortedList.cpp
//demonstrates sorted list
#include <iostream>

186 Hour 10

ANALYSIS

INPUT

13 72316331 Ch10 10/31/02 7:13 AM Page 186

using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //next link in list

//---
Link(double dd) : dData(dd), pNext(NULL) //constructor

{ }
//---

void displayLink() //display this link
{ cout << dData << “ “; }

}; //end class Link
//
class SortedList

{
private:

Link* pFirst; //ptr to first link
public:

//---
SortedList() : pFirst(NULL) //constructor

{ }
//---

~SortedList() //destructor
{ // (deletes links)
Link* pCurrent = pFirst; //start at first
while(pCurrent != NULL) //until end of list,

{
Link* pOldCur = pCurrent; //save current link
pCurrent = pCurrent->pNext; //move to next link
delete pOldCur; //delete old current
}

}
//---

bool isEmpty() //true if no links
{ return (pFirst==NULL); }

//---
void insert(double key) //insert, in order

{
Link* pNewLink = new Link(key); //make new link
Link* pPrevious = NULL; //start at first
Link* pCurrent = pFirst;

//until end of list,
while(pCurrent != NULL && key > pCurrent->dData)

{ //or key > current,
pPrevious = pCurrent;
pCurrent = pCurrent->pNext; //go to next item
}

if(pPrevious==NULL) //at beginning of list

Specialized Lists 187

10

continues

13 72316331 Ch10 10/31/02 7:13 AM Page 187

LISTING 10.1 CONTINUED

pFirst = pNewLink; //first --> newLink
else //not at beginning

pPrevious->pNext = pNewLink; //old prev --> newLink
pNewLink->pNext = pCurrent; //newLink --> old current
} //end insert()

//---
void remove() //remove first link

{ //(assumes non-empty list)
Link* pTemp = pFirst; //save first
pFirst = pFirst->pNext; //new first --> next
delete pTemp; //delete old first link
}

//---
void displayList()

{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

}; //end class SortedList
//
int main()

{
SortedList theSortedList; //create new list
theSortedList.insert(20); //insert 2 items
theSortedList.insert(40);

theSortedList.displayList(); //display list (20, 40)

theSortedList.insert(10); //insert 3 more items
theSortedList.insert(30);
theSortedList.insert(50);

theSortedList.displayList(); //display list
// (10, 20, 30, 40, 50)

theSortedList.remove(); //remove smallest item

theSortedList.displayList(); //display list (20, 30, 40, 50)
return 0;
} //end main()

188 Hour 10

13 72316331 Ch10 10/31/02 7:13 AM Page 188

In main() we insert two items with key values 20 and 40. Then we insert three
more items, with values 10, 30, and 50. These are inserted at the beginning of

the list, in the middle, and at the end; showing that the insert() routine correctly han-
dles these special cases. Finally we remove one item to show removal is always from the
front of the list. After each change the list is displayed.

Here’s the output from sortedList.cpp:

List (first-->last): 20 40
List (first-->last): 10 20 30 40 50
List (first-->last): 20 30 40 50

Efficiency of Sorted Linked Lists
Insertion and deletion of arbitrary items in the sorted linked list require O(N) compar-
isons (N/2 on the average) because the appropriate location must be found by stepping
through the list. However, the minimum value can be found, or deleted, in O(1) time
because it’s at the beginning of the list. If an application frequently accesses the mini-
mum item, and fast insertion isn’t critical, a sorted linked list is an effective choice.

Next we’ll look at an application for sorted lists.

List Insertion Sort
A sorted list can be used as a fairly efficient sorting mechanism. For example, assume
you have an array of unsorted data items. If you take the items from the array and insert
them one by one into the sorted list, they’ll be placed in sorted order automatically. If
you then remove them from the list and put them back in the array, the array will be
sorted.

It turns out this is substantially more efficient than the more usual insertion sort within
an array, described in Hour 5, “The Insertion Sort.” This is because fewer copies are nec-
essary. It’s still an O(N2) process because inserting each item into the sorted list involves
comparing a new item with an average of half the items already in the list, and there are
N items to insert, resulting in about N2/4 comparisons. However, each item is copied only
twice: once from the array to the list, and once from the list to the array. N×2 copies
compares favorably with the insertion sort within an array, where there are about N2

copies.

Listing 10.2 shows the listInsertionSort.cpp program, which starts with an array of
unsorted items of type link, inserts them into a sorted list (using a constructor), and then
removes them and places them back into the array.

Specialized Lists 189

10

ANALYSIS

OUTPUT

13 72316331 Ch10 10/31/02 7:13 AM Page 189

LISTING 10.2 THE listInsertionSort.cpp PROGRAM

//listInsertionSort.cpp
//demonstrates sorted list used for sorting
#include <iostream>
#include <cstdlib> //for random numbers
#include <ctime> //for random seed
using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //next link in list

//---
Link(double dd) : dData(dd), pNext(NULL) //constructor

{ }
//---

}; //end class Link
//
class SortedList

{
private:

Link* pFirst; //ptr to first item on list
public:

//---
SortedList() : pFirst(NULL) //constructor (no args)

{ } //initialize list
//---

//constructor
SortedList(Link** linkArr, int length) : pFirst(NULL)

{ //(initialized with array)
for(int j=0; j<length; j++) //copy array

insert(linkArr[j]); //to list
}

//---
void insert(Link* pArg) //insert (in order)

{
Link* pPrevious = NULL; //start at first
Link* pCurrent = pFirst;

//until end of list,
while(pCurrent != NULL && pArg->dData > pCurrent->dData)

{ //or key > current,
pPrevious = pCurrent;
pCurrent = pCurrent->pNext; //go to next item
}

if(pPrevious==NULL) //at beginning of list
pFirst = pArg; //first --> k

190 Hour 10

INPUT

13 72316331 Ch10 10/31/02 7:13 AM Page 190

else //not at beginning
pPrevious->pNext = pArg; //old prev --> k

pArg->pNext = pCurrent; //k --> old currnt
} //end insert()

//---
Link* remove() //return & delete first link

{ //(assumes non-empty list)
Link* pTemp = pFirst; //save first
pFirst = pFirst->pNext; //delete first
return pTemp; //return value
}

//---
}; //end class SortedList

//
int main()

{
int j;
time_t aTime; //seed random numbers
srand(static_cast<unsigned>(time(&aTime)));
const int size = 10; //array size

Link* linkArray[size]; //array of ptrs to links

for(j=0; j<size; j++) //fill with ptrs to links
{
int n = rand() % 99; //random number (0 to 99)
Link* pNewLink = new Link(n); //make link
linkArray[j] = pNewLink; //put ptr to link in array
}

cout << “Unsorted array: “; //display array contents
for(j=0; j<size; j++)

cout << linkArray[j]->dData << “ “;
cout << endl;

//create new list
SortedList theSortedList(linkArray, size); //initialized

//with array
for(j=0; j<size; j++) //links from list to array

linkArray[j] = theSortedList.remove();

cout << “Sorted Array: “; //display array contents
for(j=0; j<size; j++)

cout << linkArray[j]->dData << “ “;
cout << endl;

for(j=0; j<size; j++) //delete individual links
delete linkArray[j];

return 0;
} //end main()

Specialized Lists 191

10

13 72316331 Ch10 10/31/02 7:13 AM Page 191

This program displays the values in the array before the sorting operation, and
again afterward. Here’s some sample output:

Unsorted array: 59 69 41 56 84 15 86 81 37 35
Sorted array: 15 35 37 41 56 59 69 81 84 86

The output will be different each time because the initial values are generated randomly.

A new constructor for SortedList takes an array of Link objects as an argu-
ment, and inserts the entire contents of this array into the newly created list. This

helps make things easier for the client (the main() routine) because the array is copied
automatically when the list is created.

We’ve also made a change to the insert() routine in this program. It now accepts a
Link object as an argument, rather than a double. We do this so we can store Link
objects in the array and insert them directly into the list. In the sortedList.cpp pro-
gram, it was more convenient to have the insert() routine create each Link object,
using the double value passed as an argument.

The downside of the list insertion sort, compared with an array-based insertion sort, is
that it takes somewhat more than twice as much memory: The array and linked list must
be in memory at the same time. However, if you have a sorted linked list class handy, the
list insertion sort is a convenient way to sort arrays that aren’t too large.

We’ve examined one specialized kind of linked list, the sorted list. Now let’s look at
another, the doubly linked list.

Doubly Linked Lists
In a doubly linked list, each link contains a pointer to the previous link as well as to the
next link. (Don’t confuse this with a double-ended list, where the links are the same as a
normal singly linked list but the list maintains a pointer to the end of the list.) Why do
we need this added pointer in each link?

The Problem with Singly Linked Lists
A potential problem with ordinary singly linked lists is that it’s difficult to traverse back-
ward along the list. Consider the following statement:

pCurrent = pCurrent->pNext;

This statement causes the program to step to the next link, but in a singly linked list
there’s no corresponding way to step to the previous link. Depending on the application,
this could pose problems.

192 Hour 10

OUTPUT

ANALYSIS

13 72316331 Ch10 10/31/02 7:13 AM Page 192

For example, imagine a text editor in which a linked list is used to store the text. Each
text line on the screen is stored as a string object embedded in a link. When the editor’s
user moves the cursor downward on the screen, the program steps to the next link to
manipulate or display the new line. But what happens if the user moves the cursor
upward? In an ordinary linked list, you’d need to return pCurrent (or its equivalent) to
the start of the list and then step all the way down again to the new current link. This
isn’t very efficient. You want to make a single step upward.

Implementing a Doubly Linked List
The doubly linked list provides the capability to traverse backward as well as forward
through the list. The secret is that each link has two pointers to other links instead of one.
The first pointer is to the next link, as in ordinary lists. The second is to the previous
link. This is shown in Figure 10.3.

Specialized Lists 193

10
FIGURE 10.3
A doubly linked list.

first

last

next

prev

next

prev

next

prev

next

prev

Null

Null

The beginning of the specification for the Link class in a doubly linked list looks like
this:

class Link
{
public:
double dData; //data item
Link* pNext; //next link in list
Link* pPrevious; //previous link in list
};

Now we have a pointer, pPrevious, to the previous link as well as to the next link.

The downside of doubly linked lists is that every time you insert or delete a link you
must deal with four links instead of two: two attachments to the previous link and two
attachments to the following one. Also, of course, each link is a little bigger because of
the extra pointer.

13 72316331 Ch10 10/31/02 7:13 AM Page 193

A doubly linked list doesn’t necessarily need to be a double-ended list (including a
pointer to the last element on the list as well as the first) but doing so is useful, so we’ll
include it in our example.

We’ll show the complete listing for the doublyLinked.cpp program soon, but first let’s
examine some of the member functions in its doublyLinkedList class.

Displaying the List
Two display member functions demonstrate traversal of a doubly linked list. The
displayForward() member function is the same as the displayList() member function
we’ve seen in ordinary linked lists. The displayBackward() member function is similar,
but starts at the last element in the list and proceeds toward the start of the list, going to
each element’s pPrevious data member. This code fragment shows how this works:

Link* pCurrent = pLast; //start at end
while(pCurrent != NULL) //until start of list,
pCurrent = pCurrent->pPrevious; //move to previous link

Incidentally, some people take the view that because you can go either way equally eas-
ily on a doubly linked list, there is no preferred order and therefore terms like previous
and next are inappropriate. If you prefer, you can substitute order-neutral terms such as
left and right.

Inserting New Links
We’ve included several insertion routines in the DoublyLinkedList class. The
insertFirst() member function inserts at the beginning of the list, insertLast()
inserts at the end, and insertAfter() inserts following an element with a specified key.

Unless the list is empty, the insertFirst() routine changes the pPrevious data member
in the old pFirst link to point to the new link, and changes the pNext data member in
the new link to point to the old pFirst link. Finally it sets pFirst to point to the new
link. This is shown in Figure 10.4.

If the list is empty, the pLast data member must be changed instead of the
pFirst->pPrevious data member. Here’s the code:

void insertFirst(double dd) //insert at front of list
{
Link* pNewLink = new Link(dd); //make new link

if(isEmpty()) //if empty list,
pLast = pNewLink; //newLink <-- last

else
pFirst->pPrevious = pNewLink; //newLink <-- old first

194 Hour 10

13 72316331 Ch10 10/31/02 7:13 AM Page 194

pNewLink->pNext = pFirst; //newLink --> old first
pFirst = pNewLink; //first --> newLink
}

Specialized Lists 195

10

FIGURE 10.4
Insertion at the
beginning.

first

last

next

Old first link

prev

next

prev

next

prev

next

prev

next

prev

Null

Null

New Link

❶
❷

❸

The insertLast() member function is the same process applied to the end of the list;
it’s a mirror image of insertFirst().

The insertAfter() member function inserts a new link following the link with a speci-
fied key value. It’s a bit more complicated because four connections must be made. First
the link with the specified key value must be found. This is handled the same way as the
find() routine in the linkedList2 program in Hour 8, “Linked Lists.” Then, assuming
we’re not at the end of the list, two connections must be made between the new link and
the next link, and two more between pCurrent and the new link. This is shown in Fig-
ure 10.5.

If the new link will be inserted at the end of the list, its pNext data member must point to
NULL, and pLast must point to the new link. Here’s the insertAfter() code that deals
with the links:

if(pCurrent==pLast) //if last link,
{
pNewLink->pNext = NULL; //newLink --> null
pLast = pNewLink; //newLink <-- last
}

else //not last link,

13 72316331 Ch10 10/31/02 7:13 AM Page 195

{ //newLink --> old next
pNewLink->pNext = pCurrent->pNext;

//newLink <-- old next
pCurrent->pNext->pPrevious = pNewLink;
}

pNewLink->pPrevious = pCurrent; //old current <-- newLink
pCurrent->pNext = pNewLink; //old current --> newLink

196 Hour 10

FIGURE 10.5
Insertion at an arbi-
trary location.

first

last

next

current

prev

next

prev

next

prev

next

prev

next

prev

Null

Null

❶

❷

❹

❸

Perhaps you’re unfamiliar with the use of two -> operators in the same expression. It’s a
natural extension of a single -> operator. The following expression means the pPrevious
data member of the link referred to by the pNext data member in the link pCurrent:

pCurrent->pNext->pPrevious

Deleting Links
There are three deletion routines: removeFirst(), removeLast(), and removeKey(). The
first two are fairly straightforward. In removeKey(), the key being deleted is pCurrent.
Assuming the link to be deleted is neither the first nor the last one in the list, the pNext
data member of pCurrent->pPrevious (the link before the one being deleted) is set to
point to pCurrent->pNext (the link following the one being deleted), and the pPrevious
data member of pCurrent->pNext is set to point to pCurrent->pPrevious. This discon-
nects the current link from the list. Figure 10.6 shows how this disconnection looks, and
the following two statements carry it out:

pCurrent->pPrevious->pNext = pCurrent->pNext;
pCurrent->pNext->pPrevious = pCurrent.pPrevious;

13 72316331 Ch10 10/31/02 7:13 AM Page 196

The situations in which the link to be deleted is either the first or last in the list are
special cases, because pFirst or pLast must be set to point to the next or the previous
link. Here’s the code from removeKey() for dealing with link connections:

if(pCurrent==pFirst) //found it; first item?
pFirst = pCurrent->pNext; //first --> old next

else //not first
//old previous --> old next

pCurrent->pPrevious->pNext = pCurrent->pNext;

if(pCurrent==pLast) //last item?
pLast = pCurrent->pPrevious; //old previous <-- last

else //not last
//old previous <-- old next

pCurrent->pNext->pPrevious = pCurrent->pPrevious;

C++ Code for a Doubly Linked List
Listing 10.3 shows the complete doublyLinked.cpp program, which includes all the rou-
tines just discussed.

LISTING 10.3 THE doublyLinked.cpp PROGRAM

//doublyLinked.cpp
//demonstrates doubly-linked list
#include <iostream>
using namespace std;
//
class Link

{
public:

double dData; //data item
Link* pNext; //next link in list

Specialized Lists 197

10

FIGURE 10.6
Deleting an arbitrary
link.

first

current.prev

last

next

prev prev prev

next next
Null

Null

current current.next

❶

❷

INPUT

continues

13 72316331 Ch10 10/31/02 7:13 AM Page 197

LISTING 10.3 CONTINUED

Link* pPrevious; //previous link in list
public:

//---
Link(double dd) : //constructor

dData(dd), pNext(NULL), pPrevious(NULL)
{ }

//---
void displayLink() //display this link

{ cout << dData << “ “; }
//---

}; //end class Link
//
class DoublyLinkedList

{
private:

Link* pFirst; //pointer to first item
Link* pLast; //pointer to last item

public:
//---

DoublyLinkedList() : //constructor
pFirst(NULL), pLast(NULL)

{ }
//---

~DoublyLinkedList() //destructor (deletes links)
{
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
Link* pOldCur = pCurrent; //save current link
pCurrent = pCurrent->pNext; //move to next link
delete pOldCur; //delete old current
}

}
//---

bool isEmpty() //true if no links
{ return pFirst==NULL; }

//---
void insertFirst(double dd) //insert at front of list

{
Link* pNewLink = new Link(dd); //make new link

if(isEmpty()) //if empty list,
pLast = pNewLink; //newLink <-- last

else
pFirst->pPrevious = pNewLink; //newLink <-- old first

pNewLink->pNext = pFirst; //newLink --> old first
pFirst = pNewLink; //first --> newLink
}

198 Hour 10

13 72316331 Ch10 10/31/02 7:13 AM Page 198

//---
void insertLast(double dd) //insert at end of list

{
Link* pNewLink = new Link(dd); //make new link
if(isEmpty()) //if empty list,

pFirst = pNewLink; //first --> newLink
else

{
pLast->pNext = pNewLink; //old last --> newLink
pNewLink->pPrevious = pLast; //old last <-- newLink
}

pLast = pNewLink; //newLink <-- last
}

//---
void removeFirst() //remove first link

{ //(assumes non-empty list)
Link* pTemp = pFirst;
if(pFirst->pNext == NULL) //if only one item

pLast = NULL; //null <-- last
else

pFirst->pNext->pPrevious = NULL; //null <-- old next
pFirst = pFirst->pNext; //first --> old next
delete pTemp; //delete old first
}

//---
void removeLast() //remove last link

{ //(assumes non-empty list)
Link* pTemp = pLast;
if(pFirst->pNext == NULL) //if only one item

pFirst = NULL; //first --> null
else

pLast->pPrevious->pNext = NULL; //old previous --> null
pLast = pLast->pPrevious; //old previous <-- last
delete pTemp; //delete old last
}

//---
//insert dd just after key

bool insertAfter(double key, double dd)
{ //(assumes non-empty list)
Link* pCurrent = pFirst; //start at beginning
while(pCurrent->dData != key) //until match is found,

{
pCurrent = pCurrent->pNext; //move to next link
if(pCurrent == NULL)

return false; //didn’t find it
}

Link* pNewLink = new Link(dd); //make new link

if(pCurrent==pLast) //if last link,
{

Specialized Lists 199

10

continues

13 72316331 Ch10 10/31/02 7:13 AM Page 199

LISTING 10.3 CONTINUED

pNewLink->pNext = NULL; //newLink --> null
pLast = pNewLink; //newLink <-- last
}

else //not last link,
{ //newLink --> old next
pNewLink->pNext = pCurrent->pNext;

//newLink <-- old next
pCurrent->pNext->pPrevious = pNewLink;
}

pNewLink->pPrevious = pCurrent; //old current <-- newLink
pCurrent->pNext = pNewLink; //old current --> newLink
return true; //found it, did insertion
}

//---
bool removeKey(double key) //remove item w/ given key

{ //(assumes non-empty list)
Link* pCurrent = pFirst; //start at beginning
while(pCurrent->dData != key) //until match is found,

{
pCurrent = pCurrent->pNext; //move to next link
if(pCurrent == NULL)

return false; //didn’t find it
}

if(pCurrent==pFirst) //found it; first item?
pFirst = pCurrent->pNext; //first --> old next

else //not first
//old previous --> old next

pCurrent->pPrevious->pNext = pCurrent->pNext;

if(pCurrent==pLast) //last item?
pLast = pCurrent->pPrevious; //old previous <-- last

else //not last
//old previous <-- old next

pCurrent->pNext->pPrevious = pCurrent->pPrevious;
delete pCurrent; //delete item
return true; //successful deletion
}

//---
void displayForward()

{
cout << “List (first-->last): “;
Link* pCurrent = pFirst; //start at beginning
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //display data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;

200 Hour 10

13 72316331 Ch10 10/31/02 7:13 AM Page 200

}
//---

void displayBackward()
{
cout << “List (last-->first): “;
Link* pCurrent = pLast; //start at end
while(pCurrent != NULL) //until start of list,

{
pCurrent->displayLink(); //display data
pCurrent = pCurrent->pPrevious; //go to previous link
}

cout << endl;
}

//---
}; //end class DoublyLinkedList

//
int main()

{
DoublyLinkedList theList; //make a new list

theList.insertFirst(22); //insert at front
theList.insertFirst(44);
theList.insertFirst(66);

theList.insertLast(11); //insert at rear
theList.insertLast(33);
theList.insertLast(55);

theList.displayForward(); //display list forward
theList.displayBackward(); //display list backward

cout << “Deleting first, last, and 11” << endl;
theList.removeFirst(); //remove first item
theList.removeLast(); //remove last item
theList.removeKey(11); //remove item with key 11

theList.displayForward(); //display list forward

cout << “Inserting 77 after 22, and 88 after 33” << endl;
theList.insertAfter(22, 77); //insert 77 after 22
theList.insertAfter(33, 88); //insert 88 after 33

theList.displayForward(); //display list forward
return 0;
} //end main()

In main() we insert some items at the beginning of the list and at the end, dis-
play the items going both forward and backward, delete the first and last items

Specialized Lists 201

10

ANALYSIS

13 72316331 Ch10 10/31/02 7:13 AM Page 201

and the item with key 11, display the list again (forward only), insert two items using the
insertAfter() member function, and display the list again. Here’s the output:

List (first-->last): 66 44 22 11 33 55
List (last-->first): 55 33 11 22 44 66
Deleting first, last, and 11
List (first-->last): 44 22 33
Inserting 77 after 22, and 88 after 33
List (first-->last): 44 22 77 33 88

202 Hour 10

OUTPUT

The deletion member functions and the insertAfter() member function
assume that the list isn’t empty. Although for simplicity we don’t show it in
main(), isEmpty() should be used to verify that there’s something in the list
before attempting such insertions and deletions.

A doubly linked list can be used as the basis for a deque, mentioned in Hour
7, “Queues and Priority Queues.” In a deque you can insert and delete at
either end, and the doubly linked list provides this capability.

Summary
In this hour, you learned the following:

● In a sorted linked list, the links are arranged in order of ascending (or sometimes
descending) key value.

● Insertion in a sorted list takes O(N) time because the correct insertion point must
be found. Deletion of the smallest link takes O(1) time.

● A sorted list is the basis for the list insertion sort.

● The list insertion sort is faster than the ordinary insertion sort, but requires twice as
much memory space.

● In a doubly linked list, each link contains a pointer to the previous link as well as
the next link.

● A doubly linked list permits backward traversal as well as deletion from the end of
the list.

13 72316331 Ch10 10/31/02 7:13 AM Page 202

Q&A
Q When would I use a sorted list?

A When you want quick access to the item with the smallest (or largest) key. This is
what a priority queue does. The advantage of a sorted-list implementation over a
sorted-array implementation is that you don’t need to move any items to insert a
new one; just rearrange some pointers. That makes it more efficient, although
harder to program.

Q When would I use the list insertion sort?

A In specialized situations. If you’ve already created a sorted linked list, you’ve done
most of the sort already. To finish the sort, just copy the list into an array. This
takes O(N) time, so it’s very fast.

Q Are doubly linked lists important?

A The list in many class libraries is a doubly linked list. This is true of the list class
in the C++ STL. The doubly linked list is far more versatile than a singly linked
list, and only slightly less efficient.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. What is the advantage of a sorted list over an unsorted list?

2. What is the advantage of a sorted list over a sorted array?

3. True or false: It takes O(N) time to insert an item in a sorted list.

4. How does the insertion sort work?

5. Besides its use in the insertion sort, what’s another application for the sorted list?

6. What is the advantage of a doubly linked list over a singly linked list?

7. What is the main disadvantage of a doubly linked list?

Exercise
Write a C++ program that uses a sorted list to implement a priority queue. You can start
with the priorityQ.cpp program from Hour 7, “Queues and Priority Queues,” and add
the sortedList class from the sortedList.cpp program in this hour. (For extra credit,
write a program that uses a doubly linked list to implement a deque.)

Specialized Lists 203

10

13 72316331 Ch10 10/31/02 7:13 AM Page 203

13 72316331 Ch10 10/31/02 7:13 AM Page 204

Hour
11 Recursion

12 Applied Recursion

13 Quicksort

14 Improving Quicksort

PART III
Recursion and Quicksort

14 72316331 pt3 10/31/02 6:55 AM Page 205

14 72316331 pt3 10/31/02 6:55 AM Page 206

HOUR 11
Recursion

Recursion is a programming technique in which a function (or member
function) calls itself. This might sound like a strange thing to do, or even a
catastrophic mistake. Recursion is, however, one of the most interesting, and
surprisingly effective, techniques in programming. Like pulling yourself up
by your bootstraps (you do have bootstraps, don’t you?), recursion seems
incredible when you first encounter it. However, it not only works, it also
provides a unique conceptual framework for solving many problems. In this
hour we will

● Introduce recursion

● Show an example using triangular numbers

● Show an example using anagrams

● Show an example using a binary search

● Discuss the relationship between stacks and recursion

15 72316331 Ch11 10/31/02 7:14 AM Page 207

Demonstrating Recursion with Triangular
Numbers

As an example of recursion, let’s examine two approaches to an ancient problem. It’s
said that the Pythagoreans, a band of mathematicians in ancient Greece who worked
under Pythagoras (of Pythagorean theorem fame), felt a mystical connection with the
series of numbers 1, 3, 6, 10, 15, 21, … (where the … means the series continues indefi-
nitely). Can you find the next member of this series?

The nth term in the series is obtained by adding n to the previous term. Thus the second
term is found by adding 2 to the first term (which is 1), giving 3. The third term is 3
added to the second term (which is 3) giving 6, and so on. The numbers in this series are
called triangular numbers because they can be visualized as a triangular arrangement of
objects, shown as little squares in Figure 11.1.

208 Hour 11

FIGURE 11.1
The triangular
numbers.

#1 = 1 #2 = 3 #3 = 6 #4 = 10

#5 = 15 #6 = 21 #7 = 28

Finding the nth Term Using a Loop
Suppose you wanted to find the value of some arbitrary nth term in the series; say the
fourth term (whose value is 10). How would you calculate it? Looking at Figure 11.2,
you might decide that the value of any term could be obtained by adding up all the verti-
cal columns of squares.

In the fourth term, the first column has four little squares, the second column has three,
and so on. Adding 4+3+2+1 gives 10.

15 72316331 Ch11 10/31/02 7:14 AM Page 208

The following triangle() function uses this column-based technique to find a triangular
number. It sums all the columns, from a height of n to a height of 1.

int triangle(int n)
{
int total = 0;

while(n > 0) // until n is 1
{
total = total + n; // add n (column height) to total
--n; // decrement column height
}

return total;
}

The function cycles around the loop n times, adding n to total the first time, n-1 the
second time, and so on down to 1, quitting the loop when n becomes 0.

Finding the nth Term Using Recursion
The loop approach might seem straightforward, but there’s another way to look at this
problem. The value of the nth term can be thought of as the sum of only two things,
instead of a whole series. These are

1. The first (tallest) column, which has the value n.

2. The sum of all the remaining columns.

This is shown in Figure 11.3.

Recursion 209

11

FIGURE 11.2
Triangular number as
columns.

1 in this column
2 in this column
3 in this column
4 in this column

Total: 10

15 72316331 Ch11 10/31/02 7:14 AM Page 209

Finding the Remaining Columns
If we knew about a function that found the sum of all the remaining columns, we could
write our triangle() member function, which returns the value of the nth triangular
number, like this:

int triangle(int n)
{
return(n + sumRemainingColumns(n)); // (incomplete version)
}

But what have we gained here? It looks like it’s just as hard to write the
sumRemainingColumns() function as to write the triangle() function in the first place.

However, notice in Figure 11.3 that the sum of all the remaining columns for term n is
the same as the sum of all the columns for term n–1. Thus, if we knew about a function
that summed all the columns for term n, we could call it with an argument of n-1 to find
the sum of all the remaining columns for term n:

int triangle(int n)
{
return(n + sumAllColumns(n-1)); // (incomplete version)
}

But when you think about it, the sumAllColumns() function is doing exactly the same
thing the triangle() function is. That is, summing all the columns for some number n

210 Hour 11

FIGURE 11.3
Triangular number as
column plus triangle.

6 in the remaining columns
4 in the first column

Total: 10

15 72316331 Ch11 10/31/02 7:14 AM Page 210

passed as an argument. So why not use the triangle() function itself, instead of some
other function? That would look like this:

int triangle(int n)
{
return(n + triangle(n-1)); // (incomplete version)
}

It might seem amazing that a function can call itself, but why shouldn’t it be able to? A
function call is (among other things) a transfer of control to the start of the function. This
transfer of control can take place from within the function as well as from outside.

Passing the Buck
All this might seem like passing the buck. Someone tells me to find the ninth triangular
number. I know this is 9 plus the eighth triangular number, so I call Harry and ask him to
find the eighth triangular number. When I hear back from him, I’ll add 9 to whatever he
tells me, and that will be the answer.

Harry knows the eighth triangular number is 8 plus the seventh triangular number, so he
calls Sally and asks her to find the seventh triangular number. This process continues
with each person passing the buck to another one.

Where does this buck-passing end? Someone at some point must be able to figure out an
answer that doesn’t involve asking another person to help him. If this didn’t happen,
there would be an infinite chain of people asking other people questions—a sort of arith-
metic Ponzi scheme that would never end. In the case of triangle(), this would mean
the function calling itself over and over in an infinite series that would hang the program.

The Buck Stops Here
To prevent an infinite regress, the person who is asked to find the first triangular number
of the series, when n is 1, must know, without asking anyone else, that the answer is 1.
There are no smaller numbers to ask anyone about, there’s nothing left to add to anything
else, so the buck stops there. We can express this by adding a condition to the trian-
gle() function:

int triangle(int n)
{
if(n==1)

return 1;
else

return(n + triangle(n-1));
}

The condition that leads to a recursive function returning without making
another recursive call is referred to as the base case. It’s critical that every

Recursion 211

11

NEW TERM

15 72316331 Ch11 10/31/02 7:14 AM Page 211

recursive function has a base case to prevent infinite recursion and the consequent
demise of the program.

The triangle.cpp Program
Does recursion actually work? If you run the triangle.cpp program, you’ll see that it
does. This program uses recursion to calculate triangular numbers. Enter a value for the
term number, n, and the program will display the value of the corresponding triangular
number. Listing 11.1 shows the triangle.cpp program.

LISTING 11.1 THE triangle.cpp PROGRAM

// triangle.cpp
// evaluates triangular numbers
#include <iostream>
using namespace std;
//---
int main()

{
int theNumber;
int triangle(int);

cout << “Enter a number: “;
cin >> theNumber;
int theAnswer = triangle(theNumber);
cout << “Triangle=” << theAnswer << endl;
return 0;
} // end main()

//---
int triangle(int n)

{
if(n==1)

return 1;
else

return (n + triangle(n-1));
}

The main() routine prompts the user for a value for n, calls triangle(), and dis-
plays the return value. The triangle() function calls itself repeatedly to do all

the work.

Here’s some sample output:

Enter a number: 1000
Triangle = 500500

212 Hour 11

INPUT

ANALYSIS

INPUT/
OUTPUT

15 72316331 Ch11 10/31/02 7:14 AM Page 212

What the triangle() Function Is Really Doing
Let’s modify the triangle() function to provide an insight into what’s happening when
it executes. We’ll insert some output statements to keep track of the arguments and return
values:

int triangle(int n)
{
cout << “Entering: n=” << n << endl;
if(n==1)

{
cout << “Returning 1” << endl;
return 1;
}

else
{
int temp = n + triangle(n-1);
cout << “Returning “ << temp << endl;
return temp;
}

}

Here’s the interaction when this function is substituted for the earlier
triangle() function and the user enters 5:

Enter a number: 5

Entering: n=5
Entering: n=4
Entering: n=3
Entering: n=2
Entering: n=1
Returning 1
Returning 3
Returning 6
Returning 10
Returning 15

Triangle = 15

Each time the triangle() function calls itself, its argument, which starts at 5, is
reduced by 1. The function plunges down into itself again and again until its

Recursion 213

11

If you’re skeptical of the results returned from triangle(), you can check
them by using the following formula:

nth triangular number = (n2+n)/2

INPUT/
OUTPUT

ANALYSIS

15 72316331 Ch11 10/31/02 7:14 AM Page 213

argument is reduced to 1. Then it returns. This triggers an entire series of returns. The
function rises back up, phoenix-like, out of the discarded versions of itself. Each time it
returns, it adds the value of n it was called with to the return value from the function it
called.

The return values replay the series of triangular numbers, until the answer is returned to
main(). Figure 11.4 shows how each invocation of the triangle() function can be
imagined as being “inside” the previous one.

214 Hour 11

FIGURE 11.4
The recursive
triangle() member
function.

Version 1
n=5

called with n=5

Version 2
n=4

Version 3
n=3

Version 4
n=2

Version 5
n=1

Adds 2
Returns 3

Adds 4
Returns 10

Adds 5
Returns 15

Adds 3
Returns 6

Returns 1

Returns 15

15 72316331 Ch11 10/31/02 7:14 AM Page 214

Notice that, just before the innermost version returns a 1, there are actually five different
incarnations of triangle() in existence at the same time. The outer one was passed the
argument 5; the inner one was passed the argument 1.

Recursion 215

11

We might note that factorials can also be calculated recursively. The factorial
of an integer is the product of the integer multiplied by all the integers
smaller than itself. Thus the factorial of 5 is 5*4*3*2*1, which is 120. The
algorithm is much the same as for triangular numbers, except that the func-
tion returns n*factorial(n-1) instead of n+triangle(n-1).

We’ve seen an example of recursion at work in calculating triangular numbers. Now let’s
step back and take a broader view of recursion.

Characteristics of Recursive Functions
Although it’s short, the triangle() function possesses the key features common to all
recursive routines:

● It calls itself.

● When it calls itself, it does so to solve a smaller problem.

● There’s some version of the problem that is simple enough that the routine can
solve it, and return, without calling itself.

In each successive call of a recursive function to itself, the argument becomes smaller (or
perhaps a range described by multiple arguments becomes smaller), reflecting the fact
that the problem has become “smaller” or easier. When the argument or range reaches a
certain minimum size, a condition is triggered (the base case) and the function returns
without calling itself.

Is Recursion Efficient?
Calling a function involves certain overhead. Control must be transferred from the loca-
tion of the call to the beginning of the function. In addition, the arguments to the func-
tion, and the address to which the function should return, must be pushed onto an
internal stack so that the function can access the argument values and know where to
return.

In the case of the triangle() function, it’s probable that, as a result of this overhead, the
while loop approach executes more quickly than the recursive approach. The penalty

15 72316331 Ch11 10/31/02 7:14 AM Page 215

might not be significant, but if there are a large number of function calls as a result of a
recursive function, it might be desirable to eliminate the recursion. We’ll talk about this
more at the end of this hour in the section “Recursion and Stacks.”

Another inefficiency is that memory is used to store all the intermediate arguments and
return values on the system’s internal stack. This might cause problems if there is a large
amount of data, leading to stack overflow.

Recursion is usually used because it simplifies a problem conceptually, not because it’s
inherently more efficient.

Mathematical Induction
Recursion is the programming equivalent of mathematical induction. Mathematical
induction is a way of defining something in terms of itself. (The term is also used to
describe a related approach to proving theorems.) Using induction, we could define the
triangular numbers mathematically by saying

tri(n) = 1 (if n = 1)

tri(n) = n + tri(n–1) (if n > 1)

Defining something in terms of itself might seem circular, but in fact it’s perfectly valid
(provided there’s a base case).

Next, to clarify recursion further, let’s look at another program example where recursion
is helpful. This one is less mathematical than the triangular numbers example.

Demonstrating Recursion with Anagrams
Here’s a situation where recursion provides a neat solution to a problem. Suppose you
want to list all the anagrams of a specified word, that is, all possible letter-combinations
(whether they make a real English word or not) that can be made from the letters of the
original word. We’ll call this anagramming a word. Anagramming cat, for example,
would produce

● cat

● cta

● atc

● act

● tca

● tac

216 Hour 11

15 72316331 Ch11 10/31/02 7:14 AM Page 216

Try anagramming some words yourself. You’ll find that the number of possibilities is the
factorial of the number of letters. For 3 letters there are 6 possible words, for 4 letters
there are 24 words, for 5 letters, 120 words, and so on. (This assumes that all letters are
distinct; if there are multiple instances of the same letter, there will be fewer possible
words.)

Conceptualizing the Anagram Process
How would you write a program to anagram a word? Here’s one approach. Assume the
word has n letters.

1. Anagram the rightmost n–1 letters.

2. Rotate all n letters.

3. Repeat these steps n times.

To rotate the word means to shift all the letters one position left, except for the
leftmost letter, which “rotates” back to the right, as shown in Figure 11.5.

Recursion 217

11

NEW TERM

FIGURE 11.5
Rotating a word.

WordTemp

o d e o

o d e o

o d e o

r

r

r

o d e o r

15 72316331 Ch11 10/31/02 7:14 AM Page 217

Rotating the word n times gives each letter a chance to begin the word. While the
selected letter occupies this first position, all the other letters are then anagrammed
(arranged in every possible position). For cat, which has only three letters, rotating the
remaining two letters simply switches them. The sequence is shown in Table 11.1.

TABLE 11.1 ANAGRAMMING THE WORD CAT

Display First Remaining
Word Word? Letter Letters Action

cat Yes c at Rotate at

cta Yes c ta Rotate ta

cat No c at Rotate cat

atc Yes a tc Rotate tc

act Yes a ct Rotate ct

atc No a tc Rotate atc

tca Yes t ca Rotate ca

tac Yes t ac Rotate ac

tca No t ca Rotate tca

cat No c at Done

Notice that we must rotate back to the starting point with two letters before performing a
3-letter rotation. This leads to sequences like cat, cta, cat. The redundant combinations
aren’t displayed.

How do we anagram the rightmost n–1 letters? By calling ourselves. The recursive ana-
gram function takes the size of the word to be anagrammed as its only parameter. This
word is understood to be the rightmost n letters of the complete word. Each time ana-
gram calls itself, it does so with a word one letter smaller than before, as shown in
Figure 11.6.

The base case occurs when the size of the word to be anagrammed is only one letter.
There’s no way to rearrange one letter, so the function returns immediately. Otherwise, it
anagrams all but the first letter of the word it was given and then rotates the entire word.
These two actions are performed n times, where n is the size of the word.

218 Hour 11

15 72316331 Ch11 10/31/02 7:14 AM Page 218

Recursion 219

11

FIGURE 11.6
The recursive
anagram() member
function.

called with
word = cat

Word = cat

Word = at

Rotate at

Rotate ta

Word = t

Word = a

Rotate cat = atc

Word = tc

Rotate tc

Rotate ct

Word = c

Word = t

Rotate atc = tca

Word = ca

Rotate ca

Rotate ac

Rotate tca = cat

Word = a

Word = c

Display cat

Display cta

Display atc

Display act

Display tca

Display tac

15 72316331 Ch11 10/31/02 7:14 AM Page 219

Implementing Anagramming in C++
Here’s the recursive routine anagram(), which carries out the operations we’ve been dis-
cussing:

void word::anagram(int newSize)
{
if(newSize == 1) //if too small,

return; //go no further

for(int j=0; j<newSize; j++) //for each position,
{
anagram(newSize-1); //anagram remaining
if(newSize==2) //if innermost,

displayWord(); // display it
rotate(newSize); //rotate word
}

}

Each time the anagram() function calls itself, the size of the word is one letter smaller,
and the starting position is one cell further to the right, as shown in Figure 11.7.

220 Hour 11

FIGURE 11.7
Smaller and smaller
words.

n e t s

0 1 2 3
Level 4

Level 3

Level 2

Level 1

newSize = 1
position = 3

newSize = 2
position = 2

newSize = 3
position = 1

newSize = 4
position = 0

Listing 11.2 shows the complete anagram.cpp program. We use a class to represent the
word to be anagrammed. Member functions of the class allow the word to be displayed,
anagrammed, and rotated. The main() routine gets a word from the user, creates a word
object with this word as an argument to the constructor, and calls the anagram() member
function to anagram the word.

15 72316331 Ch11 10/31/02 7:14 AM Page 220

LISTING 11.2 THE anagram.cpp PROGRAM

//anagram.cpp
//creates anagrams
#include <iostream>
#include <string>
using namespace std;
//
class word

{
private:

int size; //length of input word
int count; //numbers in display
string workStr; //workspace
void rotate(int); //rotate part of workStr
void displayWord(); //display workStr

public:
word(string); //constructor
void anagram(int); //anagram ourselves

};
//--

//constructor
word::word(string inpStr) : workStr(inpStr), count(0)

{ //initialize workStr
size = inpStr.length(); //number of characters
}

//--
void word::anagram(int newSize)

{
if(newSize == 1) //if too small,

return; //go no further

for(int j=0; j<newSize; j++) //for each position,
{
anagram(newSize-1); //anagram remaining
if(newSize==2) //if innermost,

displayWord(); // display it
rotate(newSize); //rotate word
}

}
//--
//rotate left all chars from position to end
void word::rotate(int newSize)

{
int j;
int position = size - newSize;
char temp = workStr[position]; //save first letter
for(j=position+1; j<size; j++) //shift others left

workStr[j-1] = workStr[j];

Recursion 221

11

INPUT

continues

15 72316331 Ch11 10/31/02 7:14 AM Page 221

LISTING 11.2 CONTINUED

workStr[j-1] = temp; //put first on right
}

//--
void word::displayWord()

{
if(count < 99) //spaces before one-

cout << “ “; //or two-digit numbers
if(count < 9)

cout << “ “;
cout << ++count << “ “; //number
cout << workStr << “ “;
if(count%6 == 0)

cout << endl;
}

//
int main()

{
string input;
int length;

cout << “Enter a word: “; //get word
cin >> input;
length = input.length(); //get its length

word theWord(input); //make a word object
theWord.anagram(length); //anagram it
return 0;
} //end main()

The rotate() member function rotates the word one position left as described
earlier. The displayWord() member function displays the entire word and also

displays a count to make it easy to see how many words have been displayed.

Here’s some sample interaction with the program:

Enter a word: cats
1 cats 2 cast 3 ctsa 4 ctas 5 csat 6 csta
7 atsc 8 atcs 9 asct 10 astc 11 acts 12 acst
13 tsca 14 tsac 15 tcas 16 tcsa 17 tasc 18 tacs
19 scat 20 scta 21 satc 22 sact 23 stca 24 stac

(Is it only coincidence that scat is an anagram of cats?) You can use the program to ana-
gram 5-letter or even 6-letter words. However, because the factorial of 6 is 720, this
might generate more words than you want to know about.

Let’s move on now to an example where recursion helps out with a programming task.

222 Hour 11

ANALYSIS

INPUT/
OUTPUT

15 72316331 Ch11 10/31/02 7:14 AM Page 222

Demonstrating Recursion in a Binary Search
Remember the binary search we discussed in Hour 3, “Ordered Arrays”? We wanted to
find a given cell in an ordered array using the fewest number of comparisons. The solu-
tion was to divide the array in half, see which half the desired cell lay in, divide that half
in half again, and so on. Here’s what the original find() member function looked like:

int find(double searchKey)
{
int lowerBound = 0;
int upperBound = nElems-1;
int curIn;

while(true)
{
curIn = (lowerBound + upperBound) / 2;
if(v[curIn]==searchKey)

return curIn; //found it
else if(lowerBound > upperBound)

return nElems; //can’t find it
else //divide range

{
if(v[curIn] < searchKey)

lowerBound = curIn + 1; //it’s in upper half
else

upperBound = curIn - 1; //it’s in lower half
} //end else divide range

} //end while
} //end find()

You might want to reread the section “Conducting a Binary Search with the find()
Member Function” in Hour 3, which describes how this function works. Also, run the
Ordered Workshop applet from that hour if you want to see a binary search in action.

Using Recursion to Replace the Loop
We can transform this loop-based function into a recursive function quite easily. In the
loop-based approach, we change lowerBound or upperBound to specify a new range, and
then cycle through the loop again. Each time through the loop we divide the range
(roughly) in half.

In the recursive approach, instead of changing lowerBound or upperBound, we call the
find function again with the new value of lowerBound or upperBound as arguments. The
loop disappears, and its place is taken by the recursive calls. We call this new find func-
tion recFind(). Here’s how it looks:

int recFind(double searchKey, int lowerBound, int upperBound)
{

Recursion 223

11

15 72316331 Ch11 10/31/02 7:14 AM Page 223

int curIn;

curIn = (lowerBound + upperBound) / 2;
if(v[curIn]==searchKey)

return curIn; //found it
else if(lowerBound > upperBound)

return nElems; //can’t find it
else //divide range

{
if(v[curIn] < searchKey) //it’s in upper half

return recFind(searchKey, curIn+1, upperBound);
else //it’s in lower half

return recFind(searchKey, lowerBound, curIn-1);
} //end else divide range

} //end recFind()

The class user, represented by main(), might not know how many items are in the array
when it calls find(), and in any case shouldn’t be burdened with having to know what
values of upperBound and lowerBound to set initially. Therefore we supply an intermedi-
ate public function, find(), which main() calls with only one argument: the value of the
search key. The find() member function supplies the proper initial values of
lowerBound and upperBound (0 and nElems-1) and then calls the private, recursive func-
tion recFind(). The find() member function looks like this:

public int find(double searchKey)
{
return recFind(searchKey, 0, nElems-1);
}

Listing 11.3 shows the complete binarySearch.cpp program, which incorporates the
recursive recFind() and find() routines.

LISTING 11.3 THE binarySearch.cpp PROGRAM

//binarySearch.cpp
//demonstrates recursive binary search
#include <iostream>
#include <vector>
using namespace std;
//
class ordArray

{
private:

vector<double> v; //vector v
int nElems; //number of data items

public:
//---
ordArray(int max) //constructor

224 Hour 11

INPUT

15 72316331 Ch11 10/31/02 7:14 AM Page 224

{
v.resize(max); //size the array
nElems = 0;
}

//---
int getSize() //return # of elements

{ return nElems; }
//---
int find(double searchKey) //initial find()

{
return recFind(searchKey, 0, nElems-1);
}

//---
//recursive find()

int recFind(double searchKey, int lowerBound, int upperBound)
{
int curIn;

curIn = (lowerBound + upperBound) / 2;
if(v[curIn]==searchKey)

return curIn; //found it
else if(lowerBound > upperBound)

return nElems; //can’t find it
else //divide range

{
if(v[curIn] < searchKey) //it’s in upper half

return recFind(searchKey, curIn+1, upperBound);
else //it’s in lower half

return recFind(searchKey, lowerBound, curIn-1);
} //end else divide range

} //end recFind()
//---
void insert(double value) //put element into array

{
int j;
for(j=0; j<nElems; j++) //find where it goes

if(v[j] > value) //(linear search)
break;

for(int k=nElems; k>j; k--) //move bigger ones up
v[k] = v[k-1];

v[j] = value; //insert it
nElems++; //increment size
} //end insert()

//---
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

cout << v[j] << “ “; //display it
cout << endl;

Recursion 225

11

continues

15 72316331 Ch11 10/31/02 7:14 AM Page 225

LISTING 11.3 CONTINUED

}
//---
}; //end class ordArray

//
int main()

{
int maxSize = 100; //array size
ordArray arr(maxSize); //ordered array

arr.insert(72); //insert items
arr.insert(90);
arr.insert(45);
arr.insert(126);
arr.insert(54);
arr.insert(99);
arr.insert(144);
arr.insert(27);
arr.insert(135);
arr.insert(81);
arr.insert(18);
arr.insert(108);
arr.insert(9);
arr.insert(117);
arr.insert(63);
arr.insert(36);

arr.display(); //display array

int searchKey = 27; //search for item
if(arr.find(searchKey) != arr.getSize())

cout << “Found “ << searchKey << endl;
else

cout << “Can’t find “ << searchKey << endl;
return 0;
} //end main()

In main() we insert 16 items into the array. The insert() member function
arranges them in sorted order, and then they’re displayed. Finally we use find()

to try to find the item with a key value of 27.

Here’s some sample output:

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144
Found 27

In binarySearch.cpp there are 16 items in an array. Figure 11.8 shows how the
recFind() member function in this program calls itself over and over, each time with a

226 Hour 11

ANALYSIS

OUTPUT

15 72316331 Ch11 10/31/02 7:14 AM Page 226

smaller range than before. When the innermost version of the function finds the desired
item, which has the key value 27, it returns with the index value of the item, which is 2
(as can be seen in the display of ordered data). This value is then returned from each ver-
sion of recFind() in turn; finally find() returns it to the class user.

Recursion 227

11

FIGURE 11.8
The recursive
recFind() member
function.

lowerBound=0
upperBound=15

lowerBound=0
upperBound=6

lowerBound=0
upperBound=2

lowerBound=2
upperBound=2

called with
lowerBound=0
upperBound=15

Found it at 2
Return 2

Return 2

Return 2

Return 2

Return 2

Returns 2

V
e
r
s
i
o
n

1

V
e
r
s
i
o
n

2

V
e
r
s
i
o
n

3

V
e
r
s
i
o
n

4

V
e
r
s
i
o
n

5

15 72316331 Ch11 10/31/02 7:14 AM Page 227

The recursive binary search has the same Big O efficiency as the nonrecursive version:
O(logN). It is somewhat more elegant, but might be slightly slower.

Understanding Divide-and-Conquer Algorithms
The recursive binary search is an example of the divide-and-conquer approach.
You divide the big problem into two smaller problems and solve each one sepa-

rately. The solution to the smaller problems is the same: you divide each one into two
even smaller problems and solve them. The process continues until you get to the base
case, which can be solved easily, with no further division into halves.

The divide-and-conquer approach is commonly used with recursion, although, as we saw
in the binary search in Hour 3, you can also use a nonrecursive approach.

A divide-and-conquer approach usually involves a function that contains two recursive
calls to itself, one for each half of the problem. In the binary search, there are two such
calls, but only one of them is actually executed. The mergesort, which we’ll encounter in
Hour 12, “Applied Recursion,” actually executes both recursive calls (to sort two halves
of an array).

Recursion Versus Stacks
Some algorithms lend themselves to a recursive approach, some don’t. As we’ve seen,
the recursive triangle() and binary search functions can be implemented more effi-
ciently using a simple loop. However, various divide-and-conquer algorithms, such as
mergesort, work very well as a recursive routine.

Often an algorithm is easy to conceptualize as a recursive function, but in practice the
recursive approach proves to be inefficient. In such cases, it might be useful to transform
the recursive approach into a nonrecursive approach. Such a transformation can often
make use of a stack.

There is a close relationship between recursion and stacks. In fact, most compilers imple-
ment recursion by using stacks. As we noted, when a function is called, the compiler
pushes the function arguments and the return address (where control will go when the
function returns) on the stack, and then transfers control to the function. When the func-
tion returns, the compiler pops these values off the stack. The arguments disappear, and
control returns to the return address.

In theory, any algorithm that uses recursion can be systematically transformed into one
that uses a stack. In practice, however, it’s usually more practical to rethink the algorithm
from the ground up, using a stack-based approach instead of a recursive approach.

228 Hour 11

NEW TERM

15 72316331 Ch11 10/31/02 7:14 AM Page 228

Listing 11.4 shows what happens when we do that with the triangle() member func-
tion.

LISTING 11.4 THE stackTriangle.cpp PROGRAM

//stackTriangle.cpp
//evaluates triangular numbers, stack replaces recursion
#include <iostream>
#include <vector>
using namespace std;
//
class StackX

{
private:

int maxSize; //size of stack array
vector<int>(stackVect) ; //stack vector
int top; //top of stack

public:
//--

StackX(int s) : maxSize(s), top(-1) //constructor
{ stackVect.resize(maxSize); }

//--
void push(int p) //put item on top of stack

{ stackVect[++top] = p; }
//--

int pop() //take item from top of stack
{ return stackVect[top--]; }

//--
int peek() //peek at top of stack

{ return stackVect[top]; }
//--

bool isEmpty() //true if stack is empty
{ return (top == -1); }

//--
}; //end class StackX

//
int main()

{
int theNumber;
int theAnswer;
int stackTriangle(int);

cout << “Enter a number: “;
cin >> theNumber;
theAnswer = stackTriangle(theNumber);
cout << “Triangle=” << theAnswer << endl;
return 0;

Recursion 229

11

INPUT

continues

15 72316331 Ch11 10/31/02 7:14 AM Page 229

LISTING 11.4 CONTINUED

} //end main()
//---
int stackTriangle(int number)

{
StackX theStack(10000); //make a big stack
int answer = 0; //initialize answer

while(number > 0) //until n is 1,
{
theStack.push(number); //push value
--number; //decrement value
}

while(!theStack.isEmpty()) //until stack empty,
{
int newN = theStack.pop(); //pop value,
answer += newN; //add to answer
}

return answer;
}

In this program we use a stack class called StackX. In main() there are two
loops. In the first, the numbers from n down to 1 are pushed onto the stack. In

the second, they’re removed from the stack and summed. The result is the triangular
number for n.

Of course, in this program you can see by inspection that you can eliminate the stack
entirely and use a simple loop. However, in more complicated algorithms the stack must
remain.

Often you’ll need to experiment to see whether a recursive function, a stack-based
approach, or a simple loop is the most efficient (or practical) way to handle a particular
situation.

Summary
In this hour, you learned the following:

● A recursive function calls itself repeatedly, with a different argument value each
time.

● Some value of its arguments causes a recursive function to return without calling
itself. This is called the base case.

230 Hour 11

ANALYSIS

15 72316331 Ch11 10/31/02 7:14 AM Page 230

● When the innermost instance of a recursive function returns, the process “unwinds”
by completing pending instances of the function, going from the latest back to the
original call.

● A triangular number is the sum of itself and all numbers smaller than itself.
(Number means integer in this context.) For example, the triangular number of 4 is
10, because 4+3+2+1 = 10.

● Triangular numbers can be calculated using a recursive function, a simple loop, or
a stack-based approach.

● The anagram of a word (all possible combinations of its n letters) can be found
recursively by repeatedly rotating all its letters and anagramming the rightmost n–1
of them.

● A binary search can be carried out recursively by checking which half of a sorted
range the search key is in, and then doing the same thing with that half.

● Any operation that can be carried out with recursion can be carried out with a
stack.

● A recursive approach might be inefficient. If so, it can sometimes be replaced with
a simple loop or a stack-based approach.

Q&A
Q Recursion seems weird and complicated. Do I really need to know about it?

A After you get used to recursion it’s a very powerful conceptual tool. Sooner or later
you’ll encounter a problem that could be solved in a simple way using recursion.

Q Isn’t it easier to think in terms of a loop-based approach to problems?

A Some situations are hard to visualize in terms of loops, but are easy in terms of
recursion.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Complete the sentence: A recursive function is one that…

2. The value of the eighth triangular number is…

3. True or false: Recursion is used because it is more efficient.

Recursion 231

11

15 72316331 Ch11 10/31/02 7:14 AM Page 231

4. What is a base case?

5. Describe briefly how to anagram a word.

6. What’s the advantage of the recursive approach to binary searches, as opposed to
the loop approach?

7. True or false: A recursive approach can be replaced with a stack-based approach.

8. In a recursive approach to a binary search, what two things does the recursive func-
tion call itself to do?

Exercise
Write a C++ program that uses recursion to calculate the factorial of a number. Factorials
are mentioned in the note at the end of the section “What the triangle() Function is
Really Doing” in this hour.

232 Hour 11

15 72316331 Ch11 10/31/02 7:14 AM Page 232

HOUR 12
Applied Recursion

In this hour we’ll show recursion at work in two quite different contexts.
We’ll demonstrate recursion in

● The Towers of Hanoi puzzle

● A sorting process called mergesort

The first of these demonstrates dramatically how a seemingly complicated
problem can be solved very simply using recursion. The second shows
recursion in a more serious context, and also serves as an introduction to
advanced sorting processes, which we’ll explore in Hours 13, “Quicksort,”
and 14, “Improving Quicksort.”

The Towers of Hanoi
The Towers of Hanoi is an ancient puzzle consisting of a number of disks
placed on three columns, as shown in Figure 12.1.

16 72316331 Ch12 10/31/02 7:14 AM Page 233

The disks all have different diameters and holes in the middle so they will fit over the
columns. All the disks start out on column A. The object of the puzzle is to transfer all
the disks from column A to column C. Only one disk can be moved at a time, and no
disk can be placed on a disk that’s smaller than itself.

There’s an ancient myth that somewhere in India, in a remote temple, monks labor day
and night to transfer 64 golden disks from one of three diamond-studded towers to
another. When they are finished, the world will end. Any alarm you might feel, however,
will be dispelled when you see how long it takes to solve the puzzle for far fewer than 64
disks.

We’ll show first how a Workshop applet solves this puzzle. Then we’ll present C++ code
that uses recursion to solve it.

The Towers Workshop Applet
Start up the Towers Workshop applet. You can attempt to solve the puzzle yourself by
using the mouse to drag the topmost disk to another tower. Figure 12.2 shows how this
looks after several moves have been made.

There are three ways to use the Workshop applet.

● You can attempt to solve the puzzle manually, by dragging the disks from tower to
tower.

234 Hour 12

FIGURE 12.1
The Towers of Hanoi.

16 72316331 Ch12 10/31/02 7:14 AM Page 234

● You can repeatedly press the Step button to watch the algorithm solve the puzzle.
At each step in the solution, a message is displayed, telling you what the algorithm
is doing.

● You can press the Run button and watch the algorithm solve the puzzle with no
intervention on your part; the disks zip back and forth between the posts.

To restart the puzzle, type in the number of disks you want to use, from 1 to 10, and
press New twice. (After the first press, you’re asked to verify that restarting is what you
want to do.) The specified number of disks will be arranged on tower A. After you drag a
disk with the mouse, you can’t use Step or Run; you must start over with New. However,
you can switch to Manual in the middle of stepping or running, and you can switch to
Step when you’re running, and Run when you’re stepping.

Try solving the puzzle manually with a small number of disks, say 3 or 4. Work up to
higher numbers. The applet gives you the opportunity to learn intuitively how the prob-
lem is solved.

Moving Subtrees
Let’s call the initial tree-shaped (or pyramid-shaped) arrangement of disks on
tower A a tree. As you experiment with the applet, you’ll begin to notice that

smaller tree-shaped stacks of disks are generated as part of the solution process. Let’s
call these smaller trees, containing fewer than the total number of disks, subtrees. For
example, if you’re trying to transfer 4 disks, you’ll find that one of the intermediate steps
involves a subtree of 3 disks on tower B, as shown in Figure 12.3.

Applied Recursion 235

12

FIGURE 12.2
The Towers Workshop
applet.

NEW TERM

16 72316331 Ch12 10/31/02 7:14 AM Page 235

These subtrees form many times in the solution of the puzzle. This is because the cre-
ation of a subtree is the only way to transfer a larger disk from one tower to another: all
the smaller disks must be placed on an intermediate tower, where they naturally form a
subtree.

236 Hour 12

FIGURE 12.3
A subtree on tower B.

A B C

4

1
2

3

Here’s a rule of thumb that might help when you solve the puzzle manually.
If the subtree you’re trying to move has an odd number of disks, start by
moving the topmost disk directly to the tower where you want the subtree
to go. If you’re trying to move a subtree with an even number of disks, start
by moving the topmost disk to the intermediate tower.

The Recursive Algorithm
The solution to the Towers of Hanoi puzzle can be expressed recursively using the notion
of subtrees. Suppose you want to move all the disks from a source tower (call it S) to a
destination tower (call it D). You have an intermediate tower available (call it I). Assume
there are n disks on tower S. Here’s how you would carry out the algorithm.

To Do: The Towers of Hanoi Algorithm
1. Move the subtree consisting of the top n–1 disks from S to I.

2. Move the remaining (largest) disk from S to D.

3. Move the subtree from I to D.

TO
D

O

16 72316331 Ch12 10/31/02 7:15 AM Page 236

When you begin, the source tower is A, the intermediate tower is B, and the destination
tower is C. Figure 12.4 shows the three steps for this situation.

Applied Recursion 237

12

FIGURE 12.4
Recursive solution
to Towers of Hanoi
puzzle. A

1

a)

Subtree
Move

subtree
to B

B C

A

b)

Move bottom
disk to C

B C

A

c)

Move subtree
to C

B C

A

d)

Puzzle
is

solved!B C

3

2
3

4

1
2

34

1
2

4

1
2

3
4

First, the subtree consisting of disks 1, 2, and 3 is moved to the intermediate tower B.
Then the largest disk, 4, is moved to tower C. Then the subtree is moved from B to C.

Of course, this doesn’t solve the problem of how to move the subtree consisting of disks
1, 2, and 3 to tower B because you can’t move a subtree all at once; you must move it
one disk at a time. Moving the 3-disk subtree is not so easy. However, it’s easier than
moving 4 disks.

As it turns out, moving 3 disks from A to the destination tower B can be done with the
same 3 steps as moving 4 disks. That is, move the subtree consisting of the top 2 disks
from tower A to intermediate tower C; then move disk 3 from A to B. Then move the
subtree back from C to B.

16 72316331 Ch12 10/31/02 7:15 AM Page 237

How do you move a subtree of two disks from A to C? Move the subtree consisting of
only one disk (1) from A to B. This is the base case: when you’re moving only one disk,
you just move it; there’s nothing else to do. Then move the larger disk (2) from A to C,
and replace the subtree (disk 1) on it.

Now that we’ve seen how to solve the Towers of Hanoi puzzle with the Workshop applet,
let’s look at some C++ code that does the same thing.

Implementing the Towers of Hanoi in C++
The towers.cpp program solves the Towers of Hanoi puzzle using this recursive
approach. It communicates the moves by displaying them; this requires much less code
than displaying the towers graphically. It’s up to the human reading the list to actually
carry out the moves.

The code is simplicity itself. The main() routine makes a single call to the recursive
member function doTowers(). This function then calls itself recursively until the puzzle
is solved. In this version, shown in Listing 12.1, there are initially only 3 disks, but you
can recompile the program with any number.

LISTING 12.1 THE towers.cpp PROGRAM

//towers.cpp
//solves Towers of Hanoi puzzle
#include <iostream>
using namespace std;
void doTowers(int, char, char, char); //prototype
//––
int main()

{
int nDisks; //number of disks

cout << “Enter number of disks: “; //get # of disks
cin >> nDisks;
doTowers(nDisks, ‘A’, ‘B’, ‘C’); //solve it
return 0;
}

//––
void doTowers(int topN, char src, char inter, char dest)

{
if(topN==1) //display

cout << “Disk 1 from “ << src << “ to “ << dest << endl;
else

{
doTowers(topN-1, src, dest, inter); //src to inter

cout << “Disk “ << topN //display

238 Hour 12

INPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 238

<< “ from “ << src << “ to “ << dest << endl;
doTowers(topN-1, inter, src, dest); //inter to dest
}

}

Remember that three disks are moved from A to C. Here’s the output from the
program:

Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C

The arguments to doTowers() are the number of disks to be moved, and the source
(from), intermediate (inter), and destination (to) towers to be used. The number of
disks decreases by one each time the function calls itself. The source, intermediate, and
destination towers also change.

Here is the output with additional notations that show when the member function is
entered and when it returns, and its arguments. The notations also show whether a disk is
moved because it’s the base case (a subtree consisting of only one disk) or because it’s
the remaining bottom disk after a subtree has been moved.

Enter (3 disks): s=A, i=B, d=C
Enter (2 disks): s=A, i=C, d=B

Enter (1 disk): s=A, i=B, d=C
Base case: move disk 1 from A to C

Return (1 disk)
Move bottom disk 2 from A to B
Enter (1 disk): s=C, i=A, d=B

Base case: move disk 1 from C to B
Return (1 disk)

Return (2 disks)
Move bottom disk 3 from A to C
Enter (2 disks): s=B, i=A, d=C

Enter (1 disk): s=B, i=C, d=A
Base case: move disk 1 from B to A

Return (1 disk)
Move bottom disk 2 from B to C
Enter (1 disk): s=A, i=B, d=C

Base case: move disk 1 from A to C
Return (1 disk)

Return (2 disks)
Return (3 disks)

Applied Recursion 239

12

OUTPUT

OUTPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 239

If you study this output along with the source code for doTower(), it should
become clear exactly how the method works. It’s amazing that such a small

amount of code can solve such a seemingly complicated problem.

Next we’ll look at a final example of recursion. Besides recursion, this example will
introduce you to an advanced sorting method.

Mergesort
In this example we’ll use recursion to sort data using the mergesort algorithm. This is a
much more efficient sorting technique than those we saw in Hours 4, “The Bubble Sort,”
and 5, “The Insertion Sort,” at least in terms of speed. Although the bubble and insertion
sorts take O(N2) time, the mergesort is O(N*logN). The graph in Figure 3.5 (in Hour 3,
“Ordered Arrays”) shows how much faster this is. For example, if N (the number of
items to be sorted) is 10,000, then N2 is 100,000,000, whereas N*logN is only 40,000. If
sorting this many items required 40 seconds with the mergesort, it would take almost 28
hours for the insertion sort.

The mergesort is also fairly easy to implement. It’s conceptually easier than quicksort,
which we’ll encounter in the next hour.

The downside of the mergesort is that it requires an additional array in memory, equal in
size to the one being sorted. If your original array barely fits in memory, the mergesort
won’t work. However, if you have enough space and don’t require the ultimate in speed,
it’s a good choice.

Merging Two Sorted Arrays
The heart of the mergesort algorithm is the merging of two already-sorted arrays.
Merging two sorted arrays A and B creates a third array, C, that contains all the elements
of A and B, also arranged in sorted order. We’ll examine the merging process first; later
we’ll see how it’s used in sorting.

Imagine two sorted arrays. They don’t need to be the same size. Let’s say array A has 4
elements and array B has 6 elements. They will be merged into an array C that starts
with 10 empty cells. Figure 12.5 shows how this looks.

In the figure, the circled numbers indicate the order in which elements are transferred
from A and B to C. Table 12.1 shows the comparisons necessary to determine which ele-
ment will be copied. The steps in the table correspond to the steps in the figure.
Following each comparison, the smaller element is copied to A.

240 Hour 12

ANALYSIS

16 72316331 Ch12 10/31/02 7:15 AM Page 240

TABLE 12.1 MERGING OPERATIONS

Step Comparison (If Any) Copy

1 Compare 23 and 7 Copy 7 from B to C

2 Compare 23 and 14 Copy 14 from B to C

3 Compare 23 and 39 Copy 23 from A to C

4 Compare 39 and 47 Copy 39 from B to C

5 Compare 55 and 47 Copy 47 from A to C

6 Compare 55 and 81 Copy 55 from B to C

7 Compare 62 and 81 Copy 62 from B to C

8 Compare 74 and 81 Copy 74 from B to C

9 Copy 81 from A to C

10 Copy 95 from A to C

Applied Recursion 241

12

FIGURE 12.5
Merging two arrays.

23 47 81 95
0 1 2 3

0 1 2 43 5 6 7 8 9

0 1 2 43 5
7 14 39 55 62 74

A

C

0 1 2 43 5 6 7 8 9
C

B

a) Before Merge

b) After Merge

7 14 23 39 47 55 62 74 81 95

❶ ❷ ❹ ❻ ❼ ❽

❾ ❿
❺❸

16 72316331 Ch12 10/31/02 7:15 AM Page 241

Notice that because B is empty following step 8, no more comparisons are necessary; all
the remaining elements are simply copied from A into C.

Listing 12.2 shows a C++ program that carries out the merge shown in Figure 12.5 and
Table 12.1.

LISTING 12.2 THE merge.cpp PROGRAM

//merge.cpp
//demonstrates merging two arrays into a third
#include <iostream>
using namespace std;
//––
void merge(int[], int, int[], int, int[]);
void display(int[], int); //prototypes
//––
int main()

{
int arrayA[] = {23, 47, 81, 95}; //source A
int arrayB[] = {7, 14, 39, 55, 62, 74}; //source B
int arrayC[10]; //destination

merge(arrayA, 4, arrayB, 6, arrayC); //merge A+B––>C
display(arrayC, 10); //display result
return 0;
} //end main()

//––
void merge(int arrayA[], int sizeA, //merge A and B into C

int arrayB[], int sizeB,
int arrayC[])

{
int aDex=0, bDex=0, cDex=0;

while(aDex < sizeA && bDex < sizeB) //neither array empty
if(arrayA[aDex] < arrayB[bDex])

arrayC[cDex++] = arrayA[aDex++];
else

arrayC[cDex++] = arrayB[bDex++];

while(aDex < sizeA) //arrayB is empty,
arrayC[cDex++] = arrayA[aDex++]; //but arrayA isn’t

while(bDex < sizeB) //arrayA is empty,
arrayC[cDex++] = arrayB[bDex++]; //but arrayB isn’t

} //end merge()
//––-
void display(int theArray[], int size) //display array

{

242 Hour 12

INPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 242

for(int j=0; j<size; j++)
cout << theArray[j] << “ “;

cout << endl;
}

In main() the arrays arrayA, arrayB, and arrayC are created; then the merge()
member function is called to merge arrayA and arrayB into arrayC, and the

resulting contents of arrayC are displayed. Here’s the output:

7 14 23 39 47 55 62 74 81 95

The merge()function has three while loops. The first steps along both arrayA and
arrayB, comparing elements and copying the smaller of the two into arrayC.

The second while loop deals with the situation when all the elements have been trans-
ferred out of arrayB, but arrayA still has remaining elements. (This is what happens in
the example, where 81 and 95 remain in arrayA.) The loop simply copies the remaining
elements from arrayA into arrayC.

The third loop handles the similar situation when all the elements have been transferred
out of arrayA, but arrayB still has remaining elements; they are copied to arrayC.

Sorting by Merging
The idea in the mergesort is to divide an array in half, sort each half, and then use the
merge() member function to merge the two halves into a single sorted array. How do
you sort each half? This hour is about recursion, so you probably already know the
answer: You divide the half into two quarters, sort each of the quarters, and merge them
to make a sorted half.

Similarly each pair of 8ths is merged to make a sorted quarter, each pair of 16ths is
merged to make a sorted 8th, and so on. You divide the array again and again until you
reach a subarray with only one element. This is the base case; it’s assumed an array with
one element is already sorted.

We’ve seen that generally something is reduced in size each time a recursive member
function calls itself, and built back up again each time the member function returns. In
mergeSort() the range is divided in half each time this member function calls itself, and
each time it returns it merges two smaller ranges into a larger one.

As mergeSort() returns from finding two arrays of one element each, it merges them
into a sorted array of two elements. Each pair of resulting 2-element arrays is then
merged into a 4-element array. This process continues with larger and larger arrays until

Applied Recursion 243

12

ANALYSIS

OUTPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 243

the entire array is sorted. This is easiest to see when the original array size is a power of
2, as shown in Figure 12.6.

244 Hour 12

FIGURE 12.6
Merging larger and
larger arrays.

6421

8512

443

21 33 70 12 8564 44 3

1 2 3 4 50 6 7

12 21 33 44 643 70 85

33 64 7021

12 44 853

7033

❶

❷

❹

❻

❼

❺

❸

First, in the bottom half of the array, range 0–0 and range 1–1 are merged into range 0–1.
Of course, 0–0 and 1–1 aren’t really ranges; they’re only one element, so they are base
cases. Similarly, 2–2 and 3–3 are merged into 2–3. Then ranges 0–1 and 2–3 are merged
into 0–3.

16 72316331 Ch12 10/31/02 7:15 AM Page 244

In the top half of the array, 4–4 and 5–5 are merged into 4–5, 6–6 and 7–7 are merged
into 6–7, and 4–5 and 6–7 are merged into 4–7. Finally the top half, 0–3, and the bottom
half, 4–7, are merged into the complete array, 0–7, which is now sorted.

When the array size is not a power of 2, arrays of different sizes must be merged. For
example, Figure 12.7 shows the situation when the array size is 12. Here an array of size
2 must be merged with an array of size 1 to form an array of size 3.

Applied Recursion 245

12

FIGURE 12.7
Array size not a power
of 2.

21 64

12 70

21 33 64

12 70 85

3 44

3 44 97

24 51

24 40 51

1264 21 33 70 24 51 4085 44 3 97

333 12 21 24 70 85 9740 44 51 64

40 1 2 3 9 10 115 6 7 8

7012 21 33 64 85

513 24 40 44 97

❶

❷

❹

❻

❼

❽

❾

❿

❺

❸

16 72316331 Ch12 10/31/02 7:15 AM Page 245

First the 1-element ranges 0–0 and 1–1 are merged into the 2-element range 0–1. Then
range 0–1 is merged with the 1-element range 2–2. This creates the 3-element range 0–2.
It’s merged with the 3-element range 3–5. The process continues until the array is sorted.

Notice that in mergesort we don’t merge two separate arrays into a third one, as we
demonstrated in the merge.cpp program. Instead, we merge parts of a single array into
itself.

You might wonder where all these subarrays are located in memory. In the algorithm, a
workspace array of the same size as the original array is created. The subarrays are
stored in sections of the workspace array. This means that subarrays in the original array
are copied to appropriate places in the workspace array. After each merge, the workspace
array is copied back into the original array.

The mergeSort Workshop Applet
All this is easier to appreciate when you see it happening before your very eyes. Start up
the mergeSort Workshop applet. Repeatedly pressing the Step button will execute
mergeSort step by step. Figure 12.8 shows what it looks like after the first three presses.

246 Hour 12

FIGURE 12.8
The mergeSort
Workshop applet.

The Lower and Upper arrows show the range currently being considered by the algo-
rithm, and the Mid arrow shows the middle part of the range. The range starts as the
entire array and then is halved each time the mergeSort() member function calls itself.
When the range is one element, mergeSort() returns immediately; that’s the base case.
Otherwise, the two subarrays are merged. The applet provides messages, such as
Entering mergeSort: 0-5, to tell you what it’s doing and the range it’s operating on.

16 72316331 Ch12 10/31/02 7:15 AM Page 246

Many steps involve the mergeSort() member function calling itself or returning.
Comparisons and copies are performed only during the merge process, when you’ll see
messages like Merged 0-0 and 1-1 into workspace. You can’t see the merge happen-
ing because the workspace isn’t shown. However, you can see the result when the appro-
priate section of the workspace is copied back into the original (visible) array: The bars
in the specified range will appear in sorted order.

First, the first two bars will be sorted, then the first three bars, then the two bars in the
range 3–4, then the three bars in the range 3–5, then the six bars in the range 0–5, and so
on, corresponding to the sequence shown in Figure 12.7. Eventually all the bars will be
sorted.

You can cause the algorithm to run continuously by pressing the Run button. You can
stop this process at any time by pressing Step, single-step as many times as you want,
and resume running by pressing Run again.

As in the other sorting Workshop applets, pressing New resets the array with a new
group of unsorted bars, and toggles between random and inverse arrangements. The Size
button toggles between 12 bars and 100 bars.

It’s especially instructive to watch the algorithm run with 100 inversely sorted bars. The
resulting patterns show clearly how each range is sorted individually and merged with its
other half, and how the ranges grow larger and larger.

Implementing Mergesort in C++
In a moment we’ll look at the entire mergeSort.cpp program. First, let’s focus on the
member function that carries out the mergesort. Here is the function:

void DArray::recMergeSort(vector<double> workSpace,
int lowerBound, int upperBound)

{
if(lowerBound == upperBound) //if range is 1,

return; //no use sorting
else

{ //find midpoint
int mid = (lowerBound+upperBound) / 2;

//sort low half
recMergeSort(workSpace, lowerBound, mid);

//sort high half
recMergeSort(workSpace, mid+1, upperBound);

//merge them
merge(workSpace, lowerBound, mid+1, upperBound);
} //end else

} //end recMergeSort()

Applied Recursion 247

12

16 72316331 Ch12 10/31/02 7:15 AM Page 247

As you can see, beside the base case, there are only four statements in this member func-
tion. The first computes the midpoint, the next two are recursive calls to recMergeSort()
(one for each half of the array), and the fourth is a call to merge() to merge the two
sorted halves. The base case occurs when the range contains only one element
(lowerBound==upperBound) and results in an immediate return.

In the mergeSort.cpp program, the mergeSort() member function is the one actually
seen by the class user. It creates the array workSpace[], and then calls the recursive rou-
tine recMergeSort() to carry out the sort. The creation of the workspace array is han-
dled in mergeSort() because doing it in recMergeSort() would cause the array to be
created anew with each recursive call, which is an inefficiency.

The merge() member function in the previous merge.cpp program operated on three sep-
arate arrays: two source arrays and a destination array. The merge() routine in the
mergeSort.cpp program operates on a single array: the theArray member of the DArray
class. The arguments to this merge() function are the starting point of the low-half subar-
ray, the starting point of the high-half subarray, and the upper bound of the high-half sub-
array. The function calculates thesizes of the subarrays based on this information.

Listing 12.3 shows the complete mergeSort.cpp program. This program uses a variant of
the array classes from Hour 2, “Arrays,” adding the mergeSort() and recMergeSort()
member functions to the DArray class. The main() routine creates an array, inserts 12
items, displays the array, sorts the items with mergeSort(), and displays the array again.

LISTING 12.3 THE mergeSort.cpp PROGRAM

//mergeSort.cpp
//demonstrates recursive merge sort
#include <iostream>
#include <vector>
using namespace std;
//
class DArray

{
private:

vector<double>(theVect); //vector of doubles
int nElems; //number of data items
void recMergeSort(vector<double>, int, int);
void merge(vector<double>, int, int, int);

public:
//––

DArray(int max) : nElems(0) //constructor
{
theVect.resize(max); //size vector
}

248 Hour 12

INPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 248

//––
void insert(double value) //put element into array

{
theVect[nElems] = value; //insert it
nElems++; //increment size
}

//––
void display() //displays array contents

{
for(int j=0; j<nElems; j++) //for each element,

cout << theVect[j] << “ “; //display it
cout << endl;
}

//––
void mergeSort() //called by main()

{ //provides workspace
vector<double>(workSpace);
workSpace.resize(nElems);
recMergeSort(workSpace, 0, nElems-1);
}

}; //end class DArray
//––
void DArray::recMergeSort(vector<double> workSpace,

int lowerBound, int upperBound)
{
if(lowerBound == upperBound) //if range is 1,

return; //no use sorting
else

{ //find midpoint
int mid = (lowerBound+upperBound) / 2;

//sort low half
recMergeSort(workSpace, lowerBound, mid);

//sort high half
recMergeSort(workSpace, mid+1, upperBound);

//merge them
merge(workSpace, lowerBound, mid+1, upperBound);
} //end else

} //end recMergeSort()
//––
void DArray::merge(vector<double> workSpace, int lowPtr,

int highPtr, int upperBound)
{
int j = 0; //workspace index
int lowerBound = lowPtr;
int mid = highPtr-1;
int n = upperBound-lowerBound+1; //# of items

while(lowPtr <= mid && highPtr <= upperBound)
if(theVect[lowPtr] < theVect[highPtr])

workSpace[j++] = theVect[lowPtr++];

Applied Recursion 249

12

continues

16 72316331 Ch12 10/31/02 7:15 AM Page 249

LISTING 12.3 CONTINUED

else
workSpace[j++] = theVect[highPtr++];

while(lowPtr <= mid)
workSpace[j++] = theVect[lowPtr++];

while(highPtr <= upperBound)
workSpace[j++] = theVect[highPtr++];

for(j=0; j<n; j++)
theVect[lowerBound+j] = workSpace[j];

} //end merge()
//
int main()

{
const int maxSize = 100; //array size
DArray arr(maxSize); //create “array”

arr.insert(64); //insert items
arr.insert(21);
arr.insert(33);
arr.insert(70);
arr.insert(12);
arr.insert(85);
arr.insert(44);
arr.insert(3);
arr.insert(99);
arr.insert(0);
arr.insert(108);
arr.insert(36);

arr.display(); //display items
arr.mergeSort(); //merge-sort the array
arr.display(); //display items again
return 0;
} //end main()

The output from the program is simply the display of the unsorted and sorted
arrays:

64 21 33 70 12 85 44 3 99 0 108 36
0 3 12 21 33 36 44 64 70 85 99 108

If we put additional statements in the recMergeSort() member function, we could gen-
erate a running commentary on what the program does during a sort. The following out-
put shows how this might look for the 4-item array {64, 21, 33, 70}. (You can think of
this as the lower half of the array in Figure 12.6.)

250 Hour 12

OUTPUT

16 72316331 Ch12 10/31/02 7:15 AM Page 250

Entering 0-3
Will sort low half of 0-3
Entering 0-1

Will sort low half of 0-1
Entering 0-0
Base-Case Return 0-0

Will sort high half of 0-1
Entering 1-1
Base-Case Return 1-1

Will merge halves into 0-1
Return 0-1 theArray=21 64 33 70
Will sort high half of 0-3
Entering 2-3

Will sort low half of 2-3
Entering 2-2
Base-Case Return 2-2

Will sort high half of 2-3
Entering 3-3
Base-Case Return 3-3

Will merge halves into 2-3
Return 2-3 theArray=21 64 33 70
Will merge halves into 0-3

Return 0-3 theArray=21 33 64 70

This is roughly the same content as would be generated by the mergeSort
Workshop applet if it could sort 4 items. Study of this output, and comparison with

the code for recMergeSort() and Figure 12.6, will reveal the details of the sorting process.

Efficiency of the Mergesort
As we noted, the mergesort runs in O(N*logN) time. How do we know this? Let’s see
how we can figure out the number of times a data item must be copied, and the number
of times it must be compared with another data item, during the course of the algorithm.
We assume that copying and comparing are the most time-consuming operations—that
the recursive calls and returns don’t add much overhead. We’ll look first at copies, then
at comparisons.

Number of Copies
Look again at Figure 12.6. Each cell below the top line represents an element copied
from the array into the workspace.

Adding up all the cells in Figure 12.6 (the 7 numbered steps) shows there are 24 copies
necessary to sort 8 items. Log28 is 3, so 8*log28 equals 24. This shows that for the case
of 8 items, the number of copies is proportional to N*log2N.

Another way to look at this is that to sort eight items requires three levels, each
of which involves eight copies. A level means all copies into the same size subarray.

Applied Recursion 251

12

NEW TERM

ANALYSIS

16 72316331 Ch12 10/31/02 7:15 AM Page 251

In the first level, there are four 2-element subarrays; in the second level, there are two 4-
element subarrays; and in the third level, there is one 8-element subarray. Each level has
eight elements, so again there are 3*8 or 24 copies.

In Figure 12.6, by considering only half the graph, you can see that eight copies are nec-
essary for an array of four items (steps 1, 2 and 3), and two copies are necessary for two
items. Similar calculations provide the number of copies necessary for larger arrays.
Table 12.2 summarizes this information.

TABLE 12.2 NUMBER OF OPERATIONS WHEN N IS A POWER OF 2

Number of
Copies into
Workspace Comparisons

N log2N (N*log2N) Total Copies Max (Min)

2 1 2 4 1 (1)

4 2 8 16 5 (4)

8 3 24 48 17 (12)

16 4 64 128 49 (32)

32 5 160 320 129 (80)

64 6 384 768 321 (192)

128 7 896 1792 769 (448)

Actually, the items are not only copied into the workspace, they’re also copied back into
the original array. This doubles the number of copies, as shown in the Total Copies col-
umn. The final column of Table 12.2 shows comparisons, which we’ll return to in a
moment.

It’s harder to calculate the number of copies and comparisons when N is not a multiple
of 2, but these numbers fall between those that are a power of 2. For 12 items, there are
88 total copies, and for 100 items, 1344 total copies.

Number of Comparisons
In the mergesort algorithm, the number of comparisons is always somewhat less than the
number of copies. How much less? Assuming the number of items is a power of 2, for
each individual merging operation, the maximum number of comparisons is always one
less than the number of items being merged, and the minimum is half the number of
items being merged. You can see why this is true in Figure 12.9, which shows two possi-
bilities when trying to merge two arrays of four items each.

252 Hour 12

16 72316331 Ch12 10/31/02 7:15 AM Page 252

In the first case, the items interleave, and seven comparisons must be made to merge
them. In the second case, all the items in one array are smaller than all the items in the
other, so only four comparisons need be made.

There are many merges for each sort, so we must add the comparisons for each one.
Referring to Figure 12.6, you can see that seven merge operations are required to sort
eight items. The number of items being merged and the resulting number of comparisons
are shown in Table 12.3.

Applied Recursion 253

12

FIGURE 12.9
Maximum and mini-
mum comparisons.

A

C

B

a) Worst-case Scenario

b) Best-case Scenario

❶

❶

❷

❷

❹

❹

❻

❻

❼

❼

❽

❽

❺

❺

❸

❸

24 47 63 85

12 34 55 79

12 24 34 47

55 63 79 85

Comparisons
1. 12-24
2. 24-34
3. 34-47
4. 47-55
5. 55-63
6. 63-79
7. 79-85

Comparisons
1. 12-55
2. 24-55
3. 34-55
4. 47-55

16 72316331 Ch12 10/31/02 7:15 AM Page 253

TABLE 12.3 COMPARISONS INVOLVED IN SORTING EIGHT ITEMS

Step Number 1 2 3 4 5 6 7 Totals

Number of Items 2 2 4 2 2 4 8 24
Being Merged
(N)

Maximum 1 1 3 1 1 3 7 17
Comparisons
(N–1)

Minimum 1 1 2 1 1 2 4 12
Comparisons
(N/2)

For each merge, the maximum number of comparisons is one fewer than the number of
items. Adding these figures for all the merges gives us a total of 17.

The minimum number of comparisons is always half the number of items being merged,
and adding these figures for all the merges results in 12 comparisons. Similar arithmetic
results in the Comparisons columns for Table 12.2. The actual number of comparisons to
sort a specific array depends on how the data is arranged, but it will be somewhere
between the maximum and minimum values.

Summary
In this hour, you’ve learned the following:

● The Towers of Hanoi puzzle consists of three towers and an arbitrary number of
rings.

● The Towers of Hanoi puzzle can be solved recursively by moving all but the bot-
tom disk of a subtree to an intermediate tower, moving the bottom disk to the desti-
nation tower, and finally moving the remaining subtree to the destination.

● Merging two sorted arrays means to create a third array that contains all the ele-
ments from both arrays in sorted order.

● In mergesort, 1-element subarrays of a larger array are merged into 2-element sub-
arrays, 2-element subarrays are merged into 4-element subarrays, and so on until
the entire array is sorted.

● Mergesort requires O(N*logN) time.

● Mergesort requires a workspace equal in size to the original array.

254 Hour 12

16 72316331 Ch12 10/31/02 7:15 AM Page 254

● For triangular numbers, anagrams, and the binary search shown in the last hour, the
recursive function contains only one call to itself. (There are two shown in the code
for the binary search, but only one is used on any given pass through the member
function’s code.)

● For the Towers of Hanoi and mergesort in this hour, the recursive member function
contains two calls to itself.

Q&A
Q Isn’t this Towers of Hanoi example sort of frivolous? I mean, I’ll probably

never program anything like it.

A The point of the Towers of Hanoi example is to show how recursion can sometimes
make what looks like a difficult problem into a simple one. There might come a
time in your own programming when a similar recursive approach saves you a lot
of trouble.

Q Do I really need to understand the analysis of how efficient the mergesort is?

A This sort of discussion is important because it shows how to figure out how effi-
cient an algorithm is. You don’t need to remember the details, but you should come
away with the idea that such analysis, while it isn’t totally easy, isn’t rocket science
either.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Define the term subtree as used in our discussion of the Towers of Hanoi puzzle.

2. Briefly describe the recursive solution to the Towers of Hanoi puzzle.

3. True or false: The mergesort is faster than the insertion sort.

4. What does it mean to merge two arrays?

5. Briefly describe the mergesort.

6. What is the base case for the mergesort?

7. What is the Big O efficiency of the mergesort?

Applied Recursion 255

12

16 72316331 Ch12 10/31/02 7:15 AM Page 255

Exercise
Calculate how many moves are required to solve the Towers of Hanoi puzzle for differ-
ent numbers of disks. Create a table showing these results. Express the relationship
between the number of moves and the number of disks as an equation.

256 Hour 12

16 72316331 Ch12 10/31/02 7:15 AM Page 256

HOUR 13
Quicksort

In this hour we’ll introduce the most widely used approach to sorting: quick-
sort. Quicksort is based on the idea of partitions. You’ll learn

● What partitioning is

● How to implement it

● How partitioning applies to sorting

● How quicksort works

● How to implement quicksort

We discussed simple sorting in Hours 4, “The Bubble Sort,” and 5, “The
Insertion Sort.” The sorts described there—the bubble and insertion sorts—
are easy to implement but are rather slow. In Hour 12, “Applied Recursion,”
we described the mergesort. It runs much faster than the simple sorts, but
requires twice as much space as the original array; this is often a serious
drawback.

Quicksort operates much faster than the simple sorts; it runs in O(N*logN)
time, which is the fastest time for general-purpose sorts. Also, it does not
require a large amount of extra memory space, as mergesort does.

17 72316331 Ch13 10/31/02 7:15 AM Page 257

Partitioning
Partitioning is the underlying mechanism of quicksort, but it’s also a useful operation on
its own, so we’ll cover it here in its own section.

To partition data is to divide it into two groups, so that all the items with a key
value higher than a specified amount are in one group, and all the items with a

lower key value are in another.

It’s easy to imagine situations where you would want to partition data. Maybe you want
to divide your personnel records into two groups: employees who live within 15 miles of
the office and those who live farther away. Or a school administrator might want to
divide students into those with grade point averages higher and lower than 3.5, so as to
know who deserves to be on the dean’s list.

The Partition Workshop Applet
Our Partition Workshop applet demonstrates the partitioning process. Figure 13.1 shows
12 bars before partitioning, and Figure 13.2 shows them again after partitioning.

258 Hour 13

FIGURE 13.1
Twelve bars before
partitioning.

The horizontal line represents the pivot value. This is the value used to determine
into which of the two groups an item is placed.

We’ll assume that each bar in the applet’s graph represents one cell in an array. Items
with a key value less than the pivot value go in the left part of the array, and those with a
greater (or equal) key go in the right part. (In the section on quicksort, we’ll see that the
pivot value can be the key value of an actual data item, called the pivot. For now, it’s just
a number.)

NEW TERM

NEW TERM

17 72316331 Ch13 10/31/02 7:15 AM Page 258

The arrow labeled partition points to the leftmost item in the right (higher) subarray. This
value is returned from the partitioning member function, so it can be used by other func-
tions that need to know where the division is.

For a more vivid display of the partitioning process, set the Partition Workshop applet to
100 bars and press the Run button. The leftScan and rightScan markers will zip toward
each other, swapping bars as they go. When they meet, the partition is complete.

When you program a partition algorithm, you can choose any value you want for the
pivot value, depending on why you’re doing the partition (such as choosing a grade point
average of 3.5). For variety, the Workshop applet chooses a random number for the pivot
value (the horizontal black line) each time New or Size is pressed, but the value is never
too far from the average bar height.

After being partitioned, the data is by no means sorted; it has simply been divided into
two groups. However, it’s more sorted than it was before. As we’ll see in the next sec-
tion, it doesn’t take much more trouble to sort it completely.

Quicksort 259

13

FIGURE 13.2
Twelve bars after par-
titioning.

Notice that partitioning is not stable. That is, each group is not in the same
order it was originally. In fact, partitioning tends to reverse the order of
some of the data in each group.

Now that you’ve seen partitioning demonstrated by the Workshop applet, let’s look at
some C++ code that performs this algorithm.

17 72316331 Ch13 10/31/02 7:15 AM Page 259

The partition.cpp Program
Listing 13.1 shows the partition.cpp program, which includes the partitionIt()
member function for partitioning an array.

LISTING 13.1 THE partition.cpp PROGRAM

//partition.cpp
//demonstrates partitioning an array
#include <iostream>
#include <vector>
#include <cstdlib> //for random numbers
#include <ctime> //for random numbers
using namespace std;
//
class ArrayPar

{
private:

vector<double> theVect; //vector of doubles
int nElems; //number of data items

public:
//--

ArrayPar(int max) : nElems(0) //constructor
{
theVect.resize(max); //size the vector
}

//--
void insert(double value) //put element into array

{
theVect[nElems] = value; //insert it
nElems++; //increment size
}

//--
int getSize() //return number of items

{ return nElems; }
//--

void display() //displays array contents
{
cout << “A=”;
for(int j=0; j<nElems; j++) //for each element,

cout << theVect[j] << “ “; //display it
cout << endl;
}

//--
//partition a range

int partitionIt(int left, int right, double pivot)
{
int leftMark = left - 1; //right of first elem
int rightMark = right + 1; //left of pivot
while(true)

260 Hour 13

INPUT

17 72316331 Ch13 10/31/02 7:15 AM Page 260

{
while(leftMark < right && //find bigger item

theVect[++leftMark] < pivot)
; //(nop)

while(rightMark > left && //find smaller item
theVect[--rightMark] > pivot)

; //(nop)
if(leftMark >= rightMark) //if markers cross,

break; // partition done
else //not crossed, so

swap(leftMark, rightMark); // swap elements
} //end while(true)

return leftMark; //return partition
} //end partitionIt()

//--
void swap(int dex1, int dex2) //swap two elements

{
double temp;
temp = theVect[dex1]; //A into temp
theVect[dex1] = theVect[dex2]; //B into A
theVect[dex2] = temp; //temp into B
} //end swap(

//--
}; //end class ArrayPar

//
int main()

{
time_t aTime;
int maxSize = 16; //array size
ArrayPar arr(maxSize); //create the array
srand(static_cast<unsigned>(time(&aTime))); //seed randoms

for(int j=0; j<maxSize; j++) //fill array with
{ //random numbers
double n = rand() % 199;
arr.insert(n);
}

arr.display(); //display unsorted array

double pivot = 99; //pivot value
cout << “Pivot is “ << pivot;
int size = arr.getSize();

//partition array
int partDex = arr.partitionIt(0, size-1, pivot);

cout << “, Partition is at index “ << partDex << endl;
arr.display(); //display partitioned array
return 0;
} //end main()

Quicksort 261

13

17 72316331 Ch13 10/31/02 7:15 AM Page 261

The main() routine creates an ArrayPar object that holds 16 items of type
double with values between 0 and 198. (The array within this object is imple-

mented as an STL vector object.) The pivot value is fixed at 99. The routine inserts 16
random values into ArrayPar, displays them, partitions them by calling the
partitionIt() member function, and displays them again. Here’s some sample output:

A=149 192 47 152 159 195 61 66 17 167 118 64 27 80 30 105
Pivot is 99, partition is at index 8
A=30 80 47 27 64 17 61 66 195 167 118 159 152 192 149 105

You can see that the partition is successful: The first eight numbers in the bottom line are
all smaller than the pivot value of 99; the last eight are all larger.

Notice that the partitioning process doesn’t necessarily divide the array in half as it does
in this example; that depends on the pivot value and key values of the data. There might
be more items in one group than in the other.

The Partition Algorithm
The partitioning algorithm works by starting with two markers, one at each end of the
array. (The markers are implemented as array index numbers. We could call them point-
ers, but we don’t want them to be confused with C++ pointers.) The marker on the left,
leftMark, moves toward the right, and the one of the right, rightMark, moves toward the
left. Notice that leftMark and rightMark in the partition.cpp program correspond to
leftScan and rightScan in the Partition Workshop applet.

Actually, leftMark is initialized to one position to the left of the first cell, and
rightMark to one position to the right of the last cell because they will be incremented
and decremented, respectively, before they’re used.

Stopping and Swapping
When leftMark encounters a data item smaller than the pivot value, it keeps going
because that item is already in the right place. However, when it encounters an item
larger than the pivot value, it stops. Similarly, when rightMark encounters an item larger
than the pivot, it keeps going, but when it finds a smaller item, it also stops. Two inner
while loops, the first for leftMark and the second for rightMark, control this scanning
process. A marker stops because its while loop exits. Here’s a simplified version of the
code that scans for out-of-place items:

while(theArray[++leftMark] < pivot) //find bigger item
; // (nop)

while(theArray[--rightMark] > pivot) //find smaller item
; // (nop)

swap(leftMark, rightMark); //swap elements

262 Hour 13

ANALYSIS

OUTPUT

17 72316331 Ch13 10/31/02 7:15 AM Page 262

The first while loop exits when an item larger than pivot is found; the second loop exits
when an item smaller than pivot is found. When both these loops exit, both leftMark
and rightMark point to items that are in the wrong part of the array, so these items are
swapped.

After the swap, the two markers continue on, again stopping at items that are in the
wrong part of the array and swapping them. All this activity is nested in an outer while
loop, as can be seen in the partitionIt() member function in Listing 13.1. When the
two markers eventually meet, the partitioning process is complete and this outer while
loop exits.

You can watch the markers in action when you run the Partition Workshop applet with
100 bars. These markers, represented by blue arrows, start at opposite ends of the array
and move toward each other, stopping and swapping as they go. The bars between them
are unpartitioned; those they’ve already passed over are partitioned. When they meet, the
entire array is partitioned.

Handling Unusual Data
If we were sure that there was a data item at the right end of the array that was smaller
than the pivot value, and an item at the left end that was larger, the simplified while
loops previously shown would work fine. Unfortunately, the algorithm might be called
upon to partition data that isn’t so well organized.

If all the data is smaller than the pivot value, for example, the leftMark variable will go
all the way across the array, looking in vain for a larger item, and fall off the right end,
creating an array index out of bounds error. A similar fate will befall rightMark if
all the data is larger than the pivot value.

To avoid these problems, extra tests must be placed in the while loops to check for the
ends of the array: leftMark<right in the first loop, and rightMark>left in the second.
This can be seen in context in Listing 13.1.

In the next major section in this chapter, on quicksort, we’ll see that a clever
pivot-selection process can eliminate these end-of-array tests. Eliminating code from
inner loops is always a good idea if you want to make a program run faster.

Delicate Code
The code in the while loops is rather delicate. For example, you might be
tempted to remove the increment operators from the inner while loops and use

Quicksort 263

13

NEW TERM

17 72316331 Ch13 10/31/02 7:15 AM Page 263

them to replace the nop statements. (nop refers to a statement consisting only of a semi-
colon, and means no operation.) For example, you might try to change this:

while(leftMark < right && theArray[++leftMark] < pivot)
; // (nop)

to this:

while(leftMark < right && theArray[leftMark] < pivot)
++leftMark;

and similarly for the other inner while loop. This would make it possible for the initial
values of the markers to be left and right, which is somewhat clearer than left-1 and
right+1.

However, these changes result in the markers being incremented only when the condition
is satisfied. The markers must move in any case, so two extra statements within the outer
while loop would be required to bump the markers. The nop version is the most efficient
solution.

Efficiency of the Partition Algorithm
The partition algorithm runs in O(N) time. It’s easy to see this when running the
Partition Workshop applet: The two markers start at opposite ends of the array and move
toward each other at a more or less constant rate, stopping and swapping as they go.
When they meet, the partition is complete. If there were twice as many items to partition,
the markers would move at the same rate, but they would have twice as far to go (twice
as many items to compare and swap), so the process would take twice as long. Thus the
running time is proportional to N.

More specifically, for each partition there will be N+1 or N+2 comparisons. Every item
will be encountered and used in a comparison by one or the other of the markers, leading
to N comparisons, but the markers overshoot each other before they find out they’ve
“crossed” or gone beyond each other, so there are one or two extra comparisons before
the partition is complete. The number of comparisons is independent of how the data is
arranged (except for the uncertainty between 1 and 2 extra comparisons at the end of the
scan).

The number of swaps, however, does depends on how the data is arranged. If it’s
inversely ordered, and the pivot value divides the items in half, every pair of values must
be swapped, which is N/2 swaps. (Remember in the Partition Workshop applet that the
pivot value is selected randomly, so that the number of swaps for inversely sorted bars
won’t always be exactly N/2.)

For random data, there will be fewer than N/2 swaps in a partition, even if the pivot
value is such that half the bars are shorter and half are taller. This is because some bars

264 Hour 13

17 72316331 Ch13 10/31/02 7:15 AM Page 264

will already be in the right place (short bars on the left, tall bars on the right). If the pivot
value is higher (or lower) than most of the bars, there will be even fewer swaps because
only those few bars that are higher (or lower) than the pivot will need to be swapped. On
average, for random data, about half the maximum number of swaps take place.

Although there are fewer swaps than comparisons, they are both proportional to N. Thus
the partitioning process runs in O(N) time. Running the Workshop applet, you can see
that for 12 random bars there are about 3 swaps and 14 comparisons, and for 100 random
bars there are about 25 swaps and 102 comparisons.

Now that you’ve seen how partitioning works, you’re ready to understand quicksort,
which is based on the partitioning algorithm.

Basic Quicksort
Quicksort is undoubtedly the most popular sorting algorithm, and for good reason: in the
majority of situations, it’s the fastest, operating in O(N*logN) time. (This is true only for
in-memory sorting; for sorting data in disk files, other algorithms, such as mergesort,
may be better.) Quicksort was discovered by C.A.R. Hoare in 1962.

To understand quicksort, you should be familiar with the partitioning algorithm described
in the last section. Basically the quicksort algorithm operates by partitioning an array
into two subarrays, and then calling itself recursively to quicksort each of these subar-
rays. However, there are some embellishments we can make to this basic scheme. These
have to do with the selection of the pivot and the sorting of small partitions. We’ll exam-
ine these refinements in the next hour.

It’s difficult to understand what quicksort is doing before you understand some of the
details of how it works, so we’ll reverse our usual presentation and show the C++ code
for quicksort before presenting the quicksort Workshop applet.

The Quicksort Algorithm
The code for a basic recursive quicksort member function is fairly simple. Here’s an
example:

void recQuickSort(int left, int right)
{
if(right-left <= 0) //if size is 1,

return; // it’s already sorted
else //size is 2 or larger

{
//partition range

int partition = partitionIt(left, right);

Quicksort 265

13

17 72316331 Ch13 10/31/02 7:15 AM Page 265

recQuickSort(left, partition-1); //sort left side
recQuickSort(partition+1, right); //sort right side
}

}

As you can see, there are three basic steps (after you check for the base case).

To Do: The Quicksort Algorithm
1. Partition the array or subarray into left (smaller keys) and right (larger keys)

groups.

2. Call ourselves to sort the left group.

3. Call ourselves again to sort the right group.

After a partition, all the items in the left subarray are smaller than all those on the right.
If we then sort the left subarray, and sort the right subarray, the entire array will be
sorted. How do we sort these subarrays? By calling ourselves.

The Arguments to recQuickSort()
The arguments to the recQuickSort() member function determine the left and right ends
of the array (or subarray) it’s supposed to sort. The function first checks whether this
array consists of only one element. If so, the array is by definition already sorted, and the
function returns immediately. This is the base case in the recursion process.

Finding the Boundary
If the array has two or more cells, the algorithm calls the partitionIt() member func-
tion, described in the last section, to partition it. This member function returns the index
number of the partition: the left element in the right (larger keys) subarray. The partition
marks the boundary between the subarrays. This is shown in Figure 13.3.

After the array is partitioned, recQuickSort() calls itself recursively, once for the left
part of its array, from left to partition-1, and once for the right, from partition+1 to
right. Note that the data item at the index partition is not included in either of the
recursive calls. Why not? Doesn’t it need to be sorted? The explanation lies in how the
pivot value is chosen.

Choosing a Pivot Value
What pivot value should the partitionIt() member function use? Here are some rele-
vant ideas:

● The pivot value should be the key value of an actual data item; this item is called
the pivot.

266 Hour 13

,
TO

D
O

,

17 72316331 Ch13 10/31/02 7:15 AM Page 266

● You can pick a data item to be the pivot more or less at random. For simplicity,
let’s say we always pick the item on the right end of the subarray being partitioned.

● After the partition, if the pivot is inserted at the boundary between the left and
right subarrays, it will be in its final sorted position.

Quicksort 267

13

This last point may sound unlikely, but remember that because the pivot’s key value is
used to partition the array, following the partition the left subarray holds items smaller
than the pivot, and the right subarray holds items larger. The pivot starts out on the right,
but if it could somehow be placed between these two subarrays, it would be in the right
place; that is, in its final sorted position. Figure 13.4 shows how this looks with a pivot
whose key value is 36.

This figure is somewhat fanciful because you can’t actually take an array apart as we’ve
shown. So how do we move the pivot to its proper place?

FIGURE 13.3
Recursive calls sort
subarrays.

9442 89 63 12 3627 78 3 50

Unpartitioned array

Left subarray Right subarray

Pivot

Partition

Already
SortedWill be sorted

by first recursive
call to recQuickSort()

Will be sorted
by second recursive

call to recQuickSort()

Left Right

633 27 12 36 5094 89 78 42

17 72316331 Ch13 10/31/02 7:15 AM Page 267

We could shift all the items in the right subarray to the right one cell to make room for
the pivot. However, this is inefficient and unnecessary. Remember that all the items in
the right subarray, although they are larger than the pivot, are not yet sorted, so they can
be moved around, within the right subarray, without affecting anything. Therefore, to
simplify inserting the pivot in its proper place, we can simply swap the pivot (36) and the
left item in the right subarray, which is 63. This places the pivot in its proper position
between the left and right groups. The 63 is switched to the right end, but because it
remains in the right (larger) group, the partitioning is undisturbed. This is shown in
Figure 13.5.

After it’s swapped into the partition’s location, the pivot is in its final resting place. All
subsequent activity will take place on one side of it or on the other, but the pivot itself
won’t be moved (or indeed even accessed) again.

268 Hour 13

FIGURE 13.4
The pivot and the sub-
arrays.

9442 89 63 12 3627 78 3 50

Unpartitioned array

Partitioned
left subarray

Partitioned
right subarray

Pivot item

Correct place
for pivot

3 27 12 63 94 89 78 42 50 36

17 72316331 Ch13 10/31/02 7:15 AM Page 268

Quicksort 269

13

To incorporate the pivot selection process into our recQuickSort() member function,
let’s make it an overt statement, and send the pivot value to partitionIt() as an argu-
ment. Here’s how that looks:

void recQuickSort(int left, int right)
{
if(right-left <= 0) //if size <= 1,

return; // already sorted
else //size is 2 or larger

{
double pivot = theArray[right]; //rightmost item

//partition range
int partition = partitionIt(left, right, pivot);
recQuickSort(left, partition-1); //sort left side
recQuickSort(partition+1, right); //sort right side
}

} // end recQuickSort()

When we use this scheme of choosing the rightmost item in the array as the pivot, we’ll
need to modify the partitionIt() member function to exclude this rightmost item from
the partitioning process. After all, we already know where it should go after the

FIGURE 13.5
Swapping the pivot.

943 27 12 63 3689 78 42 50

Left subarray Right subarray

Left subarray Right subarray

Pivot

Pivot

943 27 12 36 6389 78 42 50

17 72316331 Ch13 10/31/02 7:15 AM Page 269

partitioning process is complete: at the partition, between the two groups. Also, once the
partitioning process is completed, we need to swap the pivot from the right end into the
partition’s location. Listing 13.2 shows the quickSort1.cpp program, which incorporates
these features.

LISTING 13.2 THE quickSort1.cpp PROGRAM

//quickSort1.cpp
//demonstrates simple version of quick sort
#include <iostream>
#include<vector>
#include<cstdlib> //for random numbers
#include<ctime> //for random numbers
using namespace std;
//
class ArrayIns

{
private:

vector<double>(theVect); //vector of doubles
int nElems; //number of data items

public:
//--

ArrayIns(int max) : nElems(0) //constructor
{
theVect.resize(max); //size the vector
}

//--
void insert(double value) //put element into array

{
theVect[nElems] = value; //insert it
nElems++; //increment size
}

//--
void display() //displays array contents

{
cout << “A=”;
for(int j=0; j<nElems; j++) //for each element,

cout << theVect[j] << “ “; //display it
cout << endl;
}

//--
void quickSort() //sort array

{
recQuickSort(0, nElems-1); //call recursive sort
}

//-- void
recQuickSort(int left, int right) //recursive sort

{
if(right-left <= 0) //if size <= 1,

270 Hour 13

INPUT

17 72316331 Ch13 10/31/02 7:15 AM Page 270

return; // already sorted
else //size is 2 or larger

{
double pivot = theVect[right]; //rightmost item

//partition range
int partition = partitionIt(left, right, pivot);
recQuickSort(left, partition-1); //sort left side
recQuickSort(partition+1, right); //sort right side
}

} //end recQuickSort()
//--

int partitionIt(int left, int right, double pivot)
{
int leftMark = left-1; //left (after ++)
int rightMark = right; //right-1 (after --)
while(true)

{ //find bigger item
while(theVect[++leftMark] < pivot)

; // (nop)
//find smaller item

while(rightMark > 0 && theVect[--rightMark] > pivot)
; // (nop)

if(leftMark >= rightMark) //if pointers cross,
break; // partition done

else //not crossed, so
swap(leftMark, rightMark); // swap elements

} //end while(true)
swap(leftMark, right); //restore pivot
return leftMark; //return pivot location
} //end partitionIt()

//--
void swap(int dex1, int dex2) //swap two elements

{
double temp = theVect[dex1]; //A into temp
theVect[dex1] = theVect[dex2]; //B into A
theVect[dex2] = temp; //temp into B
} //end swap(

//--
}; //end class ArrayIns

//
int main()

{
time_t aTime;
int maxSize = 16; //array size
ArrayIns arr(maxSize); //create array
srand(static_cast<unsigned>(time(&aTime))); //seed randoms

for(int j=0; j<maxSize; j++) //fill array with

Quicksort 271

13

continues

17 72316331 Ch13 10/31/02 7:15 AM Page 271

LISTING 13.2 CONTINUED

{ //random numbers
double n = rand() % 99;
arr.insert(n);
}

arr.display(); //display items
arr.quickSort(); //quicksort them
arr.display(); //display them again
return 0;
} //end main()

The main() routine creates an object of type ArrayIns, inserts 16 random data
items of type double in it, displays it, sorts it with the quickSort() member

function, and displays the results.

Here’s some typical output:

A=69 0 70 6 38 38 24 56 44 26 73 77 30 45 97 65
A=0 6 24 26 30 38 38 44 45 56 65 69 70 73 77 97

An interesting aspect of the code in the partitionIt() member function is that we’ve
been able to remove the test for the end of the array in the first inner while loop. This
test, seen in the earlier partitionIt() member function in the partition.cpp program
in Listing 13.1, was

leftMark < right

It prevented leftMark running off the right end of the array if there was no item there
larger than pivot. Why can we eliminate the test? Because we selected the rightmost
item as the pivot, so leftMark will always stop there. However, the test is still necessary
for rightMark in the second while loop. (In Hour 14, “Improving Quicksort,” we’ll see
how this test can be eliminated as well.)

Choosing the rightmost item as the pivot is thus not an entirely arbitrary choice; it speeds
up the code by removing an unnecessary test. Picking the pivot from some other location
would not provide this advantage.

The quickSort1 Workshop Applet
At this point you know enough about the quicksort algorithm to understand the nuances
of the quickSort1 Workshop applet. We’ll use it to examine the big picture first, then the
details.

272 Hour 13

ANALYSIS

OUTPUT

17 72316331 Ch13 10/31/02 7:15 AM Page 272

Understanding the Big Picture
To understand the big picture, use the Size button to set the applet to sort 100 random
bars, and press the Run button. (Press Draw followed by Run if you find spurious bars in
the display.) Following the sorting process, the display will look something like
Figure 13.6.

Hour Title with Mono 273

13

FIGURE 13.6
The quickSort1
Workshop applet with
100 bars.

Watch how the algorithm partitions the array into two parts, and then sorts each of these
parts by partitioning it into two parts, and so on, creating smaller and smaller subarrays.

When the sorting process is complete, each dotted line provides a visual record of one of
the sorted subarrays. The horizontal range of the line shows which bars were part of the
subarray, and its vertical position is the pivot value (the height of the pivot). The total
length of all these lines on the display is a measure of how much work the algorithm has
done to sort the array; we’ll return to this topic later.

Each dotted line (except the shortest ones) should have a line below it (probably sepa-
rated by other, shorter lines) and a line above it that together add up to the same length
as the original line (less one bar). These are the two partitions into which each subarray
is divided.

Examining the Details
For a more detailed examination of quicksort’s operation, switch to the 12-bar display in
the quickSort1 Workshop applet and step through the sorting process. You’ll see how the
pivot value corresponds to the height of the pivot on the right side of the array, how the

17 72316331 Ch13 10/31/02 7:15 AM Page 273

algorithm partitions the array, swaps the pivot into the space between the two sorted
groups, sorts the shorter group (using many recursive calls), and then sorts the larger
group.

Figure 13.7 shows all the steps involved in sorting 12 bars. The horizontal brackets under
the arrays show which subarray is being partitioned at each step, and the circled numbers
show the order in which these partitions are created. A pivot being swapped into place is
shown with a dotted arrow. The final position of the pivot is shown as a dotted cell to
emphasize that this cell contains a sorted item that will not be changed thereafter.
Horizontal brackets under single cells (steps 5, 6, 7, 11, and 12) are base case calls to
recQuickSort(); they return immediately.

Sometimes, as in steps 4 and 10, the pivot ends up in its original position on the right
side of the array being sorted. In this situation, there is only one subarray remaining to
be sorted: that to the left of the pivot. There is no second subarray to its right.

The different steps in Figure 13.7 occur at different levels of recursion, as shown in Table
13.1. The initial call from main() to recQuickSort() is the first level, recQuickSort()
calling two new instances of itself is the second level, these two instances calling four
more instances is the third level, and so on.

TABLE 13.1 RECURSION LEVELS FOR FIGURE 13.7

Step Recursion Level

1 1

2, 8 2

3, 7, 9, 12 3

4, 10 4

5, 6, 11 5

The order in which the partitions are created, corresponding to the step numbers, does
not correspond with depth. It’s not the case that all the first-level partitions are done first,
then all the second level ones, and so on. Instead the left group at every level is handled
before any of the right groups.

In theory there should be eight steps in the fourth level and 16 in the fifth level, but in
this small array we run out of items before these steps are necessary.

274 Hour 13

17 72316331 Ch13 10/31/02 7:15 AM Page 274

Quicksort 275

13

FIGURE 13.7
The quicksort process.

Fig 7-2

8090 100 20 60 30 50 70110 120 40 10

40 1 2 3 9 10 115 6 7 8

4030 10 20 60 100 90 11050 80

30 10 20 40 100 90 11060 120 80

30 10 20 100 90 11060 120 80

10 30 100 11060 120 80

10 30 12060 90 80

10 30 12060 90 80

10 30 12060 90

120

90

9

12

10

11

1

8 6 7

2

5

3

4

70

50 70

40 50 70

20 40 50 70

20 40 50 70 100 110

20 40 50 70 100 110

20 40 50 70 80 100 110

17 72316331 Ch13 10/31/02 7:15 AM Page 275

The number of levels in the table shows that with 12 data items, the machine stack needs
enough space for 5 sets of arguments and return values; one for each recursion level.
This is, as we’ll see later, somewhat greater than the logarithm to the base 2 of the num-
ber of items: log2N. The size of the machine stack is determined by your particular
system.

Details to Notice in the Workshop Applet
Here’s are some details you might notice as you run the quickSort1 Workshop applet.

You might think that a powerful algorithm like quicksort would not be able to handle
subarrays as small as 2 or 3 items. However, this version of the quicksort algorithm is
quite capable of sorting such small subarrays; leftScan and rightScan just don’t go
very far before they meet. For this reason we don’t need to use a different sorting scheme
for small subarrays. (Although, as we’ll see in Hour 14, “Improving Quicksort,” handling
small subarrays differently might have advantages.)

At the end of each scan, the leftScan variable ends up pointing to the partition—that is,
the left element of the right subarray. The pivot is then swapped with the partition to put
the pivot in its proper place, as we’ve seen. As we noted, in steps 3 and 9 of Figure 13.7,
leftScan ends up pointing to the pivot itself, so the swap has no effect. This might seem
like a wasted swap; you might decide that leftScan should stop one bar sooner.
However, it’s important that leftScan scan all the way to the pivot, otherwise a swap
would unsort the pivot and the partition.

276 Hour 13

Be aware that leftScan and rightScan start at left-1 and right. This might
look peculiar on the display, especially if left is 0; then leftScan will start at
-1. Similarly rightScan initially points to the pivot, which is not included in
the partitioning process. These markers start outside the subarray being par-
titioned because they will be incremented and decremented, respectively,
before they’re used the first time.

The applet shows ranges as numbers in parentheses; for example, (2–5) means the subar-
ray from index 2 to index 5. The range given in some of the messages might be negative:
from a higher number to a lower one: Array partitioned; left (7-6), right
(8-8), for example. The (8–8) range means a single cell (8), but what does (7–6) mean?
This range isn’t real; it simply reflects the values that left and right, the arguments to
recQuickSort(), have when this member function is called. Here’s the code in question:

int partition = partitionIt(left, right, pivot);
recQuickSort(left, partition-1); //sort left side
recQuickSort(partition+1, right); //sort right side

17 72316331 Ch13 10/31/02 7:15 AM Page 276

If partitionIt() is called with left = 7 and right = 8, for example, and happens to
return 7 as the partition, the range supplied in the first call to recQuickSort() will be
(7–6) and the range to the second will be (8–8). This is normal. The base case in
recQuickSort() is activated by array sizes less than 1 as well as by 1, so it will return
immediately for negative ranges. Negative ranges are not shown in Figure 13.7, although
they do cause (brief) calls to recQuickSort().

Quicksort has some problems we haven’t examined yet. In the next hour we’ll see how to
solve these problems We’ll also discuss the efficiency of quicksort.

Summary
In this hour, you’ve learned the following:

● To partition an array is to divide it into two subarrays, one of which holds items
with key values less than a specified value, while the other holds items with keys
greater or equal to this value.

● The pivot value is the value that determines into which group an item will go dur-
ing partitioning; items smaller than the pivot value go in the left group, larger items
go in the right group.

● Partitioning operates in linear O(N) time, making N plus 1 or 2 comparisons and
fewer than N/2 swaps.

● The partitioning algorithm may require extra tests in its inner while loops to pre-
vent the indices running off the ends of the array.

● The quicksort() function partitions an array and then calls itself twice recursively
to sort the two resulting subarrays.

● The pivot value for a partition in quicksort is the key value of a specific item,
called the pivot.

● In a simple version of quicksort, the pivot can always be the item at the right end
of the subarray.

● During the partition the pivot is placed out of the way on the right, and is not
involved in the partitioning process.

● Later the pivot is swapped again, into the space between the two partitions. This is
its final sorted position.

Quicksort 277

13

17 72316331 Ch13 10/31/02 7:15 AM Page 277

Q&A
Q There are a lot of nuances in the quicksort code. Do I really need to under-

stand them in detail?

A Not if you’re just going to use a quicksort that someone else has written. Of
course, if you’re going to write your own quicksort routine, they’re important.

Q Is it really necessary to worry about eliminating a single comparison by choos-
ing the pivot point on the right? This can’t speed up the algorithm all that
much.

A Any code in an innermost loop is worth optimizing as much as possible because it
will be executed so often.

Q Can I use the code shown in Listing 13.2 as a general-purpose sorting routine?

A Before you do that, you should read the material in the next hour. You’ll find a bet-
ter algorithm there.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. What does it mean to partition a number of data items?

2. What is the name given to the value used to separate the two groups into when par-
titioning?

3. Describe briefly how the C++ code that carries out the partitioning algorithm
works.

4. True or false: The partitioning algorithm runs in O(N) time.

5. Briefly describe the operation of the quicksort algorithm.

6. What is the name of the data item whose key is the same as the pivot value?

7. How do we pick the pivot in the quicksort examples in this hour?

Exercise
Shuffle 10 playing cards (ace through 10) and lay them out in a row. Now sort them
using the quicksort algorithm. That is, partition them, quicksort the low group, and then
quicksort the high group. Pay attention to swapping the pivot card and to the other details
described in this hour.

278 Hour 13

17 72316331 Ch13 10/31/02 7:15 AM Page 278

HOUR 14
Improving Quicksort

The quicksort program shown in Hour 13 suffers from a fairly serious effi-
ciency problem if the data supplied to it happens to be inversely sorted.
Also, quicksort can be speeded up somewhat by using a different approach
to small partitions. In this hour you’ll learn

● Why the basic quicksort algorithm runs slowly for inversely sorted
data

● How to fix the inverse-data problem using median-of-three
partitioning

● How to speed up quicksort by using insertion sort for small partitions

Problems with Inversely Sorted Data
If you use the quickSort1 Workshop applet to sort 100 inversely sorted bars,
you’ll see that the algorithm runs much more slowly, and that many more
dotted horizontal lines are generated, indicating more and larger subarrays
are being partitioned. What’s happening here?

18 72316331 Ch14 10/31/02 7:15 AM Page 279

The problem is in the selection of the pivot. Ideally, the pivot should be the
median of the items being sorted. The median or middle item is the data item

chosen so that exactly half the other items are smaller and half are larger.

That is, half the items should be larger than the pivot, and half smaller. This would result
in the array being partitioned into two subarrays of equal size. Two equal subarrays is the
optimum situation for the quicksort algorithm. If it has to sort one large and one small
array, it’s less efficient because the larger subarray has to be subdivided more times.

The worst situation results when a subarray with N elements is divided into one subarray
with 1 element and the other with N–1 elements. (This division into 1 cell and N–1 cells
can also be seen in steps 3 and 9 in Figure 13.7 in the last hour.) If this 1 and N–1 divi-
sion happens with every partition, every element requires a separate partition step. This is
in fact what takes place with inversely sorted data: In all the subarrays, the pivot is the
smallest item, so every partition results in an N–1 elements in one subarray and only the
pivot in the other.

To see this unfortunate process in action, step through the quickSort1 Workshop applet
with 12 inversely sorted bars. Notice how many more steps are necessary than with ran-
dom data. In this situation the advantage gained by the partitioning process is lost and
the performance of the algorithm degenerates to O(N2).

Besides being slow, there’s another potential problem when quicksort operates in O(N2)
time. When the number of partitions increases, the number of recursive function calls
also increases. Every function call takes up room on the machine stack. If there are too
many calls, the machine stack can overflow and paralyze the system.

To summarize: In the quickSort1 applet, we select the rightmost element as the pivot. If
the data is truly random, this isn’t too bad a choice because usually the pivot won’t be
too close to either end of the array. However, when the data is sorted or inversely sorted,
choosing the pivot from one end or the other is a bad idea. Can we improve on our
approach to selecting the pivot?

Median-of-Three Partitioning
Many schemes have been devised for picking a better pivot. The method should be sim-
ple but have a good chance of avoiding the largest or smallest value. Picking an element
at random is simple but—as we’ve seen—doesn’t always result in a good selection. We
could examine all the elements and actually calculate which one was the median. This
would be the ideal pivot choice, but the process isn’t practical because it would take
more time than the sort itself.

280 Hour 14

NEW TERM

18 72316331 Ch14 10/31/02 7:15 AM Page 280

A compromise solution is to find the median of the first, last, and middle ele-
ments of the array, and use this for the pivot. This is called the median-of-three

approach and is shown in Figure 14.1.

Improving Quicksort 281

14

NEW TERM

FIGURE 14.1
The median of three.

86 2944

Left Center

Median is 44

Right

Finding the median of three items is obviously much faster than finding the median of all
the items, and yet it successfully avoids picking the largest or smallest item in cases
where the data is already sorted or inversely sorted. There are probably some pathologi-
cal arrangements of data where the median-of-three scheme works poorly, but normally
it’s a fast and effective technique for finding the pivot.

Besides picking the pivot more effectively, the median-of-three approach has an addi-
tional benefit: We can dispense with the rightMark>left test in the second inside while
loop, leading to a small increase in the algorithm’s speed. How is this possible?

The test can be eliminated because we can use the median-of-three approach to not only
select the pivot, but also to sort the three elements used in the selection process. Figure
14.2 shows how this looks.

After these three elements are sorted, and the median item is selected as the
pivot, we are guaranteed that the element at the left end of the subarray is less

than (or equal to) the pivot, and the element at the right end is greater than (or equal to)
the pivot. This means that the leftMark and rightMark indices can’t step beyond the
right or left ends of the array, respectively, even if we remove the leftMark>right and
rightMark<left tests. (The marker will stop, thinking it needs to swap the item, only to
find that it has crossed the other marker and the partition is complete.)

NEW TERM

18 72316331 Ch14 10/31/02 7:15 AM Page 281

The values at left and right act as sentinels to keep leftMark and rightMark
confined to valid array values. A sentinel in this context is a data item than an

algorithm can examine to determine the end of a range.

282 Hour 14

FIGURE 14.2
Sorting the left, center,
and right elements.

86 2944

Left Center Right

44 8629

Left Center Right

Before sorting

After sorting

Becomes
pivot

NEW TERM

Another small benefit to median-of-three partitioning is that after the left,
center, and right elements are sorted, the partition process doesn’t need to
examine these elements again. The partition can begin at left+1 and
right-1 because left and right have in effect already been partitioned. We
know that left is in the correct partition because it’s on the left and it’s less
than the pivot, and right is in the correct place because it’s on the right and
it’s greater than the pivot.

Thus, median-of-three partitioning not only avoids O(N2) performance for already-sorted
data, it also allows us to speed up the inner loops of the partitioning algorithm and
reduce slightly the number of items that must be partitioned.

Implementing Median-of-Three Partitioning in C++
Listing 14.1 shows the quickSort2.cpp program, which incorporates median-of-three
partitioning. We use a separate member function, medianOf3(), to sort the left, center,

18 72316331 Ch14 10/31/02 7:15 AM Page 282

and right elements of a subarray. This function returns the value of the pivot, which is
then sent to the partitionIt() member function.

LISTING 14.1 THE quickSort2.cpp PROGRAM

//quickSort2.cpp
//demonstrates quick sort with median-of-three partitioning
#include <iostream>
#include <vector>
#include <cstdlib> //for random numbers
#include <ctime> //for random numbers
using namespace std;
//
class ArrayIns

{
private:

vector<double>(theVect); //vector of doubles
int nElems; //number of data items

public:
//--

ArrayIns(int max) : nElems(0) //constructor
{
theVect.resize(max); //size the vector
}

//--
void insert(double value) //put element into array

{
theVect[nElems] = value; //insert it
nElems++; //increment size
}

//--
void display() //displays array contents

{
cout << “A=”;
for(int j=0; j<nElems; j++) //for each element,

cout << theVect[j] << “ “; //display it
cout << endl;
}

//--
void quickSort() //sort array

{
recQuickSort(0, nElems-1); //call recursive sort
}

//--
void recQuickSort(int left, int right) //recursive sort

{
int size = right-left+1;
if(size <= 3) //manual sort if small

Improving Quicksort 283

14

INPUT

continues

18 72316331 Ch14 10/31/02 7:15 AM Page 283

LISTING 14.1 CONTINUED

manualSort(left, right);
else //quicksort if large

{
double median = medianOf3(left, right);
int partition = partitionIt(left, right, median);
recQuickSort(left, partition-1);
recQuickSort(partition+1, right);
}

} //end recQuickSort()
//--

double medianOf3(int left, int right)
{
int center = (left+right)/2;

//order left & center
if(theVect[left] > theVect[center])

swap(left, center);
//order left & right

if(theVect[left] > theVect[right])
swap(left, right);

//order center & right
if(theVect[center] > theVect[right])

swap(center, right);

swap(center, right-1); //put pivot on right
return theVect[right-1]; //return median value
} //end medianOf3()

//--
void swap(int dex1, int dex2) //swap two elements

{
double temp = theVect[dex1]; //A into temp
theVect[dex1] = theVect[dex2]; //B into A
theVect[dex2] = temp; //temp into B
} //end swap(

//--
//partition a range

int partitionIt(int left, int right, double pivot)
{
int leftMark = left; //right of first elem
int rightMark = right - 1; //left of pivot

while(true)
{
while(theVect[++leftMark] < pivot) //find bigger

; // (nop)
while(theVect[--rightMark] > pivot) //find smaller

; // (nop)
if(leftMark >= rightMark) //if pointers cross,

284 Hour 14

18 72316331 Ch14 10/31/02 7:15 AM Page 284

break; // partition done
else //not crossed, so

swap(leftMark, rightMark); //swap elements
} //end while(true)

swap(leftMark, right-1); //restore pivot
return leftMark; //return pivot location
} //end partitionIt()

//--
void manualSort(int left, int right)

{
int size = right-left+1;
if(size <= 1)

return; //no sort necessary
if(size == 2)

if(theVect[left] > theVect[right])
swap(left, right);

return;
}

else //size==3, so 3-sort left, center (right-1) & right
{
if(theVect[left] > theVect[right-1])

swap(left, right-1); //left, center
if(theVect[left] > theVect[right])

swap(left, right); //left, right
if(theVect[right-1] > theVect[right])

swap(right-1, right); //center, right
}

} //end manualSort()
//--

}; //end class ArrayIns
//
int main()

{
time_t aTime;
int maxSize = 16; //array size
ArrayIns arr(maxSize); //create the array
srand(static_cast<unsigned>(time(&aTime))); //seed randoms

for(int j=0; j<maxSize; j++) //fill array with
{ //random numbers
double n = rand() % 99;
arr.insert(n);
}

arr.display(); //display items
arr.quickSort(); //quicksort them
arr.display(); //display them again
return 0;
} //end main()

Improving Quicksort 285

14

18 72316331 Ch14 10/31/02 7:15 AM Page 285

This program uses another new member function, manualSort(), to sort subar-
rays of three or fewer elements. It returns immediately if the subarray is one cell

(or less), swaps the cells if necessary if the range is 2, and sorts three cells if the range is
3. The recQuickSort() routine can’t be used to sort ranges of 2 or 3 because median
partitioning requires at least four cells.

The main() routine and the output of quickSort2.cpp are similar to those of
quickSort1.cpp.

The quickSort2 Workshop Applet
The quickSort2 Workshop applet demonstrates the quicksort algorithm using median-of-
three partitioning. This applet is similar to the quickSort1 Workshop applet, but starts off
sorting the first, center, and left elements of each subarray and selecting the median of
these as the pivot value. At least, it does this if the array size is greater than 3. If the sub-
array is 2 or 3 units, the applet simply sorts it “by hand” without partitioning or recursive
calls.

Notice the dramatic improvement in performance when the applet is used to sort 100
inversely ordered bars. No longer is every subarray partitioned into one cell and N–1
cells; instead the subarrays are partitioned roughly in half.

Other than this improvement for ordered data, the quickSort2 Workshop applet produces
results similar to quickSort1. It is no faster when sorting random data; its advantages
become evident only when sorting ordered data.

Handling Small Partitions
If you use the median-of-three partitioning scheme, it follows that the quicksort
algorithm won’t work for partitions of three or fewer items. The number 3 in this

case is called a cutoff point. In the preceding examples we sorted subarrays of 2 or 3
items by hand, using the manualSort() function. Is this the best way?

Using an Insertion Sort for Small Partitions
Another option for dealing with small partitions is to use the insertion sort. When you do
this, you aren’t restricted to a cutoff of 3. You can set the cutoff to 10, 20, or any other
number. It’s interesting to experiment with different values of the cutoff to see where the
best performance lies. Knuth (see Appendix C, “Further Reading”) recommends a cutoff
of 9. However, the optimum number depends on your computer, operating system, com-
piler, and so on.

286 Hour 14

ANALYSIS

NEW TERM

18 72316331 Ch14 10/31/02 7:15 AM Page 286

The quickSort3.cpp program, shown in Listing 14.2, uses an insertion sort to handle
subarrays of fewer than 10 cells. The output of this program is similar to those of the
other quickSort programs.

LISTING 14.2 THE quickSort3.cpp PROGRAM

//quickSort3.cpp
//demonstrates quick sort; uses insertion sort for cleanup
#include <iostream>
#include <vector>
#include <cstdlib> //for rand()
#include <ctime> //for rand()
using namespace std;
//
class ArrayIns

{
private:

vector<double> theArray; //array theArray
int nElems; //number of data items

public:
//--

ArrayIns(int max) //constructor
{
theArray.reserve(max); //change size of vector
nElems = 0; //no items yet
}

//--
void insert(double value) //put element into array

{
theArray[nElems] = value; //insert it
nElems++; //increment size
}

//--
void display() //displays array contents

{
cout << “A=”;
for(int j=0; j<nElems; j++) //for each element,

cout << theArray[j] << “ “; //display it
cout << endl;
}

//--
void quickSort() //sort the array

{
recQuickSort(0, nElems-1);

// insertionSort(0, nElems-1); //(another option)
}

//--

Improving Quicksort 287

14

OUTPUT

continues

18 72316331 Ch14 10/31/02 7:15 AM Page 287

LISTING 14.2 CONTINUED

void recQuickSort(int left, int right) //recursive quicksort
{
int size = right-left+1;
if(size < 10) //insertion sort if small

insertionSort(left, right);
else //quicksort if large

{
double median = medianOf3(left, right);
int partition = partitionIt(left, right, median);
recQuickSort(left, partition-1);
recQuickSort(partition+1, right);
}

} //end recQuickSort()
//--

double medianOf3(int left, int right)
{
int center = (left+right)/2;

//order left & center
if(theArray[left] > theArray[center])

swap(left, center);
//order left & right

if(theArray[left] > theArray[right])
swap(left, right);

//order center & right
if(theArray[center] > theArray[right])

swap(center, right);

swap(center, right-1); //put pivot on right
return theArray[right-1]; //return median value
} //end medianOf3()

//--
void swap(int dex1, int dex2) //swap two elements

{
double temp = theArray[dex1]; //A into temp
theArray[dex1] = theArray[dex2]; //B into A
theArray[dex2] = temp; //temp into B
} //end swap(

//--
int partitionIt(int left, int right, double pivot)

{
int leftMark = left; //right of first elem
int rightMark = right - 1; //left of pivot
while(true)

{
while(theArray[++leftMark] < pivot) //find bigger

; // (nop)
while(theArray[--rightMark] > pivot) //find smaller

288 Hour 14

18 72316331 Ch14 10/31/02 7:15 AM Page 288

; // (nop)
if(leftMark >= rightMark) //if pointers cross,

break; // partition done
else //not crossed, so

swap(leftMark, rightMark); //swap elements
} //end while(true)

swap(leftMark, right-1); //restore pivot
return leftMark; //return pivot location
} //end partitionIt()

//--
void insertionSort(int left, int right) //insertion sort

{
int in, out;

//sorted on left of out
for(out=left+1; out<=right; out++)

{
double temp = theArray[out]; //remove marked item
in = out; //start shifts at out

//until one is smaller,
while(in>left && theArray[in-1] >= temp)

{
theArray[in] = theArray[in-1]; //shift item to right
--in; //go left one position
}

theArray[in] = temp; //insert marked item
} //end for

} //end insertionSort()
//--

}; //end class ArrayIns
//
int main()

{
int maxSize = 16; //array size
ArrayIns arr(maxSize); //create array
time_t aTime; //seed random numbers
srand(static_cast<unsigned>(time(&aTime)));

for(int j=0; j<maxSize; j++) //fill array with
{ //random numbers
double n = rand() % 99;
arr.insert(n);
}

arr.display(); //display items
arr.quickSort(); //quicksort them
arr.display(); //display them again
return 0;
} //end main()

Improving Quicksort 289

14

18 72316331 Ch14 10/31/02 7:15 AM Page 289

In this example the cutoff is 10. Subarrays smaller than that use the insertion
sort. Using the insertion sort for small subarrays turns out to be the fastest

approach on our particular installation, but it is not much faster than sorting subarrays of
3 or fewer cells by hand, as in quickSort2.cpp. The numbers of comparisons and copies
are reduced substantially in the quicksort phase, but are increased by an almost equal
amount in the insertion sort, so the time savings is not dramatic. However, it’s probably a
worthwhile approach if you are trying to squeeze the last ounce of performance out of
quicksort.

Insertion Sort Following Quicksort
Another option is to completely quicksort the array without bothering to sort partitions
smaller than the cutoff. This is shown with a commented statement in the quickSort()
function. If you activate this statement, you should change recQuickSort() to do noth-
ing for small partitions, rather than calling insertionSort(). When quicksort is fin-
ished, the array will be almost sorted. You then apply the insertion sort to the entire array.
The insertion sort is supposed to operate efficiently on almost-sorted arrays, and this
approach is recommended by some experts, but on our installation it runs very slowly.
The insertion sort appears to be happier doing a lot of small sorts than one big one.

290 Hour 14

ANALYSIS

Another embellishment recommended by many writers is removing recur-
sion from the quicksort algorithm. This involves rewriting the algorithm to
store deferred subarray bounds (left and right) on a stack, and using a
loop instead of recursion to oversee the partitioning of smaller and smaller
subarrays. The idea in doing this is to speed up the program by removing
function calls. However, this idea arose with older compilers and computer
architectures, which imposed a large time penalty for each function call. It’s
not clear that removing recursion is much of an improvement for modern
systems, which handle function calls more efficiently.

Efficiency of Quicksort
We’ve said that quicksort operates in O(N*logN) time. As we saw in the discussion of
mergesort in Hour 12, “Applied Recursion,” this is generally true of the divide-and-
conquer algorithms, in which a recursive function divides a range of items into two
groups and then calls itself to handle each group. In this situation the logarithm actually
has a base of 2: the running time is proportional to N*log2N.

18 72316331 Ch14 10/31/02 7:15 AM Page 290

You can get an idea of the validity of this N*log2N running time for quicksort by running
one of the quickSort Workshop applets with 100 random bars and examining the result-
ing dotted horizontal lines.

Each dotted line represents an array or subarray being partitioned: the pointers leftScan
and rightScan moving toward each other, comparing data items and swapping when
appropriate. We saw in the section on partitioning that a single partition runs in O(N)
time. This tells us that the total length of all the lines is proportional to the running time
of quicksort. But how long are all the lines? It would be tedious to measure them with a
ruler on the screen, but we can visualize them a different way.

There is always one line that runs the entire width of the graph, spanning N bars. This
results from the first partition. There will also be two lines (one below and one above the
first line) that have an average length of N/2 bars; together they are again N bars long.
Then there will be four lines with an average length of N/4 that again total N bars, and
then 8 lines, 16, and so on. Figure 14.3 shows how this looks for 1, 2, 4, and 8 lines.

Improving Quicksort 291

14

FIGURE 14.3
Lines correspond to
partitions. 15

13

14

9

12

10

11

1

8

6

7

2

5

3

4

E
ig

ht Fo
ur

 li
ne

s
N

/4
 c

el
ls

 lo
ng

T
w

o
lin

es
N

/2
 c

el
ls

 lo
ng

O
ne

 li
ne

N
 c

el
ls

 lo
ng

lin
es

N
/8

ce
lls

lo
ng

18 72316331 Ch14 10/31/02 7:16 AM Page 291

In this figure solid horizontal lines represent the dotted horizontal lines in the quicksort
applets, and captions like N/4 cells long indicate average, not actual, line lengths. The
circled numbers on the left show the order in which the lines are created.

Each series of lines (the eight N/8 lines, for example) corresponds to a level of recursion.
The initial call to recQuickSort() is the first level and makes the first line; the two calls
from within the first call—the second level of recursion—make the next two lines; and
so on. If we assume we start with 100 cells, the results are shown in Table 14.1.

TABLE 14.1 LINE LENGTHS AND RECURSION

Step Average
Numbers Line

Recursion in Figure Length Number of Total Length
Level 14.3 (Cells) Lines (Cells)

1 1 100 1 100

2 2, 9 50 2 100

3 3, 6, 10, 25 4 100
13

4 4, 5, 7, 12 8 96
8, 11, 12,
14, 15

5 Not shown 6 16 96

6 Not shown 3 32 96

7 Not shown 1 64 64

Total = 652

Where does this division process stop? If we keep dividing 100 by 2, and count how
many times we do this, we get the series 100, 50, 25, 12, 6, 3, 1, which is about 7 levels
of recursion. This looks about right on the workshop applets: If you pick some point on
the graph and count all the dotted lines directly above and below it, there will be an aver-
age of approximately 7. (In Figure 14.3, because not all levels of recursion are shown,
only 4 lines intersect any vertical slice of the graph.)

Table 14.1 shows a total of 652 cells. This is only an approximation because of rounding
errors, but it’s close to 100 times the logarithm to the base 2 of 100, which is 6.65. Thus
this informal analysis suggests the validity of the N*log2N running time for quicksort.

More specifically, in the section on partitioning, we found that there should be N+2 com-
parisons and fewer than N/2 swaps. Multiplying these quantities by log2N for various
values of N gives the results shown in Table 14.2.

292 Hour 14

18 72316331 Ch14 10/31/02 7:16 AM Page 292

TABLE 14.2 SWAPS AND COMPARISONS IN QUICKSORT

N 8 12 16 64 100 128

log2N 3 3.59 4 6 6.65 7

N*log2N 24 43 64 384 665 896

Comparisons: (N+2)*log2N 30 50 72 396 678 910

Swaps: Fewer than N/2*log2N 12 21 32 192 332 448

The log2N quantity used in Table 14.2 is actually true only in the best-case scenario,
where each subarray is partitioned exactly in half. For random data the figure is slightly
greater. Nevertheless, the quickSort1 and quickSort2 Workshop applets approximate
these results for 12 and 100 bars, as you can see by running them and observing the
Swaps and Comparisons fields.

Because they have different cutoff points and handle the resulting small partitions differ-
ently, quickSort1 performs fewer swaps but more comparisons than quickSort2. The
number of swaps shown in the table is the maximum (which assumes the data is
inversely sorted). For random data the actual number of swaps turns out to be one-half to
two-thirds of the figures shown.

Summary
In this hour, you’ve learned the following:

● In the simple version of quicksort, performance is only O(N2) for already-sorted (or
inversely sorted) data.

● In the more advanced version of quicksort, the pivot can be the median of the first,
last, and center items in the subarray. This is called median-of-three partitioning.

● Median-of-three partitioning effectively eliminates the problem of O(N2) perfor-
mance for already-sorted data.

● In median-of-three partitioning, the left, center, and right items are sorted at the
same time the median is determined.

● Quicksort operates in O(N*log2N) time (except when the simpler version is applied
to already-sorted data).

● Subarrays smaller than a certain size (the cutoff) can be sorted by a function other
than quicksort.

● The insertion sort is commonly used to sort subarrays smaller than the cutoff.

● The insertion sort can also be applied to the entire array, after it has been sorted
down to a cutoff point by quicksort.

Improving Quicksort 293

14

18 72316331 Ch14 10/31/02 7:16 AM Page 293

Q&A
Q If I never try to sort inversely sorted data, isn’t it all right to use the simpler

technique shown in the quickSort1.cpp program in the last hour, instead of
the more complicated programs shown in this hour?

A It’s all right if you’re sure you’ll never be faced with inversely sorted data, but why
take the chance?

Q Is quicksort really the best approach to sorting?

A Generally it is. It’s not the best approach for small amounts of data or almost-
sorted data (the insertion sort is better here), or for data stored in external storage
like a disk file. There might be other specific situations where it’s not optimum, but
usually it’s a good choice.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Is there a particular arrangement of data that the naive version of quickSort (where

the pivot is always on the right) might have trouble sorting?

2. Why is the naive quicksort so slow for inversely sorted data?

3. What is median-of-three partitioning?

4. Name three ways, besides quicksort, to sort small partitions.

5. Which is the best system?

6. If you use median-of-three partitioning, why can’t you use quicksort to sort very
small partitions?

7. What is an easy but tedious way to measure the efficiency of the quicksort algo-
rithm, using the Workshop applet?

Exercise
Recompile the quickSort3.cpp program to sort much larger arrays. Make them large
enough that you can time the sorting process with a stopwatch. Then experiment with
different cutoff points (the subarray size below which the insertion sort is used). Figure
out the cutoff that provides the fastest performance on your particular system.

294 Hour 14

18 72316331 Ch14 10/31/02 7:16 AM Page 294

Hour
15 Binary Trees

16 Traversing Binary Trees

17 Red-Black Trees

18 Red-Black Tree Insertions

19 2-3-4 Trees

20 Implementing 2-3-4 Trees

PART IV
Trees

19 72316331 pt4 10/31/02 6:56 AM Page 295

19 72316331 pt4 10/31/02 6:56 AM Page 296

HOUR 15
Binary Trees

In this hour we switch from algorithms—the focus of the last few hours on
sorting—to data structures. Binary trees are one of the fundamental data
structures used in programming. They provide advantages that the data
structures we’ve seen so far (arrays and lists) cannot. In this hour we’ll learn

● Why you would want to use trees

● Some terminology for describing trees

● What binary trees and binary search trees are

● How to go about creating trees

● How to find and insert data in a tree

We’ll also present C++ code fragments for these activities. In the next hour
we’ll find how to visit all the nodes in a tree, and examine a complete C++
program that incorporates the various tree operations.

Why Use Binary Trees?
Why might you want to use a tree? Usually because it combines the advan-
tages of two other structures: an ordered array and a linked list. You can

20 72316331 Ch15 10/31/02 7:16 AM Page 297

search a tree quickly, as you can an ordered array, and you can also insert and delete
items quickly, as you can with a linked list. Let’s explore these topics a bit before delv-
ing into the details of trees.

Slow Insertion in an Ordered Array
Imagine an array in which all the elements are arranged in order; that is, an ordered
array, such as we saw in Hour 3, “Ordered Arrays.” As we learned, it’s quick to search
such an array for a particular value, using a binary search. You check in the center of the
array. If the object you’re looking for is greater than what you find there, you narrow
your search to the top half of the array; if it’s less, you narrow your search to the bottom
half. Applying this process repeatedly finds the object in O(log N) time. It’s also quick to
iterate through an ordered array, visiting each object in sorted order.

On the other hand, if you want to insert a new object into an ordered array, you first must
find where the object will go, and then move all the objects with greater keys up one
space in the array to make room for it. These multiple moves are time-consuming
because they require, on average, moving half the items (N/2 moves). Deletion involves
the same multimove operation, and is thus equally slow.

If you’re going to be doing a lot of insertions and deletions, an ordered array is a bad
choice.

Slow Searching in a Linked List
On the other hand, as we saw in Hour 8, “Linked Lists,” insertions and deletions are
quick to perform on a linked list. They are accomplished simply by changing a few
pointers. These operations require O(1) time (the fastest Big O time).

Unfortunately, however, finding a specified element in a linked list is not so easy. You
must start at the beginning of the list and visit each element until you find the one you’re
looking for. Thus you will need to visit an average of N/2 objects, comparing each one’s
key with the desired value. This is slow, requiring O(N) time. (Notice that times consid-
ered fast for a sort are slow for data structure operations.)

You might think you could speed things up by using an ordered linked list, in which the
elements were arranged in order, but this doesn’t help. You still must start at the begin-
ning and visit the elements in order because there’s no way to access a given element
without following the chain of pointers to it. (Of course, in an ordered list it’s much
quicker to visit the nodes in order than it is in a non-ordered list, but that doesn’t help to
find an arbitrary object.)

298 Hour 15

20 72316331 Ch15 10/31/02 7:16 AM Page 298

Trees to the Rescue
It would be nice if there were a data structure with the quick insertion and deletion of a
linked list, and also the quick searching of an ordered array. Trees provide both these
characteristics, and are also one of the most interesting data structures.

What Is a Tree?
We’ll be mostly interested in a particular kind of tree called a binary tree, but let’s start
by discussing trees in general before moving on to the specifics of binary trees.

A tree consists of nodes connected by edges. Figure 15.1 shows a tree. In such a picture
of a tree (or in our Workshop applet) the nodes are represented as circles, and the edges
as lines connecting the circles.

Binary Trees 299

15

FIGURE 15.1
A tree.

Edges

Nodes

Trees have been studied extensively as abstract mathematical entities, so there’s a large
amount of theoretical knowledge about them.

A tree is actually an instance of a more general category called a graph.

In computer programs, nodes often represent data items such as people, car parts,
airline reservations, and so on; in other words, the typical items we store in any

NEW TERM

20 72316331 Ch15 10/31/02 7:16 AM Page 299

kind of data structure. In an OOP language like C++ these real-world entities are repre-
sented by objects. We’ve seen such data items stored in arrays and lists; now we’ll see
them stored in the nodes of trees.

The lines (edges) between the nodes represent the way the nodes are related.
Roughly speaking, the lines represent convenience: It’s easy (and fast) for a pro-

gram to get from one node to another if there is a line connecting them. In fact, the only
way to get from node to node is to follow a path along the lines. Often you are restricted
to going in one direction along edges: from the root downward. Edges are likely to be
represented in a program by pointers, if the program is written in C++.

Typically there is one node in the top row of a tree, with lines connecting to more nodes
on the second row, even more on the third, and so on. Thus trees are small on the top and
large on the bottom. This might seem upside-down compared with real trees, but gener-
ally a program starts an operation at the small end of the tree, and it’s (arguably) more
natural to think about going from top to bottom, as in reading text.

There are different kinds of trees. The tree shown in Figure 15.1 has more than
two children per node. (We’ll see what children means in a moment.) However,

in this hour we’ll be discussing a specialized form of tree called a binary tree. Each node
in a binary tree has a maximum of two children. More general trees, in which nodes can
have more than two children, are called multiway trees. We’ll see an example in Hour 19,
where we discuss 2-3-4 trees.

We’ve mentioned some aspects of trees in general; now let’s look at terms for various
parts of trees.

Tree Terminology
Many terms are used to describe particular aspects of trees. You need to know a few of
them so our discussion will be comprehensible. Fortunately, most of these terms are
related to real-world trees or to family relationships (as in parents and children), so
they’re not hard to remember. Figure 15.2 shows many of these terms applied to a binary
tree.

Path
Think of someone walking from node to node along the edges that connect them.
The resulting sequence of nodes is called a path.

Root
The node at the top of the tree is called the root. There is only one root in a tree.
For a collection of nodes and edges to be defined as a tree, there must be one

300 Hour 15

NEW TERM

NEW TERM

NEW TERM

NEW TERM

20 72316331 Ch15 10/31/02 7:16 AM Page 300

(and only one!) path from the root to any other node. Figure 15.3 shows a non-tree. You
can see that it violates this rule.

Binary Trees 301

15
FIGURE 15.2
Tree terms.

Root

B is the
parent of D

and E

E is the
right child

of B

A subtree
with F as
its root

H, E, I, J, and G are leaf nodes

D is the
left child

of B

The dashed
line is a path

Level 0

Level 1

Level 2

Level 3

B

D E

H I

G

A

F

C

J

Parent
Any node (except the root) has exactly one edge running upward to another
node. The node above it is called the parent of the node.

FIGURE 15.3
A non-tree.

NEW TERM

20 72316331 Ch15 10/31/02 7:16 AM Page 301

Child
Any node can have one or more lines running downward to other nodes. These
nodes below a given node are called its children.

Leaf
A node that has no children is called a leaf node or simply a leaf. There can be
only one root in a tree, but there can be many leaves.

Subtree
Any node can be considered to be the root of a subtree, which consists of its
children, and its children’s children, and so on. If you think in terms of families,

a node’s subtree contains all its descendants.

Visiting
A node is visited when program control arrives at the node, usually for the pur-
pose of carrying out some operation on the node, such as checking the value of

one of its data members, or displaying it. Merely passing over a node on the path from
one node to another is not considered to be visiting the node.

Traversing
To traverse a tree means to visit all the nodes in some specified order. For exam-
ple, you might visit all the nodes in order of ascending key value. There are other

ways to traverse a tree, as we’ll see in the next hour.

Levels
The level of a particular node refers to how many generations the node is from
the root. If we assume the root is Level 0, its children will be Level 1, its grand-

children will be Level 2, and so on.

Keys
We’ve seen that one data item in an object is usually designated a key value. This
value is used to search for the item or perform other operations on it. In tree dia-

grams, when a circle represents a node holding a data item, the key value of the item is
typically shown in the circle. (We’ll see many figures later on that show how this looks.)

Binary Trees
If every node in a tree can have at most two children, the tree is called a binary
tree. In this hour we’ll focus on binary trees because they are the simplest, the

most common, and in many situations the most frequently used.

302 Hour 15

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

20 72316331 Ch15 10/31/02 7:16 AM Page 302

The two children of each node in a binary tree are called the left child and the
right child, corresponding to their positions when you draw a picture of a tree, as

shown in Figure 15.2. A node in a binary tree doesn’t necessarily have the maximum of
two children; it might have only a left child, or only a right child, or it can have no chil-
dren at all (which means it’s a leaf).

The kind of binary tree we’ll be dealing with in this discussion is technically
called a binary search tree. The defining characteristic of a binary search tree is

this: A node’s left child must have a key less than its parent, and a node’s right child
must have a key greater than or equal to its parent. Figure 15.4 shows a binary search tree.

Binary Trees 303

15
NEW TERM

NEW TERM

FIGURE 15.4
A binary search tree.

30

14

9

53

23 34 47

39 8461

72

79

Now that we’ve learned how to describe the parts of a tree, let’s look at a tree structure
that you’re probably already familiar with.

A Tree Analogy in Your Computer
One commonly encountered tree is the hierarchical file structure in a computer system.
The root directory of a given device (designated with the backslash, as in C:\, on many
systems) is the tree’s root. The directories one level below the root directory are its chil-
dren. There may be many levels of subdirectories. Files are leaves; they have no children
of their own.

Clearly a hierarchical file structure is not a binary tree because a directory can have
many children. A complete pathname, such as C:\SALES\EAST\NOVEMBER\SMITH.DAT,
corresponds to the path from the root to the SMITH.DAT leaf node. Terms used for file
structures, such as root and path, were borrowed from tree theory.

20 72316331 Ch15 10/31/02 7:16 AM Page 303

A hierarchical file structure differs in a significant way from the trees we’ll be discussing
here. In the file structure, subdirectories contain no data; they contain only references to
other subdirectories or to files. Only files contain data. In a tree, every node contains data
(a personnel record, car part specifications, or whatever). In addition to the data, all
nodes (except leaves) contain pointers to other nodes.

Basic Binary Tree Operations
Let’s see how to carry out the common binary-tree operations of finding a node with a
given key and inserting a new node. For these operations we’ll first show how to use the
Tree Workshop applet to carry it out; then we’ll look at the corresponding C++ code.

The Tree Workshop Applet
Start up the Binary TreeWorkshop applet. You’ll see a screen something like that shown
in Figure 15.5. However, because the tree in the Workshop applet is randomly generated,
it won’t look exactly the same as the tree in the figure.

304 Hour 15

FIGURE 15.5
The Binary Tree
Workshop applet.

Using the Binary Tree Workshop Applet
The key values shown in the nodes range from 0 to 99. Of course, in a real tree, there
would probably be a larger range of key values. For example, if employees’ Social
Security numbers were used for key values, they would range up to 999,999,999.

Another difference between the Workshop applet and a real tree is that the Workshop
applet is limited to a depth of 5; that is, there can be no more than 5 levels from the root

20 72316331 Ch15 10/31/02 7:16 AM Page 304

to the bottom row. This restriction ensures that all the nodes in the tree will be visible on
the screen. In a real tree the number of levels is theoretically unlimited.

Using the Workshop applet, you can create a new tree whenever you want.

To Do: Create a Tree with the Workshop Applet
1. Click the Fill button.

2. A prompt will ask you to enter the number of nodes in the tree. This can vary from
1 to 31, but 15 will give you a representative tree.

3. After typing in the number, click Fill twice more to generate the new tree. You can
experiment by creating trees with different numbers of nodes.

Unbalanced Trees
Notice that some of thetrees you generate are unbalanced, that is, they have most
of their nodes on one side of the root or the other, as shown in Figure 15.6.

Individual subtrees may also be unbalanced.

Binary Trees 305

15

NEW TERM

FIGURE 15.6
An unbalanced tree
(with an unbalanced
subtree).

Unbalanced
subtree

42

23

90

95

31

18

75

78 87

10 83

7

,
TO

D
O

,

20 72316331 Ch15 10/31/02 7:16 AM Page 305

Trees become unbalanced because of the order in which the data items are inserted. If
these key values are inserted randomly, the tree will be more or less balanced. However,
if an ascending sequence (like 11, 18, 33, 42, 65, and so on) or a descending sequence is
generated, all the values will be right children (if ascending) or left children (if descend-
ing) and the tree will be unbalanced. The key values in the Workshop applet are gener-
ated randomly, but of course some short ascending or descending sequences will be
created anyway, which will lead to local imbalances. When you learn how to insert items
into the tree in the Workshop applet, you can try building up a tree by inserting such an
ordered sequence of items and see what happens.

If you ask for a large number of nodes when you use Fill to create a tree, you might not
get as many nodes as you requested. Depending on how unbalanced the tree becomes,
some branches might not be able to hold a full number of nodes. This is because the
depth of the applet’s tree is limited to five; the problem would not arise in a real tree.

If a tree is created by data items whose key values arrive in random order, the problem of
unbalanced trees might not be too much of a problem for larger trees because the
chances of a long run of numbers in sequence is small. But key values can arrive in strict
sequence; for example, when a data-entry person arranges a stack of personnel files into
order of ascending employee number before entering the data. When this happens, tree
efficiency can be seriously degraded. We’ll discuss unbalanced trees and what to do
about them in Hour 17, “Red-Black Trees.”

Representing the Tree in C++ Code
Let’s see how we might implement a binary tree in C++. As with other data structures,
there are several approaches to representing a tree in the computer’s memory. The most
common is to store the nodes at unrelated locations in memory, and connect them using
pointers in each node that point to its children. (It’s also possible to represent a tree in
memory as an array, but we’ll ignore that possibility here.)

As we discuss individual operations we’ll show code fragments pertaining to that opera-
tion. The complete program from which these fragments are extracted can be seen in
Listing 16.1 in the next hour.

The Node Class
First, we need a class of node objects. These objects contain the data representing the
objects being stored (employees in an employee database, for example) and also pointers
to each of the node’s two children. Here’s how that looks.

class Node
{
public:

int iData; //data item (key)

306 Hour 15

20 72316331 Ch15 10/31/02 7:16 AM Page 306

double dData; //data item
Node* pLeftChild; //this node’s left child
Node* pRightChild; //this node’s right child

//---
//constructor

Node() : iData(0), dData(0.0), pLeftChild(NULL),
pRightChild(NULL)

{ }
//---
void displayNode() //display ourself: {75, 7.5}

{
cout << ‘{‘ << iData << “, “ << dData << “} “;
}

}; //end class Node

Some programmers also include a pointer to the node’s parent. This simplifies some
operations but complicates others, so we don’t include it. We do include a member func-
tion called displayNode() to display the node’s data, but its code isn’t relevant here.

There are other approaches to designing class Node. Instead of placing the data items
directly into the node, you could use a pointer to an object representing the data item:

class Node
{
Person* p1; //pointer to Person object
Node* pLeftChild; //pointer to left child
Node* pRightChild; //pointer to right child
};

This makes it conceptually clearer that the node and the data item it holds aren’t the
same thing, but it results in somewhat more complicated code, so we’ll stick to the first
approach.

The Tree Class
We’ll also need a class from which to create the tree itself; the object that holds all the
nodes. We’ll call this class Tree. It has only one data member: a Node* variable that
holds a pointer to the root. It doesn’t need data members for the other nodes because
they are all accessed from the root.

The Tree class has a number of member functions: for finding and inserting, several for
different kinds of traverses, and one to display the tree. Here’s a skeleton version:

class Tree
{
private:

Node* pRoot; //first node of tree

public:
//---

Binary Trees 307

15

20 72316331 Ch15 10/31/02 7:16 AM Page 307

Tree() : pRoot(NULL) //constructor
{ }

//---
Node* find(int key) //find node with given key

{ /*body not shown*/ }
//---

void insert(int id, double dd) //insert new node
{ /*body not shown*/ }

//---
void traverse(int traverseType)

{ /*body not shown*/ }
//---

void displayTree()
{ /*body not shown*/ }

//---
}; //end class Tree

The main() Function
Finally, we need a way to perform operations on the tree. Here’s how you might write a
main() routine to create a tree, insert three nodes into it, and then search for one of
them:

int main()
{
Tree theTree; //make a tree

theTree.insert(50, 1.5); //insert 3 nodes
theTree.insert(25, 1.7);
theTree.insert(75, 1.9);

Node* found = theTree.find(25); //find node with key 25
if(found != NULL)

cout << “Found the node with key 25” << endl;
else

cout << “Could not find node with key 25” << endl;
return 0;
} // end main()

In Listing 16.1 in the next hour the main() routine provides a primitive user interface so
you can use the keyboard to insert, find, or perform other operations.

Next we’ll look at individual tree operations: finding a node and inserting a node. We’ll
also briefly mention the problem of deleting a node.

Finding a Node
Finding a node with a specific key is the simplest of the major tree operations.
Remember that the nodes in a binary search tree correspond to objects containing

308 Hour 15

20 72316331 Ch15 10/31/02 7:16 AM Page 308

information. They could be objects representing people, with an employee number as the
key and also perhaps name, address, telephone number, salary, and other data members.
Or they could represent car parts, with a part number as the key value and data members
for quantity on hand, price, and so on. However, the only characteristics of each node
that we can see in the Workshop applet are a number and a color. A node is created with
these two characteristics, and keeps them throughout its life.

Using the Workshop Applet to Find a Node
Look at the Workshop applet, and pick a node, preferably one near the bottom of the tree
(as far from the root as possible). The number shown in this node is its key value. We’re
going to demonstrate how the Workshop applet finds the node, given the key value.

For purposes of this discussion we’ll assume you’ve decided to find the node represent-
ing the item with key value 57, as shown in Figure 15.7. Of course, when you run the
Workshop applet you’ll get a different tree and will need to pick a different key value.

Binary Trees 309

15

FIGURE 15.7
Finding node 57.

57 < 63

57 > 27

57 > 51

57 < 58

57 == 57

27

13

63

26

60

33 58 82

57

51 70 92

80

20 72316331 Ch15 10/31/02 7:16 AM Page 309

To Do: Find a Node
1. Click the Find button. The prompt will ask for the value of the node to find.

2. Enter 57 (or whatever the number is on the node you chose). Click Find twice
more.

3. Continue to press the Find button. As the Workshop applet looks for the specified
node, the prompt will display either Going to left child or Going to right
child, and the red arrow will move down one level to the right or left.

In Figure 15.7 the arrow starts at the root. The program compares the key value 57 with
the value at the root, which is 63. The key is less, so the program knows the desired node
must be on the left side of the tree; either the root’s left child or one of this child’s
descendants. The left child of the root has the value 27, so the comparison of 57 and 27
will show that the desired node is in the right subtree of 27. The arrow will go to 51, the
root of this subtree. Here, 57 is again greater than the 51 node, so we go to the right, to
58, and then to the left, to 57. This time the comparison shows 57 equals the node’s key
value, so we’ve found the node we want.

The Workshop applet doesn’t do anything with the node after it is found, except to dis-
play a message saying it has been found. A serious program would perform some opera-
tion on the found node, such as displaying its contents or changing one of its data
members.

C++ Code for Finding a Node
Here’s the code for the find() routine, which is a member function of the Tree class.

Node* find(int key) //find node with given key
{ //(assumes non-empty tree)
Node* pCurrent = pRoot; //start at root
while(pCurrent->iData != key) //while no match,

{
if(key < pCurrent->iData) //go left?

pCurrent = pCurrent->pLeftChild;
else //or go right?

pCurrent = pCurrent->pRightChild;
if(pCurrent == NULL) //if no child,

return NULL; //didn’t find it
}

return pCurrent; //found it
} //end find()

This routine uses the variable pCurrent to hold a pointer to the node it is currently exam-
ining. The argument key is the value to be found. The routine starts at the root. (It has to;
this is the only node it can access directly.) That is, it sets pCurrent to the root.

310 Hour 15

,
TO

D
O

,

20 72316331 Ch15 10/31/02 7:16 AM Page 310

Then, in the while loop, it compares the value to be found, key, with the value of the
iData member (the key) in the current node. If key is less than this data member,
pCurrent is set to the node’s left child. If key is greater than (or equal) to the node’s
iData data member, then pCurrent is set to the node’s right child.

Can’t Find the Node
If pCurrent becomes equal to NULL, we couldn’t find the next child node in the
sequence; we’ve reached the end of the line without finding the node we were looking
for, so it can’t exist. We return NULL to indicate this fact.

Found the Node
If the condition of the while loop is not satisfied, so that we exit from the bottom of the
loop, the iData data member of pCurrent is equal to key; that is, we’ve found the node
we want. We return the node, so that the routine that called find() can access any of the
node’s data.

Efficiency of the Find Operation
As you can see, how long it takes to find a node depends on how many levels down it is
situated. In the Workshop applet there can be up to 31 nodes, but no more than 5 levels.
Thus you can find any node using a maximum of only 5 comparisons. This is O(log N)
time, or more specifically O(log2 N) time; the logarithm to the base 2. We’ll discuss this
further toward the end of the next hour.

Inserting a Node
To insert a node we must first find the place to insert it. This is much the same process as
trying to find a node which turns out not to exist, as described in the section on find. We
follow the path from the root to the appropriate node, which will be the parent of the new
node. After this parent is found, the new node is connected as its left or right child,
depending on whether the new node’s key is less or greater than that of the parent.

Using the Workshop Applet to Insert a Node
Inserting a new node with the Workshop applet is similar to finding an existing node.

To Do: Insert a Node
1. Click the Ins button.

2. You’ll be asked to type the key value of the node to be inserted. Let’s assume we’re
going to insert a new node with the value 45. Type this into the text field.

Binary Trees 311

15

,
TO

D
O

20 72316331 Ch15 10/31/02 7:16 AM Page 311

3. Continue to press the Ins button. The red arrow will move down to the insertion
point and attach the new node.

The first step for the program in inserting a node is to find where it should be inserted.
Figure 15.8a shows how this looks.

312 Hour 15

,

,

FIGURE 15.8
Inserting a node.

null

a) Before insertion b) After insertion

40

30

60 60

45

50 30 50

40

The value 45 is less than 60 but greater than 40, so we arrive at node 50. Now we want
to go left because 45 is less than 50, but 50 has no left child; its pLeftChild data mem-
ber is NULL. When it sees this NULL, the insertion routine has found the place to attach the
new node. The Workshop applet does this by creating a new node with the value 45 (and
a randomly generated color) and connecting it as the left child of 50, as shown in Figure
15.8b.

C++ Code for Inserting a Node
The insert() function starts by creating the new node, using its arguments to supply the
data.

Next, insert() must determine where to insert the new node. This is done using roughly
the same code as finding a node, described in the section on find(). The difference is
that when you’re simply trying to find a node and you encounter a NULL (non-existent)

20 72316331 Ch15 10/31/02 7:16 AM Page 312

node, you know the node you’re looking for doesn’t exist, so you return immediately.
When you’re trying to insert a node you insert it (creating it first, if necessary) before
returning.

The value to be searched for is the data item passed in the argument id. The while loop
uses true as its condition because it doesn’t care if it encounters a node with the same
value as id; it treats another node with the same key value as if it were simply greater
than the key value. (We’ll return to the subject of duplicate nodes in the next hour.)

In a real tree (as opposed to the Workshop applet) a place to insert a new node will
always be found (unless you run out of memory); when it is, and the new node is
attached, the while loop exits with a return statement.

Here’s the code for the insert() function:

void insert(int id, double dd) //insert new node
{
Node* pNewNode = new Node; //make new node
pNewNode->iData = id; //insert data
pNewNode->dData = dd;
if(pRoot==NULL) //no node in root

pRoot = pNewNode;
else //root occupied

{
Node* pCurrent = pRoot; //start at root
Node* pParent;
while(true) //(exits internally)

{
pParent = pCurrent;
if(id < pCurrent->iData) //go left?

{
pCurrent = pCurrent->pLeftChild;
if(pCurrent == NULL) //if end of the line,

{ //insert on left
pParent->pLeftChild = pNewNode;
return;
}

} //end if go left
else //or go right?

{
pCurrent = pCurrent->pRightChild;
if(pCurrent == NULL) //if end of the line

{ //insert on right
pParent->pRightChild = pNewNode;
return;
}

} //end else go right
} //end while

} //end else not root
} //end insert()

Binary Trees 313

15

20 72316331 Ch15 10/31/02 7:16 AM Page 313

We use a new variable, pParent (a pointer to the parent of pCurrent), to remember the
last non-NULL node we encountered (50 in the figure). This is necessary because
pCurrent is set to NULL in the process of discovering that its previous value did not have
an appropriate child. If we didn’t save pParent, we would lose track of where we were.

To insert the new node, change the appropriate child pointer in pParent (the last non-
NULL node you encountered) to point to the new node. If you were looking unsuccess-
fully for pParent’s left child, you attach the new node as pParent’s left child; if you
were looking for its right child, you attach the new node as its right child. In Figure 15.8,
45 is attached as the left child of 50.

Deleting a Node
How do you delete a node? Unfortunately, the deletion process is complex and lengthy,
and therefore beyond the scope of this book. There is a Del button in the Tree Workshop
applet. You can experiment with this to see how different nodes are deleted in different
ways. It’s easy to delete a node with no children: just remove it. If a node has one child,
it’s deleted by attaching its child to its parent. However, if a node has two children, delet-
ing it is quite complicated.

Some programs avoid the complexity of deletion by simply marking a node as “deleted.”
It’s not really deleted, but algorithms can ignore it (except for its connections to other
nodes). Consult the books in Appendix C, “Further Reading,” for more on deletion.

In the next hour we’ll find out how to examine all the nodes in a tree, and present the
complete code for tree.cpp.

Summary
In this hour, you’ve learned the following:

● Trees consist of nodes (circles) connected by edges (lines).

● The root is the topmost node in a tree; it has no parent.

● In a binary tree, a node has at most two children.

● In a binary search tree, all the nodes that are left descendants of node A have key
values less than A; all the nodes that are A’s right descendants have key values
greater than (or equal to) A.

● Trees perform searches, insertions, and deletions in O(log N) time.

● Nodes represent the data-objects being stored in the tree.

314 Hour 15

20 72316331 Ch15 10/31/02 7:16 AM Page 314

● Edges are most commonly represented in a program by pointers to a node’s chil-
dren (and sometimes to its parent).

● An unbalanced tree is one whose root has many more left descendents than right
descendants, or vice versa.

● Searching for a node involves comparing the value to be found with the key value
of a node, and going to that node’s left child if the key search value is less, or to
the node’s right child if the search value is greater.

● Insertion involves finding the place to insert the new node, and then changing a
child data member in its new parent to refer to it.

Q&A
Q Trees seems much more complicated than arrays or linked lists. Are they

really useful?

A Trees are probably the single most useful data structure. They have comparatively
fast searching, insertion, and deletion, which is not the case with simpler struc-
tures. For storing large amounts of data, a tree is usually the first thing you should
consider.

Q Don’t you sometimes need to rearrange the nodes in a tree when you insert a
new node?

A Never. The new node is always attached to a leaf node, or as the missing child of a
node with one child. However, when deleting a node rearrangement may be neces-
sary.

Q Can we use the tree we’ve seen in this hour as a general-purpose data storage
structure?

A Only in some circumstances. As we’ll discuss in Hour 17, simple trees work poorly
when the order of data insertion creates an unbalanced tree.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. The tree class stores the location of only one node. Which node is it?

2. What is the name for a node with no children?

Binary Trees 315

15

20 72316331 Ch15 10/31/02 7:16 AM Page 315

3. True or false: In a binary tree, each node can have a maximum of two children.

4. What does it mean to traverse a tree?

5. What defines a binary search tree (as opposed to a binary tree)?

6. In a tree with N nodes, how many nodes must be examined to find a given node?

7. What are the advantages of using a binary search tree to store data?

Exercise
Cut a few dozen disks from paper or cardboard. Number the disks with a marker and
shuffle them. Now pick out disks in random order and make a binary tree out of them,
using the insertion procedure discussed in this hour to place each disk in the tree.

316 Hour 15

20 72316331 Ch15 10/31/02 7:16 AM Page 316

HOUR 16
Traversing Binary Trees

In this hour we’ll continue our discussion of binary search trees. You’ll learn

● What it means to traverse a tree

● Three different kinds of traversals

● How to write C++ code to traverse a tree

● About the efficiency of binary trees

We’ll also present the complete C++ listing that ties together the various
binary-tree member functions we’ve seen so far.

Traversing the Tree
Traversing a tree means visiting each node in a specified order. This process
is not as commonly used as finding, inserting, and deleting nodes. One rea-
son for this is that traversal is not particularly fast. But traversing a tree has
some surprisingly useful applications and is theoretically interesting.

There are three simple ways to traverse a tree. They’re called preorder,
inorder, and postorder. The order most commonly used for binary search
trees is inorder, so let’s look at that first, and then return briefly to the
other two.

21 72316331 Ch16 10/31/02 7:16 AM Page 317

Inorder Traversal
An inorder traversal of a binary search tree will cause all the nodes to be visited
in ascending order, based on their key values. If you want to create a sorted list

of the data in a binary tree, this is one way to do it.

The simplest way to carry out a traversal is the use of recursion (discussed in Hour 11,
“Recursion”). Here’s how it works. A recursive function to traverse the tree is called with
a node as an argument. Initially, this node is the root. The function must perform only
three tasks.

1. Call itself to traverse the node’s left subtree.

2. Visit the node.

3. Call itself to traverse the node’s right subtree.

Remember that visiting a node means doing something to it: displaying it, writing it to a
file, or whatever.

Traversals work with any binary tree, not just with binary search trees. The traversal
mechanism doesn’t pay any attention to the key values of the nodes; it only concerns
itself with whether a node has children.

C++ Code for Traversing
The actual code for inorder traversal is so simple we show it before seeing how traversal
looks in the Workshop applet. The routine, inOrder(), performs the three steps already
described. The visit to the node consists of displaying the contents of the node. Like any
recursive function, there must be a base case: the condition that causes the routine to
return immediately, without calling itself. In inOrder() this happens when the node
passed as an argument is NULL. Here’s the code for the inOrder() member function:

void inOrder(Node* pLocalRoot)
{
if(pLocalRoot != NULL)

{
inOrder(pLocalRoot->pLeftChild); //left child
cout << pLocalRoot->iData << “ “; //display node
inOrder(pLocalRoot->pRightChild); //right child
}

}

This member function is initially called with the root as an argument:

inOrder(root);

318 Hour 16

NEW TERM

21 72316331 Ch16 10/31/02 7:16 AM Page 318

After that, the function is on its own, calling itself recursively until there are no more
nodes to visit.

Traversing a 3-Node Tree
Let’s look at a simple example to get an idea of how this recursive traversal routine
works. Imagine traversing a tree with only three nodes: a root (A), with a left child (B),
and a right child (C), as shown in Figure 16.1.

Traversing Binary Trees 319

16
FIGURE 16.1
inOrder() member
function applied to a
3-node tree.

1. Call inOrder (B)
2. Visit A
3. Call inOrder (C)

inOrder (A)

1. Call inOrder (null)
2. Visit B
3. Call inOrder (null)

inOrder (B)

Returns

inOrder (C)

B

A

C

1. Call inOrder (null)
2. Visit C
3. Call inOrder (null)

 inOrder (null)

Returns

 inOrder (null)

Returns

 inOrder (null)

Returns

 inOrder (null)

To Do: Follow the Steps of an InOrder Traversal
1. Start by calling inOrder() with the root A as an argument. This incarnation of

inOrder() we’ll call inOrder(A).

,
TO

D
O

21 72316331 Ch16 10/31/02 7:16 AM Page 319

2. inOrder(A) first calls inOrder() with its left child, B, as an argument. This second
incarnation of inOrder() we’ll call inOrder(B).

3. inOrder(B) now calls itself with its left child as an argument. However, it has no
left child, so this argument is NULL. This creates an invocation of inorder() we
could call inOrder(NULL).

4. There are now three instances of inOrder() in existence: inOrder(A),
inOrder(B), and inOrder(NULL). However, inOrder(NULL) returns immediately
when it finds its argument is NULL. (We all have days like that.)

5. Now inOrder(B) goes on to visit B; we’ll assume this means to display it.

6. Then inOrder(B) calls inOrder() again, with its right child as an argument. Again
this argument is NULL, so the second inorder(NULL) returns immediately.

7. Now inOrder(B) has carried out tasks 1, 2, and 3, so it returns (and thereby ceases
to exist).

8. Now we’re back to inOrder(A), just returning from traversing A’s left child.

9. We visit A, and then call inOrder() again with C as an argument, creating
inOrder(C). Like inOrder(B), inOrder(C) has no children, so task 1 returns with
no action, task 2 visits C, and task 3 returns with no action.

10. inOrder(B) now returns to inOrder(A).

11. However, inOrder(A) is now done, so it returns and the entire traversal is
complete.

The order in which the nodes were visited is A, B, C; they have been visited inorder. In a
binary search tree this would be the order of ascending keys.

More complex trees are handled similarly. The inOrder() function calls itself for each
node, until it has worked its way through the entire tree.

Traversing with the Workshop Applet
To see what a traversal looks like with the Workshop applet, repeatedly press the Trav
button. (There’s no need to type in any numbers.)

Table 16.1 shows what happens when you use the Tree Workshop applet to traverse
inorder the tree shown in Figure 16.2. This is a slightly more complex than the 3-node
tree seen previously. The red arrow starts at the root. Table 16.1 shows the sequence of
node keys and the corresponding messages. The key sequence is displayed at the bottom
of the Workshop applet screen.

320 Hour 16

,

,

21 72316331 Ch16 10/31/02 7:16 AM Page 320

Traversing Binary Trees 321

16

FIGURE 16.2
Traversing a tree
inorder.

4. Visit 20

10. Visit 40

7. Visit 30

13. Visit 50

1

2

6

14

18

9 11

15 17

3 5

8

12
30 60

20

50

40

16. Visit 60

TABLE 16.1 WORKSHOP APPLET TRAVERSAL

Red List of
Step Arrow Nodes
Number on Node Message Visited

1 50 (root) Will check left child

2 30 Will check left child

3 20 Will check left child

4 20 Will visit this node

5 20 Will check right child 20

6 20 Will go to root of previous subtree 20

7 30 Will visit this node 20

8 30 Will check for right child 20 30

9 40 Will check left child 20 30

10 40 Will visit this node 20 30

11 40 Will check right child 20 30 40

12 40 Will go to root of previous subtree 20 30 40

13 50 Will visit this node 20 30 40

continues

21 72316331 Ch16 10/31/02 7:16 AM Page 321

TABLE 16.1 CONTINUED

Red List of
Step Arrow Nodes
Number on Node Message Visited

14 50 Will check right child 20 30 40 50

15 60 Will check left child 20 30 40 50

16 60 Will visit this node 20 30 40 50

17 60 Will check for right child 20 30 40 50 60

18 60 Will go to root of previous subtree 20 30 40 50 60

19 50 Done traversal 20 30 40 50 60

It might not be obvious, but for each node, the routine traverses the node’s left subtree,
visits the node, and traverses the right subtree. For example, for node 30 this happens in
steps 2, 7, and 8.

All this isn’t as complicated as it looks. The best way to get a feel for what’s happening
is to traverse a variety of different trees with the Tree Workshop applet.

Preorder and Postorder Traversals
You can traverse the tree in two ways besides inorder; they’re called preorder
and postorder. It’s fairly clear why you might want to traverse a tree inorder, but

the motivation for preorder and postorder traversals is more obscure. However, these tra-
versals are indeed useful if you’re writing programs that parse or analyze algebraic
expressions. Let’s see why that should be true.

A binary tree (not a binary search tree) can be used to represent an algebraic expression
that involves the binary arithmetic operators +, -, /, and *. The root node holds an opera-
tor, and the other nodes represent either a variable name (like A, B, or C), or another
operator. Each subtree is an algebraic expression.

For example, the binary tree shown in Figure 16.3 represents the algebraic expression

A*(B+C)

This is called infix notation; it’s the notation normally used in algebra. Traversing
the tree inorder will generate the correct inorder sequence A*B+C, but you’ll need

to insert the parentheses yourself.

322 Hour 16

NEW TERM

NEW TERM

21 72316331 Ch16 10/31/02 7:16 AM Page 322

Traversing Binary Trees 323

16

FIGURE 16.3
A tree representing an
algebraic expression.

Infix: A * (B + C)
Prefix: *A + BC
Postfix: ABC + *

A

*

B C

+

What’s all this got to do with preorder and postorder traversals? Let’s see what’s
involved. For these other traversals the same three tasks are used as for inorder, but in a
different sequence. Here’s the sequence for a preorder() member function:

1. Visit the node.

2. Call itself to traverse the node’s left subtree.

3. Call itself to traverse the node’s right subtree.

Traversing the tree shown in Figure 16.3 using preorder would generate the expression

*A+BC

This is called prefix notation. It’s another equally valid way to represent an alge-
braic expression. One of the nice things about it is that parentheses are never

required; the expression is unambiguous without them. Starting on the left, each operator
is applied to the next two things in the expression. For the first operator, *, these two
things are A and +BC. In turn, the expression +BC means “apply + to the next two things in
the expression”—which are B and C—so this last expression is B+C in inorder notation.
Inserting that into the original expression *A+BC (preorder) gives us A*(B+C) in inorder.

NEW TERM

21 72316331 Ch16 10/31/02 7:16 AM Page 323

By simply using different traversals, we’ve transformed one kind of algebraic notation
into another.

The postorder traversal member function contains the three tasks arranged in yet
another way:

1. Call itself to traverse the node’s left subtree.

2. Call itself to traverse the node’s right subtree.

3. Visit the node.

For the tree in Figure 16.3, visiting the nodes with a postorder traversal would generate
the expression

ABC+*

This is called postfix notation. Starting on the right, each operator is applied to
the two things on its left. First we apply the * to A and BC+.

Following the rule again for BC+, we apply the + to B and C. This gives us (B+C) in infix.
Inserting this in the original expression ABC+* (postfix) gives us A*(B+C) infix.

Besides writing different kinds of algebraic expressions, you might find other clever uses
for the different kinds of traversals. As we’ll see at the end of this hour, we use postorder
traversal to delete all the nodes when the tree is destroyed.

The code in Listing 16.1 later in this hour contains member functions for preorder and
postorder traversals, as well as for inorder.

Now let’s move on from traversals and briefly examine another aspect of binary search
trees.

Finding Maximum and Minimum Values
I should note how easy it is to find the maximum and minimum values in a binary search
tree. In fact, it’s so easy we don’t include it as an option in the Workshop applet, nor
show code for it in Listing 16.1. Still, it’s important to understand how it works.

For the minimum value, go to the left child of the root; then go to the left child of that
child, and so on, until you come to a node that has no left child. This node is the mini-
mum, as shown in Figure 16.4.

324 Hour 16

NEW TERM

21 72316331 Ch16 10/31/02 7:16 AM Page 324

Here’s some code that returns the node with the minimum key value:

Node* minimum() // returns node with minimum key value
{
Node* pCurrent, pLast;
pCurrent = pRoot; //start at root
while(pCurrent != NULL) //until the bottom,

{
pLast = pCurrent; //remember node
pCurrent = pCurrent->pLeftChild; //go to left child
}

return pLast;
}

For the maximum value in the tree, follow the same procedure but go from right child to
right child until you find a node with no right child. This node is the maximum. The
code is the same except that the last statement in the loop is

pCurrent = pCurrent->pRightChild; // go to right child

Traversing Binary Trees 325

16

FIGURE 16.4
The minimum value of
a tree.

Minimum

47

22 67

63

71

33

17

11 60

51

50

49

53

21 72316331 Ch16 10/31/02 7:16 AM Page 325

The Efficiency of Binary Trees
As you’ve seen, most operations with trees involve descending the tree from level to
level to find a particular node. How long does it take to do this? In a full tree, about half
the nodes are on the bottom level. (Actually there’s one more node on the bottom row
than in the rest of the tree.) Thus about half of all searches or insertions or deletions
require finding a node on the lowest level. (An additional quarter of these operations
require finding the node on the next-to-lowest level, and so on.)

During a search we need to visit one node on each level. So we can get a good idea how
long it takes to carry out these operations by knowing how many levels there are.
Assuming a full tree, Table 16.2 shows how many levels are necessary to hold a given
number of nodes.

TABLE 16.2 NUMBER OF LEVELS FOR SPECIFIED NUMBER OF NODES

Number of Nodes Number of Levels

1 1

3 2

7 3

15 4

31 5

... ...

1,023 10

... ...

32,767 15

... ...

1,048,575 20

... ...

33,554,432 25

... ...

1,073,741,824 30

This situation is very much like the ordered array discussed in Hour 3, “Ordered Arrays.”
In that case, the number of comparisons for a binary search was approximately equal to
the base-2 logarithm of the number of cells in the array. Here, if we call the number of
nodes in the first column N, and the number of levels in the second column L, we can
say that N is 1 less than 2 raised to the power L, or

326 Hour 16

21 72316331 Ch16 10/31/02 7:16 AM Page 326

N = 2L - 1

Adding 1 to both sides of the equation, we have

N+1 = 2L

This is equivalent to

L = log2(N+1)

Thus the time needed to carry out the common tree operations is proportional to the
base-2 log of N. In Big O notation we say such operations take O(log N) time.

If the tree isn’t full, analysis is difficult. We can say that for a tree with a given number
of levels, average search times will be shorter for the non-full tree than the full tree
because fewer searches will proceed to lower levels.

Compare the tree to the other data-storage structures we’ve discussed so far. In an
unordered array or a linked list containing 1,000,000 items, it would take you on the
average 500,000 comparisons to find the one you wanted. But in a tree of 1,000,000
items, it takes 20 (or fewer) comparisons.

In an ordered array you can find an item equally quickly, but inserting an item requires,
on the average, moving 500,000 items. Inserting an item in a tree with 1,000,000 items
requires 20 or fewer comparisons, plus a small amount of time to connect the item.

Similarly, deleting an item from a 1,000,000-item array requires moving an average of
500,000 items. We haven’t investigated deletion, but it can be shown that deletion time is
also proportional to the log of the number of nodes. Thus a tree provides high efficiency
for all the common data-storage operations.

Traversing is not as fast as the other operations. However, traversals are probably not
very commonly carried out in a typical large database. They’re more appropriate when a
tree is used as an aid to parsing algebraic or similar expressions, which are probably not
too long anyway.

Now we’ll look at another issue that we’ve examined earlier in relation to other data
structures: duplicate keys.

Duplicate Keys
In the code shown for insert(), and in the Workshop applet, a node with a duplicate key
will be inserted as the right child of its twin.

Traversing Binary Trees 327

16

21 72316331 Ch16 10/31/02 7:16 AM Page 327

The problem is that the find() routine will find only the first of two (or more) duplicate
nodes. The find() routine could be modified to check an additional data item, to distin-
guish data items even when the keys were the same, but this would be (at least some-
what) time-consuming.

One option is to simply forbid duplicate keys. When duplicate keys are excluded by the
nature of the data (employee ID numbers, for example) there’s no problem. Otherwise,
you need to modify the insert() routine to check for equality during the insertion
process, and abort the insertion if a duplicate is found.

The Fill routine in the Workshop applet excludes duplicates when generating the ran-
dom keys.

In the next section we’ll show the complete program that includes all the member func-
tions and code fragments we’ve looked at so far in Hour 15, “Binary Trees,” and in this
hour.

Implementing a Binary Search Tree in C++
Besides implementing a binary search tree, the tree.cpp program also features a primi-
tive user interface. This allows the user to chose an operation (finding, inserting, travers-
ing and displaying the tree) by entering characters. The display routine uses character
output to generate a picture of the tree. Figure 16.5 shows how this looks.

328 Hour 16

FIGURE 16.5
Output of the tree.cpp
program.

In the figure, the user has typed s to display the tree, typed i and 48 to insert a node with
that value, and then s again to display the tree with the additional node. The 48 appears
in the lower display.

21 72316331 Ch16 10/31/02 7:16 AM Page 328

The available commands are the characters s, i, f, t, and q, for show, insert, find, tra-
verse, and quit. The i and f options ask for the key value of the node to be operated on.
The t option gives you a choice of traversals: 1 for preorder, 2 for inorder, and 3 for pos-
torder. The key values are then displayed in that order.

The display created by the program shows the nodes as key values arranged in something
of a tree shape; however, you’ll need to imagine the edges connecting the nodes. Two
dashes (--) represent a node that doesn’t exist at a particular position in the tree. The pro-
gram initially creates some nodes so the user will have something to see before any
insertions are made. You can modify this initialization code to start with any nodes you
want, or with no nodes (which is good nodes).

You can experiment with this program as you can with the Workshop applet, but unlike
the Workshop applet, it doesn’t show you the steps involved in carrying out an operation;
it does everything at once. Listing 16.1 shows the complete tree.cpp program.

LISTING 16.1 THE tree.cpp PROGRAM

//tree.cpp
//demonstrates binary tree
#include <iostream>
#include <stack>
using namespace std;
//
class Node

{
public:

int iData; //data item (key)
double dData; //data item
Node* pLeftChild; //this node’s left child
Node* pRightChild; //this node’s right child

//---
//constructor

Node() : iData(0), dData(0.0), pLeftChild(NULL),
pRightChild(NULL)

{ }
//---

~Node() //destructor
{ cout << “X-” << iData << “ “; }

//---
void displayNode() //display ourself: {75, 7.5}

{
cout << ‘{‘ << iData << “, “ << dData << “} “;
}

}; //end class Node
//

Traversing Binary Trees 329

16

INPUT

continues

21 72316331 Ch16 10/31/02 7:16 AM Page 329

LISTING 16.1 CONTINUED

class Tree
{
private:

Node* pRoot; //first node of tree

public:
//---

Tree() : pRoot(NULL) //constructor
{ }

//---
Node* find(int key) //find node with given key

{ //(assumes non-empty tree)
Node* pCurrent = pRoot; //start at root
while(pCurrent->iData != key) //while no match,

{
if(key < pCurrent->iData) //go left?

pCurrent = pCurrent->pLeftChild;
else //or go right?

pCurrent = pCurrent->pRightChild;
if(pCurrent == NULL) //if no child,

return NULL; //didn’t find it
}

return pCurrent; //found it
} //end find()

//---
void insert(int id, double dd) //insert new node

{
Node* pNewNode = new Node; //make new node
pNewNode->iData = id; //insert data
pNewNode->dData = dd;
if(pRoot==NULL) //no node in root

pRoot = pNewNode;
else //root occupied

{
Node* pCurrent = pRoot; //start at root
Node* pParent;
while(true) //(exits internally)

{
pParent = pCurrent;
if(id < pCurrent->iData) //go left?

{
pCurrent = pCurrent->pLeftChild;
if(pCurrent == NULL) //if end of the line,

{ //insert on left
pParent->pLeftChild = pNewNode;
return;
}

} //end if go left

330 Hour 16

21 72316331 Ch16 10/31/02 7:16 AM Page 330

else //or go right?
{
pCurrent = pCurrent->pRightChild;
if(pCurrent == NULL) //if end of the line

{ //insert on right
pParent->pRightChild = pNewNode;
return;
}

} //end else go right
} //end while

} //end else not root
} //end insert()

//---
void traverse(int traverseType)

{
switch(traverseType)

{
case 1: cout << “\nPreorder traversal: “;

preOrder(pRoot);
break;

case 2: cout << “\nInorder traversal: “;
inOrder(pRoot);
break;

case 3: cout << “\nPostorder traversal: “;
postOrder(pRoot);
break;

}
cout << endl;
}

//---
void preOrder(Node* pLocalRoot)

{
if(pLocalRoot != NULL)

{
cout << pLocalRoot->iData << “ “; //display node
preOrder(pLocalRoot->pLeftChild); //left child
preOrder(pLocalRoot->pRightChild); //right child
}

}
//---

void inOrder(Node* pLocalRoot)
{
if(pLocalRoot != NULL)

{
inOrder(pLocalRoot->pLeftChild); //left child
cout << pLocalRoot->iData << “ “; //display node
inOrder(pLocalRoot->pRightChild); //right child
}

}

Traversing Binary Trees 331

16

continues

21 72316331 Ch16 10/31/02 7:16 AM Page 331

LISTING 16.1 CONTINUED

//---
void postOrder(Node* pLocalRoot)

{
if(pLocalRoot != NULL)

{
postOrder(pLocalRoot->pLeftChild); //left child
postOrder(pLocalRoot->pRightChild); //right child
cout << pLocalRoot->iData << “ “; //display node
}

}
//---

void displayTree()
{
stack<Node*> globalStack;
globalStack.push(pRoot);
int nBlanks = 32;
bool isRowEmpty = false;

cout <<
“..”;
cout << endl;
while(isRowEmpty==false)

{
stack<Node*> localStack;
isRowEmpty = true;

for(int j=0; j<nBlanks; j++)
cout << ‘ ‘;

while(globalStack.empty()==false)
{
Node* temp = globalStack.top();
globalStack.pop();
if(temp != NULL)

{
cout << temp->iData;
localStack.push(temp->pLeftChild);
localStack.push(temp->pRightChild);

if(temp->pLeftChild != NULL ||
temp->pRightChild != NULL)

isRowEmpty = false;
}

else
{
cout << “--”;
localStack.push(NULL);

332 Hour 16

21 72316331 Ch16 10/31/02 7:16 AM Page 332

localStack.push(NULL);
}

for(int j=0; j<nBlanks*2-2; j++)
cout << ‘ ‘;

} //end while globalStack not empty
cout << endl;
nBlanks /= 2;
while(localStack.empty()==false)

{
globalStack.push(localStack.top());
localStack.pop();
}

} //end while isRowEmpty is false
cout <<
“..”;
cout << endl;
} //end displayTree()

//---
void destroy() //deletes all nodes

{ destroyRec(pRoot); } //start at root
//---

void destroyRec(Node* pLocalRoot) //delete nodes in
{ // this subtree
if(pLocalRoot != NULL)

{ //uses postOrder
destroyRec(pLocalRoot->pLeftChild); //left subtree
destroyRec(pLocalRoot->pRightChild); //right subtree
delete pLocalRoot; //delete this node
}

}
//---

}; //end class Tree
//
int main()

{
int value;
char choice;
Node* found;
Tree theTree; //create tree

theTree.insert(50, 5.0); //insert nodes
theTree.insert(25, 2.5);
theTree.insert(75, 7.5);
theTree.insert(12, 1.2);
theTree.insert(37, 3.7);
theTree.insert(43, 4.3);
theTree.insert(30, 3.0);
theTree.insert(33, 3.3);
theTree.insert(87, 8.7);

Traversing Binary Trees 333

16

continues

21 72316331 Ch16 10/31/02 7:16 AM Page 333

LISTING 16.1 CONTINUED

theTree.insert(93, 9.3);
theTree.insert(97, 9.7);

while(choice != ‘q’) //interact with user
{ //until user types ‘q’
cout << “Enter first letter of “;
cout << “show, insert, find, traverse or quit: “;
cin >> choice;
switch(choice)

{
case ‘s’: //show the tree

theTree.displayTree();
break;

case ‘i’: //insert a node
cout << “Enter value to insert: “;
cin >> value;
theTree.insert(value, value + 0.9);
break;

case ‘f’: //find a node
cout << “Enter value to find: “;
cin >> value;
found = theTree.find(value);
if(found != NULL)

{
cout << “Found: “;
found->displayNode();
cout << endl;
}

else
cout << “Could not find “ << value << endl;

break;
case ‘t’: //traverse the tree

cout << “Enter traverse type (1=preorder, “
<< “2=inorder, 3=postorder): “;

cin >> value;
theTree.traverse(value);
break;

case ‘q’: //quit the program
theTree.destroy();
cout << endl;
break;

default:
cout << “Invalid entry\n”;

} //end switch
} //end while

return 0;
} //end main()

334 Hour 16

21 72316331 Ch16 10/31/02 7:16 AM Page 334

Summary
In this hour, you’ve learned the following:

● Traversing a tree means visiting all its nodes in some order.

● The simple traversals are preorder, inorder, and postorder.

● An inorder traversal visits nodes in order of ascending keys.

● Preorder and postorder traversals are useful for parsing algebraic expressions,
among other things.

● Nodes with duplicate key values might cause trouble because only the first one can
be found in a search.

● All the common operations on a binary search tree can be carried out in O(log N)
time.

Q&A
Q Will I really need to traverse a tree in a typical programming situation?

A It’s most common to traverse a tree inorder. This allows you to extract data from a
tree in a useful way, so it can be displayed or copied to another data structure. The
other traversals are less often used.

Q Do I need to understand the C++ code to understand how to use a tree?

A As with other data structures and algorithms in this book, the answer is, “Not usu-
ally.”

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Traversing Binary Trees 335

16

To avoid memory leaks, all the nodes in the tree should be deleted when
the tree is destroyed. We’ve included code to delete the nodes when the
user quits the program. Pressing q causes the program to call the destroy()
member function of Tree before terminating. This routine uses postorder
traversal to visit every node and delete it. (The nodes are probably sorry
they answered the door.) Postorder is necessary because a node can’t be
deleted until both its subtrees are deleted, so visiting it must take place last.

21 72316331 Ch16 10/31/02 7:16 AM Page 335

Quiz
1. What three tasks should a recursive function execute to perform an inorder

traversal?

2. What is the base case in such traversals?

3. Here’s an expression in postfix notation: AB+C-. Express this in infix notation.

4. Describe how to find the node with the maximum key value in a binary search tree.

5. The number of steps involved searching and insertion in a binary tree is propor-
tional to what aspect of the tree?

6. The efficiency of binary search trees in Big O notation is _________.

7. In C++, what two data members must the Node class contain?

Exercise
Use the Binary Tree Workshop applet (or the tree.cpp sample program) to transform the
following infix expression into both prefix and postfix forms:

(A+B) * (C-D)

336 Hour 16

21 72316331 Ch16 10/31/02 7:16 AM Page 336

HOUR 17
Red-Black Trees

A red-black tree is a binary search tree with some special features. Ordinary
binary search trees, which we explored in Hours 15, “Binary Trees” and 16,
“Traversing Binary Trees,” have an unfortunate defect: If data is inserted in a
non-random sequence, the tree might become unbalanced, seriously degrad-
ing its performance. A red-black tree can fix this by ensuring that the tree
remains balanced at all times. In this hour we’ll learn

● How unbalanced trees degrade performance

● The characteristics of red-black trees

● The color rules

● How to use the RBTree Workshop applet

● How to rotate a subtree

In the next hour we’ll see how to use these techniques to insert a new node
into a tree while keeping the tree balanced.

Ordinary binary search trees offer important advantages as data storage
devices: You can quickly search for an item with a given key, and you can
also quickly insert or delete an item. Other data storage structures, such as

22 72316331 Ch17 10/31/02 7:17 AM Page 337

arrays, sorted arrays, and linked lists, perform one or the other of these activities slowly.
Thus binary search trees might appear to be the ideal data storage structure.

Ordinary binary search trees work well if the data is inserted into the tree in random
order. However, they become much slower if data is inserted in already-sorted order (17,
21, 28, 36,…) or inversely sorted order (36, 28, 21, 17,…). When the values to be
inserted are already ordered, a binary tree becomes unbalanced. With an unbalanced tree,
the ability to quickly find (or insert or delete) a given element is lost.

Red-black trees, which we’ll explore in this hour and the next one, are the most common
way to keep trees balanced. There are other approaches. We’ll mention some at the end
of the next hour, and examine one, the 2-3-4 tree, in Hours 19, “2-3-4 Trees,” and 20,
“Implementing 2-3-4 Trees.” However, the red-black tree is in most cases the most effi-
cient balanced tree, at least when data is stored in memory as opposed to external files.

Our Approach to the Discussion
We’ll explain insertion into red-black trees a little differently than we have explained
insertion into other data structures. Red-black trees are not trivial to understand. Because
of this and also because of a multiplicity of symmetrical cases (for left or right children,
and inside or outside grandchildren), the actual code is more lengthy and complex than
one might expect. It’s therefore hard to learn about the algorithm by examining code.

For this reason, we’re going to concentrate on conceptual understanding rather than cod-
ing details. In this we will be aided by the RBTree Workshop applet. We’ll describe how
you can work in partnership with the applet to insert new nodes into a tree. Including a
human into the insertion routine certainly slows it down, but it also makes it easier for
the human to understand how the process works.

We’ll discuss some characteristics of red-black trees first, then examine how the RBTree
Workshop applet works, and then use the applet to carry out some experiments that will
introduce some common red-black tree operations.

Balanced and Unbalanced Trees
Before we begin our investigation of red-black trees, let’s review how trees become
unbalanced. Fire up the Tree Workshop applet from Hour 15 (not this hour’s RBTree
applet). Use the Fill button to create a tree with only one node. Then insert a series of
nodes whose keys are in either ascending or descending order. The result will be some-
thing like that in Figure 17.1.

338 Hour 17

22 72316331 Ch17 10/31/02 7:17 AM Page 338

The nodes arrange themselves in a line with no branches. Because each node is larger
than the previously inserted one, every node is a right child, so all the nodes are on one
side of the root. The tree is maximally unbalanced. If you inserted items in descending
order, every node would be the left child of its parent; the tree would be unbalanced on
the other side.

Performance Degenerates to O(N)
When there are no branches, the tree becomes, in effect, a linked list. The arrangement of
data is one-dimensional instead of two-dimensional. As with a linked list, you must now
search through (on the average) half the items to find the one you’re looking for. In this
situation the speed of searching is reduced to O(N), instead of O(log N) as it is for a bal-
anced tree. Searching through 10,000 items in such an unbalanced tree would require an
average of 5,000 comparisons, whereas for a balanced tree with random insertions it
requires only 14. For presorted data you might just as well use a linked list in the first
place.

Red-Black Trees 339

17

FIGURE 17.1
Items inserted in
ascending order.

50

10

30

20

40

22 72316331 Ch17 10/31/02 7:17 AM Page 339

Data that’s only partly sorted will generate trees that are only partly unbalanced. If you
use the Tree Workshop applet from Hour 15 to attempt to generate trees with 31 nodes,
you’ll see that some of them are more unbalanced than others, as shown in Figure 17.2.

340 Hour 17

FIGURE 17.2
A partially unbalanced
tree.

Although not as bad as a maximally unbalanced tree, this situation is not optimal for
searching times.

In the Tree Workshop applet, trees can become partially unbalanced, even with randomly
generated data, because the amount of data is so small that even a short run of ordered
numbers will have a big effect on the tree. Also a very small or very large key value can
cause an unbalanced tree by not allowing the insertion of many nodes on one side or the
other. A root of 3, for example, allows only two more nodes to be inserted to its left.

With a realistic amount of random data it’s not likely a tree would become seriously
unbalanced. However, there might be runs of sorted data that will partially unbalance a
tree. Searching partially unbalanced trees will take time somewhere between O(N) and
O(log N), depending on how badly the tree is unbalanced.

Balanced Trees to the Rescue
To guarantee the quick O(log N) search times a tree is capable of, we need to ensure that
our tree is always balanced (or at least almost balanced). This means that each node in a
tree must have roughly the same number of descendents on its left side as it has on its
right.

In a red-black tree, balance is achieved during insertion (and also deletion, but we’ll
ignore that here). As an item is being inserted, the insertion routine checks that certain

22 72316331 Ch17 10/31/02 7:17 AM Page 340

characteristics of the tree are not violated. If they are, it takes corrective action, restruc-
turing the tree as necessary. By maintaining these characteristics, the tree is kept bal-
anced.

Red-Black Tree Characteristics
What are these mysterious tree characteristics? There are two, one simple and one more
complicated:

● The nodes are colored.

● During insertion and deletion, rules are followed that preserve various arrange-
ments of these colors.

Colored Nodes
In a red-black tree, every node is either black or red. These are arbitrary colors; blue and
yellow would do just as well. In fact, the whole concept of saying that nodes have “col-
ors” is somewhat arbitrary. Some other analogy could have been used instead: We could
say that every node is either heavy or light, or yin or yang. However, colors are conve-
nient labels. A data member, which can be Boolean, (isRed, for example), is added to the
node class to embody this color information.

In the RBTree Workshop applet, the red-black characteristic of a node is shown by its
border color. The center color, as it was in the Tree applet in Hour 15, is simply a ran-
domly generated data member of the node.

When we speak of a node’s color in this hour we’ll almost always be referring to its red-
black border color. In the figures (except the screen shot of Figure 17.3) we’ll show
black nodes as dark and red nodes as white with a double border.

Red-Black Rules
When inserting (or deleting) a new node, certain rules, which we call the red-black rules,
must be followed. If they’re followed, the tree will be balanced. Let’s look briefly at
these rules:

1. Every node is either red or black.

2. The root is always black.

3. If a node is red, its children must be black (although the converse isn’t necessarily
true).

4. Every path from the root to a leaf, or to a null child, must contain the same number
of black nodes.

Red-Black Trees 341

17

22 72316331 Ch17 10/31/02 7:17 AM Page 341

The null child referred to in Rule 4 is a place where a child could be attached to
a nonleaf node. In other words, it’s the potential left child of a node with a right

child, or the potential right child of a node with a left child. This will make more sense
as we go along.

The number of black nodes on a path from root to leaf is called the black height.
Another way to state Rule 4 is that the black height must be the same for all

paths from the root to a leaf.

The red-black rules probably seem completely mysterious. It’s not obvious how they will
lead to a balanced tree, but they do; some very clever people invented them. Copy them
onto a sticky note, and keep it on your computer. You’ll need to refer to them often in the
course of this hour.

You can see how the rules work by using the RBTree Workshop applet. We’ll do some
experiments with this applet in a moment.

Duplicate Keys
What happens if there’s more than one data item with the same key? This presents a
slight problem in red-black trees. It’s important that nodes with the same key are distrib-
uted on both sides of other nodes with the same key. That is, if keys arrive in the order
50, 50, 50, you want the second 50 to go to the right of the first one, and the third 50 to
go to the left of the first one. Otherwise, the tree becomes unbalanced.

This could be handled by some kind of randomizing process in the insertion algorithm.
However, the search process then becomes more complicated if all items with the same
key must be found.

It’s simpler to outlaw items with the same key. In this discussion we’ll assume duplicates
aren’t allowed.

The Actions
What actions can you take if one of the red-black rules is broken? There are two, and
only two, possibilities:

● You can change the colors of nodes.

● You can perform rotations.

Changing the color of a node means changing its red-black border color (not the center
color). A rotation is a rearrangement of the nodes that hopefully leaves the tree more bal-
anced.

342 Hour 17

NEW TERM

NEW TERM

22 72316331 Ch17 10/31/02 7:17 AM Page 342

At this point such concepts probably seem very abstract, so let’s become familiar with
the RBTree Workshop applet, which can help to clarify things.

Using the RBTree Workshop Applet
Figure 17.3 shows what the RBTree Workshop applet looks like after some nodes have
been inserted. (It might be hard to tell the difference between red and black node borders
in the figure, but they should be clear on a color monitor.)

Red-Black Trees 343

17

FIGURE 17.3
The RBTree Workshop
applet.

There are quite a few buttons in the RBTree applet. We’ll briefly review what they do,
although at this point some of the descriptions might be a bit puzzling. Soon we’ll do
some experimenting with these buttons.

Clicking on a Node
The red arrow points to the currently selected node. It’s this node whose color is changed
or which is the top node in a rotation. You select a node by single-clicking it with the
mouse. This moves the red arrow to the node.

The Start Button
When you first start the Workshop applet, and also when you press the Start button,
you’ll see that a tree is created that contains only one node. Because an understanding of
red-black trees focuses on using the red-black rules during the insertion process, it’s
more convenient to begin with the root and construct the tree by inserting additional

22 72316331 Ch17 10/31/02 7:17 AM Page 343

nodes. To simplify future operations, the initial root node is always given a value of 50.
(You select your own numbers for subsequent insertions.)

The Ins Button
The Ins button causes a new node to be created, with the value that was typed into the
Number box, and then inserted into the tree. (At least this is what happens if no color
flips are necessary. See the section on the Flip button for more on this possibility.)

Notice that the Ins button does a complete insertion operation with one push; multiple
pushes are not required as they were with the Tree Workshop applet in Hour 15. The
focus in the RBTree applet is not on the process of finding the place to insert the node,
which is similar to that in ordinary binary search trees, but on keeping the tree balanced;
so the applet doesn’t show the individual steps in the insertion. This can be unnerving
until you get used to it.

The Del Button
Pushing the Del button causes the node with the key value typed into the Number box to
be deleted. As with the Ins button, this takes place immediately after the first push; mul-
tiple pushes are not required.

The Del button and the Ins button use the basic insertion algorithms; the same as those in
the Tree Workshop applet. This is how the work is divided between the applet and the
user: The applet does the insertion, but it’s (mostly) up to the user to make the appropri-
ate changes to the tree to ensure the red-black rules are followed and the tree thereby
becomes balanced.

The Flip Button
If there is a black parent with two red children, and you place the red arrow on the parent
by clicking on the node with the mouse, when you press the Flip button the parent will
become red and the children will become black. That is, the colors are flipped between
the parent and children. You’ll learn later why this is a desirable thing to do.

If you try to flip the root, it will remain black, so as not to violate Rule 2, but its children
will change from red to black.

The RoL Button
This button carries out a left rotation. To rotate a group of nodes, first single-click the
mouse to position the arrow at the topmost node of the group to be rotated. (For a left

344 Hour 17

22 72316331 Ch17 10/31/02 7:17 AM Page 344

rotation, the top node must have a right child.) Then click the button. We’ll examine rota-
tions in detail later.

The RoR Button
This button performs a right rotation. Position the arrow on the top node to be rotated,
making sure it has a left child; then click the button.

The R/B Button
The R/B button changes a red node to black, or a black node to red. Single-click the
mouse to position the red arrow on the node, and then push the button. (This button
changes the color of a single node; don’t confuse it with the Flip button, which changes
three nodes at once.)

Text Messages
Messages in the text box below the buttons tell you whether the tree is red-black
correct. The tree is red-black correct if it adheres to rules 1 to 4, listed previ-

ously. If it’s not correct, you’ll see messages advising which rule is being violated. In
some cases the red arrow will point to where the violation occurred.

Where’s the Find Button?
In red-black trees, a search routine operates exactly as it did in the ordinary binary search
trees described in Hour 15. It starts at the root, and, at each node it encounters (the cur-
rent node), it decides whether to go to the left or right child by comparing the key of the
current node with the search key.

We don’t include a Find button in the RBTree applet because you already understand this
process and our attention will be on manipulating the red-black aspects of the tree.

Experimenting
Now that you’re familiar with the RBTree buttons, let’s do some simple experiments to
get a feel for what the applet does. The idea here is to learn to manipulate the applet’s
controls. Later you’ll use these skills to balance the tree.

Experiment 1: Simple Insertions
Let’s try inserting some nodes into the red-black tree and seeing what happens to the red-
black rules.

Red-Black Trees 345

17

NEW TERM

22 72316331 Ch17 10/31/02 7:17 AM Page 345

To Do: Insert New Nodes
1. Press Start to clear any extra nodes. You’ll be left with the root node, which always

has the value 50.

2. Insert a new node with a value smaller than the root, say 25, by typing the number
into the Number box and pressing the Ins button. This doesn’t cause any rule viola-
tions, so the message continues to say Tree is red-black correct.

3. Insert a second node that’s larger than the root, say 75. The tree is still red-black
correct. It’s also balanced; there are the same number of nodes on the right of the
only nonleaf node (the root) as there are on its left. The result is shown in
Figure 17.4.

346 Hour 17

,
TO

D
O

FIGURE 17.4
A balanced tree.

50

25 75

Red node

Black node

Red node

Notice that newly inserted nodes are always colored red (except for the root). This is not
an accident. It’s less likely that inserting a red node will violate the red-black rules than
inserting a black one.

This is because if the new red node is attached to a black one, no rule is broken. It does-
n’t create a situation where there are two red nodes together (Rule 3), and it doesn’t
change the black height in any of the paths (Rule 4). Of course, if you attach a new red
node to a red node, Rule 3 will be violated. However, with any luck this will only hap-
pen half the time. Whereas, if it were possible to add a new black node, it would always
change the black height for its path, violating Rule 4.

Also, it’s easier to fix violations of Rule 3 (parent and child are both red) than Rule 4
(black heights differ), as we’ll see later.

,

22 72316331 Ch17 10/31/02 7:17 AM Page 346

Experiment 2: Rotations
Let’s try some rotations.

To Do: Rotate the Tree to the Right
1. Start with the three nodes as shown in Figure 17.4.

2. Position the red arrow on the root (50) by clicking it with the mouse. This node
will be the top node in the rotation.

3. Now perform a right rotation by pressing the RoR button. The nodes all shift to
new positions, as shown in Figure 17.5.

Red-Black Trees 347

17

,
TO

D
O

FIGURE 17.5
Following a right rota-
tion.

25

Arrow

50

75

In this right rotation, the parent or top node moves into the place of its right child, the
left child moves up and takes the place of the parent, and the right child moves down to
become the grandchild of the new top node.

Notice that the tree is now unbalanced; there are more nodes to the right of the root than
to the left. Also, the message indicates that the red-black rules are violated, specifically
Rule 2 (the root is always black). Don’t worry about this yet. Instead, rotate the
other way.

To Do: Rotate the Tree to the Left
1. Position the red arrow on 25, which is now the root (the arrow should already point

to 25 after the previous rotation).

2. Click the RoL button to rotate left. The nodes will return to the position of
Figure 17.4.

,

TO
D

O

22 72316331 Ch17 10/31/02 7:17 AM Page 347

Experiment 3: Color Flips
A color flip changes the colors of a parent and its two children. Let’s see how this works.

To Do: Perform a Color Flip
1. Start with the position of Figure 17.4, with nodes 25 and 75 inserted in addition to

50 in the root position. Note that the parent (the root) is black and both its children
are red.

2. Now try to insert another node. No matter what value you use, you’ll see the mes-
sage Can’t Insert: Needs color flip. As we mentioned, a color flip is neces-
sary whenever, during the insertion process, a black node with two red children is
encountered.

3. The red arrow should already be positioned on the black parent (the root node), so
click the Flip button.

4. The root’s two children change from red to black. Ordinarily the parent would
change from black to red, but this is a special case because it’s the root: it remains
black to avoid violating Rule 2. Now all three nodes are black. The tree is still red-
black correct.

5. Now click the Ins button again to insert the new node. Figure 17.6 shows the result
if the newly inserted node has the key value 12.

348 Hour 17

,
TO

D
O

FIGURE 17.6
Colors flipped, new
node inserted.

25

12

50

75

,

The tree is still red-black correct. The root is black, there’s no situation where a parent
and child are both red, and all the paths have the same number of black nodes (2).
Adding the new red node didn’t change the red-black correctness.

22 72316331 Ch17 10/31/02 7:17 AM Page 348

Experiment 4: An Unbalanced Tree
Now let’s see what happens when you try to do something that leads to an unbalanced
tree. In Figure 17.6 one path has one more node than the other. This isn’t very unbal-
anced, and no red-black rules are violated, so neither we nor the red-black algorithms
need to worry about it. However, suppose that one path differs from another by two or
more levels (where level is the same as the number of nodes along the path). In this case
the red-black rules will always be violated, and we’ll need to rebalance the tree.

To Do: Create an Unbalanced Tree
1. Insert a 6 into the tree of Figure 17.6.

2. You’ll see the message Error: parent and child are both red. Rule 3 has
been violated, as shown in Figure 17.7.

Red-Black Trees 349

17

,
TO

D
O

FIGURE 17.7
Parent and child are
both red.

25

12

6

50

75

Red parent and
child violates

Rule 3

Changing this to
black violates

Rule 4

How can we fix things so Rule 3 isn’t violated? An obvious approach is to change one of
the offending nodes to black. Let’s try changing the child node, 6.

To Do: Try to Balance the Tree
1. Position the red arrow on node 6.

2. Press the R/B button. The node becomes black.

,

TO
D

O

22 72316331 Ch17 10/31/02 7:17 AM Page 349

The good news is we fixed the problem of both parent and child being red. The bad news
is that now the message says Error: Black heights differ. The path from the root to
node 6 has three black nodes in it, while the path from the root to node 75 has only two.
Thus Rule 4 is violated. It seems we can’t win. This problem can be fixed with a rotation
and some color changes. How to do this will be the topic of Hour 18, “Red-Black Tree
Insertions.”

Experimenting on Your Own
Experiment with the RBTree Workshop applet on your own. Insert more nodes and see
what happens. See if you can use rotations and color changes to achieve a balanced tree.
Does keeping the tree red-black correct seem to guarantee an (almost) balanced tree?

Try inserting ascending keys (50, 60, 70, 80, 90) and then restart with the Start button
and try descending keys (50, 40, 30, 20, 10). Ignore the messages; we’ll see what they
mean later. These are the situations that get the ordinary binary search tree into trouble.
Can you still balance the tree?

The Red-Black Rules and Balanced Trees
Try to create a tree which is unbalanced by two or more levels but is red-black correct.
As it turns out, this is impossible. That’s why the red-black rules keep the tree balanced.
If one path is more than one node longer than another, it must either have more black
nodes, violating Rule 4, or it must have two adjacent red nodes, violating Rule 3.
Convince yourself that this is true by experimenting with the applet.

Null Children
Rule 4 specifies all paths that go from the root to any leaf or to any null children must
have the same number of black nodes. Remember that a null child is a child that a non-
leaf node might have, but doesn’t. Thus in Figure 17.8 the path from 50 to 25 to the right
child of 25 (its null child) has only one black node, which is not the same as the paths to
6 and 75, which have 2. This arrangement violates Rule 4, although both paths to leaf
nodes have the same number of black nodes.

Remember that the term black height is the number of black nodes from a given node to
the root. In Figure 17.8 the black height of the root (50) is 1, from the root to 25 is still
1, from the root to 12 is 2, and so on.

We’ve experimented with various red-black operations: simple insertions, some easy
rotations, and color flips. Now let’s see how to use these operations to balance a tree.

350 Hour 17

22 72316331 Ch17 10/31/02 7:17 AM Page 350

Rotations
To balance a tree, it’s necessary to physically rearrange the nodes. If all the nodes are on
the left of the root, for example, you need to move some of them over to the right side.
This is done using rotations. In this section we’ll learn what rotations are and how to
execute them.

Rotations are ways to rearrange nodes. They were designed to do the following
two things:

● Raise some nodes and lower others to help balance the tree.

● Ensure that the characteristics of a binary search tree are not violated.

Recall that in a binary search tree the left children of any node have key values less than
the node, whereas its right children have key values greater or equal to the node. If the
rotation didn’t maintain a valid binary search tree it wouldn’t be of much use because the
search algorithm, as we saw in Hour 15, relies on the search-tree arrangement.

Note that color rules and node color changes are only used to help decide when to per-
form a rotation; fiddling with the colors doesn’t accomplish anything by itself; it’s the

Red-Black Trees 351

17

FIGURE 17.8
Path to a null child.

50

75

Black height is 2

Null child of 25
Black height is 1

Null child of 12
Black height is 2

12

Black height is 2

25

6

NEW TERM

22 72316331 Ch17 10/31/02 7:17 AM Page 351

rotation that’s the heavy hitter. Color rules are like rules of thumb for building a house
(such as “exterior doors open inward”), whereas rotations are like the hammering and
sawing needed to actually build it.

Simple Rotations
In Experiment 2 we tried rotations to the left and right. These rotations were easy to
visualize because they involved only three nodes. Let’s clarify some aspects of this
process.

What’s Rotating?
The term rotation can be a little misleading. The nodes themselves aren’t rotated, it’s the
relationship between them that changes. One node is chosen as the “top” of the rotation.
If we’re doing a right rotation, this “top” node will move down and to the right, into the
position of its right child. Its left child will move up to take its place.

Remember that the top node isn’t the “center” of the rotation. If we talk about a car tire,
the top node doesn’t correspond to the hubcap, it’s more like the topmost part of the tire
tread.

The rotation we described in Experiment 2 was performed with the root as the top node,
but of course any node can be the top node in a rotation, provided it has the appropriate
child.

Mind the Children
You must be sure that if you’re doing a right rotation, the top node has a left child.
Otherwise there’s nothing to rotate into the top spot. Similarly, if you’re doing a left rota-
tion, the top node must have a right child.

The Weird Crossover Node
Rotations can be more complicated than the three-node example we’ve discussed so far.
Let’s see an example.

To Do: Rotate More Than Three Nodes
1. Click Start, which puts 50 at the root.

2. Insert nodes with following values, in this order: 25, 75, 12, 37.

3. When you try to insert the 12, you’ll see the Can’t insert: needs color flip
message.

4. Just click the Flip button. The parent and children change color. Then click Ins
again to complete the insertion of the 12.

5. Finally, insert the 37. The resulting arrangement is shown in Figure 17.9a.

352 Hour 17

,
TO

D
O

,

22 72316331 Ch17 10/31/02 7:17 AM Page 352

6. Now we’ll try the rotation. Place the arrow on the root (don’t forget this!) and
press the RoR button. All the nodes move. The 12 follows the 25 up, and the 50
follows the 75 down.

But what’s this? The 37 has detached itself from the 25, whose right child it was, and
become instead the left child of 50. Some nodes go up, some nodes go down, but the 37
moves across. The result is shown in Figure 17.9b. The rotation has caused a violation of
Rule 4; we’ll see how to fix this later.

In the original position of Figure 17.9a, the 37 is called an inside grandchild of
the top node, 50. (The 12 is an outside grandchild.) The inside grandchild, if it’s

the child of the node that’s going up (which is the left child of the top node in a right
rotation) is always disconnected from its parent and reconnected to its former grandpar-
ent. It’s like becoming your own uncle (although it’s best not to dwell too long on this
analogy).

Red-Black Trees 353

17

FIGURE 17.9
Rotation with
crossover node.

25

50

Crossover node

12 37

75

25

Crossover node

37

12

a)

b)

75

50

,

,

NEW TERM

22 72316331 Ch17 10/31/02 7:17 AM Page 353

Subtrees on the Move
We’ve shown individual nodes changing position during a rotation, but entire subtrees
can move as well. To see this, try the following.

To Do: Make a Subtree Cross Over
1. Click Start to put 50 at the root

2. Insert the following sequence of nodes in order: 25, 75, 12, 37, 62, 87, 6, 18, 31, 43.

3. Click Flip whenever you can’t complete an insertion because of the Can’t
insert: needs color flip message. The resulting arrangement is shown in
Figure 17.10a.

354 Hour 17

,
TO

D
O

FIGURE 17.10
Subtree motion during
rotation.

50

6 18 31 43

75

12 37

25

a)

62 87

25

50

31 43 62 87

37 75

25

b) 5012

6 18

25

,

22 72316331 Ch17 10/31/02 7:17 AM Page 354

4. Position the arrow on the root, 50.

5. Now press RoR.

Wow! (Or is it WoW?) A lot of nodes have changed position. The result is shown in
Figure 17.10b. Here’s what happens:

● The top node (50) goes to its right child.

● The top node’s left child (25) goes to the top.

● The entire subtree of which 12 is the root moves up.

● The entire subtree of which 37 is the root moves across to become the left child
of 50.

● The entire subtree of which 75 is the root moves down.

You’ll see the Error: root must be black message but you can ignore it for the time
being. You can flip back and forth by alternately pressing RoR and RoL with the arrow
on the top node. Do this and watch what happens to the subtrees, especially the one with
37 as its root.

The figures show the subtrees encircled by dotted triangles. Note that the relations of the
nodes within each subtree are unaffected by the rotation. The entire subtree moves as a
unit. The subtrees can be larger (have more descendants) than the three nodes we show in
this example. No matter how many nodes there are in a subtree, they will all move
together during a rotation.

Human Beings Versus Computers
This is pretty much all you need to know about what a rotation does. To cause a rotation,
you position the arrow on the top node, then press RoR or RoL. Of course, in a real red-
black tree insertion algorithm, rotations happen under program control, without human
intervention.

However, notice that in your capacity as a human being, you could probably balance any
tree just by looking at it and performing appropriate rotations. Whenever a node has a lot
of left descendants and not too many right ones, you rotate it right, and vice versa.

Unfortunately, computers aren’t very good at “just looking” at a pattern. They work bet-
ter if they can follow a few simple rules. That’s what the red-black scheme provides, in
the form the color coding and the four color rules.

In the next hour we’ll see how color rules and rotations are used to maintain a balanced
tree during the insertion process.

Red-Black Trees 355

17

,

,

22 72316331 Ch17 10/31/02 7:17 AM Page 355

Summary
In this hour, you’ve learned the following:

● It’s important to keep a binary search tree balanced to ensure that the time neces-
sary to find a given node is kept as short as possible, that is, O(log N).

● Inserting data that has already been sorted can create a maximally unbalanced tree,
which results in search times of O(N).

● In the red-black balancing scheme, each node is given a new characteristic: a color
that can be either red or black.

● A set of rules, called red-black rules, specifies permissible ways that nodes of dif-
ferent colors can be arranged.

● These rules are applied while inserting (or deleting) a node.

● A color flip changes a black node with two red children to a red node with two
black children.

● In a rotation, one node is designated the top node.

● A right rotation moves the top node into the position of its right child, and the top
node’s left child into its position.

● A left rotation moves the top node into the position of its left child, and the top
node’s right child into its position.

Q&A
Q Why can’t I forget about red-black trees, and just use an ordinary binary

tree? I could simply tell anyone entering data not to enter it in order.

A Sometimes you can get away with this approach. However, in most situations
Murphy’s Law will dictate that someone will enter data sequentially.

Q Why don’t you let the Workshop applet do all the work during an insertion,
as in the Tree applet?

A So much happens in a red-black insertion that it would be hard to learn anything
by watching the applet. By involving the reader, we make it easier to see what’s
happening.

Q The red-black rules seem so arbitrary, I can’t believe they can work to bal-
ance a tree.

A It can be hard to believe. But wait until you read Hours 19 and 20, on 2-3-4 trees.
They cast light on the red-black rules by looking at them from a completely differ-
ent perspective.

356 Hour 17

22 72316331 Ch17 10/31/02 7:17 AM Page 356

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Why is a balanced tree desirable?

2. How is the tree kept balanced?

3. How do the red-black algorithms know what rotations to perform?

4. What is black height?

5. Name the red-black rules.

6. What actions can the red-black algorithms perform to keep a tree balanced?

7. In what ways can the colors of nodes be changed?

8. True or false: During a rotation, an entire subtree can be unattached from its parent
and reattached to another node.

Exercise
Use the RBTree Workshop applet to create a tree with seven nodes. During the insertion
of new nodes, try to make the tree as unbalanced as possible. Ignore the red-black rule
violations. After the tree is created, try to balance it using rotations. A tree is considered
balanced if no path from root to leaf differs by more than one level. Try the exercise with
different arrangements of nodes and with more nodes.

Red-Black Trees 357

17

22 72316331 Ch17 10/31/02 7:17 AM Page 357

22 72316331 Ch17 10/31/02 7:17 AM Page 358

HOUR 18
Red-Black Tree Insertions

In the last hour we introduced some of the concepts used in red-black trees,
notably rotations and the color rules. In this hour we’ll use these concepts to
insert new nodes into the tree, while at the same time keeping it balanced.
You’ll learn

● That insertion involves searching down the tree, performing rotations
and color flips on the way.

● How to perform color flips on the way down the tree.

● How to perform rotations on the way down the tree.

● How to insert the node once the insertion point is found.

As we noted in the last hour, because of its complexity we won’t show any
C++ code for red-black trees. Instead we’ll explore the process using the
RBTree Workshop applet.

23 72316331 CH18 10/31/02 7:17 AM Page 359

Although most of this hour will be concerned with the insertion process, at the end of the
hour we’ll also touch briefly on several other topics such as deletion and red-black tree
efficiency.

Inserting a New Node
We’ll discuss the insertion process in two stages: first a brief preview, and then a more
extensive discussion. Don’t worry if the preview leaves unanswered
questions.

Our approach to insertion is called top-down insertion. This means that some
structural changes might be made to the tree as the search routine descends the

tree looking for the place to insert the node.

Another approach is bottom-up insertion. This involves finding the place to insert
the node and then working back up through the tree making structural changes.

Bottom-up insertion is less efficient because two passes must be made through the tree,
so we don’t cover it here.

Preview of Our Approach
In the discussion that follows we’ll use X, P, and G to designate a pattern of related
nodes. X is a node that has caused a rule violation. (Sometimes X refers to a newly
inserted node, and sometimes to the child node when a parent and child have a red-red
conflict.)

● X is a particular node.

● P is the parent of X.

● G is the grandparent of X (the parent of P).

On the way down the tree to find the insertion point, you perform a color flip whenever
you find a black node with two red children (a violation of Rule 2). Sometimes the flip
causes a red-red conflict (a violation of Rule 3) between a parent and child. Call the red
child X and the red parent P. The conflict can be fixed with a single rotation or a double
rotation, depending on whether X is an outside or inside grandchild of G. Following
color flips and rotations, you continue down to the insertion point and insert the new
node.

After you’ve inserted the new node X, if P is black you simply attach the new red node.
If P is red, there are two possibilities: X can be an outside or inside grandchild of G. You
perform two color changes (we’ll see what they are in a moment). If X is an outside
grandchild, you perform one rotation, and if it’s an inside grandchild you perform two.
This restores the tree to a balanced state.

360 Hour 18

NEW TERM

NEW TERM

23 72316331 CH18 10/31/02 7:17 AM Page 360

Now we’ll recapitulate this preview in more detail. We’ll divide the discussion into three
parts, arranged in order of complexity:

1. Color flips on the way down

2. Rotations once the node is inserted

3. Rotations on the way down

If we were discussing these three parts in strict chronological order, we would examine
part 3 before part 2. However, it’s easier to talk about rotations at the bottom of the tree
than in the middle, and operations 1 and 2 are encountered more frequently than opera-
tion 3, so we’ll discuss 2 before 3.

Color Flips on the Way Down
The insertion routine in a red-black tree starts off doing essentially the same thing it does
in an ordinary binary search tree: It follows a path from the root to the place where the
node should be inserted, going left or right at each node depending on the relative size of
the node’s key and the search key.

However, in a red-black tree, getting to the insertion point is complicated by color flips
and rotations. We introduced color flips in Experiment 3 in the last hour; now we’ll look
at them in more detail.

Imagine the insertion routine proceeding down the tree, going left or right at each node,
searching for the place to insert a new node. To make sure the color rules aren’t broken,
the routine needs to perform color flips when necessary. Here’s the rule: Every time the
insertion routine encounters a black node that has two red children, it must change the
children to black and the parent to red (unless the parent is the root, which always
remains black).

How does a color flip affect the red-black rules? For convenience, let’s call the node at
the top of the triangle, the one that’s red before the flip, P for parent. We’ll call P’s left
and right children X1 and X2. This is shown in Figure 18.1a.

Color Flips Leave Black Heights Unchanged
Figure 18.1b shows the nodes after the color flip. The flip leaves unchanged the number
of black nodes on the path from the root on down through P to the leaf or null nodes. All
such paths go through P, and then through either X1 or X2. Before the flip, only P is
black, so the triangle (consisting of P, X1, and X2) adds one black node to each of these
paths.

Red-Black Tree Insertions 361

18

23 72316331 CH18 10/31/02 7:17 AM Page 361

After the flip, P is no longer black, but both L and R are, so again the triangle contributes
one black node to every path that passes through it. So a color flip can’t cause Rule 4 to
be violated.

Color flips are helpful because they make red leaf nodes into black leaf nodes. This
makes it easier to attach new red nodes without violating Rule 3.

Color Flips Can Create Red-Red Conflict
Although Rule 4 is not violated by a color flip, Rule 3 (a node and its parent can’t both
be red) might be. If the parent of P is black, there’s no problem when P is changed from
black to red. However, if the parent of P is red, then, after the color change, we’ll have
two reds in a row.

This needs to be fixed before we continue down the path to insert the new node. We can
correct the situation with rotations, as we’ll soon see.

362 Hour 18

FIGURE 18.1
Color flip.

X1 X2

Pa) b)

X1 X2

P

When Rule 3 (a node and its parent can’t both be red) is violated, rotations
are used to correct the problem.

23 72316331 CH18 10/31/02 7:17 AM Page 362

Flipping the Root
What about the root? Remember that a color flip of the root and its two children leaves
the root, as well as its children, black. This avoids violating Rule 2. Does this affect the
other red-black rules? Clearly there are no red-to-red conflicts because we’ve made more
nodes black and none red. Thus Rule 3 isn’t violated. Also, because the root and one or
the other of its two children are in every path, the black height of every path is increased
the same amount; that is, by 1. Thus Rule 4 isn’t violated either.

Finally, Just Insert the Node
After you’ve worked your way down to the appropriate place in the tree, performing
color flips (and rotations, which we’ll look at later) if necessary on the way down, you
can then insert the new node as described in Hours 15 and 16 for an ordinary binary
search tree. However, that’s not the end of the story.

Rotations After the Node Is Inserted
The insertion of the new node might cause the red-black rules to be violated. (Try some
insertions with the RBTree Workshop applet to verify this.) Therefore, following the
insertion, we must check for rule violations and take appropriate steps.

Remember that as described earlier, the newly inserted node, which we’ll call X, is
always red. X can be located in various positions relative to P and G, as shown in 18.2.

Remember that a node X is an outside grandchild if it’s on the same side of its parent P
that P is of its parent G. That is, X is an outside grandchild if either it’s a left child of P
and P is a left child of G, or it’s a right child of P and P is a right child of G. Conversely,
X is an inside grandchild if it’s on the opposite side of its parent P that P is of its
parent G.

If X is an outside grandchild, it may be either the left or right child of P, depending on
whether P is the left or right child of G. Two similar possibilities exist if X is an inside
grandchild. It’s these four situations that are shown in Figure 18.2. This multiplicity of
what we might call “handed” (left or right) variations is one reason the red-black inser-
tion routine is challenging to program.

The action we take to restore the red-black rules is determined by the colors and configu-
ration of the newly inserted node X and its relatives. Perhaps surprisingly, there are only
three major ways that nodes can be arranged (not counting the handed variations already
mentioned). Each possibility must be dealt with in a different way to preserve red-black
correctness and thereby lead to a balanced tree. We’ll list the three possibilities briefly in
the following list, and then discuss each one in detail in its own section. Figure 18.3
shows what the possibilities look like. Remember that X is always red.

Red-Black Tree Insertions 363

18

23 72316331 CH18 10/31/02 7:17 AM Page 363

364 Hour 18

FIGURE 18.2
Handed variations of
node being inserted.

a)

X

G

P

b)

X

P

G

Outside grandchild
(Left child)

Inside grandchild
(Right child)

c)

X

P

G d)

X

P

G

Inside grandchild
(Left child)

Outside grandchild
(Right child)

1. P is black.

2. P is red and X is an outside grandchild of G.

3. P is red and X is an inside grandchild of G.

It might seem that this list doesn’t cover all the possibilities. We’ll return to this question
after we’ve explored these three.

23 72316331 CH18 10/31/02 7:17 AM Page 364

Possibility 1: P Is Black
If P is black, we get a free ride. The node we’ve just inserted is always red. If its parent
is black, there’s no red-to-red conflict (Rule 3), and no addition to the number of black
nodes (Rule 4). Thus no color rules are violated. We don’t need to do anything else. The
insertion is complete.

Possibility 2: P Is Red, X Is Outside
If P is red and X is an outside grandchild, we need a single rotation and some color
changes. Let’s set this up with the RBTree Workshop applet so we can see what we’re

Red-Black Tree Insertions 365

18

FIGURE 18.3
Three post-insertion
possibilities.

X

G

P

XPEither
grandchild

Black

a) Possibility 1: P is
black

b) Possibility 2: P is
red, and X is outside

c) Possibility 3: P is red,
and X is inside

Red

Outside grandchild

Red

Inside grandchild

X

G

P

X

X

P

G

23 72316331 CH18 10/31/02 7:17 AM Page 365

talking about. Start with the usual 50 at the root, and insert 25, 75, and 12. You’ll need to
do a color flip before you insert the 12.

Now insert 6, which is X, the new node. Figure 18.4a shows how this looks. The mes-
sage on the Workshop applet says Error: parent and child both red, so we know
we need to take some action. In this situation, we can take three steps to restore red-
black correctness and thereby balance the tree.

366 Hour 18

FIGURE 18.4
P is red, X is an out-
side grandchild.

50

25 75

25

a)

6

12

G

P
Color change

Rotation

Color change

X

50

75b)

6

12

25

To Do: Balance with a Single Rotation
1. Switch the color of X’s grandparent G (25 in this example).

2. Switch the color of X’s parent P (12).

,
TO

D
O

23 72316331 CH18 10/31/02 7:17 AM Page 366

3. Rotate with X’s grandparent G (25) at the top, in the direction that raises X (6).
This is a right rotation in the example.

As you’ve learned, to switch colors, put the arrow on the node and press the R/B button.
To rotate right, put the arrow on the top node and press RoR. When you’ve completed
the three steps, the Workshop applet will inform you that the Tree is red/black
correct. It’s also more balanced than it was, as shown in Figure 18.4b.

In this example, X was an outside grandchild and a left child. There’s a symmetrical situ-
ation when the X is an outside grandchild but a right child. Try this by creating the tree
50, 25, 75, 87, 93 (with color flips when necessary). Fix it by changing the colors of 75
and 87, and rotating left with 75 at the top. Again the tree is balanced.

Possibility 3: P Is Red and X Is Inside
If P is red and X is an inside grandchild, we need two rotations and some color changes.
To see this one in action, use the Workshop applet to create the tree 50, 25, 75, 12, 18.
(Again you’ll need a color flip before you insert the 12.) The result is shown in
Figure 18.5a.

Note that the 18 node is an inside grandchild. It and its parent are both red, so again you
see the error message Error: parent and child both red.

Fixing this arrangement is slightly more complicated. If we try to rotate right with the
grandparent node G (25) at the top, as we did in Possibility 2, the inside grandchild X
(18) moves across rather than up, so the tree is no more balanced than before. (Try this,
and then rotate back, with 12 at the top, to restore it.) A different solution is needed.

The trick when X is an inside grandchild is to perform two rotations rather than one. The
first changes X from an inside grandchild to an outside grandchild, as shown in Figure
18.5b. Now the situation is similar to Possibility 1, and we can apply the same rotation,
with the grandparent at the top, as we did before. The result is shown in Figure 18.5c.

We must also recolor the nodes. We do this before doing any rotations. (This order does-
n’t really matter, but if we wait until after the rotations to recolor the nodes, it’s hard to
know what to call the nodes.)

To Do: Balance with a Double Rotation
1. Switch the color of X’s grandparent (25 in this example).

2. Switch the color of X (not its parent; X is 18 here).

3. Rotate with X’s parent P at the top (not the grandparent; the parent is 12), in the
direction that raises X (a left rotation in this example).

4. Rotate again with X’s grandparent (25) at the top, in the direction that raises X (a
right rotation).

Red-Black Tree Insertions 367

18

,

,
TO

D
O

,

23 72316331 CH18 10/31/02 7:17 AM Page 367

This restores the tree to red-black correctness, and also balances it (as much as possible).
As with Possibility 2, there is an analogous case where P is the right child of G rather
than the left.

368 Hour 18

FIGURE 18.5
P is red and X is an
inside grandchild.

50

25 75

25

a)

18

12

12

G

P

Color changeRotation 1

Color change

X

Rotation 2

50

75

25

b) 25

18

25

12 75

50

75c) 18

23 72316331 CH18 10/31/02 7:17 AM Page 368

Are There Other Post-Insertion Possibilities?
Do the three post-insertion possibilities just discussed really cover all situations?

Suppose, for example, that X has a sibling S; the other child of P. This might complicate
the rotations necessary to insert X. But if P is black, there’s no problem inserting X
(that’s Possibility 1). If P is red, both its children must be black (to avoid violating Rule
3). It can’t have a single child S that’s black because the black heights would be different
for S and the null child. However, we know X is red, so we conclude that it’s impossible
for X to have a sibling unless P is red.

Another possibility is that G, the grandparent of P, has a child U, the sibling of P and the
uncle of X. Again, this would complicate any necessary rotations. However, if P is black,
there’s no need for rotations when inserting X, as we’ve seen. So let’s assume P is red.
Then U must also be red, otherwise the black height going from G to P would be differ-
ent from that going from G to U. But a black parent with two red children is flipped on
the way down, so this situation can’t exist either.

Thus the three possibilities discussed above are the only ones that can exist (except that,
in Possibilities 2 and 3, X can be a right or left child and G can be a right or left child).

What the Color Flips Accomplished
Suppose that performing a rotation and appropriate color changes caused other violations
of the red-black rules to appear further up the tree. One can imagine situations in which
you would need to work your way all the way back up the tree, performing rotations and
color switches, to remove rule violations.

Fortunately, this situation can’t arise. Using color flips on the way down has eliminated
the situations in which a rotation could introduce any rule violations further up the tree.
It ensures that one or two rotations will restore red-black correctness in the entire tree.
Actually proving this is beyond the scope of this book, but such a proof is possible.

It’s the color flips on the way down that make insertion in red-black trees more efficient
than in other kinds of balanced trees, such as AVL trees. They ensure that you only need
to pass through the tree once, on the way down.

Red-Black Tree Insertions 369

18

When X is an outside grandchild, a single rotation (with color changes)
restores red-black correctness. When X is an inside grandchild, a double
rotation is necessary.

23 72316331 CH18 10/31/02 7:17 AM Page 369

,
TO

D
O

Rotations on the Way Down
Now we’ll discuss the last of the three operations involved in inserting a node: making
rotations on the way down to the insertion point. As we noted, although we’re discussing
this last, it actually takes place before the node is inserted. We’ve waited until now to
discuss it only because it is easier to explain rotations for a just-installed node than for
nodes in the middle of the tree.

During the discussion of color flips during the insertion process, we noted that it’s possi-
ble for a color flip to cause a violation of Rule 3 (a parent and child can’t both be red).
We also noted that a rotation can fix this violation.

There are two possibilities, corresponding to Possibility 2 and Possibility 3 during the
insertion phase described above. The offending node can be an outside grandchild or it
can be an inside grandchild. (In the situation corresponding to Possibility 1, no action is
required.)

Outside Grandchild
First we’ll examine an example in which the offending node is an outside grand-
child. By offending node we mean the child in the parent-child pair that caused

the red-red conflict.

To Do: Encounter a Rule Violation
1. Start a new tree with the 50 node.

2. Insert the following nodes: 25, 75, 12, 37, 6, and 18. You’ll need to do color flips
when inserting 12 and 6.

3. Now try to insert a node with the value 3. You’ll be told you must do a flip of 12
and its children 6 and 18.

4. Push the Flip button. The flip is carried out, but now the message says Error:
parent and child are both red, referring to 25 and its child 12. The resulting
tree is shown in Figure 18.6a.

The procedure used to fix this is similar to the post-insertion operation with an outside
grandchild, described earlier. We must perform two color switches and one rotation. So
we can discuss this in the same terms we did when inserting a node, we’ll call the node
at the top of the triangle that was flipped (which is 12 in this case) X. This looks a little
odd because we’re used to thinking of X as the node being inserted, and here it’s not
even a leaf node. However, these on-the-way-down rotations can take place anywhere
within the tree.

370 Hour 18

,

NEW TERM

23 72316331 CH18 10/31/02 7:17 AM Page 370

The parent of X is P (25 in this case), and the grandparent of X—the parent of P—is G
(50 in this case). We follow the same set of rules we did under Possibility 2, discussed
above.

To Do: Fix the Rule Violation
1. Switch the color of X’s grandparent G (50 in this example). Ignore the message

that the root must be black.

2. Switch the color of X’s parent P (25).

3. Rotate with X’s grandparent (50) at the top, in the direction that raises X (here a
right rotation).

Red-Black Tree Insertions 371

18

FIGURE 18.6
Outside grandchild on
the way down.

50

75

25

a) 25

P

G

Rotate

Change color

Change color

New node inserted

Color flip changes
12 and 50

X

25

b)

37

6 18

12

3

186 7537

12 50

,
TO

D
O

,

23 72316331 CH18 10/31/02 7:17 AM Page 371

Suddenly, the tree is balanced! It has also become pleasantly symmetrical. It appears to
be a bit of a miracle, but it’s only a result of following the color rules.

Now the node with value 3 can be inserted in the usual way. Because the node it con-
nects to, 6, is black, there’s no complexity about the insertion. One color flip (at 50) is
necessary. Figure 18.6b shows the tree after 3 is inserted.

Inside Grandchild
If X is an inside grandchild when a red-red conflict occurs on the way down, two rota-
tions are required to set it right. This situation is similar to the inside grandchild in the
post-insertion phase, which we called Possibility 3.

To Do: Encounter a Rule Violation
1. Click Start in the RBTree Workshop applet to begin with 50.

2. Insert 25, 75, 12, 37, 31, and 43. You’ll need color flips before 12 and 31.

3. Now try to insert a new node with the value 28.

4. You’ll be told it needs a color flip (at 37). But when you perform the flip, 37 and
25 are both red, and you get the Error: parent and child are both red mes-
sage.

5. Don’t press Ins again.

In this situation G is 50, P is 25, and X is 37, as shown in Figure 18.7a.

To cure the red-red conflict, you must do the same two color changes and two rotations
as in Possibility 3.

To Do: Fix the Rule Violation
1. Change the color of G (it’s 50; ignore the message that the root must be black).

2. Change the color of X (37).

3. Rotate with P (25) as the top, in the direction that raises X (left in this example).
The result is shown in Figure 18.7b.

4. Rotate with G as the top, in the direction that raises X (right in this example).

Now you can insert the 28. A color flip changes 25 and 50 to black as you insert it. The
result is shown in Figure 18.7c.

This concludes the description of how a tree is kept red-black correct, and therefore bal-
anced, during the insertion process.

372 Hour 18

,
TO

D
O

,

,
TO

D
O

,

23 72316331 CH18 10/31/02 7:17 AM Page 372

Deletion
As you might recall, coding for deletion in an ordinary binary search tree is consider-
ably harder than for insertion. The same is true in red-black trees, but in addition, the
deletion process is, as you might expect, complicated by the need to restore red-black
correctness after the node is removed.

In fact, the deletion process is so complicated that many programmers sidestep it in vari-
ous ways. One approach, as with ordinary binary trees, is to mark a node as deleted with-
out actually deleting it. A search routine that finds the node then knows not to tell anyone
about it. This works in many situations, especially if deletions are not a common occur-

Red-Black Tree Insertions 373

18

FIGURE 18.7
Inside grandchild on
the way down.

50

75a) 25

P

G

Rotate Change color

Change color

X
12

31 43

37

75b) Rotate

43

12 31

25

50

37

37

c)

3112 7543

25 50

28

23 72316331 CH18 10/31/02 7:17 AM Page 373

rence. In any case, we’re going to forgo a discussion of the deletion process. You can
refer to the bibliography if you want to pursue it.

Efficiency of Red-Black Trees
Like ordinary binary search trees, a red-black tree allows for searching, insertion, and
deletion in O(log2N) time. Search times should be almost the same in the red-black tree
as in the ordinary tree because the red-black characteristics of the tree aren’t used during
searches. The only penalty is that the storage required for each node is increased slightly
to accommodate the red-black color (a Boolean variable).

More specifically, according to Sedgewick (see Appendix C, “Further Reading”), in prac-
tice a search in a red-black tree takes about log2N comparisons, and it can be shown that
it cannot require more than 2*log2N comparisons.

The times for insertion and deletion are increased by a constant factor because of having
to perform color flips and rotations on the way down and at the insertion point. On the
average, an insertion requires about one rotation. Therefore insertion still takes O(log2N)
time, but is slower than insertion in the ordinary binary tree.

Because in most applications there will be more searches than insertions and deletions,
there is probably not much overall time penalty for using a red-black tree instead of an
ordinary tree. Of course, the advantage is that in a red-black tree sorted data doesn’t lead
to slow O(N) performance.

Implementing the Insertion Process
Most people will probably use a prewritten library routine to implement a red-black tree.
However, if you’re writing an insertion routine for red-black trees, all you need to do
(irony intended) is to write code to carry out the operations described above. As we
noted, showing and describing such code are beyond the scope of this book. However,
here’s what you’ll need to think about.

You’ll need to add a red-black data member (which can be type bool) to the Node class.

You can adapt the insertion routine from the tree.cpp program in Hour 16. On the way
down to the insertion point, check whether the current node is black and its two children
are both red. If so, change the color of all three (unless the parent is the root, which must
be kept black).

After a color flip, check that there are no violations of Rule 3. If so, perform the appro-
priate rotations: one for an outside grandchild, two for an inside grandchild.

374 Hour 18

23 72316331 CH18 10/31/02 7:17 AM Page 374

When you reach a leaf node, insert the new node as in tree.cpp, making sure the node
is red. Check again for red-red conflicts, and perform any necessary rotations.

Perhaps surprisingly, your software need not keep track of the black height of different
parts of the tree (although you might want to check this during debugging). You only
need to check for violations of Rule 3, a red parent with a red child, which can be done
locally (unlike checks of black heights, Rule 4, which would require more complex
bookkeeping).

If you perform the color flips, color changes, and rotations described earlier, the black
heights of the nodes should take care of themselves and the tree should remain balanced.
The RBTree Workshop applet reports black-height errors only because the user is not
forced to carry out the insertion algorithm correctly.

Other Balanced Trees
There are several other ways to balance a binary tree besides the red-black approach dis-
cussed in this hour. We’ll briefly mention two possibilities.

AVL Trees
The AVL tree is the earliest kind of balanced tree. It’s named after its inventors:
Adelson-Velskii and Landis. In AVL trees each node stores an additional piece of

data: the difference between the heights of its left and right subtrees. This difference may
not be larger than 1. That is, the height of a node’s left subtree may be no more than one
level different from the height of its right subtree.

Following insertion, the root of the lowest subtree into which the new node was inserted
is checked. If the height of its children differs by more than 1, a single or double rotation
is performed to equalize their heights. The algorithm then moves up and checks the node
above, equalizing heights if necessary. This continues all the way back up to the root.

Search times in an AVL tree are O(log N) because the tree is guaranteed to be balanced.
However, because two passes through the tree are necessary to insert (or delete) a node,
one down to find the insertion point and one up to rebalance the tree, AVL trees are not
as efficient as red-black trees and are not used as often.

Multiway Trees
The other important kind of balanced tree is the multiway tree, in which each
node can have more than two children. We’ll look at one version of multiway

trees, the 2-3-4 tree, in Hours 19, “2-3-4 Trees,” and 20, “Implementing 2-3-4 Trees.”

Red-Black Tree Insertions 375

18

NEW TERM

NEW TERM

23 72316331 CH18 10/31/02 7:17 AM Page 375

One problem with multiway trees is that each node must be larger than for a binary tree
because it needs to incorporate a pointer to every one of its children.

Summary
In this hour, you’ve learned the following:

● Color flips, and sometimes rotations, are applied while searching down the tree to
find where a new node should be inserted. These flips simplify returning the tree to
red-black correctness following an insertion.

● After a new node is inserted, red-red conflicts are checked again. If a violation is
found, appropriate rotations are carried out to make the tree red-black correct.

● These adjustments result in the tree being balanced, or at least almost balanced.

● Adding red-black balancing to a binary tree has only a small negative effect on
average performance, and avoids worst-case performance when the data is already
sorted.

Q&A
Q Do I really need to understand how red-black trees work?

A Every detail is critical! No, that’s not really true. If you’re just using a prewritten
class, understanding the general idea is probably all you need. Of course, if you’re
going to write your own red-black tree class, that’s another story.

Q Why don’t you show any C++ code for red-black trees?

A As we noted earlier, it’s so lengthy and complicated it doesn’t really help you
understand the concepts. Also, you’ll probably end up using a prewritten red-black
tree class anyway. If you do want to write your own code, we’ve told you enough
to get you started, and we wish you the best of luck.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

376 Hour 18

23 72316331 CH18 10/31/02 7:17 AM Page 376

Quiz
1. During what operations are color changes and rotations applied?

2. What is the principle way a red-black tree is balanced?

3. What is the purpose of the color rules?

4. What is a color flip?

5. What is a rotation?

6. What’s an inside grandchild?

7. Briefly describe the insertion process in red-black trees.

8. What do you do when Rule 3, (a parent and its child can’t both be red) is violated?

9. How do you know whether to perform a single rotation or a double rotation?

Exercise
Write down 13 random numbers, between 1 and 99, on a piece of paper. Then, using the
RBTree Workshop applet, insert nodes with these 13 values into a new tree. As each
node is inserted, follow the color rules to keep the tree balanced, performing rotations as
necessary. Refer to the lists in the “Outside Grandchild” and “Inside Grandchild” sec-
tions if you’re not sure how to handle rotations. Try this several times with different sets
of numbers.

Red-Black Tree Insertions 377

18

23 72316331 CH18 10/31/02 7:17 AM Page 377

23 72316331 CH18 10/31/02 7:17 AM Page 378

HOUR 19
2-3-4 Trees

In a binary tree, each node has one data item and can have up to two
children. If we allow more data items and children per node, the

result is a multiway tree. 2-3-4 trees, which we’ll discuss in this hour and
the next one, are multiway trees that can have up to four children and three
data items per node.

2-3-4 trees are balanced trees like red-black trees. They’re slightly less effi-
cient than red-black trees, but easier to program. In this hour you’ll learn:

● How a 2-3-4 tree is organized

● How searching and insertion are carried out

● How node splits keep a 2-3-4 tree balanced

In the next hour we’ll look at some C++ code for a 2-3-4 tree, and investi-
gate the surprising relationship between 2-3-4 trees and red-black trees.

Introduction to 2-3-4 Trees
Figure 19.1 shows a small 2-3-4 tree. Each lozenge-shaped node can hold
one, two, or three data items.

NEW TERM

24 72316331 CH19 10/31/02 7:17 AM Page 379

Here the top three nodes have children, and the six nodes on the bottom row are all leaf
nodes, which by definition have no children. In a 2-3-4 tree all the leaf nodes are always
on the same level.

What’s in a Name?
The 2, 3, and 4 in the name 2-3-4 tree refer to how many links to child nodes can poten-
tially exist in a given node. For nonleaf nodes, the following three arrangements are pos-
sible:

● A node with one data item always has two children

● A node with two data items always has three children

● A node with three data items always has four children

In short, a nonleaf node must always have one more child than it has data items. Or, to
put it symbolically, if the number of child links is L and the number of data items is D,
then

L = D + 1

This is a critical relationship that determines the structure of 2-3-4 trees. A leaf node, by
contrast, has no children, but it can nevertheless contain one, two, or three data items.
Empty nodes are not allowed.

Because a 2-3-4 tree can have nodes with up to four children, it’s called a multi-
way tree of order 4.

You might wonder why a 2-3-4 tree isn’t called a 1-2-3-4 tree. Can’t a node have only
one child, as nodes in binary trees can? A binary tree (described in Hours 15 through
18), can be thought of as a multiway tree of order 2 because each node can have up to
two children. However, there’s a difference (besides the maximum number of children)
between binary trees and 2-3-4 trees. In a binary tree, a node can have up to two child
links. A single link, to its left or to its right child, is also perfectly permissible. The other
link has a null value.

380 Hour 19

FIGURE 19.1
A 2-3-4 tree.

50

30

4010 20 62 64 6655 75

60 70 80

83 86

NEW TERM

24 72316331 CH19 10/31/02 7:18 AM Page 380

In a 2-3-4 tree, on the other hand, nodes with a single link are not permitted. A node with
one data item must always have two links, unless it’s a leaf, in which case it has no links.

2-3-4 Trees 381

19

A node must always have at least two children, unless it’s a leaf.

Figure 19.2 shows the possibilities. A node with two links is called a 2-node, a
node with three links is a 3-node, and a node with 4 links is a 4-node, but there

is no such thing as a 1-node.

NEW TERM

FIGURE 19.2
Nodes in a 2-3-4 tree.

25

12 33 37

0

0

1

1

2

0 1 2

0 1 2

2-node

40 62

27 33 51 55 59 83

0 21

3-node

30 35 55 78 100 105

0 21 3

4-node50 75 95

2-3-4 Tree Organization
For convenience we number the data items in a link from 0 to 2, and the child links from
0 to 3, as shown in Figure 19.2. The data items in a node are arranged in ascending key
order; by convention from left to right (lower to higher numbers).

An important aspect of any tree’s structure is the relationship of its links to the key val-
ues of its data items. In a binary tree, all children with keys less than the node’s key are

24 72316331 CH19 10/31/02 7:18 AM Page 381

in a subtree rooted in the node’s left child, and all children with keys larger than or equal
to the node’s key are rooted in the node’s right child. In a 2-3-4 tree the principle is the
same, but there’s more to it, as summarized in the following list:

● All children in the subtree rooted at child 0 have key values less than key 0.

● All children in the subtree rooted at child 1 have key values greater than key 0 but
less than key 1.

● All children in the subtree rooted at child 2 have key values greater than key 1 but
less than key 2.

● All children in the subtree rooted at child 3 have key values greater than key 2.

These relationships between keys and children are shown in Figure 19.3. Duplicate
values are not usually permitted in 2-3-4 trees, so we don’t need to worry about compar-
ing equal keys.

382 Hour 19

FIGURE 19.3
Keys and children.

A B C

Nodes with
keys less
than A

Nodes with
keys between

A and B

Nodes with
keys between

B and C

Nodes with
keys greater

than C

Refer to the tree in Figure 19.1. As in all 2-3-4 trees, the leaves are all on the same level
(the bottom row). Upper-level nodes are often not full; that is, they might contain only
one or two data items instead of three.

Also, notice that the tree is balanced. It retains its balance even if you insert a sequence
of data in ascending (or descending) order. The 2-3-4 tree’s self-balancing capability
results from the way new data items are inserted, as we’ll see in a moment.

24 72316331 CH19 10/31/02 7:18 AM Page 382

Searching for a Data Item
Finding a data item with a particular key is similar to the search routine in a binary tree.
You start at the root, and, unless the search key is found there, select the link that leads
to the subtree with the appropriate range of values.

For example, here’s how to search for the data item with key 64 in the tree in Figure
19.1.

To Do: Search a 2-3-4 Tree
1. Start at the root.

2. You search the root, but don’t find the item.

3. Because 64 is larger than 50, you go to child 1, which we will represent as
60/70/80. (Remember that child 1 is on the right of data item 50 because the num-
bering of children and links starts at 0 on the left of the first item.)

4. You don’t find the data item in this node either, so you must go to the next child.

5. In 60/70/80, because 64 is greater than 60 but less than 70, you go again to child 1,
which is 62/64/66.

6. This time you find the specified item as child 1.

Inserting a New Data Item
New data items are always inserted in leaves, which are on the bottom row of the tree. If
items were inserted in nodes with children, the number of children would need to be
changed to maintain the structure of the tree, which stipulates that there should be one
more child than data items in a node.

Insertion into a 2-3-4 tree is sometimes quite easy and sometimes rather complicated. In
any case the process begins by searching for the appropriate leaf node.

If no full nodes are encountered during the search, insertion is easy. When the appropri-
ate leaf node is reached, the new data item is simply inserted into it. Figure 19.4 shows a
data item with key 18 being inserted into a 2-3-4 tree.

Insertion may involve moving one or two other items in a node so the keys will be in the
correct order after the new item is inserted. In this example the 23 had to be shifted right
to make room for the 18.

2-3-4 Trees 383

19

,
TO

D
O

,

24 72316331 CH19 10/31/02 7:18 AM Page 383

Node Splits
Insertion becomes more complicated if a full node is encountered on the path
down to the insertion point. When this happens, the node must be split. It’s this

splitting process that keeps the tree balanced. The kind of 2-3-4 tree we’re discussing
here is often called a top-down 2-3-4 tree because nodes are split on the way down to the
insertion point.

Let’s name the data items in the node that’s about to be split A, B, and C. Here’s what
happens in a split. (We assume the node being split is not the root; we’ll examine
splitting the root later.)

● A new, empty node is created. It’s a sibling of the node being split, and is placed to
its right.

● Data item C is moved into the new node.

● Data item B is moved into the parent of the node being split.

● Data item A remains where it is.

● The rightmost two children are disconnected from the node being split and con-
nected to the new node.

384 Hour 19

FIGURE 19.4
Insertion with no
splits.

28 55

74

5 9 13 23 30 44 47 97

11 42

63 67 72

a) Before Insertion

28 55

74

5 9 13 18 23 30 44 47 97

11 42

63 67 72

b) After Insertion

23 shifted
right

18 inserted

NEW TERM

24 72316331 CH19 10/31/02 7:18 AM Page 384

An example of a node split is shown in Figure 19.5. Another way of describing a node
split is to say that a 4-node has been transformed into two 2-nodes.

2-3-4 Trees 385

19

FIGURE 19.5
Splitting a node.

62

15 21 47 74 87 89 112

29 83 92 104

97

a) Before Insertion

A B C

62 92

104

15 21 47 74 87 89 112

29 83

97 99

b) After Insertion

83 stays
put

104 moves
right

99 Inserted

This node
is split

99 to be
inserted

92 moves up

New node

A C

B

Notice that the effect of the node split is to move data up and to the right. It’s this
rearrangement that keeps the tree balanced.

Here the insertion required only one node split, but more than one full node might be
encountered on the path to the insertion point. When this is the case there will be multi-
ple splits.

Splitting the Root
When a full root is encountered at the beginning of the search for the insertion point, the
resulting split is slightly more complicated:

● A new node is created that becomes the new root and the parent of the node being
split.

● A second new node is created that becomes a sibling of the node being split.

24 72316331 CH19 10/31/02 7:18 AM Page 385

● Data item C is moved into the new sibling.

● Data item B is moved into the new root.

● Data item A remains where it is.

● The two rightmost children of the node being split are disconnected from it and
connected to the new right-side node.

Figure 19.6 shows the root being split. This process creates a new root that’s at a higher
level than the old one. Thus the overall height of the tree is increased by one. Another
way to describe splitting the root is to say that a 4-node is split into three 2-nodes.

386 Hour 19

FIGURE 19.6
Splitting the root.

9 13 82

26 49 72

A B C

a) Before insertion

The root
is split

New root
node

41 to be
inserted

49 moves up

31 35 52 61

9 13

26

49

A C

B

b) After insertion

26 stays
put

72 moves
right

New right
node

41 inserted

31 35 41 52 61 82

72

Following a node split, the search for the insertion point continues down the tree. In
Figure 19.6, the data item with a key of 41 is inserted into the appropriate leaf.

Splitting Nodes on the Way Down
Notice that because all full nodes are split on the way down, a split can’t cause an effect
that ripples back up through the tree. The parent of any node that’s being split is guaran-
teed not to be full, and can therefore accept data item B without itself needing to be split.

24 72316331 CH19 10/31/02 7:18 AM Page 386

Of course, if this parent already had two children when its child was split, it will become
full. However, that just means that it will be split when the next insertion encounters it.

Figure 19.7 shows a series of insertions into an empty tree. There are four node splits,
two of the root and two of leaves.

2-3-4 Trees 387

19

FIGURE 19.7
Insertions into a 2-3-4
tree.

a)
70 50 30

b)
40

30 50 70

c)
20

50

80

30 40 70

d)

25

90

50

20 30 40 70 80

e)

30 50

20 25 40 70 80 90

75

f)

30 50 80

20 25 40 70 75

10

90

g)

50

10 20 25 40 70 75 90

8030

Now that you understand the general idea behind 2-3-4 trees, let’s see how they look
with a Workshop applet.

The Tree234 Workshop Applet
Operating the Tree234 Workshop applet provides a quick way to see how 2-3-4 trees
work. When you start the applet you’ll see a screen similar to Figure 19.8. The following
sections explain what the various buttons do.

24 72316331 CH19 10/31/02 7:18 AM Page 387

The Fill Button
When it’s first started, the Tree234 Workshop applet inserts 10 data items into the tree.
You can use the Fill button to create a new tree with a different number of data items,
from 0 to 45. Click Fill and type the number into the field when prompted. Another click
will create the new tree.

The tree might not look very full with 45 nodes, but more nodes require more levels,
which won’t fit in the display.

The Find Button
You can watch the applet locate a data item with a given key by repeatedly clicking the
Find button.

To Do: Find a Data Item
1. When prompted, type in the appropriate key.

2. Then, as you click the button, watch the red arrow move from node to node as it
searches for the item.

3. Messages will say something like Went to child number 1. (As we’ve seen, chil-
dren are numbered from 0 to 3 from left to right, whereas data items are numbered
from 0 to 2.)

4. When the arrow reaches the node containing the item (if it exists), you’ll see the
message Found item, number 1 in this node (or whatever item number is
appropriate).

388 Hour 19

FIGURE 19.8
The Tree234 Workshop
applet.

,
TO

D
O

,

24 72316331 CH19 10/31/02 7:18 AM Page 388

After a little practice you should be able to predict the path the search will take.

A search involves examining one node on each level. The applet supports a maximum of
four levels, so any item can be found by examining only four nodes. Within each nonleaf
node, the algorithm examines each data item, starting on the left, to see which child it
should go to next. In a leaf node it examines each data item to see whether it contains the
specified key. If it can’t find such an item in the leaf node, the search fails.

2-3-4 Trees 389

19

In the Tree234 Workshop applet it’s important to complete each operation
before attempting a new one. Continue to click the button until the mes-
sage says Press any button. This is the signal that an operation is complete.

The Ins Button
The Ins button causes a new data item, with a key specified in the text box, to be inserted
in the tree. The algorithm first searches for the appropriate node. If the algorithm
encounters a full node along the way, it splits the node before continuing.

Experiment with the insertion process. Watch what happens when there are no full nodes
on the path to the insertion point. This is a straightforward process. Then try inserting at
the end of a path that includes a full node, either at the root, at the leaf, or somewhere in
between. Watch how new nodes are formed and the contents of the node being split are
distributed among three different nodes.

The Zoom Button
One of the problems with 2-3-4 trees is that there are a great many nodes and data items
just a few levels down. The Tree234 Workshop applet supports only four levels, but there
are potentially 64 nodes on the bottom level, each of which can hold up to three data
items.

It would be impossible to display so many items at once on one row, so the applet shows
only some of them: the children of a selected node. (To see the children of another node,
you click on it; we’ll discuss that in a moment.) To see a zoomed-out view of the entire
tree, click the Zoom button. Figure 19.9 shows what you’ll see.

In this view nodes are shown as small rectangles; data items are not shown. Nodes that
exist and are visible in the zoomed-in view (which you can restore by clicking Zoom
again) are shown in green. Nodes that exist but aren’t currently visible in the zoomed-out

24 72316331 CH19 10/31/02 7:18 AM Page 389

view are shown in magenta, and nodes that don’t exist are shown in gray. These colors
are hard to distinguish on the figure; you’ll need to view the applet on your color moni-
tor to make sense of the display.

390 Hour 19

FIGURE 19.9
The zoomed-out view.

Viewing Different Nodes
In the zoomed-in view you can always see all the nodes in the top two rows: there’s only
one node, the root, in the top row, and only four nodes in the second row. Below the sec-
ond row things get more complicated because there are too many nodes to fit on the
screen: 16 on the third row, and 64 on the fourth. However, you can see any node you
want by clicking on its parent, or sometimes its grandparent and then its parent.

A blue triangle at the bottom of a node shows where a child is connected to a node. If a
node’s children are currently visible, the lines to the children can be seen running from
the blue triangles to them. If the children aren’t currently visible, there are no lines, but
the blue triangles indicate that the node nevertheless has children. If you click on the par-
ent node, its children, and the lines to them, will appear. By clicking the appropriate
nodes you can navigate all over the tree.

Using the Zoom button to toggle back and forth between the zoomed-out
and zoomed-in views allows you to see both the big picture and the details,
and hopefully put the two together in your mind.

24 72316331 CH19 10/31/02 7:18 AM Page 390

Figure 19.10 shows a small tree with four nodes in the third row. The user has clicked on
node 1, so its two children, numbered 5 and 6, are visible.

2-3-4 Trees 391

19

For convenience, all the nodes are numbered, starting with 0 at the root
and continuing up to 85 for the node on the far right of the bottom row.
The numbers are displayed to the upper right of each node, as shown in
Figure 19.8. Nodes are numbered whether they exist or not, so the numbers
on existing nodes probably won’t be contiguous.

FIGURE 19.10
Selecting the leftmost
children.

If the user clicks on node 2, its children 9 and 10 will appear, as shown in Figure 19.11.

FIGURE 19.11
Selecting the rightmost
children.

24 72316331 CH19 10/31/02 7:18 AM Page 391

These figures show how to switch among different nodes in the third row by clicking
nodes in the second row. To switch nodes in the fourth row you’ll need to click first on a
grandparent in the second row, and then on a parent in the third row.

During searches and insertions with the Find and Ins buttons, the view will change
automatically to show the node currently being pointed to by the red arrow.

Experimenting on Your Own
The Tree234 Workshop applet offers a quick way to learn about 2-3-4 trees. Try inserting
items into the tree. Watch for node splits. Stop before one is about to happen, and figure
out where the three data items from the split node are going to go. Then press Ins again
to see if you’re right.

392 Hour 19

As the tree gets larger you’ll need to move around it to see all the nodes.
Click on a node to see its children (and their children, and so on). If you lose
track of where you are, use the Zoom key to see the big picture.

How many data items can you insert in the tree? There’s a limit because only four levels
are allowed. Four levels can potentially contain 1 + 4 + 16 + 64 nodes, for a total of 85
nodes (all visible on the zoomed-out display). Assuming a full 3 items per node gives
255 data items. However, the nodes can’t all be full at the same time. Long before they
fill up, another root split, leading to five levels, would be necessary, and this is impossi-
ble because the applet supports only four levels.

You can insert the most items by deliberately inserting them into nodes that lie on paths
with no full nodes, so that no splits are necessary. Of course this is not a reasonable pro-
cedure with real data. For random data you probably can’t insert more than about 50
items into the applet. The Fill button allows only 45, to minimize the possibility of over-
flow.

Summary
In this hour, you’ve learned the following:

● Nodes in a multiway tree have more keys and children than nodes in a binary tree.

● A 2-3-4 tree is a multiway tree with up to three keys and four children per node.

● In a multiway tree, the keys in a node are arranged in ascending order.

24 72316331 CH19 10/31/02 7:18 AM Page 392

● In a 2-3-4 tree, all insertions are made in leaf nodes, and all leaf nodes are on the
same level.

● Three kinds of nodes are possible in a 2-3-4 tree: A 2-node has one key and two
children, a 3-node has two keys and three children, and a 4-node has three keys
and four children.

● There is no 1-node in a 2-3-4 tree.

● In a search in a 2-3-4 tree, at each node the keys are examined. If the search key is
not found, the next node will be child 0 if the search key is less than key 0; child 1
if the search key is between key 0 and key 1; child 2 if the search key is between
key 1 and key 2; and child 3 if the search key is greater than key 2.

● Insertion into a 2-3-4 tree requires that any full node be split on the way down the
tree, during the search for the insertion point.

● Splitting the root creates two new nodes; splitting any other node creates one new
node.

● The height of a 2-3-4 tree can increase only when the root is split.

Q&A
Q When would I use a 2-3-4 tree as opposed to a red-black tree?

A If you’re using prewritten software, you’ll find that red-black trees are the most
commonly available tree. If for some reason you need to write your own tree soft-
ware, the 2-3-4 tree is probably easier to program.

Q Are there other reasons to know about 2-3-4 trees?

A Yes. 2-3-4 trees are a special form of a multiway tree, and a special kind of multi-
way tree called a B-tree is important for storing data on disk drives. We’ll comment
on this at the end of the next hour.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. True or false: In a multiway tree, each node can have more than two children.

2. What is the maximum number of data items per node in a 2-3-4 tree?

3. When should a node be split?

2-3-4 Trees 393

19

24 72316331 CH19 10/31/02 7:18 AM Page 393

4. What happens when a node (other than the root) is split?

5. If a node is split (assuming it’s not the root) what is the increase in the number of
levels in the tree?

6. What happens when the root is split?

7. True or false: Sometimes a node split results in additional node splits in nodes far-
ther up the tree.

8. What keeps a 2-3-4 tree balanced?

Exercise
Write down a series of 30 random numbers in the range 1 to 99. Use the Tree234
Workshop applet to create a tree containing these numbers as data items. Start with an
empty tree using the Fill button with a value of 0.

394 Hour 19

24 72316331 CH19 10/31/02 7:18 AM Page 394

HOUR 20
Implementing 2-3-4 Trees

In this hour we’ll continue our exploration of 2-3-4 trees. We’ll examine

● C++ code for a 2-3-4 tree

● The equivalence of 2-3-4 trees and red-black trees

● The efficiency of 2-3-4 trees

The second point might seem surprising, but it turns out a red-black tree can
be transformed into a 2-3-4 tree by following some simple rules. First,
though, we’ll focus on programming.

Implementing a 2-3-4 Tree in C++
In this section we’ll examine a C++ program that models a 2-3-4 tree. We’ll
show the complete tree234.cpp program at the end of the section. This is a
relatively large and complex program, and the classes are extensively inter-
related, so you’ll need to peruse the entire listing to see how it works.

There are three classes: DataItem, Node, and Tree234, as well as the main()
function. We’ll discuss them in turn.

25 72316331 Ch20 10/31/02 7:18 AM Page 395

The DataItem Class
Objects of this class represent the data items stored in nodes. In a real-world program
each object would contain an entire personnel or inventory record, but here there’s only
one piece of data, of type double, associated with each DataItem object.

The only actions that objects of this class can perform are to initialize themselves and
display themselves. The display is the data value preceded by a slash: /27. (The display
routine in the Node class will call this routine to display all the items in a node.)

The Node Class
The Node class contains two arrays: childArray and itemArray. The first array is four
cells long and holds pointers to whatever children the node might have. The second array
is three cells long and holds pointers to objects of type DataItem contained in the node.

Note that the data items in itemArray comprise an ordered array. New items are added,
or existing ones removed, in the same way they would be in any ordered array (as
described in Hour 3, “Ordered Arrays”). Items might need to be shifted to make room to
insert a new item in order, or to close an empty cell when an item is removed.

We’ve chosen to store the number of items currently in the node (numItems) and the
node’s parent (pParent) as data members in this class. Neither of these is strictly neces-
sary, and could be eliminated to make the nodes smaller. However, including them clari-
fies the programming, and only a small price is paid in increased node size.

Various small utility routines are provided in the Node class to manage the connections to
child and parent and to check whether the node is full and whether it is a leaf. However,
the major work is done by the findItem(), insertItem(), and removeItem() member
functions. These handle individual items within the node. They search through the node
for a data item with a particular key; insert a new item into the node, moving existing
items if necessary; and remove an item, again moving existing items if necessary. Don’t
confuse these member functions with the find() and insert() routines in the Tree234
class, which we’ll look at next.

A display routine displays a node with slashes separating the data items, like /27/56/89/,
/14/66/, or /45/. It calls the displayItem() routine in the DataItem class to display each
item’s key.

The Tree234 Class
An object of the Tree234 class represents the entire tree. The class has only one data
member: pRoot, of type Node*. All operations start at the root, so that’s all a tree needs to
remember.

396 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 396

The two important tasks carried out by the Tree234 class are searching and insertion.
Insertion requires another task: splitting nodes. Let’s look at these three activities.

Searching
Searching for a data item with a specified key is carried out by the find() routine. It
starts at the root, and at each node calls that node’s findItem() routine to see whether
the item is there. If so, it returns the index of the item within the node’s item array.

If find() is at a leaf and can’t find the item, the search has failed, so it returns -1. If it
can’t find the item in the current node, and the current node isn’t a leaf, find() calls the
getNextChild() member function, which figures out which of a node’s children the rou-
tine should go to next.

Inserting
The insert() member function starts with code similar to find(), except that if
insert() finds a full node it splits it. Also, insert() assumes it can’t fail; it keeps look-
ing, going to deeper and deeper levels, until it finds a leaf node. At this point it inserts
the new data item into the leaf. (There is always room in the leaf, otherwise the leaf
would have been split.)

Splitting
The split() member function is the most complicated in this program. It is passed the
node that will be split as an argument. First, the two rightmost data items are removed
from the node and stored. Then the two rightmost children are disconnected; their point-
ers are also stored.

A new node, pointed to by pNewRight, is created. It will be placed to the right of the
node being split. If the node being split is the root, an additional new node is created: a
new root.

Next, appropriate connections are made to the parent of the node being split. It might be
a pre-existing parent, or if the root is being split it will be the newly created root node.
Assume the three data items in the node being split are called A, B, and C. Item B is
inserted in this parent node. If necessary, the parent’s existing children are disconnected
and reconnected one position to the right to make room for the new data item and new
connections. The pNewRight node is connected to this parent. (Refer to Figures 19.5 and
19.6 in the last hour.)

Now the focus shifts to the pNewRight node. Data item C is inserted in it, and child 2 and
child 3, which were previously disconnected from the node being split, are connected to
it. The split is now complete, and the split() routine returns.

Implementing 2-3-4 Trees 397

20

25 72316331 Ch20 10/31/02 7:18 AM Page 397

Now let’s see how main() uses the Tree234 class to store and access data.

The main() Function
The main() routine inserts a few data items into the tree. It then presents a character-
based interface for the user, who can enter s to see the tree, i to insert a new data item,
and f to find an existing item. Here’s some sample interaction:

Enter first letter of show, insert, or find: s
level=0 child=0 /50/
level=1 child=0 /30/40/
level=1 child=1 /60/70/

Enter first letter of show, insert, or find: f
Enter value to find: 40
Found 40

Enter first letter of show, insert, or find: i
Enter value to insert: 20
Enter first letter of show, insert, or find: s
level=0 child=0 /50/
level=1 child=0 /20/30/40/
level=1 child=1 /60/70/

Enter first letter of show, insert, or find: i
Enter value to insert: 10
Enter first letter of show, insert, or find: s
level=0 child=0 /30/50/
level=1 child=0 /10/20/
level=1 child=1 /40/
level=1 child=2 /60/70/

The output is not very intuitive, but there’s enough information to draw the tree on paper
if you want. The level is shown, starting with 0 at the root, as well as the child number.
The display algorithm is depth-first, so the root is shown first, then its first child and the
subtree of which the first child is the root, then the second child and its subtree, and
so on.

The output shows two items being inserted, 20 and 10. The second of these caused a
node (the root’s child 0) to split. Figure 20.1 depicts the tree that results from these inser-
tions, following the final press of the S key.

Listing for tree234.cpp
Listing 20.1 shows the complete tree234.cpp program, including the classes just dis-
cussed. As with most object-oriented programs, it’s probably easiest to start by examin-
ing the big picture first and then working down to the detail-oriented classes. In this
program this order is main(), Tree234, Node, and DataItem.

398 Hour 20

INPUT/
OUTPUT

25 72316331 Ch20 10/31/02 7:18 AM Page 398

LISTING 20.1 THE tree234.cpp PROGRAM

//tree234.cpp
//demonstrates 234 tree
#include <iostream>
using namespace std;
//
class DataItem

{
public:

double dData; //one piece of data
//---

DataItem() : dData(0.0) //default constructor
{ }

//---
DataItem(double dd) : dData(dd) //1-arg constructor

{ }
//---

void displayItem() //format “/27”
{ cout << “/” << dData; }

}; //end class DataItem
//
class Node

{
private:

enum {ORDER=4};
int numItems;
Node* pParent;
Node* childArray[ORDER]; //array of ptrs to nodes
DataItem* itemArray[ORDER-1]; //array of ptrs to data

public:

Implementing 2-3-4 Trees 399

20

FIGURE 20.1
Sample output of the
tree234.cpp program.

10 20 40

30 50

60 70

Child 0

Child 0 Child 1 Child 2

Level 0

Level 1

INPUT

continues

25 72316331 Ch20 10/31/02 7:18 AM Page 399

LISTING 20.1 CONTINUED

//---
Node() : numItems(0)

{
for(int j=0; j<ORDER; j++) //initialize arrays

childArray[j] = NULL;
for(int k=0; k<ORDER-1; k++)

itemArray[k] = NULL;
}

//---
//connect child to this node
void connectChild(int childNum, Node* pChild)

{
childArray[childNum] = pChild;
if(pChild != NULL)

pChild->pParent = this;
}

//---
//disconnect child from this node, return it
Node* disconnectChild(int childNum)

{
Node* pTempNode = childArray[childNum];
childArray[childNum] = NULL;
return pTempNode;
}

//---
Node* getChild(int childNum)

{ return childArray[childNum]; }
//---

Node* getParent()
{ return pParent; }

//---
bool isLeaf()

{ return (childArray[0]==NULL) ? true : false; }
//---

int getNumItems()
{ return numItems; }

//---
DataItem getItem(int index) //get DataItem at index

{ return *(itemArray[index]); }
//---

bool isFull()
{ return (numItems==ORDER-1) ? true : false; }

//---
int findItem(double key) //return index of

{ //item (within node)
for(int j=0; j<ORDER-1; j++) //if found,

{ //otherwise,
if(itemArray[j] == NULL) //return -1

400 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 400

break;
else if(itemArray[j]->dData == key)

return j;
}

return -1;
} //end findItem

//---
int insertItem(DataItem* pNewItem)

{
//assumes node is not full
numItems++; //will add new item
double newKey = pNewItem->dData; //key of new item

for(int j=ORDER-2; j>=0; j--) //start on right,
{ // examine items
if(itemArray[j] == NULL) //if item null,

continue; //go left one cell
else //not null,

{ //get its key
double itsKey = itemArray[j]->dData;
if(newKey < itsKey) //if it’s bigger

itemArray[j+1] = itemArray[j]; //shift it right
else

{
itemArray[j+1] = pNewItem; //insert new item
return j+1; //return index to
} // new item

} //end else (not null)
} //end for //shifted all items,

itemArray[0] = pNewItem; //insert new item
return 0;
} //end insertItem()

//---
DataItem* removeItem() //remove largest item

{
//assumes node not empty
DataItem* pTemp = itemArray[numItems-1]; //save item
itemArray[numItems-1] = NULL; //disconnect it
numItems--; //one less item
return pTemp; //return item
}

//---
void displayNode() //format “/24/56/74/”

{
for(int j=0; j<numItems; j++)

itemArray[j]->displayItem(); //format “/56”
cout << “/”; //final “/”
}

//---

Implementing 2-3-4 Trees 401

20

continues

25 72316331 Ch20 10/31/02 7:18 AM Page 401

LISTING 20.1 CONTINUED

}; //end class Node
//
class Tree234

{
private:

Node* pRoot; //root node
public:

//---
Tree234()

{ pRoot = new Node; }
//---

int find(double key)
{
Node* pCurNode = pRoot; //start at root
int childNumber;
while(true)

{
if((childNumber=pCurNode->findItem(key)) != -1)

return childNumber; //found it
else if(pCurNode->isLeaf())

return -1; //can’t find it
else //search deeper

pCurNode = getNextChild(pCurNode, key);
} //end while

}
//---

void insert(double dValue) //insert a DataItem
{
Node* pCurNode = pRoot;
DataItem* pTempItem = new DataItem(dValue);

while(true)
{
if(pCurNode->isFull()) //if node full,

{
split(pCurNode); //split it
pCurNode = pCurNode->getParent(); //back up

//search once
pCurNode = getNextChild(pCurNode, dValue);
} //end if(node is full)

else if(pCurNode->isLeaf()) //if node is leaf,
break; //go insert

//node is not full, not a leaf; so go to lower level
else

pCurNode = getNextChild(pCurNode, dValue);
} //end while

402 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 402

pCurNode->insertItem(pTempItem); //insert new item
} //end insert()

//---
void split(Node* pThisNode) //split the node

{
//assumes node is full
DataItem *pItemB, *pItemC;
Node *pParent, *pChild2, *pChild3;
int itemIndex;

pItemC = pThisNode->removeItem(); //remove items from
pItemB = pThisNode->removeItem(); //this node
pChild2 = pThisNode->disconnectChild(2); //remove children
pChild3 = pThisNode->disconnectChild(3); //from this node

Node* pNewRight = new Node; //make new node

if(pThisNode==pRoot) //if this is the root,
{
pRoot = new Node(); //make new root
pParent = pRoot; //root is our parent
pRoot->connectChild(0, pThisNode); //connect to parent
}

else //this node not the root
pParent = pThisNode->getParent(); //get parent

//deal with parent
itemIndex = pParent->insertItem(pItemB); //item B to parent
int n = pParent->getNumItems(); //total items?

for(int j=n-1; j>itemIndex; j--) //move parent’s
{ //connections
Node* pTemp = pParent->disconnectChild(j); //one child
pParent->connectChild(j+1, pTemp); //to the right
}

//connect newRight to parent
pParent->connectChild(itemIndex+1, pNewRight);

//deal with newRight
pNewRight->insertItem(pItemC); //item C to newRight
pNewRight->connectChild(0, pChild2); //connect to 0 and 1
pNewRight->connectChild(1, pChild3); //on newRight
} //end split()

//---
//gets appropriate child of node during search for value
Node* getNextChild(Node* pNode, double theValue)

{
int j;
//assumes node is not empty, not full, not a leaf

Implementing 2-3-4 Trees 403

20

continues

25 72316331 Ch20 10/31/02 7:18 AM Page 403

LISTING 20.1 CONTINUED

int numItems = pNode->getNumItems();
for(j=0; j<numItems; j++) //for each item in node

{ //are we less?
if(theValue < pNode->getItem(j).dData)

return pNode->getChild(j); //return left child
} //end for //we’re greater, so

return pNode->getChild(j); //return right child
}

//---
void displayTree()

{
recDisplayTree(pRoot, 0, 0);
}

//---
void recDisplayTree(Node* pThisNode, int level,

int childNumber)
{
cout << “level=” << level

<< “ child=” << childNumber << “ “;
pThisNode->displayNode(); //display this node
cout << endl;

//call ourselves for each child of this node
int numItems = pThisNode->getNumItems();
for(int j=0; j<numItems+1; j++)

{
Node* pNextNode = pThisNode->getChild(j);
if(pNextNode != NULL)

recDisplayTree(pNextNode, level+1, j);
else

return;
}

} //end recDisplayTree()
//--

}; //end class Tree234
//
int main()

{
double value;
Tree234* pTree = new Tree234;
pTree->insert(50);
pTree->insert(40);
pTree->insert(60);
pTree->insert(30);
pTree->insert(70);

while(true)
{

404 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 404

int found;

cout << “Enter first letter of show, insert, or find: “;
char choice;
cin >> choice;
switch(choice)

{
case ‘s’:

pTree->displayTree();
break;

case ‘i’:
cout << “Enter value to insert: “;
cin >> value;
pTree->insert(value);
break;

case ‘f’:
cout << “Enter value to find: “;
cin >> value;
found = pTree->find(value);
if(found != -1)

cout << “Found “ << value << endl;
else

cout << “Could not find “ << value << endl;
break;

default:
cout << “Invalid entry\n”;

} //end switch
} //end while

return 0;
delete pTree;
} //end main()

In a commercial program we would need to include code to delete the memory allocated
for all the data items and nodes. This code could go in the 234Tree class destructor.
However, this code is quite complicated and adds little to understanding the fundamental
operations of 2-3-4 trees, so we don’t show it here.

You can exit the program by typing the Ctrl+C key combination.

This completes our examination of 2-3-4 trees. Now we’ll move on to a somewhat
unusual topic: the relationship between 2-3-4 trees and red-black trees.

2-3-4 Trees and Red-Black Trees
At this point 2-3-4 trees and red-black trees (described in Hours 17, “Red-Black
Trees,” and 18, “Red-Black Tree Insertions”) probably seem like entirely

Implementing 2-3-4 Trees 405

20

NEW TERM

25 72316331 Ch20 10/31/02 7:18 AM Page 405

different entities. However, it turns out that in a certain sense they are completely equiva-
lent. One can be transformed into the other by the application of a few simple rules, and
even the operations needed to keep them balanced are equivalent. Mathematicians would
say they were isomorphic, which means there is a one-to-one correspondence between
the parts or operations of two different things.

You probably won’t ever need to transform a 2-3-4 tree into a red-black tree, but the
equivalence of these structures casts additional light on their operation and is useful in
analyzing their efficiency. Historically the 2-3-4 tree was developed first; the red-black
tree evolved from it.

Transformation from 2-3-4 to Red-Black
A 2-3-4 tree can be transformed into a red-black tree by applying the following rules:

● Transform any 2-node in the 2-3-4 tree into a black node in the red-black tree.

● Transform any 3-node into a child C (with two children of its own) and a parent P
(with children C and one other child). It doesn’t matter which item becomes the
child and which the parent. C is colored red and P is colored black.

● Transform any 4-node into a parent P and two children C1 and C2, both with two
children of their own. C1 and C2 are colored red and P is black.

Figure 20.2 shows these transformations. The child nodes in these subtrees are colored
red; all other nodes are colored black.

Figure 20.3 shows a 2-3-4 tree and the corresponding red-black tree obtained by apply-
ing these transformations. Dotted lines surround the subtrees that were made from 3-
nodes and 4-nodes. The red-black rules are automatically satisfied by the transformation.
Check that this is so: Two red nodes are never connected, and there is the same number
of black nodes on every path from root to leaf (or null child).

You can say that a 3-node in a 2-3-4 tree is equivalent to a parent with a red child in a
red-black tree, and a 4-node is equivalent to a parent with two red children. It follows
that a black parent with a black child in a red-black tree does not represent a 3-node in a
2-3-4 tree; it simply represents a 2-node with another 2-node child. Similarly, a black
parent with two black children does not represent a 4-node.

Operational Equivalence
Not only does the structure of a red-black tree correspond to a 2-3-4 tree, but the opera-
tions applied to these two kinds of trees are also equivalent. In a 2-3-4 tree the tree is
kept balanced using node splits. In a red-black tree the two balancing methods are color

406 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 406

flips and rotations. Let’s examine the equivalence of 4-node splits and color flips first,
and then the equivalence of 3-node splits and rotations.

Implementing 2-3-4 Trees 407

20

FIGURE 20.2
Transformations: 2-3-4
to red-black.

a) 2-Node

Black

Either
of these
is valid

33

W X W X

33

c) 4-Node

Black

16 42 66

W X Y

Red

42

Black

W X Y Z

16 66

b) 3-Node

27 55

W X Y

W X

Y
27

55

X Y

W
55

27

Z

4-Node Splits and Color Flips
As you descend a 2-3-4 tree searching for the insertion point for a new node, you split
each 4-node into two 2-nodes. In a red-black tree you perform color flips. How are these
operations equivalent?

In Figure 20.4a we show a 4-node in a 2-3-4 tree before it is split; Figure 20.4b shows
the situation after the split. The 2-node that was the parent of the 4-node becomes a 3-
node.

25 72316331 Ch20 10/31/02 7:18 AM Page 407

408 Hour 20

FIGURE 20.3
A 2-3-4 tree and its
red-black equivalent.

37

5 32 33 35 40 50 53 57 86 98

30 34 48 60 82

69

a) 2-3-4 tree

b) Red-black tree

Black Node

50

33

25

34 60

37

5 32 40 69

30 8248

53 98

50 57 86

35
Red Node

FIGURE 20.4
4-node split and color
flip.

40 50 60 80 40 60

70 50 70

80

a) Before split b) After split

c) Before color flip d) After color flip

Two red children

70

50

40 60

80

One red
child

3-node

70

80

4-node

4-node

3-node

A B C A C

B

50

40 60

25 72316331 Ch20 10/31/02 7:18 AM Page 408

In Figure 20.4c we show the red-black equivalent to the 2-3-4 tree in Figure 20.4a. The
dotted line surrounds the equivalent of the 4-node. A color flip results in the red-black
tree of Figure 20.4d. Now nodes 40 and 60 are black and 50 is red. Thus 50 and its par-
ent form the equivalent of a 3-node, as shown by the dotted line. This is the same 3-node
formed by the node split in Figure 20.4b.

Thus we see that splitting a 4-node during the insertion process in a 2-3-4 tree is equiva-
lent to performing color flips during the insertion process in a red-black tree.

3-Node Splits and Rotations
When a 3-node in a 2-3-4 tree is transformed into its red-black equivalent, two arrange-
ments are possible, as we showed earlier in Figure 20.2b. Either of the two data items
can become the parent. Depending on which one is chosen, the child will be either a left
child or a right child, and the slant of the line connecting parent and child will be either
left or right.

Both arrangements are valid; however, they might not contribute equally to balancing the
tree. Let’s look at the situation in a slightly larger context.

Figure 20.5a shows a 2-3-4 tree, and Figures 20.5b and 20.5c show two equivalent red-
black trees derived from the 2-3-4 tree by applying the transformation rules. The differ-
ence between them is the choice of which of the two data items in the 3-node to make
the parent—in Figure 20.5b, 80 is the parent; in Figure 20.5c, it’s 70.

Although these arrangements are equally valid, you can see that the tree in Figure 20.5b
is not balanced, whereas that in Figure 20.5c is balanced. Given the red-black tree in
Figure 20.5b, we would want to rotate it to the right (and perform two color changes) to
balance it. Amazingly, this rotation results in the exact same tree shown in Figure 20.5c.

Thus we see an equivalence between rotations in red-black trees and the choice of which
node to make the parent when transforming 2-3-4 trees to red-black trees. Although we
don’t show it, a similar equivalence can be seen for the double rotation necessary for
inside grandchildren.

Efficiency of 2-3-4 Trees
It’s harder to analyze the efficiency of a 2-3-4 tree than a red-black tree, but the equiva-
lence of red-black trees and 2-3-4 trees gives us a starting point. We’ll look at efficiency
in terms of both speed and storage requirements.

Implementing 2-3-4 Trees 409

20

25 72316331 Ch20 10/31/02 7:18 AM Page 409

Speed
As we saw in Hour 15, “Binary Trees,” in a red-black tree one node on each level must
be visited during a search, whether to find an existing node or insert a new one. The
number of levels in a red-black tree (a balanced binary tree) is about log2(N+1), so
search times are proportional to this.

One node must be visited at each level in a 2-3-4 tree as well, but the 2-3-4 tree is
shorter (has fewer levels) than a red-black tree with the same number of data items.
Refer back to Figure 20.3, where the 2-3-4 tree has three levels and the red-black tree
has five.

410 Hour 20

FIGURE 20.5
3-node and rotation.

40 50 60 75

70 80

85

a) 2-3-4 tree

b) Left slant

Color change

80

70

Color change

Rotation

85

50 75

40 60

c) Right slant

Black node

Red node
75 8560

80

40

50

70

25 72316331 Ch20 10/31/02 7:18 AM Page 410

More specifically, in 2-3-4 trees there are up to 4 children per node. If every node were
full, the height of the tree would be proportional to log4N. Logarithms to the base 2 and
to the base 4 differ by a constant factor of 2. Thus the height of a 2-3-4 tree would be
about half that of a red-black tree, provided that all the nodes were full. Because they
aren’t all full, the height of a 2-3-4 tree is somewhere between log2(N+1) and
log2(N+1)/2.

Thus the reduced height of the 2-3-4 tree decreases search times slightly compared with
red-black trees.

On the other hand, there are more items to examine in each node, which increases the
search time. Because the data items in the node are examined using a linear search, this
multiplies the search times by an amount proportional to M, the average number of items
per node. The result is a search time proportional to M*log4N.

Some nodes contain one item, some two, and some three. If we estimate that the average
is two, search times will be proportional to 2*log4N. This is a small constant number that
can be ignored in Big O notation.

Thus for 2-3-4 trees the increased number of items per node tends to cancel out the
decreased height of the tree. The search times for a 2-3-4 tree and for a balanced binary
tree such as a red-black tree are approximately equal, and are both O(log N).

Storage Requirements
Each node in a 2-3-4 tree contains storage for three pointers to data items and four point-
ers to its children. This space may be in the form of arrays as shown in tree234.cpp, or
of individual variables. Not all this storage is used. A node with only one data item will
waste two-thirds of the space for data and one-half the space for children. A node with
two data items will waste one-third of the space for data and one-quarter of the space for
children; or to put it another way, it will use 5/7 of the available space.

If we take two data items per node as the average utilization, about 2/7 of the available
storage is wasted.

One might imagine using linked lists instead of arrays to hold the child and data pointers,
but for only three or four items, the overhead of the linked list compared with an array
would probably not make this a worthwhile approach.

Because they’re balanced, red-black trees contain few nodes that have only one child, so
almost all the storage for child pointers is used. Also, every node contains the maximum
number of data items, which is one. This makes red-black trees more efficient than 2-3-4
trees in terms of memory usage.

Implementing 2-3-4 Trees 411

20

25 72316331 Ch20 10/31/02 7:18 AM Page 411

If we store pointers to objects instead of the objects themselves, this difference in storage
between 2-3-4 trees and red-black trees might not be important, and the programming is
certainly simpler for 2-3-4 trees. However, if we store the objects themselves, the differ-
ence in storage efficiency between red-black trees and 2-3-4 trees might be significant.

Let’s wrap up our discussion of 2-3-4 trees by mentioning how they relate to storing data
on disk drives.

B-Trees and External Storage
An important reason for learning about 2-3-4 trees is that they are a simple form of mul-
tiway tree. They are multiway trees of order 4 (where the order is the number of possible
children). It turns out that multiway trees called B-trees, which have a much larger order,
are very useful for external storage.

External storage means data storage devices outside of main memory, such as disk dri-
ves. Such devices require a different approach than does storing data in memory. This
results from the physical properties of the device. In memory, every byte can be accessed
in the same amount of time. On a disk drive, it takes a long time to access the first byte
in a sequence, but after the first byte is found, subsequent bytes can be accessed more
quickly.

In a B-tree, a sequence of data (a block) on a disk drive is made to correspond to a node
in a B-tree. For efficiency, the nodes hold a large number of data items, and have a corre-
spondingly large number of children. However, aside from this disparity in node size, the
principles of B-tree operation are much the same as those of 2-3-4 trees.

Summary
In this hour, you’ve learned the following:

● There is a one-to-one correspondence between a 2-3-4 tree and a red-black tree.

● To transform a 2-3-4 tree into a red-black tree, make each 2-node into a black
node, make each 3-node into a black parent with a red child, and make each 4-
node into a black parent with two red children.

● When a 3-node is transformed into a parent and child, either node can become the
parent.

● Splitting a node in a 2-3-4 tree is the same as performing a color flip in a red-black
tree.

● A rotation in a red-black tree corresponds to changing between the two possible
orientations (slants) when transforming a 3-node.

412 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 412

● The height of a 2-3-4 tree is less than log2N.

● Search times are proportional to the height.

● The 2-3-4 tree wastes space because many nodes are not even half full.

Q&A
Q Can I use the code in the tree234.cpp program in a production job?

A Not without modification. As it stands, it has a memory leak because the data items
and nodes aren’t deleted at the end of the program. There’s also no way to remove
data items from the tree, which you would probably want in a serious program.

Q What’s the practical importance of the correspondence between red-black
trees and 2-3-4 trees?

A In terms of using an existing tree class, probably not much. However, it does cast
an interesting light on how both kinds of trees work to understand that they are
essentially the same.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. In the tree234.cpp program, what C++ feature corresponds to a connection from

one node to another?

2. What is the equivalent in a red-black tree to a 2-node in a 2-3-4 tree?

3. True or false: There are two equivalent ways to transform a 4-node in a 2-3-4 tree
into a red-black equivalent.

4. When a 3-node is transformed into its equivalent in a red-black tree, does it matter
whether the child is red or black?

5. What operation in a 2-3-4 tree corresponds to a rotation in a red-black tree?

6. What does a color flip in a red-black tree correspond to in a 2-3-4 tree?

7. Does a 2-3-4 tree operate at the same Big O speed as a red-black tree?

Implementing 2-3-4 Trees 413

20

25 72316331 Ch20 10/31/02 7:18 AM Page 413

Exercise
Write 10 random numbers on a piece of paper. Use them to create a 2-3-4 tree. You can
use the Tree234 Workshop applet if you want. Now, using pencil and paper, transform
this 2-3-4 tree into a red-black tree using the rules discussed in this hour and shown in
Figure 20.2. Finally, insert the resulting tree into the RBTree Workshop applet to make
sure it is red-black correct.

414 Hour 20

25 72316331 Ch20 10/31/02 7:18 AM Page 414

Hour
21 Hash Tables

22 Quadratic Probing

23 Separate Chaining

24 When to Use What

PART V
Hash Tables

26 72316331 pt5 10/31/02 6:56 AM Page 415

26 72316331 pt5 10/31/02 6:56 AM Page 416

HOUR 21
Hash Tables

A hash table is a data structure that offers very fast insertion and searching,
but with disadvantages in some circumstances. In this hour you’ll learn

● The basic idea behind hash tables

● The simplest hashing scheme: linear probing

● How to write C++ code for linear probing

We’ll discuss hashing in this and the next two hours. In Hour 22, “Quadratic
Probing,” we’ll show several alternatives to linear probing. In Hour 23,
“Separate Chaining,” we’ll show a different conceptual approach to hashing.
These schemes all attempt to solve some of the problems inherent in simple
linear probing.

Introduction to Hashing
When you first hear about them, hash tables sound almost too good to be
true. No matter how many data items there are, insertion and searching (and
sometimes deletion) can take close to constant time: O(1) in Big O notation.
In practice this is just a few machine instructions.

27 72316331 Ch21 10/31/02 7:18 AM Page 417

For a human user of a hash table this is essentially instantaneous. It’s so fast that com-
puter programs typically use hash tables when they need to look up tens of thousands of
items in less than a second (as in spelling checkers). Hash tables are significantly faster
than trees, which, as we learned in the preceding hours, operate in relatively fast O(log
N) time. Not only are they fast, hash tables are relatively easy to program.

Hash tables do have several disadvantages. They’re based on arrays, and arrays are diffi-
cult to expand after they’ve been created. Also, for some kinds of hash tables, perfor-
mance might degrade catastrophically when the table becomes too full, so the
programmer needs to have a fairly accurate idea of how many data items will need to be
stored (or be prepared to periodically transfer data to a larger hash table, a time-
consuming process).

Also, there’s no convenient way to visit the items in a hash table in any kind of order
(such as from smallest to largest). If you need this capability, you’ll need to look else-
where.

However, if you don’t need to visit items in order, and you can predict in advance the
size of your database, hash tables are unparalleled in speed and convenience.

In this section we’ll introduce hash tables and hashing. One important concept is how a
range of key values is transformed into a range of array index values. In a hash table this
is accomplished with a hash function. However, for certain kinds of keys, no hash func-
tion is necessary; the key values can be used directly as array indices. We’ll look at this
simpler situation first, and then go on to show how hash functions can be used when
keys aren’t distributed in such an orderly fashion.

Employee Numbers as Keys
Suppose you’re writing a program to access employee records for a small company with,
say, 1,000 employees. Each employee record requires 1,000 bytes of storage. Thus you
can store the entire database in only 1 megabyte, which will easily fit in your computer’s
memory.

The company’s personnel director has specified that she wants the fastest possible access
to any individual record. Also, every employee has been given a number from 1 (for the
founder) to 1,000 (for the most recently hired worker). These employee numbers can be
used as keys to access the records; in fact access by other keys (such as last names) is
deemed unnecessary. Employees are seldom laid off, but even when they are, their
records remain in the database for reference (concerning retirement benefits and so on).
What sort of data structure should you use in this situation?

418 Hour 21

27 72316331 Ch21 10/31/02 7:18 AM Page 418

Keys Are Index Numbers
One possibility is a simple array. Each employee record occupies one cell of the array,
and the index number of the cell is the employee number for that record. This is shown
in Figure 21.1.

Hash Tables 419

21

FIGURE 21.1
Employee numbers as
array indices.

Longsmith,
Norman
CEO
2,000,000

Index
numbers
same as
employee
numbers

Vega,
Teresa
VP
500,000

Array

Alcazar,
Herman
Technician
45,000

Voss,
Heinrich
Salesman
30%

1 2 72 1000

As you know, accessing a specified array element is very fast if you know its index num-
ber. The clerk looking up Herman Alcazar knows that he is employee number 72, so he
enters that number, and the program goes instantly to index number 72 in the array. A
single program statement is all that’s necessary:

empRecord rec = databaseArray[72];

It’s also very quick to add a new item: You insert it just past the last occupied element.
The next new record—for Jim Chan, the newly hired employee number 1,001—would
go in cell 1,001. Again, a single statement inserts the new record:

databaseArray[totalEmployees++] = newRecord;

Presumably the array is originally made somewhat larger than the maximum possible
number of employees, so it doesn’t need to be expanded.

Not Always So Orderly
The speed and simplicity of data access using this array-based database make it very
attractive. However, it works in our example only because the keys are unusually well
organized. They run sequentially from 1 to a known maximum, and this maximum is a
reasonable size for an array. There are no deletions, so memory-wasting gaps don’t
develop in the sequence. New items can be added sequentially at the end of the array.

27 72316331 Ch21 10/31/02 7:18 AM Page 419

A Dictionary
In many situations the keys are not so well behaved as in the employee database just
described. The classic example is a dictionary. If you want to put every word of an
English-language dictionary, from a to zyzzyva (yes, it’s a word) into your computer’s
memory so they can be accessed quickly, a hash table is a good choice.

420 Hour 21

A similar, widely used application for hash tables is in computer-language
compilers, which typically maintain a symbol table in a hash table. The sym-
bol table holds all the variable and function names made up by the pro-
grammer, along with the address where they can be found in memory. The
program needs to access these names very quickly, so a hash table is the pre-
ferred data structure.

Let’s say we want to store a 50,000-word English-language dictionary in main memory.
You would like every word to occupy its own cell in a 50,000-cell array, so you can
access the word using an index number. This will make access very fast. But what’s the
relationship of these index numbers to the words? Given the word morphosis, for exam-
ple, how do we find its index number?

Converting Words to Numbers
What we need is a system for turning a word into an appropriate index number. To begin,
we know that computers use various schemes for representing individual characters as
numbers. One such scheme is the ASCII code, in which a is 97, b is 98, and so on, up to
122 for z.

However, the ASCII code runs from 0 to 255, to accommodate capitals, punctuation, and
so on. There are really only 26 letters in English words, so let’s devise our own code; a
simpler one that can potentially save memory space. Let’s say a is 1, b is 2, c is 3, and so
on up to 26 for z. We’ll also say a blank is 0, so we have 27 characters. (Uppercase let-
ters aren’t used in this dictionary.)

How do we combine the digits from individual letters into a number that represents an
entire word? There are all sorts of approaches. We’ll look at two representative ones.
We’ll see that ultimately they both have serious disadvantages, and this will motivate an
understanding of why hash tables are so attractive.

27 72316331 Ch21 10/31/02 7:18 AM Page 420

Add the Digits
A simple approach to converting a word to a number might be to simply add the code
numbers for each character. Say we want to convert the word cats to a number. First we
convert the characters to digits using our homemade code:

c = 3
a = 1
t = 20
s = 19

Then we add them:

3 + 1 + 20 + 19 = 43

Thus in our dictionary the word cats would be stored in the array cell with index 43. All
the other English words would likewise be assigned an array index calculated by this
process.

How well would this work? For the sake of argument, let’s restrict ourselves to 10-letter
words. Then (remembering that a blank is 0), the first word in the dictionary, a, would be
coded by

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1

The last potential word in the dictionary would be zzzzzzzzzz (ten Zs). Our code obtained
by adding its letters would be

26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 + 26 = 260

Thus the total range of word codes is from 1 to 260. Unfortunately, there are 50,000
words in the dictionary, so there aren’t enough index numbers to go around. Each array
element will need to hold about 192 words (50,000 divided by 260).

Clearly this presents problems if we’re thinking in terms of our one-word-per-array ele-
ment scheme. Maybe we could put a subarray or linked list of words at each array ele-
ment. However, this would seriously degrade the access speed. It would be quick to
access the array element, but slow to search through the 192 words to find the one we
wanted.

So our first attempt at converting words to numbers leaves something to be desired. Too
many words have the same index. (For example, was, tin, give, tend, moan, tick, bails,
dredge, and hundreds of other words add to 43, as cats does.) We conclude that this
approach doesn’t discriminate enough, so the resulting array has too few elements. We
need to spread out the range of possible indices.

Hash Tables 421

21

27 72316331 Ch21 10/31/02 7:18 AM Page 421

Multiply by Powers
Let’s try a different way to map words to numbers. If our array was too small before,
let’s make sure it’s big enough. What would happen if we created an array in which
every word, in fact every potential word, from a to zzzzzzzzzz, was guaranteed to occupy
its own unique array element?

To do this, we need to be sure that every character in a word contributes in a unique way
to the final number.

We’ll begin by thinking about an analogous situation with numbers instead of words.
Recall that in an ordinary multi-digit number, each digit-position represents a value 10
times as big as the position to its right. Thus 7,546 really means

7*1000 + 5*100 + 4*10 + 6*1

Or, writing the multipliers as powers of 10

7*103 + 5*102 + 4*101 + 6*100

422 Hour 21

An input routine in a computer program performs a similar series of multi-
plications and additions to convert a sequence of digits, entered at the key-
board, into a number stored in memory.

In this system we break a number into its digits, multiply them by appropriate powers of
10 (because there are 10 possible digits), and add the products.

In a similar way we can decompose a word into its letters, convert the letters to their
numerical equivalents, multiply them by appropriate powers of 27 (because there are 27
possible characters, including the blank), and add the results. This gives a unique number
for every word.

Say we want to convert the word cats to a number. We convert the digits to numbers as
shown earlier. Then we multiply each number by the appropriate power of 27, and add
the results:

3*273 + 1*272 + 20*271 + 19*270

Calculating the powers gives

3*19,683 + 1*729 + 20*27 + 19*1

27 72316331 Ch21 10/31/02 7:18 AM Page 422

and multiplying the letter codes times the powers yields the following, which sums
to 60,337:

59,049 + 729 + 540 + 19

This process does indeed generate a unique number for every potential word. We just cal-
culated a four-letter word. What happens with larger words? Unfortunately the range of
numbers becomes rather large. The largest 10-letter combination, zzzzzzzzzz, translates
into

26*279 + 26*278 + 26*277 + 26*276 + 26*275 + 26*274 + 26*273 +
26*272 + 26*271 + 26*270

Just by itself, 279 is more than 7,000,000,000,000, so you can see that the sum will be
huge. An array stored in memory can’t possibly have this many elements.

The problem is that this scheme assigns an array element to every potential word,
whether it’s an actual English word or not. Thus there are cells for aaaaaaaaaa,
aaaaaaaaab, aaaaaaaaac, and so on, up to zzzzzzzzzz. Only a small fraction of these are
necessary for real words, so most array cells are empty. This is shown in Figure 21.2.

Hash Tables 423

21

Not a
word

Not a
word

Not a
word

Not a
word

Actual
English

word

Not a
word

Not a
word

fira firb firc fird fire firf firg

1
2
5
,
1
4
6

1
2
5
,
1
4
7

1
2
5
,
1
4
8

1
2
5
,
1
4
9

1
2
5
,
1
5
0

1
2
5
,
1
5
1

1
2
5
,
1
5
2

FIGURE 21.2
Index for every poten-
tial word.

Our first scheme—adding the numbers—generated too few indices. This latest scheme—
adding the numbers times powers of 27—generates too many.

Hashing
What we need is a way to compress the huge range of numbers we obtain from the
numbers-multiplied-by-powers system into a range that matches a reasonably sized array.

27 72316331 Ch21 10/31/02 7:18 AM Page 423

How big an array are we talking about for our English dictionary? If we only have
50,000 words, you might assume our array should have approximately this many ele-
ments. However, it turns out we’re going to need an array with about twice this many
cells. (It will become clear later why this is so.) So we need an array with 100,000 ele-
ments.

Thus we look for a way to squeeze a range of 0 to more than 7,000,000,000,000 into the
range 0 to 100,000. A simple approach is to use the modulo operator (%), which finds the
remainder when one number is divided by another.

To see how this works, let’s look at a smaller and more comprehensible range. Suppose
we squeeze numbers in the range 0 to 199 (we’ll represent them by the variable
largeNumber) into the range 0 to 9 (the variable smallNumber). There are 10 numbers in
the range of small numbers, so we’ll say that a variable smallRange has the value 10. It
doesn’t really matter what the large range is (unless it overflows the program’s variable
size). The C++ program statement for the conversion is

smallNumber = largeNumber % smallRange;

The remainders when any number is divided by 10 are always in the range 0 to 9; for
example, 13%10 gives 3, and 157%10 is 7. This is shown in Figure 21.3. We’ve
squeezed the range 0–199 into the range 0–9, a 20-to-1 compression ratio.

A similar C++ statement can be used to compress the really huge numbers which
uniquely represent every English word into index numbers that fit in our dictionary array.

arrayIndex = hugeNumber % arraySize;

This is an example of a hash function. It hashes (converts) a number in a large
range into a number in a smaller range. This smaller range corresponds to the

index numbers in an array. An array into which data is inserted using a hash function is
called a hash table. (We’ll talk more about the design of hash functions in Hour 23.)

To review: We convert a word into a huge number by multiplying each character in the
word by an appropriate power of 27.

hugeNumber = ch0*279 + ch1*278 + ch2*277 + ch3*276 + ch4*275 +
ch5*274 + ch6*273 + ch7*272 + ch8*271 + ch9*270

Then, using the modulo (%) operator, we squeeze the resulting huge range of numbers
into a range about twice as big as the number of items we want to store. This is an exam-
ple of a hash function.

arraySize = numberWords * 2;
arrayIndex = hugeNumber % arraySize;

424 Hour 21

NEW TERM

27 72316331 Ch21 10/31/02 7:18 AM Page 424

In the huge range, each number represents a potential data item (an arrangement of let-
ters), but few of these numbers represent actual data items (English words). A hash func-
tion transforms these large numbers into the index numbers of a much smaller array. In
this array we expect that on the average, there will be one word for every two cells.
However, some cells will have no words, and some more than one.

Hash Tables 425

21

Small range

0

1

2

3

4

5

6

7

8

9

Large range

0

1

2

3

4

5

6

7

8

9

10

11

12

194

195

196

197

198

199

FIGURE 21.3
Range conversion.

A practical implementation of this scheme runs into trouble because hugeNumber will
probably overflow its variable size, even for type long. We’ll see how to deal with this
later.

27 72316331 Ch21 10/31/02 7:18 AM Page 425

Collisions
We pay a price for squeezing a large range into a small one. There’s no longer a guaran-
tee that two words won’t hash to the same array index.

This is similar to what happened when we added the letter codes, but the situation is
nowhere near as bad. When we added the letters, there were only 260 possible results
(for words up to 10 letters). Now we’re spreading this out into 50,000 possible results.

Even so, it’s impossible to avoid hashing several different words into the same array
location, at least occasionally. We hoped that we could have one data item per index
number, but this turns out to be impossible. The best we can do is hope that not too many
words will hash to the same index.

Perhaps you want to insert the word melioration into the array. You hash the
word to obtain its index number, but find that the cell at that number is already

occupied by the word demystify, which happens to hash to the exact same number (for a
certain size array). This situation, shown in Figure 21.4, is called a collision.

426 Hour 21

FIGURE 21.4
Collision.

parchment

demystify melioration

slander

quixotic

NEW TERM

27 72316331 Ch21 10/31/02 7:18 AM Page 426

It might appear that the possibility of collisions renders the hashing scheme impractical,
but in fact we can work around the problem in a variety of ways.

Remember that we’ve specified an array with twice as many cells as data items.
Thus perhaps half the cells are empty. One approach, when a collision occurs, is

to search the array in some systematic way for an empty cell, and insert the new item
there, instead of at the index specified by the hash function. This approach is called open
addressing. If the word cats hashes to 5,421, but this location is already occupied by
parsnip, we might try to insert cats in 5,422 or 6,000, for example.

An alternative to open addressing is to create an array that consists of linked lists
of words instead of the words themselves. Then when a collision occurs, the new

item is simply inserted in the list at that index. This is called separate chaining, which
we’ll look at in Hour 23.

In open addressing, when a data item can’t be placed at the index calculated by the hash
function, another location in the array is sought. We’ll explore three methods of open
addressing, which vary in the method used to find the next vacant cell. In this hour we’ll
examine linear probing, which is the simplest approach. In Hour 22 we’ll investigate
quadratic probing and double hashing, which are more complicated but avoid certain
problems with linear probing.

Linear Probing
In linear probing we search sequentially for vacant cells when a collision occurs.
If 5,421 is occupied when we try to insert cats there, we go to 5,422, then 5,423,

and so on, incrementing the index until we find an empty cell. This is called linear prob-
ing because it steps sequentially along the line of cells, probing for an empty cell.

The Hash Workshop Applet
The Hash Workshop applet demonstrates linear probing. When you start this applet
you’ll see a screen similar to Figure 21.5.

In this applet the range of keys runs from 0 to 999. The initial size of the array is 60. The
hash function has to squeeze the range of keys down to match the array size. It does this
with the modulo (%) operator, as we’ve seen before:

arrayIndex = key % arraySize;

For the initial array size of 60, this is

arrayIndex = key % 60;

Hash Tables 427

21

NEW TERM

NEW TERM

NEW TERM

27 72316331 Ch21 10/31/02 7:18 AM Page 427

This hash function is simple enough that you can solve it mentally. For a given key, keep
subtracting multiples of 60 until you get a number under 60. For example, to hash 143,
subtract 60, giving 83, and then subtract 60 again, giving 23. This is the index number
where the algorithm will place 143. Thus you can easily check that the algorithm has
hashed a key to the correct address. (An array size of 10 is even easier to figure out, as a
key’s last digit is the index it will hash to.)

428 Hour 21

FIGURE 21.5
The Hash Workshop
applet.

As with other applets, operations are carried out by repeatedly clicking the
same button. For example, to find a data item with a specified number, click
the Find button repeatedly. Remember, finish a sequence with one button
before using another button. For example, don’t switch from clicking Fill to
some other button until the Press any key message is displayed.

All the operations require you to type a numerical value at the beginning of the
sequence. The Find button requires you to type a key value, for example, whereas New
requires the size of the new table.

The New Button
You can create a new hash table of a size you specify by using the New button. The max-
imum size is 60; this limitation results from the number of cells that can be viewed in the
applet window. The initial size is also 60. We use this number because it makes it easy to
check whether the hash values are correct, but as we’ll see later, in a general-purpose
hash table, the array size should be a prime number, so 59 would be a better choice.

27 72316331 Ch21 10/31/02 7:18 AM Page 428

The Fill Button
Initially the hash table contains 30 items, so it’s half full. However, you can also fill it
with a specified number of data items using the Fill button. Keep clicking Fill, and when
prompted, type the number of items to fill. Hash tables work best when they are not
more than 1/2 or at the most 2/3 full (40 items in a 60-cell table).

You’ll see that the filled cells aren’t evenly distributed in the cells. Sometimes there’s a
sequence of several empty cells, and sometimes a sequence of filled cells.

Let’s call a sequence of filled cells in a hash table a filled sequence. As you add
more and more items, the filled sequences become longer. This is called

clustering, and is shown in Figure 21.6.

Hash Tables 429

21

NEW TERM

FIGURE 21.6
Clustering.

14424

25

26

8727

20828

98929

32930

86931

86732

2933

34

35

33636

37

Cluster

27 72316331 Ch21 10/31/02 7:18 AM Page 429

The Find Button
The Find button starts by applying the hash function to the key value you type into the
number box. This results in an array index. The cell at this index might be the key you’re
looking for; this is the optimum situation, and success will be reported immediately.

However, it’s also possible that this cell is already occupied by a data item with
some other key. This is a collision; you’ll see the red arrow pointing to an occu-

pied cell. Following a collision, the search algorithm will look at the next cell in
sequence. The process of finding an appropriate cell following a collision is called a
probe.

Following a collision, the Find algorithm simply steps along the array looking at each
cell in sequence; this is linear probing. If it encounters an empty cell before finding the
key it’s looking for, it knows the search has failed. There’s no use looking further
because the insertion algorithm would have inserted the item at this cell (if not earlier).
Figure 21.7 shows successful and unsuccessful linear probes.

The Ins Button
The Ins button inserts a data item, with a key value that you type into the number box,
into the hash table. It uses the same algorithm as the Find button to locate the appropriate
cell. If the original cell is occupied, it will probe linearly for a vacant cell. When it finds
one, it inserts the item.

Try inserting some new data items. Type a 3-digit number and watch what hap-
pens. Most items will go into the first cell they try, but some will suffer colli-

sions, and need to step along to find an empty cell. The number of steps they take is the
probe length. Most probe lengths are only a few cells long. Sometimes, however, you
might see probe lengths of 4 or 5 cells, or even longer as the array becomes excessively
full.

430 Hour 21

When you use the applet, note that it might take a long time to fill a hash
table if you try to fill it too full (for example, if you try to put 59 items in a
60-cell table). You might think the program has stopped, but be patient. It’s
extremely inefficient at filling an almost-full array.

Also, note that if the hash table becomes completely full the algorithms all
stop working; in this applet they assume that the table has at least one
empty cell.

NEW TERM

NEW TERM

27 72316331 Ch21 10/31/02 7:18 AM Page 430

Notice which keys hash to the same index. If the array size is 60, the keys 7, 67, 127,
187, 247 and so on up to 967 all hash to index 7. Try inserting this sequence or a similar
one. This will demonstrate the linear probe.

The Del Button
The Del button deletes an item whose key is typed by the user. Deletion isn’t accom-
plished by simply removing a data item from a cell, leaving it empty. Why not?
Remember that during insertion the probe process steps along a series of cells, looking
for a vacant one. If a cell is made empty in the middle of this sequence of full cells, the
Find routine will give up when it sees the empty cell, even if the desired cell can eventu-
ally be reached.

Hash Tables 431

21

FIGURE 21.7
Linear probes.

48

49

50

51
Initial
Probe

52

53

54

55

56

57

58

948

408

172

833

413

532

472

358

a) Successful
search for
472

b) Unsuccessful
search for
893

48

49

50

51

Initial
Probe

52

53

54

55

56

57

58

948

408

172

833

413

532

472

358

27 72316331 Ch21 10/31/02 7:18 AM Page 431

For this reason a deleted item is replaced by an item with a special key value that identi-
fies it as deleted. In this applet we assume all legitimate key values are positive, so the
deleted value is chosen as –1. Deleted items are marked with the special key *Del*.

The Insert button will insert a new item at the first available empty cell or in a *Del*
item. The Find button will treat a *Del* item as an existing item for the purposes of
searching for another item further along.

If there are many deletions, the hash table fills up with these ersatz *Del* data items,
which makes it less efficient. For this reason many hash table implementations don’t
allow deletion. If it is implemented, it should be used sparingly.

Duplicates Allowed?
Can you allow data items with duplicate keys to be used in hash tables? The fill routine
in the Hash applet doesn’t allow duplicates, but you can insert them with the Insert but-
ton if you like. Then you’ll see that only the first one can be accessed. The only way to
access a second item with the same key is to delete the first one. This isn’t too
convenient.

You could rewrite the Find algorithm to look for all items with the same key instead of
just the first one. However, it would then need to search through all the cells of every lin-
ear sequence it encountered. This wastes time for all table accesses, even when no dupli-
cates are involved. In the majority of cases you probably want to forbid duplicates.

Clustering
Try inserting more items into the hash table in the Hash Workshop applet. As it gets
more full, clusters grow larger. Clustering can result in very long probe lengths. This
means that it’s very slow to access cells at the end of the sequence.

The more full the array is, the worse clustering becomes. It’s not a problem when the
array is half full, and still not too bad when it’s two-thirds full. Beyond this, however,
performance degrades seriously as the clusters grow larger and larger. For this reason it’s
critical when designing a hash table to ensure that it never becomes more than one-half,
or at the most two-thirds, full. (We’ll discuss the mathematical relationship between how
full the hash table is and probe lengths in Hour 22.)

C++ Code for a Linear Probe Hash Table
Our sample program implements a hash table with linear probing. You can display the
hash table, and find, insert, and delete data items. Listing 21.1 shows the complete
hash.cpp program.

432 Hour 21

27 72316331 Ch21 10/31/02 7:18 AM Page 432

LISTING 21.1 THE hash.cpp PROGRAM

//hash.cpp
//demonstrates hash table with linear probing
#include <iostream>
#include <vector>
#include <cstdlib> //for random numbers
#include <ctime> //for random numbers

using namespace std;
//
class DataItem

{ //(could have more data)
public:

int iData; //data item (key)
//--

DataItem(int ii) : iData(ii) //constructor
{ }

//--
}; //end class DataItem

//
class HashTable

{
private:

vector<DataItem*> hashArray; //vector holds hash table
int arraySize;
DataItem* pNonItem; //for deleted items

public:
//---

HashTable(int size) : arraySize(size) //constructor
{
arraySize = size;
hashArray.resize(arraySize); //size the vector
for(int j=0; j<arraySize; j++) //initialize elements

hashArray[j] = NULL;
pNonItem = new DataItem(-1); //deleted item key is -1
}

//---
void displayTable()

{
cout << “Table: “;
for(int j=0; j<arraySize; j++)

{
if(hashArray[j] != NULL)

cout << hashArray[j]->iData << “ “;
else

cout << “** “;
}

cout << endl;

Hash Tables 433

21

INPUT

continues

27 72316331 Ch21 10/31/02 7:18 AM Page 433

LISTING 21.1 CONTINUED

}
//---

int hashFunc(int key)
{
return key % arraySize; //hash function
}

//---
void insert(DataItem* pItem) //insert a DataItem
//(assumes table not full)

{
int key = pItem->iData; //extract key
int hashVal = hashFunc(key); //hash the key

//until empty cell or -1,
while(hashArray[hashVal] != NULL &&

hashArray[hashVal]->iData != -1)
{
++hashVal; //go to next cell
hashVal %= arraySize; //wraparound if necessary
}

hashArray[hashVal] = pItem; //insert item
} //end insert()

//---
DataItem* remove(int key) //remove a DataItem

{
int hashVal = hashFunc(key); //hash the key

while(hashArray[hashVal] != NULL) //until empty cell,
{ //found the key?
if(hashArray[hashVal]->iData == key)

{
DataItem* pTemp = hashArray[hashVal]; //save item
hashArray[hashVal] = pNonItem; //delete item
return pTemp; //return item
}

++hashVal; //go to next cell
hashVal %= arraySize; //wraparound if necessary
}

return NULL; //can’t find item
} //end remove()

//---
DataItem* find(int key) //find item with key

{
int hashVal = hashFunc(key); //hash the key

while(hashArray[hashVal] != NULL) //until empty cell,
{ //found the key?
if(hashArray[hashVal]->iData == key)

return hashArray[hashVal]; //yes, return item

434 Hour 21

27 72316331 Ch21 10/31/02 7:18 AM Page 434

++hashVal; //go to next cell
hashVal %= arraySize; //wraparound if necessary
}

return NULL; //can’t find item
}

//---
}; //end class HashTable

//
int main()

{
DataItem* pDataItem;
int aKey, size, n, keysPerCell;
time_t aTime;
char choice = ‘b’;

//get sizes
cout << “Enter size of hash table: “;
cin >> size;
cout << “Enter initial number of items: “;
cin >> n;
keysPerCell = 10;

//make table
HashTable theHashTable(size);
srand(static_cast<unsigned>(time(&aTime)));
for(int j=0; j<n; j++) //insert data

{
aKey = rand() % (keysPerCell*size);

pDataItem = new DataItem(aKey);
theHashTable.insert(pDataItem);
}

while(choice != ‘x’) //interact with user
{
cout << “Enter first letter of “

<< “show, insert, delete, or find: “;
char choice;
cin >> choice;
switch(choice)

{
case ‘s’:

theHashTable.displayTable();
break;

case ‘i’:
cout << “Enter key value to insert: “;
cin >> aKey;
pDataItem = new DataItem(aKey);
theHashTable.insert(pDataItem);

Hash Tables 435

21
continues

27 72316331 Ch21 10/31/02 7:18 AM Page 435

LISTING 21.1 CONTINUED

break;
case ‘d’:

cout << “Enter key value to delete: “;
cin >> aKey;
theHashTable.remove(aKey);
break;

case ‘f’:
cout << “Enter key value to find: “;
cin >> aKey;
pDataItem = theHashTable.find(aKey);
if(pDataItem != NULL)

cout << “Found “ << aKey << endl;
else

cout << “Could not find “ << aKey << endl;
break;

default:
cout << “Invalid entry\n”;

} //end switch
} //end while

return 0;
} //end main()

Classes in hash.cpp
A DataItem object contains just one data member, an integer that is its key. As in other
data structures we’ve discussed, these objects could contain more data, or a pointer to an
object of another class (such as employee or partNumber).

The major data member in class HashTable is an array (actually an STL vector) called
hashArray. Other data members are the size of the array and a pointer pNonItem used for
deletions. In the constructor this pointer is set to an item with the value –1.

The find() Member Function
The find() member function of HashTable first calls hashFunc() to hash the search key
to obtain the index number hashVal. The hashFunc() member function applies the %
operator to the search key and the array size, as we’ve seen before.

Next, in a while condition, find() checks whether the item at this index is empty
(NULL). If not, find() checks whether the item contains the search key. If the item does
contain the search key, find() returns the item. If it doesn’t, find() increments hashVal
and goes back to the top of the while loop to check whether the next cell is occupied.

436 Hour 21

27 72316331 Ch21 10/31/02 7:18 AM Page 436

As hashVal steps through the array, it eventually reaches the end. When this happens we
want it to wrap around to the beginning. We could check for this with an if statement,
setting hashVal to 0 whenever it equaled the array size. However, we can accomplish the
same thing by applying the % operator to hashVal and the array size.

Cautious programmers might not want to assume the table is not full, as is done here.
The table should not be allowed to become full, but if it did, this member function would
loop forever. For simplicity we don’t check for this situation.

The insert() Member Function
The insert() member function uses about the same algorithm as find() to locate where
a data item should go. However, it’s looking for an empty cell, or a deleted item (key
–1), rather than a specific item. After this empty cell has been located, insert() places
the new item into it.

The remove() Member Function
The remove() member function finds an existing item using code similar to find().
After the item is found, remove() writes over it with the special data item that is prede-
fined with a key of –1 and pointed to by pNonItem.

The main() Routine
The main() routine contains a user interface that allows the user to show the contents of
the hash table (enter s), insert an item (i) delete an item (d), or find an item (f). You can
quit the program by typing the Ctrl+C key combination.

Initially, the program asks the user to input the size of the hash table and the number of
items in it. You can make it almost any size, from a few items to 10,000. (It might take a
little time to build larger tables than this.) Don’t use the s (for show) option on tables of
more than a few hundred items; they scroll off the screen and it takes a long time to dis-
play them.

A variable in main(), keysPerCell, specifies the ratio of the range of keys to the size of
the array. In the listing, it’s set to 10. This means that if you specify a table size of 20,
the keys will range from 0 to 200.

To see what’s going on, it’s best to create tables with fewer than about 20 items, so all
the items can be displayed on one line. Here’s some sample interaction with hash.cpp:

Enter size of hash table: 12
Enter initial number of items: 8

Hash Tables 437

21
INPUT/
OUTPUT

27 72316331 Ch21 10/31/02 7:18 AM Page 437

Enter first letter of show, insert, delete, or find: s
Table: 108 13 0 ** ** 113 5 66 ** 117 ** 47

Enter first letter of show, insert, delete, or find: f
Enter key value to find: 66
Found 66

Enter first letter of show, insert, delete, or find: i
Enter key value to insert: 100
Enter first letter of show, insert, delete, or find: s
Table: 108 13 0 ** 100 113 5 66 ** 117 ** 47

Enter first letter of show, insert, delete, or find: d
Enter key value to delete: 100
Enter first letter of show, insert, delete, or find: s
Table: 108 13 0 ** -1 113 5 66 ** 117 ** 47

Key values run from 0 to 119 (12 times 10, minus 1). The ** symbol indicates that a cell
is empty. The item with key 100 is inserted at location 4 (the first item is numbered 0)
because 100%12 is 4. Notice how 100 changes to –1 when this item is deleted.

In this hour we’ve focused on linear probing. In the next hour we’ll examine more
sophisticated methods of open addressing.

Summary
In this hour, you’ve learned the following:

● Hash tables are based on arrays.

● The range of key values is usually greater than the size of the array.

● A key value is hashed to an array index by a hash function.

● An English-language dictionary is a typical example of data that can be efficiently
handled with a hash table.

● The hashing of a key to an already-filled array cell is called a collision.

● Collisions can be handled in two major ways: open addressing and separate
chaining.

● Three kinds of open addressing are linear probing, quadratic probing, and double
hashing.

● In open addressing, data items that hash to an occupied array cell are placed in
another cell in the array.

438 Hour 21

27 72316331 Ch21 10/31/02 7:18 AM Page 438

Q&A
Q I’m confused by the discussion of dictionaries and trying to convert words to

numbers at the beginning of this hour.

A That section attempts to explain why hash functions are necessary. The heart of the
matter is that somehow you must find a way to convert each item’s key to an array
index, where the array is a reasonable size. This is handled with a hash function.

Q Collisions seem to cause a lot of trouble. Can’t they be avoided?

A Collisions are an inevitable part of the hashing process. Hashing the key to find the
array index is easy; it’s handling collisions that can be complicated.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. What is hashing?

2. What is a collision?

3. What is open addressing?

4. What is linear probing?

5. What is clustering?

6. True or false: Clustering is a problem with linear probing.

7. True or false: When using linear probing, it’s common to fill an array almost full.

Exercise
Write down 10 random numbers between 1 and 999 on a piece of paper. Use the Hash
Workshop applet to create an array with 10 cells. Insert the random numbers one by one.
For each insertion, count how long the probe length is. Assume a probe length of 1 if
there are no collisions. The first item will have a probe length of 1, but as the table gets
fuller the probe lengths will get longer. Write down all the probe lengths.

Repeat this process several times and average your results. You should see the probe
lengths rise gradually from 1 when there are no items in the array to about 5 when there
is only one empty cell.

Hash Tables 439

21

27 72316331 Ch21 10/31/02 7:18 AM Page 439

27 72316331 Ch21 10/31/02 7:18 AM Page 440

HOUR 22
Quadratic Probing

There are problems with the simple linear probing technique discussed in
the last hour. More sophisticated approaches can help. In this hour we’ll
examine

● The problems with linear probing

● A first alternative: quadratic probing

● A second alternative: double hashing

● The C++ code for double hashing

● The efficiency of the various open addressing methods

We’ve seen that clusters can occur in the linear probe approach to open
addressing. After a cluster forms, it tends to grow larger. Items that hash to
any value in the range of the cluster will step along and insert themselves at
the end of the cluster, thus making it even bigger. The bigger the cluster
gets, the faster it grows.

It’s like the crowd that gathers when someone faints at the shopping mall.
The first arrivals come because they saw the victim fall; later arrivals gather

28 72316331 CH22 10/31/02 6:56 AM Page 441

because they wondered what everyone else was looking at. The larger the crowd grows,
the more people are attracted to it.

The ratio of the number of items in a table to the table’s size is called the load
factor. A table with 10,000 cells and 6,667 items has a load factor of 2/3.

loadFactor = nItems / arraySize;

In general, the greater the load factor the more clusters there will be. However, clusters
can form even when the load factor isn’t high. Parts of the hash table might consist of
big clusters, whereas others are sparsely inhabited. Clusters reduce performance.

Two approaches to avoiding clustering are quadratic probing and double hashing. In this
hour we’ll look briefly at quadratic probing and in more detail at double hashing.

Quadratic Probing
Quadratic probing is an attempt to keep clusters from forming. The idea is to probe more
widely separated cells, instead of those adjacent to the initial hash site. In this section
we’ll explain quadratic probing and show how it looks with a Workshop applet.

The Step Is the Square of the Step Number
In a linear probe, if the primary hash index is x, subsequent probes go to x+1, x+2, x+3,
and so on. In quadratic probing, probes go to x+1, x+4, x+9, x+16, x+25, and so on. The
distance from the initial site is the square of the step number, so the probes fall at x+12,
x+22, x+32, x+42, x+52, and so on.

Figure 22.1 shows some quadratic probes.

It’s as if a quadratic probe became increasingly desperate as its search lengthened. At
first it calmly picks the adjacent cell. If that’s occupied, it thinks it might be in a small
cluster so it tries something 4 cells away. If that’s occupied the probe becomes a little
concerned, thinking it might be in a larger cluster, and tries 9 cells away. If that’s occu-
pied the probe feels the first tinges of panic and jumps 16 cells away. Pretty soon it’s fly-
ing hysterically all over the place, as you can see if you try searching with the
HashDouble Workshop applet when the table is almost full.

The HashDouble Applet with Quadratic Probes
The HashDouble Workshop applet allows two different kinds of collision handling: qua-
dratic probes and double hashing. This applet generates a display much like that of the
Hash Workshop applet, except that it includes radio buttons to select quadratic probing or
double hashing. Let’s see what a quadratic probe looks like using the Workshop applet.

442 Hour 22

NEW TERM

28 72316331 CH22 10/31/02 6:56 AM Page 442

To Do: Generate a Quadratic Probe
1. Start up the applet and create a new hash table of 59 items using the New button.

2. When you’re asked to select double or quadratic probe, click the Quad button.

3. After the new table is created, fill it 4/5 full using the Fill button (47 items in a 59-
cell array). This is too full, but it will generate longer probes so you can study the
probe algorithm.

4. Select an existing key value and use the Find key to see whether the algorithm can
find it.

Quadratic Probing 443

22
6

7

8

9

Initial
Probe

10

11

12

13

14

15

16

17

18

656

715

658

777

837

599

899

15

420

898

a) Successful
search for
420

b) Unsuccessful
search for
481

1

4

9

6

7

8

9 Initial
Probe

10

11

12

13

14

15

16

17

18

656

715

658

777

837

599

899

15

420

898

1

4

9

FIGURE 22.1
Quadratic probes.

If you try to fill the hash table too full, you might see the message Can’t
complete fill. This occurs when the probe sequences get very long. Every
additional step in the probe sequence makes a bigger step size. If the
sequence is too long, the step size will eventually exceed the capacity of
its integer variable, so the applet shuts down the fill process before this
happens.

,
TO

D
O

,

28 72316331 CH22 10/31/02 6:56 AM Page 443

Often the item you’re trying to find is located at the initial cell or the cell adjacent to it.
If you’re patient, however, you’ll find a key that requires three or four steps, and you’ll
see the step size lengthen for each step. You can also use Find to search for a nonexistent
key; this search continues until an empty cell is encountered.

444 Hour 22

Always make the array size a prime number. Use 59 instead of 60, for exam-
ple. (Other primes less than 60 are 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13,
11, 7, 5, 3, and 2.) If the array size is not prime, an endless sequence of steps
might occur during a probe. If this happens during a Fill operation, the
applet will be paralyzed.

The Problem with Quadratic Probes
Quadratic probes eliminate the clustering problem we saw with the linear probe,
which is called primary clustering. However, quadratic probes suffer from a dif-

ferent and more subtle clustering problem. This occurs because all the keys that hash to a
particular cell follow the same sequence in trying to find a vacant space.

Let’s say 184, 302, 420, and 544 all hash to 7 and are inserted in this order. Then
302 will require a one-step probe, 420 will require a 2-step probe, and 544 will

require a 3-step probe. Each additional item with a key that hashes to 7 will require a
longer probe. This phenomenon is called secondary clustering.

Secondary clustering is not a serious problem, but quadratic probing is not often used
because there’s a slightly better solution. For this reason we don’t show any C++ code to
implement quadratic probing. Instead let’s look at double hashing.

Double Hashing
To eliminate secondary clustering as well as primary clustering, another
approach can be used: double hashing (sometimes called rehashing). Secondary

clustering occurs because the algorithm that generates the sequence of steps in the qua-
dratic probe always generates the same steps: 1, 4, 9, 16, and so on.

What we need is a way to generate probe sequences that depend on the key instead of
being the same for every key. Then numbers with different keys that hash to the same
index will use different probe sequences.

The solution is to hash the key a second time, using a different hash function, and use the
result as the step size. For a given key the step size remains constant throughout a probe,
but it’s different for different keys.

NEW TERM

NEW TERM

NEW TERM

28 72316331 CH22 10/31/02 6:56 AM Page 444

Experience has shown that this secondary hash function must have certain characteristics.
These are as follows:

● It must not be the same as the primary hash function.

● It must never output a 0 (otherwise there would be no step; every probe would land
on the same cell, and the algorithm would go into an endless loop).

Experts have discovered that functions of the following form work well:

stepSize = constant - (key % constant);

where constant is prime and smaller than the array size. For example,

stepSize = 5 - (key % 5);

This is the secondary hash function used in the Workshop applet. For any given key all
the steps will be the same size, but different keys generate different step sizes. With this
hash function the step sizes are all in the range 1 to 5. This is shown in Figure 22.2.

Quadratic Probing 445

22

0

1

2 Initial
Probe

3

4

5

6

7

8

9

10

11

472

178

769

236

537

62

539

887

a) Successful
search for
887

b) Unsuccessful
search for
709

2

2

2

2

0

1

2

Initial
Probe

3

4

5

6

7

8

9

10

11

472

178

769

236

537

62

539

887

5

5

FIGURE 22.2
Double hashing.

The HashDouble Applet with Double Hashing
You can use the HashDouble Workshop applet to see how double hashing works. It starts
up automatically in double-hashing mode, but if it’s in quadratic mode you can switch to
double by creating a new table with the New button and clicking the Double button when

28 72316331 CH22 10/31/02 6:56 AM Page 445

prompted. To best see probes at work you’ll need to fill the table rather full; say to about
9/10ths capacity or more. Even with such high load factors, most data items will be
found in the cell by the first hash value; only a few will require extended probe
sequences.

Try finding existing keys. When one needs a probe sequence, you’ll see how all the steps
are the same size for a given key, but that the step size is different—between 1 and 5—
for different keys.

C++ Code for Double Hashing
The hashDouble.cpp program demonstrates double hashing. It’s similar to the hash.cpp
program in Hour 21, “Hash Tables,” but uses two hash functions, one for finding the ini-
tial index, and the second for generating the step size. As before, the user can show the
table contents, insert an item, delete an item, and find an item. Listing 22.1 shows the
hashDouble.cpp program.

LISTING 22.1 THE hashDouble.cpp PROGRAM

//hashDouble.cpp
//demonstrates hash table with double hashing
#include <iostream>
#include <vector>
#include <cstdlib> //for random numbers
#include <ctime> //for random numbers
using namespace std;
//
class DataItem

{ //(could have more items)
public:

int iData; //data item (key)
//--

DataItem(int ii) : iData(ii) //constructor
{ }

//--
}; //end class DataItem

//
class HashTable

{
private:

vector<DataItem*> hashArray; //vctor holds hash table
int arraySize;
DataItem* pNonItem; //for deleted items

public:
//--

HashTable(int size) : arraySize(size) //constructor
{

446 Hour 22

INPUT

28 72316331 CH22 10/31/02 6:56 AM Page 446

hashArray.resize(arraySize); //size the vector
for(int j=0; j<arraySize; j++) //initialize elements

hashArray[j] = NULL;
pNonItem = new DataItem(-1);
}

//--
void displayTable()

{
cout << “Table: “;
for(int j=0; j<arraySize; j++)

{
if(hashArray[j] != NULL)

cout << hashArray[j]->iData << “ “;
else

cout << “** “;
}

cout << endl;
}

//--
int hashFunc1(int key)

{
return key % arraySize;
}

//--
int hashFunc2(int key)

{
//non-zero, less than array size, different from hF1
//array size must be relatively prime to 5, 4, 3, and 2
return 5 - key % 5;
}

//--
//insert a DataItem

void insert(int key, DataItem* pItem)
//(assumes table not full)

{
int hashVal = hashFunc1(key); //hash the key
int stepSize = hashFunc2(key); //get step size

//until empty cell or -1
while(hashArray[hashVal] != NULL &&

hashArray[hashVal]->iData != -1)
{
hashVal += stepSize; //add the step
hashVal %= arraySize; //for wraparound
}

hashArray[hashVal] = pItem; //insert item
} //end insert()

//--
DataItem* remove(int key) //delete a DataItem

{

Quadratic Probing 447

22

continues

28 72316331 CH22 10/31/02 6:56 AM Page 447

LISTING 22.1 CONTINUED

int hashVal = hashFunc1(key); //hash the key

while(hashArray[hashVal] != NULL) //until empty cell,
{ //is correct hashVal?
if(hashArray[hashVal]->iData == key)

{
DataItem* pTemp = hashArray[hashVal]; //save item
hashArray[hashVal] = pNonItem; //delete item
return pTemp; //return item
}

hashVal += stepSize; //add the step
hashVal %= arraySize; //for wraparound
}

return NULL; //can’t find item
} //end remove()

//--
DataItem* find(int key) //find item with key
//(assumes table not full)

{
int hashVal = hashFunc1(key); //hash the key
int stepSize = hashFunc2(key); //get step size

while(hashArray[hashVal] != NULL) //until empty cell,
{ //is correct hashVal?
if(hashArray[hashVal]->iData == key)

return hashArray[hashVal]; //yes, return item
hashVal += stepSize; //add the step
hashVal %= arraySize; //for wraparound
}

return NULL; //can’t find item
};

//--
}; //end class HashTable

//
int main()

{
int aKey;
DataItem* pDataItem;
int size, n;
char choice = ‘b’;
time_t aTime;

//get sizes
cout << “Enter size of hash table (use prime number): “;
cin >> size;
cout << “Enter initial number of items: “;
cin >> n;

448 Hour 22

28 72316331 CH22 10/31/02 6:56 AM Page 448

//make table
HashTable theHashTable(size); //seed random numbers
srand(static_cast<unsigned>(time(&aTime)));

for(int j=0; j<n; j++) //insert data
{
aKey = rand() % (2 * size);
pDataItem = new DataItem(aKey);
theHashTable.insert(aKey, pDataItem);
}

while(true) //interact with user
{
cout << “Enter first letter of “;
cout << “show, insert, delete, or find: “;
cin >> choice;
switch(choice)

{
case ‘s’:

theHashTable.displayTable();
break;

case ‘i’:
cout << “Enter key value to insert: “;
cin >> aKey;
pDataItem = new DataItem(aKey);
theHashTable.insert(aKey, pDataItem);
break;

case ‘d’:
cout << “Enter key value to delete: “;
cin >> aKey;
theHashTable.remove(aKey);
break;

case ‘f’:
cout << “Enter key value to find: “;
cin >> aKey;
pDataItem = theHashTable.find(aKey);
if(pDataItem != NULL)

cout << “Found “ << aKey << endl;
else

cout << “Could not find “ << aKey << endl;
break;

default:
cout << “Invalid entry\n”;

} //end switch
} //end while

return 0;
} //end main()

Quadratic Probing 449

22

28 72316331 CH22 10/31/02 6:56 AM Page 449

The operation of this program is similar to that of the hash.cpp program in Hour
21. The difference is that the find(), remove(), and insert() member functions

now call a new function, hashFunc2(), to determine the step size to use following a col-
lision.

Table 22.1 shows what happens when 21 items are inserted into a 23-cell hash table
using double hashing. The step sizes run from 1 to 5.

TABLE 22.1 FILLING A 23-CELL TABLE USING DOUBLE HASHING

Item Hash
Number Key Value Step Size Cells in Probe Sequence

1 1 1 4

2 38 15 2

3 37 14 3

4 16 16 4

5 20 20 5

6 3 3 2

7 11 11 4

8 24 1 1 2

9 5 5 5

10 16 16 4 20 1 5 9

11 10 10 5

12 31 8 4

13 18 18 2

14 12 12 3

15 30 7 5

16 1 1 4 5 9 13

17 19 19 1

18 36 13 4 17

19 41 18 4 22

20 15 15 5 20 2 7 12 17 22 4

21 25 2 5 7 12 17 22 4 9 14 19 1 6

450 Hour 22

ANALYSIS

28 72316331 CH22 10/31/02 6:56 AM Page 450

The first 15 keys mostly hash to a vacant cell (the 10th one is an anomaly). After that, as
the array fills up, the probe sequences become quite long. Here’s the resulting array of
keys, as displayed by the program:

** 1 24 3 15 5 25 30 31 16 10 11 12 1 37 38 16 36 18 19 20 ** 41

Make the Table Size a Prime Number
Double hashing requires that the size of the hash table is a prime number. To see why,
imagine a situation where the table size is not a prime number. For example, suppose the
array size is 15 (indices from 0 to 14), and that a particular key hashes to an initial index
of 0 and a step size of 5. The probe sequence will be 0, 5, 10, 0, 5, 10, and so on, repeat-
ing endlessly. Only these three cells are ever examined, so if they’re full the algorithm
will never find the empty cells that might be waiting at 1, 2, 3, and so on. The algorithm
will crash and burn.

If the array size were 13, which is prime, the probe sequence would eventually visit
every cell. It’s 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, and so on and on. If there is even one
empty cell, the probe will find it. Using a prime number as the array size makes it impos-
sible for any number to divide it evenly, so the probe sequence will eventually check
every cell.

A similar effect occurs using the quadratic probe. In that case, however, the step size gets
larger with each step, and will eventually overflow the variable holding it, preventing an
endless loop but crashing anyway.

In general, double hashing is the probe sequence of choice when open addressing is
used.

Efficiency of Open Addressing
We’ve noted that insertion and searching in hash tables can approach O(1) time. If no
collision occurs, only a call to the hash function and a single array reference are neces-
sary to insert a new item or find an existing item. This is the minimum access time.

If collisions occur, access times become dependent on the resulting probe lengths. Each
cell accessed during a probe adds another time increment to the search for a vacant cell
(for insertion) or for an existing cell. During an access, a cell must be checked to see
whether it’s empty, and—in the case of searching or deletion—whether it contains the
desired item.

Thus an individual search or insertion time is proportional to the length of the probe.
This is in addition to a constant time for the hash function.

Quadratic Probing 451

22

28 72316331 CH22 10/31/02 6:56 AM Page 451

The average probe length (and therefore the average access time) is dependent on the
load factor (the ratio of items in the table to the size of the table). As the load factor
increases, probe lengths grow longer.

In open addressing, unsuccessful searches generally take longer than successful searches.
During a probe sequence, the algorithm can stop as soon as it finds the desired item,
which is, on the average, halfway through the probe sequence. On the other hand, it must
go all the way to the end of the sequence before it’s sure it can’t find an item.

Now let’s look in more detail at the relationship between probe lengths and load factors
for the various kinds of open addressing techniques we’ve studied.

Linear Probing
The following equations show the relationship between probe length (P) and load factor
(L) for linear probing. For a successful search it’s

P = (1 + 1 / (1-L)2) / 2

and for an unsuccessful search it’s

P = (1 + 1 / (1-L)) / 2

These formulas are from Knuth (see Appendix C, “Further Reading”), and their deriva-
tion is quite complicated. Figure 22.3 shows the result of graphing these equations.

At a load factor of 1/2, a successful search takes 1.5 comparisons and an unsuccessful
search takes 2.5. At a load factor of 2/3, the numbers are 2.0 and 5.0. At higher load
factors the numbers become very large.

The moral, as you can see, is that the load factor must be kept under 2/3 and preferably
under 1/2. On the other hand, the lower the load factor, the more memory is needed for a
given amount of data. The optimum load factor in a particular situation depends on the
tradeoff between memory efficiency, which decreases with lower load factors, and speed,
which increases.

Quadratic Probing and Double Hashing
Quadratic probing and double hashing share their performance equations. These indicate
a modest superiority over linear probing. For a successful search, the formula (again
from Knuth) is

452 Hour 22

28 72316331 CH22 10/31/02 6:56 AM Page 452

-log2(1-loadFactor) / loadFactor

For an unsuccessful search it is

1 / (1-loadFactor)

Figure 22.4 shows graphs of these formulas. At a load factor of 0.5, successful and
unsuccessful searches both require an average of two probes. At a 2/3 load factor, the
numbers are 2.37 and 3.0, and at 0.8 they’re 2.90 and 5.0. Thus somewhat higher load
factors can be tolerated for quadratic probing and double hashing than for linear probing.

Quadratic Probing 453

22

0 0.2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.4
Load Factor

Unsuccessful

Successful

A
ve

ra
ge

 P
ro

be
 L

en
gt

h

0.6 0.8 1.0

FIGURE 22.3
Linear probe perfor-
mance.

28 72316331 CH22 10/31/02 6:56 AM Page 453

Expanding the Array
One option when a hash table becomes too full is to expand its array. Classic C++ arrays
have a fixed size and can’t be expanded. Your program could create a new, larger array,
and then rehash the contents of the old small array into the new, large one.

You can’t simply copy the data into the larger array. Remember that the hash function
calculates the location of a given data item based on the array size, so the locations in the
large array won’t be the same as those in a small array. You’ll need to go through the old
array in sequence, inserting each item into the new array with the insert() member
function. This is a time-consuming process.

454 Hour 22

0 0.2
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.4
Load Factor

Unsuccessful

Successful

A
ve

ra
ge

 P
ro

be
 L

en
gt

h

0.6 0.8 1.0

FIGURE 22.4
Quadratic-probe and
double-hashing perfor-
mance.

28 72316331 CH22 10/31/02 6:56 AM Page 454

You can use a vector instead of an array. As we’ve seen, vectors can be expanded with
the resize() member function. However, this is not much help because of the need to
rehash all data items when the table changes size. Expanding arrays or vectors is only
practical when there’s plenty of time available for rehashing all the contents.

In the next hour we’ll look at an alternative to open addressing.

Summary
In this hour, you’ve learned the following:

● In quadratic probing the offset from x is the square of the step number, so the
probe goes to x, x+1, x+4, x+9, x+16, and so on.

● Quadratic probing eliminates primary clustering, but suffers from the less severe
secondary clustering.

● Secondary clustering occurs because all the keys that hash to the same value follow
the same sequence of steps during a probe.

● In double hashing the step size depends on the key, and is obtained from a sec-
ondary hash function.

● If the secondary hash function returns a value s in double hashing, the probe goes
to x, x+s, x+2s, x+3s, x+4s, and so on, where s depends on the key, but remains
constant during the probe.

● The load factor is the ratio of data items in a hash table to the array size.

● The maximum load factor in open addressing should be around 0.5. For double
hashing at this load factor, searches will have an average probe length of 2.

● Search times go to infinity as load factors approach 1.0 in open addressing.

● Hash table sizes should generally be prime numbers.

Q&A
Q It seems like there must be all kinds of schemes for hashing with open

addressing. I bet I could think of a new one, like using random numbers.

A You probably could. All you need is some way to generate a sequence of step
lengths. But you need a system that’s as simple as possible so it will be fast.
Random numbers take time to generate. The techniques we’ve discussed are the
fastest discovered so far.

Quadratic Probing 455

22

28 72316331 CH22 10/31/02 6:56 AM Page 455

Q Why worry about quadratic probing if it’s inferior to double hashing?

A It’s a little easier to understand than double hashing, and might be easier to pro-
gram and marginally faster for small load factors.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A for quiz
answers.

Quiz
1. Why do we need quadratic probing and double hashing?

2. What determines the step size in quadratic probing?

3. What determines the step size in double hashing?

4. What’s the disadvantage of quadratic probing (compared with double hashing)?

5. Why should the table size be a prime number when double hashing is used?

6. What is the load factor of a hash table?

7. What are the main disadvantages of all the open addressing schemes?

Exercise
Rewrite the hashDouble.cpp program to use the C++ random number generator to gen-
erate the step sizes. The find(), remove(), and insert() member functions should seed
the generator with the C++ srand() function when they are first called. Then each time
they need a new step size they should call the rand() function to generate it. Measure
the efficiency of this approach against the original hashDouble.cpp program.

456 Hour 22

28 72316331 CH22 10/31/02 6:56 AM Page 456

HOUR 23
Separate Chaining

In Hours 21, “Hash Tables,” and 22, “Quadratic Probing,” we saw how colli-
sions can be resolved with various schemes based on open addressing. In
this hour we’ll examine a different approach to handling collisions: separate
chaining. We’ll learn

● How separate chaining works

● How to write C++ code for separate chaining

● The efficiency of separate chaining

● What constitutes a good hash function

In open addressing, collisions are resolved by looking for an open cell in the
hash table. In separate chaining a linked list is installed at each index in the
hash table. A data item’s key is hashed to the index in the usual way, and the
item is inserted into the linked list at that index. Other items that hash to the
same index (collisions) are simply inserted in the same linked list; there’s no
need to search for empty cells in the primary array. Figure 23.1 shows how
separate chaining looks.

29 72316331 CH23 10/31/02 6:56 AM Page 457

Separate chaining is conceptually somewhat simpler than the various probe schemes used
in open addressing. However, the code is longer because it must include the mechanism
for the linked lists, usually in the form of an additional class.

The HashChain Workshop Applet
To see how separate chaining works, start the HashChain Workshop applet. It displays an
array of linked lists, as shown in Figure 23.2.

Each element of the array occupies one line of the display, and the linked lists extend
from left to right. Initially there are 25 cells in the array (25 lists). This is more than fits
on the screen; you can move the display up and down with the scrollbar to see the entire
array. The display shows up to six items per list. You can create a hash table with up to
100 lists, and use load factors up to 2.0. Higher load factors may cause the linked lists to
exceed six items and run off the right edge of the screen, making it impossible to see all
the items. (This can happen very occasionally even at the 2.0 load factor.)

458 Hour 23

5

6

7

8

Empty

9

10

11

12

13

Array Linked lists

Empty

906

807

458

559

611

712

563

881

383

536

637

333

461 161

FIGURE 23.1
Separate chaining.

29 72316331 CH23 10/31/02 6:56 AM Page 458

Insertion
Experiment with the HashChain applet by inserting some new items.

To Do: Insert Items
1. Click the Ins button. You’ll be asked for the key of the item to be inserted. Type a

number between 1 and 999.

2. After a few more clicks you’ll see the red arrow jump to the appropriate list and
the message Will insert in list 16. (Of course, the actual number depends on
the key.)

3. Next the item will be inserted in the list.

4. If the list was previously empty, the item will be inserted in the blank space
marking the list position.

5. If the list was not empty, the item will be inserted at the beginning of the list.

The lists in the HashChain applet are not sorted, so insertion does not require searching
through the list. (The C++ sample program will demonstrate sorted lists.)

Try to find specified items using the Find button. During a find operation, if there are
several items on the list, the red arrow must step through the items looking for the cor-
rect one. For a successful search, half the items in the list must be examined on the aver-
age, as we discussed in Hour 8, “Linked Lists.” For an unsuccessful search all the items
must be examined.

Separate Chaining 459

23

FIGURE 23.2
The HashChain
Workshop applet.

,
TO

D
O

,

29 72316331 CH23 10/31/02 6:56 AM Page 459

Load Factors
The load factor (the ratio of the number of items in a hash table to its size) is typically
different in separate chaining than in open addressing. In open addressing the load factor
should not be much above 0.5. In separate chaining it’s normal to put N or more items
into an N-cell array; thus the load factor can be 1 or greater. There’s no problem with
this; some locations will simply contain two or more items in their lists.

Let’s call the average number of items on the linked lists M. If M is large, access time is
reduced because access to a specified item requires searching through an average of M/2
items. Finding the initial cell takes fast O(1) time, but searching through the list takes
time proportional to the number of items on the list—O(M) time. Thus we don’t want the
lists to become too full.

A load factor of 1, as shown in the Workshop applet, is common. With this load factor,
roughly 1/3 of the cells will be empty, 1/3 will hold one item, and 1/3 will hold two or
more items.

460 Hour 23

In open addressing, performance degrades badly as the load factor increases
above 1/2 or 2/3. In separate chaining the load factor can rise above 1 with-
out hurting performance very much. This makes separate chaining a more
robust mechanism, especially when it’s hard to predict in advance how much
data will be placed in the hash table.

Duplicates
Duplicates are allowed and may be generated in the Fill process. All items with the same
key will be inserted in the same list, so if you need to discover all of them, you must
search the entire list in both successful and unsuccessful searches. This lowers perfor-
mance. The Find operation in the Workshop applet only finds the first of several dupli-
cates.

Deletion
In separate chaining, deletion poses no special problems as it does in open addressing.
The algorithm hashes to the proper list, and then deletes the item from the list. Because
probes aren’t used, it doesn’t matter if the list at a particular cell becomes empty. We’ve
included a Del button in the Workshop applet to show how deletion works.

29 72316331 CH23 10/31/02 6:56 AM Page 460

Table Size
With separate chaining it’s not so important to make the table size a prime number, as it
is with quadratic probes and double hashing. There are no probes in separate chaining, so
there’s no need to worry that a probe will go into an endless sequence because the step
size divides evenly into the array size.

On the other hand, certain kinds of key distributions can cause data to cluster when the
array size is not a prime number. We’ll have more to say about this when we discuss
hash functions later in this hour.

Buckets
Another approach similar to separate chaining is to use an array at each location
in the hash table, instead of a linked list. Such arrays are called buckets. This

approach is not as efficient as the linked list approach, however, because of the problem
of choosing the size of the buckets. If they’re too small they might overflow, and if
they’re too large they waste memory. Linked lists, which allocate memory dynamically,
don’t have this problem.

Now let’s see how we might implement separate chaining in C++.

C++ Code for Separate Chaining
The hashChain.cpp program includes a SortedList class and an associated Link class.
Sorted lists don’t speed up a successful search, but they do cut the time of an unsuccess-
ful search in half. (As soon as an item larger than the search key is reached, which on
average is half the items in a list, the search is declared a failure.)

Sorted lists also cut deletion times in half; however, insertion times are lengthened
because the new item can’t just be inserted at the beginning of the list. The new item’s
proper place in the ordered list must be located before it’s inserted. However, if the lists
are short, the increase in insertion times might not be important.

In situations where many unsuccessful searches are anticipated, it might be worthwhile
to use the slightly more complicated sorted list, rather than an unsorted list. However, an
unsorted list is preferred if insertion speed is more important.

The hashChain.cpp program, shown in Listing 23.1, begins by constructing a hash table
with a table size and number of items entered by the user. The user can then insert, find,
and delete items, and display the list. For the entire hash table to be viewed on the
screen, the size of the table must be no greater than 16 or so.

Separate Chaining 461

23

NEW TERM

29 72316331 CH23 10/31/02 6:56 AM Page 461

LISTING 23.1 THE hashChain.cpp PROGRAM

//hashChain.cpp
//demonstrates hash table with separate chaining
#include <iostream>
#include <vector>
#include <cstdlib> //for random numbers
#include <ctime> //for random numbers
using namespace std;
//
class Link

{ //(could be other items)
public:

int iData; //data item
Link* pNext; //next link in list

//--
Link(int it) : iData(it) //constructor

{ }
//--

void displayLink() //display this link
{ cout << iData << “ “; }

//--
}; //end class Link

//
class SortedList

{
private:

Link* pFirst; //ref to first list item
public:

//--
SortedList() //constructor

{ pFirst = NULL; }
//--

void insert(Link* pLink) //insert link, in order
{
int key = pLink->iData;
Link* pPrevious = NULL; //start at first
Link* pCurrent = pFirst;

//until end of list,
while(pCurrent != NULL && key > pCurrent->iData)

{ //or pCurrent > key,
pPrevious = pCurrent;
pCurrent = pCurrent->pNext; //go to next item
}

if(pPrevious==NULL) //if beginning of list,
pFirst = pLink; // first -> new link

else //not at beginning,
pPrevious->pNext = pLink; // prev -> new link

pLink->pNext = pCurrent; //new link -> current
} //end insert()

462 Hour 23

INPUT

29 72316331 CH23 10/31/02 6:56 AM Page 462

//--
void remove(int key) //delete link

{ //(assumes non-empty list)
Link* pPrevious = NULL; //start at first
Link* pCurrent = pFirst;

//until end of list,
while(pCurrent != NULL && key != pCurrent->iData)

{ //or key == current,
pPrevious = pCurrent;
pCurrent = pCurrent->pNext; //go to next link
}

//disconnect link
if(pPrevious==NULL) // if beginning of list

pFirst = pFirst->pNext; // delete first link
else // not at beginning

//delete current link
pPrevious->pNext = pCurrent->pNext;

} //end remove()
//--

Link* find(int key) //find link
{
Link* pCurrent = pFirst; //start at first

//until end of list,
while(pCurrent != NULL && pCurrent->iData <= key)

{ //or key too small,
if(pCurrent->iData == key) //is this the link?

return pCurrent; //found it, return link
pCurrent = pCurrent->pNext; //go to next item
}

return NULL; //didn’t find it
} //end find()

//--
void displayList()

{
cout << “List (first->last): “;
Link* pCurrent = pFirst; //start at beginning of list
while(pCurrent != NULL) //until end of list,

{
pCurrent->displayLink(); //print data
pCurrent = pCurrent->pNext; //move to next link
}

cout << endl;
}

//--
}; //end class SortedList

//
class HashTable

{
private:

vector<SortedList*> hashArray; //vector of lists

Separate Chaining 463

23

continues

29 72316331 CH23 10/31/02 6:56 AM Page 463

LISTING 23.1 CONTINUED

int arraySize;
public:

//--
HashTable(int size) //constructor

{
arraySize = size;
hashArray.resize(arraySize); //set vector size
for(int j=0; j<arraySize; j++) //fill vector

hashArray[j] = new SortedList; //with lists
}

//--
void displayTable()

{
for(int j=0; j<arraySize; j++) //for each cell,

{
cout << j << “. “; //display cell number
hashArray[j]->displayList(); //display list
}

}
//--

int hashFunc(int key) //hash function
{
return key % arraySize;
}

//--
void insert(Link* pLink) //insert a link

{
int key = pLink->iData;
int hashVal = hashFunc(key); //hash the key
hashArray[hashVal]->insert(pLink); //insert at hashVal
} //end insert()

//--
void remove(int key) //delete a link

{
int hashVal = hashFunc(key); //hash the key
hashArray[hashVal]->remove(key); //delete link
} //end remove()

//--
Link* find(int key) //find link

{
int hashVal = hashFunc(key); //hash the key
Link* pLink = hashArray[hashVal]->find(key); //get link
return pLink; //return link
}

//--
}; //end class HashTable

//
int main()

464 Hour 23

29 72316331 CH23 10/31/02 6:56 AM Page 464

{
int aKey;
Link* pDataItem;
int size, n, keysPerCell = 100;
time_t aTime;
char choice = ‘b’;

//get sizes
cout << “Enter size of hash table: “;
cin >> size;
cout << “Enter initial number of items: “;
cin >> n;
HashTable theHashTable(size); //make table

//initialize random numbers
srand(static_cast<unsigned>(time(&aTime)));

for(int j=0; j<n; j++) //insert data
{
aKey = rand() % (keysPerCell * size);
pDataItem = new Link(aKey);
theHashTable.insert(pDataItem);
}

while(choice != ‘x’) //interact with user
{
cout << “Enter first letter of “;
cout << “show, insert, delete, or find: “;
cin >> choice;
switch(choice)

{
case ‘s’:

theHashTable.displayTable();
break;

case ‘i’:
cout << “Enter key value to insert: “;
cin >> aKey;
pDataItem = new Link(aKey);
theHashTable.insert(pDataItem);
break;

case ‘d’:
cout << “Enter key value to delete: “;
cin >> aKey;
theHashTable.remove(aKey);
break;

case ‘f’:
cout << “Enter key value to find: “;
cin >> aKey;
pDataItem = theHashTable.find(aKey);
if(pDataItem != NULL)

cout << “Found “ << aKey << endl;
else

cout << “Could not find “ << aKey << endl;
break;

Separate Chaining 465

23

continues

29 72316331 CH23 10/31/02 6:56 AM Page 465

LISTING 23.1 CONTINUED

default:
cout << “Invalid entry\n”;

} //end switch
} //end while

return 0;
} //end main()

Here’s the output when the user creates a table with 20 lists, inserts 20 items into
it, and displays it with the s option.

Enter size of hash table: 20
Enter initial number of items: 20
Enter first letter of show, insert, delete, or find: s
0. List (first->last): 240 1160
1. List (first->last):
2. List (first->last):
3. List (first->last): 143
4. List (first->last): 1004
5. List (first->last): 1485 1585
6. List (first->last):
7. List (first->last): 87 1407
8. List (first->last):
9. List (first->last): 309
10. List (first->last): 490
11. List (first->last):
12. List (first->last): 872
13. List (first->last): 1073
14. List (first->last): 594 954
15. List (first->last): 335
16. List (first->last): 1216
17. List (first->last): 1057 1357
18. List (first->last): 938 1818
19. List (first->last):

If you insert more items into this table you’ll see the lists grow longer, but maintain their
sorted order. You can delete items as well.

Efficiency of Separate Chaining
The efficiency analysis for separate chaining is different, and generally easier, than for
open addressing.

We want to know how long it takes to search for or insert an item into a separate-chain-
ing hash table. We’ll assume that the most time-consuming part of these operations is
comparing the search key of the item with the keys of other items in the list. We’ll also

466 Hour 23

OUTPUT

29 72316331 CH23 10/31/02 6:56 AM Page 466

assume that the time required to hash to the appropriate list, and to determine when the
end of a list has been reached, is equivalent to one key comparison. Thus all operations
require 1+nComps time, where nComps is the number of key comparisons.

Let’s say that the hash table consists of arraySize elements, each of which holds a list,
and that N data items have been inserted in the table. Then, on the average, each list will
hold N divided by arraySize items:

AverageListLength = N / arraySize

This is the same as the definition of the load factor:

loadFactor = N / arraySize

So the average list length equals the load factor.

Searching
In a successful search, the algorithm hashes to the appropriate list, and then searches
along the list for the item. On the average, half the items must be examined before the
correct one is located. Thus the search time is

1 + loadFactor / 2

This is true whether the lists are ordered or not. In an unsuccessful search, if the lists are
unordered, all the items must be searched, so the time is

1 + loadFactor

These formulas are graphed in Figure 23.3.

For an ordered list, only half the items must be examined in an unsuccessful search, so
the time is the same as for a successful search.

In separate chaining it’s typical to use a load factor of about 1.0 (the number of data
items equals the array size). Smaller load factors don’t improve performance signifi-
cantly, but the time for all operations increases linearly with load factor, so going beyond
2 or so is generally a bad idea.

Insertion
If the lists are not ordered, insertion is always immediate, in the sense that no compar-
isons are necessary. The hash function must still be computed, so let’s call the insertion
time 1.

Separate Chaining 467

23

29 72316331 CH23 10/31/02 6:56 AM Page 467

If the lists are ordered, then, as with an unsuccessful search, an average of half the items
in each list must be examined, so the insertion time is 1 + loadFactor / 2.

That completes our discussion of separate chaining. How does separate chaining com-
pare with the open addressing approach seen in Hours 21 and 22?

Open Addressing Versus Separate Chaining
If open addressing is to be used, double hashing seems to be the preferred system by a
small margin over quadratic probing. The exception is the situation where plenty of
memory is available and the data won’t expand after the table is created; in this case lin-
ear probing is somewhat simpler to implement and, if load factors below 0.5 are used,
causes little performance penalty.

If the number of items that will be inserted in a hash table isn’t known when the table is
created, separate chaining is preferable to open addressing. Increasing the load factor
causes major performance penalties in open addressing, but performance degrades only
linearly in separate chaining.

When in doubt, use separate chaining. Its drawback is the need for a linked list class, but
the payoff is that adding more data than you anticipated won’t cause performance to slow
to a crawl.

468 Hour 23

0 1.0

0

1

2

3

4

5

6

2.0

Load Factor

Unsuccessful

SuccessfulA
ve

ra
ge

 P
ro

be
 L

en
gt

h

3.0 4.0 5.0

FIGURE 23.3
Separate-chaining per-
formance.

29 72316331 CH23 10/31/02 6:56 AM Page 468

Hash Functions
In this section we’ll explore the issue of what makes a good hash function, and see if we
can improve the approach to hashing strings mentioned at the beginning of Hour 21.

Quick Computation
A good hash function is simple, so it can be computed quickly. The major advantage of
hash tables is their speed. If the hash function is slow, this speed will be degraded. A
hash function with many multiplications and divisions is not a good idea. (The bit-
manipulation facilities of C++, such as shifting bits right to divide a number by a multi-
ple of 2, can sometimes be used to good advantage.)

The purpose of a hash function is to take a range of key values and transform them into
index values in such a way that the key values are distributed randomly across all the
indices of the hash table. The scheme should work with keys that are completely random
as well as not so random.

Random Keys
A so-called perfect hash function maps every key into a different table location.
This is only possible for keys that are unusually well behaved, and whose range

is small enough to be used directly as array indices (as in the employee-number example
discussed in Hour 21).

In most cases neither of these situations exist, and the hash function will need to com-
press a larger range of keys into a smaller range of index numbers.

The distribution of key values in a particular set of data determines what the hash func-
tion needs to do. So far we’ve assumed that the data was randomly distributed over its
entire range. In this situation the following hash function is satisfactory:

index = key % arraySize;

It involves only one mathematical operation, and if the keys are truly random the result-
ing indices will be random too, and therefore well distributed.

Non-Random Keys
However, data is often distributed non-randomly. Imagine a set of data that uses car part
numbers as keys. Perhaps these numbers are of the form

033-400-03-94-05-0-535

This is interpreted as follows:

Separate Chaining 469

23

NEW TERM

29 72316331 CH23 10/31/02 6:56 AM Page 469

● Digits 0–2: Supplier number (1 to 999, currently up to 70)

● Digits 3–5: Category code (100, 150, 200, 250, up to 850)

● Digits 6–7: Month of introduction (1 to 12)

● Digits 8–9: Year of introduction (00 to 99)

● Digits 10–11: Serial number (1 to 99, but never exceeds 100)

● Digit 12: Toxic risk flag (0 or 1)

● Digits 13–15: Checksum (sum of other fields, modulo 100)

The key used for the part number shown would be 0,334,000,394,050,535. However,
such keys are not randomly distributed. The majority of numbers from 0 to
9,999,999,999,999,999 can’t actually occur. (For example, supplier numbers above 70,
category codes that aren’t multiples of 50, and months from 13 to 99.) Also, the check-
sum is not independent of the other numbers. Some work should be done to these part
numbers to ensure that they form a range of more truly random numbers.

Don’t Use Non-Data
The key fields should be squeezed down until every bit counts. For example, the cate-
gory codes should be changed to run from 0 to 15. Also, the checksum should be
removed because it doesn’t add any additional information; it’s deliberately redundant.
Various bit-twiddling techniques are appropriate for compressing the various fields in
the key.

Use All the Data
Every part of the key (except non-data, as described above) should contribute to the hash
function. Don’t just use the first four digits or some such expurgation. The more data that
contributes to the key, the more likely it is that the keys will hash evenly into the entire
range of indices.

Sometimes the range of keys is so large it overflows type int or type long variables.
We’ll see how to handle overflow when we talk about hashing strings in a moment.

470 Hour 23

The trick is to find a hash function that’s simple and fast, yet excludes the
non-data parts of the key and uses all the data.

29 72316331 CH23 10/31/02 6:56 AM Page 470

Use a Prime Number for the Modulo Base
Often the hash function involves using the modulo operator (%) with the table size. We’ve
already seen that it’s important for the table size to be prime number when using a qua-
dratic probe or double hashing. However, if the keys themselves might not be randomly
distributed, it’s important for the table size to be a prime number no matter what hashing
system is used.

This is because if many keys share a divisor with the array size, they might tend to hash
to the same location, causing clustering. Using a prime table size eliminates this possibil-
ity. For example, if the table size is a multiple of 50 in our car part example, the category
codes will all hash to index numbers that are multiples of 50. However, with a prime
number such as 53, you are guaranteed that no keys will divide into the table size.

The moral is to examine your keys carefully, and tailor your hash algorithm to remove
any irregularity in the distribution of the keys.

Hashing Strings
Let’s see how to apply hash functions to hashing strings. We’ll show three versions of
such a hash function, each more refined than the last.

Hash Function Version 1
We saw in Hour 21 how to convert short strings to key numbers by multiplying digit
codes by powers of a constant. In particular, we saw that the four-letter word cats could
turned into a number by calculating

key = 3*273 + 1*272 + 20*271 + 19*270

This approach has the desirable attribute of involving all the characters in the input
string. The calculated key value can then be hashed into an array index in the usual way:

index = (key) % arraySize;

Here’s a C++ hash function that finds the key value of a word:

int hashFunc1(string key)
{
int hashVal = 0;
int pow27 = 1; //1, 27, 27*27, etc

for(int j=key.length()-1; j>=0; j-) //right to left
{

Separate Chaining 471

23

29 72316331 CH23 10/31/02 6:56 AM Page 471

int letter = key[j] - 96; //get char code
hashVal += pow27 * letter; //times power of 27
pow27 *= 27; //next power of 27
}

return hashVal % arraySize;
} // end hashFunc1()

The loop starts at the rightmost letter in the word. If there are N letters, this is
N–1. The numerical equivalent of the letter, according to the code we devised in

Hour 21 (a=1 and so on), is placed in letter. This is then multiplied by a power of 27,
which is 1 for the letter at N–1, 27 for the letter at N–2, and so on.

Hash Function Version 2
The hashFunc1() function is not as efficient as it might be. Aside from the character
conversion, there are two multiplications and an addition inside the loop. We can elimi-
nate a multiplication by taking advantage of a mathematical identity called Horner’s
method. (Horner was an English mathematician, 1773–1827.) This states that an expres-
sion like

var4*n4 + var3*n3 + var2*n2 + var1*n1 + var0*n0

can be written as

(((var4*n + var3)*n + var2)*n + var1)*n + var0

To evaluate this, we can start inside the innermost parentheses and work outward. If we
translate this to a C++ function we have the following code:

int hashFunc2(string key)
{
int hashVal = 0;
for(int j=0; j<key.length(); j++) //left to right

{
int letter = key[j] - 96; //get char code
hashVal = hashVal * 27 + letter; //multiply and add
}

return hashVal % arraySize; //mod
} // end hashFunc2()

Here we start with the leftmost letter of the word (which is somewhat more nat-
ural than starting on the right), and we have only one multiplication and one

addition each time through the loop (aside from extracting the character from the string).

Hash Function Version 3
The hashFunc2() function unfortunately can’t handle strings longer than about 7 letters.
Longer strings cause the value of hashVal to exceed the size of type int. (This assumes
you’re using a 32-bit system, in which a variable of type int occupies 4 bytes of memory.)

472 Hour 23

ANALYSIS

ANALYSIS

29 72316331 CH23 10/31/02 6:56 AM Page 472

Can we modify this basic approach so we don’t overflow any variables? Notice that the
key we eventually end up with is always less than the array size, because we apply the
modulo operator. It’s not the final index that’s too big, it’s the intermediate key values.

It turns out that with Horner’s formulation we can apply the modulo (%) operator
at each step in the calculation. This gives the same result as applying the modulo

operator once at the end, but avoids overflow. (It does add an operation inside the loop.)
The hashFunc3() function shows how this looks.

int hashFunc3(string key)
{
int hashVal = 0;
for(int j=0; j<key.length(); j++) //left to right

{
int letter = key[j] - 96; //get char code
hashVal = (hashVal * 27 + letter) % arraySize; //mod
}

return hashVal; //no mod
} // end hashFunc3()

This approach or something like it is normally taken to hash a string. Various bit-manipu-
lation tricks can be played as well, such as using a base of 32 (or a larger power of 2)
instead of 27, so that multiplication can be effected using the shift (>>) operator, which is
faster than the modulo (%) operator.

You can use an approach similar to this to convert any kind of string to a number suitable
for hashing. The strings can be words, names, or any other concatenation of characters.

Summary
In this hour, you’ve learned the following:

● In separate chaining, each table location contains a linked list. Data items that hash
to the same location are simply inserted in the list.

● A load factor of 1.0 is appropriate for separate chaining.

● At this load factor a successful search has an average probe length of 1.5, and an
unsuccessful search, 2.0.

● Probe lengths in separate chaining increase linearly with load factor.

● A string can be hashed by multiplying each character by a different power of a
constant, adding the products, and using the modulo (%) operator to reduce the
result to the size of the hash table.

● To avoid overflow, the modulo operator can be applied at each step in the process,
if the polynomial is expressed using Horner’s method.

Separate Chaining 473

23

ANALYSIS

29 72316331 CH23 10/31/02 6:56 AM Page 473

Q&A
Q I didn’t get the point of all that discussion about complicated part numbers.

Can you explain a bit more?

A The point is that you should pay attention to what numbers you use for keys. If you
don’t squeeze out redundant or constant information, your hash table won’t be as
efficient as it could be.

Q In the car part numbers, isn’t there a Y2K problem because only two digits
are used for the year?

A That depends how the software handles this field. There’s no problem if the
assumption is that numbers from 00 to (say) 49 refer to 2000 to 2049, whereas 50
to 99 refer to 1950 to 1999.

Q When should I use a hash table as opposed to a tree?

A We’ll get to that in the next chapter.

Workshop
The Workshop helps you solidify what you learned in this hour. See Appendix A, “Quiz
Answers,” for quiz answers.

Quiz
1. When a collision occurs in separate chaining, how is an open array cell located?

2. In separate chaining, how do you access an item with a given key?

3. True or false: Unsorted lists must be used in separate chaining.

4. If there are N items in a hash table that uses separate chaining, and an average of
M items on each list, how long does it take, on average, to find a particular item?

5. What is a bucket?

6. In separate chaining with unsorted lists, which is faster, a successful search or an
unsuccessful search?

7. True or false: The efficiency of separate chaining degrades rapidly as the load fac-
tor approaches 1.

Exercise
Rewrite the hashChain.cpp program to use an UnsortedList class instead of a
SortedList class. Run both versions of the program with large amounts of data and time
which one is faster for insertion, deletion, and searching.

474 Hour 23

29 72316331 CH23 10/31/02 6:56 AM Page 474

HOUR 24
When to Use What

In this hour we briefly summarize what we’ve learned so far in this book,
with an eye toward deciding what data structure or algorithm to use in a par-
ticular situation. You’ll lean

• How to decide which general-purpose data structure—array, linked
list, tree, or hash table—to use

• How to decide which specialized data structure—stack, queue, or pri-
ority queue—to use

• How to decide which sorting algorithm to use

For detailed information on these topics, refer to the individual hours in this
book.

The summary in this hour comes with the usual caveats. Of necessity it’s
very general. Every real-world situation is unique, so what we say here
might not be the right answer to your problem.

30 72316331 CH24 10/31/02 6:56 AM Page 475

General-Purpose Data Structures
If you need to store real-world data such as personnel records, inventories, contact lists,
or sales data, you need a general-purpose data structure. The structures of this type that
we’ve discussed in this book are arrays, linked lists, trees, and hash tables. We call these
general-purpose data structures because they are used to store and retrieve data using key
values. They provide convenient access to any data item (as opposed to specialized struc-
tures such as stacks, which allow access to only certain data items).

Which of these general-purpose data structures is appropriate for a given problem?
Figure 24.1 shows a first approximation to this question. However, there are many factors
besides those shown in the figure. For more detail, we’ll explore some general considera-
tions first, and then zero in on the individual structures.

476 Hour 24

Start
Small

amount of
data

?

Amount
of data

predictable
?

Yes No

No Yes

No

No

No

Linked
list

Searching
and insertion
must be very

fast
?

Key
distribution
guaranteed

random
?

Search
speed more

important than
insertion

speed
?

YesYes

Yes

Ordered
Array

Hash
Table

Binary
Search
Tree

Unordered
array

Balanced
Tree

FIGURE 24.1
The relationship of
general-purpose data
structures.

30 72316331 CH24 10/31/02 6:56 AM Page 476

Speed and Algorithms
The general-purpose data structures can be roughly arranged in terms of speed: Arrays
and linked lists are slow, trees are fairly fast, and hash tables are very fast.

However, don’t draw the conclusion from this figure that it’s always best to use the
fastest structures. There’s a penalty for using them. First, they are—in varying degrees—
more complex to program than the array and linked list. Also, hash tables require you to
know in advance about how much data can be stored, and they don’t use memory very
efficiently. Ordinary binary trees will revert to slow O(N) operation for ordered data, and
balanced trees, which avoid this problem, are difficult to program.

Computers Grow Faster Every Year
The fast structures come with penalties, and another development makes the slow struc-
tures more attractive. Every year there’s an increase in the CPU and memory-access
speed of the latest computers. Moore’s Law (postulated by Gordon Moore in 1965) spec-
ifies that CPU performance will double every 18 months. This adds up to an astonishing
difference in performance between the earliest computers and those available today, and
there’s no reason to think this increase will slow down any time soon.

Suppose a computer a few years ago handled an array of 100 objects in acceptable time.
Now, computers are 100 times faster, so an array with 10,000 objects can run at the same
speed. Many writers of computer science texts provide estimates of the maximum size
you can make a data structure before it becomes too slow. Don’t trust these estimates
(including those in this book). Today’s estimate doesn’t apply to tomorrow.

Instead, start by considering the simple data structures. Unless it’s obvious they’ll be too
slow, code a test version of an array or linked list and see what happens. If it runs in
acceptable time, look no further. Why slave away on a balanced tree, when no one would
ever notice that you used an array instead? Even if you must deal with thousands or tens
of thousands of items, it’s still worthwhile to see how well an array or linked list will
handle them. Only when experimentation shows their performance to be too slow should
you revert to more sophisticated data structures.

Pointers Are Faster
C++ has an advantage over some languages in the speed with which objects can be
manipulated because, in many data structures, C++ stores only pointers, not actual
objects. Therefore most algorithms will run faster than if actual objects occupy space in a
data structure. In analyzing the algorithms it’s not the case, as when objects themselves
are stored, that the time to “move” an object depends on the size of the object. Because
only a pointer is moved, it doesn’t matter how large the object is.

When to Use What 477

24

30 72316331 CH24 10/31/02 6:56 AM Page 477

Libraries
Libraries of data structures are available commercially for all major programming lan-
guages. Languages themselves may have some structures built in. C++, as we’ve noted in
previous hours, includes vector, stack, and various other container classes as part of the
Standard Template Library (STL).

Using a ready-made library might eliminate or at least reduce the programming neces-
sary to create the data structures described in this book. When that’s the case, using a
complex structure such as a balanced tree, or a delicate algorithm such as quicksort,
becomes a more attractive possibility. However, you must ensure that the class can be
adapted to your particular situation.

Arrays
In many situations the array is the first kind of structure you should consider when stor-
ing and manipulating data. Arrays are useful when

1. The amount of data is reasonably small.

2. The amount of data is predictable in advance.

If you have plenty of memory, you can relax the second condition; just make the array
big enough to handle any foreseeable influx of data.

If insertion speed is important, use an unordered array. If search speed is important, use
an ordered array with a binary search. Deletion is always slow in arrays because an aver-
age of half the items must be moved to fill in the newly vacated cell. Traversal is fast in
an ordered array but not supported in an unordered array.

Vectors, such as the vector class supplied with the C++ STL, are arrays that expand
themselves when they become too full. Vectors might work well when the amount of
data isn’t known in advance. They should probably be considered before a normal array.
However, there might periodically be a significant pause while they enlarge themselves
by copying the old data into a new space. This might make vectors inappropriate for
some programming situations, such as real-time systems.

Linked Lists
Consider a linked list whenever the amount of data to be stored cannot be predicted in
advance or when data will frequently be inserted and deleted. The linked list obtains
whatever storage it needs as new items are added, so it can expand to fill all of the avail-
able memory; there is no need to fill “holes” during deletion, as there is in arrays.

478 Hour 24

30 72316331 CH24 10/31/02 6:56 AM Page 478

Insertion is fast in an unordered list. Searching and deletion are slow (although deletion
is faster than in an array), so, like arrays, linked lists are best used when the amount of
data is comparatively small.

A linked list is somewhat more complicated to program than an array, but is simple com-
pared with a tree or hash table.

Binary Search Trees
A binary tree is the first structure to consider when arrays and linked lists prove too slow.
A tree provides fast O(log N) insertion, searching, and deletion. Traversal is O(N), which
is the maximum for any data structure (by definition, you must visit every item). You can
also find the minimum and maximum quickly, and traverse a range of items.

An unbalanced binary tree is much easier to program than a balanced tree, but unfortu-
nately ordered data can reduce its performance to O(N) time, no better than a linked list.
However, if you’re sure the data will arrive in random order, there’s less necessity to
using a balanced tree.

Balanced Trees
Of the various kinds of balanced trees, we discussed red-black trees and 2-3-4 trees.
They are both balanced trees, and thus guarantee O(log N) performance whether the
input data is ordered or not. However, these balanced trees are challenging to program,
with the red-black tree being the more difficult. They also impose additional memory
overhead, which might or might not be significant. The problem of complex program-
ming is reduced if a commercial class can be used for a tree.

In some cases a hash table might be a better choice than a balanced tree. Hash table per-
formance doesn’t degrade when the data is ordered.

There are other kinds of balanced trees, including AVL trees, splay trees, 2-3 trees, and
so on, but they are not as commonly used as the red-black tree.

Hash Tables
Hash tables are the fastest data storage structure. This makes them a necessity for situa-
tions where a computer program, rather than a human, is interacting with large amounts
of data. Hash tables are typically used in spelling checkers and as symbol tables in com-
puter language compilers, where a program must check thousands of words or symbols
in a fraction of a second.

When to Use What 479

24

30 72316331 CH24 10/31/02 6:56 AM Page 479

Hash tables might also be useful when a person, as opposed to a computer, initiates data-
access operations. As noted above, hash tables are not sensitive to the order in which data
is inserted, and so can take the place of a balanced tree. Programming is much simpler
than for balanced trees.

Hash tables require additional memory, especially for open addressing. Also, the amount
of data to be stored must be known fairly accurately in advance because an array is used
as the underlying structure.

A hash table with separate chaining is the most robust implementation, unless the
amount of data is known accurately in advance, in which case open addressing offers
simpler programming because no linked list class is required.

Hash tables don’t support any kind of ordered traversal, or access to the minimum or
maximum items. If these capabilities are important, the binary search tree is a better
choice.

Comparing the General-Purpose Storage Structures
Table 24.1 summarizes the speeds of the various general-purpose data storage structures
using Big O notation.

TABLE 24.1 GENERAL-PURPOSE DATA STORAGE STRUCTURES

Data Structure Search Insertion Deletion Traversal

Array O(N) O(1) O(N) —

Ordered array O(log N) O(N) O(N) O(N)

Linked list O(N) O(1) O(N) —

Ordered linked list O(N) O(N) O(N) O(N)

Binary tree (average) O(log N) O(log N) O(log N) O(N)

Binary tree (worst case) O(N) O(N) O(N) O(N)

Balanced tree (average O(log N) O(log N) O(log N) O(N)
and worst case)

Hash table O(1) O(1) O(1) —

In this table, insertion in an ordinary (unordered) array is assumed to be at the end of the
array. The ordered array uses a binary search, which is fast, but insertion and deletion
require moving half the items on the average, which is slow. Traversal implies visiting

480 Hour 24

30 72316331 CH24 10/31/02 6:56 AM Page 480

the data items in order of ascending or descending keys. A dash (—) means the indicated
operation is not supported.

Let’s move on from general-purpose data structures to structures that are more applicable
in specialized situations.

Special-Purpose Data Structures
The special-purpose data structures discussed in this book are the stack, the queue, and
the priority queue. These structures, rather than supporting a database of user-accessible
data, are more often used by a computer program to aid in carrying out some algorithm.

Stacks, queues, and priority queues are abstract data types (ADTs) that are implemented
by a more fundamental structure such as an array or linked list. These ADTs present a
simple interface to the user, typically allowing only insertion and the ability to access or
delete only one data item. These items are

• For stacks: the last item inserted

• For queues: the first item inserted

• For priority queues: the item with the highest priority

These ADTs can be seen as conceptual aids. Their functionality could be obtained using
the underlying structure (such as an array) directly, but the reduced interface they offer
simplifies many problems.

These ADTs can’t be conveniently searched for an item by key value, or traversed.

Stack
A stack is used when you want access only to the last data item inserted; it’s a last-in-
first-out (LIFO) structure.

A stack is often implemented as an array or a linked list. The array implementation is
efficient because the most recently inserted item is placed at the end of the array, where
it’s also easy to delete it. Stack overflow can occur, but is not likely if the array is reason-
ably sized, because stacks seldom contain huge amounts of data.

If the stack will contain a lot of data and the amount can’t be predicted accurately in
advance (as when recursion is implemented as a stack) a linked list is a better choice
than an array. A linked list is efficient because items can be inserted and deleted quickly

When to Use What 481

24

30 72316331 CH24 10/31/02 6:56 AM Page 481

from the head of the list. Stack overflow can’t occur (unless the entire memory is full). A
linked list is slightly slower than an array because memory allocation is necessary to cre-
ate a new link for insertion, and deallocation of the link is necessary at some point, usu-
ally following removal of an item from the list.

Queue
A queue is used when you want access only to the first data item inserted; it’s a first-in-
first-out (FIFO) structure.

Like stacks, queues can be implemented as arrays or linked lists. Both are efficient. The
array requires additional programming to handle the situation where the queue wraps
around at the end of the array. A linked list must be double-ended, to allow insertions at
one end and deletions at the other.

As with stacks, the choice between an array implementation and a linked list implemen-
tation is determined by how well the amount of data can be predicted. Use the array if
you know about how much data there will be; otherwise, use a linked list.

Priority Queue
A priority queue is used when the only access desired is to the data item with the highest
priority. This is the item with the largest (or sometimes the smallest) key.

Priority queues can be implemented as ordered arrays or ordered linked lists. Insertion in
these structures is slow, but deletion is fast. The array works when the amount of data to
be stored can be predicted in advance; the linked list when the amount of data is
unknown. A vector can be substituted for the array.

A priority queue can also be implemented as a heap, a data structure that we
don’t discuss in this book. A heap is a tree-like structure, usually based on an

array, that provides fast access to the largest (or smallest) data item. As the basis for a
priority queue, the heap allows insertion in O(log N) time; unfortunately, deletion is also
O(log N), not as fast as an ordered array. The heap is more complicated than the array or
linked list. However it’s the structure of choice when insertion speed is vital.

482 Hour 24

NEW TERM

30 72316331 CH24 10/31/02 6:56 AM Page 482

Comparison of Special-Purpose Structures
Table 24.2 shows the Big O times for stacks, queues, and priority queues. These struc-
tures don’t support searching or traversal.

TABLE 24.2 SPECIAL-PURPOSE DATA-STORAGE STRUCTURES

Data Structure Insertion Deletion Comment

Stack (array or O(1) O(1) Deletes most recently
linked list) inserted item

Queue (array or O(1) O(1) Deletes least recently
linked list) inserted item

Priority queue O(N) O(1) Deletes highest-priority
(ordered array) item

Priority queue O(log N) O(log N) Deletes highest-priority item
(heap)

We’ve summarized two kinds of data structures. We’ll conclude with a review of the
most common complex algorithm: sorting.

Sorting
As with the choice of data structures, it’s worthwhile initially to try a slow but simple
sort, such as the insertion sort. It might be that the fast processing speeds available in
modern computers will allow sorting of your data in reasonable time. (As a wild guess,
the slow sort might be appropriate for under 1,000 items.)

Insertion sort is also good for almost-sorted files, operating in about O(N) time if not too
many items are out of place. This is typically the case where a few new items are added
to an already-sorted file.

If the insertion sort proves too slow you can use one of the more complex but faster
sorts: mergesort or quicksort. Mergesort requires extra memory and is somewhat slower
than quicksort, so quicksort is the usual choice when the fastest sorting time is necessary.

When to Use What 483

24

30 72316331 CH24 10/31/02 6:56 AM Page 483

However, quicksort is suspect if there’s a danger that the data may not be random, in
which case it may deteriorate to O(N2) performance in some implementations. For poten-
tially non-random data, heapsort is better. Quicksort is also prone to subtle errors if it is
not implemented correctly. Small mistakes in coding can make it work poorly for certain
arrangements of data, a situation that might be hard to diagnose.

Several sorts we did not discuss in this book might be worth considering. The shellsort is
intermediate in speed between the slow sorts like the insertion sort and the fast sorts like
mergesort and quicksort. It’s considerably easier to program than the faster sorts, and
might therefore be useful in situations when there’s too much data for a slow sort but not
enough to justify a fast sort.

The heapsort is based on the heap structure, just mentioned in connection with priority
queues. The heapsort rivals the mergesort in its ability to handle non-random data.

Table 24.3 summarizes the running time forvarious sorting algorithms. The column
labeled Comparison attempts to estimate the minor speed differences between algorithms
with the same average Big O times. (There’s no entry for shellsort because there are no
other algorithms with the same Big O performance.)

TABLE 24.3 COMPARISON OF SORTING ALGORITHMS

Extra
Sort1 Average Worst Comparison Memory

Bubble O(N2) O(N2) Fair No

Insertion O(N2) O(N2) Good No

Shellsort O(N3/2) O(N3/2) No

Quicksort O(N*log N) O(N2) Good No

Mergesort O(N*log N) O(N*log N) Fair Yes

Heapsort O(N*log N) O(N*log N) Fair No

Onward
We’ve come to the end of our survey of data structures and algorithms. The subject is
large and complex, so no one book can make you an expert, but we hope this book has
made it easy for you to learn the fundamentals. Appendix C, “Further Reading,” contains
suggestions for further study.

484 Hour 24

30 72316331 CH24 10/31/02 6:56 AM Page 484

24

When to Use What 485

Because this chapter is itself a summary, we don’t include the usual end-of-
chapter material such as the summary and workshop.

30 72316331 CH24 10/31/02 6:56 AM Page 485

30 72316331 CH24 10/31/02 6:56 AM Page 486

A Quiz Answers

B How to Run the Workshop Applets and
Sample Programs

C Further Reading

PART VI
Appendixes

31 72316331 pt6 appndxes 10/31/02 6:57 AM Page 487

31 72316331 pt6 appndxes 10/31/02 6:57 AM Page 488

APPENDIX A
Quiz Answers
Hour 1, “Overview of Data Structures
and Alogrithms”

1. What is a data structure?

An arrangement of data in a computer’s memory (or hard disk).

2. What is an algorithm?

A procedure or set of instructions for carrying out some operation.

3. Name two things you can use data structures for.

Pick two from: data storage, programmer’s tools, and modeling.

4. Name an algorithm commonly applied to stored data.

Pick one from: insertion, searching, deletion.

5. True or false: There is only one record in a data file.

False, there are many similar records.

6. What is one of the problems with procedural languages?

Pick one from: protects data poorly, does not model the real world
well.

32 72316331 appA 10/31/02 6:57 AM Page 489

7. True or false: There is only one object of each class.

False. There are (usually) many objects of a class.

8. What is the most common use for the dot operator?

It associates a particular object with one of its member functions.

Hour 2, “Arrays”
1. On average, how many items must be moved to insert a new item into an unsorted

array with N items?

None.

2. On average, how many items must be moved to delete an item from an unsorted
array with N items?

N/2

3. On average, how many items must be examined to find a particular item in an
unsorted array with N items?

N/2

4. What is a class interface?

The public member functions (and occasionally data) that are accessible outside
the class.

5. Why is it important to make things easier for the class user than for the class
designer?

The class is written only once, but it may be used many times.

6. What are the advantages of wrapping an array in a class?

Its data is less likely to be corrupted, and it can be easier to use.

7. What’s an example of an operation that’s easier to perform on an array that’s in a
class than on a simple array?

Displaying all the array contents requires only a single statement (calling a mem-
ber function) if the array is in a class.

8. What is abstraction?

Abstraction is the focus on how to use something rather than on how it works.

Hour 3, “Ordered Arrays”
1. Why is an ordered array better than an unordered array?

Searches can be carried out much faster.

490 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 490

2. In one sentence, how does a binary search work?

By repeatedly dividing in half the range to be searched.

3. What is the maximum number of comparisons necessary when performing a binary
search of 100,000 items?

17

4. What is the equation that tells you how many steps a binary search will take if you
already know the size of the range to be searched?

s = log2(r)

5. True or false: Only simple variables like int can be stored in a data structure.

False. Objects are commonly stored in data structures.

6. What is the purpose of Big O notation?

It provides a concise way to specify how fast an algorithm is.

7. Big O notation specifies a relationship between two variables. What are these vari-
ables?

The size of a data structure and the speed of an algorithm applied to the data struc-
ture.

Hour 4, “The Bubble Sort”
1. Describe the algorithm for carrying out the bubble sort.

Start on the left. (1) Compare two items. (2) Swap them if the one on the left is
larger. (3) Move one space left. (4) Stop going left when you reach a sorted item.
(5) Continue until all items are sorted.

2. How many statements does a C++ program need to carry out the bubble sort?

About four (not counting declarations and a swap function).

3. What’s an invariant?

A condition that remains unchanged throughout an algorithm’s operation (or some-
times part of the operation).

4. Why is the bubble sort so slow?

One loop nested within another is a sign an algorithm may run in O(N2) time. The
inner loop does something N times, and the outer loop executes the inner loop N
times. N times N is N2.

5. How many comparisons does a bubble sort perform in sorting N items?

N*(N-1)/2

Quiz Answers 491

A

32 72316331 appA 10/31/02 6:57 AM Page 491

6. In the bubbleSort.cpp program, why is the bubbleSort() function a member
function of a class?

It’s an operation that can be carried out on an object of the array class, just as dis-
playing the array or inserting a new item are.

Hour 5, “The Insertion Sort”
1. What does partially sorted mean?

If a group of items are sorted among themselves, but not yet sorted when compared
with items not in the group, they are said to be partially sorted.

2. During the insertion sort, where is the marked item placed?

In the appropriate place in the partially sorted group.

3. What is one reason the insertion sort is more efficient than the sorted group?

It performs copies (as it shifts items) rather than swaps.

4. True or false: When using the insertion sort on N items, memory space for N*2
items is required.

False. Only one additional variable is required, so we need space for only N+1
items.

5. True or false: The insertion sort runs in O(N2) time, the same as the bubble sort.

True, although it is more than twice as fast on random data, and much faster for
data that is only slightly out of order.

6. Define the term stable as applied to sorting.

A sorting algorithm is stable if items with the same key remain in the same order
after the sort.

7. When would you use a bubble sort as opposed to an insertion sort?

Only if the amount of data was very small, so that speed was less important than
the simplicity of the algorithm.

Hour 6, “Stacks”
1. True or false: A stack works on the first-in-first-out (FIFO) principle.

False. A stack works on the last-in-first-out (LIFO) principle.

2. Name two ways stacks and queues differ from arrays.

Pick one from the following: (1) Stacks and queues are more often used as pro-
grammers’ tools. (2) Stacks and queues restrict access to certain data. (3) Stacks
and queues are more abstract, being defined by their interface.

492 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 492

3. True or false: A good analogy for a stack is the line of people waiting at the bank
teller’s window.

False. The line at a bank is a first-in-first-out situation.

4. Define push and pop.

Push means to insert at the top of a stack, and pop means to remove from the top
of a stack.

5. True or false: If there’s only one item in a stack, the bottom of the stack is the
same as the top.

True.

6. In the C++ code that pushes an item onto a stack, should you insert the item first or
increment the top first?

Increment the top first.

Hour 7, “Queues and Priority Queues”
1. Give a one-sentence description of how a queue works.

Items are inserted at one end of a queue and removed at the other.

2. In the C++ code for a queue, when you insert an item, which do you do first: insert
the item, increment Rear, or check whether Rear is at the end of the array.

Check whether Rear is at the end of the array (in which case wraparound is neces-
sary).

3. Why is wraparound necessary for (at least some implementations of) queues but
not for stacks?

Stacks grow and shrink from the same end of an array, while queues grow from
one end and shrink from the other, causing them to move through the array like a
caterpillar.

4. What does it mean when we say the remove() member function for a queue
“assumes” the queue is not empty?

It means the function will operate incorrectly if the queue is empty. Thus the entity
calling the function should ensure the queue’s emptiness before making the call.

5. What’s the difference between a queue and a priority queue?

In a queue the first item inserted is the one removed. In a priority queue the
highest-priority item is the one removed.

6. Why is wraparound necessary in priority queues?

Trick question. Wraparound is used in queues but not in priority queues.

Quiz Answers 493

A

32 72316331 appA 10/31/02 6:57 AM Page 493

7. True or false: Assuming array implementations, insertion and deletion in queues
and priority queues operate in O(1) time.

False. Insertion in a priority queue takes O(N) time.

Hour 8, “Linked Lists”
1. What one piece of data must be included in a link class?

A pointer to the next link.

2. What one piece of data must be included in a linked list class?

A pointer to the first link.

3. Deleting a link from a linked list involves only one change in the list’s structure.
What is it?

Changing the pointer in the preceding link so it points to the link that follows the
one being deleted.

4. How do you get from the current link to the next link?

Go to the link pointed to by pNext in the current link.

5. What task must be carried out by both the find(int key) and remove(int key)
member functions?

They must both search for a given key.

6. How many objects of the linked list class are normally used to implement a linked
list?

One.

7. What task should be carried out by the destructor of a linked list class in a C++
program?

It should delete any links currently in the list. Failure to do this might cause mem-
ory to fill up with unused links.

Hour 9, “Abstract Data Types”
1. When you implement a stack using a linked list rather than an array, what is the

chief difference noticed by a user of the stack class?

There should be no difference. That’s the point of considering the stack as an ADT.

2. True or false: An abstract C++ class is one whose interface is not yet clearly
defined.

False. The interface is defined but the implementation might not be.

494 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 494

3. What does implementation mean?

Implementation is the actual code a class uses to carry out its tasks.

4. What is an ADT?

An abstract data type is a class (perhaps a data storage structure) where we focus
on the interface rather than the implementation.

5. Is a stack an example of an ADT?

Yes, a stack is an ADT because what defines a stack is the push() and pop() oper-
ations, not how they’re implemented.

6. Would it make sense to implement an array using a stack?

Not really. A stack has such a limited interface it would be difficult to use it to
implement a stack.

7. Is a linked list an example of an ADT?

A linked list is not an ADT because we think of it as being implemented in a cer-
tain way (with pointers from one link to the next).

Hour 10, “Specialized Lists”
1. What is the advantage of a sorted list over an unsorted list?

You can access the item with the largest (or smallest) key much more quickly in a
sorted list.

2. What is the advantage of a sorted list over a sorted array?

You can insert and delete items more quickly in a list than an array because no
items need to be moved.

3. True or false: It takes O(N) time to insert an item in a sorted list.

True. You must examine an average of N/2 items to find the insertion point.

4. How does the insertion sort work?

You copy the contents of an unsorted array to the sorted list, then copy the list con-
tents back into the array.

5. Besides its use in the insertion sort, what’s another application for the sorted list?

It can implement a priority queue.

6. What is the advantage of a doubly linked list over a singly linked list?

You can traverse in either direction in a doubly linked list.

7. What is the main disadvantage of a doubly linked list?

The algorithms must keep track of twice as many pointers.

Quiz Answers 495

A

32 72316331 appA 10/31/02 6:57 AM Page 495

Hour 11, “Recursion”
1. Complete the sentence: A recursive function is one that...

calls itself.

2. The value of the eighth triangular number is

36

3. True or false: Recursion is used because it is more efficient.

False. It’s usually used because it simplifies a problem conceptually.

4. What is a base case?

The situation in which a recursive function returns rather than calls itself.

5. Describe briefly how to anagram a word.

Rotate the word, then anagram all but the first letter. Continue until all letters have
occupied the first position.

6. What’s the advantage of the recursive approach to binary searches, as opposed to
the loop approach?

It’s easier to program.

7. True or false: A recursive approach can be replaced with a stack-based approach.

True.

8. In a recursive approach to a binary search, what two things does the recursive func-
tion call itself to do?

There are two calls to itself in the recursive function, one for each half of the range
it’s searching. However, only one of these calls is actually executed.

Hour 12, “Applied Recursion”
1. Define the term subtree as used in our discussion of the Towers of Hanoi puzzle.

A stack of disks used in the solution of the puzzle.

2. Briefly describe the recursive solution to the Towers of Hanoi puzzle.

Move a subtree of all but the bottom disk to an intermediate post. Move the bottom
disk to the destination post. Move the subtree to the destination post.

3. True or false: The mergesort is faster than the insertion sort.

True.

4. What does it mean to merge two arrays?

496 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 496

The contents of two sorted arrays are copied to a larger array in such a way that the
result is sorted.

5. Briefly describe the mergesort.

An array is divided in half and each half is sorted separately. Then the halves are
merged. The process is carried out recursively for smaller and smaller arrays.

6. What is the base case for the mergesort?

When the array size is reduced to 1.

7. What is the Big O efficiency of the mergesort?

O(N*logN).

Hour 13, “Quicksort”
1. What does it mean to partition a number of data items?

To put those with a key greater than a certain value in one group, and those with a
key less than the value in another.

2. What is the name given to the value used to separate the two groups into when par-
titioning?

The pivot value.

3. Describe briefly how the C++ code that carries out the partitioning algorithm
works.

Pointers start at opposite ends of the array and move toward each other. Each one
stops when it finds a data item that should be swapped. When both have stopped,
they swap the items and continue on.

4. True or false: The partitioning algorithm runs in O(N) time.

True.

5. Briefly describe the operation of the quicksort algorithm.

A recursive function does three things: It partitions the array into two groups, calls
itself to sort the left group, and calls itself to sort the right group.

6. What is the name of the data item whose key is the same as the pivot value?

The pivot.

7. How do we pick the pivot in the quicksort examples in this hour?

It’s the rightmost item in the array being partitioned.

Quiz Answers 497

A

32 72316331 appA 10/31/02 6:57 AM Page 497

Hour 14, “Improving Quicksort”
1. Is there a particular arrangement of data that the naive version of quickSort (where

the pivot is always on the right) might have trouble sorting?

Yes, it’s very inefficient when applied to inversely sorted data.

2. Why is the naive quicksort so slow for inversely sorted data?

Because if the pivot is always chosen on the right, the subarray will be divided into
very unequal parts. Partitioning is most efficient with equal parts.

3. What is median-of-three partitioning?

Choosing the pivot for each partition by picking the median of the first, last, and
middle items of the subarray.

4. Name three ways, besides quicksort, to sort small partitions.

1. Three items or fewer can be sorted “by hand” with a few lines of code.

2. The insertion sort can be applied to each small partition.

3. Quicksort can leave small partitions unsorted, and the insertion sort can then
sort the entire almost-sorted array.

5. Which is the best system?

Probably either 1 or 2.

6. If you use median-of-three partitioning, why can’t you use quicksort to sort very
small partitions?

The median-of-three process itself requires four cells, so you can’t apply quicksort
to partitions this size or smaller.

7. What is an easy but tedious way to measure the efficiency of the quicksort algo-
rithm, using the Workshop applet?

Measure the length of all the dotted lines the applet draws on the screen during the
sorting process.

Hour 15, “Binary Trees”
1. The tree class stores the location of only one node. Which node is it?

The root node.

2. What is the name for a node with no children?

A leaf node.

498 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 498

3. True or false: In a binary tree, each node can have a maximum of two children.

True.

4. What does it mean to traverse a tree?

To visit all the nodes in some order.

5. What defines a binary search tree (as opposed to a binary tree)?

The left child of a node P has a key value less than P, while the right child has a
key value greater than (or perhaps equal to) P.

6. In a tree with N nodes, how many nodes must be examined to find a given node?

Approximately log2N nodes.

7. What are the advantages of using a binary search tree to store data?

It performs searches, insertions, and deletions in O(log N) time, making it the most
versatile of the data structures.

Hour 16, “Traversing Binary Trees”
1. What three tasks should a recursive function execute to perform an inorder

traversal?

Call itself to traverse a node’s left subtree, visit the node, and call itself to traverse
the node’s right subtree.

2. What is the base case in such traversals?

When the node is NULL.

3. Here’s an expression in postfix notation: AB+C-. Express this in infix notation.

A+B-C.

4. Describe how to find the node with the maximum key value in a binary search tree.

Start at the root, and continually go to each node’s right child. The first node with
no right child is the maximum.

5. The number of steps involved in searching and insertion in a binary tree is propor-
tional to what aspect of the tree?

The number of levels in the tree.

6. The efficiency of binary search trees in Big O notation is

O(logN)

7. In C++, what two data members must the Node class contain?

Pointers to the node’s left and right children.

Quiz Answers 499

A

32 72316331 appA 10/31/02 6:57 AM Page 499

Hour 17, “Red-Black Trees”
1. Why is a balanced tree desirable?

It keeps certain arrangements of data from causing very slow operation.

2. How is the tree kept balanced?

Rotations are performed on the tree or its subtrees.

3. How do the red-black algorithms know what rotations to perform?

By noticing when the red-black rules are violated.

4. What is black height?

The number of black nodes on a path from the root to a leaf (or to a null child).

5. Name the red-black rules.

● Every node is red or black.

● The root is always black.

● If a node is red, its children must be black.

● Every path from the root to a leaf must have the same black height.

6. What actions can the red-black algorithms perform to keep a tree balanced?

The colors of nodes can be changed, and rotations can be performed.

7. In what ways can the colors of nodes be changed?

Color flips can switch the colors of a parent and its children. The colors of individ-
ual nodes can be changed.

8. True or false: During a rotation, an entire subtree can be unattached from its parent
and reattached to another node.

True.

Hour 18, “Red-Black Tree Insertions”
1. During what operations are color changes and rotations applied?

During insertion of a new node and deletion of an existing node.

2. What is the principle way a red-black tree is balanced?

By performing rotations.

3. What is the purpose of the color rules?

By making sure the color rules aren’t violated, an insertion routine is directed
when to perform rotations to keep the tree balanced.

500 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 500

4. What is a color flip?

Swapping the colors of a parent node and its two children.

5. What is a rotation?

A reorganization of the tree in which a node’s left children move up and its right
children move down, or vice versa.

6. What’s an inside grandchild?

A node X is an inside grandchild if it’s on the opposite side of its parent P than P
is of its parent G (X’s grandparent).

7. Briefly describe the insertion process in red-black trees.

During the following steps, ensure the color rules are not violated. First, perform
color flips and rotations, when necessary, on the way down the tree to the insertion
point. Then, if necessary, perform rotations after the node is inserted.

8. What do you do when rule 3, (a parent and its child can’t both be red) is violated?

Perform the appropriate rotation.

9. How do you know whether to perform a single rotation or a double rotation?

A single rotation is used when X is an outside grandchild, a double rotation when
it is an inside grandchild.

Hour 19, “2-3-4 Trees”
1. True or false: In a multiway tree, each node can have more than two children.

True.

2. What is the maximum number of data items per node in a 2-3-4 tree?

Three.

3. When should a node be split?

When a full node is encountered during the insertion process.

4. What happens when a node (other than the root) is split?

Assume the full node X contains items A, B, and C. A new node is created as the
right-hand sibling of X. Item A remains in X. Item B moves into X’s parent. Item
C moves into the new node.

5. If a node is split (assuming it’s not the root) what is the increase in the number of
levels in the tree?

None.

Quiz Answers 501

A

32 72316331 appA 10/31/02 6:57 AM Page 501

6. What happens when the root is split?

Assume the root X contains items A, B, and C. A new node P is created that
becomes X’s parent (and the new root). A second new node S is created as the
right-hand sibling of X. Item A remains in X. Item B moves into P. Item C moves
into S.

7. True or false: Sometimes a node split results in additional node splits in nodes far-
ther up the tree.

False.

8. What keeps a 2-3-4 tree balanced?

Roughly speaking, the fact that node splits expand the tree horizontally.

Hour 20, “Implementing 2-3-4 Trees”
1. In the tree234.cpp program, what C++ feature corresponds to a connection from

one node to another?

A pointer.

2. What is the equivalent in a red-black tree to a 2-node in a 2-3-4 tree?

A black node with two children.

3. True or false: There are two equivalent ways to transform a 4-node in a 2-3-4 tree
into a red-black equivalent.

False. There are two equivalent forms for the 3-node, not the 4-node.

4. When a 3-node is transformed into its equivalent in a red-black tree, does it matter
whether the child is red or black?

Yes. The child must be red.

5. What operation in a 2-3-4 tree corresponds to a rotation in a red-black tree?

The choice of which orientation to use when transforming a 3-node into a black
parent with a red child.

6. What does a color flip in a red-black tree correspond to in a 2-3-4 tree?

Splitting a 4-node.

7. Does a 2-3-4 tree operate at the same Big O speed as a red-black tree?

Yes.

502 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 502

Hour 21, “Hash Tables”
1. What is hashing?

Hashing is the process of transforming a data item’s key into an array address. The
keys should be distributed more or less uniformly across the array.

2. What is a collision?

A collision occurs when two keys hash to the same array index.

3. What is open addressing?

In open addressing, collisions are resolved by finding an open cell at some other
location in the array.

4. What is linear probing?

Linear probing resolves collisions by stepping along the array one index at a time,
looking for the first empty cell.

5. What is clustering?

Clustering is the tendency for groups of contiguously filled cells to grow larger and
larger.

6. True or false: Clustering is a problem with linear probing.

True.

7. True or false: When using linear probing, it’s common to fill an array almost full.

False. It should be filled only about half full.

Hour 22, “Quadratic Probing”
1. Why do we need quadratic probing and double hashing?

Because clustering slows down collision resolution in linear probing.

2. What determines the step size in quadratic probing?

The number of steps that have been taken so far.

3. What determines the step size in double hashing?

The key of the item.

4. What’s the disadvantage of quadratic probing (compared with double hashing)?

Quadratic probing causes secondary clustering.

5. Why should the table size be a prime number when double hashing is used?

If it isn’t, the fixed step size might divide evenly into the array size, which would
cause the probe to fail to visit some cells.

Quiz Answers 503

A

32 72316331 appA 10/31/02 6:57 AM Page 503

6. What is the load factor of a hash table?

The load factor is the ratio of the number of items to the array size.

7. What are the main disadvantages of all the open addressing schemes?

The are all very sensitive to the load factor. If the array becomes too full, they slow
down to an unacceptable degree.

Hour 23, “Separate Chaining”
1. When a collision occurs in separate chaining, how is an open array cell located?

An array cell isn’t used. Instead, the new item is inserted in a list at the original
array location.

2. In separate chaining, how do you access an item with a given key?

Hash to the appropriate array address, then search the linked list at that location.

3. True or false: Unsorted lists must be used in separate chaining.

False. Sorted lists can be used as well.

4. If there are N items in a hash table that uses separate chaining, and an average of
M items on each list, how long does it take, on average, to find a particular item?

1 + M/2

5. What is a bucket?

It’s an array used instead of a linked list in a modified version of separate chaining.

6. In separate chaining with unsorted lists, which is faster, a successful search or an
unsuccessful search?

A successful search is faster because an average of only half the items on a list
must be examined.

7. True or false: The efficiency of separate chaining degrades rapidly as the load fac-
tor approaches 1.

False. Efficiency degrades slowly (linearly) as the load factor exceeds 1.

504 Appendix A

32 72316331 appA 10/31/02 6:57 AM Page 504

APPENDIX B
How to Run the
Workshop Applets and
Sample Programs

In this appendix we discuss the details of running the Workshop applets and
the sample programs. The Workshop applets are graphics-based demonstra-
tion programs, written in Java, that show what trees and other data structures
look like. You can run the applets with a Web browser. The sample pro-
grams, whose source files are shown in the text, present runnable C++ code.

The readme.txt file in the CD-ROM that accompanies this book contains
further information on the topics discussed in this appendix. Be sure to read
this file for the latest information on working with the Workshop applets and
example programs.

33 72316331 appB 10/31/02 6:57 AM Page 505

The Workshop Applets
An applet is a special kind of Java program that is easy to send over the Internet’s World
Wide Web. Because Java applets are designed for the Internet, they can run on any com-
puter platform that has an appropriate applet viewer or Web browser.

In this book, the Workshop applets provide dynamic graphics-based demonstrations of
the concepts discussed in the text. For example, the discussion of binary trees (Hour 15,
“Binary Trees” and Hour 16, “Traversing Binary Trees”) includes a Workshop applet that
shows a tree in the applet window. Clicking buttons will show the steps involved in
inserting a new node into the tree, deleting an existing node, traversing the tree, and so
on. Other hours include appropriate Workshop applets. Screen shots (figures) in the book
show what the applets look like.

Opening the Workshop Applets
The Workshop applets will be found on the CD-ROM that accompanies this book. Each
applet consists of an .html file and several .class files. These are grouped in a subdi-
rectory that has approximately the same name as the applet itself. This subdirectory is
placed within the directory for the appropriate hour. Don’t confuse the directory that
holds the applets (JavaApps) with the directory that holds the sample programs
(C++Progs).

To run the Workshop applets, use your browser to navigate to the appropriate directory
by selecting Open from the File menu and then going to the appropriate directory. Then
open the appropriate .HTML file.

The applet should start running. (Sometimes they take a while to load, so be patient.) The
applet’s appearance should be close to the screen shots shown in the text. (It won’t look
exactly the same because every browser and applet viewer interprets HTML and Java
format somewhat differently.)

Operating the Workshop Applets
Each hour gives instructions for operating specific Workshop applets. Remember that in
most cases you’ll need to repeatedly click a single button to carry out an operation. Each
press of the Ins button in the Array Workshop applet, for example, causes one step of the
insertion process to be carried out. Generally a message is displayed telling what’s hap-
pening at each step.

You should complete each operation—that is, each sequence of button clicks—before
clicking a different button to start a different operation. When an operation is complete,
you’ll see the message Press any Button. For example, keep clicking the Find button

506 Appendix B

33 72316331 appB 10/31/02 6:57 AM Page 506

until the item with the specified key is located, and you see the message Press any
button. Only then should you switch to another operation involving another button, such
as inserting a new item with the Ins button.

The sorting applets from Hours 4, “The Bubble Sort,” 5, “The Insertion Sort,” 13,
“Quicksort,” and 14, “Improving Quicksort” have a Step button with which you can view
the sorting process one step at a time. They also have a Run mode in which the sort runs
at high speed without additional button clicks. Just click the Run button once and watch
the bars sort themselves. To pause, you can click the Step button at any time. Running
can be resumed by clicking the Run button again.

The sorting applets also include a Draw button. Sometimes during the run process the
display becomes corrupted. If this happens, pressing the Draw button restores the dis-
play. It also stops the run, so you’ll need to press the Run button again to continue.

It’s not intended that readers study the code for the Workshop applets, which is mostly
concerned with the graphic presentation. Hence source listings are not provided.

Multiple Class Files
Often several Workshop applets will use .class files with the same names. Note, how-
ever, that these files might not be identical. The applet or sample program might not
work if the wrong class file is used with it, even if the file has the correct name.

This should not normally be a problem because all the files for a given program are
placed in the same subdirectory. However, if you move files by hand you might inadver-
tently copy a file to the wrong directory. Doing this might cause problems that are hard
to trace.

The Sample Programs
The sample programs are intended to show as simply as possible how the data structures
and algorithms discussed in this book can be implemented in C++.

For simplicity, our sample programs run in console mode, which means that output is
displayed as text and input is performed by the user typing at the keyboard. In the
Windows environment the console mode runs in an MS-DOS box. There is no graphics
display in console mode.

The source code for the sample programs is presented in the text of the book. Source
files, consisting of the same text as in the book, are included on the CD-ROM. These
have the .cpp file extension. There are also compiled versions of the sample programs
that can be executed directly. These have the .exe extension.

How to Run the Workshop Applets and Sample Programs 507

B

33 72316331 appB 10/31/02 6:57 AM Page 507

Running the Sample Programs
You can run executable versions of the sample programs from within MS-DOS. You can
invoke MS-DOS from Windows by selecting Programs from the Start menu, and then
selecting MS-DOS Prompt.

From an MS-DOS prompt, go to the appropriate subdirectory (using the cd command)
and find the .exe file. For example, for the insertSort program, go to the C++Progs
directory and then to the insertSort subdirectory in Hour 5. (Don’t confuse C++Progs,
the directory holding the sample programs, with JavaApps, which holds the Workshop
applets.) You should see the insertSort.exe file when you type dir (for directory). To
execute the program, simply enter the filename:

C:\C++Progs\Chap05\insertSort>insertSort

Don’t type a file extension. The insertSort program should run, and you’ll see a text
display of unsorted and sorted data. In some sample programs you’ll see a prompt
inviting you to enter input, which you type at the keyboard.

Compiling the Sample Programs
If you have a C++ compiler, you can experiment with the sample programs by modifying
them and then compiling and running the modified versions. You can also write your
own applications from scratch, compile them, and run them. We don’t provide a C++
compiler, but capable basic compilers are available from manufacturers such as
Microsoft and Borland for under $100.

Terminating the Sample Programs
You can terminate any running console-mode program, including any of the sample pro-
grams, by pressing the Ctrl+C key combination (the control key and the C key pressed at
the same time). Some sample programs have a termination procedure that’s mentioned in
the text, such as pressing Enter at the beginning of a line, but for the others you must
press Ctrl+C.

508 Appendix B

33 72316331 appB 10/31/02 6:57 AM Page 508

APPENDIX C
Further Reading

This appendix mentions some relevant books on data structures and algo-
rithms and other components of software development. This is a subjective,
noninclusive list; there are many other excellent titles on all the topics men-
tioned.

Data Structures and Algorithms
The definitive reference for any study of data structures and algorithms is
The Art of Computer Programming by Donald E. Knuth, of Stanford
University (Addison Wesley, 1997). This seminal work, originally published
in the 1970s, is now in its third edition. It consists of three volumes: Volume
1: Fundamental Algorithms, Volume 2: Seminumerical Algorithms, and
Volume 3: Sorting and Searching. Of these, the last is the most relevant to
the topics in this book. This work is highly mathematical and does not make
for easy reading, but it is the bible for anyone contemplating serious
research in the field.

34 72316331 appC 10/31/02 6:57 AM Page 509

A somewhat more accessible text is Robert Sedgewick’s Algorithms in C++ (Addison
Wesley, 1992). This book is adapted from the earlier Algorithms (Addison Wesley, 1988)
in which the code examples were written in Pascal. It is comprehensive and authoritative.
The text and code examples are quite compact and require close reading, but this is an
excellent second book on DS&A. The first volume of an improved and expanded version
of this work has recently been added: Algorithms in C++, Pts 1-4, (1999). (The “Pts” in
the title means “Parts.”)

A good text for an undergraduate course in data structures and algorithms is Data
Abstraction and Problem Solving with C++: Walls and Mirrors by Frank M. Carrano
(Benjamin Cummings, 1997). There are many illustrations, and the chapters end with
exercises and projects.

Practical Algorithms in C++, by Bryan Flamig (John Wiley and Sons, 1995), covers
many of the usual topics in addition to some topics not frequently covered by other
books, such as algorithm generators and string searching.

If you want to learn about data structures and algorithms with sample programs written
in the Java programming language instead of C++, try Mitchell Waite Signature Series:
Data Structures and Algorithms in Java, by Robert Lafore (Waite Group Press, 1998).
That book, extensively modified, forms the basis of the present book.

Some other worthwhile texts on data structures and algorithms are Classic Data
Structures in C++ by Timothy A. Budd (Addison Wesley, 1994); Algorithms, Data
Structures, and Problem Solving with C++ by Mark Allen Weiss (Addison Wesley,
1996); and Data Structures Using C and C++ by Y. Langsam, et al. (Prentice Hall,
1996).

Object-Oriented Programming Languages
An introduction to C++ and object-oriented programming by the same author as this
book is Object-Oriented Programming in C++, Third Edition, by Robert Lafore
(Sams Publishing, 1999). It’s aimed at newcomers to programming and covers ANSI
Standard C++.

The most authoritative work on C++ is The C++ Programming Language by Bjarne
Stroustrup, the creator of C++ (Addison Wesley, 1997). This isn’t a book for beginners,
but it’s necessary if you want to understand the nuances of how the language should
be used.

510 Appendix C

34 72316331 appC 10/31/02 6:57 AM Page 510

C++ Distilled, by Ira Pohl (Addison Wesley, 1997) is a short book that summarizes C++
syntax. It’s handy if you’ve forgotten how to use some language feature and need to look
it up in a hurry.

After you’ve mastered the fundamentals of C++ syntax, you can learn a great deal about
how to use the language from Effective C++ by Scott Meyers (Addison Wesley, 1997)
and the sequel More Effective C++ (1996).

The Java programming language is similar to C++. One important difference is that it
dispenses with pointers, which makes it easier to learn (but not quite as flexible). If
you’re interested in Java programming, Java How to Program by H. M. Deitel and P. J.
Deitel (Prentice Hall, 1997) is a good textbook, complete with many exercises.

Core Java 1.2 by Cay S. Horstmann and Gary Cornell (Prentice Hall, 1998) is a multi-
volume series that covers advanced Java topics in depth.

Object-Oriented Design and Software
Engineering

For an easy, non-academic introduction- to software engineering, try The Object Primer:
The Application Developer’s Guide to Object-Orientation by Scott W. Ambler (Sigs
Books, 1998). This short book explains in plain language how to design a large software
application. The title is a bit of a misnomer; it goes way beyond mere OO concepts.

A classic in the field of OOD is Object-Oriented Analysis and Design with Applications
by Grady Booch (Addison Wesley, 1994). The author is one of the pioneers in this field
and the creator of the Booch notation for depicting class relationships. This book isn’t
easy for beginners, but is essential for more advanced readers.

An early book on OOD is The Mythical Man-Month by Frederick- P. Brooks, Jr.
(Addison Wesley, 1975, reprinted in 1995), which explains in a very clear and literate
way some of the reasons why good software design is necessary. It is said to have sold
more copies than any other computer book.

Mitchell Waite Signature Series: Object-Oriented Design in Java by Stephen Gilbert and
Bill McCarty (Waite Group Press, 1998) is an unusually accessible introduction to OOD
and software engineering.

Other good texts on OOD are An Introduction to Object-Oriented Programming, by
Timothy Budd (Addison Wesley, 1996); Object-Oriented Design Heuristics, by Arthur J.
Riel, (Addison Wesley, 1996); and Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, et al. (Addison Wesley, 1995).

Further Reading 511

C

34 72316331 appC 10/31/02 6:57 AM Page 511

Programming Style
Books on other aspects of good programming:

Programming Pearls by Jon- Bentley (Addison Wesley, 1986) was written before OOP
but is nevertheless stuffed full of great advice for the programmer. Much of the material
deals with data structures and algorithms.

Writing Solid Code, by Steve Maguire (Microsoft Press, 1993) and Code Complete by
Steve McConnell (Microsoft Press, 1993) contain good ideas for software development
and coding and will help you develop good programming practices.

512 Appendix C

34 72316331 appC 10/31/02 6:57 AM Page 512

When you’re looking for computing information, consult the authority.
The Authoritative Encyclopedia of Computing at mcp.com.

The Authoritative Encyclopedia of Computing

Get the best
information and
learn about latest
developments in:

■ Design

■ Graphics and
Multimedia

■ Enterprise Computing
and DBMS

■ General Internet
Information

■ Operating Systems

■ Networking and
Hardware

■ PC and Video Gaming

■ Productivity
Applications

■ Programming

■ Web Programming
and Administration

■ Web Publishing

Resource Centers

Books & Software

Personal Bookshelf

WWW Yellow Pages

Online Learning

Special Offers

Site Search
Industry News

▼ Choose the online ebooks
that you can view from your
personal workspace on our site.

About MCP Site Map Product Support

Turn to the Authoritative
Encyclopedia of Computing

You'll find over 150 full text books online, hundreds of
shareware/freeware applications, online computing classes

and 10 computing resource centers full of expert advice
from the editors and publishers of:

• Adobe Press • Que
• BradyGAMES • Que Education & Training
• Cisco Press • Sams Publishing
• Hayden Books • Waite Group Press
• Lycos Press • Ziff-Davis Press
• New Riders

35 72316331 mcp.com ad 10/31/02 6:57 AM Page 525

35 72316331 mcp.com ad 10/31/02 6:57 AM Page 526

accessing
double-ended lists, 170
items, 109
object member func-

tions, 21
restricted queues/stacks,

108
ADTs (Abstract Data

Types), 166-181
algebraic expressions,

trees, 322
algorithms

defined, 12
divide-and conquer, 228
further reading, 509
overview, 15
partitioning, 262-264
quicksort, 265-272
recursive, 236-238
sorting, 101
speed, 477
The Towers of Hanoi,

236, 238

anagramming, see ana-
grams

anagrams, 216-222
answers, quiz, 489-504
applets

Array, 37
Binary Tree Workshop,

304-314
BubbleSort Workshop,

79-83
Hash Workshop,

427-432
HashChain Workshop,

458-461
HashDouble, 442-451
insertsort Workshop,

92-93
LinkList Workshop,

147-149, 184-189
mergesort Workshop,

246-251
Ordered Workshop,

51-54

Symbols

2-3-4 trees, 379-382
C++, 395-405
efficiency, 409-412
root splits, 385-386
Tree234 Workshop

applet, 387-392
2-node, 381
234Tree Workshop

applet, 388-389
3-node, 381
3-node trees, 319-320
4-node, 381

A

Abstract Data Types, see
ADTs

abstraction, 48
access modifiers, 24

INDEX

36 72316331 index 10/31/02 6:57 AM Page 513

Partition Workshop,
258-259

PriorityQ Workshop,
138-141

Queue Workshop,
126-137

quickSort1 Workshop,
272--277

quickSort2 Workshop,
286

RBTree Workshop,
343-350

Stack Workshop,
111-112

Towers Workshop,
234-236, 238

Workshops
arrays, 31-35
duplicate keys, 35-37
executing, 505-507
opening, 506
traversing trees,

320-322
applying

Del button, 149
Find button, 148

Arguments,
recQuickSort(), 266

Array applet, 37
array.cpp, organization,

40
arrays, 478

contents, 40
deletion, 31-35
duplicate keys, 35-37
example, 37-39
expanding, 454
impractical uses, 72
insertion, 31-35
items, 39
mergesort, 240-251

ordered, 51-54
binary trees, 298
C++ code, 55-60

rear arrows, 130
searching, 31-35
sizes, 81-82
Workshop applet, 31-37

AVL trees, 375
avoiding memory leaks,

162

B

B-trees, storing, 412
balanced trees, 338-339,

479
2-3-4, 379-382

implementing,
395-405

inserting items, 383
node splits, 384-387
root splits, 385-386
searching items, 383
Tree234 Workshop

applet, 387-392
AVL, 375
multiway, 375
O(log N), 340

balancing trees, 351-355
base classes, 24
Big O Notations, 69-71
binary search trees,

328-335
binary searches, 51-54,

70
C++ code, 55-60
divide-and-conquer

algorithms, 228
maximum/minimum

values, 324-325
recursion, 223-228

Binary Tree Workshop
applet, 304-314

binary trees, 297-327
black height, 342

color flips, 361
Big O Notations, 69-70
bottom-up insertion, 360

see also inserting
boundaries, finding, 266
brackets.cpp, C++ code,

120-122
bubble sorts, 75-79

C++ code, 83-86
efficiency, 86-87
Workshop applet, 79-83

buckets
HashChain Workshop

applet, 461
see also arrays

buttons
Draw, 82-83
New, 111

priority queues,
140-141

sorting, 80
Peek, 112

priority queues,
140-141

Pop, 112
Push, 111
Run, 80
Size, 81-82
Step, 81

C

C++
2-3-4 trees, 395-405
anagramming, 220-222
binary search trees,

328-335

514 applets

36 72316331 index 10/31/02 6:57 AM Page 514

binary trees, 306-308
code, 120-122
double hashing,

446-451
hash tables, 432-438
insertion function,

185-186
insertion sorts, 94-95,

97
median-of-three parti-

tioning, 282-286
member functions, 19
mergesort, 247-251
new features, 25
nodes, 311-314
objects

creating, 20
sorting, 98-100

ordered arrays, 55-60
queues, 132-137
separate chaining,

461-466
stacks, 113-116
string class, 25-26
traversing, 318-319
vector class, 26

Cardfile programs, 13
cells

empty, 35
mergesort, 251-252

child
trees, 302
classes, 24
see also derived classes

circular queues, 130-132
classDataArray.cpp,

65-68
classes

2-3-4 trees (C++),
396-397

base, 24
derived, 24

hash.cpp, 436
interfaces, 43-48
Link, 150-151
LinkList, 151
member functions,

114-115
Node, 306-307
OOP, 20
OrdArray, 57-60
Person, 64-68
programs, 40-43
queues, 135-137
relationship, 170
self-referential, 146
stack, 167-170
string, 25-26
Tree, 307
vector, 26

clicking nodes, red-black
trees, 343

closing, see terminating
clustering

hash tables, 432
primary, 444

codes
C++ (bubbleSort),

83-86
ordered arrays, 55-60
separate chaining,

461-466
traversing, 318-319

collisions
hashing, 426-427
separate chaining,

458-461
color flips, 348

black heights, 361
red-black trees, 361-372
red-red conflicts, 362
root flipping, 363

colored nodes, 341

columns, finding, 210-211
commands

File menu, Open, 506
Search menu, Find, 13

comparing
general purpose data

structures, 480
mergesort, 252-253
simple sorts, 102
special purpose data

structures, 483
compiling sample pro-

grams, 508
computations, hash func-

tions, 469-470
conflicts, red-red, 362
constant K, eliminating,

70-71
constants, inserting, 69
constructors, 23
contents, viewing, 40
converting words to

numbers, 420
copies, mergesort,

251-252
CPU performance, 477

D

data structures
defined, 12
further reading, 509
general purpose,

476-480
overview, 14-15
sorting, 483-484
special purpose,

481-483
datafiles, 16

datafiles 515

36 72316331 index 10/31/02 6:57 AM Page 515

Del button
linked lists, 149
RBTree Workshop

applet, 344
deleting

arrays, 31-35
duplicate keys, 36-37
HashChain Workshop

applet, 460
items

arrays, 39
priority queues, 139
Queue workshop

applet, 127-128
links, 149-160
nodes, 314
red-black trees, 373

deletion routines, double-
ended lists, 174

delicate code, 263
delimiters

matching, 118-119
stacks, 119-120

deleting
items, 35
links, 154

deques, 137
derived classes, 24
descending-priority

queues, 139
design tools, ADTs, 180
displaying lists, 194
displayList() member

function, 153-154
divide-and-conquer algo-

rithms, 228
dividing programs, 40-43
dot operators, 21
double hashing, 444-454
double rotation, 367
double-ended lists,

170-174

double-ended queues,
137

see also deque
doubly linked lists,

192-202
Draw button, 82-83
duplicate keys, 35-36

deleting, 36-37
inserting, 36
red-black trees, 342
trees, 327

duplicates, HashChain
Workshop applet, 460

E

efficiency, 123
2-3-4 trees, 409,

411-412
insertion sorts, 97-98
linked lists, 162
open addressing,

451-452
red-black trees, 374
separate chaining,

466-467
eliminating constant K,

70-71
embedding items,

146-147
empty cells, 35
empty errors, 129
engineering software, 26
errors

empty, 129
full, 129
stacks, 116
see also troubleshooting

examples
arrays, 37, 39
highArray.cpp, 44-47
stacks, 116-118

executing
sample programs, 508
Workshop applets,

505-507
expanding arrays, 454

F

fields, defined, 16
FIFO (first to be

removed), 125
File menu commands,

Open, 506
files, multiple class, 507
Fill button, 234Tree

Workshop applet, 388
Find button

234Tree Workshop
applet, 388

linked lists, 148-149
Find command (Search

menu), 13
find() binary searches,

56-57
find() member function,

160
finding

boundaries, 266
links, 148-149
nodes, 308-310
nth terms, 208-209
remaining columns,

210-211
see also searching

first to be removed, see
FIFO

516 Del button

36 72316331 index 10/31/02 6:57 AM Page 516

Flip button, RBTree
Workshop applet, 344

flipping roots, 363
full errors, 129
functions

class functions, 114-115
hash, 469-473
insert() member, 134
insertion (C++),

185-186
main(), 23, 308, 398
member

accessing, 21
C++, 19
constructors, 23
displayList(),

153-154
find(), 160
insertFirst(), 151-153
remove(), 161
removeFirst(), 153

peek() member, 134
recursive, 215-216
remove() member, 134
triangle(), 211, 213, 215

further reading, 509-512

G

general purpose data
structures, 476-480

see also data structures
generating quadratic

probes, 443-444
Gordon Moore, 477

see also CPU perfor-
mance; Moore's Law

guessing-a-number, 53-54

H

handed variations,
inserting, 363

hash functions, 469-473
hash tables, 417-438, 479
Hash Workshop applet,

427-432
hash.cpp, classes, 436
HashChain Workshop

applet, 459-461
HashDouble applet,

442-451
hashing, 417-425

collisions, 426-427
double, 444-445
linear probing, 427
strings, 471
see also hash tables

hierarchical file struc-
tures, 303

highArray.cpp, 44-47
holes, see empty cells

I

implementing
2-3-4 trees, 395-405
C++

insertion sorts, 94-97
stacks, 113-116

double-ended lists,
171-173

Person class, 64-68
queue classes, 135-137
queues, 175-178
simple linked lists,

149-157
sorted lists, 186-189
stacks, 166-169

infix notations, 322
inheritance, 24
inorder traversal,

317-320
see also traversing

Ins button
234Tree Workshop

applet, 389
RBTree Workshop

applet, 344
insert() member func-

tions, 134
insertFirst() member

function, 151-153
inserting

2-3-4 trees (C++), 397
arrays, 31-35
color flips, 361-372
duplicate keys, 36
items

2-3-4 trees, 383
arrays, 39
HashChain

Workshop applet,
459

links, 194
new items, 127

priority queues, 139
new links, 147
nodes

binary trees, 311-314
red-black trees,

345-346
objects, 298
separate chaining, 467
sorts, 189-192
unordered arrays, 69

insertion function (C++),
185-186

insertion routines, double-
ended lists, 174

insertion sorts, 90-91,
189-192, 286-290

insertion sorts 517

36 72316331 index 10/31/02 6:57 AM Page 517

inserting sorted lists,
184-185

insertsort Workshop
applet, 92-93

instances, see objects
instantiating objects, 21
interfaces

ADTs, 180
classes, 43-48
LowArray, 43-48

internally sorting, 90-91
see also partial sorts

invariants, 86
items

2-3-4 trees, 383
C++, 397

arrays, 39
deleting, 35
HashChain Workshop

applet, 459-460
linked lists, 146-147
priority queues, 139
Queue Workshop

applet, 127-128
searching, 34
stacks, 109

K

key values, searching,
148-149

keys
defined, 16-17
duplicate, 35-36
HashChain Workshop

applet, 460
search, 17
trees, 302

L

languages, further read-
ing, 510

last item removed, see
LIFO

leaf (trees), 302
left child, 303
levels (trees), 302
libraries, 478
LIFO (last item

removed), 125
linear probing, 452

C++, 432, 434-438
Hash Workshop applet,

427-432
hashing, 427

linear searches, 52-69
Link class, 150-151
linked lists, 146-147, 478

binary trees, 298
Del button, 149
doubly, 192-202
efficiency, 162
Find button, 148-149
LinkList Workshop

applet, 147-149
memory leaks, 162
new links, 147
queues, 170-178
simple, 149-157
stacks, 166-170

LinkList class, 151
LinkList Workshop

applet, 147-149, 184-189
linkList.cpp program,

155-157
linkList2.cpp, 157-160
links

deleting, 149-160
inserting, 194

linked lists, 147
searching, 148-160

LinkStack, 167-169
lists

ADTs, 180
double-ended, 170-174
linked, 146-147, 478

avoiding memory
leaks, 162

binary trees, 298
doubly, 192-202
efficiency, 162
implementing stacks,

166-169
LinkList Workshop

applet, 147-149
stacks, 170

sorted, 183-189
creating, 149
data, 184-185
inserting, 189-192

unsorted, 149
viewing, 194

load factors, HashChain
Workshop applet, 460

logarithms, 61-63
loops

nth terms, 208-209
recursion, 223-228

lowArray.cpp, 42-48

M

main(), 42-48
main() function, 23, 308

2-3-4 trees, 398
mapping keys, 469
mathematical inductions,

recursive functions, 216
maximum values, binary

searches, 324-325

518 inserting sorted lists

36 72316331 index 10/31/02 6:57 AM Page 518

median-of-three parti-
tioning, 280-286

member functions
C++, 19
classes, 114-115
displayList(), 153-154
find(), 56-57, 160
insert(), 134
insertFirst(), 151-153
object, 21
peek(), 134
remove(), 134, 161
removeFirst(), 153

memory leaks, avoiding,
162

mergesorts, 240-252
Workshop Applet,

246-251
messages, RBTree

Workshop applet, 345
minimum values, binary

searches, 324-325
modeling, real-world, 14
modifiers, accessing, 24
modifying array sizes,

81-82
modulo operators, sepa-

rate chaining, 471-473
Moore's Law, 477
moving subtrees, 235,

354
multiple class files, 507
multiway trees, 375

N

new button, 111
New button

creating queues, 129
priority queues,

140-141
sorting, 80

new features, C++, 25
Node class, 306-307
nodes, 302

2-3-4 trees (C++), 397
binary trees, 326-327

deleting, 314
finding, 308-310
inserting, 311-314

colored, 341
RBTree Workshop

applet, 345-346
red-black trees

clicking, 343
inserting, 360-374

splits, 384-387
viewing, 390-391

non-random keys, sepa-
rate chaining, 469-470

nth terms, finding,
208-209

null child, 342
number of steps, 62-63

O

O(log N), balanced trees,
340

O(N), 339-340
object-oriented

design/software engi-
neering, further read-
ing, 511

object-oriented program-
ming languages, further
reading, 510

object-oriented program-
ming, see OOP

objects
C++, 98, 100
instantiating, 21

OOP, 19-21
ordered arrays, 298
sorting, 98
storing, 64-68

OOP (object-oriented
programming), 18-21,
23

access modifiers, 24
ADTs, 179
classes, 20
constructors, 23
inheritance, 24
main() function, 23
objects, 19-21
polymorphism, 24

open addressing, 427
efficiency, 451-452
separate chaining, 468

Open command, File
menu, 506

opening
delimiters, 119-120
Workshop applets, 506

operators, dot, 21
OrdArray class, 57-60
ordered arrays, 51-54

binary trees, 298
C++ code, 55-60

Ordered Workshop
applet, 51-54

organization, array.cpp,
40

overviews
algorithms, 15
data structures, 14-15

P

parent classes, 24
see also base classes

partial sorts, 90-91

partial sorts 519

36 72316331 index 10/31/02 6:57 AM Page 519

Partition Workshop
applet, 258-259

partition.cpp program,
260-262

partitioning, 258-264
median-of-three,

280-282
paths, trees, 300
Peek button, 112

priority queues,
140-141

peek() member functions,
134

peeking, Queue work-
shop applet, 128

performance
CPU, 477
trees, 339-340

Person class, 64-68
pivot values, 262-272
pointers

double-ended lists, 174
linked lists, 146-147

polymorphism, 24
Pop button, 112
pop(), 166
popping, defined, 110
postfix notations, 324
postorder traversal,

317-324
see also traversing trees

prefix notations, 323
preorder traversal,

317-324
see also traversing trees

primary clustering, 444
prime numbers, double

hashing, 451
priority queues, 137-141

C++ code, 141-143

PriorityQ Workshop
applet, 138-141

private, 24
probes, 430

linear, 452
quadratic, 442-445

programming
object-oriented, 18
recursion, 207-215
tools, 107-109

programming styles, fur-
ther reading, 512

programs
Cardfile, 13
classDataArray, 65-68
classes, 40-43
partition.cpp, 260-262
sample, 507-508
triangle.cpp, 212

public, 24
Push button, 111
push(), 166
puzzles, The Towers of

Hanoi, 233-240

Q

quadratic probing,
442-445

queues, 14, 107-126, 482
abstract, 108
C++, 132-136
circular, 130-132
classes, 135-137
priority, 137-141, 482
restricted access, 108
Workshop applet,

126-137
wrapping around,

131-132

quicksort, 258-265
troubleshooting,

279-293
quickSort1 Workshop

applet, 272-277
quickSort2 Workshop

applet, 286
quiz answers, 489-504

R

R/B button, RBTree
Workshop applet, 345

random keys, separate
chaining, 469

ranges, 62-63
RBTree Workshop

applet, 344-350
reading, 509
real-world data storage,

12-13
real-world modeling, 14
rear arrows, arrays, 130
records, defined, 16
recQuickSort(), argu-

ments, 266
recursion, 207

binary searches,
223-228

loops, 223-226
mergesort, 240-252
The Towers of Hanoi,

233-240
triangular numbers,

208-215
recursive functions,

215-216
recursive triangle() mem-

ber functions, 215

520 Partition Workshop applet

36 72316331 index 10/31/02 6:57 AM Page 520

recursion
anagrams, 216-218
stacks, 228, 230

red-black trees, 338-341
0(log N), 340
0(N), 339
2-3-4 trees, 405-409
balanced/unbalanced,

338-339
color flips, 361-372
colored nodes, 341
deleting, 373
duplicate keys, 342
efficiency, 374
nodes

clicking, 343
inserting , 360-374

RBTree Workshop
applet, 343-345

rotations, 351-355
rules, 341, 350
searching, 345

red-red conflicts, 362
relationships, classes, 170
remaining columns, find-

ing, 210-211
remove() member func-

tions, 134, 161
removeFirst() member

function, 153
replacing loops, 223-228
restricted access, 108
reversing words, 116-118
right child, 303
ring buffers, see circular

queues
RoL button, RBTree

Workshop applet, 344
root

flipping, 363
splits, 385-386
trees, 300

RoR button, RBTree
Workshop applet, 345

rotating
trees, 347-355
words, 217

rules
red-black, 341, 350
violations, 370-372

Run button, 80
running, see executing

S

sample programs,
507-508

search keys, 17
Search menu commands,

Find, 13
searching

arrays, 31-35
binary, 51-54, 70

C++ code, 55-60
maximum/minimum

values, 324-325
binary trees, 479
duplicate keys, 36
items, 34

2-3-4 trees, 383
2-3-4 trees (C++),

397
arrays, 39

linear, 52-55
linked lists, 298
links, 148-160
red-black trees, 345
separate chaining, 467

selecting pivot values,
266-272

self-referential classes,
146

separate chaining,
458-470

simple linked lists,
149-157

see also linked lists
simple sorts, comparing,

102
single-stepping, bubble

sorts, 81
Size button, 81-82
sizes

array, 81-82
HashChain Workshop

applet, 461
stacks, 112

small partitions, 286-293
software engineering, 26
sorted lists, 183-189

creating, 149
sorting, 75-79

algorithms, 101
bubble sorts, 86-87

C++ code, 83-86
Workshop applet,

79-83
data structures, 483-484
insertion, 90-97
insertion sorts, 286-290
New button, 80
objects, 98-100
partial, 90-91
quicksort, 265-272
Run button, 80
simple, 102
step button, 81

special purpose data
structures, 481-482

see also data structures
speed, algorithms, 477
splits, 2-3-4 trees,

384-387

splits, 2-3-4 trees 521

36 72316331 index 10/31/02 6:57 AM Page 521

Stack Workshop applet,
111-112

stacks, 14, 170, 482
abstract, 108
C++, 113-116
delimiters, 119-120
efficiency, 123
errors, 116
examples, 118-119
items, 109
linked lists, 166-169
pop(), 166
push(), 166
recursion, 228, 230
size, 112

StackX class member
functions, 114-115

Standard Template
Library, see STL

Start button, RBTree
Workshop applet, 343

starting new sorts, 80
Step button, single-

stepping, 81
STL (Standard Template

Library), 25
stopping pivot values,

262-263
storing

data, 12-13
objects, 64-68
trees, 412

string classes (C++),
25-26

strings, hashing, 471
subarrays, 267
subtrees, 302

moving, 235, 354
swapping pivots, 268
swapping pivot values,

262-263

T

tables
hash, 417-425, 479
HashChain Workshop

applet, 461
terminating sample pro-

grams, 508
terminology, trees,

300-303
text, RBTree Workshop

applet, 345
The Towers of Hanoi,

233-240
tools, 14

design, 180
programming, 107-108

top-down insertion, 360
see also inserting

Towers Workshop applet,
234-238

transformations, 407
traversing trees, 302,

317-324
Tree class, 307
Tree234 Workshop

applet, 387-392
tree234.cpp, 398, 400,

402-405
trees, 299

2-3-4, 379-382
efficiency, 409-412
implementing,

395-405
inserting items, 383
node splits, 384-387
red-black trees,

405-409
root splits, 385-386
searching items, 383

transformations to
red-black trees, 407

Tree234 Workshop
applet, 387-392

3-node, 319-320
algebraic expressions,

322
balanced, 375, 479
binary, 297-327
C++, 318-319
child, 302
creating, 305-308
defined, 299-300
duplicate keys, 327
hierarchical file struc-

tures, 303
inorder, 318
leaf, 302
maximum/minimum

values, 324-325
parent, 301
path, 300
postorder, 322-324
preorder, 322-324
red-black, 338-355
root, 300
terminology, 300-303
traversing, 317-324
unbalanced, 305-306
Workshop applet,

320-322
triangle() function,

211-215
triangle.cpp program,

212
triangular numbers,

208-215
troubleshooting

quicksort, 279-293
red-black rules, 342
rule violations, 371-372
stacks, 116

522 Stack Workshop applet

36 72316331 index 10/31/02 6:57 AM Page 522

U

unbalanced trees,
305-306, 338-339, 349

unordered arrays, 69
unsorted lists, 149

V

values
key, 148-149
maximum/minimum,

324-325
pivot, 262-263

vector classes (C++), 26
viewing

arrays, 40
lists, 194
nodes, 390-391

violations, 371-372
visiting nodes, 302

W-Z

words, 216-218
Workshops

applets, 505-507
Binary Tree applet,

304-314
Hash applet, 427-432
HashChain applet,

458-461
insertsort applet, 92-93
LinkList applet,

147-149, 184-189
mergesort applet,

246-251

Partition applet,
258-259

PriorityQ, 138-141
quickSort1 applet,

272-277
quickSort2 applet, 286
RBTree applet, 343-350
Stack applet, 111-112
Towers applet, 234-238
Tree234 applet,

387-392
wrapping around queues,

131-132

Zoom button, 234Tree
Workshop applet, 389

Zoom button, 234Tree Workshop applet 523

36 72316331 index 10/31/02 6:57 AM Page 523

