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Abstract

This work demonstrate how to use Mathematica to

solve typical problems in celestial mechanics. Since

Mathematica is so powerful and the documentation is

so extensive, is believed that a good way to the beginner
users is learn by examples. In this work is presented

some typical examples which are the right way to begin

the exploration which Mathematica can provide. Math-

ematica graphics is the most amazing feature of this

software. The unique combination of graphics, symbolic

and numerical computing provides both: qualitative and

quantitative insight into many problems which by other

way would be very diÆcult to visualize or understand.

In the present work three examples are studied. First,

the integration of a system involving four di�erential

equations which describe galactic orbits. Second, the

zero velocity curves for the restricted three{body prob-
lem and �nally, the Kepler equation solved by a symbolic

approach solution.

Key words: Celestial mechanics, Mathematica, di-
dactic support.

1 Introduction

Graphic, intuitive and easy{to{use, the Mathemat-

ica gives the power need to perform a wide range of
technical calculations, from start to �nish. It has the
familiar Windows look and make the user feel already
comfortable with.

�Internal Report presented at IPD, 1995.

Mathematica may be one of the most powerful com-
puter program available for personal computers. It may
also be one of the most expensive. The full version of
Mathematica for Windows costs about US$1500. The
student edition of Mathematica for Windows is more
a�ordable and still retains all the important features
which will be used in this article. There is a drawback
for the student edition version it does not support a co-
processor and require an true compatible computer with
a 80386 or 80486 CPU. There are versions available for
the Macintosh computers with and without coproces-
sors.

The Mathematica software is a powerful blend of
graphics, symbolic computing and numeric calculations.
The graphics capabilities include two and three dimen-
sional plots, parametric plots, contour and density plots.
The user has complete control over how graphics infor-
mation can be displayed. Mathematica also includes
an easy to use 3D viewpoint selector which allows the
user to interactively specify the viewpoint for graphic
display.

Mathematica includes extensive symbolic computing
features. In addition to basic operations, symbolic cal-
culations can be performed in the areas of di�erentia-
tion, integration, sums and products, algebraic equa-
tions, di�erential equations, power series and limits.
The basic capability of Mathematica can be easily ex-
panded with the use of "packages". These packages are
additional special functions written in the Mathematica

language. A set of "standard" packages are included
with Mathematica and one can also program their own.
The standard packages add additional capability in the
areas of algebra, calculus, discrete mathematics, geom-
etry, graphics, linear algebra, number theory, numerical
mathematics, statistics and many more are available.
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In this work is used the version 2.2.1 of the Mathe-

matica software for Windows environment. The exam-
ples which are treated are "generic" and should execute
on any computer.

2 Theoretical Development

2.1 Projections of Galactic Orbits

The study of periodic orbits which is found in some
studies of galactic orbits was carried out by Contopoulos
[6] and afterwards by Barbanis [7] in a series of papers.
The main study is about the periodic orbits in the �eld
V = 1

2
(Ax2 + By2)� "xy2 when " is considered small.

In the case of the potential �eld given by

V =
1

2
(Ax2 + By2)� "xy2 (1)

Is possible to write the energy integral as

H = H0 + "H1 (2)

where

H0 =
1

2
( _x2 + _y2 +Ax2 +By2) (3)

H1 = �"xy2 (4)

where X1 = _x, X2 = _y and Y1 = x, Y2 = y.

The dynamical system whose equations of motions
are written in function of the Hamiltonian H is given
by

dXj

dt
=

@H

@Yj
dYj
dt

= �
@H

@Xj

(j=1,2) (5)

It is assumed that H does not depend on the time ex-
plicitly and that the system is solved if " reduces to
zero.

In eq(5) x and y are the coordinates in the galactic
plane. A;B and " are positive constants respectively.
As stated by Contopoulos when A = B the movement
is non{resonant and when A = 4B the movement is res-
onant. Is possible obtain similar results applying Hori's
method [8] to this study.

However, in order to solve by numerical means the
system of �rst order di�erential equations given by eq(5)
is need establish the initial conditions, which are the
same as proposed in [7]:

x = y=0
_x = �0:0980 Kpc=107years
_y = 0:07480 Kpc=107years
A = 0:07600 (107)years
B = 0:55000 (107)years

" = 0:2060 (107)
�2
Kpc�1years�2

The Mathematica program to solve this system and
plot the orbits for a period of 25x 107 years is given as
follow:

va=0.076

vb=0.550

eps=0.206

sol = NDSolve[

{x1'[t]-va*x3[t]+eps*x4[t]^2==0,

x2'[t] -vb*x4[t]+2*eps*x3[t]*x4[t]==0,

x3'[t]+x1[t]==0,

x4'[t]+x2[t]==0,

x1[0]==-0.0989,x2[0]==0.07480,

x3[0]==0,x4[0]==0},{x1,x2,x3,x4},{t,25},

AccuracyGoal -> Automatic, PrecisionGoal->

Automatic, WorkingPrecision -> 16]

ParametricPlot[Evaluate[{x4[t],x4'[t]} /.

sol], {t,0,25}, PlotRange -> All]

x1 = _x; x2 = _y; x3 = x and x4 = y.

The �eld represented by the following �gures does
not represent any real stellar system; in fact it should
represent approximately a circular stellar system. The
advantage in use this shortMathematica code is the fact
that with it usage a FORTRAN code of 450 lines ap-
proximately, without counting for the graphics routines,
was avoided.

2.2 The Surfaces of Zero Relative Velocity

In order to study such problem is need formulate the
three{body problem. The general problem of motion of
three bodies, assumed to be point masses, subject only
to their mutual gravitational attractions has not been
solved, although many particular solutions have been
found. A particular case is the restricted three{body
problem, in this case two bodies of �nite mass revolve
around one another in circular orbits, and a third body
of in�nitesimal mass moves in their �eld. This situation



Figure 1: Orbits in phase plane x1; _x1

Figure 2: Orbits in phase plane x2; _x2

is approximately realized in many instances in the so-
lar system. See the �gure 5 to visualize the geometric
situation [1].

As can be observed in �gure 5, let the origin be at
the center of mass of the two masses and take the axes
rotating with the masses, such that they lie along the
x{axis. Take the unit of mass to be the sum of their
masses, and left separate masses be � and (1��), where
� � 1=2. The axes will be rotating with constant angu-
lar velocity, !, say, and bodies will be �xed at (x2; 0; 0)
and (x1; 0; 0), where x1 is negative. Let the unit of dis-
tance be (�x1+x2), and let the unit of time be such as
to make k = 1. Then, in this units is possible to write

! = k

s
(1� �) + �

(�x1 + x2)
3
= 1 (6)

For positioning the in�nitesimal mass at (x; y; z) and
let

(x � x1)
2
+ y2 + z2 = r21 (7)

and

Figure 3: Orbits in phase plane x3; _x3

Figure 4: Orbits in phase plane x4; _x4

Figure 5: Restricted three{body problem



(x � x2)
2
+ y2 + z2 = r22 (8)

If v is the speed of the in�nitesimal mass with respect
to the moving axes is possible to write the following
equation

v2 = _x2 + _y2 + _z2 (9)

and the modi�ed energy integral

V �
1

2
!2 �2 +

1

2
_r2 = constant (10)

the term � 1

2
!2�2 is the rotational potential. Where r

have components z along Oz and � at right angles to
Oz .

The modi�ed energy integral can be written as fol-
lowing

v2 = x2 + y2 +
2(1� �)

r1
+

2�

r2
� C (11)

where C is a constant. The eq(11) is the Jacobi's Inte-

gral.

If v = 0 the eq(11) is written as

x2 + y2 +
2(1� �)

r1
+

2�

r2
= C (12)

where r21 = (x+ �)
2
+ y2 and r22 = (x � 1 + �)

2
+ y2.

For some value of C the eq(12) will be the locus of
surfaces in space to be described next. Considering the
eq(11) as a function of v2, then is possible to see that v2

changes sign when a surface is crossed. This is possible
when the crossing does not take place at a double point.
Hence the motion can take place on one side of the sur-
face but not on other. This is similar to the theorem, in
the problem of two bodies, stating that the �nite mo-
tion is restricted within a circle of radius 2a. This can
also be deduced from the energy integral.

The constant C depends upon the initial position and
velocity of the particle. Clearly there will be curves of
zero speed given in Cartesian coordinates by

�C+x2+y2+
2�q

(�1 + �+ x)
2
+ y2

+
2 (1� �)q
(�+ x)

2
+ y2

(13)

Motion of the particle can occur only in those regions
of the x � y plane for which eq(13) > 0. The contour

curves given by eq(13), mark the boundaries of the re-
gions within which motion can take place. Lets consider
the following cases for possible motions:

� Case I. When C is very large, x2 + y2 =
C (nearly) eq(13) will be positive either if x and
y are very large or if r1 or r2 are very small. Like-
wise for small r1 and r2, and large C, the x2 and y2

terms in eq(13) become insigni�cant compared with
the third and fourth terms. The result is the pair
of ovals surrounding (1 � �) and �. For this large
value of C, motion can not take place in the region
between the ovals and the outer contour. Motion
can occur if the particle is within the ovals or out-
side the nearly circular contour located at extern
boundary.

� Case II. Allowing C to decrease, the ovals around
(1��) and � expand, and the outer contour moves
toward the center of the �gure. The oval contours
in this case have merged into a single closed contour
around the two masses.

� Case III. Decreasing C further, the regions of sta-
bility, that is, the areas of the plane in which mo-
tion can occur, become larger. The enlarged oval
pattern around the �nite masses merges into that
outside the exterior oval, leaving only two small re-
gion of tadpole{like shape that eventually shrink to
points.

In order to have a concrete idea of such contour
curves, let to use the following Mathematica code to
make in a very easy way the work of plotting the con-
tours for � = 0:25 and C = 4;

Clear[f]

f[x_,y_]=x^2+y^2+2*(1-mu)/Sqrt[(x+mu)^2+y^2]\

+(2*mu)/Sqrt[(x-1+mu)^2+y^2] - 4;

mu=.25;

ContourPlot[f[x,y],{x,-2,2},{y,-2,2},

ContourSmoothing -> Automatic,

ContourShading->False,PlotPoints->50]

This situation in the x� y plane is illustrated in �g-
ure 6. The basic reference to curves of zero velocity is
[3].

By the other hand, if one explicit z as function of x; y
is possible rewrite the eq(11) as

z = x2 + y2 +
2(1� �)

r1
+

2�

r2
� C (14)



Figure 6: Contour for C = 4

Figure 7: 3D Contour for C = 4

The level curves correspond to curves of zero velocity
in x; y; z. In order to implement this, the Mathematica

program is given by

Clear[f]

mu=.25;

f[x_,y_]=x^2+y^2+2*(1-mu)/Sqrt[(x+mu)^2+y^2]\

+(2*mu)/Sqrt[(x-1+mu)^2+y^2] - 4;

Plot3D[f[x,y],{x,-2,2},{y,-2,2},

PlotRange->{0,5},PlotPoints->50,

Boxed->False, Mesh -> False]

This situation in the x� y � z plane is illustrated in
�gure 7.

2.3 The Kepler Equation

This example is concerned with the solution for E,
as a function of u and e, of the implicit equation

E = u + e sin(E) (15)

where e is to be regarded as a small quantity. Equation
(15) is known as the Kepler equation. The problem is
capable of formal solution in terms of Bessel function in
the form

E = u + 2

1X
n=1

Jn(ne) sin(nu)

n
(16)

In order to obtain E as a function of u and e corrected
up to the 5th order in e it would be perfectly possible
to sum the �rst 5 terms of this series using a computer.
However, consider what is involved in this procedure.
Is possible to write a Mathematica code to generate the
individual Bessel functions and arrange to ignore those
terms of order k > 5 that arise in e. From the Kepler
equation it is clear that E = u to zero order in e.
Suppose E = u + Ak is the solution correct to order k
in e. Then clearly

Ak+1 = e sin(u+Ak) (17)

Where the right hand member of eq(17) is to be taken
only to order k + 1 in e. Thus an approximation algo-
rithm may be stated as follows

E = u + lim
n!1

An (18)

where

A0 = 0 (19)

and

Ak+1 =

�
e sin(u)

�
1�

A2
k

2!
+
A4
k

4!
� � � �

�
(20)

+e cos(u)

�
Ak �

A3
k

3!
+ � � �

��
k+1

The Mathematica code which implement the eq(18)
and eq(20) is written as

a[0]=0;

Do [

t1=1-a[k-1]^2/2+a[k-1]^4/24;

t2=a[k-1]-a[k-1]^3/6;

a[k]=Expand[e*Sin[u]*t1+e*Cos[u]*t2,Trig->

True];

Simplify[a[k]];

TeXForm[a[k]] >>"tex.01";

Print [a[k],k], {k,2}]



The "output" �le "tex.01" is shown below. In this
result only terms of order 5 in e are calculated.

e sin(u)�
3 e3 sin(u)

8
+

5 e5 sin(u)

192

+
e2 sin(2u)

2
�
e4 sin(2u)

24
+
e3 sin(3u)

8

�
5 e5 sin(3u)

384
+
e4 sin(4u)

48
+
e5 sin(5u)

384
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