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Preface

This is the text for a two-semester multivariable calculus course. The setting is
n-dimensional Euclidean space, with the material on differentiation culminat-
ing in the Inverse Function Theorem and its consequences, and the material
on integration culminating in the Generalized Fundamental Theorem of Inte-
gral Calculus (often called Stokes’s Theorem) and some of its consequences in
turn. The prerequisite is a proof-based course in one-variable calculus. Some
familiarity with the complex number system and complex mappings is occa-
sionally assumed as well, but the reader can get by without it.

The book’s aim is to use multivariable calculus to teach mathematics as
a blend of reasoning, computing, and problem-solving to a cross section of
serious liberal arts students, doing justice to the structure, the details, and
the scope of the ideas. To this end, I have tried to write in a style that com-
municates intent early in the discussion of each topic rather than proceeding
coyly from opaque definitions. Also, I have tried occasionally to speak to the
pedagogy of mathematics and its effect on the process of learning the subject.
Most importantly, T have tried to spread the weight of exposition among di-
agrams, formulas, and words. The premise is that the reader is ready to do
mathematics resourcefully by marshaling the skills of

geometric intuition (the visual cortex being quickly instinctive),
algebraic manipulation (symbol-patterns being precise and robust),

and incisive use of natural language (slogans that encapsulate central ideas
enabling a large-scale grasp of the subject).

Thinking in these ways renders mathematics coherent, inevitable, and fluent.

In my own student days, I learned this material from books by Apostol,
Buck, Rudin, and Spivak, books that thrilled me. My debt to those sources
pervades these pages. There are many other fine books on the subject as well,
such as the more recent one by Hubbard and Hubbard.

By way of a warm-up, chapter 1 reviews some ideas from one-variable
calculus, and then covers the one-variable Taylor’s Theorem in detail.
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Chapters 2 and 3 cover what might be called multivariable pre-calculus,
introducing the requisite algebra, geometry, analysis, and topology of Eu-
clidean space, and the requisite linear algebra, for the calculus to follow. A
pedagogical theme of these chapters is that mathematical objects can be better
understood from their characterizations than from their constructions. Vector
geometry follows from the intrinsic (coordinate-free) algebraic properties of
the vector inner product, with no reference to the inner product formula. The
fact that passing a closed and bounded subset of Euclidean space through a
continuous mapping gives another such set is clear once such sets are char-
acterized in terms of sequences. The multiplicativity of the determinant, and
the fact that the determinant indicates whether a linear mapping is invertible,
are consequences of the determinant’s characterizing properties. The geome-
try of the cross product follows from its intrinsic algebraic characterization.
Furthermore, the only possible formula for the inner product, or for the de-
terminant, or for the cross product, is dictated by the relevant properties. As
far as the theory is concerned, the only role of the formula to show that an
object with the desired properties exists at all. The intent here is that the
student who is introduced to mathematical objects via their characterizations
will see quickly how the objects work, and that how they work makes their
constructions inevitable.

In the same vein, chapter 4 characterizes the multivariable derivative as a
well approximating linear mapping. The chapter then solves some multivari-
able problems that have one-variable counterparts. Specifically, the multivari-
able chain rule helps with change of variable in partial differential equations,
a multivariable analogue of the max/min test helps with optimization, and
the multivariable derivative of a scalar-valued function helps to find tangent
planes and trajectories.

Chapter 5 uses the results of the three chapters preceding it to prove the
Inverse Function Theorem, then the Implicit Function Theorem as a corollary,
and finally the Lagrange Multiplier Criterion as a consequence of the Implicit
Function Theorem. Lagrange multipliers help with a type of multivariable
optimization problem that has no one-variable analogue, optimization with
constraints. For example, given two curves in space, what pair of points—
one on each curve—is closest to each other? Not only does this problem have
six variables (the three coordinates of each point), but furthermore they are
not fully independent: the first three variables must specify a point on the
first curve, and similarly for the second three. In this problem, z1 through zg
vary though a subset of six-dimensional space, conceptually a two-dimensional
subset (one degree of freedom for each curve) that is bending around in the
ambient six dimensions, and we seek points of this subset where a certain
function of x; through z¢ is optimized. That is, optimization with constraints
can be viewed as a beginning example of calculus on curved spaces.

For another example, let n be a positive integer, and let eq, ..., e, be
positive numbers with e; + - -- + e, = 1. Maximize the function
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flza,...,zp) =27t ---2fr, x; > 0for all 4,

subject to the constraint that
e1r1 + - +epxy = 1.

As in the previous paragraph, since this problem involves one condition on
the variables z; through z,, it can be viewed as optimizing over an (n — 1)-
dimensional space inside n dimensions. The problem may appear unmotivated,
but its solution leads quickly to a generalization of the arithmetic-geometric
mean inequality v/ab < (a + b)/2 for all nonnegative a and b,

ast---air <epay + - +epa, for all nonnegative aq, ..., an.

Moving to integral calculus, chapter 6 introduces the integral of a scalar-
valued function of many variables, taken over a domain of its inputs. When the
domain is a box, the definitions and the basic results are essentially the same as
for one variable. However, in multivariable calculus we want to integrate over
regions other than boxes, and ensuring that we can do so takes a little work.
After this is done, the chapter proceeds to two main tools for multivariable
integration, Fubini’s Theorem and the Change of Variable Theorem. Fubini’s
Theorem reduces one n-dimensional integral to n one-dimensional integrals,
and the Change of Variable Theorem replaces one n-dimensional integral with
another that may be easier to evaluate. Using these techniques one can show,
for example, that the ball of radius r in n dimensions has volume

71-"/2
vol (B,(r)) = —(n/Z)! r", n=1,2,3,4,...
The meaning of the (n/2)! in the display when n is odd is explained by a
function called the gamma function. The sequence begins
4 1
2r, wr?, §7rr3, §7r2r4,

Chapter 7 discusses the fact that continuous functions, or once-differentiable
functions, or twice-differentiable functions, are well approximated by smooth
functions, meaning functions that can be differentiated endlessly. The approx-
imation technology is an integral called the convolution. With approximation
by convolution in hand, we feel free to assume in the sequel that functions are
smooth.

Chapter 8 presents the integration of differential forms. This subject poses
the pedagogical dilemma that fully describing its structure requires an invest-
ment in machinery untenable for students who are seeing it for the first time,
whereas describing it purely operationally is unmotivated. The approach here
begins with the integration of functions over k-dimensional surfaces in n-
dimensional space, a natural thing to want to do, with a natural definition
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of how to do it suggesting itself. For certain such integrals, called flow and
flux integrals, the integrand takes a particularly workable form consisting of
sums of determinants of derivatives. It is easy to see what other integrands—
including integrands suitable for n-dimensional integration in the sense of
chapter 6, and including functions in the usual sense—have similar features.
These integrands can be uniformly described in algebraic terms as objects
called differential forms. That is, differential forms comprise the smallest co-
herent algebraic structure encompassing the various integrands of interest to
us. The fact that differential forms are algebraic makes them easy to study
without thinking directly about integration. The algebra leads to a general
version of the Fundamental Theorem of Integral Calculus that is rich in geom-
etry. The theorem subsumes the three classical vector integration theorems,
Green’s Theorem, Stokes’s Theorem, and Gauss’s Theorem, also called the
Divergence Theorem.

Comments and corrections should be sent to jerry@reed.edu.

Exercises

0.0.1. (a) Consider two surfaces in space, each surface having at each of its
points a tangent plane and therefore a normal line, and consider pairs of
points, one on each surface. Conjecture a geometric condition, phrased in
terms of tangent planes and/or normal lines, about the closest pair of points.

(b) Consider a surface in space and a curve in space, the curve having at
each of its points a tangent line and therefore a normal plane, and consider
pairs of points, one on the surface and one on the curve. Make a conjecture
about the closest pair of points.

(c) Make a conjecture about the closest pair of points on two curves.

0.0.2. (a) Assume that the factorial of a half-integer makes sense, and grant
the general formula for the volume of a ball in n dimensions. Explain why
it follows that (1/2)! = y/m/2. Further assume that the half-integral factorial
function satisfies the relation

l=z-(x—1)! forz=23/2,5/2,7/2,...

Subject to these assumptions, verify that the volume of the ball of radius r
4

in three dimensions is §7rr3 as claimed. What is the volume of the ball of
radius r in five dimensions?

(b) The ball of radius 7 in n dimensions sits inside a circumscribing box of
sides 2r. Draw pictures of this configuration for n = 1,2, 3. Determine what
portion of the box is filled by the ball in the limit as the dimension n gets
large. That is, find

lim vol (B, (1))

n—00 (27’)"
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Results from One-Variable Calculus

As a warmup, these notes begin with a quick review of some ideas from one-
variable calculus. The material in the first two sections is assumed to be
familiar. Section 3 discusses Taylor’s Theorem at greater length, not assuming
that the reader has already seen it.

1.1 The Real Number System

We assume that there is a real number system, a set R that contains two
distinct elements 0 and 1 and is endowed with the algebraic operations of
addition,

+:RxR —R,

and multiplication,
-:RxR—R.

The sum +(a,b) is written a + b, and the product -(a,b) is written a - b or
more briefly as ab.

Theorem 1.1.1 (Field Axioms for (R, +,-)). The real number system, with
its distinct 0 and 1 and with its addition and multiplication, is assumed to
satisfy the following set of axioms.

(al) Addition is associative: (x +y)+z =2+ (y + 2) for all z,y,z € R.

(a2) 0 is an additive identity: x +0 =z for all z € R.

(a3) FEzistence of additive inverses: For each x € R there erists y € R such
that z +y = 0.

(ad) Addition is commutative: x +y =y + x for all z,y € R.

(m1) Multiplication is associative: x(yz) = (zy)z for all x,y,z € R.

(m2) 1 is a multiplicative identity: 1z = x for all x € R.

(m3) Ezistence of multiplicative inverses: For each nonzero x € R there exists
y € R such that xy = 1.

(m4) Multiplication is commutative: xy = yx for all z,y € R.
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(d1) Multiplication distributes over addition: (z+y)z = xz+yz for allx,y, z €
R.

All of basic algebra follows from the field axioms. Additive and multi-
plicative inverses are unique, the cancellation law holds, 0 - z = 0 for all real
numbers z, and so on.

Subtracting a real number from another is defined as adding the additive
inverse. In symbols,

—:RxR—R, z—y=z+(—y) forall z,y € R.

We also assume that R is an ordered field. This means that there is a
subset RT of R (the positive elements) such that the following axioms hold.

Theorem 1.1.2 (Order Axioms).

(o1) Trichotomy Axziom: For every real number x, exactly one of the following
conditions holds:

z € RT, -z € RT, z=0.

(02) Closure of positive numbers under addition: For all real numbers x and y,
ifr € RT and y € Rt then also z +y € RT.

(03) Closure of positive numbers under multiplication: For all real numbers x
and y, if v € RT and y € R then also zy € RT.

For all real numbers z and y, define “x < y” to mean “y —z € R*.” The
usual rules for inequalities then follow from the axioms.

Finally, we assume that the real number system is complete. Complete-
ness can be phrased in various ways, all logically equivalent. The version of
completeness that is currently in Ray Mayer’s notes for Mathematics 112 is
as follows.

Theorem 1.1.3 (Completeness as a Binary Search Criterion). Every
binary search sequence in the real number system converges to a unique limit.

Two other versions of completeness are phrased in terms of sequences and
in terms of set-bounds:

Theorem 1.1.4 (Completeness as a Monotonic Sequence Criterion).
Every bounded monotonic sequence in R converges to a unique limit.

Theorem 1.1.5 (Completeness as a Set-Bound Criterion). Every non-
empty subset of R that is bounded above has a least upper bound.

Convergence is a concept of analysis, and therefore so is completeness. All
three statements of completeness are existence statements.
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Exercises

1.1.1. For any positive integer n, let Z/nZ denote the set {0,1,...,n — 1}
with the usual operations of addition and multiplication carried out taking
remainders. That is, add and multiply in the usual fashion but subject to the
additional condition that n = 0. For example, in Z/5Z we have 2+4 =1 and
2 -4 = 3. For what values of n does Z/nZ form a field?

1.1.2. Prove that in any ordered field, 0 < 1. Prove that the complex number
field C can not be made an ordered field.

1.1.3. Use a completeness property of the real number system to show that 2
has a positive square root.

1.1.4. (a) Prove by induction that

for all n € Z+.

giz _ n(n + 1)6(2n +1)

(b) (Bernoulli’s Inequality) For any real number r > —1, prove that
(1+r)">1+rn forallneN.

¢) For what positive integers n is 27 > n3?
p g

1.2 Foundational and Basic Theorems

This section reviews the foundational theorems of one-variable calculus. The
first two theorems are not theorems of calculus at all, but rather they are
theorems about continuous functions and the real number system. The first
theorem says that under suitable conditions, an optimization problem is guar-
anteed to have a solution.

Theorem 1.2.1 (Extreme Value Theorem). Let I be a nonempty closed
and bounded interval in R, and let f : I — R be a continuous function.
Then f takes a minimum value and a mazimum value on I.

The second theorem says that under suitable conditions, any value trapped
between two output values of a function must itself be an output value.

Theorem 1.2.2 (Intermediate Value Theorem). Let I be a nonempty
interval in R, and let f : I — R be a continuous function. Let y be a real
number, and suppose that

flx)<y for somex el
and
fl@') >y for somex €1.

Then
fe)=y for somece I
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The Mean Value Theorem relates the derivative of a function to values of
the function itself with no reference to the fact that the derivative is a limit,
but at the cost of introducing an unknown point.

Theorem 1.2.3 (Mean Value Theorem). Let a and b be real numbers
with a < b. Suppose that the function f : [a,b] — R is continuous and that
f is differentiable on the open subinterval (a,b). Then

f(0) - f(a)

b—a = f'(¢) for some c € (a,b).

The Fundamental Theorem of Integral Calculus relates the integral of the
derivative to the original function, assuming that the derivative is continuous.

Theorem 1.2.4 (Fundamental Theorem of Integral Calculus). Let I
be a nonempty interval in R, and let f : I — R be a continuous function.
Suppose that the function F : I — R has derivative f. Then for any closed
and bounded subinterval [a,b] of I,

/  Ha)de = F(b) — F(a).

Exercises

1.2.1. Use the Intermediate Value Theorem to show that 2 has a positive
square root.

1.2.2. Let f : [0,1] — [0,1] be continuous. Use the Intermediate Value
Theorem to show that f(z) = z for some z € [0, 1].

1.2.3. Let a and b be real numbers with a < b. Suppose that f : [a,b)] — R
is continuous and that f is differentiable on the open subinterval (a,b). Use
the Mean Value Theorem to show that if f' > 0 on (a,b) then f is strictly
increasing on [a, b].

1.2.4. For the Extreme Value Theorem, the Intermediate Value Theorem,
and the Mean Value Theorem, give examples to show that weakening the
hypotheses of the theorem gives rise to examples where the conclusion of the
theorem fails.

1.3 Taylor’s Theorem

Let I C R be a nonempty open interval, and let a € I be any point. Let n be a
nonnegative integer. Suppose that the function f : I — R has n continuous
derivatives,

L™ T —R.
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Suppose further that we know the values of f and its derivatives at a, the
n + 1 numbers

f@), fa), f'a), ..., f™(a).

(For instance, if f : R — R is the sine function, and a = 0, and n is even,
then the numbers are 1, 0, —1, 0, ..., (—1)"/2.)

Question 1 (Existence and Uniqueness): Is there a polynomial p of
degree n that mimics the behavior of f at a in the sense that

p(@) = f(a), P(@)=f"(a), p"(a)=1"(a), ..., p™(a)=F"(a)?

Is there only one such polynomial?
Question 2 (Accuracy of Approximation): How well does p(x) ap-
proximate f(z) for z # a?

Question 1 is easy to answer. Consider a polynomial of degree n expanded
about z = a,

p(z) = ag + a1 (z — a) + az(z — a)* + az(x — a)® + - - - + an(z — a)".

The goal is to choose the coefficients ay,...,a, to make p behave like the
original function f at a. Note that p(a) = ag. We want p(a) to equal f(a), so
set

ao = f(a).
Differentiate p to obtain
p'(z) = a1 + 2a2(z — a) + 3az(z — a)> + -+ - + nay(z —a)" ',
so that p'(a) = a;. We want p'(a) to equal f'(a), so set
a1 = f'(a).
Differentiate again to obtain
p"(x) = 2as + 3 - 2a3(x —a) + -+ + n(n — Day(z — a)" 2,
so that p"(a) = 2a2. We want p'(a) to equal f"(a), so set

f"(a)

ay = .
Differentiate again to obtain
p"(z) =3-2a3+ - +n(n—1)(n —2)ay(xr —a)"3,

so that p"'(a) = 3 - 2a3. We want p'’(a) to equal f""'(a), so set
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il

Continue in this fashion to obtain ay = f®*(a)/4! and so on up to a, =
f™(a)/n!. That is, the desired coefficients are
) (g
ar = fi() for k=0,...,n.
k!

This answers the existence part of Question 2: yes. Furthermore, since the
calculation offered us no choices en route, these are the only coefficients that
can work, and so the approximating polynomial is unique.

Definition 1.3.1 (nth degree Taylor Polynomial). Let I C R be a
nonempty open interval, and let a be a point of I. Let n be a nonnegative
integer. Suppose that the function f : I — R has n continuous derivatives.
Then the nth degree Taylor polynomial of f at a is

T.(z) = f(a) + f'(a)(x —a) + T=—L(z —a)® +--- +

In more concise notation,

For example, if f(z) = e* and a = 0 then it is easy to generate the
following table:

(k)

ol (0)
K7 ® (@) I
er 1
1| e* 1
2 z L
© 2
. 1
3 [ g
1
n| e —
n!

From the table we can read off the nth degree Taylor polynomial of f at 0,
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Recall that the second question is how well the polynomial T),(x) approxi-
mates f(z) for  # a. Thus it is a question about the difference f(z)— T, (z).
Giving this quantity its own name is useful.

Definition 1.3.2 (nth degree Taylor Remainder). Let I C R be a
nonempty open interval, and let a be a point of I. Let n be a nonnegative
integer. Suppose that the function f : I — R has n continuous derivatives.
Then the nth degree Taylor remainder of f at a is

So the second question is to estimate the remainder R,(z) for points
z € I. The method about to be presented here for doing so proceeds very
naturally, but it is perhaps a little surprising because although the Taylor
polynomial Ty, (x) is expressed in terms of derivatives, as is the expression to
be obtained for the remainder R, (z), we obtain the expression by using the
Fundamental Theorem of Integral Calculus repeatedly.

The method requires a calculation, and so, guided by hindsight, we first
carry it out so that then the ideas of the method itself will be uncluttered.
For any positive integer k and any x € R, define a k-fold nested integral,

Ik(a:):/ / / ) dxy, - - - dzo dxy.

This expression may appear daunting, but it unwinds readily if we work a
step at a time from the inside out, managing the subscripts accurately. First,

Tr—1
/ dSL'k = Tk
a

Move one layer out and use this result to get

Tr—2 Trp—1 Tr—2
/ / dzy, dzy_1 :/ (xk—1 — a)dz—1
a a a

Th-1
= Tk—1 — Q.
Tr=a

1 Tr—2
= 5(%71 —a)?
Tp—1=0a
1 2
= §(xk_2 —a)’.

Again move out and quote the previous calculation,

Th—3 Th—2 Th—1 Th-3 ]
/ / / dzy dzp_1dxp—o = / 5(:1:19_2 a)? dry_s
a a a a

ZTk—3

1

= y(l’k—z - 0)3
° Tp_2=a
1

= o (@p—3 — a)d.

3!
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The pattern is clear, and the process is complete after k integrations,

1 z—a), keZt.

Iu(z) =

(k)
Note that this is part of the kth term fT‘(a) (z—a)¥ of the Taylor polynomial,

the part that makes no reference to the function f. That is, f*)(a)I;(x) is
the kth term of the Taylor polynomial for £k =1,2,3,...

With the formula for I (z) in hand, we return to using the Fundamental
Theorem of Integral Calculus to study the remainder R, (z), the function f(z)
minus its nth degree Taylor polynomial T}, (z). According to the Fundamental

Theorem,
+ / fl('rl) dwl:

That is, f(z) is equal to the constant term of the Taylor polynomial plus an
integral,

f@) =To() + [ " P o) dos.

By the Fundamental Theorem again, the integral is in turn

[ @ = [ (r@+ [" o) an

The first term of the outer integral is f'(a)l1(z), giving the first-order term
of the Taylor polynomial and leaving a doubly-nested integral,

/f z1)dz; = f'(a)(z — a) // f"(z2) dzs dzy .

In other words, the calculation so far has shown that

f@) = f@ + @@ —a)+ [ [ 1) draden

+ / / f”(.Z‘Q) dxo dry.

Once more by the Fundamental Theorem the doubly-nested integral is

/az /jl " (z2) dze dzy = /az /azl (f”(a) + /j2 f"'(xg)d:v3> dzs dxy,

and the first term of the outer integral is f"(a)Iz(z), giving the second-order
term of the Taylor polynomial and leaving a triply-nested integral,

II
/ / f” IL'Q d.’L‘Q d(El f (1 / / / f”l .’173 d(L‘3 d.’L‘2 d.??l
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So now the calculation so far has shown that
T 1 To
f(z) = Tsr(x) + / / / f"(x3) dos dzy day .
a a a

Continuing this process through n iterations shows that f(z) is T),(z) plus an
(n + 1)-fold iterated integral,

T z1 Tn
f(.??) = Tn(w) + / / . / f("+1)($n+1) d.fl?n_H e d.??z d:L'l.

In other words, the remainder is the integral,

T pry Tn
Rn(x) = / / n / f(”+1)($n+1) d$n+1 s d.'L'Q d.Z'l. (11)

Note that we now are assuming that f has n + 1 continuous derivatives.

For simplicity, assume that z > a. Since f("*+1) is continuous on the closed
and bounded interval [a, z], the Extreme Value Theorem says that it takes a
minimum value m and a maximum value M on the interval. That is,

m < N @n11) <M, @nga € [a,2].

Integrating this inequality n + 1 times correspondingly bounds the remainder
integral (1.1) on both sides by multiples of the integral that we have evaluated,

mIni1(z) < Rp(z) < MInga(z),
and therefore by the precalculated formula for I,,41(z),

(x —a)*! (x — a)"t?

m+1)! — (12)

Recall that m and M are particular values of f("t1). Define an auxiliary
function that will therefore assume the sandwiching values in (1.2),

_ n+1
: f = plndn) o (E— )"
o:lea] =R, g0 = 000
That is, since there exist values t,, and ty in [a, z] such that f*+D(t,,) =m
and f 1 (tp) = M, the result (1.2) of our calculation rephrases as

g(tm) < Rn(x) < g(tM)-

This shows that the remainder is an intermediate value of g. And g is continu-
ous, so by the Intermediate Value Theorem, there exists some point ¢ € [a, z]
such that g(c) = R,(x). In other words, g(c) is the desired remainder, the
function minus its Taylor polynomial. This proves
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Theorem 1.3.3 (Taylor’s Theorem). Let I C R be a nonempty open
interval, and let a € I. Let n be a nonnegative integer. Suppose that the
function f: I — R has n + 1 continuous derivatives. Then for each x € I,

f(@) = Tn(z) + Rn(2)

where

(x —a)"t?

Rala) = 0

for some ¢ between a and x.

We have proved Taylor’s Theorem only when x > a (and it is trivial when
Z = a), but the proof for £ < a is the same other than a few inequalities
switching direction. Whereas our proof of Taylor’s Theorem relies primarily
on the Fundamental Theorem of Integral Calculus, and a similar proof relies
on repeated integration by parts (exercise 1.3.6), many proofs rely instead on
the Mean Value Theorem. Qur proof neatly uses different mathematical tools
for the different parts of the argument:

e To find the Taylor polynomial T,,(z) we differentiated repeatedly, using a
substitution at each step to determine a coefficient.

e To get a precise (if unwieldy) expression for the remainder R,(x) =
f(z) = T, (z) we integrated repeatedly, using the Fundamental Theorem of
Integral Calculus at each step to produce a term of the Taylor polynomial.

e To express the remainder in a more convenient form, we used the Extreme
Value Theorem and then the Intermediate Value Theorem once each. This
step involved no calculus.

The expression for R, (z) given in Theorem 1.3.3 is called the Lagrange
form of the remainder. Other expressions for R, (z) exist as well. Whatever
form is used for the remainder, it should be something that we can estimate
by bounding its magnitude.

For example, we use Taylor’s Theorem to estimate In(1.1) by hand to
within 1/500,000. Let f(z) = In(1 + z) on (—1,00), and let @ = 0. Compute
the following table:
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k
k F®) () —f(;!(O)
0 In(1 + z) 0
1
1 (1+=x) 1
9 | __1 _L
(1+z)? 2
2 1
3 (1+z)3 3
3! 1
Y Taer | T
()" - (=D)" !
" 1+ )" n
(=1)™n!
n+1 W

Next, read off from the table that for n > 1, the nth degree Taylor polynomial
is

Tn(z) = = - A L i(—nk—lﬁ
n\T) =2 2 3 o = 2 A ,
and the remainder is
(_1)nxn+1

for some ¢ between 0 and z.

Rn(m) =

A+ (n+1)

This expression for the remainder may be a bit much to take in since it involves
three variables: the point z at which we are approximating the logarithm, the
degree n of the Taylor polynomial that is providing the approximation, and
the unknown value ¢ in the error term. But in particular we are interested in
z = 0.1 (since we are approximating In(1.1) using f(z) = In(1 + z)), so that
the Taylor polynomial specializes to

(0.1)%  (0.1)3

To(0-1) = (0.1) = =57 + g =+ (= —

and we want to bound the remainder in absolute value, so write

(0.1)m+
A+ 0™ (n+1)

|R,(0.1)] = for some ¢ between 0 and 0.1.

Now the symbol z is gone. Next, note that although we don’t know the value
of ¢, the smallest possible value of the quantity (1+ ¢)"*! in the denominator
of the absolute remainder is 1 because ¢ > 0. And since this value occurs in
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the denominator it lets us write the greatest possible value of the absolute
remainder with no reference to c¢. That is,

(0.1)m+

|R,(0.1)] < D)’

and the symbol ¢ is gone as well. The only remaining variable is n, and the
goal is to approximate In(1.1) to within 1/500,000. Set n = 4 in the previous
display to get

1
500,000

That is, the fourth degree Taylor polynomial

|R4(0.1)| <

11 1
~ 10 200 ' 3000 40000
= 0.10000000 - - - — 0.00500000 - - - + 0.00033333 - - - — 0.00002500 - - -

=0.09530833 - - -

T4(0.1)

agrees with In(1.1) to within 0.00000200- - -, so that
0.09530633 - - - < In(1.1) < 0.09531033- - - .

Machine technology should confirm this.
Continuing to work with the function f(z) = In(1 + z) for z > —1, set
z = 1 instead to get that for n > 1,

1 1 1
T,(1)=1-—-+4=— -1t
W)= 1= 55— (-
and )
|R,(1)] = for some ¢ between 0 and 1.

A+om+i(n+1)

Thus |R,(1)] < 1/(n + 1), and this goes to 0 as n — oo. Therefore In(2) is
expressible as an infinite series,

1 1 1
n@2)=1— 4= — = 4---.
n(2) 573 17
Repeating a formula from before, the nth degree Taylor polynomial of the
natural logarithm at 1 is

2 3 n

22 oz " xk
Tn — _ et _1n—1_: _lk—l_
R B D W s

The graphs of the natural logarithm and its first five Taylor polynomials at 1
are plotted from 0 to 2 in figure 1.1. A good check of your understanding is
to see if you can determine which graph is which in the figure.
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0.5 1 1.5 2

Figure 1.1. The natural logarithm and its Taylor polynomials

For another example, return to the exponential function f(z) = € and
let a = 0. For any z, the difference between f(z) and the nth degree Taylor
polynomial T}, (x) satisfies

n+1
et

(@) = 1

for some ¢ between 0 and z.

If x > 0 then e could be as large as e®, while if z < 0 then e® could be as
large as €°. The worst possible case is therefore

|x|n+1

|R,(z)| < max{l,ez}m.

As n — oo (while z remains fixed, albeit arbitrary) the right side goes to 0
because the factorial growth of (n + 1)! dominates the polynomial growth
of |z|"*1, and so we have in the limit that e® is expressible as a power series,

. 2z z" = ¥
e :1+“’+E+§+"'+H+"':ZH'
k=0
In Ray Mayer’s notes for Mathematics 112, the power series here is used to

define e®, but then obtaining the properties of e* depends on the technical
fact that power series can be differentiated term by term.

We end this chapter by sketching two cautionary examples. First, work
from earlier in the section shows that the Taylor series for the function In(1+z)
ata=0is
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2 3 k

T T z" > T
Tx)=0— "+ — . (=11 ... = —1)k12
(x) == 5 + 3 +(-1) - + 1;21( ) -

The Ratio Test shows that this series converges absolutely when |z| < 1. The
series also converges at = 1, as observed earlier. Thus, while the domain of
the function In(1 4 z) is (—1,00), the Taylor series has no chance to match
the function outside of (—1,1]. Furthermore, it is possible, using the Lagrange
form R, (z) of the nth remainder, to argue similarly to the previous paragraph
that

Inl+2z)=T(z) forze[-1/2,1].

On the other hand,the Lagrange form can not easily be used to prove that
the equality in the previous display also holds for z € (—1,—1/2). Figure 1.1
suggests why: the Taylor polynomials are converging more slowly to the orig-
inal function the farther left we go on the graph. However, a different form
of the remainder, given in exercise 1.3.6, proves fairly easily that indeed the
equality holds for all z € (—1,1].

For the last example, define f : R — R by

e 17 if g #0,
f(x)_{o if 7 = 0.

It is possible to show that f is infinitely differentiable and that every derivative
of f at 01is 0. That is, f*)(0) = 0 for k = 0,1,2,.... Consequently, the Taylor
series for f at 0 is

T(x) =040z +0z* +--- 4+ 02" +--- .

This is the zero function, which certainly converges for all z € R. But the only
value of z for which it converges to the original function f is z = 0. In other
words, although this Taylor series converges everywhere, it fails catastrophi-
cally to equal the function it is attempting to match. The problem is that the
function f decays exponentially, and since exponential behavior dominates
polynomial behavior, any attempt to discern f by using polynomials will fail
to see it. Figures 1.2 and 1.3 plot f to display its rapid decay. The first plot
is for = € [—25,25] and the second is for z € [-1/2,1/2].

Exercises

1.3.1. What is the nth degree Taylor polynomial T, () for the function f(z) =
sinz at 07 Prove that sin z is equal to the limit of T},(z) as n — oo, similarly
to the argument in the text for e*. Also find T},(z) for f(z) = cosz at 0, and
explain why the argument for sin shows that cosz is the limit of its Taylor
polynomials as well.
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—20 ~10 10 20

Figure 1.2. Rapidly decaying function, wide view

04  —02 0.2 0.4

Figure 1.3. Rapidly decaying function, zoom view

1.3.2. What is the nth degree Taylor polynomial T, (x) for the following func-
tions at 07

(a) f(z) = arctanz,

(b) f(z) = (1 + z)* where a € R. (Warning: Although the answer can be
written in a uniform way for all a, it behaves differently when a € N.)

1.3.3. In figure 1.1, identify the graphs of 77 through 75 and the graph of In
near z = (0 and near x = 2.

1.3.4. Without a calculator, use the first three terms of the Taylor series for
sin(z) at 0 to approximate a decimal representation of sin(0.1). Also compute
the decimal representation of an upper bound for the error of the approxima-
tion. Bound sin(0.1) between two decimal representations.
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1.3.5. Use a second degree Taylor polynomial to approximate 1/4.2. Use Tay-
lor’s theorem to find a guaranteed accuracy of the approximation and thus to
find upper and lower bounds for v/4.2.

1.3.6. Another proof of Taylor’s Theorem uses the Fundamental Theorem of
Integral Calculus once and then integrates by parts repeatedly. Begin with the
hypotheses of Theorem 1.3.3, and let z € I. By the Fundamental Theorem,

f@) = f@) + [ 1)

Let w = f'(t) and v = t — z, so that the integral is faz udv, and integrating
by parts gives

f(@) = f(a) + f(a)(z —a) — /w 1O - =) at.

Let u = f'(t) and v = 1(t — z)?, so that again the integral is [ udv, and
integrating by parts gives

f@) = 1@+ F@a -0+ @5+ [t a

Show that after n steps the result is
5@ =T + (1 [ oo g

Whereas the expression for f(z) — T),(z) in Theorem 1.3.3 is called the La-
grange form of the remainder, this exercise has derived the integral form of
the remainder. Use the Extreme Value Theorem and the Intermediate Value
Theorem to derive the Lagrange form of the remainder from the integral form.
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Euclidean Space

FEuclidean space is a mathematical construct that encompasses the line, the
plane, and three-dimensional space as special cases. Its elements are called vec-
tors. Vectors can be understood in various ways: as arrows, as quantities with
magnitude and direction, as displacements, or as points. However, along with
a sense of what vectors are, we also need to emphasize how they interact. The
axioms in section 2.1 capture the idea that vectors can be added together and
can be multiplied by scalars, with both of these operations obeying familiar
laws of algebra. Section 2.2 expresses the geometric ideas of length and angle
in Euclidean space in terms of vector algebra. Section 2.3 discusses continu-
ity for functions (also called mappings) whose inputs and outputs are vectors
rather than scalars. Section 2.4 introduces a special class of sets in Euclidean
space, the compact sets, and shows that compact sets are preserved under
continuous mappings. Finally, section 2.5 reviews the one-variable derivative
in light of ideas from the two sections preceding it.

2.1 Algebra: Vectors

Let n be a positive integer. The set of all ordered n-tuples of real numbers,
R" = {(xla'--;xn) X e R fori= 1,...,7’1,},

constitutes n-dimensional Euclidean space. When n = 1, the parentheses
and subscript in the notation (x1) are superfluous, so we simply view the
elements of R! as real numbers z and write R for R!. Elements of R? and
of R? are written (z,y) and (z,y, 2) to avoid needless subscripts. These first
few Euclidean spaces, R, R? and R3, are conveniently visualized as the line,
the plane, and space itself. (See figure 2.1.)

Elements of R are called scalars, of R", vectors. The origin of R",
denoted 0, is defined to be

0=(0,...,0).
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Figure 2.1. The first few Euclidean spaces

Sometimes the origin of R™ will be denoted 0, to distinguish it from other
“origins” that we will encounter later.

In the first few Euclidean spaces R, R2, R?, one can visualize a vector as
a point z or as an arrow. The arrow can have its tail at the origin and its
head at the point z, or its tail at any point p and its head correspondingly
translated to p + z. (See figure 2.2. Most illustrations will depict R or R2.)

pt+x

Figure 2.2. Various ways to envision a vector

To a mathematician, the word “space” doesn’t connote volume but instead
refers to a set endowed with some structure. Indeed, Euclidean space R™ comes
with two algebraic operations. The first is vector addition,

+:R" xR" — R",
defined by adding the scalars at each component of the vectors,
(1'1,...,1'”) + (yl""iy'ﬂ) = (xl +y1,---,wn +yn)'

For example, (1,2,3) + (4,5,6) = (5,7,9). Note that meaning of the “+”
sign is now overloaded: on the left of the displayed equality, it denotes the
new operation of vector addition, whereas on the right side it denotes the old
addition of real numbers. This shouldn’t cause problems since which “+” is
meant is clear from context, i.e., the meaning of “4” is clear from whether



2.1 Algebra: Vectors 19

it sits between vectors or scalars. (An expression such as “(1,2,3) +4,” with
the plus sign between a vector and a scalar, makes no sense according to our
grammar.)

The interpretation of vectors as arrows gives a geometric description of
vector addition, at least in R2. To add the vectors z and y, draw them as
arrows starting at 0 and then complete the parallelogram P that has z and y
as two of its sides. The diagonal of P starting at 0 is then the arrow depicting
the vector = + y. (See figure 2.3.) The proof of this is a small argument with
similar triangles, left to the reader as exercise 2.1.2.

Figure 2.3. The parallelogram law of vector addition

The second operation on Euclidean space is scalar multiplication,
-:RxR" — R",
defined by
a-(r1,...,2,) = (ax1,...,a%y,).

For example, 2-(3,4,5) = (6,8, 10). We will almost always omit the symbol “-”
and write ax for a - z. With this convention, juxtaposition is overloaded as
“4+” was overloaded above, but again this shouldn’t cause problems.

Scalar multiplication of the vector z (viewed as an arrow) by a also has a
geometric interpretation: it simply stretches (i.e., scales) = by a factor of a.
When a is negative, axz turns z around and stretches it in the other direction
by |al|. (See figure 2.4.)

-3z

2x

Figure 2.4. Scalar multiplication as stretching
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With these two operations and distinguished element 0, Euclidean space
satisfies the following algebraic laws:

Theorem 2.1.1 (Vector Space Axioms).

(A1) Addition is associative: (x +y) + 2z =2+ (y + 2) for all z,y,z € R™.

(A2) 0 is an additive identity:  + 0 = x for all x € R™.

(A3) Existence of additive inverses: For each © € R™ there erists y € R"
such that ¢ +y = 0.

(A4) Addition is commutative: x +y =y + x for all z,y € R™.

(M1) Scalar multiplication is associative: a(bx) = (ab)x for all a,b € R, x €
R".

(M2) 1 is a multiplicative identity: 1x = x for all z € R™.

(D1) Scalar multiplication distributes over scalar addition: (a +b)x = az + bz
for alla,be R, x € R".

(D2) Scalar multiplication distributes over vector addition: a(z+y) = ax +ay
foralla e R, z,y € R".

All of these are consequences of how “+” and “-” and 0 are defined for R™
in conjunction with the fact that the real numbers, in turn endowed with “+”
and “” and containing 0 and 1, satisfy the field axioms (see section 1.1). For
example, to prove that R™ satisfies (M1), take any scalars a,b € R and any
vector ¢ = (r1,...,2,) € R Then

a(bx) = a(b(xy,-..,z,)) by definition of x
= a(bxy,...,bxy,) by definition of scalar multiplication
= (a(bx1),...,a(bx,)) by definition of scalar multiplication
= ((ab)zy, ..., (ab)x,) by n applications of (m1) in R
= (ab)(z1, ..., %) by definition of scalar multiplication
= (ab)z by definition of z.

The other vector space axioms for R™ can be shown similarly, by unwinding
vectors to their coordinates, quoting field axioms coordinatewise, and then
bundling the results back up into vectors (see exercise 2.1.3). Nonetheless, the
vector space axioms do not perfectly parallel the field axioms, and you are
encouraged to spend a little time comparing the two axiom sets to get a feel
for where they are similar and where they are different (see exercise 2.1.4).
Note in particular that R™ for n > 1 is not endowed with vector-by-vector
multiplication. We know that there is a multiplication of vectors for R2, the
multiplication of complex numbers; and later (in section 3.10) we will see a
noncommutative multiplication of vectors for R, but these are special cases.

One benefit of the vector space axioms for R™ is that they are phrased
intrinsically, meaning that they make no reference to the scalar coordinates
of the vectors involved. Thus, once you use coordinates to establish the vector
space axioms, your vector algebra can be intrinsic thereafter, making it lighter
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and more conceptual. Also, in addition to being intrinsic, the vector space
axioms are general. While R" is the prototypical set satisfying the vector space
axioms, it is by no means the only one. In coming sections we will encounter
other sets V' (whose elements may be, for example, functions) endowed with
their own addition, multiplication by elements of a field F', and distinguished
element 0. If the vector space axioms are satisfied with V' and F replacing R™
and R then we say that V' is a vector space over F.

The pedagogical point here is that although the similarity between vector
algebra and scalar algebra may initially make vector algebra seem uninspiring,
in fact the similarity is exciting. It makes mathematics easier because familiar
algebraic manipulations apply in a wide range of contexts. The same symbol-
patterns have more meaning. For example, we use intrinsic vector algebra to
show a result from Euclidean geometry, that the three bisectors of a triangle
intersect. Consider a triangle with vertices z, y, and z, and form the average
of the three vertices,

_rx+y+tz

= 3 .
This algebraic average will be the geometric center of the triangle, where the
bisectors meet. (See figure 2.5.) Indeed, rewrite p as

2 (y+=z
p—m+§< 5 —w).

This shows that p is two thirds of the way from z along the line segment
from z to the average of y and z, i.e., that p lies on the triangle bisector
from vertex = to side yz. (Again see the figure. The idea is that (y + 2)/2
is being interpreted as the midpoint of y and z, each of these viewed as a
point, while on the other hand, the little mnemonic head minus tail helps us
remember quickly that (y +2)/2 —  can be viewed as the arrow-vector from z
to (y+2)/2.) Since p is defined symmetrically in z, y, and z, and it lies on one
bisector, it therefore lies on the other two bisectors as well. In fact, the vector
algebra has shown that it lies two thirds of the way along each bisector.

The standard basis of R” is the set of vectors

{e1,€2,...,en}
where
e1 =(1,0,...,0), ex=(0,1,...,0), ..., en=1(0,0,...,1).
Any vector z = (z1, %3, - - -, ) decomposes as

x = (21,T2,...,%n)
= (21,0,...,0) + (0,22,...,0) +--- + (0,0,...,2,)
21(1,0,...,0) + 22(0,1,...,0) + - + 2,(0,0,...,1)

=zT1€1 + X2e2 + -+ Tpey,



22 2 Euclidean Space

Figure 2.5. Three bisectors of a triangle

2
Y
or, more succinctly,

n
x = inei. (2.1)
i=1

Note that in equation (2.1), z and the e; are vectors while the z; are scalars.
The equation shows that any € R" is expressible as a linear combination
(sum of scalar multiples) of the standard basis vectors. The expression is
unique, for if also z = Y ;" ; z}e; for some scalars z}, ..., =}, then the equality
says that z = (2}, 25,...,2}), so that z} = z; fori =1,...,n.

The standard basis is handy in that it is a finite set of vectors from which
each of the infinitely many vectors of R™ can be obtained in exactly one way
as a linear combination. But it is not the only such set, nor is it always the
optimal one.

Definition 2.1.2 (Basis). A set of vectors {f;} is a basis of R™ if every
z € R" is uniquely expressible as a linear combination of the f;.

For example, the set {f1, f2} = {(1,1),(1,—1)} is a basis of R?. To see
this, consider an arbitrary vector (z,y) € R?. This vector is expressible as a
linear combination of f; and f» if and only if there are scalars a and b such
that

(z,y) = afi +bfs.
Since f1 = (1,1) and fo = (1, —1), this vector equation is equivalent to a pair

of scalar equations,

z=a+b,
y=a—b.

Add these equations and divide by 2 to get a = (z + y)/2, and similarly
b= (x — y)/2. In other words, we have found that
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(o) = 22 (1,1) +

r—Y
9 (15 _1)5

and the coefficients a = (z + y)/2 and b = (z — y)/2 on the right side of the

equation are the only possible coefficients a and b for the equation to hold.

That is, scalars a and b exist to express the vector (z,y) as a linear combination

of {f1, f2}, and the scalars are uniquely determined by the vector. This shows

that {f1, f2} is a basis of R? as claimed.

The set {g1,92} = {(1,3),(2,6)} is not a basis of R?, because any linear
combination ag; + bgs is (a+ 2b, 3a + 6b), with the second entry equal to three
times the first. The vector (1,0) is therefore not a linear combination of g;
and go.

Nor is the set {hi, hs,h3} = {(1,0),(1,1),(1,—1)} a basis of R?, because
hs = 2h1 — hs, so that hs is a nonunique linear combination of the h;.

See exercises 2.1.9 and 2.1.10 for practice with bases.

Exercises

2.1.1. Write down any three specific nonzero vectors u, v, w from R? and
any two specific nonzero scalars a, b from R. Compute u + v, aw, b(v + w),
(a + b)u, u + v + w, abw, and the additive inverse to u.

2.1.2. Give a geometric proof that in R? if we view the vectors z and y as
arrows from 0 and form the parallelogram P with these arrows as two of its
sides, then the diagonal z starting at 0 is the vector sum z + y viewed as an
arrow.

2.1.3. Verify that R" satisfies vector space axioms (A2), (A3), (D1).

2.1.4. Are all the field axioms used in verifying that Euclidean space satisfies
the vector space axioms?

2.1.5. Show that 0 is the unique additive identity in R™. Show that each vec-
tor x € R™ has a unique additive inverse, which can therefore be denoted —z.
(And it follows that vector subtraction can now be defined,

—:R"xR"® — R", r—y=z+(—y) forallz,y e R")
Show that 0z = 0 for all z € R".

2.1.6. Repeat the previous exercise, but with R™ replaced by an arbitrary
vector space V over a field F. (Work with the axioms.)

2.1.7. Show the uniqueness of additive identity and additive inverse using
only (Al), (A2), (A3). (This is tricky; the opening pages of some books on
group theory will help.)

2.1.8. Let 2 and y be non-collinear vectors in R3. Give a geometric description
of the set of all linear combinations of x and y.
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2.1.9. Which of the following sets are bases of R3?

S: ={(1,0,0),(1,1,0),(1,1,1)},

S, ={(1,0,0),(0,1,0),(0,0,1),(1,1,1)},
Ss ={(1,1,0),(0,1,1)},

Ss =1{(1,1,0),(0,1,1),(1,0,—-1)}.

How many elements do you think a basis for R™ must have? Give (without
proof) geometric descriptions of all bases for R2, for R?.

2.1.10. Recall the field C of complex numbers. Define complex n-space C"
analogously to R"™:

Cn:{(zl,...,zn):ZiECfOr?::]_,_‘_,n},

and endow it with addition and scalar multiplication defined by the same
formulas as for R™. Feel free to take my word that under these definitions,
C" is a vector space over R and also a vector space over C. Give a basis in
each case.

2.2 Geometry: Length and Angle

The geometric notions of length and angle in R™ are readily described in
terms of the algebraic notion of inner product.

Definition 2.2.1 (Inner Product). The inner product is a function from
pairs of vectors to scalars,

(,):R"xR" — R,

defined by the formula

(@15 sn)s (Y1525 Yn)) = Zmzyz
i=1

For example,

(L,1,...,1),(1,2,...,n)) = @

(ei,€ej) = d;; (this means 1 if ¢ = j, 0 otherwise).

Proposition 2.2.2 (Inner Product Properties).
(IP1) The inner product is positive definite: (xz,z) > 0 for all x € R™, with

equality if and only if © = 0.
(IP2) The inner product is symmetric: {z,y) = (y,z) for all z,y € R™.
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(IP3) The inner product is bilinear:

(x+2',y) = (z,y) + («',y), (az,y) = alz,y),
(,y+y") = (z,9) + (x,0"), (x,by) =blz,y)

for all a,be R, z,2',y,y’ € R™.
Proof. Exercise 2.2.4. O

Be aware that the Inner Product Properties do not imply the relation
Y+ y+vy")=(z,y)+(2',y').” In general, this relation does not hold.

Like the vector space axioms, the inner product properties are phrased
intrinsically, although they need to be proved using coordinates. As mentioned
in the previous section, intrinsic methods are neater and more conceptual than
using coordinates. More importantly, the rest of the results of this section are
proved by reference to the inner product properties, with no further reference to
the inner product formula. The notion of an inner product generalizes beyond
Euclidean space—this will be demonstrated in exercise 2.3.4, for example—
and thanks to the previous sentence, once the properties (IP1) through (IP3)
are established for any inner product, all of the pending results in the section
will follow automatically with no further work.

Definition 2.2.3 (Modulus). The modulus (or absolute value) of a vec-

tor x € R™ is defined as
|lz| = V/(z, ).

Thus the modulus is defined in terms of the inner product, rather than by
its own formula. The inner product formula shows that the modulus formula
is

(Z1,...,Tn)| = /23 + -+ 22,

so that some particular examples are

|(1,2,...,n)| — \/n(n+ 1)6(2n+1)’

|e,~| =1.

However, the definition of the modulus in terms of inner product combines
with the inner product properties to show, with no reference to the inner
product formula or the modulus formula, that the modulus satisfies (exer-
cise 2.2.5)

Proposition 2.2.4 (Modulus Properties).

(Mod1) The modulus is positive: |x| > 0 for all x € R", with equality if and
only if ¢ = 0.

(Mod2) The modulus is absolute-homogeneous: |azx| = |a||z| for all a € R and
z € R".
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Like other symbols, the absolute value signs are now overloaded, but their
meaning can be inferred from context, as in property (Mod2). When n is 1, 2,
or 3, the modulus |z| gives the distance from 0 to the point z, or the length
of z viewed as an arrow. (See figure 2.6.)

Figure 2.6. Modulus as length

The following relation between inner product and modulus will help to
show that distance in R™ behaves as it should and that angle in R™ makes
sense. Since the relation is not obvious, its proof is a little sneaky.

Theorem 2.2.5 (Cauchy—Schwarz Inequality). For all z,y € R",

[z, )] < |2[ ly],
with equality if and only if one of x, y is a scalar multiple of the other.

Note that the absolute value signs mean different things on each side of
the Cauchy—Schwarz inequality. On the left side, the quantities  and y are
vectors, their inner product (z,y) is a scalar, and |(z, y)| is its scalar absolute
value, while on the right side, |z| and |y| are the scalar absolute values of
vectors, and |z||y| is their product.

The Cauchy—Schwarz inequality can be written out in coordinates, tem-
porarily abandoning the principle that we should avoid reference to fomulas,

(@14 anyn)’ < (@ + -+ 2@+ +yh)-

And this inequality can be proved bare-handedly, as follows (the reader is
encouraged only to skim the following computation). The desired inequality

rewrites as )
( E wiyz’) < E a3 - E Y3,
i i j

where the indices of summation run from 1 to n. This expands to
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foyf + Z TiYiT;Y; < Z CHUE
i i,j i,
i#]

and canceling the terms common to both sides reduces it to

Z TiYiTiY; < Z z3y3,

i#] i#]
or

> (@Y} — mayizjy;) > 0.

i#]
Rather than sum over all pairs (4, j) with ¢ # j, sum over the pairs with ¢ < 7,
collecting the (i, j)-term and the (j,%)-term for each such pair. This makes
the previous inequality

> @3yl + ady} — 2aiyiziyi) > 0.
i<j

Thus the desired inequality has reduced to a true inequality,

Z(ﬂfiyj —z;y;)* > 0.

i<j
So the main proof is done, although there is still the question of when equality
holds.

But this can’t be the graceful way to argue. The computation draws on
the minutae of the formulas for the inner product and the modulus, rather
than using their properties. It is uninformative, making the Cauchy—Schwarz
inequality look like a low-level accident. To prove the inequality in a way that
is enlightening and general, we should work intrinsically, keeping the scalars
{z,y), |z|, and |y| notated in their concise forms, and we should use properties,
not formulas. The idea is that the calculation in coordinates reduces to the
fact that squares are nonnegative. That is, the Cauchy—Schwarz inequality
is somehow quadratically hard, and its verification amounted to completing
many squares. The argument to be given here is guided by this insight to prove
the inequality by citing facts about quadratic polynomials, facts established by
completing one square back in high school algebra at the moment that doing
so was called for. This eliminates redundancy and clutter. So the argument to
follow will involve an auxiliary object, a quadratic polynomial, but in return
it will become coherent.

Proof. The result is clear when x = 0, so assume z # 0. For any a € R,
0<{ax —y,azx —y) by positive definiteness
=a{z,ax —y) — (y,ax — y) by linearity in the first variable
=a%(z,z) —alz,y) — aly,z) + (y,y) by linearity in the second variable

= |z[%a® — 2(z,y)a + |y|? by symmetry, definition of modulus.
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View the right side as a quadratic polynomial in the scalar variable a, where
the scalar coefficients of the polynomial depend on the generic but fixed vec-
tors x and y,

fa) = |z*a® - 2(z, y)a + |y|*.
We have shown that f(a) is always nonnegative, so f has at most one root.
Thus by the quadratic formula its discriminant is nonpositive,

Az, y)* —4lz/ly)* <0,

and the inequality follows. Equality holds exactly when the quadratic poly-
nomial f(a) = |az — y|? has a root a, i.e., exactly when az —y = 0 for some
a €R. O

Geometrically, the condition for equality in Cauchy—Schwarz is that the
vectors x and y, viewed as arrows at the origin, are parallel, though perhaps
pointing in opposite directions. A geometrically conceived proof of Cauchy—
Schwarz is given in exercise 2.2.15 to complement the algebraic argument that
has been given here.

The Cauchy—Schwarz inequality shows that the modulus function satisfies

Theorem 2.2.6 (Triangle Inequality). For all z,y € R",
|z +yl <z +yl,

with equality if and only if one of x, y is a nonnegative scalar multiple of the
other.

Proof. To show this, compute

ety =(z+y,2+y)
= |z|® + 2(z,y) + |y|* by bilinearity
< |z|* + 2|z||ly| + ly|* by Cauchy—Schwarz
= (lz] + Iy,

proving the inequality. Equality holds exactly when (z,y) = |z||y|, or equiva-
lently when [(z,y)| = |z||y| and (z,y) > 0. These hold when one of z, y is a
scalar multiple of the other and the scalar is nonnegative. O

The Triangle Inequality’s name is explained by its geometric interpretation
in R? and R3. View z as an arrow at the origin, y as an arrow with tail at
the head of z, and x + y as an arrow at the origin. These three arrows form a
triangle, and the assertion is that the lengths of two sides sum to at least the
length of the third. (See figure 2.7.)

The full Triangle Inequality says that for all z,y € R™,

[z] = [yl | < |z £ y| < |z] + [yl
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r+y

x

Figure 2.7. Sides of a triangle

The proof is exercise 2.2.7.

A small argument, which can be formalized as induction if one is painstak-
ing, shows that the basic Triangle Inequality extends from two vectors to any
finite number of vectors. For example,

[z +y+z[ <z +yl+ 2] <ol + [yl + 2]

The only obstacle to generalizing the basic Triangle Inequality in this fashion
is notation. The argument can’t use the symbol n to denote the number of
vectors since n already denotes the dimension of the Euclidean space where
we are working; and furthermore, the vectors can’t be denoted with subscripts
since for now a subscript denotes a component of an individual vector. Thus,
for now we are stuck with something like

|m(1) +...+$(k)| < |$(1)|+..._|_ |$(k)| for all .Z'(l),...,x(k) eR",

or

zk: o)
=1

As our work with vectors becomes more intrinsic, vector entries will demand
less of our attention, and we will be able to denote vectors by subscripts. The
notation-change will be implemented in the next section.

k
< Z @], =®,. . z® e R".
=1

For any vector z = (z1,...,%,) € R", useful bounds on the modulus |z|
in terms of the scalar absolute values |z;| are

Proposition 2.2.7 (Size Bounds). For any j € {1,...,n},

n
5] < |2] < lail.
i=1

The proof is exercise 2.2.8.
The modulus gives rise to a distance function on R™ that behaves as
distance should. Define
d:R"xR" — R

by
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d(z,y) = |y — |-
For example, d(e;,e;) = v2(1 — §;5).

Theorem 2.2.8 (Distance Properties).

(D1) Distance is positive: d(x,y) > 0 for all x,y € R™, and d(z,y) = 0 if and
only if ¢ = y.
) Distance is symmetric: d(z,y) = d(y,z) for all z,y € R™.

(D2
D3) Triangle Inequality: d(z,z) < d(z,y) + d(y, 2) for all z,y,z € R™.

(
(D1) and (D2) are clearly desirable as properties of a distance function.

Property (D3) says that you can’t shorten your trip from z to z by making a
stop at y.

Proof. Exercise 2.2.9. O

The Cauchy—Schwarz inequality also lets us define the angle between two
nonzero vectors in terms of the inner product. If z and y are nonzero vectors
in R", define their angle 8, , by the condition

—~

z,y)

COS Oz,y = W’

0<8,,<m (2.2)

(z,y)
][yl

cos 0(1,0),(1,1) = 1/v/2, so 0(1,0),1,1) = 7/4. In particular, two nonzero vec-
tors z, y are orthogonal when (z,y) = 0. Naturally, we would like 6, , to
correspond to the usual notion of angle, at least in R?, and indeed it does—
see exercise 2.2.10. For convenience, define any two vectors z and y to be
orthogonal if {x,y) = 0, thus making 0 orthogonal to all vectors.

This makes sense because —1 <

< 1 by Cauchy—Schwarz. For example,

Rephrasing geometry in terms of intrinsic vector algebra not only extends
the geometric notions of length and angle uniformly to any dimension, it also
makes some low-dimensional geometry easier. For example, vectors show in a
natural way that the three altitudes of any triangle must meet. Let z and y
denote two sides of the triangle, making the third side z —y by the head minus
tail mnemonic. Let p be the point where the altitudes to = and y meet. (See
figure 2.8, which also shows the third altitude.) Thus

p—ylzxz and p—xz Ly.
We want to show that also p lies on the third altitude, i.e., that
plz—y.
To rephrase matters in terms of inner products, we know that

(p—y,2z)=0 and (p—=,y)=0,
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and we want to show that

(pa z— y) =0.
Since the inner product is linear in each of its arguments, a further rephrase
is that we know that

(p,z) = (y,2) and (p,y) = (z,y),
and we want to show that
<p7 .’E) = (P, y)'
But since the inner product is symmetric, this is immediate: (p, z) and (p,y)
both equal {(x,y), and hence they equal each other. The point where the

three altitudes meet is called the orthocenter of the triangle. In general the
orthocenter of a triangle is not the center, cf. the previous section.

Y
4 o
x

Figure 2.8. Three altitudes of a triangle

Exercises

2.2.1. Let z = (%,-1,0), y = (%,@,1), z = (1,1,1). Compute (z,z),
(Z,9), (y,2), |z, lyl, |2], Oz,y: Oy,ers Oz,es-

2.2.2. Show that the points z = (2,-1,3,1), y = (4,2,1,4), z = (1,3,6,1)
form the vertices of a triangle in R* with two equal angles.

2.2.3. Explain why for all z € R", 2 = 37, (2, ¢j)e;.
2.2.4. Prove the Inner Product Properties.

2.2.5. Use the Inner Product Properties and the definition of the modulus in
terms of the inner product to prove the Modulus Properties.

2.2.6. In the text, the modulus is defined in terms of the inner product. Prove
that this can be turned around by showing that for every z,y € R"™,

2 _ _ 2
<$7y>=|m+y| 4|m y'.
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2.2.7. Prove the full Triangle Inequality: for any z,y € R",
el =yl < e £yl < |z| + |y-

Do not do this by writing three more variants of the proof of the Triangle
Inequality, but by substituting suitably into the basic Triangle Inequality,
which is already proved.

2.2.8. Let x = (z1,...,2,) € R™ Prove the Size Bounds: For any j €

{1,...,n},
n
|zj] < el <Y |-
i=1
When can each “<” be an “="7

2.2.9. Prove the Distance Properties.

2.2.10. In R?, depict the nonzero vectors  and y as arrows from the origin
and depict  — y as an arrow from the endpoint of y to the endpoint of z. Let
6 denote the angle (in the usual geometric sense) between x and y. Use the
Law of Cosines to show that

(z,y)

cosf = ,
=yl

so that our notion of angle agrees with the geometric one, at least in R2.
2.2.11. Prove that for any nonzero z € R", > | cos® 0., = 1.

2.2.12. Prove that two nonzero vectors z, y are orthogonal if and only if
[z +y? = |z + |y

2.2.13. Use vectors in R? to show that the diagonals of a parallelogram are
perpendicular if and only if the parallelogram is a rhombus.

2.2.14. Use vectors to show that every angle inscribed in a semicircle is right.

2.2.15. Let x and y be vectors, with x nonzero. Define the parallel component
of y along z and the normal component of y to z to be

(z,y)

Yooy = T ® A Y =Y = Yie)-

(a) Show that y = y(jjz) +¥(Ls); Show that y(||;) is a scalar multiple of x; show
that y 1, is orthogonal to z. Show that the decomposition of y as a sum of
vectors parallel and perpendicular to z is unique. Draw an illustration.
(b) Show that
lyl* = lyqia)* + lyeLa) -

What theorem from classical geometry does this encompass?
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(¢) Explain why it follows from (b) that

(i)l < 1yl

with equality if and only y is a scalar multiple of 2. Use this inequality to give
another proof of the Cauchy—Schwarz Inequality. This argument gives the
geometric content of Cauchy—Schwarz: The parallel component of one vector
along another is at most as long as the original vector.

(d) The proof of the Cauchy—Schwarz inequality in part (c) refers to parts
(a) and (b), part (a) refers to orthogonality, orthogonality refers to an angle,
and as explained in the text, the fact that angles make sense depends on the
Cauchy—Schwarz inequality. This suggests that the proof in part (c) relies on
circular logic. Explain why the logic is in fact not circular.

2.2.16. Given nonzero vectors i, z2, ..., T, in R", the Gram—Schmidt
process is to set
Ty =1
I
Ty = T2 — (T2) (|la))

x5 = 23 — (T3)(lay) — (Z3)(aty)

Ty = Tn — (Tn) e,y — = (@n)(llay)-

(a) What is the result of applying the Gram—Schmidt process to the vectors
z; =(1,0,0), z» = (1,1,0), and z3 = (1,1,1)?

(b) Returning to the general case, show that =z}, ..., z} are pairwise
orthogonal and that each z’; has the form

!
T; = a1+ ajprr + -+ a5 1251 + ;5.

Thus any linear combination of the new {z} is also a linear combination of the
original {z;}. The converse is also true and will be shown in exercise 3.3.13.

2.3 Analysis: Continuous Mappings

A mapping from R” to R™ is some rule that assigns to each point z in R"
a point in R™. Generally mappings will be denoted by letters such as f, g, h.
When m = 1 we say “function” instead of mapping. For example, the mapping

f:R* — R

defined by
flz,y) = (@° —y?, 2zy)
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takes the real and imaginary parts of a complex number z = x+iy and returns
the real and imaginary parts of 22. By the nature of multiplication of complex
numbers, this means that each output point has modulus equal to the square
of the modulus of the input point and has angle equal to twice the angle of
the input point. Make sure that you see how this is shown in figure 2.9.

1 -1 1

Figure 2.9. The complex square as a mapping from R? to R?

Mappings expressed by formulas may be undefined at certain points (e.g.,
f(z) = 1/|z| is undefined at 0), so we need to restrict their domains. For
a given dimension n, a given set A C R"™, and a second dimension m,
let M(A,R™) denote the set of all mappings f : A — R™. This set forms a
vector space over R (whose “points” are functions) under the operations

+: M(A,R™) x M(A,R™) — M(A,R™),

defined by
(f+9)(z)=f(z)+g(z) forallze A,

and

R x M(A,R™) — M(A,R™),
defined by

(a-f)(x)=a- f(x) forallze A.
As usual, “4+” and “.” are overloaded: on the left they denote operations
on M(A,R™), while on the right they denote the operations on R™ de-
fined in section 2.1. Also as usual, the “” is generally omitted. The origin

in M(A,R™) is the zero mapping, 0 : A — R™, defined by
0(z) =0, forallze A

For example, to verify that M(A, R™) satisfies (A1), consider any functions
f,9,he M(A,R™). For any © € A,
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(f+9)+h)(z)=(f+9)(z) + h(x) by definition of “+” in M(A4,R™)
= (f(z) + g(z)) + h(z) by definition of “+” in M(A,R™)
= f(z) + (g(z) + h(z)) by associativity of “+” in R™
= f(z) + (g + h)(x) by definition of “+” in M(A4,R™)
=(f+(g+h)(z) by definition of “+” in M(4,R™).

Since z was arbitrary, (f +g) + h=f + (g + h).

Let A be a subset of R". A sequence in A is an infinite list of vectors
Z1, T2, T3, ... in A, often written {z,}. (The symbol n is already in use,
so its Greek counterpart y—pronounced nu—is used as the index-counter.)
Since a vector has n entries, each vector x, in the sequence takes the form
(Z1,0,--.,Znw). Convergence of vector sequences is defined as for scalar se-
quences.

Definition 2.3.1 (Sequence Convergence, Sequence Limit). Let A be
a subset of R™. Consider a sequence {z,} in A and a point a € R™. The
sequence {x,} converges to a (or has limit a), written {z,} — a, if for
every € > 0 there exists some vy such that

if v >y then |z, —a| <e.
When the limit a is a point of A, the sequence {z,} converges in A.

In particular, a null sequence in A is a sequence that converges to 0,,.
Since for any vector x € R",

|z = 0n| = |z = [|2] - 01,

it follows that a vector sequence {z,} is null if and only if the scalar sequence
{|z,|} is null.

Lemma 2.3.2 (Componentwise Nature of Nullness). The vector se-
quence {(Z1,p,...,%nw)} is null if and only if each of its component scalar
sequences {x;,} (j € {1,...,n}) is null.

Proof. By the preceding remark it suffices to show that {|(z1,b,...,Zn.)|}
is null if and only if each {|z;,|} is null. The Size Bounds give for any j €
{1,...,n} and any v,

n
|$j7V| S |($1,V7' - an,u)| S Z |$’i,l/|'
i=1

If {|(z1,0,---,%nw)|} is null, then by the first inequality so is each {|z;,|}.
On the other hand, if each {|z;,,|} is null then so is {>_; ; |#;, |}, and thus
by the second inequality {|(z1,s,...,Zn)|} is null as well. O
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Any sequence {z,} converges to a if and only if {z, — a} is null, so the
corollary is (exercise 2.3.5)

Proposition 2.3.3 (Componentwise Nature of Convergence). The vec-

tor sequence {(®1,,,...,%n,)} converges to the vector (a1, -..,a,) if and only
if each component scalar sequence {z;,} (j = 1,...,n) converges to the
scalar a;.

Vector versions of the Sum Rule and the Constant Multiple Rule for con-
vergent sequences follow immediately from their scalar counterparts and from
the componentwise nature of convergence.

Proposition 2.3.4 (Linearity of Convergence). Let {z,} be a sequence
in R™ converging to a, and let {y, } be a sequence in R™ converging to b. Let c
be a scalar. Then the sequence {x, +y,} converges to a+b, and the sequence
{czx,} converges to ca.

Continuity, like convergence, is typographically indistinguishable in R
and R".

Definition 2.3.5 (Continuity). Let A be a subset of R", let f : A— R™
be a mapping, and let a be a point of A. Then [ is continuous at a if for
every sequence {x,} in A converging to a, the sequence {f(x,)} converges
to f(a). The mapping f is continuous on A (or just continuous when A
is clearly established) if it is continuous at each point a € A.

For example, the modulus function
[ |:R®* —R

is continuous on R™. To see this, consider any point a € R™ and consider any
sequence {z,} in R™ that converges to a. We need to show that the sequence
{|z»|} in R converges to |a|. But by the full Triangle Inequality,

2| = lal | <[z, —al.

Since the right side is the vth term of a null sequence, so is the left, giving
the result.

For another example, let v € R™ be any fixed vector and consider the
function defined by taking the inner product of this vector with other vectors,

T:R" — R, T(z) = (v, z).

This function is also continuous on R™. To see this, again consider any a € R"
and any sequence {z,} in R™ converging to a. Then the definition of T, the
bilinearity of the inner product, and the Cauchy—Schwarz inequality combine
to show that

1T (zy) = T(a)| = [{v,2v) = (v,0)| = [{v,2, — a)| < |v[|z, —a].



2.3 Analysis: Continuous Mappings 37

Since |v| is a constant, the right side is the vth term of a null sequence,
hence so is the left, and the proof is complete. We will refer to this exam-
ple in section 3.1. Also, note that as a special case of this example, take
any j € {1,...,n}, and set the fixed vector v to e;. This shows that the jth
coordinate function map,

. n —
7 : R" — R, (21, .., 2Tn) = Tj,
is continuous.

Proposition 2.3.6 (Linearity of Continuity). Let A be a subset of R,
let f,g : A — R™ be continuous mappings, and let ¢ € R. Then the sum
and the scalar multiple mappings

f+g,cef:A—R™
are continuous.

This follows immediately from the Linearity of Convergence and from the
definition of continuity. Another consequence of the definition of continuity is

Proposition 2.3.7 (Persistence of Continuity Under Composition).
Let A be a subset of R™, and let f : A — R™ be a continuous mapping.
Let B be a superset of f(A) in R™, and let g : B — RY be a continuous
mapping. Then the composition mapping

gof:A—R!

s continuous.

Let A be a subset of R". Any mapping f : A — R™ decomposes as m
functions fy, ..., fm with each f; : A — R, by the formula

f@) = (fi(z), .-, fm(2))-
For example, if f(z,y) = (2> —y?, 2zy) then fi(z,y) = 2* —y* and fo(z,y) =
2zy. The decomposition of f can also be written

flz) = Z fi(z)es,

i=1

or equivalently, the functions f; are defined by the condition

filz) = f(z); fori=1,...,m.

Conversely, given m functions fi, ..., f,n, from A to R, any of the preceding
three displayed formulas assembles a mapping f : A — R™. Thus, each
mapping f determines and is determined by its component functions fi,
.+« fm- Conveniently, to check continuity of the vector-valued mapping f we
only need to check its scalar-valued component functions.
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Theorem 2.3.8 (Componentwise Nature of Continuity). Let A C R",
let f: A— R™ have component functions fi, ..., fm, and let a be a point
in A. Then

f is continuous ot a <= each f; is continuous at a.

This follows from the componentwise nature of convergence and is left as
exercise 2.3.6.

Let A be a subset of R"™, let f and g be continuous functions from A
to R, and let ¢ € R. Then the familiar Sum Rule, Constant Multiple Rule,
Product Rule, and Quotient Rule for continuous functions hold. That is, the
sum f + g, the constant multiple cf, the product fg, and the quotient f/g (at
points a € A such that g(a) # 0) are again continuous. The first two of these
facts are special cases of the Linearity of Continuity principle. The proofs of
the other two are typographically identical to their one-variable counterparts.
With the various continuity results so far in hand, it is clear that a function

such as
fR® R .y z)_sin(\/:c2+y2+z2)

- ezy+z

is continuous. The continuity of such functions, and of mappings with such
functions as their components, will go without comment from now on.

However, the continuity of functions of n variables also has new, subtle
features when n > 1. In R, a sequence {z, } can approach the point a in only
two essential ways: from the left and from the right. But in R™ where n > 2,
{z,} can approach a from infinitely many directions, or not approach along a
line at all, so the convergence of { f(z,)} can be trickier. For example, consider
the function f : R? — R defined by

_ |3 if (z,y) #0,
f@y) = { —li)_y if (z,y) =0.

Can the constant b be specified to make f continuous at 0?7
It can’t. Take a sequence {(z,,y,)} approaching 0 along the line y = mx
of slope m. For any point (z,,y,) of this sequence,

2z, mx, 2mx?

: 2m
Havyo) = f(@o,may) = 2 +m2z2  (1+m2)z2  1+m?2’

Thus, as {(z,, y»)} approaches 0 along the line of slope m, f(z,y) holds steady
at 2m/(1 +m?), and so f(0) needs to take this value for continuity. Taking
sequences {(z,,y,)} that approach 0 along lines of different slope shows that
7(0) needs to take different values for continuity, and hence f can not be made
continuous at 0. The graph of f away from 0 is a sort of spiral staircase, and
no height over 0 is compatible with all the stairs. (See figure 2.10. The figure
displays only the portion of the graph for slopes between 0 and 1 in the input
plane.)
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Figure 2.10. A spiral staircase

The last example was actually fairly simple in that we only needed to
study f(z,y) as (x,y) approached 0 along straight lines. Consider the function
g : R? — R defined by

2 .
sy = | @) 20,
’ b if (z,y) = 0.

For any nonzero slope m, take a sequence {(z,,y,)} approaching 0 along the
line y = mz. Compute that for each point of this sequence,

mxy Mz,

zt +m2z2 22 +m?’

9(zy,y,) = g9(x,,mz,) =

This quantity tends to 0 as z, goes to 0. That is, as {(z,,y,)} approaches 0
along the line of slope m, g(z,y) approaches 0, and so ¢g(0) needs to take
the value 0 for continuity. Since g is 0 at the nonzero points of either axis
in the (z,y)-plane, this requirement extends to the cases that {(z,,y,)} ap-
proaches 0 along a horizontal or vertical line. However, next consider a se-
quence {(z,,y,)} approaching 0 along the parabola y = z2. For each point of
this sequence,
_ 2y _ y 21
9(xv,yv) = g(zv, ;) = m 3
Thus, as {(z,,y,)} approaches 0 along the parabola, g(x,y) holds steady
at 1/2, and so ¢(0) needs to be 1/2 for continuity as well. This shows that g
can not be made continuous at 0, even though approaching 0 only along lines
suggests that it can.
Thus, given a function f : R? — R, letting {(z,,y,)} approach 0 along
lines can disprove continuity at 0, but it can only suggest continuity at 0, not
prove it. To prove continuity, the Size Bounds may be helpful. For example,

let s
% f ’ 0:
o) = {7 Ko ?
b if (z,y) = 0.
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Can b be specified to make h continuous at 07 The estimate |z| < |(z,y)]| gives
for any (z,y) # 0,

@y)P = @y~ 00
so as any sequence {(z,,y,)} of nonzero vectors converges to 0, the corre-
sponding sequence of outputs {h(z,,y,)} is squeezed to 0 in absolute value

and hence converges to 0. Setting b = 0 makes h continuous at 0.
Returning to the spiral staircase example,

f(@y) = {QT?/ if (z,y) # 0,

0 < |z, y)| =

b if (z,y) =0,
the Size Bounds show that that for any (x,y) # 0,

2allyl _ 2A@yP _,
(2, 9)1* — |(z,9)

This tells us only that as a sequence of inputs {(z,,y,)} approaches 0, the
sequence of outputs {f(z,,y,)} might converge to some limit between —2
and 2. The outputs needn’t converge to 0 (or converge at all), but according
to this diagnostic they possibly could. Thus the Size Bounds tell us only that
f could be discontinuous at (0,0), but they give no conclusive information.

In sum, these examples show that

0<|f(zy)l =

e The straight line test can prove that a limit does not exist, but it can only
suggest that a limit does exist.

e The Size Bounds can prove that a limit does exist, but they can only
suggest that a limit does not exist.

The next proposition is a handy encoding of an intuitively plausible prop-
erty of continuous mappings. The result is so natural that it often is tacitly
taken for granted, but it is worth stating and proving carefully.

Proposition 2.3.9 (Persistence of Inequality). Let A be a subset of R™
and let f : A — R™ be a continuous mapping. Let a be a point of A, let b be
a point of R™, and suppose that f(a) # b. Then there exists some € > 0 such
that

for all z € A such that |z — a| < e, f(z) #b.

Proof. Assume that the displayed statement in the proposition fails for ev-
ery € > 0. Then in particular it fails for e = 1/v for v = 1,2,3,... So there is
a sequence {z,} in A such that

|y, —a| <1/v and f(z,) =0, v=12,3,...

Since f is continuous at a, this condition shows that f(a) = b. But in fact
f(a) # b, and so our assumption that the displayed statement in the propo-
sition fails for every € > 0 leads to a contradiction. Therefore the statement
holds for some € > 0, as desired. O
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Exercises

2.3.1. For A C R", partially verify that M(A,R™) is a vector space over R
by showing that it satisfies vector space axioms (A4) and (D1).

2.3.2. Define multiplication * : M(A4,R) x M(4,R) — M(4,R). Is
M(A,R) a field with “+” from the section and this multiplication? Does
it have a subspace that is a field?

2.3.3. For A C R™ and m € Z™" define
C(A,R™)={f € M(AR™): f is continuous on A}.

What facts about continuous functions are needed to prove that C(4, R™) is
a vector space? Prove them.

2.3.4. Define an inner product and a modulus on C([0, 1], R) by

1
(fr9) = / FWet, £ =T .

How much of the material on inner product and modulus in R"™ carries over
to C([0,1],R)? Express the Cauchy—Schwarz inequality as a relation between
integrals.

2.3.5. Prove the componentwise nature of convergence.
2.3.6. Prove the componentwise nature of continuity.
2.3.7. Prove the persistence of continuity under composition.
2.3.8. Define f : Q — R by the rule
e 2
w={, Ens
Is f continuous on Q?

2.3.9. Which of the following functions on R? can be defined continuously

at 07
’ b if (z,y) =0,
2243 .
g(SU y) — w2+z2 if (may) 7£ Oa
’ b if (z,y) =0,
o) = [T @) #0,
’ b if (z,y) = 0,

2.3.10. Let k(z,y) = l(zy) where I : R — R is continuous. Is & continuous?

2.3.11. Let f,g € M(R™ R) be such that f + g and fg are continuous. Are
f and g necessarily continuous?
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2.4 Topology: Compact Sets and Continuity

The Extreme Value Theorem from one-variable calculus states: Let I be a
nonempty closed and bounded interval in R, and let f : I — R be a contin-
wous function. Then [ takes a minimum value and a mazximum value on I.
This section generalizes the theorem from scalars to vectors. That is, we want
aresult that if A is a set in R™ with certain properties, andif f : A — R™ is
a continuous mapping, then the output set f(A) will also have certain proper-
ties. The questions are, for what sorts of properties do such statements hold,
and when they hold, how do we prove them?

The one-variable theorem involves two pieces of data, the nonempty closed
and bounded interval I and the continuous function f. Each of these is de-
scribed in its own terms—I takes the form [a,b] where a < b, while the
continuity of f is an assertion about convergence of sequences. Because the
two data have differently-phrased descriptions, a proof of the Extreme Value
Theorem doesn’t suggest itself immediately; no ideas at hand bear obviously
on all the information. Thus the work of this section is not only to define the
sets to appear in the pending theorem, but also to describe them compatibly
with the sequential description of continuous mappings. The theorem itself
will then be easy to prove. Accordingly, most of the section will consist of
describing sets in two ways.

We begin with a little machinery to quantify the intuitive notion of near-
ness.

Definition 2.4.1 (e-ball). For any point a € R™ and any positive real num-
ber € > 0, the e-ball centered at a is the set

B(a,e)={z e R": |z —a| <e}.
(See figure 2.11.)

Figure 2.11. Balls in various dimensions

With e-balls it is easy to describe the points that are approached by a
set A.

Definition 2.4.2 (Limit Point). Let A be a subset of R™, and let a be a
point of R™. The point a is a limit point of A if every £-ball centered at a
contains some point x € A such that x # a.
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A limit point of A need not belong to A (exercise 2.4.2). On the other
hand, a point in A need not be a limit point of A (exercise 2.4.2 again); such
a point is called an isolated point of A. Equivalently, a is an isolated point
of Aif a € A and there exists some € > 0 such that B(a,e) N A = {a}. The
next lemma justifies the terminology of the previous definition: limit points
of A are precisely the (nontrivial) limits of sequences in A.

Lemma 2.4.3 (Sequential Characterization of Limit Points). Let A
be a subset of R™, and let a be a point of R™. Then a is the limit of a sequence
{z,} in A with each z, # a if and only if a is a limit point of A.

Proof. ( =) If a is the limit of sequence {z,} in A with each z, # a then
any e-ball about a contains an z, (in fact, infinitely many), so a is a limit
point of A.

( <) Conversely, if a is a limit point of A then B(a,1/2) contains some
z1 € A, 21 # a. Let g5 = |z1 — a|/2. The ball B(a,es) contains some x5 € A,
Z2 # a, and since |23 — a| < |z1 — a|/2, T2 # z1. Set €3 = |z2 — a|/2 and
continue defining a sequence {,} in this fashion with |z, —a| < 1/2" for
all v. This sequence converges to a and each z, # a. O

The lemma, shows that Definition 2.4.2 is more powerful than it appears—
every e-ball centered at a limit point of A contains not only one but infinitely
many points of A.

Definition 2.4.4 (Closed Set). A subset A of R™ is closed if it contains
all of its limit points.

For example, the x;-axis is closed as a subset of R™ since any point off
the axis is surrounded by a ball that misses the axis. The interval (0,1) is
not closed because it does not contain the limit points at its ends. These
examples illustrate the fact that with a little practice it becomes easy to
recognize quickly whether a set is closed. Loosely speaking, a set is closed
when it contains all the points that it seems to want to contain.

Proposition 2.4.5 (Sequential Characterization of Closed Sets). Let
A be a subset of R™. Then A is closed if and only if every sequence in A that
converges in R™ in fact converges in A.

Proof. ( => ) Suppose that A is closed, and let {z,} be a sequence in A
converging in R™ to a. If z, = a for some v then a € A since z, € A, and if
z, # a for all v then a is a limit point of A by “ = ” of Lemma 2.4.3, and
so a € A since A is closed.

( <= ) Conversely, suppose that every convergent sequence in A has its
limit in A. Then all limit points of A are in A by “ <= 7 of Lemma 2.4.3,
and so A is closed. O
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The proposition equates an easily recognizable condition that we can un-
derstand intuitively (a set being closed) with a technical condition that we
can use in further arguments (the sequential characterization).

Closed sets do not necessary have good properties under continuous map-
pings. So next we describe another property of sets, boundedness. This is again
an eagsily recognizable condition that also has a characterization in terms of
sequences. The sequential characterization will turn out to be complemen-
tary to the sequential characterization of closed sets, foreshadowing that the
properties of being closed and bounded will work well together.

Definition 2.4.6 (Bounded Set). The set A in R™ is bounded if A C
B(0,R) for some R > 0.

Thus a bounded set is enclosed in some finite “corral” centered at the
origin, possibly a very big one. For example, any ball B(p,¢), not necessar-
ily centered at the origin, is bounded, by a nice application of the Triangle
Inequality. On the other hand, the Archimedean property of the real number
system says that Z is an unbounded subset of R. The Size Bounds show that
any subset of R" is bounded if and only if the jth coordinates of its points
form a bounded subset of R for each j € {1,...,n}. The geometric content
of this statement is that a set sits inside a ball centered at the origin if and
only if it sits inside a box centered at the origin.

Blurring the distinction between a sequence and the set of its elements
allows the definition of boundedness to apply to sequences. That is, a sequence
{z,} is bounded if there is some R > 0 such that |z,| < R for all v € Z*.
The proof of the next fact in R™ is symbol-for-symbol the same as in R (or
in C), so it is only sketched.

Proposition 2.4.7 (Convergence Implies Boundedness). If the sequence
{z,} converges in R™ then it is bounded.

Proof. Let {z,} converge to a. Then there exists a starting index vo such that
z, € B(a,1) for all v > vy. Consider any real number R such that

R > max{|m1|, R |.Z’,,0|, |a| + 1}

Then clearly z,, € B(0, R) for v = 1, ..., 19, and the Triangle Inequality shows
that also z,, € B(0, R) for all v > vy. Thus {z,} C B(0, R) as a set. O

Definition 2.4.8 (Subsequence). A subsequence of the sequence {z,} is
a sequence consisting of some (possibly all) of the original terms, in ascending
order of indices.

Since a subsequence of {z, } consists of terms z, only for some values of v,
it is often written {z,, }, where now k is the index variable. For example, given
the sequence

{.'171,.’52,5173,1'4,235,---},
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a subsequence is
{$2; Z3,T5,L7,L11y- - }7

with v1 = 2, 9 = 3, v3 = 5, and generally v}, = the kth prime.

Lemma 2.4.9 (Persistence of Convergence). Let {z,} converge to a.
Then any subsequence {x,, } also converges to a.

Proof. The kth term of the subsequence is z,,. Given € > 0 there exists vy
such that k > v9p = |z — a| < . Since v > k for all k, also k > vy =
|z, —a| < €. Thus all terms of the subsequence past the vpth are within e
of a. O

The sequence property that characterizes bounded sets is called the
Bolzano—Weierstrass property. Once it is proved in R, the result follows
in R™ by arguing one component at a time.

Theorem 2.4.10 (Bolzano—Weierstrass Property in R). Let A be a
bounded subset of R. Then every sequence in A has a convergent subsequence.

Proof. Let {x,} be a sequence in A. Call a term z, of the sequence a max-
point if it is at least as big as all later terms, i.e., z, > z, for all p > v.
(For visual intuition, draw a graph plotting z, as a function of v, with line
segments connecting consecutive points. A max-point is a peak of the graph
at least as high as all points to its right.) If there are infinitely many max-
points in {z, } then these form a decreasing sequence. If there are only finitely
many max-points then {z,} has an increasing sequence starting after the
last max-point—this follows almost immediately from the definition of max-
point. In either case, {z, } has a monotonic subsequence which, being bounded,
converges because the real number system is complete. O

Theorem 2.4.11 (Bolzano—Weierstrass Property in R": Sequential
Characterization of Bounded Sets). Let A be a subset of R". Then A is
bounded if and only if every sequence in A has a subsequence that converges
m R™.

Proof. Suppose that A is bounded. Consider any sequence in A, written as
{(®1,0,---,Tny)}- The real sequence {z;,} takes values in a bounded sub-
set of R and thus has a convergent subsequence, {21,,, }. The subscripts are
getting out of hand, so keep only the vith terms of the original sequence
and relabel it. In other words, we may as well assume that the sequence of
first components, {z1,,}, converges. The real sequence of second components,
{z2,,}, in turn has a convergent subsequence, and by Lemma 2.4.9 the corre-
sponding subsequence of first components, {1, }, converges too. Relabeling
again, we may assume that {z1,} and {z2,} both converge. Continuing in
this fashion exhibits a subsequence that converges at each component.
Conversely, suppose that A is not bounded. Then there is a sequence {z, }
in A with |z,| > v for all v. This has no bounded subsequence, and hence it
has no convergent subsequence by Proposition 2.4.7. O
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Note how the sequential characterizations in Proposition 2.4.5 and in the
Bolzano—Weierstrass Property complement each other. The proposition char-
acterizes any closed set in R™ by the fact that if a sequence converges in the
ambient space then it converges in the set. The Bolzano—Weierstrass Property
characterizes any bounded set in R™ by the fact that every sequence in the
set has a subsequence that converges, but not necessarily in the set.

Definition 2.4.12 (Compact Set). A subset K of R™ is compact if it is
closed and bounded.

Since the notions of closed and bounded are reasonably intuitive, we can
usually recognize compact sets on sight. But it is not obvious from how com-
pact sets look that they are particularly useful objects in relation to continuity.
So the program now has two steps: first, combine Proposition 2.4.5 and the
Bolzano—Weierstrass property to characterize compact sets in terms of se-
quences, and second, use the characterization to prove that compactness is
preserved by continuous mappings.

Theorem 2.4.13 (Sequential Characterization of Compact Sets). Let
K be a subset of R™. Then K is compact if and only if every sequence in K
has a subsequence that converges in K.

Proof. (=) Suppose that K is compact and {z,} is a sequence in K. Then
K is bounded, so by “ => ” of the Bolzano—Weierstrass property {z,} has
a convergent subsequence. But K is also closed, so by “ = ” of Proposi-
tion 2.4.5, this subsequence converges in K.

( <= ) On the other hand, suppose that every sequence in K has a sub-
sequence that converges in K. Then in particular, every sequence in K that
converges in R"™ has a subsequence that converges in K. By Lemma 2.4.9 the
limit of the sequence is the limit of the subsequence, so the sequence con-
verges in K. That is, every sequence in K that converges in R" converges
in K. Thus K is closed by “ <= " of Proposition 2.4.5. Another consequence
of the assumption at the beginning of this paragraph is that every sequence
in K has a subsequence that converges in R™. Thus K is bounded by “ <=7
of the Bolzano—Weierstrass Property. O

The next theorem is the main result of this section. Now that all of the
objects involved are described in the common language of sequences, its proof
is natural.

Theorem 2.4.14 (The Continuous Image of a Compact Set is Com-
pact). Let K be a compact subset of R™ and let f : K — R™ be continuous.
Then f(K), the image set of K under f, is a compact subset of R™.

Proof. Let {y,} be any sequence in f(K); by ( <= ) of Theorem 2.4.13, it
suffices to exhibit a subsequence converging in f(K). Each y, has the form
f(z,), and this defines a sequence {z,} in K. By (=) of Theorem 2.4.13,
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since K is compact, {x, } necessarily has a subsequence {x,, } converging in K,
say to z. By the continuity of f at z, the sequence {f(z,, )} convergesin f(K)
to f(x). Since {f(z,,)} is a subsequence of {y, }, the proof is complete. O

Again, the sets in Theorem 2.4.14 are defined with no direct reference to
sequences, but the theorem is proved entirely by using sequences. The point
is that with the theorem proved, we can easily see that it applies in particular
contexts without having to think any more about the sequences that were
used to prove it.

A corollary of Theorem 2.4.14 generalizes the theorem that was quoted to
begin the section:

Theorem 2.4.15 (Extreme Value Theorem). Let K be a nonempty com-
pact subset of R™ and let the function f : K — R be continuous. Then f
takes a minimum and a mazimum value on K.

Proof. By Theorem 2.4.14, f(K) is a compact subset of R. As a nonempty
bounded subset of R, f(K) has a greatest lower bound and a least upper
bound by the completeness of the real number system. Each of these bounds
is an isolated point or a limit point of f(K), since otherwise some e-ball about
it would be disjoint from f(K), giving rise to greater lower bounds or lesser
upper bounds of f(K). Since f(K) is also closed it contains its limit points,
so in particular it contains its greatest lower bound and its least upper bound.
This means precisely that f takes a minimum and a maximum value on K.
O

Even when n = 1, Theorem 2.4.15 generalizes the Extreme Value Theorem
from the beginning of the section—in the theorem here, K can be a finite union
of closed and bounded intervals in R rather than only one interval.

A topological property of sets is a property that is preserved under continu-
ity. Theorem 2.4.14 says that compactness is a topological property. Neither
the property of being closed nor of being bounded is in itself topological. That
is, the continuous image of a closed set need not be closed, and the continuous
image of a bounded set need not be bounded; for that matter, the continuous
image of a closed set need not be bounded, and the continuous image of a
bounded set need not be closed (exercise 2.4.7).

Actually, the nomenclature continuous image in the slogan-title of Theo-
rem 2.4.14 and in the previous paragraph is inaccurate: the image of a map-
ping is a set, and the notion of a set being continuous doesn’t even make sense
according to our grammar. As stated correctly in the body of the theorem,
continuous image is short for image under a continuous mapping. The prop-
erty that students often have in mind when they call a set continuous is in
fact called connectedness. Loosely, a set is connected if it has only one piece,
so that a better approximating word from everyday language is contiguous.
Connectedness is rather technical to define carefully, and so we omit it since
it is not needed in this course. The remark after Theorem 2.4.15 points out
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that connectedness is not even needed for the one-variable Extreme Value
Theorem. However, it deserves passing mention that connectedness is also a
topological property: again using language loosely, the continuous image of a
connected set is connected. This generalizes another theorem that underlies
one-variable calculus, the Intermediate Value Theorem.

The ideas of this section readily extend to broader environments. The first
generalization of Euclidean space is a metric space, a set with a well-behaved
distance function. Even more general is a topological space, a set with some of
its subsets designated as closed. Continuous functions and compact sets can
be defined meaningfully in these environments, and the theorems remain the
same: the continuous image of a compact set is compact, and the continuous
image of a connected set is connected.

Exercises

2.4.1. Are the following subsets of R" closed, bounded, compact?

2) B(0,1),

b) {(-'L',y) € R2 : y—.Z’2 = 0}7

¢) {(z,y,2) e R® : 22 + y2 + 22 — 1 =0},

d) {z : f(z) = 0,,} where f € M(R",R™) is continuous (this generalizes

(e) Q™ where Q denotes the rational numbers,
®) {(z1,..-,2n) 31 + -+ x5 > 0}

2.4.2. Give a set A C R™ and limit point b of A such that b ¢ A. Give a set
A C R"™ and a point a € A such that a is not a limit point of A.

2.4.3. Let A be a closed subset of R™ and let f € M(A,R™). Define the
graph of f to be

G(f) ={(a, f(a)) : a € A},

a subset of R™"t™. Show that if f is continuous then its graph is closed.

2.4.4. Prove the closed set properties: (1) The empty set () and the full space
R™ are closed subsets of R™, (2) any intersection of closed sets is closed, (3)
any finite union of closed sets is closed.

2.4.5. Prove that any ball B(p,¢) is bounded in R™.

2.4.6. Show that A is a bounded subset of R™ if and only if for each j €
{1,...,n}, the jth coordinates of its points form a bounded subset of R.

2.4.7. Show by example that the continuous image of a closed set need not
be closed, that the continuous image of a closed set need not be bounded,
that the continuous image of a bounded set need not be closed, and that the
continuous image of a bounded set need not be bounded.
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2.4.8. A subset A of R™ is called discrete if each of its points is isolated.
(Recall that the term “isolated” was defined in the section.) Show or take
for granted the (perhaps surprising at first) fact that every mapping whose
domain is discrete must be continuous. Is discreteness a topological property?
That is, need the continuous image of a discrete set be discrete?

2.4.9. A subset A of R" is called path-connected if for any two points
x,y € A, there is a continuous mapping

v:[0,1] — A

such that v(0) = z and (1) = y. (This ~ is the path that connects z and y.)
Draw a picture to illustrate the definition of a path-connected set. Prove that
path-connectedness is a topological property.

2.5 Review of the One-Variable Derivative

The limit of a sequence was introduced in Definition 2.3.1. The limit of a
mapping will now be defined as the common limit of all suitable sequences, if
this common sequence limit exists. Recall from Definition 2.4.2 that a point
a is a limit point of a set A if every e-ball centered at a contains some point
z € A such that z # a. A limit point of A may or may not be a point of A.
Also recall from Lemma 2.4.3 that a point a is a limit point of a set A if and
only if a is the limit of a sequence {z,} in A with each z, # a.

Definition 2.5.1 (Function Limit). Let A be a subset of R™, let f : A —
R™ be a mapping, and let a be a limit point of A. Let £ be a point of R™.
Then f has limit / as = approaches a, written

li =

lim f(z) = ¢,

if for every sequence {z,} in A with each x, # a such that {z,} converges
to a, the corresponding output sequence {f(x,)} converges to £.

Thus the notion of lim,_,, f(x) makes no reference to f(a) (which may
not even be defined), but only to values f(z) for z near a.

The Sum Rule and the Constant Multiple Rule for sequence limits give
rise to the same rules for mapping limits as well, but there is one technical
issue. The Sum Rule seems obvious,

lim (f(z) + g(2)) = lim f(z) + lim g(z),
where f : A — R™ and a is a limit point of A, and g: B — R™ and a is a

limit point of B. But one needs to observe that the domain of f + g is AN B,
and so the limit on the left can not exist unless the limit point a of A and
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of B is also a limit point of the smaller set AN B. For example, the functions
vz and \/—z have the respective domains [0, o) and (—o0, 0], and

lim v/z = lim v—z =0,
z—0 z—0

but the function \/z + v/—2z has the domain [0, 00) N (—o00,0] = {0}, and 0 is
not a limit point of this set, so therefore

lir%(ﬁ + v/—x) does not exist.
z—>

This should be clear in light of the sentence immediately after Definition 2.5.1.
Returning to the general Sum Rule for mappings, other than this additional
detail to check, it follows from its counterpart for sequences. The Constant
Multiple Rule for mappings follows from its counterpart for sequences with-
out any additional technical considerations, since any constant multiple of a
mapping has the same domain as the original mapping.

Let A C R™ be a set and let a € R™ be a point. A mapping f: A — R™
is null at a if lim,_,, f(x) = 0,,. Thus if f is null at a then a must be a limit
point of A. Formulating the Sum Rule and the Constant Multiple Rule for
null mappings is left to you (exercise 2.5.1).

The notions of limit and continuity are closely related for mappings, but
again with a small technical issue present. The proof of the following propo-
sition is exercise 2.5.2.

Proposition 2.5.2 (Continuity in Terms of Function Limits). Let A be
a subset of R™, and let a be a point of A, and let f : A — R™ be a mapping.
Suppose that a is a limit point of A. Then f is continuous at a if and only
if limy_,, f(x) exists and is equal to f(a).
Suppose that a is not a limit point of A. Then f is continuous at a.

A careful discussion of the derivative is surprisingly technical even for
functions of one variable. The one-variable derivative is defined as a limit of a
difference quotient function. Usually the underlying assumptions, which can
easily get lost, are that f is a function from some interval I C R to R and that
a is a point of T but not an endpoint. (Some authors allow differentiation at
endpoints, but then the derivative can exist and be nonzero at an extremum of
the function.) The difference quotient function is defined at all points except 0
of the interval J obtained by translating I by —a, moving a to 0,

fla+h) - f(a)

A .
Thus 0 is a limit point of the domain of g (though not a point of the domain
of g), so that according to Definition 2.5.1, lim;,_,q g(h) might exist. When it
does, the derivative of f at a is this function limit,

f'(a) = ’lLiL%g(h) = lim w

9:J—{0} — R, g(h)=

In sum, the derivative of f at a is
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e 3 limit of a different function g, the difference quotient function whose
domain is obtained by translating and puncturing the domain of f,

e the limit being taken at the limit point 0 of the domain of g, which is not
in the domain of g,

e and the function limit being defined as the common value of output-
sequence limits over all input-sequences that approach but do not reach 0,
if this common value of output-sequence limits exists.

If you found the definition of the derivative in Mathematics 111 or 112 diffi-
cult to digest, it may be because all of these ideas had to be covered under
intense time pressure in the midst of everything else that was happening in
those courses, and because the very process of getting all the ideas into play
necessarily rendered their presentation diffuse.

However, the author of these notes does not know any useful way to sim-
plify the setup without waving his hands. One can study an alternate differ-
ence quotient function g(z) = (f(z) — f(a))/(x — a) instead and thus avoid
translating the domain of f to place the puncture-point at 0, but this is not
not a good idea: in the definition of multivariable derivative to be introduced
in chapter 4, translating the situation to the origin will clarify rather than
complicate it. Also, one can define the limit of a function without reference
to sequence-limits: this is the so-called “epsilon—delta” definition rather than
our “epsilon—v.” For example, the formulation of the completeness of the real
number system as a set-bound criterion in Theorem 1.1.5 makes no reference
to sequences, and if continuity of mappings is defined in epsilon—delta lan-
guage then the Persistence of Inequality principle, which was a small nuisance
to prove, becomes true by definition. However, eschewing sequences and bas-
ing all of the ideas in play here on an epsilon—delta formulation of limit makes
other parts of the material harder. In particular, proving that compactness is a
topological property without using the sequential characterization of compact
sets requires considerable subtlety.

Exercises

2.5.1. Carefully state and prove the Sum Rule and the Constant Multiple
Rule for mappings and then for null mappings.

2.5.2. Prove Proposition 2.5.2.

2.6 Summary

Along with introducing Euclidean space and its properties, this chapter is
meant to provide a quick review of some ideas from one-variable calculus
while generalizing them to higher dimension. This chapter has also empha-
sized working with vectors intrinsically rather than using coordinates. The
multivariable Extreme Value Theorem will play a crucial role in our proof of
the Inverse Function Theorem in chapter 5.






3

Linear Mappings and Their Matrices

The basic idea of differential calculus is to approximate smooth-but-curved
objects in the small by straight ones. To prepare for doing so, this chapter
studies the multivariable analogues of lines. With one variable, lines are easily
manipulated by explicit formulas (e.g., the point—slope form is y = mz + b),
but with many variables we want to use the language of mappings. Section 3.1
gives an algebraic description of “straight” mappings, the linear mappings,
proceeding from an intrinsic definition to a description in coordinates. Each
linear mapping is described by a box of numbers called a matriz, so section 3.2
derives mechanical matrix manipulations corresponding to the natural ideas
of adding, scaling, and composing linear mappings. Section 3.3 discusses in
matrix terms the question of whether a linear mapping has an inverse, i.e.,
whether there is a second linear mapping such that each undoes the other’s
effect. Section 3.5 discusses the determinant, an elaborate matrix-to-scalar
function that extracts from a linear mapping a single number with remarkable
properties:

e (Linear Invertibility Theorem) The mapping is invertible if and only if the
determinant is nonzero.

e An explicit formula for the inverse of an invertible linear mapping can be
written using the determinant (section 3.7).

e The factor by which the mapping magnifies volume is the absolute value
of the determinant (section 3.8).

e The mapping preserves or reverses orientation according to the sign of the
determinant (section 3.9). Here orientation is an algebraic generalization of
clockwise versus counterclockwise in the plane and of right-handed versus
left-handed in space.

Finally, section 3.10 defines the cross product (a vector-by-vector multiplica-
tion special to three dimensions) and uses it to derive formulas for lines and
planes in space.
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3.1 Linear Mappings

The simplest interesting mappings from R"™ to R™ are those whose output is
proportional to their input, the linear mappings. Proportionality means that
a linear mapping should take a sum of inputs to the corresponding sum of
outputs,

Tx+y)=T(x)+T(y) foralz,yeR", (3.1)

and a linear mapping should take a scaled input to the correspondingly scaled
output,
T(az) =aT(z) forallaeR,zeR". (3.2)

(Here we use the symbol a because a will be used heavily in other ways during
this chapter.) More formally,

Definition 3.1.1 (Linear Mapping). The mapping T : R® — R™ s

linear if
k k
T <Z Cbﬂ),') = ZO[,T(.TL‘»L)
=1 =1

for all positive integers k, all real numbers oy through ay, and all vectors
through xy,.

The reader may find this definition discomfiting. It does not say what form
a linear mapping takes, and this raises some immediate questions. How are we
to recognize linear mappings when we encounter them? Or are we supposed to
think about them without knowing what they look like? For that matter, are
there even any linear mappings to encounter? Another troublesome aspect of
Definition 3.1.1 is semantic: despite the geometric sound of the word “linear,”
the definition is in fact algebraic, describing how T behaves with respect to
the algebraic operations of vector addition and scalar multiplication. (Note
that on the left of the equality in the definition, the operations are set in R",
while on the right they are in R™.) So what is the connection between the
definition and actual lines? Finally, how exactly do conditions (3.1) and (3.2)
relate to the condition in the definition?

On the other hand, Definition 3.1.1 has the virtue of illustrating the prin-
ciple that to do mathematics effectively we should characterize our objects
rather than construct them. The characterizations are admittedly guided by
hindsight, but there is nothing wrong with that. Definition 3.1.1 says how a
linear mapping behaves. It says that whatever form linear mappings will turn
out to take, our reflex should be to think of them as mappings through which
we can pass sums and constants. The definition tells us how to use linear
mappings once we know what they are. Another virtue of Definition 3.1.1 is
that it is intrinsic, making no reference to coordinates.

Some of the questions raised by Definition 3.1.1 have quick answers. The
connection between the definition and actual lines will quickly emerge from our
pending investigations. Also, an induction argument shows that (3.1) and (3.2)
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are equivalent to the characterization in the definition, despite appearing
weaker (exercise 3.1.1). Thus, to verify that a mapping is linear, we only need
to show that it satisfies the easier-to-check conditions (3.1) and (3.2); but to
derive properties of mappings that are known to be linear, we may want to
use the more powerful condition in the definition. As for finding linear map-
pings, the definition suggests a two-step strategy: first, derive the form that
a linear mapping necessarily takes in consequence of satisfying the definition;
and second, verify that the mappings of that form are indeed linear, i.e., show
that the necessary form of a linear mapping is also sufficient for a mapping
to be linear. We now turn to this.

The easiest case to study is linear mappings from R to R. Following the
program, first we assume that we have such a mapping and determine its
form, obtaining the mappings that are candidates to be linear. Second we
show that all the candidates are indeed linear mappings. Thus suppose that
some mapping 7 : R — R is linear. The map determines a scalar, a = T'(1).
And then for any z € R,

T(z)=T(x-1) sincez-1==z
=zT(1) by (3.1)
=za by definition of a

=azx since multiplication in R commutes.

Thus, T is simply multiplication by a, where a = T'(1). But to reiterate, this
calculation does not show that any mapping is linear, it shows only what form
a mapping must necessarily have once it is already known to be linear. We
don’t yet know that any linear mappings exist at all.

So the next thing to do is show that conversely any mapping of the derived
form is indeed linear—the necessary condition is also sufficient. Fix a real
number a and define a mapping 7' : R — R by T'(z) = az. Then the claim
is that T is linear and T'(1) = a. Let’s partially show this by verifying that T
satisfies (3.2). For any a € R and any = € R,

T(az) = aax by definition of T
= aax since multiplication in R commutes
=aT(z) by definition of T,

as needed. You can check (3.1) similarly, and the calculation that T'(1) = a is
immediate. These last two paragraphs combine to show

Proposition 3.1.2 (Description of Linear Mappings from Scalars to
Scalars). The linear mappings T : R — R are precisely the mappings

T(z) = ax

where a € R. That is, each linear mapping T : R — R is multiplication by
a unique a € R and conversely.
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This explains the term “linear”: the graphs of linear mappings from R to R
are lines through the origin. (Mappings f(x) = ax+b with b # 0 are not linear
according to our definition even though their graphs are also lines. However,
see exercises 3.1.14 and 3.2.5.) For example, a typical linear mapping from R
to R is T'(z) = (1/2)z. Figure 3.1 shows two ways of visualizing this mapping.
The left half of the figure plots the domain axis and the codomain axis in one
plane, orthogonally to each other, the familiar way to graph a function. The
right half of the figure plots the axes separately, using the spacing of the dots
to describe the mapping instead. The uniform spacing along the rightmost
axis depicts the fact that T'(z) = zT'(1) for all z € Z, and the spacing is half
as big because the multiplying factor is 1/2. Figures of this second sort can
generalize up to three dimensions of input and three dimensions of output,
whereas figures of the first sort can display at most three dimensions of input
and output combined.

T(z)

Figure 3.1. A linear mapping from R to R

Next consider a linear mapping T : R™ — R. Recall the standard basis
of R™,
{e1,...,en} ={(1,0,...,0), ..., (0,0,...,1)}.

Take the n real numbers
ay=T(er), ..., an=T(en),

and define the vector a = (ai,...,a,) € R". Any = € R" can be written

n
m:(xl,...,mn)zg z;e;, each z; € R.

i=1

(So here each z; is a scalar entry of the vector z, whereas in Definition 3.1.1,
each z; was itself a vector. The author does not know any graceful way to
avoid this notation collision, the systematic use of boldface or arrows to adorn
vector names being heavyhanded, and the systematic use of the Greek letter
& rather than its Roman counterpart z to denote scalars being alien. Since
mathematics involves finitely many symbols and infinitely many ideas, the
reader will in any case eventually need the skill of discerning meaning from
context, a skill that may as well start receiving practice now.) Returning to
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the main discussion, since z = Z?:l zie. and T is linear, Definition 3.1.1
shows that

T(x)=T (i wiei> = ixiT(ei) = i:ciai = (z,a) = (a, ).

Again, the only possibility for the linear mapping is multiplication (but
this time in the sense of inner product) by an element a, where now a =
(T'(e1),.--,T(en)), but we don’t yet know that such a mapping is linear.

However, fix a vector a = (ay,...,a,) and define the corresponding mapping
T:R"™ — R by T'(z) = (a, ). Then it is straightforward to show that indeed
T is linear and T'(e;) = a; for j =1,...,n (exercise 3.1.3). This shows

Proposition 3.1.3 (Description of Linear Mappings from Vectors to
Scalars). The linear mappings T : R™ — R are precisely the mappings

T(z) = (a,z)

where a € R™. That is, each linear mapping T : R™ — R is multiplication
by a unique a € R™ and conversely.

In light of this proposition, you should be able to recognize linear mappings
from R™ to R on sight. For example, the mapping T : R?> — R given
by T(z,y,2) = mx + ey + /22 is linear, being multiplication by the vector
(m,e,V/2).

In the previous chapter, the second example after Definition 2.3.5 showed
that every linear mapping 7' : R® — R is continuous. You are encouraged to
reread that example now before continuing. (Warning: the fixed vector a here
is denoted v in the example, since in the context of the example the symbol a
is reserved for another purpose.)

A depiction of a linear mapping from R? to R can again plot the domain
plane and the codomain axis orthogonally to each other or separately. See
figures 3.2 and 3.3 for examples of each type of plot. The first figure suggests
that the graph forms a plane in R? and that a line of inputs is taken to
the output value 0. The second figure shows more clearly how the mapping
compresses the plane into the line. As in the right half of figure 3.1, the idea
is that T'(z,y) = 2T'(1,0) + yT(0,1) for all z,y € Z. The compression is that
although (1,0) and (0, 1) lie on separate input axes, T'(1,0) and 7'(0,1) lie on
the same output axis.

The most general mapping is 7' : R™ — R™. This decomposes as T =
(T1,...,T,) where each T; : R® — R is the ith component function of T'.
The next proposition reduces the linearity of such T to the linearity of its
components T;, which we already understand.

Proposition 3.1.4 (Componentwise Nature of Linearity). The vector-
valued mapping T = (T1,...,Tn) : R® — R™ is linear if and only if each
scalar-valued component function T; : R™ — R is linear.
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=

Figure 3.2. The graph of a linear mapping from R? to R

Figure 3.3. Second depiction of a linear mapping from R? to R

Proof. For any z,y € R",

and

T@) +T@y) = (Ti(2),-...Tm(@) + (1), Tm(y))
= (Tl(m) +T1(y)7 [ERX Tm(m) +Tm(y))-

But T satisfies (3.1) exactly when the left sides are equal, the left sides are
equal exactly when the right sides are equal, and the right sides are equal
exactly when each T; satisfies (3.1). A similar argument with (3.2), left as
exercise 3.1.5, completes the proof. O

The componentwise nature of linearity combines with the fact that scalar-
valued linear mappings are continuous (as observed after Proposition 3.1.3)
and with the componentwise nature of continuity to show that all linear map-
pings are continuous. Despite being so easy to prove, this fact deserves a
prominent statement.

Theorem 3.1.5 (Linear Mappings are Continuous). Let the mapping
T :R™ — R™ be linear. Then T is continuous.



3.1 Linear Mappings 59

By the previous proposition, a mapping T : R® — R™ is linear if and
only if each T; determines n real numbers a;1, . . ., a;,. Putting all mn numbers
a;; into a box with m rows and n columns gives a matrix

ai1 ai2 *°* Qin
a21 Q22 -+* G2p

A=| . | . (33)
Am1 Am?2 " Omn

whose ith row is the vector determined by T;, and whose (¢, )th entry (this
means ¢th row, jth column) is thus given by

a5 = TZ(GJ) (34)

Sometimes one saves writing by abbreviating the right side of (3.3) to [asj]mxn.
or even just [a;;] when m and n are firmly established.

The set of all m-by-n matrices (those with m rows and n columns) of
real numbers is denoted My, ,(R). The n-by-n square matrices are denoted
M, (R). Euclidean space R" is often identified with M, (R) and vectors
written as columns,

Z1

(@155 0) =
Tn

This typographical convention may look odd, but it is useful. The idea is that
a vector in parentheses is merely an ordered list of entries, not inherently a
row or a column; but when a vector—or, more generally, a matrix—is enclosed
by square brackets, the distinction between rows and columns is significant.

To make the linear mapping 7' : R® — R™ be multiplication by its
matrix A € My, ,(R), we need to define multiplication of an m-by-n matrix A
by an n-by-1 vector z appropriately. The result must be an m-by-1 vector
whose ith entry is the inner product of A’s ith row and x. Thus,

Definition 3.1.6 (Matrix-by-Vector Multiplication). Let A € M,, ,,(R)
and let x € R™. Then the product Ax € R™ is defined as

Z1
aip aig *-c ot Q1n T 1121+ + A1 Ty
a1 Q22 == - Qa2n . a1 1 + -+ a2, Ty
xTr = . =
Aml Am2 """ " Amn : Am1Z1 + - -+ Ty
Tn

In summation form this says,

A Zm]ej (Z azk$k>
7 1

i=1 i=
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For example,

7

123 gl = 1-7+2-843-9| |50
456 9 T |4-7T+5-84+6-9| |122|°

Definition 3.1.6 gives the following theorem, which encompasses Proposi-
tions 3.1.2 and 3.1.3 as special cases.

Theorem 3.1.7 (Description of Linear Mappings from Vectors to
Vectors). The linear mappings T : R™ — R™ are precisely the mappings

T(z) = Az

where A € My, n(R). That is, each linear mapping T : R™ — R™ is multi-
plication by a unique A € My, »,(R) and conversely.

The columns of a matrix A, like the rows, have a description in terms of
the corresponding mapping 7'. To see this, observe that the jth column is

ay; T (e;)

Ay T (ej)

Thus, the ith row of A describes the ith component function T; of T and the
Jjth column of A gives the value of T on the jth standard basis vector e;.

For an example of using this last principle, consider the mapping r :
R? — R? given by rotating the plane counterclockwise through an angle
of 7/6. It is geometrically evident that r is linear: rotating the parallelo-
gram P with sides z; and z» (and thus with diagonal z; + z3) by 7/6 yields
the parallelogram r(P) with sides r(z1) and r(x2), so the diagonal of r(P) is
equal to both r(x; + z2) and 7(z1) + r(x=2). This shows that r satisfies (3.1).
The geometric verification of (3.2) is similar. (See figure 3.4.)

r(z1 + 32) = r(z1) + r(z2)
1 + T2

T2 T(.Z'z) r(a:l)

T1

Figure 3.4. The rotation mapping is linear
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To find the matrix of 7, simply note that

r(er) = r(1,0) = [‘{%2] . res) =r(0,1) = [\_/%g] ,

and these are the columns of r’s matrix,

-

This matrix A explicitly describes r.

- (B3]

N
2 Y7937

5o+ %y

Figures 3.5 through 3.8 show more depictions of linear mappings between
spaces of various dimensions. Note that although these mappings stretch and

61

Tx—%y]:(ﬁw LI +?y>

torque their basic input grids, the grids still get taken to configurations of

straight lines. Contrast this to how the nonlinear mapping of figure 2.9 bent

the basic grid lines into curves.

i

Figure 3.5. A linear mapping from R to R?

Figure 3.6. A linear mapping from R? to R?2

We end this section by returning from calculations to intrinsic methods.
The following result could have been come immediately after Definition 3.1.1,
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Figure 3.8. A linear mapping from R3 to R?2

but it has been deferred to this point in order to present some of the objects
involved more explicitly first, to make them familiar. However, it is most easily
proved abstractly.

Let L(R™,R™) denote the set of all linear mappings from R™ to R™. This
set not only sits inside the vector space M(R™, R™), it is a vector space in
its own right:

Proposition 3.1.8 (C(R",R™) Forms a Vector Space). Suppose that
S, T:R"™ — R™ are linear and that a € R. Then the mappings

S+T,aS:R" — R™

are also linear. Consequently, the set of linear mappings from R™ to R™ forms
a vector space.

Proof. The mappings S and T satisfy (3.1) and (3.2). We must show that
S+ T and aS do the same. Compute for any z,y € R",
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(S+T) (= +y)
=S@+y)+T(x+y) by definition of “+” in M(R",R™)
=8(z)+S(y) +T(z) +T(y) since S and T satisfy (3.1)
=S(z)+T(x)+S(y)+T(y) since addition in R™ commutes

=S +T)(x)+(S+T)(y) by definition of “+” in M(R",R™).

This shows that S + T satisfies (3.1). The other three statements about S+ T'
and aS satisfying (3.1) and (3.2) are similar and left as exercise 3.1.12. Once
those are established, the rest of the vector space axioms in L(R"™,R™) are
readily seen to be inherited from M(R"™, R™). 0

Also, linearity is preserved under composition. That is, if S : R® — R™
and T : R?P — R™ are linear then sois SoT : R? — R™ (exercise 3.1.13).

Exercises

3.1.1. Prove that T : R® — R™ is linear if and only if it satisfies (3.1)
and (3.2). (It may help to rewrite (3.1) with the symbols z1 and z» in place
of z and y. Then prove one direction by showing that (3.1) and (3.2) are
implied by the defining condition for linearity, and prove the other direction
by using induction to show that (3.1) and (3.2) imply the defining condition.
Note that as pointed out in the text, one direction of this argument has a bit
more substance than the other.)

3.1.2. Suppose that T' : R® — R™ is linear. Show that T'(0,,) = 0,,. (An
intrinsic argument is nicer.)

3.1.3. Fix a vector a € R™. Show that the mapping 7" : R® — R given by
T'(z) = (a,z) is linear, and that T'(e;) = a; for j =1,...,n.

3.1.4. Find the linear mapping T : R®> — R such that 7(0,1,1) = 1,
T(1,0,1) = 2, and T(1,1,0) = 3.

3.1.5. Complete the proof of the componentwise nature of linearity.

3.1.6. Carry out the matrix-by-vector multiplications

100] 1 ab ! 1-1 0] 1
110| |2, |ed [“’] [e1 ... 2] | |, 0 1-1| |1
111] |3 ef " -1 0 1] [1

3.1.7. Prove that the identity mapping ¢d : R® — R" is linear. What is its
matrix? Explain.

3.1.8. Let 6 denote a fixed but generic angle. Argue geometrically that the
mapping R : R? — R? given by counterclockwise rotation by 8 is linear, and
then find its matrix.
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3.1.9. Show that the mapping Q : R?> — R? given by reflection through the
x-axis is linear. Find its matrix.

3.1.10. Show that the mapping P : R? — R? given by orthogonal projection
onto the diagonal line x = y is linear. Find its matrix. (See exercise 2.2.15.)

3.1.11. Draw the graph of a generic linear mapping from R? to R3.

3.1.12. Continue the proof of Proposition 3.1.8 by proving the other three
statements about S + T and aS satisfying (3.1) and (3.2).

3.1.13.If S € L(R",R™) and T € L(R?,R"), show that SoT : R» — R™
lies in L(RP?,R™).

3.1.14. A mapping f : R®™ — R™ is called affine if it has the form f(z) =
T(z) + b where T € L(R™,R™) and b € R™. State precisely and prove: the
composition of affine mappings is affine.

3.1.15. Let T : R® — R™ be a linear mapping. Note that since 7" is continu-
ous and since the absolute value function on R™ is continuous, the composite
function

T :R*" — R

is continuous.

(a) Let B = {z € R" : |z| = 1}. Explain why B is a compact subset of R™.
Explain why it follows that |T'| takes a maximum value K on B.

(b) Show that |T'(z)|] < K|z| for all x € R™. This result is the Linear
Magnification Boundedness Lemma. We will use it in chapter 4.

3.1.16. Let T : R® — R™ be a linear mapping.

(a) Explain why the set D = {z € R™ : |z| = 1} is compact.

(b) Use part (a) of this exercise and part (b) of the preceding exercise
to explain why therefore the set {|T(z)| : € D} has a maximum. This
maximum is called the norm of T and is denoted ||T||.

(c) Explain why ||T]| is the smallest value K that satisfies the displayed
condition in part (a) of the preceding exercise. (On the other hand, ||T’|| has
come to us abstractly while the value of K in the previous exercise is easy to
compute.)

(d) Show that for any S,T € L(R™,R™) and any a € R,

IS+ T <[IS][+||IT|| and [laT'|| = |a] [|T']]-
Define a distance function
d: LR™",R™) x LAR",R™) — R, d(S,T)=|T- 9|

Show that this function satisfies the distance properties of Theorem 2.2.8.
(e) Show that for any S € L(R™,R™) and any T € L(R?,R"),

ISTI < IS]IIT]-
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3.2 Operations on Matrices

Having described abstract objects, the linear mappings T' € L(R",R™), with
explicit ones, the matrices A € My, »,(R) with (¢, j)th entry a;; = Ti(e;), we
naturally want to study linear mappings via their matrices. The first step
is to develop rules for matrix manipulation corresponding to operations on
mappings. Thus if 5,7 : R™ — R" are linear mappings with matrices A =
[a;;] and B = [b;;], and if @ is a real number, then the matrices for the linear
mappings

S+T, aS
naturally should be denoted
A+ B, aA.
So “+” and “” (or juxtaposition) are about to acquire new meanings yet
again,
+ : Mpmn(R) X My n(R) — My n(R)
and

SR X My n(R) — My o (R).
This is straightforward enough. To define the sum, fix ¢ between 1 and m, and
J between 1 and n. Then S;(e;) = a;; and Tj(e;) = byj; the (4, j)th entry of
A + B should be
(S+T)i(ej) =((S+T)(e;)); by definition of component function
= (S(ej) +T(ej)); by definition of addition in L(R",R™)
= S(e;)i + T(e;); by definition of addition in R™
= Si(ej) + Ti(e;) by definition of component function
= aij + bij.
Thus, the natural definition for matrix addition is

Definition 3.2.1 (Matrix Addition).

IfA = [a,'j]m)(n and B = [b,‘j]mx” then A+ B = [a,‘j + bij]an.

il [ 20 =55

A similar argument shows that the appropriate definition to make for scalar
multiplication of matrices is

For example,

Definition 3.2.2 (Scalar-by-Matrix Multplication).

Ifa € R and A = [aijlmxn then aA = [aaij]lmxn-
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S[12] _[24
34| |68
The zero matrix 0,,, € My, ,(R), corresponding to the zero mapping in

L(R™,R™), is the obvious one, with all entries 0. The operations in M, ,(R)
precisely mirror those in L(R™,R™), so

Proposition 3.2.3 (M,, ,(R) Forms a Vector Space). The set M,, ,,(R)
of m-by-n matrices forms a vector space over R.

For example,

The remaining important operation on linear mappings is composition.
As shown in exercise 3.1.13,if S : R — R™ and T : R? — R" are
linear then S o7 : R? — R™ is linear as well. Suppose that S has matrix
A € My, »(R) and T has matrix B € M, ,(R). Then S o T has a matrix
in M, p(R) that is naturally defined as the matrix-by-matrix product AB,
the order of multiplication being chosen for consistency with the composition.
Under this specification, the (4, j)th entry of AB must be

(AB);; = (SoT)(ej) since AB is the matrix of SoT
since S; o T is the ith component function
—(S: 0 T)(es
(S0 T)(ey) o
= S;(T'(e;)) by definition of composition

n
=5 (Z Tk(ej)ek> decomposing T'(e;) into its components
k=1

n
=35; (Z bkj@k) since B is the matrix of T
k=1

n
= E bkjSi(ek) since Si is linear
k=1
n
= E brjaik since A is the matrix of S
k=1
n
= E aikbr;j since multiplication in R commutes.
k=1

So matrix-by-matrix multiplication is specified by
Definition 3.2.4 (Matrix Multiplication).

If A =[aijlmxn and B = [bij]nxp then AB =

Z Qi bkj]
k=1

In words, to multiply A by B, A must have as many columns as B has rows,
in which case the (i,j)th entry of AB is the inner product of the ith row of A
and the jth column of B.

mxp



3.2 Operations on Matrices 67

Note that when B has only one column, this reduces to the matrix-by-
vector multiplication from the previous section.
For example, consider the matrices

1-2
123 45
S S
456 3_4 67
111 T
D= (011}, E:[abc], F=\y
001 z
Some products among these (verify!) are
-8 -9
14 —20 136
AB:[ ], BC = |-10 -11{, AD:[ ];
32 —47 _12-13 4915
6 -9 az br cx
. _ | Tz+2y+32 .
DB = |5-T7], AF_[4m+5y+6z]’ FE = |ay by cy|,
3—4 az bz cz

EF =ax+by+cz.

Matrix multiplication is not commutative. Indeed, when the product AB
is defined, the product BA may not be, or it may be but have different dimen-
sions from AB; cf. EF and FE above. Even when A and B are both n-by-n,
so that AB and BA are likewise n-by-n, the products need not agree. For

example,
[01] [00]:[10] [00] [01]2[00]
00| (10 00}’ 10[]00 01"
Of particular interest is the matrix associated to the identity mapping,
id:R" — R", id(z) = z.

Naturally, this matrix is denoted the identity matrix; it is written I,,. Since
idi(ej) = (si]’,

10...0
01...0
00...1

Although matrix multiplication fails to commute, it does have the following
properties.

Proposition 3.2.5 (Properties of Matrix Multiplication). Matriz mul-
tiplication is associative,



68 3 Linear Mappings and Their Matrices
A(BC) = (AB)C for A€ My n(R), B e M, ,(R), C € M,(R).
Matriz multiplication distributes over matrixz addition,

AB+C)=AB+AC for A€ Mpn(R), B,C € M, ,(R),
(A4 B)C = AC + BC for A,B € Mpn(R), C € M, ,(R).

Scalar multiplication passes through matriz multiplication,
a(AB) = (a¢A)B = A(aB) fora€R, A€M, ,(R), BeM,,(R).
The identity matriz is a multiplicative identity,
I,A=A=AI, forAeM,,(R).

Proof. The right way to show these is intrinsic, by remembering that addition,
scalar multiplication, and multiplication of matrices precisely mirror addition,
scalar multiplication, and composition of mappings. For example, if A, B, C
are the matrices of the linear mappings S € L(R",R™), T € L(R?,R"),
and U € L(R?,RP), then (AB)C and A(BC) are the matrices of (SoT)oU
and S o (T o U). But these two mappings are the same since in general the
composition of mappings is associative. That is, for any z € RY,

((SeT)olU)(x) = (SoT)(U(x))

— S(T(U())) = S(T o U)(@))
= (So (T o U))(a).

Consequently (AB)C = A(BC).
Alternatively, one can verify the equalities elementwise by manipulating
sums. Adopting the notation M;; for the (i, j)th entry of a matrix M,

p n p
A(BC)kj =Y A D BuCiy =YY AuBuCi

(A(BC))i; =
k=1 =1 =1 k=11=1
P n p
=> > AuBuCy =Y (AB)uCi; = ((AB)C);;.
=1 k=1 =1

The steps here are not explained in detail because the author finds this method
as unenlightening as it is unnecessary: the coordinates work because they
must, but their presence only clutters the argument. The other equalities are
similar. O

Composing mappings is most interesting when all the mappings in ques-
tion take a set S back to the same set S, for the set of such mappings is
closed under composition. In particular, L(R"™,R") is closed under compo-
sition. The corresponding statement about matrices is that M, (R) is closed
under multiplication.
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Exercises

3.2.1. Justify Definition 3.2.2 of scalar multiplication of matrices.

3.2.2. Carry out the matrix multiplications

(ab] [ d—b] a1 b 8(1)(1)8

_cd] [—c al’ [#1 @2 @3] :222 ’ 0001 °
373 0000

1117 [100] 1007 111

011| |110f, {110 011

001] [111) 111] {001

3.2.3. Prove more of Proposition 3.2.5, that A(B+C) = AB+ AC, (a4)B =
A(aB) and I, A = A for suitable matrices A, B,C and any scalar a.

3.2.4. Let A = [a;;] be a matrix in M, ,(R). Its transpose A’ € M, ,»(R)
is the matrix obtained by flipping A about its Northwest—Southeast diagonal.
Thus the rows of At are the columns of A, the columns of At are the rows
of A, and the (i, j)th entry of A’ is aj;. Show that

(AB)! = B'A" for all A € M, ,(R) and B € M,, ,(R).

3.2.5. For any matrix A € M,, ,(R) and column vector a € R™ define the
affine mapping (cf. exercise 3.1.14)

Affs, :R" — R™

by the rule Aff4 ,(z) = Az + a for all z € R", viewing z as a column vector.
(a) Explain why every affine mapping from R” to R™ takes this form.
(b) Given such A and a, define the matrix A’ € My, 41, n41(R) to be

r_|Aa
a=lo.

Show that for all z € R,

] [Affae(2)
[ =[]
Thus, affine mappings, like linear mappings, behave as matrix-by-vector mul-
tiplications but where the vectors are the usual input and output vectors
augmented with an extra “1” at the bottom.
(c) If the affine mapping Affg; : R? — R” determined by B € M,, ,(R)
and b € R™ has matrix
B - [B b]

0,1
show that Aff4 , o Affg; : R?> — R™ has matrix A'B’. Thus, matrix mul-
tiplication is compatible with composition of affine mappings.
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3.3 The Inverse of a Linear Mapping

Given a linear mapping S : R® — R™, does it have an inverse? That is, is
there a mapping 7' : R™ — R" such that

SoT =1id,, and ToS =1id,?

If so, what is T'?

The symmetry of the previous display shows that if 7" is an inverse of S
then S is an inverse of T' in turn. Also, the inverse T, if it exists, must be
unique, for if 7' : R™ — R" also inverts S then

T'=Toidyp, =T'0(SoT)=(T"08)oT =id, o T =T.

Thus 7T can unambiguously be denoted S~!. In fact, this argument has shown
a little bit more than claimed: If 7" inverts S from the left and T inverts S
from the right then 7' = T'. On the other hand, the argument does not show
that if 7" inverts S from the left then T also inverts S from the right—this is
not true.

If the inverse T exists then it too is linear. To see this, note that the
elementwise description of S and T being inverses of one another is that every
y € R™ takes the form y = S(z) for some z € R", every z € R™ takes the
form z = T'(y) for some y € R™, and

for all z € R"™ and y € R™, y==S() < z=T(y).
Now compute that for any y;,y2 € R™,

Ty +y2) =T(S(x1) + S(x2)) for some z1,z2 € R
=T(S(z1 + z2)) since S is linear
=1 + 22 since T inverts S
=T(y) +T(y2) since y1 = S(z1) and y» = S(z2).

Thus T satisfies (3.1). The argument that T satisfies (3.2) is similar.

Since matrices are more explicit than linear mappings, we replace the
question at the beginning of this section with its matrix counterpart: Given a
matrix A € My, ,(R), does it have an inverse matrix, a matrix B € M,, ,,,(R)
such that

AB=1, and BA=1I,?

As above, if the inverse exists then it is unique, and so it can be denoted A!.
The first observation to make is that if the equation Az = 0,, has a
nonzero solution z € R™ then A has no inverse. Indeed, an inverse A~! would
give
z=Ix=(A""A)z=A""(4z) = A7'0,, = 0,
contradicting the fact that x is nonzero. This raises a subordinate question:
When does the matrix equation
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Az =0,

have nonzero solutions z € R™?
For example, let A be the 5-by-6 matrix

5 1 17 261 55

-3 -1-13-200 —28
A=]-2 1 3 50 3
-2 0 -4 -60-10

5 0 10 151 42

If there is a nonzero z € R® such that Az = 05 then A is not invertible.
Left multiplication by certain special matrices will simplify the matrix A.

Definition 3.3.1 (Elementary Matrices). There are three kinds of ele-
mentary matrices. For any i,j € {1,...,m} (i # j) and any a € R, the
m-by-m (i; j,a) recombine matrix is

1

Rijj,a =

- 1_
(Here the a sits in the (i, j)th position, the diagonal entries are 1 and all other
entries are 0. The a is above the diagonal as shown only when i < j, otherwise
it is below.)

For any i € {1,...,m} and any nonzero a € R, the m-by-m (i,a) scale
matrix is

1

1
(Here the a sits in the ith diagonal position, all other diagonal entries are 1
and all other entries are 0.)
For any i,j € {1,...,m} (i # j), the m-by-m (i;j) transposition ma-
trix is
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1

Ty =

L 1_

(Here the diagonal entries are 1 except the ith and jth, the (i,j)th and (j,i)th
entries are 1, all other entries are (.)

The plan is to study the equation Az = 0,, by using these elementary
matrices to reduce A to a nicer matrix E and then solve the equation Ex = 0,,
instead. Thus we are developing an algorithm rather than a formula. The next
proposition describes the effect that the elementary matrices produce by left
multiplication.

Proposition 3.3.2 (Effects of the Elementary Matrices). Let M be an
m-by-n matriz; call its rows ri,. Then

(1) The m-by-n matriz R;,; .M has the same rows as M except that its ith
TOW S T; + arj;

(2) The m-by-n matriz S; oM has the same rows as M except that its ith row
18 ar;;

(3) The m-by-n matriz T;,; M has the same rows as M except that its ith row
is r; and its jth row s r;.

Proof. (1) Let M have entries my;. The (k,I)th entry of R;; oM is the inner
product of R;;.’s kth row and M’s Ith column. For any k except k = 4, this
inner product simply picks off my;, so letting | run from 1 to n, we see that
the kth row of R;; .M is equal to ry, the kth row of M. Similarly, the inner
product of R;;,’s ith row and M’s Ith column is my; + amj;, so the ith row
of R;;;.o M is r; + ar;. (2) and (3) are similar, left as exercise 3.3.2. However,
proofs by general subscript-algebra of the sort that the author felt morally
obliged to carry out here may not be illuminating. To get a real sense of why
the statements in this proposition are true, it may be more helpful to do the
calculations explicitly with some moderately sized matrices. O

With the effect of elementary matrices thus described, left multiplication
by them no longer requires actual calculation. Instead, merely perform the
appropriate row operations themselves. For example,
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R .. [123] _[131721
12371456 |4 5 6]’

because Ri;2 .3 adds 3 times the second row to the first.
The next result is that performing row operations on A doesn’t change the
set of solutions x to the equation Ax = 0,;,.

Lemma 3.3.3 (Invertibility of Products of the Elementary Matri-
ces). Products of elementary matrices are invertible. More specifically:

(1) The elementary matrices are invertible by other elementary matrices.
Specifically,

(Riyja) ™" = Rij—a; (Si,a) ™" = Sija-1, (Tiyj) " = Ty

(2) If the m-by-m matrices M and N are invertible by M~ and N~', then the
product matriz M N is invertible by N~'M~. (Note the order reversal.)

(3) Any product of elementary matrices is invertible by another such product,
specifically the product of the inverses of the original matrices, but taken
in reverse order.

Proof. (1) To prove that R;; oRij. = Im, note that R;;, is the identity
matrix I,,, with a times its jth row added to its ith row, and multiplying this
from the left by R;; _, subtracts back off a times the jth row, restoring I,,.
The proof that R;;.Rij—o = In is either done similarly or by citing the
proof just given with a replaced by —a. The rest of (1) is similar.

(2) Compute:

(MNY(N'MY) = M(NN"YM~t=MI,M~'=MM™ =1,.

Similarly for (N71M~1)(MN) = I,,,.
(3) This is immediate from (1) and (2). O

Proposition 3.3.4 (Persistence of Solution). Let A be an m-by-n matriz
and let P be a product of m-by-m elementary matrices. Then the equations

Az =0, and (PA)x =0y,
are satisfied by the same vectors x in R™.

Proof. Suppose that the vector z € R"™ satisfies the left equation, Az = 0,,.
Then
(PA)x = P(Az) = PO, = 0y,.

Conversely, suppose that x satisfies (PA)x = 0,,. Lemma 3.3.3 says that P
has an inverse P~!, so

Az = I,Az = (P"'P)Az = P7'(PA)x = P7'0,, = 0,,.



74 3 Linear Mappings and Their Matrices
The machinery is in place to solve the equation Ax = 05 where as before,

5 1 17 261 55
-3-1-13-200 —28
A=|-2 1 3 50 3
-2 0 -4 -60-10

5 0 10 151 42

Scale A’s fourth row by —1/2; transpose A’s first and fourth rows:

10 2 30 5
—3-1-13-200 28
TiaSs_1pA=|-2 1 3 50 3| %3
5 1 17 261 55
50 10 151 42

Note that B has a 1 as the leftmost entry of its first row. Recombine various
multiples of the first row with the other rows to put 0’s beneath the leading 1
of the first row:

102 30 5
0-1-7-110-13

Rsy, sRuy, sRsgoRpasB= [0 1 7 110 13| 2 C.
0 1 7 111 30
000 01 17

Recombine various multiples of the second row with the others to put 0’s
above and below its leftmost nonzero entry; scale the second row to make its
leading nonzero entry a 1:

102 30 5
01711013

Sy _1Ran1R321C = (000 00 0| @' D.
000 0117
000 0117

Transpose the third and fifth rows; put 0’s above and below the leading 1 in

the third row:
102 30 5

01711013
Rys _1TssD=[000 0117 ¥ E.
000 00 0
000 00 0

Matrix E is a prime example of a so-called echelon matriz. (The term will be
defined precisely in a moment.) Its virtue is that the equation Ez = 05 is now
easy to solve. This equation expands out to
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102 30 57 |™ T1 + 223 + 314 + brg 0
01711013 | ™ Lo + Tas + 1124 + 1324 0
Ex= 000 0117] || = 25+ 17z | = | 0
000 00 0 |™ 0 0
000 00 0 |*5 0 0

Tg

Matching the components in the last equality gives

Iry = —23&'3 — 3.1,'4 — 51’6
o = —71’3 - 111’4 - 13.’12'6
Ty = — ].7.736.

Thus, z3, x4 and zg are free variables that may take any values we wish, but
then x1, z9 and x5 are determined from these equations. For example, setting
z3 = —5, x4 = 3, T = 2 gives the solution x = (-9, —24, —5,3,-34,2).

Definition 3.3.5 (Echelon Matrix). A matriz E is called echelon if it has
the form

Here the +’s are arbitrary entries and all entries below the stairway are 0.
Thus each row’s first nonzero entry is a 1, each row’s leading 1 is farther
right than that of the row above it, each leading 1 has a column of 0’s above
it, and any rows of 0’s are at the bottom.

Note that the identity matrix I is a special case of an echelon matrix.

The algorithm for reducing any matrix A to echelon form by row operations
should be fairly clear from the previous example. The interested reader may
want to codify it more formally, perhaps in the form of a computer program.
Although different sequences of row operations may reduce A to echelon form,
the resulting echelon matrix E will always be the same. This result can be
proved by induction on the number of columns of A, and its proof is in many
linear algebra books.

Theorem 3.3.6 (Matrices Reduce to Echelon Form). Every matriz A
row reduces to a unique echelon matriz E.

In an echelon matrix E, the columns with leading 1’s are called new
columns, and all others are old columns. The recipe for solving the equation
Ex =0, is then

1. Freely choose the entries in z that correspond to the old columns of E.
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2. Then each nonzero row of E will determine the entry of z corresponding
to its leading 1 (which sits in a new column). This entry will be a linear
combination of the free entries to its right.

Let’s return to the problem of determining whether A € M, ,(R) is in-
vertible. The idea was to see if the equation Az = 0,, has any nonzero solu-
tions z, in which case A is not invertible. Equivalently, we may check whether
Ex = 0, has nonzero solutions, where F is the echelon matrix to which A
row reduces. The recipe for solving Ez = 0,, shows that there are nonzero
solutions unless all of the columns are new.

If A € M,;,»(R) has more columns than rows then its echelon matrix E
must have old columns. This is because each new column comes from the
leading 1 in a distinct row, so

new columns of £ <rows of £ < columns of F,

showing that not all the columns are new. Thus A is not invertible when
m < n. On the other hand, if A € M,;, ,(R) has more rows than columns and
it has an inverse matrix A=! € M, ,,,(R), then A~! in turn has inverse 4, but
this is impossible since A~! has more columns than rows. Thus A is also not
invertible when m > n.

The remaining case is that A is square. The only square echelon matrix
with all new columns is I, the identity matrix (exercise 3.3.10). Thus, unless
A’s echelon matrix is I, A is not invertible. On the other hand, if A’s echelon
matrix is I, then PA = I for some product P of elementary matrices. Multiply
from the left by P~! to get A = P~!; this is invertible by P, giving A~ = P.
Summarizing,

Theorem 3.3.7 (Invertibility and Echelon Form for Matrices). A non-
square matrix A is never invertible. A square matrix A is invertible if and only
if its echelon form is the identity matriz.

When A is square, the discussion above gives an algorithm that simulta-
neously checks whether it is invertible and finds its inverse when it is.

Proposition 3.3.8 (Matrix Inversion Algorithm). Given A € M,(R),
set up the matrizc
B=[A| L]

in Mp,2n(R). Carry out row operations on this matriz to reduce the left side
to echelon form. If the left side reduces to I, then A is invertible and the right
side is A=, If the left side doesn’t reduce to I,, then A is not invertible.

This works because if B is left multiplied by a product P of elementary
matrices, the result is
PB=[PA|P].

As discussed, PA = I, exactly when P = A~L.
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For example, the calculation

1-1 0100 100111
Ri21R231 |0 1-1(010(=]010|011
0 0 1(001 001|001
shows that .
1-1 0 111
0 1-1 =1011
0 0 1 001

We now have an algorithmic answer to the question at the beginning of
the section.

Theorem 3.3.9 (Invertibility and Echelon Form for Mappings). The
linear mapping T : R™ — R™ is invertible only when m = n and its matriz
A has echelon matriz I,,, in which case its inverse is the linear mapping with
matriz A~1.

Exercises

3.3.1. Write down the following 3-by-3 elementary matrices and their inverses:
Rs5 ., S3,3, T3;2, To;3.

3.3.2. Finish the proof of Proposition 3.3.2.

3.3.3. Let A = [é z]. Evaluate the following products without actually mul-
tlplylng matrices: R3;2’ﬂ—A, 53,314, T3;2A, T2;3A.

3.3.4. Finish the proof of Lemma 2.3.3, part (1).

3.3.5. What is the effect of right multiplying the m-by-n matrix M by an
n-by-n matrix R;;.? By S;o? By T%; 57

3.3.6. Recall the transpose of a matrix M (cf. exercise LM:OM:ex4), denoted
M*. Prove: R, , = Rjia; St, = Sia; Tf; = Tiyj- Use these results and the

formula (AB)! = B! A to redo the previous problem.

3.3.7. Are the following matrices echelon? For each matrix M, solve the equa-
tion Mz = 0.

00

103 0001 1100 10 1000 011
011}, ooool’ loo11l 01l° 0110, 103
001 00 0010 000

3.3.8. For each matrix A solve the equation Az = 0.

-114 2-1 32 3-12
138], |1 4 o1], |2 11
125 2 6-15 1-30
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3.3.9. Balance the chemical equation
Ca+ H3PO, — CagP30g + Hs.

3.3.10. Prove by induction that the only square echelon matrix with all new
columns is the identity matrix.

3.3.11. Are the following matrices invertible? Find the inverse when possible.

1-11 2 5-1 1%%
2 01, |4-1 2], %H
3 01 6 4 1 31%

3.3.12. The matrix A is called lower triangular if a;; = 0 whenever ¢ < j.
If A is a lower triangular square matrix with all diagonal entries equal to 1,
show that A is invertible and A~! takes the same form.

3.3.13. This exercise refers back to the Gram—Schmidt exercise in chapter 2.
That exercise expresses the relation between the vectors {z;} and the vectors
{z;} formally as ' = Az where z' is a column vector whose entries are the
vectors x, ..., Zy, « is the corresponding column vector of z;’s, and A is an
n-by-n lower triangular matrix.

Show that each z; has the form

! ! ! ! ! ! !
Tj = Q5T +AjpTy + -+ 055 1T;_1 + T,

and thus any linear combination of the original {z;} is also a linear combina-
tion of the new {z}}.

3.4 Inhomogeneous Linear Equations

The question of whether a linear mapping T is invertible led to solving the
linear equation Az = 0, where A was the matrix of 7. Such a linear equa-
tion, with right side 0, is called homogeneous. An inhomogeneous linear
equation has nonzero right side,

Az = b, AeM,,(R), ze R", be R™, b#0.

The methods of the homogeneous case apply here too. If P is a product of m-
by-m elementary matrices such that PA is echelon (call it E), then multiplying
the inhomogeneous equation from the left by P gives

Ex = Pb,

and since Pb is just a vector, the solutions to this can be read off as in the
homogeneous case. There may not always be solutions, however.
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Exercises

3.4.1. Solve the inhomogeneous equations

1-12 1 1-2 1 2 1
2 02|z=11], 1 1-1 1|z=2
1-34 2 1 7-5-1 3

3.4.2. For what values by, by, b3 does the equation

3-12] by
2 11|z=|b
1-30) bs

have a solution?

3.4.3. A parent has a son and a daughter. The parent is four times as old as
the daughter, the daughter is four years older than the son. In three years the
parent will be five times as old as the son. How old are the parent, daughter
and son?

3.4.4. Show that to solve an inhomogeneous linear equation, one may solve a
homogeneous system in one more variable and then restrict to solutions where
the last variable is equal to —1.

3.5 The Determinant: Characterizing Properties and
Their Consequences

In this section all matrices are square, n-by-n. The goal is to define a function
that takes such a matrix, with its n? entries, and returns a single number.
This putative function is called the determinant,

det : M,(R) — R.

For any square matrix A € M,,(R), the scalar det(A) should contain as much
algebraic and geometric information about the matrix as possible. Not sur-
prisingly, so informative a function is complicated to encode.

This context nicely demonstrates a pedagogical principle already men-
tioned in section 3.1: characterizing a mathematical object illuminates its
construction and its use. Rather than beginning with a definition of the de-
terminant, we will stipulate a few natural behaviors for it, and then we will
eventually see that

there is a function with these behaviors (existence),

there is only one such function (uniqueness), and, most importantly,
these behaviors, rather than the definition, further show how the function
works (consequences).
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We could start at the first bullet and proceed from the construction of the
determinant to its properties, but when a construction is complicated (as the
determinant’s construction is) it fails to communicate intent, and pulling it
out of thin air as the starting point of a long discussion is an obstacle to
understanding. A few naturally gifted readers will see what the unexplained
idea really is, enabling them to skim the ensuing technicalities and go on
to start using the determinant effectively; some other tough-minded readers
can work through the machinery and then see its operational consequences;
but it is all too easy for the rest of us to be defeated by disoriented detail-
fatigue before the presentation gets to the consequential points and provides
any energizing clarity.

Another option would be to start at the second bullet, letting the de-
sired properties of the determinant guide our construction of it. This process
wouldn’t be as alienating as starting at the first bullet, but deriving the deter-
minant’s necessary construction has only short-term benefit since we intend
to use the construction as little as possible. Working through the derivation
would still squander our limited energy on the internal mechanisms of the
determinant before getting to its behavior, when its behavior is what gives us
perspective in understanding it. We first want to learn to use the determinant
easily and artfully. This will make its internals feel of secondary importance,
as they should.

The upshot is that in this section we will pursue the third bullet (conse-
quences), and then the next section will proceed to the second bullet (unique-
ness) and finally the first one (existence).

Instead of viewing the determinant only as a function of a matrix A €
M,,(R) with n? scalar entries, view it also as a function of A’s n rows, each
of which is an n-vector. If A has rows 71, ..., r,, write det(ry,...,r,) for
det(A). Thus, det is now being interpreted as a function of n vectors, i.e., the
domain of det is n copies of R,

det : R"x---xR" — R.

The advantage of this view is that now we can impose conditions on the deter-
minant, using language already at our disposal in a natural way. Specifically,
we make three requirements:

(1) The determinant is multilinear, meaning that it is linear as a function
of each of its vector variables. That is, for any vectors r1, ..., ¢, r}, - -,
r, and any scalars a, o,

det(ry,...,ary +a'rh, ..., 1) = adet(ry, ..., Tk, ..., Tn)
+a' det(ri, ... ,Thy. vy Tn)-

(2) The determinant is skew-symmetric as a function of its vector variables,
meaning that exchanging any two inputs negates the determinant,
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det(ri, ..., o, Piyenyry) = —det(re, ..o Py, Ty, Th).

(Here i # j.) Consequently, the determinant is also alternating, meaning
that if two inputs r; and r; are equal then det(rq,...,r,) = 0.
(3) The determinant is normalized, meaning that the standard basis has
determinant 1,
det(er,...,en) = 1.

Condition (1) does not say that det(ad + &’ A’') = adet(A) + o' det(A4") for
scalars a, o' and square matrices A, A’. Especially, the determinant is not
additive,

det(A + B) is in general not det(A) + det(B). (3.5)

What the condition does say is that if all rows but one of a square matrix are
held fixed, then the determinant of the matrix varies linearly as a function of
the one row.

We will prove the following theorem in the next section.

Theorem 3.5.1 (Existence and Uniqueness of the Determinant). One,
and only one, multilinear skew-symmetric normalized function from the n-fold
product of R™ to R exists. This function is the determinant,

det : R"x---xR" — R.

Furthermore, all multilinear skew-symmetric functions from the n-fold product
of R™ to R are scalar multiples of of the determinant. That is, any multilinear
skew-symmetric function § : R™ x --- x R® — R is

d=-c-det where c=46(e1,---,epn)-

In more structural language, Theorem 3.5.1 says that the multilinear skew-
symmetric functions from the n-fold product of R™ to R form a 1-dimensional
vector space over R, and {det} is a basis.

The reader may object that even if the conditions of multilinearity, skew-
symmetry, and normalization are grammatically natural, they are concep-
tually opaque. Indeed they reflect considerable hindsight, since the idea of
a determinant originally emerged from explicit calculations. But again, the
payoff is that characterizing the determinant rather than constructing it illu-
minates its many useful properties. The rest of the section can be viewed as
an amplification of this idea.

For one quick application of the existence of the determinant, consider the
standard basis of R™ taken in order,

(61, .. .,en).

Suppose that some succession of m pair-exchanges of the vectors in this or-
dered n-tuple has no net effect, i.e., after the m pair-exchanges, the vectors are
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back in their original order. By skew-symmetry each pair-exchange negates
the determinant, and so after all m pair-exchanges the net result is

(=1)™det(eq,...,en) =det(er,...,en).

Since det is normalized, it follows that (—1)™ = 1, i.e., m is even. That is,
no odd number of pair-exchanges can leave an ordered n-tuple in its initial
order. Consequently, if two different sequences of pair-exchanges have the
same net effect then their lengths are both odd or both even—this is because
running one sequence forwards and then the other back has no net effect and
hence comes to an even number of moves. In other words, although a net
rearrangement of an n-tuple does not determine a unique succession of pair-
exchanges to bring it about, or even a unique number of such exchanges, it does
determine the parity of any such number: the net rearrangement requires an
odd number of exchanges, or it requires an even number. (For reasons related
to this, an old puzzle involving fifteen squares that slide in a 4-by-4 grid can
be made unsolvable by popping two pieces out and exchanging them.) The
fact that the parity of a rearrangement is well defined may be easy to believe,
perhaps so easy that the need for a proof is hard to see. But in fact any proof
requires some auxiliary measuring tool. The determinant measures much more
than necessary, giving the proof as a byproduct. The determinant’s uniqueness
is irrelevant here. On the other hand, the uniqueness will play a significant
role in chapter 8.
A weightier example follows.

Theorem 3.5.2 (The Determinant is Multiplicative). For all matrices
A,B € M,(R),
det(AB) = det(A) det(B).

In particular, if A is invertible then the determinant of the matriz inverse is
the scalar inverse of the determinant,

det(A™1) = (det(4))™ .

Multilinearity says that the determinant behaves well additively and
scalar-multiplicatively as a function of each of n vectors, while (3.5) says that
the determinant does not behave well additively as a function of one matrix.
Theorem 3.5.2 says that the determinant behaves perfectly well multiplica-
tively as a function of one matrix. Also, the theorem tacitly says that if A is
invertible then det(A) is nonzero. Soon we will establish the converse as well.

Proof. Let B € M, (R) be fixed. Consider the function
0:M,(R) — R, 0(A) = det(AB).
As a function of the rows of A, § is the determinant of the rows of AB,

0:R"x---xR" — R, 0(ri,...,mn) =det(r1B,...,r,B).
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The function ¢ is multilinear and skew-symmetic. To show multilinearity, com-
pute (using the definition of 8, properties of vector—matrix algebra, the mul-
tilinearity of det, and the definition of J again),

8(riy...,arg +a'ry,...,ry) =det(rB,...,(arg +a'r,)B,...,r,B)
=det(r1B,...,aryB+a'r.B,...,r,B)
=adet(riB,...,7B,...,1nB)
+a'det(r1B,...,7.B,...,7,B)

= 045(7‘1,.. 3Ty .,’I‘n)
+ ' 3(re, ey Ty ey Th)-
To show skew-symmetry, take two distinct indices i, € {1,...,n} and com-

pute similarly,
O0(riy. oy jyevesTiyen,rp) =det(r1B,...,7jB,...,B,...,r,B)
= —det(rB,...,B,...,r;B,...,r,B)

= —0(T1,- -3 TiseesTjyenn,Tp)e
Also compute that
d(er,...,e,) =det(erB,...,e,B) = det(B).

It follows from Theorem 3.5.1 that §(A) = det(B)det(A), and this is the
desired main result det(AB) = det(A) det(B) of the theorem. Finally, if A is
invertible then

det(A) det(A™) = det(AA™) = det(I) = 1.

That is, det(A~1) = (det(A4)) L. This completes the proof. O

More facts about the determinant are immediate consequences of its char-
acterizing properties.

Proposition 3.5.3 (Determinants of Elementary and Echelon Matri-
ces).

(1) det(Ri;5,0) =1 for alli,j € {1,...,n} (i #j) and a € R.
(2) det(Si,q) = a for all i € {1,...,n} and nonzero a € R.
(3) det(T3;;) = —1 for alld,5 € {1,...,n} (i #j).

4) IfE is n- by-n echelon then

det(B) — {1 ifE=1,

0 otherwise.
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Proof. (1) Compute,

det(R;;j,o) = det(e1,...,e; +aej, ..., ej,...,en)
=det(e1,...,€5,.-.,€j,...,€5) +adet(er,...,ej,...,€5,...,€p)
=14+0=1.

(2) and (3) are similar. For (4), if E = I then det(E) = 1 since the determinant
is normalized. Otherwise the bottom row of E is 0, and since a linear function
takes 0 to 0, it follows that det(E) = 0. O

For one consequence of Theorem 3.5.2 and Proposition 3.5.3, recall that
every matrix A € M,,(R) has a transpose matrix A?, obtained by flipping A
about its Northwest—Southeast diagonal. The next theorem (whose proof is
exercise 3.5.3) says that all statements about the determinant as a function
of the rows of A also apply to the columns. This fact will be used without
comment from now on. In particular, det(A) is the unique multilinear skew-
symmetric normalized function of the columns of A.

Theorem 3.5.4 (Determinant and Transpose). For all A € M,(R),
det(A?) = det(A).

A far more important consequence of Theorem 3.5.2 and Proposition 3.5.3
is one of the main results of this chapter. Recall that any matrix A row-reduces
as

Ri---RNA=FE

where the Ry are elementary, E is echelon, and A is invertible if and only if
E = I. Since the determinant is multiplicative,

det(Ry) - - - det(Ry) det(A) = det(E).

But each det(Ry) is nonzero, and det(E) is 1 if E = I and 0 otherwise, so
this gives the algebraic significance of the determinant:

Theorem 3.5.5 (Linear Invertibility Theorem). The matriz A € M, (R)
is invertible if and only if det(A) # 0.

That is, the zeroness or nonzeroness of the determinant says whether the
matrix is invertible. Once the existence and uniqueness of the determinant
are established in the next section, we will continue to use the determinant
properties to interpret the magnitude and the sign of the determinant as well.

Exercises
3.5.1. Consider a scalar-valued function of pairs of vectors,
ip: R" xR" — R,

satisfying the following three properties.
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(1) The function is bilinear,

ip(ax + o'z’ y) = aip(z,y) + o ip(z',y),
ip(z, By + B'y') = Bip(z,y) + B ip(z,y")

for all a,a’, 3,8 € R and z,2',y,y € R".
(2) The function is symmetric,

ip(z,y) =ip(y,z) for all z,y € R".
(3) The function is normalized,
ip(e;,e;) = d;; foralli,je{l,...,n}.

(The Kronecker delta d;; was defined in section 2.2.)

Compute that this function, if it exists at all, must be the inner product.
On the other hand, we already know that the inner product has these three
properties, so this exercise has shown that it is characterized by them.

3.5.2. Let f : R" x---x R™ — R be a multilinear skew-symmetric function,
and let ¢ be any real number. Show that the function cf is again multilinear
and skew-symmetric.

3.5.3. This exercise shows that for any matrix A, det(A?) = det(A).

(a) Show that det(R!) = det(R) for any elementary matrix R. (That is, R
can be a recombine matrix, a scale matrix, or a transposition matrix.)

(b) If E is an echelon matrix then either E = I or the bottom row of E
is 0. In either case, show that det(FE!) = det(E). (For the case E # I, we
know that E is not invertible. What is E'e,,, and what does this say about
the invertibility of E!?)

(c) Use the formula (M N)! = NtM?, Theorem 3.5.2, and Proposition 3.5.3
to show that det(A?) = det(A) for all A € M,(R).

3.5.4. The square matrix A is orthogonal if A’A = I. Show that if A4 is
orthogonal then det(A) = +1. Give an example with determinant —1.

3.5.5. The matrix A is skew-symmetric if A = —A. Show that if A is
n-by-n skew-symmetric with n odd then det(4) = 0.

3.6 The Determinant: Uniqueness and Existence
Recall that Theorem 3.5.1 asserts that exactly one multilinear skew-symmetric

normalized function from the n-fold product of R™ to R exists. That is, a
unique determinant exists.
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We warm up for the proof of the theorem by using the three defining
conditions of the determinant to show that only one formula is possible for
the determinant of a general 2-by-2 matrix,

A:[ZZ].

The first row of this matrix is
r1 = (a,b) = a(1,0) + b(0,1) = aey + bes,

and similarly its second row is 7o = ce; + des. Thus, since we view the deter-
minant as a function of rows, its determinant must be

det(A) = det(ry,r2) = det(ae; + bea, cer + des).
Since det is linear in its first vector variable, this expands to
det(ae; + bea, cer + des) = adet(er, cer + dea) + bdet(es, cer + dez),
and since det is also linear in its second vector variable, this expands further,

adet(ey, ce; + des)+bdet(es, ce; + des)
= acdet(er,e1) + ad det(ey, e2)
+ bedet(eq, e1) + bd det(ez, e2).

But since det is skew-symmetric and alternating, the expanded expression
simplifies considerably,

acdet(er, e1) + addet(er,e2) + bedet(ea, e1)+bd det(ez, e2)
= (ad — bc) det(eq, e2).

And finally, since det is normalized, we have found the only possible formula
for the determinant of a 2-by-2 matrix,

det(A) = ad — be.

All three characterizing properties of the determinant were required to derive
this formula.

(As a brief digression, the reader can use the matrix inversion algorithm
from section 3.3 to verify that the 2-by-2 matrix A is invertible if and only
if ad — bc is nonzero, showing that the formula for the 2-by-2 determinant
arises from considerations of invertibility as well as from our three conditions.
However, the argument requires cases, e.g., a # 0 or a = 0, making this
approach uninviting for larger matrices.)

Returning to the main line of exposition, nothing here has yet shown that
a determinant function exists at all for 2-by-2 matrices. What it has shown is
that there is only one possibility,
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det((a,b), (¢,d)) = ad — be.

But now that we have the only possible formula, checking that indeed it
satisfies the desired properties is purely mechanical. For example, to verify
linearity in the first vector variable, compute

det((a,b) + (a',1'),(c,d)) = det((a + a',b+ V'), (c,d))
=(a+a)d—(b+V)c
= (ad — be) + (a'd —b'c)
= det((a,b), (¢, d)) + det((a', '), (c,d)).

For skew-symmetry,
det((c,d), (a,b)) = cb — da = —(ad — bc) = — det((a, b), (¢, d)).
And for normalization,
det(1,0),(0,1))=1-1—-0-0=1.

We should also verify linearity in the second vector variable, but this no longer
requires the defining formula. Instead, since the formula is skew-symmetric
and is linear in the first variable,

det(ry, 7o +rh) = —det(rs + 15, 71)
= —(det(ra, 1) + det(rh,m1))
= —( —det(ry,2)) — det(ry,75))
= det(ry,r2) + det(ry, 7).

This little trick illustrates the value of thinking in general terms: a slight
modification, inserting a few occurrences of “...” and replacing the subscripts
1 and 2 by 4 and j, shows that for any n, the three required conditions for the
determinant are redundant—Ilinearity in one vector variable combines with
skew-symmetry to ensure linearity in all the vector variables.

One can similarly show that for a 1-by-1 matrix,

A =[a],
the only possible formula for its determinant is
det(A) = a,

and that indeed this works. The result is perhaps silly, but the exercise of
working through a piece of language and logic in the simplest instance can
help one to understand its more elaborate cases. As another exercise, the same
techniques show that the only possible formula for a 3-by-3 determinant is
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abec
det (de f| =aek+bfg+ cdh —afh — bdk — ceg.
ghk

This formula is complicated enough that we should rethink it in a more sys-
tematic way before verifying that it has the desired properties. And we may
as well generalize it to arbitrary n in the process. Here are some observations
about the 3-by-3 formula:

It is a sum of 3-fold products of matrix entries.
Every 3-fold product contains one element from each row of the matrix.
Every 3-fold product also contains one element from each column of the
matrix. So every 3-fold product arises from the positions of three rooks
that don’t threaten each other on a 3-by-3 chessboard.

e Every 3-fold product comes weighted by a “+” or a “—”.

Similar observations apply to the 1-by-1 and 2-by-2 formulas. Our general
formula should encode them. Making it do so is partly a matter of notation,
but also an idea is needed to describe the appropriate distribution of plus
signs and minus signs among the terms. The following language provides all
of this.

Definition 3.6.1 (Permutation). A permutation of {1,2,...,n} is a vec-
tor

m = (r(1),7(2),...,m(n))
whose entries are {1,2,...,n}, each appearing once, in any order. An inver-

sion in the permutation 7 is a pair of entries with the larger one to the left.
The sign of the permutation 7, written (—1)™, is —1 raised to the number of
inversions in w. The set of permutations of {1,...,n} is denoted S,.

Examples are the permutations 7 = (1,2,3,...,n), 0 = (2,1,3,...,n),
and 7 = (5,4,3,2,1) (here n = 5). In these examples 7 has no inversions, ¢
has one, and 7 has ten. Thus (-1)" =1, (-1)? = =1, and (-1)" = 1. In
general, the sign of a permutation with an even number of inversions is 1 and
the sign of a permutation with an odd number of inversions is —1. There are
n! permutations of {1,2,...,n}; that is, the set S, contains n! elements.

As advertised, permutations and their signs provide the notation for the
only possible n-by-n determinant formula. Consider any n vectors

n n n
r = E a1;€;, ro = E a2;€j, ey Tn = E AnpCp-
i=1 j=1 p=1

By multilinearity, any multilinear function ¢ (if it exists at all) must satisfy
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n n n
d(ri,re,...,rn) =0 E ai;e;, E azjej, ..., E Unp€p
i=1 j=1 p=1
n n n

:E E E (15025 - - - Anpo(€;, €, ..., €p).

i=1j=1 p=1
If 6 is also alternating then for any 4,7,...,p € {1,...,n},
0(eirej,-..,ep) =0 if any two subscripts agree.

Thus we may sum only over permutations,

5(7'17T27---;Tn) = Z Clli(le"'(lnpdet(ei,ej,...,ep).
(4:4,--sP) ESn
Consider any permutation @ = (4,7,...,p). Suppose that 7 contains an in-

version, i.e., two elements are out of order. Then necessarily two elements in
adjacent slots are out of order. (For example, if 1 > p then either ¢ > j, giving
adjacent elements out of order as desired; or j > ¢ > p, so that j and p are
an out of order pair in closer slots than i and p, and so on.) If a permutation
contains any inversions, then exchanging a suitable adjacent pair decreases
the number of inversions by one, negating the sign of the permutation, while
exchanging the corresponding two input vectors negates the determinant. Re-
peating this process until the permutation has no remaining inversions shows
that
d(eisej,-..,ep) = (—1)"0(e1,e2,...,en).

That is, the only possible formula for a multilinear skew-symmetric function §
is
0(ri,r2,...,1rp) = Z (=)™ a15a25 - anp - €
W:(ivjr“vp)
where
c=96(e1,.--,€n)-

Especially, the only possible formula for a multilinear skew-symmetric nor-
malized function is

det(’f’l,’f‘2,...”[‘n) = Z (_l)ﬂ-aliazj st Qpp.
7r:(i7j7"'7p)

Definition 3.6.2 (Determinant). The determinant function,
det : M,(R) — R,
is defined as follows. For any A € M, (R) with entries (ai;),

det(A4) = Z (=) a17(1)@27(2) * * * Cnr(n)-
TESH
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The formula in the definition is is indeed the formula computed a moment
ago, since for any permutation 7 = (4,4,...,p) € S, we have w(l) = 1,
7(2) = jy ..., m(n) = p.

As an exercise to clarify the formula, we use it to reproduce the 3-by-3
determinant. Each permutation in S3 determines a rook-placement, and the
sign of the permutation is the parity of the number of Northeast—Southwest
segments joining any two of its rooks. For example, the permutation (2,3,1)
specifies that the rooks in the top, middle, and bottom rows are respectively
in columns 2, 3, and 1, and the sign is positive since there are two Northeast—
Southwest segments. (See figure 3.9.) The following table lists each permuta-
tion in S5 followed by the corresponding term in the determinant formula. For
each permutation, the term is its sign times the product of the three matrix
entries where its rooks are placed.

(= 1)7ra17r(1) A27(2)A37(3)

) aek
) —afh
) —bdk
)
)
)

bfg
cdh
—ceg

The sum of the right column entries is the anticipated formula from before,

abec
det |d e f| =aek+bfg+ cdh —afh — bdk — ceg.
ghk
The same procedure also reproduces the 2-by-2 determinant as well,
ab
det [c d] = ad — be,

and even the silly 1-by-1 formula det[a] = a. The 2-by-2 and 3-by-3 cases
are worth memorizing. They can be visualized as adding the products along
Northwest—Southeast diagonals of the matrix and then subtracting the prod-
ucts along Southwest—Northeast diagonals, where the word “diagonal” con-
notes wraparound in the 3-by-3 case. (See figure 3.10.) But be aware that this
pattern of the determinant as the Northwest—Southeast diagonals minus the
Southwest—Northeast diagonals is valid only for n = 2 and n = 3.

This completes the program of the second bullet at the beginning of the
previous section, finding the only possible formula (the one in Definition 3.6.2)
that could satisfy the three desired determinant properties. We don’t yet know
that it does, just that it is the only formula that could. That is, we have
now proved the uniqueness but not yet the existence of the determinant in
Theorem 3.5.1.
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Figure 3.10. The 3-by-3 determinant

The first bullet tells us to prove the existence by verifying that the com-
puted determinant formula indeed does satisfy the three stipulated determi-
nant properties. Similarly to the 2-by-2 case, this is a mechanical exercise.
The impediments are purely notational, but the notation is admittedly cum-
bersome, and so the reader is encouraged to skim the next proof.

Proposition 3.6.3 (Properties of the Determinant).

(1) The determinant is linear as a function of each row of A.
(2) The determinant is skew-symmetric as a function of the rows of A.
(3) The determinant is normalized.

Proof. (1) If A hasrowsr; = (a;1,-.-,ai,) except that its kth row is the linear
combination ary + o'r), where ry = (ag1,...,akn) and 1), = (a}y,--.,a},),
then its (7, j)th entry is

Qi if ¢ 75 k,

aagj +a'ap; ifi=k.

Thus
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det(ry,...,arg +a'ry, ..., )

= z (—l)ﬂalﬂ(n _._(aakﬂ(j) + a/a;m(j)) C Qpn(n)

TESn
=« Z a17r “Qkr(4) " Cnn(n)
TESH
+a Z TA1r(1)  On(g) " Ann(n)
TESn
=adet(ry,...,Tk,---,mn) + ' det(ry, ..., T, Tn),
as desired.
(2) Let A have rows rq, ..., r, where r; = (a1,---,ai). Suppose that

rows k and k + 1 are exchanged. The resulting matrix has (4, j)th entry

Qjj if 4 ¢ {k,k+1},
Q41,5 if i = k,
Qfj ifi=Fk+1.

For each permutation = € S,,, define a companion permutation 7’ by exchang-
ing the kth and (k + 1)st entries,

= (rQ1),...,m(k+1),7(k),...,m(n)).

Thus #'(k) = n(k + 1), #'(k + 1) = w(k), and 7'(i) = w(¢) for all other i.
As 7 varies through S,, so does 7', and for each m we have the relation

(=1)™ = —(=1)" (exercise 3.6.5). The defining formula of the determinant
gives
det(ry,.. ,rk+1,rk,...,rn)
Z alﬂ'(l) *Ok41,7(k) Qkm (k+1) * " Cna(n)
== Z a17r’(1) ©t Q41,7 (k+1) Ak’ (k) " Qna’ (n)
= — det(rl, ey TRy Th4+1s - - - ,rn).

This establishes the result when adjacent rows of A are exchanged. To ex-
change rows k and £ in A where £ > k, carry out the following adjacent row
exchanges:

rows k and k + 1, k and k + 1.
k+1and Kk + 2, k+1and k+ 2,
{—2and £ -1, {—2and £-1,

£—1 and ¢,
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This process trickles the kth row down to the fth and then bubbles the /th
row back up to the kth, bobbing each row in between them up one position
and then back down. And the display shows that the process carries out an
odd number of exchanges (all but the bottom one come in pairs), each of
which negates the determinant.

(3) This is left to the reader. O

So a unique determinant function with the stipulated behavior exists. And
we have seen that any multilinear skew-symmetric function must be a scalar
multiple of the determinant. The last comment necessary to complete the
proof of Theorem 3.5.1 is that since the determinant is multilinear and skew-
symmetric, so are its scalar multiples. This was shown in exercise 3.5.2.

The reader is encouraged to contemplate how tortuous it would have been
to prove the various facts about the determinant in the previous section by
using the unwieldy determinant formula, with its n! terms.

A type of matrix that has an easily calculable determinant is a triangular
matrix, meaning a matrix all of whose subdiagonal entries are 0 or all of
whose superdiagonal entries are 0. (Lower triangular matrices have already
been introduced in exercise 3.3.12.) For example, the matrices

ai1 G12 a13 air 0 O
0 Q9292 A23 and G921 a92 0
0 0 as3 as1 azs 433

are triangular. The determinant formula immediately shows that the deter-
minant of a triangular matrix is the product of the diagonal entries (exer-
cise 3.6.7). This fact should be cited freely to save time.

An algorithm for computing det(A) for any A € M, (R) is now at hand.
Algebraically, the idea is that if

PAP, =T

where P; and P, are products of elementary matrices and T is a triangu-
lar matrix (here T does not denote a transposition matrix), then since the
determinant is multiplicative,

det(A) = det(Py) ™" det(T) det(Py)~".

Multiplying A by P on the right carries out a sequence of column operations
on A, just as multiplying A by P; on the left carries out row operations. Recall
that the determinants of the elementary matrices are

det(Ri;j,a) =1,
det(Siq0) = a,
det(Ti;j) =-1.

Procedurally, this all plays out as follows.
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Proposition 3.6.4 (Determinant Algorithm). Given A € M,(R), use
row and column operations—recombines, scales, transpositions—to reduce A
to a triangular matriz T'. Then det(A) is det(T') times the reciprocal of each
scale factor and times —1 for each transposition.

The only role that the determinant formula (as compared to the determi-
nant properties) played in obtaining this algorithm is that it gave the deter-
minant of a triangular matrix easily.

For example, the matrix

1/001/1!1/2! 1/3!
1/111/2!1/3! 1/4!
1/211/3!1/4!1/5!
1/311/4!1/5! 1/6!

becomes, after scaling the first row by 3!, the second row by 4!, the third row
by 5!, and the fourth row by 6!,

(6 6 31]
24 1241
60 20 51
120306 1)

Subtract the first row from each of the others to get

(6 6 31]
18 610
54 1420
1142430

and then scale the third row by 1/2 and the fourth row by 1/3, yielding

6631
18610
27710
38810

D =

Next subtract the second row from the third row and the fourth rows, and
scale the fourth row by 1/2 to get

6 631
18610
9100
10100

E =

Subtract the third row from the fourth, transpose the first and fourth columns,
and transpose the second and third columns, leading to
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136 6
01618
0019
0001

This triangular matrix has determinant 1, and so according to the algorithm,

_2:3.2 1
T 61514131 T 1036800

det(A)

In the following exercises, feel free to use the determinant properties and
the determinant formula in whatever combined way gives you the least work.

Exercises

3.6.1. Use the three desired determinant properties to derive the formulas in
the section for 1-by-1 and 3-by-3 determinant. Verify that the 1-by-1 formula
satisfies the properties.

3.6.2. For each permutation, count the inversions and compute the sign:
(2,3,4,1), (3,4,1,2), (5,1,4,2,3).

3.6.3. Explain why there are n! permutations of {1,...,n}.

3.6.4. Define the permutation g = (n,n —1,n —2,...,1) € S,. Show that u
has (n — 1)n/2 inversions and that

1 if n has the form 4k or 4k + 1 (k € Z),
(-D* = .
—1 otherwise.
3.6.5. Explain why (—1)™ = —(—1)" in the proof of part (2) of Proposi-

tion 3.6.3.

3.6.6. Use the defining formula of the determinant to reproduce the result
that det(l,) = 1.

3.6.7. Prove that the determinant of a triangular matrix is the product of its
diagonal entries.

3.6.8. Calculate the determinants of the following matrices:

43-12 1-1 2 3
01 23 2 2 0 2
10 41(° 4 1-1-1
20 30 1 2 3 0
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3.6.9. Show that the Vandermonde matrix,

1ada®
15 02|,
1lecc?

has determinant (b— a)(c— a)(c —b). For what values of a, b, ¢ is the Vander-
monde matrix invertible? (The idea is to do the problem conceptually rather
than writing out the determinant and then factoring it, so that the same ideas
would work for larger matrices. The determinant formula shows that the de-
terminant in the problem is a polynomial in a, b, and ¢. What is its degree in
each variable? Why must it vanish if any two variables are equal? Once you
have argued that that the determinant is as claimed, don’t forget to finish the
problem.)

3.6.10. Consider the following n-by-n matrix based on Pascal’s triangle:

11 1 1.+ 1 7
12 3 4. n
13 6 10... 2okl

A=114 10 20---

(1)
1n =5

Find det(A). (Hint: Row and column reduce.)

3.7 An Explicit Formula for the Inverse

Consider an invertible linear mapping
T:R" — R"

having matrix
A eM,(R).

In section 3.3 we discussed a process to invert A and thereby invert T. Now,
with the determinant in hand, we can also write the inverse of A explicitly
in closed form. Because the pending formula giving the inverse involves many
determinants, it is hopelessly inefficient for computation. Nonetheless, it is of
interest to us for a theoretical reason (the pending Corollary 3.7.3) that we
will need in chapter 5.

Definition 3.7.1 (Classical Adjoint). Let n > 2 be an integer, and let
A € M, (R) be an n-by-n matriz. For any i,j € {1,--- ,n}, let

Al € M,_1(R)
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be the (n — 1)-by-(n — 1) matriz obtained by deleting the ith row and the jth
column of A. The classical adjoint of A is the n-by-n matriz whose (i, j)th
entry is (—1)"7 times the determinant of A%,

A3 = [(=1)"+ det(471)] € M, (R).

The factor (—1)*7 in the formula produces an alternating checkerboard
pattern of plus and minus signs, starting with a plus sign in the upper left cor-
ner of A24. Note that the (i, j)th entry of A3% involves A% rather than A%J.
For instance, in the 2-by-2 case,

ab]® [ d-b
cd| — |-c a]’

Already for a 3-by-3 matrix the formula for the classical adjoint is daunting,

det -ef] —det [b c] det [b c]

adj hk hk ef

abc [d f ac ac

de f = | —det gk] det [gk] —det [df]
ghk 3

det de _ det ab det ab

¢ g h ¢ gh “lde

=|fg—dkak —cgcd—af
| dh — eg bg — ah ae — bd

[ek — fh ch — bk bf—cej|

Returning to the 2-by-2 case, where

A=["b] and Aadj=[ d_b],
cd —c a

compute that

adj _ |ad—bc 0 10
AA dj = |: 0 ad—bc:| = (ad—bc) |:0 1:| =det(A)Iz

The same result holds in general:

Proposition 3.7.2 (Classical Adjoint Identity). Let n > 2 be an integer,
let A € M,,(R) be an n-by-n matriz, and let A*¥ be its classical adjoint. Then

A A = det(A)I,.
Especially, if A is invertible then

L1

— adj
det(A) '
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The proof is purely formal but notationally tedious, and so we omit it. In
the 2-by-2 case the proposition gives us a slogan:

To invert a 2-by-2 matriz, exchange the diagonal elements, negate the
off-diagonal elements, and divide by the determinant.

Again, for n > 2 the explicit formula for the inverse is rarely of calculational
use. We care about it for the following reason.

Corollary 3.7.3. Let A € M,(R) be an invertible n-by-n matriz. Then each
entry of the inverse matriz A™' is a continuous function of the entries of A.

Proof. Specifically, the (i, j)th entry of A= is
(A7) = (=1) det(474)/ det(A).

This is a rational function (ratio of polynomials) of the entries of A, and as
such it varies continuously in the entries of A so long as A remains invertible.
O

Exercise

3.7.1. Verify at least one diagonal entry and at least one off-diagonal entry
in the formula A A4 = det(A)I, for n = 3.

3.8 Geometry of the Determinant: Volume

Consider a linear mapping from n-space back to n-space,
T:R" — R™
This section discusses two ideas:

e The mapping T magnifies volume by a constant factor. (Here volume is a
pan-dimensional term that in particular means length when n = 1, area
when n = 2, and the usual notion of volume when n = 3.) That is, there
is some number ¢ > 0 such that if one takes a set,

£ CR",
and passes it through the mapping to get another set,
TE CR”,
then the set’s volume is multiplied by t,
volTE =t - vol €.

The magnification factor ¢t depends on T but is independent of the set £.
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e Furthermore, if the matrix of T is A then the magnification factor associ-
ated to T is
t = |det Al.

That is, the absolute value of det A has a geometric interpretation as the
factor by which T" magnifies volume.

(The geometric interpretation of the sign of det A will be discussed in the next
section.)

An obstacle to pursuing these ideas is that we don’t have a theory of
volume in R” readily at hand. In fact, volume presents real difficulties. For
instance, any notion of volume that has sensible properties can not apply
to all sets; so either volume behaves unreasonably or some sets don’t have
well defined volumes at all. Here we have been tacitly assuming that volume
does behave well and that the sets £ under consideration do have volumes.
This section will investigate volume informally by considering how it ought
to behave, stating assumptions as they arise and arriving only at a partial
description. The resulting arguments will be heuristic, and the skeptical reader
will see gaps in the reasoning. Volume will be discussed further in chapter 6,
but a full treatment of the subject (properly called measure) is beyond the
range of this text.

The standard basis vectors eq, ..., e, in R™ span the unit box,
B={ae1+ - +ane,:0<a; <1,...,0< o, <1},

Thus bor means interval when n = 1, rectangle when n = 2, and the usual
notion of box when n = 3. Let p be a point in R", let a4, ..., a, be positive
real numbers, and let B’ denote the box spanned by the vectors ajeq, ...,
anen and translated by p,

B ={ajaie; + -+ anane, +p: 0< a3 <1,...,0< a, < 1}.

(See figure 3.11. The figures of this section are set in two dimensions, but the
ideas are general and hence so are the figure captions.) A face of a box is the
set of its points such that some particular «; is held fixed at 0 or at 1 while
the others vary. A box in R™ has 2n faces.

A natural definition is that the unit box has unit volume,

vol B=1.

We assume that volume is unchanged by translation. Also, we assume that
box volume is finitely additive, meaning that given finitely many boxes By,
..., By that are disjoint except possibly for shared faces or shared subsets of
faces, the volume of their union is the sum of their volumes,

M M
vol | JB; =) vol B;. (3.6)
i=1 =1
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And we assume that scaling any spanning vector of a box affects the box’s
volume continuously in the scaling factor. It follows that scaling any spanning
vector of a box by a real number a magnifies the volume by |a|. To see this,
first note that scaling a spanning vector by an integer £ creates |¢| abutting
translated copies of the original box, and so the desired result follows in this
case from finite additivity. A similar argument applies to scaling a spanning
vector by a reciprocal integer 1/m (m # 0), since the original box is now |m|
copies of the scaled one. These two special cases show that the result holds
for scaling a spanning vector by any rational number r = £/m. Finally, the
continuity assumption extends the result from the rational numbers to the
real numbers, since every real number is approached by a sequence of rational
numbers. Since the volume of the unit box is normalized to 1, since volume
is unchanged by translation, and since scaling any spanning vector of a box
by a magnifies its volume by |a|, the volume of the general box is (recalling
that ay, ..., a, are assumed to be positive)

!
vol B' =ay---ay,.

D+ azes

p p+aie; B

€1

Figure 3.11. Scaling and translating the unit box

A subset of R™ that is well approximated by boxes plausibly has a volume.
To be more specific, a subset £ of R™ is well approximated by boxes if for any
€ > 0 there exist boxes By, ..., By, Bnt1, ..., Byu that are disjoint except
possibly for shared faces, such that £ is contained between a partial union of
the boxes and the full union,

N M
UBicecBi (3.7)
=1 =1

and such that the boxes that complete the partial union to the full union have

a small sum of volumes,
M

Z vol B; < e. (3.8)

i=N+1

(See figure 3.12, where £ is an elliptical region, the boxes By through By that
it contains are dark, and the remaining boxes By41 through By, are light.)
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To see that £ should have a volume, note that the first containment of (3.7)
says that a number at most big enough to serve as vol £ (a lower bound) is
L = vol Uf\il B;, and the second containment says that a number at least
big enough (an upper bound) is U = vol U,Ai1 B;. By the finite additivity
condition (3.6), the lower and upper bounds are L = Zil vol B; and U =
Ei]\il vol B;. Thus they are close to each other by (3.8),

M
U-L= Y volBi<e.
i=N+1

Since ¢ is arbitrarily small, the bounds should be squeezing down on a unique
value that is the actual volume of &£, and so indeed &£ should have a volume.
For now this is only a plausibility argument, but it is essentially the idea of
integration and it will be quantified in chapter 6.

Figure 3.12. Inner and outer approximation of £ by boxes

Any n vectors vy, ..., v, in R™ span an n-dimensional parallelepiped
Pory...,vp) ={a1v1 + - +apv, : 0< a1 <1,...,0< a, <1},

abbreviated to P when the vectors are firmly fixed. Again the terminology
is pan-dimensional, meaning in particular interval, parallelogram, and paral-
lelepiped in the usual sense for n = 1,2,3. We will also consider translations
of parallelepipeds away from the origin by offset vectors p,

P'=P+p={v+p:veP}

(See figure 3.13.) A face of a parallelepiped is the set of its points such that
some particular «; is held fixed at 0 or at 1 while the others vary. A paral-
lelepiped in R™ has 2n faces. Boxes are special cases of parallelepipeds. The
methods of chapter 6 will show that parallelepipeds are well approximated by
boxes, and so they have well defined volumes. We assume that parallelepiped
volume is finitely additive, and we assume that any finite union of paral-
lelepipeds each having volume zero again has volume zero.
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P+ v

v
2 p+u

U1

Figure 3.13. Parallelepipeds

To begin the argument that the linear mapping 7' : R™ — R™ magnifies
volume by a constant factor, we pass the unit box B and the scaled translated
box B' from earlier in the section through T. The image of B under T is a
parallelepiped T'B spanned by T'(e1), ..., T(es), and the image of B' is a
parallelepiped TB' spanned by T'(aie1), ..., T(ane,) and translated by T'(p).
(See figure 3.14.) Since T'(a1e1) = a1 T (e1), ..., T(anen) = anT (ey), it follows
that scaling the sides of TB by a1, ..., a, and then translating the scaled
parallelepiped by T'(p) gives TB'. As for boxes, scaling any spanning vector
of a parallelepiped by a real number a magnifies the volume by |a|, and so we
have

vol TB' =a;y---a, - vol TB.

But recall that also
vol B =ay-ap.

The two displays combine to give

vol TB'!
vol B’

That is, the volume of the T-image of a box divided by the volume of the
box is constant, regardless of the box’s location or side lengths, the constant
being the volume of TB, the T-image of the unit box B. Call this constant
magnification factor ¢. That is,

=vol TB.

vol TB' =t -vol B' for all boxes B'. (3.9)

We need one last preliminary result about volume. Again let £ be a subset
of R™ that is well approximated by boxes. Fix a linear mapping 7' : R" —
R™. Very similarly to the argument for &£, the set T'€ also should have a
volume, because it is well approximated by parallelepipeds. Indeed, the set
containments (3.7) are preserved under the linear mapping T,

N M
T|\JBicTECT| B

i=1 i=1
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o) g8

e

Figure 3.14. Linear image of the unit box and of a scaled translated box

In general, the image of a union is the union of the images, so this rewrites as

N M
1B cTe c | TB.

i=1 i=1

(See figure 3.15.) As before, numbers at most big enough and at least big
enough for the volume of T'€ are

N N M M
L=vol | JTB;=) volTB;, U=vol | JTBi=) vol TB;
=1 =1 =1 =1

The only new wrinkle is that citing the finite additivity of parallelepiped
volume here assumes that the parallelepipeds TB; either inherit from the
original boxes B; the property of being disjoint except possibly for shared
faces, or they all have volume zero. The assumption is valid because if T is
invertible then the inheritance holds, while if T' is not invertible then we will
see later in this section that the T'B; have volume zero as desired. With this
point established, let ¢ be the factor by which 7" magnifies box-volume. The
previous display and (3.9) combine to show that the difference of the bounds
is

M M M
U—L= Y volTBi= ) t-volBi=t- Y volB;<te.
i=N+1 i=N+1 i=N+1

The inequality is strict if ¢ > 0, and it collapses to U — L = 0if t = 0. In
either case, since ¢ is arbitrarily small, the argument that TE should have a
volume is the same as for €.

To complete the argument that the linear mapping 7' : R® — R™ mag-
nifies volume by a constant factor, we argue that for any subset £ of R"
that is well approximated by boxes, vol T'E is t times the volume of £. Let
V = vol Ufil B;. Then & is contained between a set of volume V' and a set of
volume less than V +¢ (again see figure 3.12, where V is the shaded area and
V +¢ is the total area), and T'€ is contained between a set of volume ¢tV and
a set of volume at most ¢(V +¢) (again see figure 3.15, where ¢V is the shaded
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Figure 3.15. Inner and outer approximation of T'€ by parallelepipeds

area and t(V +¢) is the total area). Thus the volumes vol £ and vol T'€ satisfy
the condition
tvV < vol TE < t(V +e)
V4+e= vo& = V

Since € can be arbitrarily small, the left and right quantities in the display
can be arbitrarily close to ¢, and so the only possible value for the quantity
in the middle (which is independent of €) is ¢. This gives the desired equality
announced at the beginning of the section,

vol TE =t - vol €.

In sum, subject to various assumptions about volume, 7' magnifies the volumes
of all boxes and of all figures that are well approximated by boxes by the same
factor, which we have denoted t¢.

Now we investigate the magnification factor ¢ associated to the linear map-
ping T, with the goal of showing that it is | det A| where A is the matrix of 7'
As a first observation, if the linear mappings S,7 : R" — R"™ magnify
volume by s and t respectively, then ST magnifies volume by st. In other
words, the magnification of linear mappings is multiplicative. Also, recall that
the mapping T is simply multiplication by the matrix A. Since any matrix
is a product of elementary matrices times an echelon matrix, we only need
to study the magnification of multiplying by such matrices. Temporarily let
n=2.

The 2-by-2 recombine matrices take the form R = [} ¢] and R’ = [} 9]
with ¢ € R. The standard basis vectors e; and e; are taken by R to its
columns, e; and ae; + e5. Thus R acts geometrically as a shear by a in the
e1-direction, magnifying volume by 1. (See figure 3.16.) Note that 1 = | det R|
as desired. The geometry of R’ is left as an exercise.

The scale matrices are S = [ 9] and S” = [§ 0]. The standard basis gets
taken by S to ae; and ez, so S acts geometrically as a scale in the e;-direction,
magnifying volume by |al; this is | det S|, again as desired. (See figure 3.17.)
The situation for S’ is similar.
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Figure 3.16. Shear

Figure 3.17. Scale

The transposition matrix is T' = [¢ §]. This exchanges e; and e,, acting as
a reflection through the diagonal, magnifying volume by 1. (See figure 3.18.)
Since det T' = —1, the magnification factor is the absolute value of the deter-
minant.

‘

Figure 3.18. Reflection

Finally, the identity matrix £ = I has no effect, magnifying volume by 1,
and any other echelon matrix E has bottom row (0,0) and hence squashes e;
and ez to vectors whose last component is 0, magnifying volume by 0. (See
figure 3.19.) The magnification factor is |det E| in both cases.

The discussion for scale matrices, transposition matrices, and echelon ma-
trices generalizes effortlessly from 2 to n dimensions, but generalizing the
discussion for recombine matrices R;;; , takes a small argument. Since trans-
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Figure 3.19. Squash

position matrices have no effect on volume, we may multiply R;;; . from the
left and from the right by various transposition matrices to obtain Ry;2 , and
study it instead. Multiplication by R;;» , preserves all of the standard basis
vectors except e, which is taken to ae; + es as before. The resulting paral-
lelepiped P(e1,ae1 +ea,es,...,e,) consists of the parallelogram shown in the
right side of figure 3.16, extended one unit in each of the remaining orthogonal
n — 2 directions of R™. The n-dimensional volume of the parallelepiped is its
base (the area of the parallelogram, 1) times its height (the (n—2)-dimensional
volume of the unit box over each point of the parallelogram, again 1). That is,
the n-by-n recombine matrix still magnifies volume by 1, the absolute value
of its determinant, as desired. The base times height property of volume is yet
another invocation here, but it is a consequence of a theorem to be proved in
chapter 6, Fubini’s Theorem. Summarizing,

Theorem 3.8.1 (Geometry of Linear Mappings). Any linear mapping
T : R® — R" is the composition of a possible squash followed by shears,
scales and reflections. If the matriz of T is A then T magnifies volume
by | det AJ.

Proof. The matrix A of T is a product of elementary matrices and an echelon
matrix. The elementary matrices act as shears, scales and reflections, and
if the echelon matrix is not the identity it acts as a squash. This proves
the first statement. Each elementary or echelon matrix magnifies volume by
the absolute value of its determinant. The second statement follows since
magnification and | det | are both multiplicative. O

The work of this section has given a geometric interpretation of the mag-
nitude of det A: it is the magnification factor of multiplication by A. If the
columns of A are denoted ¢y, ..., ¢, then Ae; = ¢; for j =1,...,n, so that
even more explicitly |det A| is the volume of the parallelepiped spanned by
the columns of A.

Exercises

3.8.1. (a) The section states that the image of a union is the union of the
images. More specifically, let A and B be any sets, let f : A — B be any
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mapping, and let Ay, ..., Ay be any subsets of A. Show that

N N
f (U Az-) = £(4).
i=1 =1

(This exercise is purely set-theoretic, making no reference to our working
environment of R™.)

(b) Consider a two-point set A = {a;,a2} where a; # a2, a one-point
set B = {b}, and the only possible mapping f : A — B, given by
fla1) = f(a2) = b. Let Ay = {a1} and As = {a2}, subsets of A. What is
the intersection A; N A>? What is the image of the intersection, f(A4; N A2)?
What are the images f(A;) and f(As)? What is the intersection of the images,
f(A1) N f(A3)? Is the image of an intersection in general the intersection of
the images?

3.8.2. Describe the geometric effect of multiplying by the matrices R’ and S’
in the section. Describe the effect of multiplying by R and S if a < 0.

3.8.3. Describe the geometric effect of multiplying by the 3-by-3 elementary
matrices R2;3,1, R3;172, and 827_3.

3.8.4. Describe counterclockwise rotation of the plane by angle 7/2 as a com-
position of shears and scales.

3.8.5. Describe counterclockwise rotation of the plane by angle § (where
cos @ # 0 and sinf # 0) as a composition of shears and scales.

3.8.6. In R3, describe the linear mapping that takes e; to es, es to es, and
e3 to ey as a composition of shears, scales, and transpositions.

3.8.7. Let P be the parallelogram in R? spanned by (a,c) and (b,d). Cal-
culate directly that |det[25]| = area P. (Hint: area = base x height
= |(a,c)||(b,d)||sinb4,c),(5,q)|- It may be cleaner to find the square of the
area.)

3.8.8. This exercise shows directly that | det| = volume in R3. Let P be the
parallelepiped in R3 spanned by v, vs, vs, let P’ be spanned by the vectors
v}, vy, v obtained from performing the Gram-Schmidt process on the v;’s,
let A € M3(R) have rows vy, vz, vz and let A" € M3(R) have rows v, v}, v5.

(a) Explain why det A’ = det A.

(b) Give a plausible geometric argument that vol P’ = vol P.

(c) Show that

o [P oo
AA =10 b2 0
0 0 [vf

Explain why therefore | det A'| = vol P’. It follows from parts (a) and (b) that
that | det A| = vol P.
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3.9 Geometry of the Determinant: Orientation

Recall from section 2.1 that a basis of R™ is a set of vectors {fi,..., fp} such
that any vector in R™ is a unique linear combination of the {f;}. Though
strictly speaking a basis is only a set, we adopt here the convention that the
basis vectors are given in the specified order indicated. Given such a basis,
view the vectors as columns and let F' denote the matrix in M, ,(R) with
columns fi, ..., fp. Thus the order of the basis vectors is now relevant. For
a standard basis vector e; of R, the matrix-by-vector product Fe; gives the
jth column f; of F. Therefore, for any vector z = (z1,...,z,) € RP (viewed
as a column),

/4 /4 14
Fr=F- E xjej = E .CL'J'FGJ' = E .fL'jfj.
j=1 j=1 7j=1

This shows that multiplying all column vectors € RP by the matrix F' gives
precisely the linear combinations of f1, ..., fp. Hence we have the equivalences

{f1,-.-, fp} is a basis for R"

each y € R"™ is uniquely expressible
as a linear combination of the {f;}

each y € R" takes the form
y = Fz for a unique ¢ € R?

<= F'is invertible
<= F is square (i.e., p=n) and det F # 0.

These considerations have proved

Theorem 3.9.1 (Characterization of Bases). Any basis of R" has n ele-
ments. The vectors {f1,..., fn} form a basis exactly when the matriz F formed
by their columns has nonzero determinant.

Let {f1,...,fn} be a basis of R", and let F be the matrix formed by their
columns. Abuse terminology and call det F' the determinant of the basis,
written det{fi,..., fn}. Again, this depends on the order of the {f;}. There
are then two kinds of basis of R", positive and negative bases, according
to the sign of their determinants. The standard basis {es,...,e,} forms the
columns of the identity matrix I and is therefore positive.

Since every linear mapping is continuous, the multilinear function det F’
is continuous in the n? entries of fi, ..., f,. If a basis {fi,..., f,} can be
smoothly deformed via other bases to the standard basis then the correspond-
ing determinants must change continuously to 1 without passing through 0.
Such a basis must therefore be positive. Similarly, a negative basis can not be
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smoothly deformed via other bases to the standard basis. It is also true but
less clear (and not proved here) that every positive basis deforms smoothly to
the standard basis.

The plane R? is usually drawn with {e;, ez} forming a counterclockwise
angle of 7/2. Two vectors { f1, fo} form a basis if they are not collinear. There-
fore the basis {f1, f2} can be deformed via bases to {e1,e2} exactly when the
angle 8¢, ¢, goes counterclockwise from f; to fa. (Recall from equation (2.2)
that the angle between two nonzero vectors is between 0 and 7.) This shows
that in R2, the basis {fi, f2} is positive exactly when the angle from f; to f2
is counterclockwise. (See figure 3.20.)

f2 fl

h o

Figure 3.20. Positive and negative bases of R?

Three-space R? is usually drawn with {e;, e2,e3} forming a right-handed
triple, meaning that when the fingers of your right hand curl from e; to e
your thumb forms an acute angle with es. Three vectors {f1, fa, fs} form a
basis if they are not coplanar. In other words they must form a right- or left-
handed triple. Only right-handed triples deform via other nonplanar triples
to {ei1, e, e3}. Therefore in R3, the basis {fi, f2, f3} is positive exactly when
it forms a right-handed triple. (See figure 3.21.)

I3

f2
’ =
fi

h fs

Figure 3.21. Positive and negative bases of R>
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The geometric generalization to R™ of a counterclockwise angle in the
plane and a right handed triple in space is not so clear, but the algebraic
notion of positive basis is the same for all n.

Consider any invertible mapping T : R” — R” with matrix A € M,,(R),
and any basis {f1,..., fn} of R™. If F again denotes the matrix with columns
fis--., fn,then AF has columns {Af1,...,Afn} ={T(f1),.--,T(fn)}. These
form a new basis for R™ with determinant

det{T(f1),...,T(fn)} = det AF = det Adet F = det Adet{f1,..., fn}

This gives a geometric interpretation of the sign of det A: If det A > 0 then T
preserves the orientation of bases, and if det A < 0 then T reverses orientation.
For example, the mapping with matrix

0001
1000
0100
0010

reverses orientation in RA.

To summarize: Let A be an n-by-n matrix. Whether det A is nonzero says
whether A is invertible, the magnitude of det A is the factor by which A
magnifies volume, and (assuming that det A # 0) the sign of det A determines
how A affects orientation.

Exercises

3.9.1. Any invertible mapping 7" : R® — R"™ is a composition of scales,
shears and transpositions. Give conditions on such a composition to make the
mapping orientation-preserving, orientation-reversing.

3.9.2. Does the linear mapping 7' : R™ — R™ that takes e; to es, es to eg,
..., ey to ey preserve or reverse orientation? (The answer depends on n.)
More generally, if 7 is a permutation in S,,, does the linear mapping taking e;
to ex(1), - - - » €n tO ey () preserve or reverse orientation? (This depends on 7.)

3.9.3. Argue geometrically in R? that any basis can be smoothly deformed
via other bases to the standard basis or to {er,—e2}. Do the same for R?
and {ey, ez, —es}.

3.10 The Cross Product, Lines, and Planes in R3

Generally in R"™ there is no natural way to associate to a pair of vectors u
and v a third vector. In R?, however, the plane specified by v and v has only
one orthogonal direction, i.e., dimension 3 is special because 3 —2 = 1. In R?
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a normal vector to u and v can be specified by making suitable conventions on
its orientation viz a viz the other two vectors, and on its length. This will give
a vector-valued product of two vectors that is special to three-dimensional
space, called the cross product. The first part of this section develops these
ideas.

Given any two vectors u,v € R2, we want their cross product u x v € R3
to be orthogonal to u and v,

uxvlu and uxwv Lo (3.10)

There is the question of which way u x v should point along the line orthogonal
to the plane spanned by u and v. The natural answer is that the direction
should be chosen to make the ordered triple of vectors {u,v,u x v} positive
unless it is degenerate,

det(u,v,u x v) > 0. (3.11)

Also there is the question of how long u x v should be. With hindsight, we
assert that specifying the length to be the area of the parallelogram spanned
by v and v will work well. That is,

|u x v| = areaP(u,v). (3.12)

The three desired geometric properties (3.10) through (3.12) seem to describe
the cross product completely. (See figure 3.22.)

u

Figure 3.22. The cross product of u and v

The three geometric properties also seem disparate. However, they combine
into a uniform algebraic property, as follows. Since the determinant in (3.11) is
nonnegative, it is the volume of the parallelepiped spanned by u, v, and u x v.
The volume is the base times the height, and since u x v is normal to u and v
the base is the area of P(u,v) and the height is |u x v|. Thus

det(u,v,u x v) = areaP(u,v) |u x v|.

It follows from the previous display and (3.12) that
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lu x v|? = det(u,v,u X v).

Since orthogonal vectors have inner product 0, since the determinant is 0 when
two rows agree, and since the square of the absolute value is the vector’s inner
product with itself, we can rewrite (3.10) and this last display (obtained from
(3.11) and (3.12)) uniformly as equalities of the form (u X v, w) = det(u, v, w)
for various w,

(u X v,u) = det(u,v,u),

(u X v,v) = det(u,v,v), (3.13)

(u x v,u x vy = det(u,v,u X v).

Instead of saying what the cross product is, as an equality of the form u xv =
f(u,v) would, the three equalities of (3.13) say how the cross product interacts
with certain vectors—including itself—via the inner product. Again, the idea
is to characterize rather than construct.

(The reader may object to the argument just given that det(u,v,u x v) =
areaP(u,v) |u X v|, on the grounds that we don’t really understand the area
of a 2-dimensional parallelogram in 3-dimensional space to start with, that
in R? we measure volume rather than area, and the parallelogram surely has
volume zero. In fact, the argument can be viewed as motivating the formula
as the definition of the area. This idea will be discussed more generally in
section 8.1.)

We continue the discussion of (3.13). In general, a vector’s inner products
with other vectors completely describe the vector itself. The observation to
make is that for any vector £ € R™ (n need not be 3 in this paragraph),

if (x,w) =0 for all w € R" then z = 0,,.

This is because specializing w to x shows that (z,z) = 0. It follows from the
observation that for any two vectors z,z’ € R",

if (z,w) = (z',w) for all w € R" then z = z'.

That is, the inner product values (z,w) for all w € R™ specify z, as antici-
pated. The following definition relies on this fact.

Definition 3.10.1 (Cross Product). Let u and v be any two vectors in R3.
Their cross product is defined by the property

(u x v,w) = det(u,v,w) for all w € R3.

That is, u X v is the unique vector x € R? such that (z,w) = det(u,v,w) for
all w € R3.

The problem with this definition is that we don’t yet know that the cross
product exists at all, only that if it exists then its intrinsic algebraic defining
property characterizes it uniquely. Soon we will prove that the cross product
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exists by writing its formula in coordinates and verifying that the formula
satisfies the property, but for now we defer this in order to continue working
intrinsically. Granting that the cross product does exist, graceful arguments
with its defining condition show that it has all the properties that we want it
to have.

Proposition 3.10.2 (Properties of the Cross Product).

(CP1) The cross product is skew-symmetric: v x u = —u X v for all u,v € R3.
(CP2) The cross product is bilinear: For all scalars a,a’,b,b' € R and all
vectors u,u’,v,v' € R3,

(au +a'v') x v =a(u X v) +a' (v’ X v),
ux (bv+b'v') =blu xv) +b'(uxv').

(CP3) The cross product u X v is orthogonal to u and v.

(CP4) u x v = 0 if and only if u and v are collinear (meaning that u = av or
v = au for some a € R).

(CP5) If u and v are not collinear then the triple {u,v,u x v} is right handed.

(CP6) The magnitude |u x v| is the area of the parallelogram spanned by u
and v.

Proof. (1) This follows from the skew-symmetry of the determinant. For any
w € R3,

(v x u,w) = det(v,u, w) = — det(u,v,w) = —(u X v,w) = (—u X v,w).

Since w is arbitrary, v X u = —u X v.

(2) For the first variable, this follows from the linearity of the determinant
in its first row-vector variable and the linearity of the inner product in its first
vector variable. Fix a,a’ € R, u,u’,v € R3. For any w € R3,

((au + a'u') x v,w) = det(au + a'u’,v,w)
= adet(u,v,w) + a’ det(u', v, w)

a{u x v,w) + a'{(u' x v,w)

= (a(u x v) + a'(u' x v),w).

Since w is arbitrary, (au + a'u’) x v = a(u x v) + a' (v’ x v). The proof for the
second variable follows from the result for the first variable and from (1).

(3) (u x v,u) = det(u,v,u) = 0 since the determinant of a matrix with
two equal rows vanishes. Similarly, (u x v,v) = 0.

(4) If u = av then for any w € R3,

(u x v,w) = {av X v,w) = (a(v X v),w) = a{v X v,w) = adet(v,v,w) = 0.

Since w is arbitrary, u x v = 0. Similarly if v = au.
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Conversely, suppose that u and v are not collinear. Then they are linearly
independent, and so no element of R? can be written as a linear combination
of v and v in more than one way. The set {u, v} is not a basis of R3, because
every basis consists of three elements. Since no elements of R® can be written
as a linear combination of u and v in more than one way, and since {u,v}
is not a basis, the only possibility is that some w € R® can not be written
as a linear combination of u and v at all. Thus the set {u,v,w} is a linearly
independent set of three elements, making it a basis of R3. Compute that
since {u,v,w} is a basis,

(u x v,w) = det(u,v,w) # 0.

Therefore u x v # 0.

(5) By (4),uxv # 0,500 < {uxv,uxv)=det(u,v,u xv). By the results
on determinants and orientation, {u,v,u X v} is right-handed.

(6) By definition, |u x v|?> = (u X v,u x v) = det(u,v,u x v). As discussed
earlier in the section, det(u,v,u x v) = areaP (u,v) |u x v|. The result follows
from dividing by |u x v| if it is nonzero, and from (4) otherwise. O

To prove that the cross product exists, it suffices to write a formula for it
that satisfies Definition 3.10.1. The formula is

u X v = (det(u,v,e1),det(u,v, ez), det(u, v, e3)).

This formula indeed satisfies the definition because by the linearity of the
determinant in its third argument we have for any w = (zw, Yw, 2w) € R?,

{u X v,w) = det(u,v,e1) - Ty + det(u, v, e3) - Yy + det(u, v, e3) - 24
= det
= det

= det

U, v, Tyer) + det(u, v, ypes) + det(u, v, zpes)

Uy U, Tw€1 + Yuwe2 + 2€3)

A~ A~ o~ o~

Uy U, W).

In coordinates, the formula for the cross product is

uxv=/{(det |Zy Yy 2v |, det | Ty Yy 24| , det |2y Yy 20 |)
1 00 010 001

= (YuZv — Zulv; ZuTy — TuZy; Tuly — YuTy)-
A bit more conceptually, the cross product formula in coordinates is

uXv=det | Ty Yy 2o
€1 €2 €3

This is only a mnemonic device—strictly speaking, it doesn’t lie within our
grammar because the entries of the bottom row are vectors rather than scalars.
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But even so, its two terms x,y,€3 — YyTye3 do give the third entry of the
cross product, and similarly for the others. In chapter 8, where we will have to
compromise our philosophy of working intrinsically rather than in coordinates,
this formula will be cited and generalized. In the meantime its details are not
important except for mechanical calculations, and we want to use it as little
as possible, as with the determinant earlier. Indeed, the display shows that
the cross product is essentially a special case of the determinant.
It is worth knowing the cross products of the standard basis pairs,

€1 Xe = 03, €1 X ey = €3, €1 Xez= —e€g,
ez X e = —e3, €3 Xey= 03, ey X ez = e,
€3 X e = €3, €3 Xey=—€1, e3Xe3z= 02.

Here e; x e; is 03 if i = j, and e; X e; is the third standard basis vector if
1 # j and ¢ and j are in order in the diagram

11— 2

NS

3

and e; x e; is minus the third standard basis vector if ¢ # j and ¢ and j are
out of order in the diagram.

The remainder of this section describes lines and planes in R?2.

A line in R? is determined by a point p and a direction vector d. (See
figure 3.23.) A point ¢ lies on the line exactly when it is a translation from p
by some multiple of d. Therefore,

Lp,d)={p+td:teR}.
In coordinates, a point (z,y, z) lies on £((zp, Yp, 2p), (Td, Ya, 24)) exactly when
r=zp+trq, Y=yp+tys, 2z=2,+1tzg forsometeR.

If the components of d are all nonzero then the relation between the coordi-
nates can be expressed without the parameter ¢,

Zq Ya Zd

x—wp_y—yp_z—zp

For example, the line through (1,1,1) in the direction (1,2,3) consists of all
points (z,y,z) satisfying z = 1+¢, y =1+2¢, 2 =1+3t for t € R, or,
equivalently, satisfying z — 1 = (y —1)/2 = (2 —1)/3.

A plane in R? is determined by a point p and a normal (orthogonal)
vector n. (See figure 3.24.) A point z lies on the plane exactly when the
vector from p to z is orthogonal to n. Therefore,
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Figure 3.23. Line in R?

P(pan) = {SL' € R3 : <$ _p:n> = 0}
In coordinates, a point (z,y, z) lies on P((zp, Yp, 2p), (Tn, Yn, 2n)) exactly when

(x —xp)Tn + (Y — Yp)yYn + (2 — 2p)2n = 0.

Figure 3.24. Plane in R?

Exercises

3.10.1. Evaluate (2,0,-1) x (1,-3,2).

3.10.2. Suppose that v x e; = v X es = 0. Describe v.

3.10.3. True or false: For all u, v, w in R, (u X v) X w = u x (v x w).
3.10.4. Express (u + v) X (u —v) as a scalar multiple of u x v.

3.10.5. For fixed u, v in R?® with u # 0, describe the vectors w satisfying the
condition u X v = u X w.
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3.10.6. What is the line specified by two points p and p'?

3.10.7. Give conditions on the points p, p’ and the directions d, d’ so that

tp,d) = L(p',d').

3.10.8. Express the relation between the coordinates of a point on £(p,d) if
the z-component of d is 0.

3.10.9. What can you conclude about the lines

T—Tp _ Y=Y _2—%

r—x — Z—2z
and P = Y= = P
Zq Ya Zd D YD 2D

given that z4xp + yayp + zezp = 07 What can you conclude if z4/zp =
ya/yp = z4/zp?

3.10.10. Show that £(p,d) and £(p',d’) intersect if and only if the linear equa-
tion Dt = Ap is solvable, where D € M3 5(R) has columns d and d', ¢ is the
column vector [} ], and Ap = p’ —p. For what points p and p’ do £(p, (1,2,2))
and £(p', (2,—1,4)) intersect?

3.10.11. Use vector geometry to show that the distance from the point g to
the line £(p,d) is
(g —p) x d|
la|
(Hint: what is the area of the parallelogram spanned by ¢ — p and d?) Find
the distance from the point (3,4, 5) to the line £((1,1,1),(1,2, 3)).

3.10.12. Show that the time of nearest approach of two particles whose po-
sitions are s(t) = p+ tv, §(t) = p+ t0 is t = —(Ap, Av)/|Av|%. (You may
assume that the particles are at their nearest approach when the difference of
their velocities is orthogonal to the difference of their positions.)

3.10.13. Write the equation of the plane through (1,2,3) with normal direc-
tion (1,1,1).

3.10.14. Where does the plane z/a + y/b+ z/c = 1 intersect each axis?

3.10.15. Specify the plane containing the point p and spanned by directions
d and d'. Specify the plane containing the three points p, ¢, and r.

3.10.16. Use vector geometry to show that the distance from the point g to
the plane P(p,n) is
[{g — p,n)|
In|
(Hint: Resolve ¢ — p into components parallel and normal to n.) Find the
distance from the point (3,4,5) to the plane P((1,1,1),(1,2,3)).
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3.11 Summary

Linear algebra is easy in the abstract since the vector space operations pass
through linear mappings, and it is easy in the concrete since mechanical ma-
trix manipulations are straightforward. While the matrix methods from this
chapter are handy computational tools, it is also crucial to understand the
intrinsic notion of a linear mapping: this is the idea that we will use to define
multivariable differentiation in the next chapter.
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The Derivative

In one-variable calculus the derivative is a limit of difference quotients, but
this idea does not generalize to many variables. The multivariable definition
of the derivative to be given in this chapter has three noteworthy features:

The derivative is defined as a linear mapping.
The derivative is characterized intrinsically rather than constructed in co-
ordinates.

e The derivative is characterized by the property of closely approximating
the original function near the point of approximation.

Section 4.1 defines the multivariable derivative in a way that captures these
ideas. Section 4.2 obtains some basic results about the derivative intrinsically,
notably the Chain Rule. Section 4.3 computes with coordinates to calculate
the derivative by considering one variable at a time and using the techniques
of one-variable calculus. This section also obtains a coordinate-based version
of the Chain Rule. Section 4.4 studies the multivariable counterparts of higher
order derivatives from one-variable calculus. Section 4.5 discusses optimization
of functions of many variables. Finally, section 4.6 discusses the rate of change
of a function of many variables as its input moves in any fixed direction, not
necessarily parallel to a coordinate axis.

4.1 The Derivative Redefined

In one variable calculus, the derivative of a function f : R — R at a point
a € R is defined as a limit:

fl(a): lim f(a+h)_f(a)

h—0 h (4'1)

But for any integer n > 1, the corresponding expression makes no sense for a
mapping f : R® — R™ and for a point a of R™. Indeed, the expression is
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[43

lim f(a+h) _f(a)7 9
h—0, h

but this is not even grammatically admissible—there is no notion of divi-
sion by the vector h. That is, the definition of derivative does not generalize
transparently to more than one ipnut variable. We need to think about the
derivative in different terms.

In the one variable case n = m = 1, the scalar f'(a) is interpreted geomet-
rically as the slope of the tangent line to the graph of f at the point (a, f(a)).
The graph of the tangent line consists of the points

(a+ h, f(a) + f'(a)h) for all h € R,
whereas the graph of f itself consists of the points
(a+h, f(a+h)) for all h € R.

The tangent line is distinguished by the property that the second coordinate
of its points approximates the second coordinate of the corresponding points
of the original curve extremely well when h is small. To explicate “extremely
well,” rewrite (4.1) as

Lo Jla+ 1) — f(a) = ['a)h

h—0 h

=0. (4.2)

The numerator here is the difference between the y-coordinates in the previous
two displays. (See figure 4.1.) The rewritten equation (4.2) shows that when
h is small, not only is the vertical distance f(a + h) — f(a) — f'(a)h from the
tangent line to the curve small as well, but it is small even relative to the
horizontal distance h.

This is the right idea. Instead of viewing the one-variable derivative as the
scalar f'(a), think of it as the corresponding linear mapping 7, : R — R,
multiplication by f’(a). That is, think of it as the mapping

To.(h) = f'(a)h for all h € R,
with its characterizing property

po @+ 1) = (@) = Tu(0)]

i 7] =0

Since we are working with one variable, the absolute value signs have no
effect on the condition (i.e., it is the same condition as (4.2)), but they will
become essential when we generalize to many variables. See figure 4.2 for an
illustration of the condition—the figure is similar to figure 4.1, but it shows
that the condition is best understood in the coordinate system centered at the
point of tangency. The shaded axis-portions in the figure are the numerator
and denominator in the condition, illustrating that the numerator is much
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Y
8

Figure 4.1. Vertical distance from tangent line to curve

Y
>

Figure 4.2. Vertical distance in local coordinates

smaller. The condition is being called a “characterizing property” because it
describes how T, behaves rather than simply saying what T, is. The issue
here is similar to the previous discussions of the determinant and the cross
product.

The characterizing property is local, meaning that it depends only on the
behavior of f(x) for x-values x = a + h near a and for z = a itself. On the
other hand, the characterizing property depends on the behavior of f(z) for
all z-values near a along with x = a. Thus the following definition is handy
for our purposes.
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Definition 4.1.1 (Interior Point). Let A be a subset of R™, and let a be
a point of A. Then a is an interior point of A if some £-ball about a is a
subset of A. That is, a is an interior point of A if B(a,e) C A for somee > 0.

Now we can define the derivative in a way that encompasses many variables
and is suitably local.

Definition 4.1.2 (Derivative). Let A be a subset of R", let f : A — R™
be a mapping, and let a be an interior point of A. Then f is differentiable
at a if there exists a linear mapping T, : R™ — R™ satisfying the condition

i [fa+h) = f(a) = Tu(h)
h—0, |h|

=0. (4.3)

This Ty, is called the derivative of f at a, written Df, or (Df),. When f
is differentiable at a, the matriz of the linear mapping D f, is written f'(a)
and is called the Jacobian matrix of f at a.

Here are some points to note about Definition 4.1.2:

e Any assertion that a mapping is differentiable at a point has the connota-
tion that the point is an interior point of the mapping’s domain. That is, if
f is differentiable at a then B(a,e) C A for some € > 0. In the special case
n = 1 we are not allowing the derivative at an endpoint of the domain.

e The limit in (4.3) is a function limit as in Definition 2.5.1. Specifically, the
function is

|f(a+h) — fla) — Ta(h)|

9:B(0.,9) = {0} — R, () = i ,

for the same € as in the first bullet. Thus indeed 0,, is a limit point of the
domain of g, as required for the limit to exist. In (4.3) the numerator is
absolute value on R™, the denominator is absolute value on R™, and the
quotient is real.

e The domain of the linear mapping T, is unrestricted even if f itself is
defined only locally about a. Indeed, the definition of linearity requires
that the linear mapping have all of R™ as its domain. Any linear mapping
is so uniform that in any case its behavior on all of R™ is determined by its
behavior on any e-ball about 0,, (exercise 4.1.1). In geometric terms, the
graph of T', the tangent object approximating the graph of f at (a, f(a)),
extends without bound, even if the graph of f itself is restricted to points
near (a, f(a)). But the approximation of the graph by the tangent object
needs to be close only near the point of tangency.

Returning to the idea of the derivative as a linear mapping, when n = 2
and m = 1 a function f : A — R is differentiable at an interior point
(a,b) of A if for small scalar values h and k, f(a + h,b+ k) — f(a,b) is well
approximated by a linear function
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T(h, k) = ah + Bk

where a and f are scalars. Since the equation z = f(a, b) + ah + Sk describes
a plane in (z,y, z)-space (where h = x —a and k = y — b), f is differentiable
at (a,b) if its graph has a well-fitting tangent plane through (a,b, f(a,b)).
(See figure 4.3.) Here the derivative of f at (a,b) is the linear mapping tak-
ing (h,k) to ah + Bk and the Jacobian matrix of f at a is therefore [a, ]
The tangent plane in the figure is not the graph of the derivative D f(44),
but rather a translation of the graph. Another way to say this is that the
(h;k, D f(a,p)(h, k))-coordinate system has its origin at the point (a, b, f(a,b))
in the figure.

Figure 4.3. Graph and tangent plane

When n = 1 and m = 3, a mapping f : A — R? is differentiable at an
interior point a of A if f(a+ h)— f(a) is closely approximated for small real h
by a linear mapping

T(h)y= [B]| h
Y
for some scalars a, 3, and . As h varies through R, f(a) +7T'(h) traverses the
line £ = £(f(a),(a,B3,7)) in R? that is tangent at f(a) to the output curve
of f. (See figure 4.4.) Here D f,(h) = [%] h and the corresponding Jacobian

matrix is [%] Note that the figure does not show the domain of f, so it may

help to think of f as a time-dependent traversal of the curve rather than as
the curve itself. The figure does not have room for the (h, D f,(h))-coordinate
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system (which is 4-dimensional), but the D f,(h)-coordinate system has its
origin at the point f(a).

Figure 4.4. Tangent to a parameterized curve

For an example, let A = B((0,0),1) be the unit disk in R?, and consider
the function
f:A_)Ra f($7y):x2_y2'

We show that for any point (a,b) € A, f is differentiable at (a,b) and its
derivative is the linear mapping

Tap : R2 — R?, T(op)(h k) = 2ah — 2bk.

To verify this, we need to check Definition 4.1.2. The point that is written
in the definition intrinsically as a (where a is a vector) is written here in
coordinates as (a,b) (where a and b are scalars), and similarly the vector h
in the definition is written (h, k) here, because the definition is conceptual
whereas here we are going to compute. To check the definition, first note that
every point (a,b) of A is an interior point. This doesn’t deserve a detailed
proof right now, only a quick comment. Second, confirm (4.3) by calculating
that
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lf(a + h:b + k) - f(a: b) - T(a,b)(hak)l

0<
- [(h, k)|
[(a+ h)? = (b+ k)% — a® + b% — 2ah + 2bk]|
|(h, k)|
_ |h2 _ k2|
|(h, k)|
2 2
I+ K
|(h, )|
(A, K> + |(hs K)[?
- |(h, k)|
= 2|(h, k)|.

This shows that by the squeeze theorem,

|f(a+h,b+k) — f(a,b) — T(ap)(h, k)|
1m
(h.k)=(0,0) |(h, )|

=0.

Also, it tacitly shows how the derivative was found for us to verify: the differ-
ence f(a+ h,b+k) — f(a,b) is 2ah — 2bk + h® — k2, which as a function of h
and k has a linear part 2ah — 2bk and a quadratic part h%? — k2 that is much
smaller when h and k are small. The linear approximation of the difference is
the derivative.

Before continuing, we need to settle a grammatical issue. Definition 4.1.2
refers to any linear mapping that satisfies condition (4.3) as the derivative of f
at a. Fortunately, the derivative, if it exists, is unique, justifying the definite
article. The uniqueness is geometrically plausible: if two “straight” objects
(e.g., lines or planes) approximate the graph of f well near (a, f(a)), then
they should also approximate each other well enough that straightness forces
them to coincide. Here is the quantitative argument.

Proposition 4.1.3 (Uniqueness of the Derivative). Let f : A — R™
(where A C R™) be differentiable at a. Then there is only one linear mapping
satisfying the definition of D f,.

Proof. Suppose that the linear mappings T, T, : R* — R™ are both deriva-
tives of f at a. To show that T, = T,, it suffices to show that

| Ta(2) — Ta(x)]

7] =0 for all nonzero x € R".
x
Fix a nonzero vector z, and let ¢ be a nonzero variable scalar. Note that

T,(tz) — Ta(tz)

T.(z) — To(z) = - ,

so that taking absolute values and dividing by |z| gives
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| Ta(z) = Ta(2)| _ |Tatz) - Ta(te)]

|| B |tz]
|Ta (h) - Ta(h)l

= ——————  where h=tz.
|l

(Note the interplay among the three absolute values on R™, on R™, and
on R.) That is,

| To(w) = Ta(@)] _ |Ta(h) + f(a) = fa+h) + fla+h) — f(a) = Ta(h)]

] A

By the Triangle Inequality,

|To(@) = Tu(@)| _ |Ta(h) + f(a) — f(a+h)| n |fla+h) = f(a) = Ta(h)]

|| - |h| ||
_ [flath) =~ fla) = Ta(h)]  |f(a+h)— f(a) — Ta(h)|
|| ld '

Now let the scalar ¢ go to 0 in R. This takes the vector h = tx to 0, in R"
and thus takes the right side to 0 since T, and T, both satisfy condition (4.3).
Consequently the left side |T,(x) — T, (x)|/|2|, which is independent of ¢, must
be 0, and the proof is complete. O

We will study the derivative via two routes. On the one hand, the linear
mapping Df, : R® — R™ is specified by mn scalar entries of its matrix
f'(a), and so calculating the derivative is tantamount to determining these
scalars by using coordinates. On the other hand, developing conceptual theo-
rems without getting lost in coefficients and indices requires the intrinsic idea
of the derivative as a well-approximating linear mapping.

Exercises

4.1.1. Let T : R® — R™ be a linear mapping. Show that for any € > 0, the
behavior of T' on B(0,,¢) determines the behavior of T' everywhere.

4.1.2. Give a geometric interpretation of the derivative when n = m = 2.
Give a geometric interpretation of the derivative when n = 1 and m = 2.

4.1.8. Prove: if f : A — R™ (where A C R") is differentiable at a then f is
continuous at a.

4.1.4. Prove the componentwise nature of differentiability: Let f :
A — R™ (where A C R™) have component functions fi,..., fm, and let
a be a point of A. Show that f is differentiable at a if and only if each compo-
nent f; is, in which case D f, has component functions (Df1)a, ---, (Dfm)a-
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4.1.5. Let f(z,y) = (#*—y?, 2zy). Show that D f(, ) (h, k) = (2ah—2bk, 2bh+
2ak) for all (a,b) € R2. (By the previous problem, you may work componen-
twise.)

4.1.6. Let g(z,y) = ze¥. Show that Dg(, ) (h, k) = he® + kae® for all (a,b) €
0

a
R2. (You may need to use the Mean Value Theorem. Note that 1 = €°.)
4.1.7. Show that if f : R® — R™ satisfies |f(z)| < |z|? for all z € R™ then
f is differentiable at 0,,.

4.1.8. Show that the function f(z,y) = /|zy| for all (z,y) € R? is not
differentiable at (0,0). (First see what D f(g,0)(h,0) and D f,0)(0, k) need to
be.)

4.2 Basic Results

Before digging into the derivative coordinatewise via the Jacobian matrix, we
derive some results intrinsically from the characterizing definition. We begin
by computing two explicit derivatives.

Proposition 4.2.1 (Derivatives of Constant and Linear Mappings).

(1) Let C : A — R™ (where A C R™) be the constant mapping C(z) = ¢ for
all x € A, where c is some fized value in R™. Then the derivative of C at
any interior point a of A is the zero mapping.

(2) The derivative of a linear mapping T : R™ — R™ at any point a € R"
is again T .

Proof. Both of these results hold essentially by grammar. In general the
derivative of a mapping f at a is the linear mapping that well approximates
fla+ h) — f(a) for h near 0,. But C(a + h) — C(a) is the zero mapping for
all h € A, so it is well approximated near 0, by the zero mapping on R".
Similarly, T'(a + h) — T'(a) is T'(h) for all h € R™, and this linear mapping is
well approximated by itself near 0,,.

To prove (1) more symbolically, let Z : R® — R™ denote the zero
mapping, Z(h) = 0,, for all h € R™. Then
im |C(a+ h) — C(a) — Z(h)| lc—c—0p,|

1 — i — lim 0=0.
hoe, ] A ST g, 0= 0

Thus Z meets the condition to be DC,. And (2) is similar, left as exercise 4.2.1.
O

A natural question is what effect addition and scalar multiplication of
mappings have on their derivatives. The answer is unsurprising. Differentiation
passes through the operations: the derivative of a sum is the sum of the
derivatives and the derivative of a scalar multiple is the scalar multiple of the
derivative.
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Proposition 4.2.2 (Linearity of the Derivative). Let f : A — R™
(where A C R™) and g : B — R™ (where B C R™) be mappings, and
let a be a point of AN B. Suppose that f and g are differentiable at a with
derivatives D f, and Dg,. Then

(1) The sum f+g : AN B — R™ is differentiable at a with derivative
D(f+ 9)a = Dfa + Dga.

(2) For any a € R, the scalar multiple af : A — R™ is differentiable at a
with derivative D(af), = aDf,.

Proof. Since f and g are differentiable at a, some ball about a lies in A and
some ball about a lies in B. The smaller of these two balls lies in AN B. That
is, a is an interior point of the domain of f + g. With this topological issue
settled, proving the proposition reduces to direct calculation. For (1),

[(f +9)(a+h) = (f+9)(a) = (Dfa+ Dga)(h)|

Aizg B
Wt ) +gla+h) — (@)~ gla) = Dfa(h) ~ Dga(h)|
N h—0., |h|
< i V@D = £@ = DR, - lofa+h) ~ g(a) ~ Dga(h)
h—0., |h| h—0, |h|
=0.
And (2) is similar (exercise 4.2.2). O

You may want to contrast how nicely our topological setup worked at
the beginning of this proof to the irritating example that we encountered in
connection with the Sum Rule for mappings back in section 2.5.

Elaborate mappings are often built by composing simpler ones. The next
theorem yields the important result that the derivative of a composition is
the composition of the derivatives. Like all of our results thus far, this seems
plausible—the best linear approximation of a composition could well be the
composition of the best linear approximations—but it is deeper than the pre-
vious facts about derivatives, with a correspondingly denser proof.

Theorem 4.2.3 (Chain Rule). Let f : A — R™ be a mapping, and let
B C R™ be a set containing f(A), and let g : B — R be a mapping. Thus
the composition go f : A — R is defined. If f is differentiable at the point
a € A, and g is differentiable at the point f(a) € B, then the composition go f
is differentiable at the point a, and its derivative there is

D(go f)a= Dgf(a) oD f,.

In terms of Jacobian matrices, since the matriz of a composition is the product
of the matrices, the Chain Rule is

(go f)(a) =g'(f(a)f'(a)-
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The proof uses two lemmas, the first a restatement of exercise 3.1.15(a)
(and now exercise 4.2.3).

Lemma 4.2.4 (Linear Magnification Boundedness). Consider a linear
mapping T : R® — R™. There exists a nonnegative constant K such that
|T'(h)| < K|h| for all h € R™.

The second lemma, is a quick consequence of the first and of the definition
of derivative.

Lemma 4.2.5 (Absolute Difference Quotient Boundedness). Let the
mapping f : A — R™ (where A C R™) be differentiable at the point a € A.

Then the quantity
|f(a+h) — f(a)|

I

s bounded as h — 0,,.
Proof. Let S = D f,. By the triangle inequality,
Fla+h) - fa)] < |f(a+h) - f(a) — S + |S(h)],
and so by the first lemma there is a nonnegative constant K such that

[flath) = fl@)] _|flath)=fla) =S| .
|h| - || '

Since f is differentiable at a, the right side goes to K as h — 0,,, and therefore
the left side is bounded. O

In particular, this lemma shows that if f is differentiable at a then
limp_o, f(a + h) = f(a). That is, if f is differentiable at a then f is con-
tinuous at a.

Now we can prove the Chain Rule.

Proof. The Chain Rule follows from the definition of derivative and the two
lemmas, via straightforward but delicate symbol juggling and an auxiliary
variable. Let

S=Df,:R"— R™ and T =Dy, :R™ — R"
Then we must show that
ToS:R" — R

satisfies the defining property of D(g o f),-

Some e-ball about a lies in A since Df, exists. Let b = f(a), and for all
h € R™ small enough that a + h lies in the ball, let £ = f(a + h) — f(a), so
that b+ k = f(a + h). Then by substitution,
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(9o f)la+h)=(gof)la) =9(f(a+h) —g(f(a))

=9
=g(b+Fk) —g(b).
That is, letting r(k) = g(b+ k) — g(b) — T'(k),
(9o f)la+h)—(go f)(a) =T(k)+r(k).

Similarly letting g(h) = f(a + h) — f(a) — S(h) = k — S(h) gives

(9o f)la+h)—(go f)(a) =T(S(h) + q(h)) + r(k).
And since T is linear it follows that

(9o fl(a+h) —(go f)(a) — (T o S)(h) = T(q(h)) + r(k).

So we need to show that

T(a(m) +r(k)| _

W 7] 0
where
q(h) = f(a+h) — f(a) = S(h),
r(k) = g(b+k) —g(b) — T'(k),
k= f(a+h)— f(a).

By the Triangle Inequality, it suffices to show instead that

- Ta®)] _ . r(R)] _
hlggn ] =0 and hll)rgn ] =0. (4.4)

Note that the respective characterizing properties of S and T are

lim M =0 and lim —=—

h—0, |h| k—0m |k
The Linear Magnification Boundedness Lemma, with g(h) in place of h, says
that |T'(g(h))| < K|q(h)| for a nonnegative constant K. By the characterizing
property of S, the first of the two desired limits in (4.4) follows. Also, the
Absolute Difference Quotient Boundedness Lemma, says that for some positive
constant C' we have |k| < C|h| for all small enough h. That is, if h is small
then so is k. Thus, by the characterizing property of T', given any € > 0 we
have,

for all small enough h, |r(k)| < % - k| < e|hl,

and the second of the two desired limits in (4.4) follows as well. This completes
the proof of the Chain Rule. O
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Two quick applications of the Chain Rule arise naturally for scalar-valued
functions. Given two such functions, not only is their sum defined, but since R
is a field (unlike R™ for m > 1), so is their product and so is their quotient at
points where g is nonzero. With some help from the Chain Rule, the derivative
laws for product and quotient follow easily from elementary calculations.

Lemma 4.2.6 (Derivatives of the Product and Reciprocal Func-
tions). Define the product function,

p:R* —R, plzy) =gy,
and define the reciprocal function
r:R—-{0} — R, r(z) =1/=.
Then
(1) The derivative of p at the point (a,b) € R? is

Dp(a)(h, k) = ak + bh.
(2) The derivative of r at the nonzero real number a is
Dro(h) = —h/a®.

Proof. (1) Compute,

|p(a + h,b+ k) — p(a,b) — ak — bh| _ |(a+ h)(b+ k) — ab— ak — bh|
|(h, k) |(h, k)|
_Jn
(R

For any value of (h, k), |h| < |(h,k)| and |k| < |(h, k)| by the Size Bounds, so
|hk| = |h||k| < |(h, k)|?. Therefore,

: |p(a+h’ab+k) _p(aab) _ak_bh| . |(h‘ak)|2
lim < lim _—
(h,k)—(0,0) |(h, k)| = (hk)—(0,0) |(h, k)]
= lim |(h, k)] =0.
(h,k)—(0,0)
(2) is left as exercise 4.2.4. O

Proposition 4.2.7 (Multivariable Product and Quotient Rules). Let
f:A— R (where ACR") and g : B— R (where B C R") be functions,
and let f and g differentiable at a. Then

(1) fg is differentiable at a with derivative

D(fg)a = f(a)Dga + g(a)D fa.
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(2) If g(a) # 0 then f/g is differentiable at a with derivative

D <§)a _ g(a)Df;(;)f(a)Dga.

Proof. (1) As explained in the proof of Proposition 4.2.2, a is an interior point
of the domain AN B of fg, so we need only to compute. The product function
fg is the composition po (f,g), where (f,g) : AN B — R? is the mapping
with component functions f and g. For any h € R", the Chain Rule and the
componentwise nature of differentiation (this was exercise 4.1.4) give

D(fg)a(h) = D(po (f,9))a(h) = (Dp(s,6)(a) © D(f,9)a) (h)
= Dp(f(a),g(a))(Dfa(h)7Dga(h))a

and by the lemma,

Dp(s(a),9(a)) (D fa(h); Dga(h)) = f(a)Dga(h) + g(a)D fo(h)
= (f(a)Dgq + g(a)D fa)(h).

This proves (1) since h is arbitrary. (2) is similar (exercise 4.2.5) but with the
wrinkle that one needs to show that since g(a) # 0 and since Dg, exists, it
follows that a is an interior point of the domain of f/g. Here it is relevant
that (as noted after Lemma 4.2.5) g must be continuous at a, and so by the
Persistence of Inequality principle (Proposition 2.3.9), g is nonzero on some
e-ball at a as desired. O

With the results accumulated so far, we can compute the derivative of
any mapping whose component functions are given by rational expressions in
its component input scalars. By the componentwise nature of differentiabil-
ity, it suffices to find the derivatives of the component functions. Since these
are compositions of sums, products, and reciprocals of constants and linear
functions, their derivatives are calculable with the existing machinery.

Suppose, for instance, that f(z,y) = (2® —y)/(y + 1) for all (z,y) € R?
such that y # —1. Note that every point of the domain of f is an interior
point. Rewrite f as
X?2-v

Y +1

where X is the linear function X (z,y) = = on R? and similarly Y (z,y) = y.
Applications of the Chain Rule and virtually every other result on derivatives
so far shows that at any point (a, b) in the domain of f, the derivative D f(, )
is given by (justify the steps)

f=
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D f(ap)(h, k)
_ (VY +1)(@,0)D(X? — Y)(ap) — (X* = V)(a,5) DY + D)a,p) (h, )
(Y +1)(a,b))? 7
_ (b+ DX 0 = Dia) = (@ = B)(DY(a) + Dlian)) , o
(b+1)2 ’
(b+1)(2X (a,b)DX(4p) — Y) — (a% — b)Y
- (b+1)2 5, %)
(b+1)(2aX — Y) — (a® - b)Y
- Gy (h k)
(b+ 1)(2ah — k) — (a® — b)k
(b+1)2
2a a?+1

T h 1T 12

k.

In practice this method is too unwieldy for any functions beyond the simplest,
and in any case it applies only to mappings with rational component functions.
But on the other hand, there is no reason to expect much in the way of
computational results from our methods so far, since we have been studying
the derivative based on its intrinsic characterization. In the next section we
will construct the derivative in coordinates, enabling us to compute easily by
drawing on the results of one-variable calculus.

For another application of the Chain Rule, let A and B be subsets of R"™,
and suppose that f : A — B is invertible with inverse g : B — A. Suppose
further that f is differentiable at a € A and that g is differentiable at f(a).
The composition go f is the identity mapping id4 : A — A which, being the
restriction of a linear mapping, has the linear mapping as its derivative at a.
Therefore,

id = D(idA)a = D(g o f)a = Dgf(a) oDf,.

This partly shows that for invertible f as described, the linear mapping D f,
is also invertible. (A symmetric argument completes the proof by showing
that also id = Df, o Dgs(a)-) Since we have methods available to check the
invertibility of a linear map, we can apply this criterion once we know how to
compute derivatives.

Not too much should be made of this result, however; its hypotheses are
too strong. Even in the one-variable case the function f(z) = 2° from R
to R is invertible and yet has the noninvertible derivative 0 at £ = 0. (The
inverse, g(x) = ¥/ is not differentiable at 0, so the conditions above are not
met.) Besides, we would prefer a converse statement, that if the derivative is
invertible then so is the mapping. This is not true, but we will see in chapter 5
that it is locally true, i.e., it is true in the small.
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Exercises

4.2.1. Prove part (2) of Proposition 4.2.1.

4.2.2. Prove part (2) of Proposition 4.2.2.

4.2.3. Prove Lemma 4.2.4. (See exercise 3.1.15 for an outline.)
4.2.4. Prove part (2) of Lemma 4.2.6.

4.2.5. Prove the Quotient Rule.

4.2.6. Let f(2,y,2) = zyz. Find D, ) for arbitrary (a,b,c) € R3. (Hint:
f is the product XY Z where X is the linear function X (z,y, 2) = z similarly
for Y and Z.)

4.2.7. Define f(z,y) = xy*/(y — 1) on {(x,y) € R? : y # 1}. Find Df,
where (a, b) is a point in the domain of f.

4.2.8. (A generalization of the product rule.) Recall that a function
f:R"xR" — R
is called bilinear if for all z,2',y,y’ € R” and all « € R,
f@+ay) = fla,y) + (@' y),

fzy+y) = flz,y) + f(z,y"),
flaz,y) = af(z,y) = f(z,ay).

. |f(h, k)|
lim =0.
(hyk)=(04,0,) |(h, k)|

(a) Show that if f is bilinear then
(b) Show that if f is bilinear then f is differentiable with D f(, ) (h, k) =
(

f(a, k) + f(h,b).

¢) What does this exercise say about the inner product?
4.2.9. (A bigger generalization of the product rule.) A function
fR"%x---xR" — R
(there are k copies of R") is called multilinear if for each j € {1,...,k}, for
all z1,...,z5,2},...,7, € R" and all @ € R,
f@y, oz + o, a) = f@n, g, @) + flen, 2, m)

flze,...,azj,...,zp) = af(z1,...,25,...,Tk).

(a) Show that if f is multilinear and aq,...,ar € R™, hy,...,hy € R
then for any distinct indices 4,j € {1,...,k},
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|f(a1,...,h,-,...,hj,...,ak)|

lim =0.
(h1,...,hk)—)(0n,...,0n) |(h177hn)|

(Use the previous problem.)
(b) Show that if f is multilinear then f is differentiable with

k
Df(al,...,ak)(hla e ,hk) = Zf(al, .. .,a]'_l, hj,aj+1, .. .,ak).

i=1

(c) When k& = n, what does this exercise say about the determinant?

4.3 Calculating the Derivative

Working directly from Definition 4.1.2 of the multivariable derivative with-
out using coordinates has yielded some easy results and one harder one—the
Chain Rule—but no explicit description of the derivative except in the sim-
plest cases. We don’t even know that any multivariable derivatives exist except
for mappings with rational coefficient functions.

Following the general principle that necessary conditions are more easily
obtained than sufficient ones, we assume that the derivative exists and de-
termine what it then must be. Geometry provides the insight. By the usual
componentwise argument, there is no loss in studying a function f with scalar
output, i.e., way may take m = 1. Setting n = 2 fits the graph of f in R?
where we can see it. Thus take f : A — R where A C R2.

Suppose that f is differentiable at the point (a,b). This means that the
graph of f has a well-fitting tangent plane P at the point (a,b, f(a,b)), as
shown earlier in figure 4.3. To determine this plane, we need two of its lines
through (a,b, f(a,b)). The natural lines to consider are those whose (z,y)-
shadows run in the z and y directions. Call them £, and ¢,. (See figure 4.5.)

The line £, is tangent to a cross section of the graph of f. To see this cross
section, freeze the variable y at the value b and look at the resulting function
of one variable, p(z) = f(z,b). The slope of £, in the vertical (z, b, z)-plane
is precisely ¢'(a). A slightly subtle issue here is that since (a, b) is an interior
point of A, also a is an interior point of the domain of .

Similarly, £, has slope ¢’(b) where ¢¥/(y) = f(a,y). The linear function
approximating f(a + h,b + k) — f(a,b) for small (h, k) is now specified as
T(h,k) = ¢'(a)h + ¢'(b)k. Thus D f(, ) has matrix [¢’(a),’(b)]. Since the
entries of this matrix are simply one variable derivatives, this is something we
can compute.

Definition 4.3.1 (Partial Derivative). Let A be a subset of R", let f :
A — R be a function, and let a = (ay,...,a,) be an interior point of A. Fix
Jj€{1,...,n}. Define

o(t) = f(a1,...,a-1,t,aj41,...,a,) fort near a;.
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Figure 4.5. Cross-sectional lines

Then the jth partial derivative of f at a is defined as
Djf(a) = ¢'(a;)
if ¢'(a;) exists. Here the prime signifies ordinary one variable differentiation.
Equivalently,
_ . flatte;) — f(a)
D; f(a) = lim J

if the limit exists and it is not being taken at an endpoint of the domain of
the difference quotient.

Partial derivatives are easy to compute: fix all but one of the variables,
and then take the one-variable derivative with respect to the variable that
remains. For example if

flz,y,2) =eYcosz + 2

then

d
Dif(a,b,c) = %(eb cosz + c)|z:a = —ebsina,

Dy f(a,b,c) = e’ cosa,

Dsf(a,b,c) =1.
Theorem 4.3.2 (The Derivative in Coordinates: Necessity). Let the
mapping f : A — R™ (where A C R™) be differentiable at the point a € A.
Then for eachi € {1,...,m} and j € {1,...,n}, the partial derivative D; f;(a)
exists. Furthermore, each D;f;(a) is the (i,j)th entry of the Jacobian matriz
of f at a. Thus the Jacobian matriz is

f'(a) = [Dj fi(a)li=1,....m, j=1,....n-
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Proof. The idea is to read off the (7, j)th entry of f'(a) by studying the ith
component function of f and letting h — 0,, along the jth coordinate direction
in the defining property (4.3) of the derivative. The ensuing calculation will
essentially reverse the steps that led us from the one-variable derivative to the
definition of the multivariable derivative at the very beginning of this chapter.

The derivative of the component function f; at a is described by the ith
row of f'(a). Call the row entries (d;,...,d;,). Denoting the rows in this
fashion has the operational consequence that

(Dfi)o(te;) = dijt for all t € R.

Let h = te; with t a variable real number, so that h — 0, as t = Or. Since
(Df;)e exists, we have as a particular instance of the defining characteriza-
tion (4.3),

|fi(a +tej) — fi(a) — (Dfi)a(te;)|

0 = lim

t—0 te;]
_ pigg | fil@ +tes) — fila) — dijt
t—0 t
— lim fila +tej) — fila) di; -
t—0 t
That is,
lim fila+te;) — fi(a) _ di;.
t—0 t
This says precisely that D, f;(a) exists and equals d;;. O

So the existence of the derivative D f, makes necessary the existence of all
partial derivatives of all component functions of f at a. The natural question is
whether their existence is also sufficient for the existence of D f,. Regrettably
it is not. For example, the function

2zy .
. R2 _Jae  if(zy) #0,0),
f:R" —R, f(:lr,y)—{0 v if (2.4) = (0.0)

has for its first partial derivative at the origin
0-0

60 - 0.0 _, 0-0_,

D1£(0,0) = },1—% t t—0 ¢

and similarly D» f(0,0) = 0; but as discussed in chapter 2, f is not continuous
at the origin, much less differentiable there. However, this example is con-
trived, the sort of function that one sees only in a mathematics class, and in
fact with slightly stronger hypotheses a statement in the spirit of the converse
to Theorem 4.3.2 does hold.
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Theorem 4.3.3 (The Derivative in Coordinates: Sufficiency). Let f :
A — R™ (where A C R"™) be a mapping, and let a be an interior point of A.
Suppose that for each i € {1,...,m} and j € {1,...,n}, the partial derivative
Djf; exists not only at a but at all points in some e-ball about a, and the
partial derivative D; f; is continuous at a. Then f is differentiable ot a.

Note that if f meets the conditions of Theorem 4.3.3 then the theorem’s
conclusion shows that f also meets the condition of Theorem 4.3.2, so that
we can use the latter theorem to calculate the derivative of f.

The difference between the necessary conditions in Theorem 4.3.2 and the
sufficient conditions in Theorem 4.3.3 has a geometric interpretation when
n = 2 and m = 1. The necessary conditions in Theorem 4.3.2 are that if
if a graph has a well-fitting plane at some point, then at that point we see
well-fitting lines in the cross sections parallel to the coordinate axes. The
sufficient conditions in Theorem 4.3.3 are that if we see well-fitting lines in
the cross sections at and near the point, and if those lines don’t change much
as we move among cross sections at and near the point, then the graph has a
well-fitting plane.

Proof. Tt suffices to show the differentiability of each component function f;,
so we may assume that m = 1, i.e., that f is scalar-valued. To thin out the
notation, the proof will be done for n = 2 (so for example a = (a1, az)), but
its generality should be clear.

The Mean Value Theorem will play a crucial role. Recall its statement
that if the continuous one-variable function ¢ : [a, 5] — R is differentiable
on (a,f), then there exists some point ¢ € (a,3) such that ¢(8) — ¢(a) =
¢'(t)(B — a).

Theorem 4.3.2 says that if the derivative D f, exists then it is defined by
the matrix of partial derivatives D; f(a). The goal therefore is to show that
the linear mapping

Ta(hl, hg) = le(a)hl + sz(a)hz
satisfies the defining property (4.3) of the derivative. As usual, we need to

study the quantity
|f(a+h) — f(a) — Ta(h)|
I

for small h. In particular, h may be assumed small enough that the partial
derivatives D; f are defined at all points within distance |h| of a. This is where
the hypothesis that the partial derivatives are defined everywhere near a is
used. Now the idea is to move from a to a+h in steps, changing one coordinate
at a time, and to apply the Mean Value Theorem in each direction. Specifically,

|f(a+h) = f(a) = Ta(h)| = |f(a1 + h1,a2 + h2) — f(a1,a2 + h2) — D1 f(a)h:
+ f(a1,a2 + h2) — f(a1,a2) — D2f(a)hs|,
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and two applications of the Mean Value Theorem to the right side give

|f(a+h) = f(a) = Ta(R)| = |D1f(ar + b1, a2 + ha)hs = D1 f (@)
+ Dsf(a1, a2 + t2)ha — Do f(a)ha|

where |t;] < |hj| < |h| for j = 1,2, so that now by the Triangle Inequality,

|f(a+ h) — f(a) — To(h)| < |D1f(ar +t1,a2 + ha) — D1 f(a)] |h|
+ |Daf(ai,as + t2) — Do f(a)||h|.

Therefore for small h,

|f(a+h) — fla) = Tu(h)|
|l

<|Dif(a1 +t1,a2 + ha) — D1 f(a)]
+ D2 f(a1,a2 +t2) — D2 f(a)|-

As h — 0y the h; and t; are squeezed to 0 in R, and the continuity of the
partial derivatives D; f at a forces the right side to 0. This proves the theorem.
O

Thus,

o the differentiability of f at a implies the existence of all partial derivatives
at a,

e while the existence of all partial derivatives at and about a, and their
continuity at a, combine to imply the differentiability of f at a.

Note how this all compares to the discussion of the determinant in the previous
chapter. There we wanted the determinant to satisfy characterizing proper-
ties, we found the only function that could possibly satisfy them, and then
we verified that it did. Here we wanted the derivative to satisfy a character-
izing property, and we found the only possibility for the derivative: the linear
mapping whose matrix consists of the partial derivatives, which must exist
if the derivative does. But analysis is more subtle than algebra: this linear
mapping need not satisfy the characterizing property of the derivative unless
we add further assumptions. Theorem 4.3.3 is the most substantial result so
far in this chapter, since it guarantees that the derivative exists. Its proof
was correspondingly the deepest, requiring the abstract existence statement
supplied by the Mean Value Theorem. The converse to Theorem 4.3.3 is not
true (exercise 4.3.3).
For an example of all this, consider the function

_ [ if (z,) # (0,0),
fey) = {0 " if (z,y) = (0,0).

The top formula in the definition describes a rational function of z and y
on the punctured plane R? — {(0,0)}. Any rational function and all of its
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partial derivatives are continuous on its domain (feel free to invoke this result),
and furthermore every point (a,b) away from (0,0) lies in some e-ball that
is also away from (0,0). That is, for any point (a,b) # (0,0) the partial
derivatives of f exist at and about (a,b) and they are continuous at (a,b).
Thus the conditions for Theorem 4.3.3 are met, and so its conclusion follows:
f is differentiable at (a, b). Now Theorem 4.3.2 says that the derivative matrix
at (a,b) is the matrix of partial derivatives,

f'(a,b) = [Dif(a,b) Daf(a,b)] = | ot w4eh) ],

Consequently the derivative of f at any nonzero (a,b) is the corresponding
linear map
2ab® 4 a’(a®> — b?)
(a2 + b2)2 (a2 + b2)?
However, this analysis breaks down at the point (a,bd) = (0,0). Here our only
recourse is to figure out whether a candidate derivative exists and then test
whether it works. The first partial derivative of f at (0,0) is
0-0

f(t’o)_f(o’o)zlim— 0
t t—0 ¢t ’

Df(a,b)(hak) = k.

D.1/(0,0) = lim

and similarly D, f(0,0) = 0. So by Theorem 4.3.2, the only possibility for the
derivative of f at (0,0) is the zero map. Now the question is whether the limit

lim
(h.k)—(0,0) |(h, k)|

exists and is 0. Compute that since the denominator h? + k2 of f away from
the origin is |(h, k)|?,

|f(h,k) — £(0,0) =0 _ [h[*|K]
|(h, k)| |(h, B)|*

As in section 2.3, the straight line test can only suggest that this quantity
does go to 0, but it can prove that the quantity doesn’t go to 0; and the Size
Bounds can only suggest that this quantity doesn’t go to 0, but they can prove
that the quantity does go to 0. In this case we use the straight line test. Let
k = h and compute that

IhIn] _ P 1

(b, W) = B T 2

This does not go to 0 as h goes to 0. Therefore the function f is not differen-
tiable at (0,0). And indeed, the graph of f near (0, 0) shows a shape that isn’t
well approximated by any plane through its center, no matter how closely we
zoom in. (See figure 4.6.)
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Figure 4.6. The manta ray is differentiable everywhere except at the origin

Returning to the discussion of invertibility of a mapping and invertibility
of its derivative, let f: R? — {(0,0)} — R? — {(0,0)} be given by f(z,y) =
(2? —y?, 22y). At any (z,y) where f is defined, the partial derivatives are are
D1f1($7y) = 2z, D2f1($7y) = _2y7 D1f2($7y) = 2y, and D2f2(m,y) = 2z.
These are continuous functions of (z,y), so for any (a,b) # (0,0), D f,)
exists and its matrix is

, | Difi(a,b) Dafi(a,b)|  [2a —2b
Flad) = [t Dented ] = 15 o)

This has determinant 4(a” + b?) > 0, and hence it is always invertible. On the
other hand, the mapping f takes the same value at points (z,y) and —(z,v),
so it is definitely not invertible.

With the Jacobian matrix described explicitly, a more calculational version
of the Chain Rule is available.

Theorem 4.3.4 (Chain Rule in Coordinates). Let f: A — R™ (where
A C R") be differentiable at the point a of A, and let g : f(A) — R be
differentiable at the point b = f(a). Then the composition go f : A — R is
differentiable at a, and its partial derivatives are

Dj(go f)(a) = ZDkQ(b)Djfk(a) forj=1,...,n.
k=1

Proof. The composition is differentiable by the intrinsic Chain Rule. The Ja-
cobian matrix of g at b is

gl(b) = [Dlg(b) te Dmg(b)] >
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and the Jacobian matrix of f at a is
Difi(a) -+ Dnfi(a)
F@=| i |

D fun(@) -+ Dy finla)

and the Jacobian matrix of go f at a is

(9o f)'(a) = [Di(go f)(a) -+ Dulgo f)(a)] .
By the intrinsic Chain Rule,

(9o f)'(a) =4'(b)f'(a).
Equate the jth entries to obtain the result. O

With slightly stronger assumptions about the partial derivatives, the for-
mula for the partial derivatives of a composition (which may exist without
the composition being differentiable) can be proved without recourse to the
intrinsic version of the Chain Rule. One studies the difference quotient

(g0 f)(a+tej) — (g0 f)(a)
_t )
inserting intermediate terms and using the Mean Value Theorem as in the
proof of Theorem 4.3.3. This is exercise 4.3.5.

Notations for the partial derivative vary. A function is often described by

a formula such as w = f(x,y, z). Other notations for D, f are

fis fz, g_ia Wy, g_:
If z, y, z are in turn functions of s and ¢ then a classical formulation of the
Chain Rule would be
Oow Owdzx Owdy Owlz
B s 0t By ot Bz ot
This is easily visualized as chasing back along all “dependency chains” from ¢
to w in a diagram where an arrow means “contributes to”:

(4.5)

X
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Unfortunately, for all its mnemonic advantages, the classical notation is a
veritable minefield of misinterpretation. Formula (4.5) doesn’t indicate where
the various partial derivatives are to be evaluated, for one thing. Specifying the
variable of differentiation by name rather than by position also becomes con-
fusing when different symbols are substituted for the same variable, especially
since the symbols themselves may denote specific values or other variables.
For example one can construe many different meanings for the expression

%(y,w,Z)-

Blurring the distinction between functions and the variables denoting their
outputs is even more problematic. If one has, say, z = f(z,t,u), z = g(t,u),

N
2

then chasing all paths back to ¢ gives

0z 0z0x Oz

ot oz ot ot
with “0z/0t” meaning something different on each side of the equality. While
the classical formulas are useful and perhaps simpler to apply in elementary
situations, they are not particularly robust until one has a solid understand-
ing of the Chain Rule. On the other hand, the classical formulas work fine
in straightforward applications, so several exercises are phrased in the older
language to give you practice with it.

Exercises

4.3.1. Explain why in the discussion beginning this section the tangent
plane P consists of all points (a,b, f(a,b)) + (h,k,T(h,k)) where T'(h,k) =
¢'(a)h + ' (b)k.
4.3.2. This exercise shows that all partial derivatives of a function can exist at
and about a point without being continuous at the point. Define f : R> — R
by
Hog) = | 70 1 (@9) #0.0),
0 if (2,y) = (0,0).
(a) Show that D, f(0,0) = D5 f(0,0) = 0.
(b) Show that D1 f(a,b) and D, f(a,b) exist and are continuous at all other
(a,b) e R
(c) Show that Dy f and Do f are discontinuous at (0, 0).
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4.3.3. Define f : R — R by

x? sin % if x #0,

0 ifx=0.
Show that f'(z) exists for all z but that f’ is discontinuous at 0. Explain how
this disproves the converse of Theorem 4.3.3.

4.3.4. Discuss the derivatives of the following mappings at the following
points.

(@) f(z,y) = ”;;ly on {(z,y) € R? : y # —1} at generic (a, b) with b # —1.

(b) f(z,y) = ;—321 on {(z,y) € R? : y # 1} at generic (a,b) with b # 1.

(¢) f(z,y) = {V:Qﬂ/z it (=,y) # (0,0) at generic (a,b) # (0,0) and at
0 if (z,y) = (0,0)

(0,0).

4.3.5. As discussed after Theorem 4.3.4, derive the formula for the partial
derivatives of a composition without recourse to the Chain Rule by making
stronger hypotheses about the partial derivatives of the mappings being com-
posed. (Suggestion: set n = 2 and then mimic the proof of Theorem 4.3.3 as
described in the text, keeping track of what hypotheses you need as you go.)

For the rest of these exercises, assume as much differentiability as necessary.

4.3.6. For what differentiable mappings f : A — R™ is f'(a) a diagonal
matrix for all a € A? (A diagonal matrix is a matrix whose (4, j)th entries for
all i # j are 0.)

4.3.7. Show that if z = f(zy) then z, y, and z satisfy the differential equation
T2y — Y- 2y =0.

4.3.8. Let w = F(zz,yz). Show that z - w, +y-wy =2 - w,.
4.3.9. If z = f(az + by), show that bz, = azy.

4.3.10. The function f : R? — R is called homogeneous of degree k
if f(tx,ty) = t* f(x,y) for all scalars ¢ and vectors (x,y). Show that such f
satisfies the differential equation

zfi(z,y) +yf2(z,y) = kf(z,y).

4.3.11. Let
f:R? =R

be a function such that for all (z,y) € R?, the integral

y
F:R? — R, F(z,y) = / flz,v)dv
v=0
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exists and is differentiable with respect to z, its partial derivative with respect
to x being obtained by passing the z-derivative through the v-integral,

OF (z,y) 0
Tz s f(”’ v) dv
f(w+hvdv—fy f(z,v)dv
= lim
h—0
— lim fx+h v) — f(x,v)dv
h—0 h
i/ i L@+ h0) — fe0)
0h—>0 h
v oof
- Oam(x ,0) dv.

(The “!” step requires justification, but under reasonable circumstances it can
be carried out.) Define a function

T
G:R—R, G(x):/ f(z,v)dv
=0
Thus z affects G in two ways: as a parameter for the integrand, and as the
upper limit of integration. What is dG(z)/dz?

4.4 Higher Order Derivatives

Partial differentiation can be carried out more than once on nice enough func-
tions. For example if f(z,y) = e*¥"¥ then

le(.’L',y) = sinyewsiny7 sz(x7y) — .’L‘COSyewSin v

Taking partial derivatives again yields

DD f(z,y) = sin® ye”*"¥,

D:Ds f(z,y) = cosye”™"¥ + zsiny cosye” "V,

DD, f(z,y) = cosye™ ™Y + zsiny cosye” ™Y = Dy Dy f(z,y),
DDy f(x,y) = —xsinye®™Y + 22 cos® ye? sV,

and some partial derivatives of these in turn are,
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zsiny
)

DD D, f(z,y) = 2siny cos ye®*"¥ 4 xsin’ y cos ye
D1 Dy D1 f(z,y) = D1D1 D2 f(z,y),

DD Do f(z,y) = —sinye® ™Y + 2z cos? ye”51"Y — g sin? ye?sinY
+ 22 siny cos? ye® Y,

DyD»D: f(z,y) = D2D1 D> f(2,y),

Dy DyD, f(x,y) = —sinye® 5™ + 2z cos? ye®51"Y — g sin? ye®SinY

+ 22 siny cos? ye® Y

=Dy D1 D, f(z,y),
DD D, f(z,y) = 2siny cos ye®*"¥ + zsin? y cos ye
= D1 D1 D> f(x,y).

zsiny

Suspiciously many of these match. The result of two or three partial differen-
tiations seems to depend only on how many were taken with respect to x and
how many with respect to y, not on the order in which they were taken.

To analyze the situation, it suffices to consider only two differentiations.
Streamline the notation by writing Do D1 f as D12 f. (The subscripts may look
reversed, but reading D from left to right as “D-one-two” suggests the ap-
propriate order of differentiating.) The definitions for Dy; f, Da1 f, and D f
are similar. These four functions are called the second order partial deriva-
tives of f, and in particular Do f and Doy f are the second order mixed
partial derivatives. More generally, the kth order partial derivatives of a func-
tion f are those that come from k partial differentiations. A C¥-function is
a function for which all the kth order partial derivatives exist and are contin-
uous. The theorem is that with enough continuity the order of differentiation
doesn’t matter. That is, the mixed partial derivatives agree.

Theorem 4.4.1 (Equality of Mixed Partial Derivatives). Suppose that
f:A— R (where A C R?) is a C? function. Then at any point (a,b) of A,

Dlgf(a, b) = D21f(aa b)

This theorem is similar to Taylor’s Theorem from section 1.3 in that both
are stated entirely in terms of derivatives, but they are tricky to prove with
derivatives and easier to prove with integrals. We give the easier proof. Ex-
tending Theorem 4.4.1 to more variables and to higher derivatives is straight-
forward provided that one supplies enough continuity. The hypotheses of the
theorem can be weakened a bit, in which case a more subtle proof is required,
but such technicalities are more distracting than useful.

Proof. Since f is a C2-function on A, every point of A is interior. Take any
point (a,b) € A. Then some box B = [a,a + h] x [b,b+ k] lies in A. Compute
the nested integral
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ath pbtk ath
/ / dydx:/ kdx = hk.
a b a

Also, by the Fundamental Theorem of Integral Calculus twice,

a+h btk ath
/ Diafle,p)dyds = [ (Dif(ab+ k)~ Daf(a,b) do
a b

a

= fla+h,b+k)— f(a,b+ k) — f(a+ h,b) + f(a,b).

Call this quantity A(h, k). Let myp ; be the minimum value of D12 f on the
box B, and let M}, 1, be the maximum value. (These exist by Theorem 2.4.15
since B is nonempty compact and Diaf : B — R is continuous.) Thus

mpk < Di2f(2,y) < Mpy for all (z,y) € B.
Integrate this inequality, using the two previous calculations, to get
mprhk < A(h, k) < My bk,

or

A(h, k)

Mp g < < Mp k.

As (h,k) = (0T,07), the continuity of Di2f at (a,b) forces mpj and My
to D12 f(a,b), and hence

A(h, k)
hik

— Diaf(a,b) as (h,k) — (0F,07).

But also, reversing the order of the integrations and of the partial derivatives
gives the symmetric calculations

b+k path
/ / dx dy = hk,
b a

b+k a+h
/ / D f(z,y) dedy = A(h, k),
b a

and so the same argument shows that

BB Doy fla ) as (k) (0%,0%)
Since both D12 f(a,b) and Da f(a,b) are the limit of A(h, k)/(hk), they are
equal. O

Higher order derivatives are written in many ways. If a function is de-
scribed by the equation w = f(z,y, z) then D33 f is also denoted
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e p D (0(0f o'
2335 Y22 9z \ 8z 3y ) 6226y ’
o D (0 (0w o'
yzzs 0z \02\dy))’ 0220y’

As with one derivative, these combine mnemonic advantages with conceptual
dangers.

A calculation using higher order derivatives and the Chain Rule transforms
the heat equation of Laplace from cartesian to polar coordinates. The C2
quantity v = f(z,y) depending on the cartesian variables = and y satisfies
Laplace’s equation if (blurring the distinction between u and f)

o pu_,
oz2  oy?

If instead u is viewed as a function g of the polar variables r and 6, how is
Laplace’s equation expressed?
The cartesian coordinates in terms of the polar coordinates are

z=rcosf, y=rsind.

Thus u = f(z,y) = f(rcos@,rsinf) = g(r,d), showing that v depends on r
and 6 via z and y:

r———x

T

u

/

0 ———Y
The Chain Rule begins a hieroglyphic calculation,
Ur = UgTr + UyYr,
so that by the product rule,
Urr = (UgTr + UyYr)r
= Ugr Ty + UgTrr + UyrYr + UyYrr,

and then, since u, and u, also depend on r and 6 via z and y, the Chain Rule
gives expansions of uz, and u,,, and the calculation continues,

Upr = (UgaTr + UgylYr) T + UpZrr + (UyaTr + UyyYr) Yr + UyYrr
= Ugg T2 + UpylYrTr + UpTrr + Uy TrYr + Uyl + UyYrr

2 2
= Ugzz T, + 2Uzy1’ry7' + UyyYr + U Trp + UyYpr-
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Note the use of equality of mixed partial derivatives. The same calculation
with @ instead of r gives

Uy = Ug Ty + UyYo,

Ugy = umxg + 2ugyToys + uyyyg + uzTge + UyYog-
Since £ = rcosf and y = rsin § we have the relations
Tg = —TYr, Yo =iy, Trr = Yrr = 0.
It follows that

2 .2 2 2 2 2
T Upp = T Uga @, + 27 UgyTrYr + T Uy Y,
TUr = UgYg — UyZy,

2 2 2 2 2
Uge = T Uggly — 2 UgyTrYr + T Uyy Ty — UgYg + UyTp.

Recall that the cartesian form of Laplace’s equation is ug, + uy, = 0. Now
the polar form follows,

T2um~ + ru, +ugg = 0.

That is,
20%u  Ou  O*u 0
T W -+ TE + w = U.
The point of this involved calculation is that having done it once, and only
once, we now can check directly whether any function g of the polar variables
r and 6 satisfies Laplace’s equation. We no longer need to transform each g
into terms of the cartesian coordinates  and y before checking.

Exercises

4.4.1. This exercise shows that continuity is necessary for the equality of
mixed partial derivatives. Let

~ % if (z,y) # (0,0)
f(x,y)—{o " i ) = (0,0).

Show: (a) f, D1 f, and D5 f are continuous on R2. (b) Dy f and Dy f exist on
R? and are continuous on R?—{(0,0)}. (c) D12f(0,0) =1 # —1 = D3 f(0,0).

4.4.2. Suppose u, as a function of x and y, satisfies the differential equation
Uge — Uyy = 0. Make the change of variables x = s +¢, y = s —t. What
corresponding differential equation does u satisfy when viewed as a function
of s and t7

4.4.3. Show that if u = F(z — ct) + G(z + ct) then ctug, = uy.
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4.4.4. Show that the substitution z = e?, y = e! converts the equation

wzum + yzuyy + TUg +yuy =0

into Laplace’s equation ugs + ug = 0.

4.4.5. Show that the substitution v = z2 — 2, v = 22y converts Laplace’s
equation wg, + wyy = 0 back into Laplace’s equation wyy, + wyy = 0.

4.5 Extreme Values

In one variable calculus the derivative is used to find maximum and minimum
values (extrema) of differentiable functions. Recall the following useful facts.

e (Extreme Value Theorem.) If f : [@, ] — R is continuous then it assumes
a maximum and a minimum on the interval [a, 3].

e (Critical Point Theorem.) Suppose that f : [a, 5] — R is differentiable
on (a, #) and that f assumes a maximum or minimum at an interior point a
of [a, B]. Then f'(a) = 0.

e (Second Derivative Test.) Suppose that f : [a,5] — R is C? on (a,f)
and that f'(a) = 0 at an interior point a of [, 8]. If f"(a) > 0 then f(a)
is a local minimum of f, and if f”(a) < 0 then f(a) is a local maximum.

Geometrically the idea is that just as the affine function
Ala+h) = f(a) + f'(a)h

specifies the tangent line to the graph of f at (a, f(a)), the quadratic function
1
P(a+h) = f(a) + f'(@h+ 5" (a)h”

determines the best fitting parabola. When f’(a) = 0 the tangent line is
horizontal and the sign of f”(a) specifies whether the parabola opens upward
or downward. When f'(a) = 0 and f”(a) = 0, the parabola degenerates to
the horizontal tangent line, and the second derivative provides no information.
(See figure 4.7.)

Figure 4.7. Approximating parabolas
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This section generalizes these facts to functions f of n variables. The Ex-
treme Value Theorem has already generalized as Theorem 2.4.15: a continuous
function f on a compact subset of R" takes maximum and minimum values.
The Critical Point Theorem also generalizes easily to say that each extreme
value of the function f : A — R that occurs at a point where f is differen-
tiable occurs at critical point of f, meaning a point a where D f, is the zero
function.

Theorem 4.5.1 (Multivariable Critical Point Theorem). Suppose that
the function f : A — R (where A C R"™) takes an extreme value ot the point a
of A, and suppose that f is differentiable at a. Then all partial derivatives of f
at a are zero.

Proof. For each j € {1,...,n}, the value f(a) is an extreme value for the one-
variable function ¢ from definition 4.3.1 of the partial derivative D; f(a). By
the one-variable Critical Point Theorem, ¢'(a;) = 0. That is, D; f(a) =0. O

The generalization of the second derivative test is more elaborate. From
now on, all functions are assumed to be of type C2 on the interiors of their
domains, meaning that all their second order partial derivatives exist and are
continuous.

Definition 4.5.2 (Hessian matrix). Let f : A — R (where A C R") be a
function and let a be an interior point of A. The Hessian matrix of f at a
is the n-by-n matriz whose (i, j)th entry is the second order partial derivative
D,]f(a) Thus

Dy f(a) -+ Dinf(a)

Hi(a)=| = :

Dot /(@) -~ Dunf(a)

By the equality of mixed partial derivatives, the Hessian is a symmetric
matrix, i.e., H¢(a)! = Hy(a). Beware of confusing the Hessian and the Jaco-
bian: the Hessian is a square matrix defined only for scalar valued functions
and its entries are second order partial derivatives, while for scalar valued
functions the Jacobian is the row vector of first partial derivatives. As an
example, if

f(z,y) =sin’z + 2%y + ¢,

then for any (a,b) € R2,
f'(a,b) = [sin2a + 2ab a® + 2]
_|2cos2a +2b 2a
Hf(a,b)—[ 2a 2:|.

Any n-by-n matrix M determines a quadratic function
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Qu:R" — R, Qu(h)=h'Mh.

Here h is viewed as a column vector. If M has entries m;; and h = (hq,..., hy)
then the rules of matrix multiplication show that

miy - Min| (A1

Qu(h)=[h1 - hn] | : : S =00 maghiby.

—1 i—1
Mnp1 - Mpp hn ¢ J

The function @) y; is homogeneous of degree 2, meaning that each of its terms
has degree 2 in the entries of h and therefore Q7 (th) = t2Q s (h) for all t € R
and h € R".

When M is the Hessian of a function f at a point a, the quadratic
function @)y is denoted @ f, rather than the symbol-heavy Q,(4)- Just as
f(a) + D f,(h) gives the best affine approximation to f(a + h) for small h,
f(a) + Dfa(h) + 1Qfa(h) gives the best quadratic approximation.

In the example f(z,y) = sin®? z + 22y + y?, the Hessian at a point (a,b)
defines the function

Qfap)(h k) = [h K] [2 cos ;Z +2b 22a] [Z]

= 2((cos 2a + b) h? + 2a hk + k?) for (h,k) € R?,

and so the best quadratic approximation to f near, for instance, the point
(r/2,1) is

1
F@/2+h,1+ k) = f(1/2,1) + Dfxja)(h, k) + 5QF n/2,1) (. k)
=72/4+ 2+ mh+ (72 /4 + 2)k + whk + k*.

Suppose that f : A — R (where A C R?) has a critical point at (a, b), i.e.,
f'(a,b) = (0,0). The graphs of some quadratic functions on R? with a critical
point at (0,0) are shown in figure 4.8. If the best quadratic approximation
of f at (a,b) is a bowl then f should have a minimum at (a,b). Similarly for
an inverted bowl and a maximum. If the best quadratic approximation is a
saddle then there should be points (z,y) near (a,b) where f(z,y) > f(a,b)
and points (z',y") near (a,b) where f(z',y") < f(a,b). In this case (a,b) is
called for obvious reasons a saddle point of f.

Returning to the example f(z,y) = sin® z + 2y + y2, note that (0,0) is a
critical point of f since f'(0,0) = (0,0). The Hessian H¢(0,0) is [2 9], and so
the quadratic function %Q f(0,0) is given by

s@teom =50 [o5] [i] =2+

Thus the graph of f looks like a bowl near (0,0) and f(0,0) should be a local
minimum.
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Figure 4.8. Two bowls, two saddles, four halfpipes, and a plane

None of this discussion is rigorous yet. Justifying these ideas and proving
the appropriate theorems will occupy the rest of this section. The first task is
to study quadratic approximations of C2-functions.

Proposition 4.5.3 (Special Case of Taylor’s Theorem). Let I be an open
interval in R containing [0,1]. Let ¢ : I — R be a C2-function. Then

1

e(1) = ¢(0) + ¢'(0) + 5

¢"(c) for some c € [0,1].

This follows from the general Taylor’s Theorem in section 1.3 since the
first degree Taylor polynomial of ¢ at 0 is T1(t) = ¢(0) + ¢’(0)¢, so that in
particular, T1(1) = ¢(0) + ¢'(0).

Theorem 4.5.4 (Quadratic Taylor Approximation). Let f : A — R
(where A C R™) be a C2-function on the interior points of A. Let a be an
interior point of A. Then for all small enough h € R™,

fla+h) = f(a) + D fa(h) + %Qfa-}—ch(h) for some c € [0,1],

or, in matrices, viewing h as a column vector,

fla+h) = fa)+ f'(a)h + %htHf(a + ch)h  for some c € [0,1].
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Proof. Define ¢ : [0,1] — R by ¢(t) = f(a+th). That is, ¢ is the restriction
of f to the line segment from a to a + h. By the Chain Rule,

n

¢'(t) =) Dif(a+th)hi = f'(a+1th)h = Dfarmn(h)

i=1
and

n n

¢"(t) =Y > Dijf(a+th)hjh; = B*Hy(a+ th)h = Qfaren(h).

i=1 j=1

Since f(a+h) = (1), the special case of Taylor’s Theorem says that for some
c€[01],

Fla+ 1) = 9(0) +#(0) + 56(6) = £(a) + DSalh) + 5 Qfaren(h),
giving the result. O

Thus, to study f near a critical point a € R™ where D f, is zero, we need
to look at the sign of @ fcn(h) for small vectors h. The next order of business
is therefore to discuss the values taken by a homogeneous quadratic function.

Definition 4.5.5 (Positive Definite, Negative Definite, Indefinite Ma-
trix). The symmetric square n-by-n matriz M is called

e positive definite if Qur(h) > 0 for every nonzero h € R™,
e negative definite if Qr(h) < 0 for every nonzero h € R™,
e indefinite if Qar(h) is positive for some h and negative for others.

The identity matrix I is positive definite since h*Ih = |h|? for all h. The
matrix [ _}] is indefinite. The general question of whether a symmetric n-
by-n matrix is positive definite leads to an excursion into linear algebra too
lengthy for this course. (See exercise 4.5.10 for the result without proof.)
However, in the special case of n = 2, basic methods give the answer. Recall
that the quadratic polynomial ah?+23h+6 takes positive and negative values

if and only if it has distinct real roots, i.e., ad — 5% < 0.

Proposition 4.5.6 (Two-by-two Definiteness Test). Consider a matriz

_|aB
M= [5 5] € M5(R). Then
(1) M is positive definite if and only if « > 0 and ad — 3% > 0.
(2) M is negative definite if and only if o < 0 and ad — B2 > 0.
(3) M is indefinite if and only if ad — B2 < 0.
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Proof. Since Qur(t(h,k)) = t2Qar(h, k) for all real t, scaling the input vector
(h, k) by nonzero real numbers doesn’t affect the sign of the output. The
second entry k can therefore be scaled to 0 or 1, and if £ = 0 then the first
entry h can be scaled to 1. Therefore, to show (1), reason that

M is positive definite <= Qar(1,0) > 0 and Qu(h,1) >0 for all h e R
< a>0and ah® +2Bh+6>0forall he R
< a>0and ad— B> >0.

(2) is similar. As for (3),

M is indefinite <= ah? + 26h + § takes positive and negative values
— ad-p*<0.

O

The proposition provides no information if ad — 2 = 0. Geometrically,
the proposition gives conditions on M to determine that the graph of Qs is
a bowl, an inverted bowl, or a saddle. The condition ad — 32 = 0 indicates a
degenerate graph: a halfpipe, an inverted halfpipe, or a plane.

The positive definite, negative definite, or indefinite character of a matrix
is preserved if the matrix entries vary by small enough amounts. Again we
restrict our attention to the 2-by-2 case. Here the result is plausible geometri-
cally, since it says that if the matrix M (a, b) defines a function whose graph is
(for example) a bowl, then matrices close to M (a,b) should define functions
with similar graphs, which thus should still be bowl-shaped. The same persis-
tence holds for a saddle, but a halfpipe can deform immediately into either a
bowl or a saddle, and so can a plane.

Proposition 4.5.7 (Persistence of Definiteness). Let A be a subset of R?,
and let the matriz-valued mapping

M:A—M R, ]\41.7 — Oé(.’L',y) ﬂ(xay)]

o®), M) = [0 S0

be continuous. Let (a,b) be an interior point of A. Suppose that the matrix
M (a,b) is positive definite. Then for all (z,y) in some £-ball about (a,b), the
matriz M (z,y) is also positive definite. Similar statements hold for negative
definite and indefinite matrices.

Proof. By the Persistence of Inequality principle (Proposition 2.3.9), the cri-
teria @ > 0 and ad — 32 > 0 remain valid if z and y vary by a small enough
amount. The other statements follow similarly. O

When a function f has continuous second order partial derivatives, the
entries of the Hessian Hy(a) vary continuously with a. The upshot of the
last proposition is therefore that instead of studying the nebulous notion of
“Q fa+cn for some ¢” it suffices to study the explicit function Q f,.
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Proposition 4.5.8 (Two-variable Max/min Test). Let f : A — R
(where A C R?) be C? on its interior points. Let (a,b) be an interior point

of A, and suppose that f'(a,b) = (0,0). Let Hy(a,b) = [g g] Then

(1) If a > 0 and aé — 82 > 0 then f(a,b) is a local minimum.
(2) If a < 0 and ad — 32 > 0 then f(a,b) is a local mazimum.
(3) If ad — B% < 0 then f(a,b) is a saddle point.

Proof. This follows from Theorem 4.5.4, Proposition 4.5.6 and Proposi-
tion 4.5.7. O

Again, the test gives no information if ad — 2 = 0.

Returning once again to the example f(z,y) = sin® z + 22y + y? with its
critical point (0,0) and Hessian Hy(0,0) = [3 9], the max/min test shows that
f has a local minimum at (0,0).

Another example is to find the extrema of the function

f(@,y) =zy(z +y—3)
on the triangle
T={(z,y) eR*:2>0,y >0,z +y <3}

To solve this, first note that 7' is compact. Therefore f is guaranteed to take
a maximum and a minimum value on T'. These are assumed either at interior
points of T or along the edge. Examining the signs of z, y and z +y — 3
shows that f is zero at all points on the edge of T" and negative on the interior
of T. Thus f assumes its maximum value—zero—along the boundary of T
and must assume its minimum somewhere inside. (See figure 4.9.) To find the
extrema of f inside T, find the critical points and try the max/min test. The
partial derivatives of f (temporarily viewed as a function on all of R?) are

fe(zy) =yQRr+y—-3)  fy(lz,y) =z(z+2y—3),

and these are both zero if (z,y) € {(0,0),(0,3),(3,0),(1,1)}. (The first three
critical points are easy to find; the last is found by assuming that neither x
nor y is zero, giving the simultaneous equations 2z + y = 3, z + 2y = 3.) The
only critical point interior to T is (1,1), and therefore f(1,1) = —1 must be
the minimum value of f. A quick calculation shows that H(1,1) =[?1], and
the max/min test confirms the minimum at (1,1).

Another example is to find the extreme values of the function

1 1
f:R*—=R, f(z,9)= 5;102 + 2y — 22 — 53/2.
Since R? is not compact, there is no guarantee that f has any extrema. In

fact, for large z, f(x,0) gets arbitrarily large, and for large y, f(0,y) gets
arbitrarily small (where small means negative, not epsilontic). So f has no
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Figure 4.9. Zero on the boundary, negative on the interior

global extrema. Nonetheless there may be local ones. Every point of R? is
interior, so it suffices to examine the critical points of f. The partial derivatives
are

fz(may)=m+y_2 fy(a?,y)=a?—y,
and the only point where both of them vanish is (z,y) = (1,1). The Hessian
is Hp(1,1) = [ 1], so the critical point (1,1) is a saddle point. The function
f has no extrema, local or global.

Exercises

4.5.1. Compute the best quadratic approximation to f(x,y) = e” cosy at the
point (07 0)7 f(h'a k) ~ f(07 0) + Df(O,O) (h7 k) + %Qf(0,0) (h7 k)

4.5.2. Compute the best quadratic approximation to f(z,y) = e**2¥ at the
point (0, 0).

4.5.3. Give a heuristic explanation, making whatever reasonable assumptions
seem to be helpful, of why the n-dimensional conceptual analogue of figure 4.8
should have 3" “pictures.” How does this relate to figure 4.77?

4.5.4. Find the extreme values taken by f(z,y) = zy(42> + 4> — 16) on the
quarter ellipse

E={(z,y) € R?:2 >0,y > 0,42% + y* < 16}.

4.5.5. Find the local extrema of the function f(z,y) = 2> +zy—4z+3y> - Ty
on R2.

4.5.6. Determine the nature of f(z,y) = $2° + 3y + (z — 3)% — (y + 4)* at
each of its critical points. Are there global extrema?
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4.5.7. Find the critical points. Are they maxima, minima, or saddle points?
(The max/min test will not always help.)

fz,y) =2y +zy®  g(z,y) =€t h(z,y) =2y + 2y° + 2y.

4.5.8. Discuss local and global extrema of f(z,y) = - — —X- on the open

= z—1 y—1
ball B((0,0);1) in R2.

4.5.9. The graph of the function m(z,y) = 6zy? — 223 — 3y* is called a
monkey saddle. Find the three critical points of m and classify each as
a maximum, minimum or saddle. (The max/min test will work on two.
Study m(z,0) and m(0,y) to classify the third.) Explain the name “monkey
saddle” —computer graphing software may help.

4.5.10. Linear algebra readily addresses the question of whether an n-by-n
matrix is positive definite, negative definite, or indefinite.

Definition 4.5.9 (Characteristic Polynomial). Let M be an n-by-n ma-
triz. Its characteristic polynomial is

pm(A) = det(M — AI).

The characteristic polynomial of M is a polynomial of degree n in the scalar
variable .

While the roots of a polynomial with real coefficients are in general com-
plex, the roots of the characteristic polynomial of a symmetric matrix in
M,,(R) are guaranteed to be real. The characterization we want is

Theorem 4.5.10 (Description of Definite /Indefinite Matrices). Let M
be a symmetric matriz in M, (R). Then

(1) M is positive definite if and only if all the roots of pap(A\) are positive.
(2) M is negative definite if and only if all the roots of par(\) are negative.
(3) M is indefinite if and only if par(\) has positive roots and negative roots.

With this result one can extend the methods in the section to functions of
more than two variables.
(a) Let M be the symmetric matrix [g ? ] € M>(R). Show that

pu(A) =2 — (a4 )X+ (ad — B?).

(b) Show that Theorem 4.5.10 is equivalent to Proposition 4.5.6 when
n = 2.
(c) Classify the 3-by-3 matrices

1-10 010
-1 20 101
0 01 010

A generalization of Proposition 4.5.7 also holds, since the roots of a poly-
nomial vary continuously with the polynomial’s coefficients. This leads to
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Proposition 4.5.11 (General Max/min Test). Let f : A — R (where
A C R™) be C? on its interior points. Let a be an interior point of A, and
suppose that f'(a) = 0,,. Let Hy(a), the Hessian matriz of f at a, have char-
acteristic polynomial p(X).

(1) If all roots of p(A\) are positive then f(a) is a local minimum.

(2) If all roots of p(A\) are negative then f(a) is a local mazimum.
(3) If p(\) has positive and negative roots then f(a) is a saddle point.

4.6 Directional Derivatives and the Gradient

Let f be a scalar-valued function, f : A — R where A C R", and as-
sume that f is differentiable at a point a of A. While the derivative D f, is a
rather abstract object—the linear mapping that gives the best approximation
to f(a + h) — f(a) for small h—the partial derivatives D;f(a) are easy to
understand. The jth partial derivative of f at a,

D, = i [0 0 = 1@

measures the rate of change of f at a as its input varies in the jth direction.
Visually, D, f(a) gives the slope of the jth cross section through a of the graph
of f.

Analogous formulas measure the rate of change of f at a as its input varies
in a direction that doesn’t necessarily parallel a coordinate axis. A direction
in R™ is specified by a unit vector d, i.e., a vector d such that |d| = 1. As the
input to f moves distance ¢ in the d direction, f changes by f(a +td) — f(a).
Thus the following definition is natural.

Definition 4.6.1 (Directional Derivative). Let f : A — R (where A C
R™) be a function, let a be an interior point of A, and let d € R™ be a unit
vector. The directional derivative of f at a in the d direction is

Daf@) = i LD = S10)

if this limit exists.

The directional derivatives of f in the standard basis vector directions are
simply the partial derivatives.

When n = 2 and f is differentiable at (a,b) € R2, its graph has a well-
fitting tangent plane through (a,b, f(a,b)). The plane is determined by the
two slopes D; f(a,b) and Dsf(a,b), and it geometrically determines the rate
of increase of f in all other directions. (See figure 4.10.) The geometry suggests
that if f: A — R (where A C R") is differentiable at a then all directional
derivatives are expressible in terms of the partial derivatives. This is true and
easy to show. A special case of the differentiability property (4.3) is
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m =0,
t—0 t
i.e. (show the steps), Dyf(a) — f'(a) -d =0, or
Dyf(a) =) _D;f(a)d;
j=1
as desired.
T

Figure 4.10. General directional slope determined by axis-directional slopes

The derivative matrix f'(a) of a scalar-valued function f at a is often
called the gradient of f at a and written V f(a). That is,

Vf(a) = f'(a) = (D1£(a), ..., Dnf(a)).
The previous calculation and this definition lead to

Theorem 4.6.2 (Directional Derivative and Gradient). Let the func-
tion f : A — R (where A C R"™) be differentiable at a, and let d € R™ be a
unit vector. Then the directional derivative of f at a in the d direction exists,
and it is equal to

Daf(a) = D;f(a)d;
=1

=(Vf(a),d)
= |V f(a)| cos Oy f(a),a-

Therefore:
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o The rate of increase of f at a in the d direction varies with d, from
—|V f(a)| when d points in the direction opposite to V f(a), to |V f(a)|
when d points in the same direction as V f(a).

e In particular, the vector V f(a) points in the direction of greatest increase
of f at a, and its modulus |V f(a)| is precisely this greatest rate.

e Also, the directions orthogonal to V f(a) are the directions in which f
neither increases or decreases at a.

This theorem gives necessary conditions that arise in consequence of the
derivative of f existing at a point a. As in section 4.3, the converse statement,
that these conditions are sufficient to make the derivative of f exist at a,
is false. Each directional derivative Dgf(a) can exist without the derivative
Df, existing (exercise 4.6.9). Furthermore, each directional derivative can
exist at a and satisfy the formula D;f(a) = (Vf(a),d) in the theorem, but
still without the derivative D f, existing (exercise 4.6.10). The existence of
the multivariable derivative D f, is a stronger condition than any amount of
one-variable cross-sectional derivative data at a.

For an example of using the theorem, if you are skiing on the quadratic
mountain f(z,y) = 9 — x? — 2y? at the point (a, f(a)) = (1,1,6), then your
gradient meter shows

VF(1,1) = (D1f(1,1), Daf (1,1)) = (=22, —49)| , 1) = (=2, —4).

Therefore the direction of steepest descent down the hillside is the (2,4)-
direction (this could be divided by its modulus v/20 to make it a unit vector),
and the slope of steepest descent is the absolute value |Vf(1,1)] = /20.
On the other hand, cross-country skiing in the (2, —1)-direction, which is
orthogonal to Vf(1,1), neither gains nor loses elevation immediately. (See
figure 4.11.) The cross-country skiing trail that neither climbs nor descends
has a mathematical name.

Definition 4.6.3 (Level Set). Let f : A — R (where A C R") be a func-
tion. A level set of f is the set of points in A that map under f to some fized
value b in R,

L={zecA: f(z)=0b}.
For example, on the mountain
fRP—R,  fz,y)=9-2" -2
the level set for b = 5 is an ellipse in the plane,
L={(z,y) € R?: 22 + 2y* = 4}.

And similarly the level set is an ellipse for any real number b up to 9. In general,
plotting the level sets of a function f of two variables gives a topographical
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o

Figure 4.11. Gradient and its orthogonal vector for the parabolic mountain

map description of f. The geometry is different for a function of one variable:
each level set is a subset of the line. For example, consider a restriction of the
sine function,

f:(0,7) — R, f(z) = sin(z).

The level set taken by f to 1/2 consists of two points,
L={n/6,57/6}.

As for a function of three variables, each level set is a subset of space. For
example, if a, b, and ¢ are positive numbers, and the function is

f:RP— R,  f(z,y,2) = (z/a)” + (y/b)* + (2/c)?,

then its level sets are ellipsoids. Specifically, for every positive r, the level set
of points taken by f to r is the ellipsoid of z-radius a+/r, y-radius b\/r, and
z-radius e/7,

z \2 2 2 \2
p={evner: () () + () =)

The third bullet in Theorem 4.6.2 says that the gradient is normal to the
level set. This may seem surprising, since the gradient is a version of the
derivative, and we think of the derivative as describing a tangent object to a
graph. The reason that the derivative has become a normal object is that a
level set is different from a graph. A level set of f is a subset of the domain
of f, whereas the graph of f, which simultaneously shows the domain and the
range of f, is a subset of a space that is one dimension larger. For instance, if
we think of f as measuring elevation, then the graph of f is terrain in three-
dimensional space, while a level set of f is set of points in the plane that
lie beneath the terrain at some constant altitude; the level set is typically
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a curve. Figure 4.11 illustrates the difference in the case of the mountain
function. Note that in the left part of the figure, the gradient is orthogonal to
the ellipse on which it starts. Similarly, figure 4.12 illustrates the difference
in the case of the restricted sine function from the previous paragraph. In the
figure, the z-axis shows the two-point level set from the previous paragraph,
and the gradient of f at each of the two points. The fact that one gradient
points right indicates that to climb the graph of f over that point, one should
move to the right, and the slope to be encountered on the graph will be the
length of the gradient on the axis. Similarly, the other gradient points left
because to climb the graph over the other point, one should move to the left.
Here each gradient is trivially orthogonal to the level set, because the level set
consists of isolated points. For the three-variable function from the previous
paragraph, we still can see the level sets—they are concentric ellipsoids—but
not the graph, which would require four dimensions. Instead, we can conceive
of the function as measuring temperature in space, and of the gradient as
pointing in the direction to move for greatest rate of temperature-increase,
with the length of the gradient being that rate. Figure 4.13 shows a level set
for the temperature function, and several gradients, visibly orthogonal to the
level set.

Figure 4.12. Level set and gradients for the sine function

Although Theorem 4.6.2 has already stated that the gradient is orthogonal
to the level set, we now amplify the argument. Let f : A — R (where
A C R™) be given, and assume that it is differentiable. Let a be a point of A,
and let b = f(a). Consider the level set of f containing a,

L={ze€A: f(z) =b} CR",

and consider any smooth curve from some interval into the level set, passing
through a,
v:(-ge) — L, 7y(0)=a.

The composite function
fov:i(-ge) —R
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Figure 4.13. Level set and gradients for the temperature function

is the constant function b, so that its derivative at 0 is 0. By the chain rule
this relation is

Vf(a)-+'(0) =0.

Every tangent vector to L at a takes the form ~/(0) for some ~ of the sort that
we are considering. Therefore, V f(a) is orthogonal to every tangent vector
to L at a, i.e., Vf(a) is normal to L at a.

Before continuing to work with the gradient, we pause to remark that level
sets and graphs are related. For one thing:

The graph of any function is also the level set of a different function.

To see this, let n > 1, let Ag be a subset of R*™!, and let f : 49 — R be
any function. Given this information, let A = Ay x R and define a second
function g: A — R,

g(z1, .., Tp_1,Tn) = f(T1,.. ., Tp_1) — Tp.

Then the graph of f is a level of g, specifically the set of inputs that g takes
to 0,

graph(f) ={z € Ao xR:zy = f(21,...,2n-1)}
={z € A:g(z) =0}

For example, the graph of the mountain function f(z,y) = 9— 22 —2y? is also
a level set of the function g(z,y,2) = 9 — 2° — 2y — 2. But in contrast to this
quick method defining g explicitly in terms of f to show that every graph is
a level set, the converse question is much more subtle:

To what extent is some given level set also a graph?



4.6 Directional Derivatives and the Gradient 165

For example, the level sets of the mountain function f are ellipses (as shown in
figure 4.11), but an ellipse is not the graph of y as a function of z or vice versa.
The converse question will be addressed by the Implicit Function Theorem in
the next chapter.

Returning to the gradient, the geometrical fact that it is normal to the
level set makes it easy to find the tangent plane to a two-dimensional surface
in R3. For example, consider the surface

H={(z,y,2) e R®: 2 +¢* — 22 =1}.

(This is a hyperboloid of one sheet.) The point (2v/2, 3,4) belongs to H. Note
that H as a level set of the function f(z,y,z) = 2% + y? — 22, and compute
the gradient

V£(2V2,3,4) = (4V2,6, —8).

Since this is the normal vector to H at (2v/2, 3,4), the methods of section 3.10
show that the equation of the tangent plane to H at (2v/2,3,4) is

4v2(z — 2v2) +6(y — 3) — 8(z —4) = 0.

If a function f : R® — R has a continuous gradient, then from any
starting point a € R™ where the gradient V f(a) is nonzero, there is a path of
steepest ascent of f (called an integral curve of V) starting at a. If n = 2
and the graph of f is seen as a surface in 3-space, then the integral curve from
the point (a,b) € R2 is the shadow of the path followed by a particle climbing
the graph, starting at (a,b, f(a,b)). If n = 2 or n = 3 and f is viewed as
temperature, then the integral curve is the path followed by a heat-seeking
bug.

To find the integral curve, we set up an equation that describes it. The
idea is to treat the gradient vector as a divining rod and follow it starting at a.
This produces a path in R™ that describes time-dependent motion, always in
the direction of the gradient, and always with speed equal to the modulus
of the gradient. Computing the path amounts to finding an interval I C R
containing 0 and a mapping

v: I — R"
that satisfies the differential equation with initial conditions
Y =VIi®), v(0)=a (4.6)

Whether (and how) one can solve this for v depends on the data f and a.

In the case of the mountain function f(z,y) = 9 — 22 — 2y?, with gradient
Vf(z,y) = (—2z,—4y), the path v has two components v; and 72, and the
differential equation and initial conditions (4.6) become

(’Yi (t)a’yé (t)) = (_2’71 (t)7 _4’72(t))7 (’YI (0),’}’2(0)) = (aa b);
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to which the unique solution is

(71(£),72(t)) = (ae™2, be™**).
Let £ = v, (t) and y = v»(t). Then the previous display shows that
a’y = bx?,

and so the integral curve lies on a parabola. (The parabola is degenerate if the
starting point (a, b) lies on either axis.) Every parabola that forms an integral
curve for the mountain function meets orthogonally with every ellipse that
forms a level set. (See figure 4.14.) In general, solving the vector differential
equation (4.6) to find the integral curves « of a function f can be difficult.

Figure 4.14. Level sets and integral curves for the parabolic mountain

For another example, suppose the temperature in space is given by
T(z,y,2) = 1/(z*> + y*® + 2%). (This blows up at the origin, so don’t work
there.) The level sets of this function are spheres and the integral curves are
rays going toward the origin. The level set passing through the point (a, b, c)
in space is again orthogonal to the integral curve through the same point.

Exercises

4.6.1. Let f(z,y,2) = zy® + y=z. Find D(%,f%%)f(l, 1,2).

4.6.2. Let g(z,y,2z) = zyz, let d be the unit vector in the direction from
(1,2,3) to (3,1,5). Find Dgg(1,2,3).

4.6.3. Let f be differentiable at a point a, and let d = —ey, a unit vector. Are
the directional derivative D4f(a) and the partial derivative D, f(a) equal?
Explain.

4.6.4. Formulate and prove a version of Rolle’s theorem for functions of n
variables.
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4.6.5. Show that if f : R®” — R and g : R® — R are differentiable then so
is their product fg: R™ — R and V(fg) = fVg+ gVY{.

4.6.6. Find the tangent plane to the surface {(z,y, 2) : 2+2y%+322—10 = 0}
in R? at the point (1,2,1).

4.6.7. The pheromone concentration in space is given by P(x,y,z) = e~ % +
e~2Y +e73%. In what direction does a moth at (1,1,1) fly? At what rate is the
pheromone concentration increasing in that direction?

4.6.8. Sketch some level sets and integral curves for the function f(z,y) = zy.

4.6.9. Define f : R2 — R by

_[Fs i@y A0
foy) = {0 " if (z,y) =0.

(a) Show that f is continuous at (0,0).

(b) Find the partial derivatives Dy f(0,0) and D2 f(0,0).

(c) Let d be any unit vector in R? (thus d takes the form d = (cos ¥, sin )
for some 6§ € R). Show that Dy f(0,0) exists by finding it.

(d) Show that in spite of (c), f is not differentiable at (0,0). (Use your re-
sults from parts (b) and (c) to contradict Theorem 4.6.2.) Thus, the existence
of every directional derivative at a point is not sufficient for differentiability
at the point.

4.6.10. Define f : R2 — R by

1 if y = 22 and (z,y) # (0,0)
f@y) = {O otherwise.

(a) Show that f is discontinuous at (0,0). It follows that f is not differen-
tiable at (0, 0).

(b) Let d be any unit vector in R2. Show that D;f(0,0) = 0. Show that
consequently the formula D, f(0,0) = (Vf(0,0),d) holds for every unit vec-
tor d. Thus, the existence of every directional derivative at a point, and the
fact that each directional derivative satisfies the formula are still not sufficient
for differentiability at the point.

4.6.11. Fix two real numbers a and b satisfying 0 < a < b. Define a mapping
T = (Tl,TQ,T3) :R? — R? by

T(s,t) = ((b+ acoss) cost, (b + acoss)sint,asin s).

(a) Describe the shape of the set in R mapped to by 7. (The answer will
explain the name “T.”)
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(b) Find the points (s,t) € R? such that VTi(s,t) = 0. The points map
to only four image points p under 7. Show that one such p is a maximum
of T1, another is a minimum, and the remaining two are saddle points.

(c) Find the points(s,t) € R? such that VT3(s,t) = 05 . To what points g
do these (s,t) map under T'? Which such ¢ are maxima of 737 Minima? Saddle
points?

4.7 Summary

The multivariable derivative figures in solving various kinds of problems:

e changing variables in a partial differential equation,
e optimization of a scalar-valued function of many variables,
e determining integral curves.

The next chapter will consider a fourth type of problem, optimization with
constraints.



5

Inverse and Implicit Functions

The question of whether a mapping f : A — R™ (where A C R") is globally
invertible is beyond the local techniques of differential calculus. However, a lo-
cal theorem is finally in reach. The idea sounds plausible: if the derivative of f
is invertible at the point a then f itself, being well approximated near a by its
derivative, should also be invertible in the small. However, it is by no means
a general principle that an approximated object must have the properties
of the object approximating it. On the contrary, mathematics often approx-
imates complicated objects by simpler ones. For example, Taylor’s Theorem
approximates any function that has many derivatives by a polynomial. This
does not make the function itself a polynomial as well.

Even in the one-variable case, the Inverse Function Theorem relies on foun-
dational theorems about the real number system, on a property of continuous
functions, and on a foundational theorem of differential calculus. We quickly
review the ideas. Let f : A — R (where A C R) be a function, let a be an
interior point of A, and let f be continuously differentiable on some interval
about a, meaning that f' exists and is continuous on the interval. Suppose
that f'(a) > 0. Since f’ is continuous about a, the Persistence of Inequality
principle (Proposition 2.3.9) says that f’ is positive on some closed interval
[a — d,a + 8] about a. By an application of the Mean Value Theorem, f is
therefore strictly increasing on the interval, and so its restriction to the in-
terval does not take any value twice. By the Intermediate Value Theorem,
f takes every value from f(a — d) to f(a + 6) on the interval. Therefore f
takes every such value exactly once, making it locally invertible. A slightly
subtle point is that the inverse function f~! is continuous at f(a), but then a
purely formal calculation with difference quotients will verify that the deriva-
tive of f~! exists at f(a) and is 1/f'(a). Note how heavily this proof relies
on the fact that R is an ordered field. A proof of the multivariable Inverse
Function Theorem must use other methods.

The proof to be given in this chapter has its technical aspects, but the
core idea is simple common sense. Let a mapping f be given that takes z-
values to y-values, and that in particular takes a to b. Then the local inverse
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function must take y-values near b to z-values near a, taking each such y back
to the unique z that f took to y in the first place. We need to determine
conditions on f that make us believe that a local inverse exists. As explained
above, the basic condition is that the derivative of f at a—giving a good
approximation of f near a, but easier to understand than f itself—should be
invertible. The derivative should be continuous as well, for technical reasons.
With these conditions in hand, it is elementary (though a bit painstaking) to
show that f is locally injective:

e Given y near b, there is at most one x near a that f takes to y.

So the problem reduces to showing that f is locally surjective:

e Given y near b, show that there is some x near a that f takes to y.

This problem decomposes to two subproblems. First:

e Given y near b, show that there is some x near a that f takes closest to y.
Then:

e Show that f takes this particular x exactly to y.

And once the appropriate environment is established, solving each of these is
just a matter of applying the main theorems from the previous three chapters.

Not only does the Inverse Function Theorem have a proof that uses so
much previous work from this course so nicely, it also has useful consequences.
It leads easily to the Implicit Function Theorem, which answers a different
question: When does a set of constraining relations among a set of variables
make some of the variables dependent on the others? The Implicit Function
Theorem in turn justifies the Lagrange multiplier method, a technique for solv-
ing optimization problems with constraints. As discussed back in the preface,
these problems have no one-variable counterpart, and they can be viewed as
the beginning of calculus on curved spaces.

5.1 Preliminaries

The basic elements of topology in R™—e-balls; limit points; closed, bounded,
and compact sets—were introduced in section 2.4 to provide the environment
for the Extreme Value Theorem. A little more topology is now needed before
we proceed to the Inverse Function Theorem. Recall that for any point a € R"
and any radius € > 0, the e-ball at a is the set

B(a,e) ={z € R": |z —a| <&}

Recall also that a subset of R™ is called closed if it contains all of its limit
points. Not unnaturally, a subset S of R" is called open if its complement
S¢=R" — S is closed. A set, however, is not a door: it can be neither open
or closed, and it can be both open and closed. (Examples?)
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Proposition 5.1.1 (e-balls Are Open). For any a € R™ and any € > 0,
the ball B(a,¢) is open.

Proof. Let = be any point in B(a,e), and set § = € — |z — a|, a positive
number. The triangle inequality shows that B(z,d) C B(a,¢) (exercise 5.1.1),
and therefore z is not a limit point of the complement B(a, ). Consequently
all limit points of B(a, )¢ are in fact elements of B(a, )¢, which is thus closed,
making B(a,¢) itself open. O

This proof shows that any point z € B(a,¢) is an interior point. In fact,
an equivalent definition of “open” is that a subset of R™ is open if each of its
points is interior (exercise 5.1.2).

The closed e-ball at a, denoted B(a,¢), consists of the corresponding
open ball with its edge added in,

B(a,e)={z € R": |z —a| <&}
The boundary of the closed ball B(a,¢), denoted dB(a,¢), is the points on
the edge,

0B(a,e) ={z € R" : |vt —a| =¢€}.
(See figure 5.1.) Any closed ball B and its boundary OB are compact sets
(exercise 5.1.3).

Figure 5.1. Open ball, closed ball, and boundary

Let f : A — R™ (where A C R"™) be continuous, let W be an open
subset of R™, and let V' be the set of all points in A that f maps into W,

V={zeA: f(z)e W}

The set V is called the inverse image of W under f; it is often denoted
f1(W), but this is a little misleading since f need not actually have an
inverse mapping f~!. For example, if f : R — R is the squaring function
f(x) = 22, then the inverse image of [4,9] is [-3, —2] U [2, 3], and this set is
denoted f~!([4,9]) even though f has no inverse. (See figure 5.2, in which
f is not the squaring function, but the inverse image f~(W) also has two
components.) The inverse image concept generalizes an idea that we saw in
section 4.6: the inverse image of a one-point set under a mapping f is a level
set of f, as in Definition 4.6.3.
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Figure 5.2. Inverse image with two components

Although the forward image under a continuous function of an open set
need not be open (exercise 5.1.4), inverse images behave more nicely. The
connection between continuous mappings and open sets is

Theorem 5.1.2 (Inverse Image Characterization of Continuity). Let
f: A— R™ (where A is an open subset of R™) be continuous. Let W C R™
be open. Then f=1(W), the inverse image of W under f, is open.

Proof. Let a be a point of f~1(W). We want to show that it is an interior
point. Let w = f(a), a point of W. Since W is open, some ball B(w,p) is
contained in W. Consider the function

g:A—R, g(x)=p—|f(x) - wl|

This function is continuous and it satisfies g(a) = p > 0, and so by a slight
variant of the Persistence of Inequality principle there exists a ball B(a,¢) C A
on which g remains positive. That is,

f(z) € B(w,p) for all z € B(a,¢).

Since B(w, p) C W, this shows that B(a,e) C f~1(W), making a an interior
point of f~1(W) as desired. o

The converse to Theorem 5.1.2 is also true and is exercise 5.1.8. We need
one last technical result for the proof of the Inverse Function Theorem.

Lemma 5.1.3 (Difference Magnification Lemma). Let B be a closed ball
in R™ and let g be a differentiable mapping from an open set in R™ contain-
ing B back to R™. Suppose that there is a number ¢ such that |D;g;(z)| < c
for alli,j € {1,...,n} and all z € B. Then

l9(%) — g(x)| < n’c|l& —z| for all 2,% € B.

Proof. Given two points z,# € B, make the line segment connecting them the
image of a function of one variable,
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v:[0,1] — R™, v(t) =z + t(Z — ).

Note that y(0) = z, v(1) = Z, and 7/(t) = Z — z for all t € (0,1). Fix any
i € {1,...,n} and consider the restriction of g; to the segment,

p:[0,]] =R,  o(t) = (gi07)(t)-
Thus ¢(0) = gi(z) and ¢(1) = g;(&). By the Mean Value Theorem,
9i(%) — gi(z) = (1) — ¢(0) = ¢'(t) for some t € (0,1),
and so since ¢ = g; o~y the Chain Rule gives
9i(%) — gi(z) = (g5 0 7)'(t) = 9; (Y)Y () = g:(v(£))(& — ).

Here g}((¢)) is a row vector and & —z is a column vector. Viewing them both
as vectors with no reference to rows or columns, we have

9i(%) — gi(z) = (gi(v()), & — =),

so that by the Cauchy—Schwarz inequality,

l9:(2) — gi()| < 1gi(v()] |2 — =|.

For each j, the jth entry of the vector gj((t)) is D;gi(v(t)) by Theorem 4.3.2.
But we are given that |D;g;(y(t))| < ¢, so the Size Bounds show that
|9:(v(t))| < nc and therefore

19:(%) — gi(z)| < nc|z — z|.

Again by the Size Bounds, |g(z) — g(&)| < Y, |9i(&) — gi(z)], so by the
previous display,
l9(%) — g(z)| < n*c| — |-

This is the desired result. O

Exercises

5.1.1. Let z € B(a;¢) and let 6 = ¢ — |z — a|. Explain why 6 > 0 and why
B(z;d) C B(a;e).

5.1.2. Show that a subset of R"™ is open if and only if each of its points is
interior.

5.1.3. Prove that any closed ball B is indeed a closed set, as is its boundary
OB. Show that any closed ball and its boundary are also bounded, hence
compact.
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5.1.4. Find a continuous function f : R® — R™ and an open set A C R"
such that the image f(A) C R™ of A under f is not open. Feel free to choose
n and m.

5.1.5. Define f : R — R by f(z) = z® — 3z. Compute f(—1/2). Find
J7H(0,11/8)), £71((0,2), f~H((—00,—11/8) U (11/8,00)). Does f~* exist?

5.1.6. Show that for f : R® — R™ and B C R™, the inverse image of the
complement is the complement of the inverse image,

fUBe) =B
Does the analogous formula hold for forward images?

5.1.7.If f : R® — R™ is continuous and B C R™ is closed, show that
f71(B) is closed. What does this say about the level sets of continuous func-
tions?

5.1.8. Prove the converse to Theorem 5.1.2: If f: A — R™ (where A C R"
is open) is such that for any open W C R™ also f~1(W) C A is open, then
f is continuous.

5.1.9. Let a and b be real numbers with a < b. Let n > 1, and suppose that
the mapping f : [a,b] — R™ is continuous and that f is differentiable on
the open interval (a,b). It is tempting to generalize the Mean Value Theorem
(Theorem 1.2.3) to the assertion

“f(b) — f(a) = f'(c)(b—a) for some c € (a,b).” (5.1)

This assertion is grammatically meaningful, since it posits an equality between
two n-vectors. However, the assertion is false.

(a) Let f : [0,27r] — R? be f(t) = (cost,sint). Show that (5.1) fails for
this f. Describe the situation geometrically.

(b) Let f:[0,27] — R? be f(t) = (cost,sint,t). Show that (5.1) fails for
this f. Describe the situation geometrically.

(c) Here is an attempt to prove (5.1): Let f = (f1,..., fa). Since each f;
is scalar-valued, we have fori =1,...,n by the Mean Value Theorem,

fi(d) — fi(a) = fi(c)(b—a) for some c € (a,b).

Assembling the scalar results gives the desired vector result.
What is the error here?

5.2 The Inverse Function Theorem

Theorem 5.2.1 (Inverse Function Theorem). Let f : A — R"™ (where
A C R"™) be a mapping, let a be an interior point of A, and let f be continu-
ously differentiable on some e-ball about a. (This means first that the deriva-
tive mapping D f, exists for each x in the ball, and second that the entries of
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the derivative matriz f'(x), i.e., the partial derivatives D; fi(x), are continu-
ous functions of x on the ball.) Suppose that det f'(a) # 0. Then there is an
open set V C A containing a and an open set W C R™ containing f(a) such
that f : V — W has a continuously differentiable inverse f=* : W — V.
For each y = f(x) € W, the derivative of the inverse is the inverse of the
derivative,

D(f™)y = (Df) ™

Before the proof, it is worth remarking that the the formula for the deriva-
tive of the local inverse, and the fact that the derivative of the local inverse is
continuous, are easy to establish once everything else is in place. If the local
inverse f ! of f is known to exist and to be differentiable, then for any z € V
the fact that the identity mapping is its own derivative combines with the
chain rule to say that

id, = D(ldn)z = D(f_l o f)n = D(f_l)y oDf, wherey= f(m)a

and similarly id, = D f,o(Df~!),, where this time id,, is the identity mapping
on y-space. The last formula in the theorem follows. In terms of matrices, the
formula is

(f7)'(y) = f'(x)™" wherey = f(z).

This formula combines with Corollary 3.7.3 (the entries of the inverse matrix
are continuous functions of the entries of the matrix) to show that since the
mapping is continuously differentiable and the local inverse is differentiable,
the local inverse is continuously differentiable. Thus we need to show only
that the local inverse exists and is differentiable.

Proof. The proof begins with a simplification. Let T = D f,, a linear map-
ping from R™ to R™ that is invertible because its matrix f'(a) has nonzero
determinant. Let

f=T"'of.

By the chain rule, the derivative of f at a is
Dfa=D(T "0 f)a=D(T j@oDfa=T""0T =idy.

Also, suppose we have a local inverse g of f , so that

go f =id, near a

and } ~
fog=id, near f(a).

The situation is shown in the following diagram, in which V is an open set
containing a, W is an open set containing f(a), and W is an open set con-

taining T71(f(a)) = f(a).
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f
vlow T

g

The diagram shows that the way to invert f locally, going from W back to V/,
is to proceed through W: g = §go T~ !. Indeed, since f =T o f,

gof=(§oT Yo (Tof)=id, near a,
and, since T~*(f(a)) = f(a),
fog=(Tof)o(§oT™") =id, near f(a).

That is, to invert f, it suffices to invert f. And if § is differentiable then so is
g = joT . The upshot is that we may prove the theorem for f rather than f.
Equivalently, we may assume with no loss of generality that D f, = id,, and
therefore that f'(a) = I,,. This normalization will let us carry out a clean,
explicit computation in the following paragraph.

Next we find a closed ball B around a where the behavior of f is somewhat
controlled by the fact that f'(a) = I,. Recall that the (i,j)th entry of I,
is d;; and that det(I,) = 1. As z varies continuously near a, the (i, j)th entry
D; fi(z) of f'(z) varies continuously near J;;, and so the scalar det f’'(z) varies
continuously near 1. Therefore, there is a closed ball B small enough that

1 —

|Dj fi(x) — 6;5] < oWl foralli,j€{l,...,n} and x € B (5.2)

and -
det f'(z) #0 for all z € B. (5.3)
Let g = f —id,, a differentiable mapping near a, whose Jacobian matrix at z,
9'(z) = f'(x) — I, has (i, j)th entry D;g;(z) = D, fi(x) — 0;;. Equation (5.2)
and Lemma 5.1.3 (with ¢ = 1/(2n?)) show that for any two points z and &
in B,
|9(2) — g(2)| < 3|2 -,

and therefore, since f =id,, + g,

|f(@) = f(@)] = (@ — ) + (9(2) — g())]
> | — x| —[9(Z) — g(z)|
> |& — x| — 5|& — 2| (by the previous display)
= 1|3 — z|.
This implies that f is injective on B, i.e., any two distinct points of B are
taken by f to distinct points of R™. For future reference, we note that the
result of the previous calculation rearranges as
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|& — x| < 2|f(&) — f(z)| forall z,% € B. (5.4)

The boundary 8B of B is compact, and so is the image set f(9B) since f
is continuous. Also, f(a) ¢ f(0B) since f is injective on B. And f(a) is not a
limit point of f(0B) since f(0B), being compact, is closed. This means that
some open ball B(f(a),2¢) contains no point from f(8B). (See figure 5.3.)

Figure 5.3. Ball about f(a) away from f(6B)

Let W = B(f(a),¢), the open ball with radius less than half the distance
from f(a) to f(0B). Thus

ly— fla)| < |y — f(z)| forally € W and = € dB. (5.5)

That is, every point y of W is closer to f(a) than it is to any point of f(8B).

(See figure 5.4.)
: : f ‘
z f(z)

Figure 5.4. Ball closer to f(a) than to f(0B)

The goal now is to exhibit a mapping on W that inverts f near a. In
other words, the goal is to show that for each y € W, there exists a unique x
interior to B such that f(x) = y. So fix an arbitrary y € W. Define a function
A : B — R that measures for each = the square of the distance from f(x)
to y,
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n
A) =y = f@) = (v - fi(2))”.

i=1
The idea is to show that for one and only one x near a, A(x) = 0. Since
modulus is always nonnegative, the x we seek must minimize A. As mentioned
at the beginning of the chapter, this simple idea inside all the technicalities
is the heart of the proof: the x to be taken to y by f must be the z that is
taken closest to y by f .

The function A is continuous and B is compact, so the Extreme Value The-
orem guarantees that A does indeed take a minimum on B. Condition (5.5)
guarantees that A takes no minimum on the boundary dB. Therefore the
minimum of A must occur at an interior point z of B; this interior point z
must be a critical point of A, so all partial derivatives of A vanish at . Thus
by the Chain Rule,

n

0=D;A(x) = -2 (yi — fi(z))D;fi(x) forj=1,...,n.

i=1

This condition is equivalent to the matrix equation

Difi(z) --- Difa(z)] [y1 — fi(2) 0

or
f'(@)'(y - f(2)) = 0.

But det f'(z)! = det f'(x) # 0 by condition (5.3), so f'(x)? is invertible and
the only solution to the equation is y — f(x) = 0,. This exhibits the desired x
interior to B such that y = f(z). And there is only one such z because f is
injective on B. We no longer need the boundary 8B, whose role was to make
a set compact. In sum, we now know that f is injective on B and that f(B)
contains W.

Let V = f~Y(W) N B, the set of all points € B such that f(z) € W.
(See figure 5.5.) By the inverse image characterization of continuity (Theo-
rem 5.1.2), V is open. We have established that f : V — W is inverted
by f~! : W — V. To show that f~! is continuous, substitute the values

=), y=f(x),%=Ff1%),z=fy) in (5.4) to obtain
F71@) - W) <20§—y| forally,jeWw.

The continuity of f~! is clear from this.

The last thing to prove is that f~! is differentiable on W. Again, reducing
the problem makes it easier. By (5.3), the condition det f'(z) # 0 is in effect
at each ¢ € V. Therefore a is no longer a distinguished point of V', and it
suffices to prove that the local inverse f~! is differentiable at f(a). Consider
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Figure 5.5. The sets V and W of the Inverse Function Theorem

the mapping f defined by the formula f(z) = f(z 4+ a) — b. Since f(a) = b it
follows that f(0,) = 0,, and since f is f up to prepended and postpended
translations, f is locally invertible at 0, and its derivative there is Dfq =
Df, = id,. The upshot is that in proving that f~! is differentiable at f(a),
there is no loss of generality in normalizing to a = 0, and f(a) = 0,, while
also retaining the normalization that D f, is the identity mapping.

For any point k € W, let h = f (k). By condition (5.4), |k| > 1|h|. Since
h — 0, exactly as k — 0,,

-1 _ f£-1 _ _ _
o MO0 k) = 700 k] _ =00 — J()]
k—0, |k| h—0, |k|
<t HO@utH) = 1(0:) = h]
h—0, §|h|

This last limit is 0 since D fo, (h) = h. This shows that f~! is differentiable
at 0, with the identity mapping for its derivative. O

Note the range of mathematical skills that this proof of the Inverse Func-
tion Theorem required. The ideas were motivated and guided by pictures, but
the actual argument was symbolic. At the level of fine detail, we normalized
the derivative to the identity in order to reduce clutter, we made an adroit
choice of quantifier in choosing a small enough B to apply the Difference Mag-
nification Lemma with ¢ = 1/(2n?), and we used the full Triangle Inequality
to obtain (5.4). This sufficed to prove that f is locally injective. Since the
proof of the Difference Magnification Lemma used the Mean Value Theorem
many times, the role of the Mean Value Theorem in the multivariable Inverse
Function Theorem is thus similar to its role in the one-variable proof reviewed
at the beginning of the chapter. However, while the one-variable proof that f
is locally surjective relied on the Intermediate Value Theorem, the multivari-
able argument was far more elaborate. The idea was that the putative x taken
by f to a given y must be the actual = taken by f closest to y. We exploited
this idea by working in broad strokes:

e The Extreme Value Theorem from chapter 2 guaranteed that there was
such an actual z.
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e The Critical Point Theorem and then the Chain Rule from chapter 4
described necessary conditions associated to x.

e And finally, the Linear Invertibility Theorem from chapter 3 showed that
indeed f(z) = y. Very satisfyingly, the hypothesis that the derivative is
invertible sealed the argument that the mapping itself is locally invertible.

Indeed, the proof of local surjectivity used nearly every significant result from
chapters 2 through 4 of these notes,

For an example, define f : R2 — R? by f(z,y) = (2® — 2zy?,z +y). Is
f locally invertible at (1,—1)7 If so, what is the best affine approximation to
the inverse near f(1,—1)? To answer the first question, calculate the Jacobian

14

T
(z,9)=(1,-1)
This is invertible with inverse f/(1,—1)"! = % [71 _1]- Therefore f is locally
invertible at (1,—1) and the affine approximation to f~! near f(1,—1) =

(—1,0) is

T e

L RSN R T e T |
Y 1+h,0+k)~[_1]+3[ 1_1] [k = (1-gh+gk,—1+gh—h).

The actual inverse function f~! about (—1,0) may not be clear, but with the
Inverse Function Theorem its affine approximation is easy to find.

Exercises

5.2.1. Define f : R? — R? by f(z,y) = (23 + 22y + y?,2? + y). Is f locally
invertible at (1,1)? If so, what is the best affine approximation to the inverse
near f(1,1)?

5.2.2. Same question for f(z,y) = (2% —y?,22y) at (2,1).

5.2.3. Same question for C(r,0) = (r cos,rsin8) at (1,0).

5.2.4. Same question for C(p,0,¢) = (pcosfsing,psinfsing,pcosd) at
(1,0,7/2).

5.2.5. At what points (a,b) € R2 is each of the following mappings guaranteed
to be locally invertible by the Inverse Function Theorem? In each case, find
the best affine approximation to the inverse near f(a,b).

(@) f(z,y) = (z +y,2zy°).

(b) f(z,y) = (sinz cosy + coszsiny, cos z cosy — sin x siny).
5.2.6. Define f : R? — R2? by f(z,y) = (e® cosy,e”siny). Show that f is
locally invertible at each point (a,b) € R?, but that f is not globally invertible.
Let (a,b) = (0, §);let (c,d) = f(a,b); let g be the local inverse to f near (a,b).
Find an explicit formula for g, compute ¢'(¢, d) and verify that it agrees with

f'(a,0)7"
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5.2.7.If f and g are functions from R3 to R, show that the mapping F =
(f,g9,f+9) : R® — R3, does not have a differentiable local inverse anywhere.

5.2.8. Define f : R — R by

1@ =1, if 2 = 0.

{x+2$25in% ifz#0

(a) Show that f is differentiable at 2 = 0 and that f'(0) # 0. (Since this
is a one-dimensional problem you may verify the old definition of derivative
rather than the new one.)

(b) Despite the result from (a), show that f is not locally invertible at
2 = 0. Why doesn’t this contradict the Inverse Function Theorem?

5.3 The Implicit Function Theorem

Let n and ¢ be positive integers with ¢ < n, and let r = n — ¢. This section
addresses the following question:

When do ¢ conditions on n variables specify c of the variables in terms
of the remaining r variables?

The symbols in this question will remain in play throughout the section. That

is,

e n =7+ ¢ is the total number of variables,

e ¢ is the number of conditions, i.e., the number of constraints on the vari-
ables, and therefore the number of variables that might be dependent on
the others,

e and r is the number of remaining variables and therefore the number of
variables that might be free.

The word conditions (or constraints) provides a mnemonic for the symbol ¢,
and similarly remaining (or free) provides a mnemonic for r.
The question can be rephrased:

When is a level set locally a graph?

To understand the rephrasing, we begin by reviewing the idea of a level set,
given here in a slightly more general form than in Definition 4.6.3,

Definition 5.3.1 (Level Set). Let g : A — R™ (where A C R") be a
mapping. A level set of g is the set of points in A that map under g to some
fized vector w in R™,

L={veA:g)=w}

That is, L is the inverse image under g of the one-point set {w}.
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Also we review the argument in section 4.6 that every graph is a level
set. Let Ap be a subset of R", and let f : Ag — R° be any mapping. Let
A= Ap x R° (a subset of R™) and define a second mapping g : A — R¢,

9(z,y) = f(z) — vy, (z,y) € Ao x R".

Then the graph of f is

graph(f) = {(z,y) € 4o x R°:y = f(z)}
= {(w,y) €A: g(w,y) = 0C}7

and this is the set of inputs to g that g takes to 0., a level set of g as desired.

Now we return to rephrasing the question at the beginning of this section.
Let A be an open subset of R", and let g : A — R° have continuous partial
derivatives at every point of A. Points of A can be written (z,y) where z € R"
and y € R¢. Consider the level set

L= {(x,y) €A: g(x,y) = Oc}'

The question was whether the ¢ scalar conditions g(z,y) = 0. on the n = c+r
scalar entries of (x,y) define the ¢ scalars of y in terms of the r scalars of
near (a,b). That is, the question is whether the vector relation g(z,y) = O,
for (z,y) near (a,b) is equivalent to a vector relation y = ¢(x) for some
mapping ¢ that takes r-vectors near a to c-vectors near b. This is precisely
the question of whether the level set L is locally the graph of such a mapping ¢.
If the answer is yes, then we would like to understand ¢ as well as possible
by using the techniques of differential calculus. In this context we view the
mapping ¢ is #mplicit in the condition g = 0., explaining the name of the
pending Implicit Function Theorem.

The first phrasing of the question, whether ¢ conditions on n variables
specify ¢ of the variables in terms of the remaining r variables, is easy to
answer when the conditions are affine. Affine conditions take the matrix form
Pv = w where P € M. ,(R), v € R", and w € R°. Partition the matrix P
into a left square ¢-by-r block M and a right ¢-by-c¢ block N, and partition
the vector v into its first 7 entries h and its last ¢ entries k. Then the relation
Pv=wis

h
[M N] [k] =w,
that is,
Mh+ Nk =w.

Assume that N is invertible. Then subtracting M h from both sides and then
left multiplying by N~! shows that the relation is

k=N Y(w— Mh).
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Thus, when the right c-by-c submatrix of P is invertible, the relation Pv = w
explicitly specifies the last ¢ variables of v in terms of the first r variables.
A similar statement applies to any invertible ¢-by-c¢ submatrix of P and the
corresponding variables. A special case of this calculation, the linear case,
will be used throughout the section: for any M € M, ,.(R), any invertible
N e M.(R), any h € R", and any k € RS,

[M N] m =0, = k=—-N"'Mh. (5.6)

When the conditions are nonaffine the situation is not so easy to analyze.
However:

e The problem is easy to linearize. That is, given a point (a, b) (where a € R"
and b € R°) on the level set {(z,y) : g(z,y) = w}, differential calculus
tells us how to describe the tangent object to the level set at the point.
Depending on the value of r, the tangent object will be a line, or a plane,
or higher-dimensional. But regardless of its dimension, it is described by
the linear conditions g¢'(a,b)v = 0., and these conditions take the form
that we have just considered,

h

o1 ]

] =0, MeM. ,(R), Ne M. (R), heR", ke R
Thus if NV is invertible then we can solve the linearized problem as in (5.6).
e The Inverse Function Theorem says:
If the linearized inversion problem is solvable, then the nonlinear
inwversion problem is locally solvable.
With a little work, we can use the Inverse Function Theorem to establish
the Implicit Function Theorem:
If the linearized implicit function problem is solvable, then the non-
linear implicit function problem is locally solvable.
And in fact, the Implicit Function Theorem will imply the Inverse Function
Theorem as well.

For example, the unit circle C' is described by one constraint on two vari-
ables,
2?49y =1.

Globally (in the large), this relation neither specifies z as a function of y nor
y as a function of z. It can’t: the circle is visibly not the graph of a function
of either sort—recall the Vertical Line Test to check whether a curve is the
graph of a function y = ¢(z), and analogously for the Horizontal Line Test.
The situation improves, however, if one works locally (in the small) by looking
at just part of the circle at a time. Any arc in the bottom half of the circle is
described by the function

y =) =—-V1-22.
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Similarly, any arc in the right half is described by

Any arc in the bottom right quarter is described by both functions. (See
figure 5.6.) On the other hand, no arc of the circle about the point (a,b) =
(1,0) is described by a function y = ¢(z), and no arc about (a,b) = (0,1) is
described by a function z = 9 (y). (See figure 5.7.) Thus, about some points
(a,b), the circle relation 22 + 2 = 1 contains the information to specify each
variable as a function of the other. These functions are implicit in the relation.
About other points, the relation implicitly defines one variable as a function
of the other, but not the second as a function of the first.

y = ¢()
T = (y)

Figure 5.6. Arc of a circle

dhY

y # ()

dh

Figure 5.7. Trickier arcs of a circle

To bring differential calculus to bear on the situation, think of the circle
as a level set. Consider the function g(z,y) = x? + y2. The circle is precisely

C={(z,y): g(z,y) = 1}.
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Let (a,b) be a point on the circle. The derivative of g at the point is
g'(a,b) = [D1g(a,b) Da2g(a,b)] = [2a 2b].

The tangent line to the circle at (a,b) consists of the points (a + h,b+ k) such
that (h, k) is orthogonal to ¢'(a,b),

[2a 2b] [h] =0.

k
That is,
2ah + 2bk = 0.
Thus whenever b # 0 we have
k= —(a/b)h,

showing that on the tangent line, the second coordinate is a linear function
of the first, and the function has derivative —a/b. And so on the circle it-
self near (a,b), plausibly the second coordinate is a function of the first as
well, provided that b # 0. Note that indeed this argument excludes the two
points (1,0) and (—1,0) about which y is not an implicit function of z. But
about points (a,b) € C where Dyg(a,b) # 0, the circle relation should implic-
itly define y as a function of z. And at such points, differentiating the circle
relation z2 + y? = 1 where y = p(z) gives

2a + 2by'(a) = 0,

or
¢'(a) = —a/b.

The derivative —a/b is exactly as predicted by solving the linearized problem.
The reader may recall from elementary calculus that this technique is called
implicit differentiation.

It may help the reader visualize the situation if we revisit the idea of
the previous paragraph more geometrically. Since C' is a level set of g, the
gradient g¢'(a,b) is orthogonal to C' at the point (a,b). When ¢'(a,b) has a
nonzero y-component, C should locally have a big shadow on the z-axis, from
which there is a function back to C. (See figure 5.8, in which the arrow drawn
is quite a bit shorter than the true gradient, for graphical reasons.)

In the case of the circle, the arguments of the previous two paragraphs are
unnecessary because we can explicitly solve for y in terms of z and vice versa.
But the purpose of the previous two paragraphs is to illustrate general ideas
in a specific context.

Another set defined by a relation is the unit sphere, also specified as a
level set. Let
9(z,y,2) = 2° + 9y + 22
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Figure 5.8. Nonhorizontal gradient and z-shadow

Then the sphere is
S=A{(z,y,2) : 9(z,y,2) = 1}.

Imposing one condition on three variables should generally leave two of them
free (say, the first two) and define the remaining one in terms of the free ones.
And indeed, the sphere implicitly describes z as a function ¢(x,y) about
any point p = (a,b,c¢) € S off the equator, where ¢ = 0. (Note: ¢ does not
denote the number of constraints in this example.) The equator is precisely the
points where D3g(p) = 2c¢ vanishes. Again geometry makes this plausible. The
gradient ¢'(p) is orthogonal to S at p. When ¢'(p) has a nonzero z-component,
S should locally have a big shadow in the (z,y)-plane from which there is a
function back to S and then to the z-axis. (See figure 5.9.)

Figure 5.9. Function from the (x,y)-plane to the z-axis via the sphere



5.3 The Implicit Function Theorem 187

The argument based on calculus and linear algebra to suggest that near
points (a,b,c) € S such that D3g(a, b, c) # 0, z is implicitly a function ¢(z,y)
on S is similar to the case of the circle. The derivative of g at the point is

g'(a,b,¢) = [D1g(a,b,c) Dag(a,b,c) Dzg(a,b,c)] = [2a 2b2c] .

The tangent plane to the sphere at (a,b,c) consists of the points (a + h,b +
k,c+ £) such that (h,k,£) is orthogonal to ¢'(a, b, c),

D
[2a 20 2¢] k| =0.
¢

That is,
2ah + 2bk + 2¢ = 0.

Thus whenever ¢ # 0 we have
L= —(a/c)h — (b/c)k,

showing that on the tangent plane, the third coordinate is a linear function of
the first two, and the function has partial derivatives —a/c and —b/c. And so
on the sphere itself near (a, b, ¢), plausibly the third coordinate is a function
of the first two as well, provided that ¢ # 0. This argument excludes points
on the equator, about which z is not an implicit function of (z,y). But about
points (a, b,c) € S where D3g(a, b, c) # 0, the sphere relation should implicitly
define z as a function of (z,y). And at such points, differentiating the sphere
relation 22 + y2 + 22 = 1 with respect to  and y, where z = ¢(z,y), gives

2a + 2¢D;p(a, b) =0, 2b+ 2¢Dygp(a,b) = 0,

or
Dip(a,b) = —afc,  Dap(a,b) = —b]c.

The partial derivatives are exactly as predicted by solving the linearized prob-
lem.

Next consider the intersection of the unit sphere and the 45-degree plane
z = —y. This is a great circle, again naturally described as a level set. That
is, if we consider the mapping

g:Rg_)R27 g(m,y,z)z(w2+y2+z2,y—|—z),
then the great circle is a level set of g,
GC ={(z,y,2) : g(z,y,2) = (1,0)}.

The two conditions on the three variables should generally leave one variable
(say, the first one) free and define the other two variables in terms of it. Indeed,
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GC is a circle that is orthogonal to the plane of the page, and away from its
two points (£1,0,0) that are farthest in and out of the page, it does define
(y, 2) locally as functions of z. (See figure 5.10.) To make the implicit function
in the great circle relations explicit, note that near the point p = (a,b,c) in

the figure,
(y,z) = (901(.'1:),@2(:1;)) — (_\/1 —2,1’2,\/1 —2:[:2) .

At p the component functions have derivatives

pila) = —— and  ¢h(a) =

But 1 — a? = 2b = 2¢2, and Vb2 = —b since b < 0 while V2 = ¢ since ¢ > 0,
so the derivatives are

pila)=— and  ph(a) = —. (5.7)

Figure 5.10. y and z locally as functions of z on a great circle

Now we show that linearizing the problem reproduces the results without
explicitly finding o1 and 2. The derivative matrix of g at p is

g'(a,b,¢) = [Za 2b 20] .

011
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The level set GC is defined by the condition that g remain constant as (x, y, z)
varies. Thus the tangent line to GC at a point (a,b,c) consists of points
(a+h,b+k,c+£) such that neither component function of g is instantaneously
changing in the (h, k, £)-direction,

2a 2b 2c Z_O
0116_0'

The right 2-by-2 submatrix of g'(a,b,c) has nonzero determinant whenever
b # ¢, that is, at all points of GC except the two aforementioned ex-
treme points (+1,0,0). Assuming that b # ¢, let M denote the first column
of g'(a,b,c) and let N denote the right 2-by-2 submatrix. Then by (5.6), the
linearized problem has solution

m = _N"'Mh= ﬁ [_i _32] [20“] h= [:?] he o (58)

(The condition ¢ = —b was used in the last step.) That is, for all points
(a+h,b+k,c+£) on the tangent line to GC at (a, b, ¢), the last two coordinate-
offsets k and £ are specified in terms of the first coordinate offset h via (5.8),
and the component functions have partial derivatives —a/(2b) and —a/(2¢).
Predictably enough, these are the previously-calculated component derivatives
of the true mapping ¢ defining the last two coordinates y and z in terms of
the first coordinate z for points on GC itself near p, shown in (5.7).

In the examples of the circle, the sphere, and the great circle, the functions
implicit in the defining relations could in fact be found explicitly. But in
general, relations may snarl the variables so badly that we expressing some as
functions of the others is beyond our algebraic capacity. For instance, do the
simultaneous conditions

y? = e” cos(y + 2°) and Y+ 2% =2? (5.9)

define y and z implicitly as functions y = @i(x), 2z = @2(x) near the
point (1,—1,0)? (This point meets both conditions.) Answering this directly
by solving for y and z is manifestly unappealing. But linearizing the problem
is easy. At our point (1,—1,0), the mapping

g(z,y,2) = (y* — e cos(y + 22),y? + 2% — 2?)
has derivative matrix

'(1,-1,0) = 2ze* sin(y + 22) 2y + e* sin(y + 22) —e* cos(y + z2)
g ) ) - _21. 2y 2z

[ 0-2-1
“|-2-2 o|"

(1,-1,0)
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Since the right 2-by-2 determinant is nonzero, we expect that indeed y and z
are implicit functions ¢1(x) and @2(x) near (1,—1,0). Furthermore, solving
the linearized problem as in the previous example with M and N similarly
defined suggests that if (y,2) = ¢(z) = (¢1(x), p2(x)) then

-1
Sy e, [-2-1 0] 1o 1]] o] _[-1
pi(1)=-N"M= [—2 0] [—2] T2 2-2||-2|7| 2|

Thus for a point (z,y,2) = (1 + h,—1+ k,0 + 1) near (1,—1,0) satisfying

conditions (5.9), we expect that (k,l) = (—h,2h), i.e.,

y~r—-1—h and z=0+2h wherez =1+ h.
The Implicit Function Theorem fulfills these expectations.

Theorem 5.3.2 (Implicit Function Theorem). Let ¢ and n be positive
integers with n > ¢, and let r = n —c. Let A be an open subset of R™, and let
g : A — R° have continuous partial derivatives at every point of A. Consider
the level set

L={veA:g(v) =0}

Let p be a point of L, i.e., let g(p) = 0.. Let p = (a,b) where a € R" and
b e Re, and let g'(p) = [M N| where M is the left c-by-r submatriz and N
is the remaining right square c-by-c submatriz.

If det N # 0 then the level set L is locally a graph near p. That is, the
condition g(z,y) = 0, for (z,y) near (a,b) implicitly defines y as a function
y = p(x) where o takes r-vectors near a to c-vectors near b, and in particular
p(a) = b. The function ¢ is differentiable at a with derivative matriz ¢'(a) =
—N~'M. Hence ¢ is well approzimated near a by its affine approzimation,

ola+h)~b—N"'Mh.

We make three remarks before the proof.

e The condition g(z,y) = 0. could just as easily be g(z,y) = w for any
fixed point w € R, as in our earlier examples. Normalizing to w = 0,
amounts to replacing g by g — w, which we do to tidy up the statement of
the theorem.

e The Implicit Function Theorem gives no information when det N = 0. In
this case, the condition g(z,y) = 0, may or may not define y in terms of z.

e While the theorem strictly addresses only whether the last ¢ of n variables
subject to ¢ conditions depend on the first r variables, it can be suitably
modified to address whether any ¢ variables depend on the remaining
ones. This is a matter of reindexing or permuting the variables, not worth
the cumbersome notation of discussing formally, but feel free to use the
modified version.
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Proof. Examining the derivative has already shown the theorem’s plausibility
in specific instances. Shoring up these considerations into a proof is easy with
a little trick and the Inverse Function Theorem, which produces a mapping
given an invertible derivative. The trick is to define

G:A—R"
as follows: for all z € R™ and y € R° such that (z,y) € A,

G(z,y) = (z,9(z,y)).

Note that G incorporates g, but unlike g it is a map between spaces of the
same dimension n. Note also that the augmentation that changes g into G is
highly invertible, being the identity mapping on the z-coordinates. That is, it
is easy to recover g from G. The mapping G affects only y-coordinates, and it
is designed to take the level set L = {(z,y) € A : g(z,y) = 0.} to the z-axis.
(See figure 5.11, in which the inputs and the outputs of G are shown in the
same copy of R™.)

Y
R¢ JS—
£ A
bs
G(z,y) = (z,9(z,y))
a - GA
Rn \\\\\‘_- a /7‘/,/ Rr

Figure 5.11. Mapping A to R™ and the constrained set to z-space

The mapping G is differentiable at the point p = (a,b) with derivative

matrix
! _ Ir Orxc
G'(a,b) = [M N ] € M, (R).

This matrix has determinant det G'(a,b) = det N # 0, and so by the Inverse
Function Theorem G has a local inverse mapping & defined near the point
G(a,b) = (a,0.). (See figure 5.12.) Since the first r components of G are the
identity mapping, the same holds for the inverse. That is, the inverse takes
the form

(z,y) = (z,6(z,9)),
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where ¢ maps n-vectors near (a, 0.) to c-vectors near b. The inversion criterion
is that for all (z,y) near (a,b) and all (x, ) near (a,0.),

Gla,y) = (2,9) <= (2,y)=2(z,7).

Equivalently, since neither G nor ¢ affects z-coordinates, for all x near a, y
near b, and ¢ near 0.,

9(z,y) =95 <= y=47). (5.10)
Also by the Inverse Function Theorem and a short calculation.

IT‘ 0TXC:|

! — -1 _
4 (CL, Oc) =G (a7 b) - |:—N_1M N—l

RC

R™ Na s R"

Figure 5.12. Local inverse of G

Now we can exhibit the desired mapping implicit in the original g. Define
a mapping
o(z) = ¢(,0.) for z near a. (5.11)

The idea is that locally this lifts the z-axis to the level set L where g(z,y) = 0,
and then projects horizontally to the y-axis. (See figure 5.13.) For any (z,y)
near (a,b), a specialization of condition (5.10) combines with the definition
(5.11) of ¢ to give

g(z,y) =0, <= y=op).

This exhibits y as a local function of z on the level set of g, as desired. And
since by definition (5.11), ¢ is the last ¢ component functions of @ restricted
to the first r inputs to @, the derivative ¢'(a) is exactly the lower left ¢-by-r
block of ¢(a,0.), which is —N~1M. This completes the proof. O
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o(z) &(z,0.) = (z, #(,0c))
R" a R

Figure 5.13. The implicit mapping from z-space to y-space via the level set

Thus the Implicit Function Theorem follows easily from the Inverse Func-
tion Theorem. The converse implication is even easier. Imagine a scenario
where somehow we know the Implicit Function Theorem but not the Inverse
Function Theorem. Let f : A — R™ (where A C R™) be a mapping that
satisfies the hypotheses for the Inverse Function Theorem at a point a € A.
That is, f is continuously differentiable in an open set containing a, and
det f'(a) # 0. Define a mapping

g:AxR" —R",  g(z,y) = f(z) —y.

(This should look familiar from the beginning of the section.) Let b = f(a).
Then g(a,b) = 0, and the derivative matrix of g at (a,b) is

gl(aa b) = [fl(a) _In] .

Since f'(a) is invertible, we may apply the Implicit Function Theorem, with
the roles of ¢, r, and n in theorem taken by the values n, n, and 2n here, and
with the theorem modified as in the third remark before its proof so that we
are checking whether the first n variables depend on the last n values. The
theorem supplies us with a differentiable mapping ¢ defined for values of y
near b such that for all (z,y) near (a,b),

9(z,y) =0 =  z=9().
But by the definition of g, this equivalence is
y=Ffz) = z=¢@).
That is, ¢ inverts f. Also by the Implicit Function Theorem, the derivative

of ¢ at b is
¢'(0) =~f'(@) (=) = fl(@7",
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and we have recovered the Inverse Function Theorem. However, this is not
really impressive since proving the Implicit Function Theorem without citing
the Inverse Function Theorem would be just as hard as the route we took
of proving the Inverse Function Theorem first. The point is that the two
theorems have essentially the same content. (See figure 5.14.)

y
R"
; ((¥),y) /
FNEY @@
R2" a R"

Figure 5.14. The Inverse Function Theorem from the Implicit Function Theorem

Exercises

5.3.1. Does the relation x2 + y + sin(zy) = 0 implicitly define y as a function
of z near the origin? If so, what is its best affine approximation? How about
x as a function of y and its affine approximation?

5.3.2. Does the relation zy — zlog y +e%* = 1 implicitly define 2z as a function
of (z,y) near (0,1,1)? How about y as a function of (z,z)? When possible,
give the affine approximation to the function.

5.3.3. Do the simultaneous conditions z?(y? + 2%) = 5 and (z — 2)% + y2 = 2
implicitly define (y,z) as a function of z near (1,—1,2)? If so, then what is
the function’s affine approximation?

5.3.4. Same question for the conditions 22 + y2 = 4 and 222 + y2 — 822 =8
near (2,0,0).

5.3.5. Do the simultaneous conditions zy + 2yz = 3zz and zyz+z —y =1
implicitly define (z,y) as a function of z near (1,1,1)? How about (z,z2) as a
function of y? How about (y, z) as a function of z? Give affine approximations
when possible.
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5.3.6. Do the conditions zy? + zzu + yv? = 3 and v?yz + 2zv — u?v? = 2
implicitly define (u,v) in terms of (z,y, z) near the point (1,1,1,1,1)? If so,
what is the derivative matrix of the implicitly defined mapping at (1,1,1)?

5.3.7. Do the conditions z2 + yu +zv+w = 0 and z +y +uwvw = —1 implicitly
define (z,y) in terms of (u,v,w) near (z,y,u,v,w) = (1,—1,1,1,—-1)? If so,
what is the best affine approximation to the implicitly defined mapping?

5.3.8. Do the conditions

2r+y+2z4+u—v=1
zy+z—u+2v=1
yz+rz+u>4+0v=0

define the first three variables (x,y, 2) as a function g(u,v) near the point
(z,y,2,u,v) = (1,1,—1,1,1)? If so, find the derivative matrix ¢'(1,1).

5.3.9. Define g : R? — R by g(z,y) = 22% — 322 + 23 + 3y? and let L be
the level set {(z,y) : g(z,y) = 0}. Find those points of L about which y need
not be defined implicitly as a function of z, and find the points about which
z need not be defined implicitly as a function of y. Describe L precisely—the
result should explain the points you found.

5.4 Lagrange Multipliers: Geometric Motivation and
Specific Examples

How close does the intersection of the planes z+y+2 =1land x —y+2z = —1
in R come to the origin? This is an example of an optimization problem with
constraints. The goal in such problems is to maximize or minimize some func-
tion, but with relations imposed on its variables. Equivalently, the problem is
to optimize some function whose domain is a level set.

A geometric solution to the sample problem just given is that the planes
intersect in a line through the point p = (0,1,0) in direction d = (1,1,1) x
(1,—1,2), so the point-to-line distance formula from exercise 3.10.11 answers
the question. This is easy and efficient.

A more generic method of solution is via substitution. The equations of
the constraining planes are x + y =1 — 2z and £ — y = —1 — 22; adding gives
x = —3z/2, subtracting gives y = 1+ 2z/2. (These are easily checked.) To finish
the problem, minimize the function d?(z) = (—32/2)% + (1 + 2/2)? + 22, where
d?> denotes distance squared from the origin. Minimizing d? rather than d
avoids square roots.

Not all constrained problems yield readily to either of these methods. The
more irregular the conditions, the less amenable they are to geometry, and the
more tangled the variables, the less readily they distill. Merely adding more
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variables to the previous problem produces a nuisance: How close does the
intersection of the planesv+w+z+y+z=1landv—-—w+2z—-y+2=-1
in R® come to the origin? Now no geometric procedure lies conveniently at
hand. As for substitution, linear algebra shows that

1 11 11
1-12-11

nNe 8 &
I
|
I
| I

implies
A e R A 11 I b

Since the resulting function d2(z,y, 2) = (—=3z/2 — 2)* + (1 + /2 — y)* + 22 +
y? + 22 is quadratic, partial differentiation and more linear algebra will find
its critical points. But the process is getting tedious.

Let’s step back from specifics (but we will return to the currently unre-
solved example soon) and consider in general the necessary nature of a critical
point in a constrained problem. The discussion will take place in two stages:
first we consider the domain of the problem, and then we consider the critical
point.

The domain of the problem is the points in n-space that satisfy a set of ¢
constraints. To satisfy the constraints is to meet a condition

g(z) =0,

where g : A — R¢ is a Cl-mapping, with A C R"™ an open set. That
is, the constrained set forming the domain in the problem is a level set L,
the intersection of the level sets of the component functions g; of g. (See
figures 5.15 and 5.16. The first figure shows two individual level sets for scalar-
valued functions on R?, and the second figure shows them together and then
shows their intersection, the level set for a vector-valued mapping.)

At any point p € L, the set L must be locally orthogonal to each gradient
Vgi(p)- (See figures 5.17 and 5.18. The first figure shows the level sets for
the component functions of the constraint mapping, and the gradients of the
component functions at p, while the second figure shows the tangent line and
the normal plane to the level set at p. In the first figure, neither gradient is
tangent to the other surface, and so in the second figure the two gradients are
not normal to one another.) Therefore:

e L is orthogonal at p to every linear combination of the gradients,

[+
Z AiVgi(p) where A1, ..., A, are scalars.
=1
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Figure 5.16. The intersection is a level set for a vector-valued mapping on R

Equivalently:

e Every such linear combination of gradients is orthogonal to L at p.
But we want to turn this idea around and assert the converse, that:

e Every vector that is orthogonal to L at p is such a linear combination.

This does not always follow. Intuitively, the argument is that if the gradients
Vg1 (p), ..., Vg.(p) are linearly independent (i.e., they point in ¢ nonredun-
dant directions) then the Implicit Function Theorem should say that the level
set L therefore looks (n — c¢)-dimensional near p, so the space of vectors or-
thogonal to L at p is c-dimensional, and so any such vector is indeed a linear
combination of the gradients. This is not a proof, but for now it is a good
heuristic.

Proceeding to the second stage of the discussion, now suppose that p is
a critical point of the restriction to L of some C!-function f : A — R.
(Thus f has the same domain A C R"™ as g.) Then for any unit vector d
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Figure 5.17. Gradients to the level sets at a point of intersection

Figure 5.18. Tangent line and normal plane to the intersection

describing a direction in L at p, the directional derivative Dy f(p) must be 0.
But Dyf(p) = (Vf(p),d), so this means that:

e Vf(p) must be orthogonal to L at p.

This observation combines with our description of the most general vector
orthogonal to L at p, in the third bullet above, to give Lagrange’s condition:

Let p be a critical point of the function f restricted to the level set L =
{z: g(z) = 0.} of g. If the gradients Vg;(p) are linearly independent,
then for some scalars Ay, ..., A,

Vip) = Z AiVgi(p),

and since p s in the level set, also
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9(p) = 0.
Approaching a constrained problem by setting up these conditions and then
working with the new variables A1, ..., A is sometimes easier than the other

methods. The A; are useful but irrelevant constants. The next section will
prove the Lagrange criterion carefully and then give some general examples.
The remainder of this section is dedicated to specific examples,

Returning to the unresolved second example at the beginning of the sec-
tion, the functions in question are

f,w,2,y,2) =0 + w? +2° +y* + 2°
g(v,w,z,y,2)=v+w+z+y+z—1
gpv,w,z,y,2)=v—w+2x—y+z+1

and the corresponding Lagrange condition and constraints are (after absorbing
a 2 into the X’s, whose particular values are irrelevant anyway)

(v,w,z,y,2) = A1(1,1,1,1,1) + X2(1,-1,2,-1,1)
= (A1 + A2, — A, A+ 202, A1 — A2, A1+ A2)
v+wt+zr+y+z= 1
v—w+2x—y+z=-1

Substitute the expressions from the Lagrange condition into the constraints
to get 51 + 22 = 1 and 2)\; + 82 = —1. So

M) [52]7[ 1] _ [10/36
X| |28 1| |[-7/36]"
Note how much more convenient the two \’s are to work with than the five

original variables. Their values are auxiliary to the original problem, but sub-
stituting back now gives that the nearest point to the origin is

1

3,17,-4,17,3
36(7 ? 7 7)

(v7 w7 w? y7 z) =
and its distance is v/612/36. This example is just one instance of a general
problem of finding the nearest point to the origin in R™ subject to ¢ affine
constraints. We will solve the general problem in the next section.

An example from geometry is Euclid’s Least Area Problem. Given an angle
ABC' and a point P interior to the angle as shown in figure 5.19, what line
through P cuts off from the angle the triangle of least area?

Draw the line L through P parallel to AB and let D be its intersection
with AC. Let a denote the distance AD and let h denote the altitude from
AC to P. Both a and h are constants. Given any other line L' through P,
let x denote its intersection with AC' and H denote the altitude from AC to
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Figure 5.19. Setup for Euclid’s Least Area Problem

D h
T—a

Figure 5.20. Construction for Euclid’s Least Area Problem

the intersection of L' with AB. (See figure 5.20.) The shaded triangle and its
subtriangle in the figure are similar, giving the relation z/H = (z — a)/h.

The problem is now to minimize the function f(z,H) = jzH subject to
the constraint g(z, H) = 0 where g(x, H) = (x — a)H — zh = 0. Lagrange’s
condition Vf(z, H) = AVg(z,H) and the constraint g(xz,H) = 0 become,
after absorbing a 2 into A,

(H,z) = A\(H — h,z — a),
(x —a)H = zh.

The first relation quickly yields (z — a)H = xz(H — h). Combining this with
the second shows that H — h = h, that is, H = 2h. The solution to Euclid’s
problem is, therefore, to take the segment that is bisected by P between the
two sides of the angle. (See figure 5.21.)
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Figure 5.21. Solution to Euclid’s Least Area Problem

An example from optics is Snell’s Law. A particle travels through medium 1
at speed v, and through medium 2 at speed w. If the particle travels from
point A to point B as shown in the least possible amount of time, what is the
relation between angles a and 8?7 (See figure 5.22.)

medium 1
medium 2 b B bsec(B)
btan(B) =~ B

Figure 5.22. Geometry of Snell’s Law

Since time is distance over speed, a little trigonometry shows that this
problem is equivalent to minimizing f(a, ) = aseca/v + bsec 3/w subject
to the constraint g(a, 8) = atana + btan 8 = d. (g measures lateral distance
traveled.) The Lagrange condition V f(a, 8) = AVg(a, ) is

a . g b .
(— sin acsec? o, — sin 3 sec? 6) = Masec® a, bsec? ).
v w

Therefore A = sina/v = sin §/w, giving Snell’s famous relation,
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For an example from analytic geometry, let the function f measure the
square of the distance between the points x = (z1,%2) and y = (y1,y2) in the
plane,

f@1,22,91,92) = (@1 — y1)” + (22 — y2)*

Fix points a = (a1, a2) and b = (b1, b2) in the plane, and fix positive numbers
r and s. Define

g1(z1,22) = (x1 — a1)? + (z2 — a)? — r?,
92(y1,y2) = (Y1 — b1)” + (y2 — ba)* — &°
9(x1,22,y1,92) = (91(®1,72), 92(y1,2)).

Then the set of four-tuples (z1,za,y1,y2) such that

g(ml,x2,y1,y2) = (070)

can be viewed as the set of pairs of points £ and y that lie respectively on the
circles centered at a and b with radii r and s. Thus, to optimize the function f
subject to the constraint g = 0 is to optimize the distance between pairs of
points on the circles. The rows of the 2-by-4 matrix

— — 0 0
! —9 T1 — a1 T2 — a2
g(@y) 0 0 y-bigp—bh

are linearly independent because x # a and y # b. The Lagrange condition
works out to

(1 = y1,%2 — Y2,¥1 — T1,¥2 — T2) = A1(21 — a1, 22 — a2,0,0)
- A2(0707:’}1 - b17y2 - b2)7

or
(x—y,y—z) = (z —a,02) — Xa(02,y — ).

The second half of the vector on the left is the additive inverse of the first, so
the condition rewrites as

z—y=M(z—a)=X(y—-b).

If Ay = 0or Ay = 0 then £ = y and both \; are 0. Otherwise A\; and Ay are
nonzero. This makes x and y distinct points such that

z—yllz—aly-"b

and so the points z, y, a, and b are collinear. Granted, these results are obvious
geometrically, but it is pleasing to see them follow so easily from the Lagrange
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multiplier condition. On the other hand, not all points  and y such that x,
Y, a, and b are collinear are solutions to the problem. For example, if both
circles are bisected by the z-axis and neither circle sits inside the other, then
z and y could be the leftmost points of the circles, neither the closest nor the
farthest pair.

The last example of this section begins by maximizing the geometric mean
of n positive numbers,

flxe,...,z,) = (:Ul---:vn)l/”,

subject to the constraint that their arithmetic mean is 1,

T + - + Ty _ 1
- =1
Thus the constraining function is g(z1,...,2,) = (€1 + - -- + z,)/n, and the
gradients are
Ti,..-,& 1 1
Vf(mla"'amn): M (_7"'a_>
n T Tn,
1
Vg(z1,.. . 2n) = E(l"”’l)'

The Lagrange condition quickly shows that all z; are equal, and the constraint
forces their value to be 1. Therefore, an extremum of the geometric mean when
the arithmetic mean is 1 is the value

f@,...,)=(@1---1)/"=1.
On the other hand, let £ be a small positive number and let
T1=n—¢€, Ty=---=x,=¢/(n—1).

These z-values also satisfy the constraint that their arithmetic mean is 1, and
their geometric mean is close to 0. Therefore the extremum that we found
a moment ago is a maximum. That is, (1 ---z,)/™ < 1 for all positive
Z1,...,%n such that (z1 +---+z,)/n = 1. This provides most of the proof of

Theorem 5.4.1 (Arithmetic—Geometric Mean Inequality). The geo-
metric mean of n positive numbers is at most their arithmetic mean:

a1+...+an

g ) <
(a1 an) "

for all positive a1, ..., an.

Proof. Given positive numbers ay, ..., a,, let a = (ag +--- + a,)/n and let
z; =a;fafori=1,...,n. Then (z; +---+ z,)/n =1 and therefore

a1+...+an

(a1---an)/™" = a(xy - 2,)/" < a = -
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Despite these pleasing examples, Lagrange multipliers are in general no
computational panacea. Some problems of optimization with constraint are
solved at least as easily by geometry or substitution. Nonetheless, Lagrange’s
method provides a unifying idea that addresses many different types of op-
timization problem without reference to geometry or physical considerations.
In the following exercises, use whatever methods you find convenient.

Exercises

5.4.1. Find the nearest point to the origin on the intersection of the hyper-
planesz +y+2—2w=1andz —y+2+w = 2in R%

5.4.2. Find the nearest point on the ellipse 22+ 2y2 = 1 to the line z+y = 4.

5.4.3. Minimize f(z,y,z) = z subject to the constraints 2z +4y = 5, 22+ 22 =
2y.

5.4.4. Maximize f(z,y,z) = zy + yz subject to the constraints z2 + y? = 2,
yz = 2.

5.4.5. Find the extrema of f(x,y, 2) = xy+ 2 subject to the constraints x > 0,
y>0,zz2+y=4,yz+2=>5.

5.4.6. Find the largest rectangular box with sides parallel to the coordinate

axes that can be inscribed in the ellipsoid (%)2 + (%)Z + (%)2 =1.

5.4.7. The lengths of the twelve edges of a rectangular block sum to a, and
the areas of the six faces sum to % Find the lengths of the edges when the
excess of the block’s volume over that of a cube with edge equal to the least

edge of the block is greatest.

5.4.8. A cylindrical can (with top and bottom) has volume V. Subject to this
constraint, what dimensions give it the least surface area?

5.4.9. Find the distance in the plane from the point (0,b) to the parabola
y = az? assuming 0 < 5= < b.

5.4.10. This exercise extends the Arithmetic-Geometric Mean Inequality.

Let €1, ..., e, be positive numbers with ) ; e; = 1. Maximize the func-
tion f(z1,...,2,) = 7' ---z& (where all z; > 0) subject to the con-

straint ., e;z; = 1. Use your result to derive the generalized Arithmetic—
Geometric Mean inequality,

at---air <eap + - -+ epan for all positive ai, ..., an,.

What values of ey, .. ., e, reduce this to the first Arithmetic-Geometric Mean
Inequality?
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5.4.11. Let p and ¢ be positive numbers satisfying the equation 11—7 + % =1.

Maximize the function of 2n variables f(z1,...,%n,Y1,---,Yn) = D1y Tili
subject to the constraints » . ; ¥ = 1 and )"}, y! = 1. Derive Holder’s
Inequality: For all nonnegative ay, ..., an, b1, .., by,

n n 1/p n 1/q
=1 i=1 i=1

5.5 Lagrange Multipliers: Analytic Proof and General
Examples

Recall that the environment for optimization with constraints consists of

an open set A C R”,

a constraining C'-mapping g : A — R¢,

the corresponding level set L = {v € A : g(v) = 0.},
and a C!-function f : A — R to optimize on L.

We have argued geometrically, and not fully rigorously, that if f on L is
optimized at a point p € L then the gradient f'(p) is orthogonal to L at p.
Also, every linear combination of the gradients of the component functions
of g is orthogonal to L at p. We want to assert the converse, that every
vector that is orthogonal to L at p is such a linear combination. The desired
converse assertion does not always hold, but when it does it gives the Lagrange
condition,

Vi) = Z AiVgi(p).

Here is the rigorous analytic justification that the Lagrange multiplier method
usually works. The Implicit Function Theorem will do the heavy lifting, and
it will reaffirm that the method is guaranteed only where the gradients of the
component functions of g are linearly independent.

Theorem 5.5.1 (Lagrange Multiplier Condition). Letn and ¢ be posi-
tive integers with n > c¢. Let g : A — R° (where A C R™) be a mapping that
is continuously differentiable at each interior point of A. Consider the level
set

L={zeA:g(x)=0.}

Let f : A — R be a function. Suppose that the restriction of f to L has an
extreme value at a point p € L that is an interior point of A. Suppose that
f is differentiable at p, and suppose that the c-by-n derivative matriz g'(p)
contains a c-by-c block that is invertible. Then the following conditions hold:

Vf(p) =Ag' (p) for some row vector X € RE,
g(p) = 0.
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Proof. The second condition holds since p is a point in L. The first condition
needs to be proved. Let » = n — ¢, the number of variables that should remain
free under the constraint g(z) = 0., and notate the point in p as p = (a,b),
where a € R” and b € R°. Using this notation, we have g(a,b) = 0. and
g'(a,b) = [M N] where M is ¢-by-r and N is c-by-c and invertible. (We
may assume that IV is the invertible block in the hypotheses to the theorem
because we may freely permute the variables.)

The Implicit Function Theorem gives a mapping ¢ : A9 — R (where
Ao C R™ and a is an interior point of Ag) with p(a) = b, ¢’(a) = —N 1M,
and for all points (z,y) € A near (a,b), g(z,y) = 0. if and only if y = p(z).
Make f depend only on the free variables by defining

f:40— R by [f&)=f(z0).

(See figure 5.23.) Since the domain of f doesn’t curve around in some larger
space, the optimization techniques from chapter 4 apply, i.e., f has a critical
point at a. Since f is a composition, the Chain Rule shows that the condition
Vf(a)=0is
1
Vf(a,p(a r ] =0,
flasp(a) | s
and since p(a) = b and ¢'(a) = —N 1M, this condition is

Vf(a,b) [_ e M] ~ 0.

Let Vf(a,b) = (u,v) where u € R" and v € R® are row vectors. Then the
previous display becomes
u=vN"1M,

which rearranges as
[uv] =vN~'[M N]J.

Set A = vN~! € R° and we have the desired condition,
Vf(a,b) = Ag'(a,b).
O

We have seen that the Lagrange Multiplier Condition is necessary but not
sufficient for an extreme value. That is, it can report a false positive, as in
the two-circle problem in the previous section. This is not a serious problem
since inspecting all the points that meet the Lagrange condition will determine
which of them give the true extrema of f. A false negative would be a worse
situation, giving us no indication that an extreme value might exist, much less
how to find it. The following example shows that the false negative scenario
can arise without the invertible c-by-c block required in Theorem 5.5.1.

Let the temperature in the plane be given by
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Figure 5.23. The Lagrange Multiplier Criterion from the Implicit Function Theo-
rem

flz,y) =z,
and consider a plane set defined by one constraint on two variables,
L={(z,y) eR*:y* = 2°}.

(See figure 5.24.) Since temperature increases as we move to the right, the
coldest point of L is its leftmost point, the cusp at (0,0). However, the La-
grange condition does not find this point. Indeed, the constraining function
is g(x,y) = 2% — y? (which does have continuous derivatives, notwithstanding
that its level set has a cusp: the graph of a smooth function is smooth, but
the level set of a smooth function need not be smooth—this is exactly the
issue addressed by the Implicit Function Theorem). Therefore the Lagrange
condition and the constraint are

(15 0) = )‘(33;27 _Zy)a
z3 =y
These equations have no solution. The problem is that the gradient at the cusp
is Vg(0,0) = (0,0), and neither of its 1-by-1 subblocks is invertible. In general,
the Lagrange Multiplier Condition will not report a false negative so long as
we remember that it only claims to check for extrema at the nonsingular
points of L, the points p such that ¢g'(p) has an invertible ¢-by-¢ subblock.

The previous section gave specific examples of the Lagrange multiplier
method. This section now gives some general families of examples.

Recall that the previous section discussed the problem of optimizing the
distance between two points in the plane, each point lying on an associated
circle. Now, as the first general example of the Lagrange multiplier method,
let (z,y) € R™xR"™ denote a pair of points each from R™, and let the function
f measure the square of distance between such a pair,
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Figure 5.24. Curve with cusp

fiR"xR" — R,  f(z,9) =z —y[*

Note that Vf(z,y) = [z —y y — z], viewing = and y as row vectors. Given two
mappings g1 : R — R and g2 : R® — R*2, define

g:R"xR" — R g(z,y) = (91(), 92(%)).

To optimize the function f subject to the constraint g(z,y) = (0.,,0.,) is to
optimize the distance between pairs of points £ and y on the respective level
sets cut out of R™ by the ¢; conditions g;(z) = 0., and the ¢z conditions
92(y) = 0,. Assuming that the Lagrange condition holds for the optimizing
pair, it is
! 0
r—yy—z] =g (z,y) = [\ —Ao] | S1(®) Ocaxm
vy =] = M) = Du -] S0 G
=\ (gi (1')7 062 Xn) - /\2(001 Xn;gé(y))a

where A; € R°! and A\ € R are row vectors. The symmetry of V f reduces
this equality of 2n-vectors to an equality of n-vectors,

-y =g () = Aagr(y)-

That is, either x = y or the line through x and y is normal to the first level
set at  and normal to the second level set at y, generalizing the result from
the two-circle problem. With this result in mind, you may want to revisit
exercise 0.0.1 from the preface to these notes.

The second general example is the problem of optimizing a linear function
subject to affine constraints. The data are (viewing vectors as columns)

f:R"—R, [f(x)=duz,
g: R"” — ch g(m) = Mz where M € Mc,n(R)

The Lagrange condition and the constraints are

at = N M,
Mz =0.
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The Lagrange condition is usually not solvable for A since we are tacitly
assuming that ¢ < n, i.e., the condition is an inhomogeneous linear system
with more equations than variables. But when the condition is solvable, it
immediately gives the optimal value of f,

f(z) =alx = XMz = \'b.

Note that we don’t need to find an optimizing z in order to find the optimal
value f(z). In fact, when the Lagrange condition is solvable, the function f
subject to the constraint g = b is constant. Indeed, the condition says that a’
is a linear combination of the rows of M, making a orthogonal to all vectors Z
such that MZ = 0.. A result from linear algebra says that the vectors x
satisfying the constraint Mz = b are the vectors

T =0+ I,

where g is a fixed linear combination of the rows of M such that Mxzy = b,
and Z is any vector such that M % = 0.. Thus for all such =z,

f(z) =at(zo + %) = XM (zo + %) = Ab.

That is, f subject to the constraint g = b is constant, as claimed.

For geometric insight into what the calculation is telling us, envision the
space of vectors # such that MZ = 0. as an axis, and envision the space of
linear combinations of the rows of M as a plane orthogonal to the axis. Then
the first condition is that a lies in the plane, and the second is that z lies
on an axis parallel to the Z-axis. The constant value of f is a'z for any z on
the axis. In particular, the value is a’zo where zg is the point where the axis
meets the plane.

The third general example is to optimize a quadratic function subject to
affine constraints. Here the data are
f:R" — R, f(z) = 2' Az where A € M,,(R) is symmetric,
g:R" — R, g9(xz) = Mz where M € M. ,(R).

To set up the Lagrange condition, we need to differentiate the quadratic func-
tion f. Compute that

flz+h)— f(z) = (z+ h)'A(x + h) — 2* Az = 22° Ah + W' Ah,

and so the best linear approximation of this difference is T'(h) = 2zt Ah. It
follows that
Vf(z) =2z A.

Returning to the optimization problem, the Lagrange condition and the con-
straints are
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ztA = \M,
Mz =0b.
So the possible optimal values of f take the form
f(z) = x* Az = X' Mz = \'b,

which we will know as soon as we find the possible values of A, without needing
to find z. Assume that A is invertible. Transpose the Lagrange condition to
get Az = M')\, whence v = A"'M?!X and thus b = Mz = MA M),
so that (also assuming that the c-by-c matrix M A~'M? is invertible) A\ =
(MA=tM?)~1b. That is, the optimal value A!b of f is

f@) = (MA™ MY
Also, the z-value at which f is optimized is
=AM (MA M) .

In particular, letting A = I, the closest point x to the origin such that Mz = b
is
z = MMM b,

and its distance-squared from the origin is
|z|? = o' (M MY~ b.
The fourth general example is to optimize a linear function subject to a

quadratic constraint. The data are

f:R" — R, f(z) = a'x,
g:R" — R, g(z) =2* Mz where M € M,,(R) is symmetric.

The Lagrange condition and the constraint are
at =zt M,
Mz =b.
Therefore the optimized value of f is
f(x) =alz = \at Mz = \b,

and so to find this value it suffices to find . Assuming that M is invertible, the
Lagrange condition gives z' = A"'a!M !, hence £ = A\~ M ~la. Substitute
for ! and x in the constraint to get A=?a’M~'a = b, and thus (assuming

that a!M~ta/b > 0)
A=*vatM~1a/b.
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The final general example is to optimize a quadratic function subject to a
quadratic constraint. The data are
f:R"—R, f(z)=2"Az where A € M,,(R) is symmetric,
g:R" — R, g(z) =z* Mz where M € M, (R) is symmetric.

The Lagrange condition and the constraint are

ot A = \z' M,
Mz =b.

Note that as a special case, if b = 0 then these conditions hold for x = 0,
giving f(0) = 0 as a candidate optimal value of f. From now on, we assume
that x # 0, a necessary assumption when b # 0. By the Lagrange condition
and the constraint, the possible optimal values of f take the form

f(z) =zt Az = Xat Mz = \b,

which we will know as soon as we find the possible values of A, without needing
to find z. Assuming that M is invertible, the Lagrange condition gives

M~ YAz = \z.

In other words, z must satisfy the condition that multiplying x by M~1A
giwes a scalar multiple of x. Any nonzero vector z that satisfies this condi-
tion is called an eigenvector of M ~1A. The scalar multiple factor X is the
corresponding eigenvalue.

The eigenvalues of any square matrix B are found by a systematic proce-
dure. The first step is to observe that the condition Bx = Az is

(B— X))z =0.
Since any eigenvector z is nonzero by definition, B — AI is not invertible, i.e.,
det(B — AI) = 0.

Conversely, for every A € R satisfying this equation there is at least one
eigenvector z of B because the equation (B — A\I)x = 0 has nonzero solutions.
And so the eigenvalues are the real roots of the polynomial

pB(A) =det(B — ).

This is the characteristic polynomial of B, already discussed in exercise 4.5.10.
For example, part (a) of that exercise covered the case n = 2, showing that if
B =[¢%] then

p(A) = A2 — (a + d)A + (ad — b?).

The discriminant of this quadratic polynomial is
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A= (a+d)?—4(ad - b)) = (a — d)* + 4b°.

Since A is nonnegative, all roots of characteristic polynomial are real. And a
result of linear algebra says that for any positive n, all roots of the character-
istic polynomial of a symmetric n-by-n matrix B are real as well. However,
returning to our example, even though the square matrices A and M are
assumed to be symmetric, the product M ~! A need not be.

As a particular case of this last general example, if A = I then finding the
eigenvectors of M encompasses finding the points of a quadric surface that
are closest to the origin or farthest from the origin. For instance, if n = 2 and
M = [2%] then we are optimizing on the set of points (z1,22) € R? such
that, say,

ax% + 2bxi1xo + dx% =1.

This is the equation of a conic section. When b = 0 we have an unrotated
ellipse or hyperbola, and the only possible optimal points will be the scalar
multiples of e; and ey that lie on the curve. For an ellipse, a pair of points on
one axis is closest to the origin, and a pair on the other axis is farthest; for a
hyperbola, a pair on one axis is closest and there are no points on the other
axis. In the case of a circle, the matrix M is a scalar multiple of the identity
matrix, and so all vectors are eigenvectors compatibly with the geometry that
all points are equidistant from the origin. Similarly if n = 3 then L is a surface
such as an ellipsoid or a hyperboloid.

Exercises

5.5.1. Let f(z,y) = y and let g(z,y) = y> — z*. Graph the level set L =
{(z,y) : g(z,y) = 0}. Show that the Lagrange multiplier criterion does not find
any candidate points where f is optimized on L. Optimize f on L nonetheless.

5.5.2. Consider the linear mapping
9(z,y,2) = (z + 2y + 32,42 + 5y + 62).

(a) Use a general method given in this section to optimize the lin-
ear function f(z,y,z) = 6x + 9y + 12z subject to the affine constraints
9(z,y,2) = (7,8).

(b) Verify without using the Lagrange multiplier method that the function
f subject to the constraints g = (7,8) (with f and g from part (a)) is constant,
always taking the value that you found in part (a).

(c) Show that the function f(x,y,z) = 5z + 7y + 2z can not be optimized
subject to any constraint g(z,y,z) = b.

5.5.3. (a) Use a general method given in this section to minimize the quadratic
function f(x,y) = 22 + y? subject to the affine constraint 3z + 5y = 8.

(b) Use the method to find the extrema of f(x,y,2) = 2zy + 22 subject to
the constraintsx +y+2 =1,z +y—2=0.
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(c) Use the method to find the nearest point to the origin on the intersec-
tion of the hyperplanes z +y + 2 —2w =l and x —y + z + w = 2 in R4,
reproducing your answer to exercise 5.4.1.

5.5.4. (a) Use a general method to maximize f(z,y,2) = x — 2y + 2z on the
sphere of radius 3.

(b) Use the method to optimize the function f(z,y,z,w) =z+y—2z —w
subject to the constraint g(z,y,2,w) = 1, g(z,y, z,w) = 2 /2 — y? + 22 —w?.

5.5.5. (a) Use a general method to optimize the function f(z,y) = 2zy subject
to the constraint g(z,y) = 1 where g(z,y) = 22 + 2y°.

(b) Use the method to optimize the function f(z,y,z) = 2(zy + yz + 2x)
subject to the constraint g(x,vy,2) = 1 where g(z,y,2) = 22 + 32 — 22

5.6 Summary

The Inverse Function Theorem implies the Implicit Function Theorem, and
conversely. The Implicit Function Theorem implies the Lagrange multiplier
condition, a systematic approach to problems of optimization with constraints.
The Lagrange multiplier method can also be viewed as optimization on a level
set inside a larger-dimensional space.






6

Integration

The integral of a scalar-valued function of many variables, taken over a box
of its inputs, is defined in sections 6.1 and 6.2. Intuitively, the integral can be
understood as representing mass or volume, but the definition is purely math-
ematical: the integral is a limit of sums, as in one-variable calculus. Multivari-
able integration has many familiar properties—for example, the integral of a
sum is the sum of the integrals. Section 6.3 shows that continuous functions
can be integrated over boxes. However, we want to carry out multivariable
integration over more generally-shaped regions. That is, the theory has geo-
metric aspects not present in the one-dimensional case, where integration is
carried out over intervals. After a quick review of the one-variable theory in
section 6.4, section 6.5 shows that continuous functions can also be integrated
over nonboxes that have manageable shapes. The main tools for evaluating
multivariable integrals are Fubini’s Theorem (section 6.6), which reduces an
n-dimensional integral to an n-fold nesting of one-dimensional integrals,and
the Change of Variable Theorem (section 6.7), which replaces one multivari-
able integral by another that may be easier to evaluate. Section 6.8 provides
some preliminaries for the proof of the Change of Variable Theorem, and then
section 6.9 gives the proof.

6.1 Machinery: Boxes, Partitions, and Sums

The integral represents fairly clear ideas, but defining it properly requires
some care. Here is some terminology that is standard from the calculus of
one variable, perhaps other than compact (meaning closed and bounded) from
section 2.4 of these notes.

Definition 6.1.1 (Compact Interval, Length, Partition, Subinterval).
A nonempty compact interval in R is a set

I=[a,b))={z€R:a<z<b},
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where a and b are real numbers with a < b. The length of the interval is
length(I) = b — a.

A partition of I is a set of real numbers
P = {to,t1,...,t5}

satisfying
a=ty<t1 <---<tp=0>.

Such a partition divides I into k subintervals Jy, ..., J, where
sz[tj_l,tj], jzl,...,k.

A generic nonempty compact subinterval of I is denoted J. (See figure 6.1.)
Since the only intervals that we are interested in are nonempty and compact,
either or both of these properties will often be tacit from now on, rather
than stated again and again. As a special case, Definition 6.1.1 says that any
length-zero interval [a,a] has only one partition, P = {a}, which divides it
into no subintervals.

Figure 6.1. Interval and subintervals

Definition 6.1.2 (Bounded Function). Let A be a subset of R, and let
f: A — R be a function. Then f is bounded if its range, {f(z) : © € A},
is bounded as a set in R, as in Definition 2.4.6. That is, f is bounded if there
exists some R > 0 such that |f(x)| < R for all x € A.

Visually, a function is bounded if its graph is contained inside a horizontal
strip. On the other hand, the graph of a bounded function needn’t be contained
in a vertical strip. This is because the domain (and therefore the graph) need
not be bounded. For example, these functions are bounded:

f(z) =sinz,  f(z)=1/(1+2%),  f(z)=arctanz,
but these functions are not:

flz) =¢€", f(z) =1/z for z # 0.
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Definition 6.1.3 (One-dimensional Lower Sum and Upper Sum). Let
I be a nonempty compact interval in R, and let f : I — R be a bounded
function. For any subinterval J of I, the greatest lower bound of the values
taken by f on J is denoted my(f),

my(f) =inf {f(z) :z € J},
and similarly the least upper bound is denoted M;(f),
My(f) = sup {(z) : v € T}

The lower sum of f over P is
L(f,P) = 3" my(f) length(J),
J
and the upper sum of f over P is

U(f,P) = 3" My(f) length(.]).
J

If the interval I in Definition 6.1.3 has length zero, then the lower and
upper sums are empty and so they are assigned the value 0 by convention.

The function f in Definition 6.1.3 is not required to be differentiable or
even continuous, only bounded. Even so, the values my(f) and M;(f) in
the previous definition exist by the set-bound phrasing of the principle that
the real number system is complete. To review this idea, see Theorem 1.1.5.
When f is in fact continuous, the Extreme Value Theorem (Theorem 2.4.15)
justifies substituting min and maz for inf and sup in the definitions of m (f)
and M (f), since each subinterval J is nonempty and compact. It may be
easiest at first to understand my(f) and M;(f) by imagining f to be contin-
uous and mentally substituting appropriately. But we will need to integrate
discontinuous functions f. Such functions may take no minimum or maximum
on J, and so we may run into a situation like the one pictured in figure 6.2,
in which the values my(f) and M;(f) are not actual outputs of f. Thus the
definition must be as given to make sense.

The technical properties of inf and sup will figure in Lemmas 6.1.6, 6.1.8,
and 6.2.2. To see them in isolation first, we rehearse them now. So, let S
and T be nonempty sets of real numbers, both bounded. In the context of
integration, S and T will be sets of outputs of a bounded function f. This is
irrelevant for the moment, but it may help you to see later how these ideas
are used in context if you now imagine S and T on a vertical axis, as in
figure 6.2, rather than on a horizontal one. In any case, the necessary results
are as follows.

e inf(S) < sup(S). In fact any lower bound of S is at most as big as any
upper bound, because any element of S lies between them. In particular,
this argument applies to the greatest lower bound inf(S) and the least
upper bound sup(S), giving the stated inequality.



218

6 Integration

+ my(f)

Figure 6.2. Sup and inf but no max or min

If S C T then inf(T) < inf(S) < sup(S) < sup(T). We already have
the middle inequality. To establish the others, the idea is that since S is
a subset, the bounds on S are innately at least as tight as those on T'.
More specifically, since inf(T") is a lower bound of T, it is a lower bound
of the subset S, and since inf(S) is the greatest lower bound of S the first
inequality follows. The third inequality is similar.

If s <tforall s €Sandt e T then sup(S) < inf(T). Imprecisely,
the idea is that S is entirely below T on the vertical axis, and so the
smallest number that traps S from above is still below the largest number
that traps T' from below. This will be proved more carefully in the next
section.

Graphing f over I in the usual fashion and interpreting the lower and upper

sum as sums of rectangle-areas shows that they are respectively too small and
too big to be the area under the graph. (See figure 6.3.) Alternatively, thinking
of f as the density function of a wire stretched over the interval I shows that

the

lower and upper sum are too small and too big to be the mass of the

wire. The hope is that the lower and upper sums are trapping a yet-unknown
quantity (possibly to be imagined as area or mass) from each side, and that as

the

partition P becomes finer, the lower and upper sums will actually converge

to this value.

Figure 6.3. Too small and too big
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All the terminology so far generalizes easily from one dimension to many,
i.e., from R to R™. Recall that if Sq, Ss, ..., S, are subsets of R then their
cartesian product is a subset of R",

SlXSQX"'XSnZ{(Sl,SQ,...7Sn):816517826527...,.9”68”}.

(See figure 6.4, in which n = 2, and S; has two components, and S> has one
component, so that the cartesian product S; x S2 has two components.)

Figure 6.4. Cartesian product

Definition 6.1.4 (Compact Box, Box Volume, Partition, Subbox). A
nonempty compact box in R” is a cartesian product

B=IL xI)x---x1I,

of nonempty compact intervals I; for j =1,...,n. The volume of the boz is
the product of the lengths of its sides,

vol(B) = H length(Z;).
j=1

A partition of B is a cartesian product of partitions P; of I; forj =1,...,n,
P=P x P, x---xP,.

Such a partition divides B into subboxes J, each such subbox being a carte-
stan product of subintervals. By a slight abuse of language, these are called
the subboxes of P.

(See figure 6.5, and imagine its three-dimensional Rubik’s cube counterpart.)
Every nonempty compact box in R™ has partitions, even such boxes with
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Figure 6.5. Box and subboxes

some length-zero sides. This point will arise at the very beginning of the next
section.

The definition of a bounded function f : A — R, where now A4 is a
subset of R, is virtually the same as earlier in the section: again the criterion
is that its range must be bounded as a set. (In fact the definition extends just
as easily to mappings f : A — R™, but we need only scalar-valued functions
here.)

Definition 6.1.5 (n-dimensional Lower Sum and Upper Sum). Let B
be a nonempty compact box in R™, and let f : B — R be a bounded function.
For any subbox J of B, define my(f) and M;(f) analogously to before,

my(f) =inf{f(z):z € J} and My(f) =sup{f(z) :z € J}.

The lower sum and upper sum of f over P are similarly

L(f,P) =Y _my(f)vol(J)  and  U(f,P)=>_ M,(f)vol(J).
J J

With minor grammatical modifications, this terminology includes the pre-
vious definition as a special case when n = 1 (e.g., volume reverts to length,
as it should revert to area when n = 2), so from now on we work in R".
However, keeping the cases n = 1 and n = 2 in mind should help to make the
pan-dimensional ideas of multivariable integration geometrically intuitive. If
the box B in Definition 6.1.5 has any sides of length zero then the upper and
lower sums are 0.

Graphing f over B in the usual fashion when n = 2 and interpreting the
lower and upper sum as sums of box-volumes shows that they are respectively
too small and too big to be the volume under the graph. (See figure 6.6.)
Alternatively, if n = 2 or n = 3, then thinking of f as the density of a plate
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or a block occupying the box B shows that the lower and upper sum are too
small and too big to be the object’s mass. Again, the hope is that as the
partitions become finer, the lower and upper sums will converge to a common
value that they are trapping from either side.

Figure 6.6. Too small and too big

The first result supports this intuition.

Lemma 6.1.6. For any box B, any partition P of B, and any bounded func-
tion f : B— R,
L(f,P) <U(f,P).

Proof. For any subbox J of P, mj(f) < M;(f) by definition, while also
vol(J) > 0, and therefore m (f) vol(J) < My(f)vol(J). Sum this relation
over all subboxes J to get the result. O

The next thing to do is express the notion of taking a finer partition.

Definition 6.1.7 (Refinement). Let P and P’ be partitions of B. Then P’
is a refinement of P if P' O P.

Figure 6.7 illustrates the fact that if P’ refines P then every subbox of P’
is contained in a subbox of P. The literal manifestation in the figure of the
containment P’ O P is that the set of points where a horizontal line segment
and a vertical line segment meet in the right side of the figure subsumes the
set of such points in the left side.

Refining a partition brings the lower and upper sums nearer each other:

Lemma 6.1.8. Suppose that P' refines P as a partition of the box B. Then
L(f,P) < L(f,P")  and U(f,P') <U(f,P).

See figure 6.8 for a picture-proof for lower sums when n = 1, thinking of
the sums in terms of area. The formal proof is just a symbolic rendition of
the figure’s features.
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Figure 6.7. Refinement

Figure 6.8. Lower sum increasing under refinement

Proof. Every subbox J of P divides further under the refinement P’ into
subboxes .J'. Since each J' C J, f has less opportunity to be small on .J' than
on J, and so my (f) > my(f). Thus

S ma () vol(I) > 3 my(f) vol(J')
J'cJ J'cJ

=my(f) Y vol(J') = my(f)vol(J).

J'cJ

Sum the relation ) ;, -, my (f) vol(J') > my(f)vol(J) over all subboxes J
of P to get L(f, P') > L(f, P). The argument is similar for upper sums. O

The proof uncritically uses the fact that the volumes of a box’s subboxes
sum to the volume of the box. This is true, and left as an exercise. The
emphasis here isn’t on boxes (which are straightforward), but on defining
the integral of a function f whose domain is a box. The next result helps
investigate whether the lower and upper sums indeed trap some value from
both sides. First we need a definition.
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Definition 6.1.9 (Common Refinement). Given two partitions of B,
P=P xPyx---xP, and P' =P/ xPyx---xP],
their common refinement is the partition
P"=(PLUP)) x (P,UPy) x---x (P, UP)).

(See figure 6.9.) The common refinement of two partitions P and P’ is
certainly a partition that refines both P and P’, and it is the smallest such
partition. The union P U P’ is not taken as the definition of the common
refinement because it need not be a partition at all. The common refinement
does all the work for the next result.

Figure 6.9. Common refinement

Proposition 6.1.10 (Lower Sums Are At Most Upper Sums). Let P
and P' be partitions of the box B, and let f : B — R be any bounded
function. Then

L(f,P) <U(f,P").
Proof. Let P" be the common refinement of P and P’. By the two lemmas,
L(f,P) < L(f,P") <U(f,P") <U(f, P"),

proving the result. O

Exercises

6.1.1. (a) Let I = [0,1], let P = {0,1/2,1}, let P’ = {0,3/8,5/8,1}, and let
P" be the common refinement of P and P'. What are the subintervals of P,
and what are their lengths? Same question for P’. Same question for P".

(b) Let B=1Tx1I,let Q = P x {0,1/2,1},let Q' = P' x {0,1/2,1}, and
let Q" be the common refinement of ) and @’. What are the subboxes of Q)
and what are their areas? Same question for Q'. Same question for Q".
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6.1.2. Show that the lengths of the subintervals of any partition of [a, b] sum
to the length of [a,b]. Same for the areas of the subboxes of [a,b] x [c,d].
Generalize to R"™.

6.1.3. Let J = [0,1]. Compute m;(f) and M;(f) for each of the following
functions f: J — R.

(a) f(z) = (1 - ),

1 if z is irrational
(b) f(z) = . )
1/m if x = n/m in lowest terms, n,m € Z and m > 0,
1—2)sin(l/z) ifx#0
(©) fla) = { (L D) e 7
0 if z = 0.

6.1.4. (a) Let I, P, P' and P" be as in exercise 6.1.1(a), and let f(z) = x2
on I. Compute the lower sums L(f, P), L(f, P'), L(f, P") and the correspond-
ing upper sums, and check that they conform to Lemma 6.1.6, Lemma 6.1.8,
and Proposition 6.1.10.

(b) Let B, @, Q' and Q" be as in exercise 6.1.1(b), and define f : B— R
by
0 if0<z<1/2

f(x’y):{1 if1/2<z < 1.

Compute L(f,Q), L(f,Q"), L(f,Q") and the corresponding upper sums,
and check that they conform to Lemma 6.1.6, Lemma 6.1.8, and Proposi-
tion 6.1.10.

6.1.5. Draw the cartesian product ([a1,b1]U[c1,d1]) X ([a2, ba]U[e2, d2]) C R?
where a; < by < ¢; < d; and similarly for the other subscript.

6.1.6. When is a cartesian product empty?

6.1.7. Show that the union of partitions of a box B need not be a partition
of B.

6.1.8. Draw a picture illustrating the proof of Proposition 6.1.10 when n = 1.

6.2 Definition of the Integral

Fix a nonempty compact box B and a bounded function f : B — R. The
set of lower sums of f over all partitions P of B,

{L(f,P) : P is a partition of B},

is nonempty because such partitions exist (as observed in the previous sec-
tion), and similarly for the set of upper sums. Proposition 6.1.10 shows that
the set of lower sums is bounded above by any upper sum, and similarly the
set of upper sums is bounded below. Thus the next definition is natural.
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Definition 6.2.1 (Lower Integral, Upper Integral, Integrability, Inte-
gral). The lower integral of f over B is the least upper bound of the lower
sums of f over all partitions P,

L/ f=sup{L(f,P): P is a partition of B}.
B

Similarly, the upper integral of f over B is the greatest lower bound of the
upper sums of f over all partitions P,

U/ f=inf{U(f, P) : P is a partition of B} .
B

The function f is called integrable over B if the lower and upper integrals
are equal, i.e., ifoB f= UfB f- In this case, their shared value is called the
integral of f over B and written [ f.

So we have a quantitative definition that seems appropriate. The integral,
if it exists, is at least as big as any lower sum and at least as small as any upper
sum; and it is specified as the common value that is approached from below
by lower sums and from above by upper sums. Less formally, if quantities that
we view as respectively too small and too big approach a common value, then
that value must be what we’re after.

The following lemma shows that L [, f < U [, f- Its proof provides an
example of how to work with lower and upper bounds. Note that the argument
does not require a contradiction or an €, but rather it goes directly to the point.

Lemma 6.2.2 (Persistence of Order). Let £ and U be nonempty sets of
real numbers such that

£<u forallle L andu€ell. (6.1)
Then sup(L) and inf(U) exist, and they satisfy
sup(£) < inf(U4).

Proof. The given condition (6.1) says that every element £ of £ is a lower
bound of U. Since U is nonempty and has lower bounds, it has a greatest
lower bound inf(U). Since each £ € L is a lower bound and inf(X/) is the
greatest lower bound,

£<inf(d) forallle L.

This shows that inf (i) is an upper bound of £. Since £ is nonempty and has
an upper bound, it has a least upper bound sup(£). Since sup(£) is the least
upper bound and inf(l/) is an upper bound,

sup(L) < inf(U).

This is the desired result. O
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Since always L [, f <U [ f, to show that [, f exists it suffices to show
that also the reverse inequality holds, L [ f > U [5 f

Not all bounded functions f : B — R are integrable. The standard
counterexample is the interval B = [0,1] and the function

f:B—R, . )
1 if z is rational.

@) = {O if x is irrational,

Chasing through the definitions shows that for this B and f, any lower sum
is L(f,P) = 0, so the lower integral is L [, f = sup{0} = 0. Similarly,
UJf p f = 1. Since the upper and lower integrals don’t agree, /. g [ does not
exist.

So the questions are: what functions are integrable, or at least, what are
some general classes of integrable functions, and how does one evaluate their
integrals? Working from the definitions, as in the last example, is a good
exercise in simple cases to get familiar with the machinery, but as a general
procedure it is hopelessly unwieldy. Here is one result that will help us in the
next section to show that continuous functions are integrable.

Proposition 6.2.3 (Integrability Criterion). Let B be a boz, and let f :
B — R be a bounded function. Then f is integrable over B if and only if for
every € > 0, there exists a partition P of B such that U(f,P) — L(f,P) < ¢

Proof. (=) Let f be integrable over B and let £ > 0 be given. There exist
partitions P and P’ of B such that

/f—5/2 and U(f,P /f+a/2

Let P" be the common refinement of P and P’. Then since refining increases
lower sums and decreases upper sums, also

L(f,P”)>/Bf—s/2 and U(f,P”)</Bf+5/2.

This shows that U(f, P") — L(f, P") < ¢, as required.

( <= ) We need to show that L [, f = U [, f. To do so, use the cute
principle that to prove that two numbers are equal, it suffices to show that
they are within arbitrary positive € of each other. So for any given € > 0, we

must show that
U/ f—L/ f<e.
B B

But by assumption there exists a partition P such that

U(f7P)_L(f7P)<€7

and by the definition of upper and lower integral, also
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vrp<tf f<v [ r<ugp.
B B

The last two displays combine to give exactly what we need. O
Here is an example of how to use the Integrability Criterion.

Proposition 6.2.4. Let B be a boz, let f : B — R be a bounded function,
and let P be a partition of B. If f is integrable over B then f is integrable
over each subbox J of P, in which case

S)1=0

Proof. Consider any partition P’ of B that refines P. For each subbox J of P,
let P} = P'NJ, a partition of J. Let the symbol J' denote subboxes of P’,
and compute that

L(f,P') =Y mp(f)vol(J') = > > my(f)vol(J') = > L(f, Py).
J! J

J J'cJ

Similarly, U(f, P') = >, U(f, P}).
Suppose that f is integrable over B. Let an arbitrary € > 0 be given. By
“ = ” of the Integrability Criterion, there exists a partition P’ of B such
that
U(f7pl) _L(fJPI) <e.

Since refining a partition cannot increase the difference between the upper and
lower sums, we may replace P’ by its common refinement with P and thus
assume that P’ refines P. Therefore the formulas from the previous paragraph

show that
> (U(f,P)) - L(f,P))) <&,
J

and so
U(f,Py) — L(f,P}) <e for each subbox J of B.

Therefore f is integrable over each subbox J of B by “ <= " of the Integra-
bility Criterion.

Now assume that f is integrable over B and hence over each subbox J.
Still letting P’ be any partition of B that refines P, the integral over B lies
between the lower and upper sums,

L(f,P') < /B [ <U( P,

and this same fact about the integral over each subbox J combines with the
formulas from the first paragraph of the proof to give
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LUP) =Y L) <Y [ 1< UGP) =V P).
J J JJ J

Since both [, f and )7, [, f lie between L(f,P') and U(f, P'), they are
within € of each other. Since € > 0 is arbitrary, they are equal by the cute
principle enunciated in the proof of the Integrability Criterion. O

Similar techniques show that the converse of the proposition holds as well,
so that given B, f, and P, f is integrable over B if and only if f is integrable
over each subbox J, but we do not need this full result.

The symbol B denotes a box in the next set of exercises.

Exercises

6.2.1. Let f : B — R be a bounded function. Explain how Lemma 6.2.2
shows that L [, f <U [y f.

6.2.2. Let U and L be real numbers satisfying U > L. Show that U = L if
and only if for alle >0, U — L < e.

6.2.3. Let f : B — R be the constant function f(z) = k for all x € B. Show
that f is integrable over B and [, f = k - vol(B).

6.2.4. Fill in the details in the argument that the function f : [0,1] — R
with f(z) = 0 for irrational z and f(z) = 1 for rational z is not integrable
over [0,1].

6.2.5. Let B = [0,1] x [0,1] C R?. Define a function f: B — R by

0 f0<z<1/2,
floy) =40 T0so <1/
1 if1/2<z<1.

Show that f is integrable and [, f =1/2.

6.2.6. This exercise shows that integration is linear. Let f : B — R and
g : B — R be integrable.
(a) Let P be a partition of B and let J be some subbox of P. Show that

my(f) +my(g) <my(f+9) < M;(f+9) < My(f) + Mi(g)-
Show that consequently,
L(f,P)+ L(9,P) < L(f +9,P) SU(f +g,P) <U(f,P) + U(g, P).

(b) Part (a) of this exercise obtained comparisons between lower and upper
sums, analogously to the first paragraph of the proof of Proposition 6.2.4.
Argue analogously to the rest of the proof to show [, (f +g) exists and equals
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I} gft / p 9- (One way to begin is by using the Integrability Criterion twice
and then a common refinement to show that there exists a partition P of B
such that U(f,P) — L(f,P) < e/2 and U(g, P) — L(g,P) < &/2.)

(c) Let ¢ > 0 be any constant. Let P be any partition of B. Show that for
any subbox J of P,

my(cf) =cmy(f) and My(cf) =cM;(f).
Explain why consequently
L(cf,P)=cL(f,P) and Ul(cf,P)=cU(f,P).

Explain why consequently

L/Bcf:cL/Bf and U/Bcf:cU/Bf.

Explain why consequently |, g cf exists and

/Bcf:c/Bf.

(d) Let P be any partition of B. Show that for any subbox J of P,

my(=f)=-M;(f) and M;(-f)=-m;(f).

Explain why consequently
L(_faP) = _U(faP) and U(—f,P) = _L(faP)

Explain why consequently

pfn==v[s wav|n=-1]+

Explain why consequently [,(—f) exists and

fen=-[1

Explain why the work so far here in part (d) combines with part (c) to show
that for any ¢ € R (positive, zero, or negative), f pcf exists and

/Bcf:c/Bf.

6.2.7. This exercise shows that integration preserves order. Let f : B — R
and g : B — R both be integrable, and suppose that f < g, meaning that
f(x) < g(x) for all z € B. Show that [, f < [5g. (It might be tidiest to
begin by explaining why the previous exercise lets us assume that f = 0.)
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6.2.8. Suppose that f : B — R is integrable, and that so is |f|. Show that
s I < 511

6.2.9. Prove the converse to Proposition 6.2.4: Let B be abox, let f : B— R
be a bounded function, and let P be a partition of B. If f is integrable over
each subbox J of P then f is integrable over B. (You may quote the formulas
from the first paragraph of the proof in the text, since that paragraph makes
no assumptions of integrability. It may help to let b denote the number of
subboxes J, so that this quantity has a handy name.)

6.3 Continuity and Integrability

Although the Integrability Criterion gives a test for the integrability of any
specific function f, it is cumbersome to apply case by case. But handily, it
will provide the punchline of the proof of the next theorem, which says that
a natural class of functions is integrable.

Theorem 6.3.1 (Continuity Implies Integrability). Let B be a boz, and
let f: B— R be a continuous function. Then f is integrable over B.

To prove this, as we will at the end of the section, we first need to sharpen
our understanding of continuity on boxes. The version of continuity that we’re
familiar with isn’t strong enough to prove certain theorems, this one in par-
ticular. Formulating the stronger version of continuity requires first revising
the grammar of the familiar brand.

Definition 6.3.2 (Sequential Continuity). Let S C R™ be a set, and let
f:S — R™ be a mapping. For any x € S, f is sequentially continuous
at z if for every sequence {x,} in S converging to x, the sequence {f(z,)}
converges to f(x). The mapping f is sequentially continuous on S if f is
sequentially continuous at each point x in S.

Definition 6.3.3 (¢-6 Continuity). Let S C R™ be a set, and let f : S —
R™ be a mapping. For any x € S, f is e-0 continuous at z if for every
€ > 0 there exists some § > 0 such that

if €S and |Z — x| < 0 then |f(Z) — f(z)| <e.

The mapping f is e-§ continuous on S if f is £-0 continuous at each point
z in S.

Both definitions of continuity at a point x capture the idea that as inputs
to f approach z, the corresponding outputs from f should approach f(z).
This is exactly the substance of sequential continuity. (See figure 6.10.)

For &-§ continuity at x, imagine that someone has drawn a ball of radius
(over which you have no control, and it’s probably quite small) about the
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Figure 6.10. Sequential continuity

point f(z) in R™. The idea is that in response, you can draw a ball of some
radius—this is the § in the definition—about the point z in S, so that every
point in the §-ball about z gets taken by f into the e-ball about f(z). (See
figure 6.11.)

Figure 6.11. ¢ continuity

For example, the function f : R® — R given by f(z) = 2|z| is -0
continuous on R™. To show this, let € > 0 be given. Set § = /2. Then
whenever |Z—z| < J, a calculation that uses the generalized triangle inequality
at the third step shows that

[£(&) = f(@)] = 22| - 2[«|| = 2[|Z] - |2]| <2[Z — 2] <25 =,

as needed.

For another example, to prove that the function f : R — R given by
f(z) = 2% is -0 continuous on R, pick any z € R and let € > 0 be given.
This time set

0 =min{l,e/(2]z| + 1)}.

This may look strange, but its first virtue is that since § < 1, for any Z € R
with | — z| < §, we have |Z| < |z| + 1 and therefore |Z| + |z| < 2|z| + 1; and
its second virtue is that also § < e/(2|z| 4+ 1). These conditions fit perfectly
into the following calculation,
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(@) = f(2)| = |7* - 27|
=|Z+ z| |z — 2|

< (|z| + |=])o by the triangle inequality

< (2]z| +1) by the two virtues of §

€
2/z| +1
=e.

And this is exactly what we needed to show that f is continuous at z.

The tricky part of writing this sort of proof is finding the right §. Doing
so generally requires some preliminary fiddling around on scratch paper. For
the proof just given, the key scratch calculation would be

|7 (Z) = f(2)| = |2 + 2| |Z — =],

exhibiting the quantity that we need to bound by ¢ as a product of two terms,
the second bounded directly by whatever § we choose. The idea is to make
the first term reasonably small (by stipulating that ¢ be at most 1), and then
to constrain J further to make the second term small enough that the product
is less than €. Hence the choice of ¢ in the proof.

In fact there is no need to continue proving that specific functions already
known to be sequentially continuous are also e-§ continuous. Each type of
continuity implies the other.

Proposition 6.3.4 (Sequential Continuity and e—¢ Continuity are
Equivalent). For any set S C R™ and any mapping f : S — R™, f is
sequentially continuous on S if and only if f is -0 continuous on S.

Proof. Let x be any point of S.

( <) Suppose that f is -0 continuous at . We need to show that f is
sequentially continuous z. So, let {z,} be a sequence in S converging to z. To
show that {f(z,)} converges to f(z) means that given an arbitrary e > 0, we
need to exhibit a starting index N such that

forall v > N, |f(z,) — f(z)] <e.
The definition of £-§ continuity gives a ¢ such that
if €S and |Z — x| < 0 then |f(Z) — f(z)] <e.
And since {z,} convergesin S to z, there is some starting index N such that
forallv > N, |z, —z| < 4.

The last two displays combine to imply the first display, showing that f is
sequentially continuous at x.

( =) Now suppose that f is sequentially continuous at . This time we
need to show that f is e-d continuous at z. The proof is by contradiction.
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So, let £ > 0 be given. Suppose that no § > 0 satisfies the condition for -6
continuity. Then in particular, § = 1/v doesn’t work for » = 1,2,3,... So
there is a sequence {z,} in S such that

|z, —z| <1/v and |f(z,) — f(z)|>e, v=1,2,3,...

This condition contradicts the sequential continuity of f at x. So, given ¢ > 0,
some 0 > 0 must satisfy the condition for for e-¢ continuity at x.

Since the two types on continuity imply one another at each point z of S,
they imply one another on S. O

The fact that the second half of this proof has to proceed by contradiction,
whereas the first half is straightforward, shows that ¢-§ continuity is a little
more powerful than sequential continuity on the face of it, until we do the work
of showing that they are equivalent. Also, the very definition of -§ continuity
seems harder for students than the definition of sequential continuity, which is
why these notes have used sequential continuity up to now. However, the ex-
ceptionally alert reader may have recognized that the second half of this proof
is essentially identical to the proof of the Persistence of Inequality Principle
(Proposition 2.3.9). Thus, the occasional arguments in these notes that cited
Persistence of Inequality were tacitly using £-§ continuity already, because
sequential continuity was not transparently strong enough for their purposes.
The reader who dislikes redundancy is encouraged to rewrite the second half
of this proof to quote Persistence of Inequality rather than re-prove it.

The reason that we bother with this new e-§ type of continuity, despite
its equivalence to sequential continuity meaning that it is nothing new, is
that its grammar generalizes to describe the more powerful continuity that
we need. The two examples above of e-§ continuity differed: in the example
f(x) = x?, the choice of § = min{1,e/(2|z| + 1)} for any given z and & to
satisfy the definition of -6 continuity at x depended not only on € but on z
as well. In the example f(z) = 2|z|, the choice of § = £/2 for any given z
and ¢ depended only on ¢, i.e., it was independent of x. Here, one value of ¢
works simultaneously at all values of x once € is specified. This technicality
has enormous consequences.

Definition 6.3.5 (Uniform Continuity). Let S C R" be a set, and let
f:S — R™ be a mapping. Then f is uniformly continuous on S if for
every € > 0 there exists some & > 0 such that

ifx,& €S and |& — x| < 0 then |f(Z) — f(x)] <e.

The nomenclature uniformly continuous on S is meant to emphasize that
given € > 0, a single, uniform value of § works in the definition of e-é continuity
simultaneously for all points 2 € S. The scope of its effectiveness is large-scale.
Uniform continuity depends on both the mapping f and the set S.

A visual image may help distinguish between the old notion of continuity
(henceforth called pointwise continuity) and the new, stronger notion of
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uniform continuity. Imagine the graph of a function f : S — R (where
S C R), and take some input point z. Then f is pointwise continuous at
if for any £ > 0, one can draw a rectangle of height 2¢ centered at the point
(z, f(x)) that is narrow enough that the graph of f protrudes only from the
sides of the rectangle, not the top or bottom. The base of the rectangle is 24,
where 0 comes from e£-§ continuity. Note that for a given &, one may need
rectangles of various widths at different points. A rectangle that works at
z may not be narrow enough to work again at some other point Z. (See
figure 6.12, where ever-narrower rectangles are required as we move to the left
on the graph.) On the other hand, the function f is uniformly continuous if
given € > 0, there is a single 2e-by-20 rectangle that can slide along the entire
graph of f with its centerpoint on the graph, and the graph never protruding
from the top or bottom. (See figure 6.13. A tacit assumption here is that the
graph of f either doesn’t extend beyond the picture frame, or it continues to
rise and fall tamely if it does.) By contrast, no single rectangle will work in
figure 6.12.

Figure 6.12. One ¢ can require different values § at different points x

Figure 6.13. Or one ¢ can work uniformly for ¢ at all
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The domain of the nonuniformly continuous function f(z) = sin(1/z) in
figure 6.12 is not compact, not being closed at its left endpoint. We are about
to prove that on a compact domain, uniform continuity follows for free from
pointwise continuity. In conjunction with the compactness of the boxes B over
which we integrate, this is is the crucial ingredient for proving Theorem 6.3.1
(continuous functions are integrable over boxes), the goal of this section.

Theorem 6.3.6 (Continuity on Compact Sets is Uniform). Let K C
R™ be compact, and let f : K — R™ be pointwise continuous on K. Then f
is uniformly continuous on K.

Proof. The proof proceeds by contradiction, so suppose that we have such K
and f, but f is not uniformly continuous on K. Then for some £ > 0 there
exists no uniform 4§, so in particular no reciprocal positive integer 1/v will
serve as ¢ in the definition of uniform continuity. Thus for each v € Z* there
exist points z, and y, in K such that

|z —yu| <1/v and  [f(zy) = f(3)] 2 & (6.2)

Consider the sequences {z,} and {y,} in K. By the sequential characteri-
zation of compactness (Theorem 2.4.13), {z,} has a convergent subsequence
converging in K; call it {z,, }. Throw away the rest of the z,’s and throw
away the y,’s of corresponding index, reindex the remaining terms of the two
sequences, and now {z,} converges to some p € K. Since |z, — y,| < 1/v for
each v (this remains true after the reindexing), {y,} converges to p as well.
So

limz, = p=1limy,,

and now the continuity of f gives

lim f(,) = £(p) = lim (y,)-

This violates the second condition in (6.2) even though the first condition
holds, and so the proof by contradiction is complete. O

Recall the main result that we want: If B is a boxin R* and f: B— R
is continuous then [ p [ exists. This is easy to prove now. The crucial line of
the proof is the opener.

Proof (of Theorem 6.3.1). The continuity of f on B is uniform. Thus, given
€ > 0, there exists § > 0 such that

g

if ,% € B and |% — x| < § then |f(Z) — f(z)| < vol(B)"

(We may take vol(B) > 0, making the volume safe to divide by, since otherwise
all lower sums and upper sums are 0, making the integral 0 as well, and there
is nothing to prove.) Take a partition P of B whose subboxes J have sides
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of length less than 6 /n. By the Size Bounds (Proposition 2.2.7), any points x
and £ in any subbox J satisfy |Z — z| < 4, so

€

if z,% € J then |f(%) — f(z)| < ol(B)"

Let z and Z vary over J, and cite the Extreme Value Theorem (Theorem

2.4.15) to show that
5

vol(B)’

M;(f) —my(f) <
Multiply by vol(J) to get

My (f)vol(J) — my(f)vol(.J) < %

and sum this relation over subboxes J to get
U(faP) _L(faP) <e.
The Integrability Criterion now shows that [ p [ exists. O

Integration synthesizes local data at each point of a domain into one whole.
The idea of this section is that integrating a continuous function over a box
is more than a purely local process: it requires the uniform continuity of the
function all through the box, a large-scale simultaneous estimate that holds
in consequence of the box being compact.

Exercises

6.3.1. Reread the proof that sequential and -4 continuity are equivalent, then
redo the proof with the book closed.

6.3.2. Let f : R — R be the cubing function f(x) = 2®. Give a direct proof
that f is e-0 continuous on R. (Hint: A*> — B3 = (A — B)(4% + AB + B?).)

6.3.3. Here is a proof that the squaring function f(x) = z? is not uniformly
continuous on R. Suppose that some ¢ > 0 satisfies the definition of uniform
continuity for e = 1. Set x = 1/ and & = 1/6+9/2. Then certainly |#—z| < 4,
but

1+1+62 ! —1+62>5
62 4 52| 4 )

@) - f@)] = ‘(%g)_;

This contradicts uniform continuity.
Is the cubing function of the previous exercise uniformly continuous on R?
On [0, 500]?
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6.3.4. (a) Show: If I C R is an interval (possibly all of R), f : I — R is
differentiable, and there exists a positive constant R such that |f'(z)| < R for
all z € I then f is uniformly continuous on I.

(b) Prove that sine and cosine are uniformly continuous on R.

6.3.5. Let f : [0,+00) be the square root function f(z) = v/z. You may take
for granted that f is e-d continuous on [0, +00).

(a) What does part (a) of the previous problem say about the uniform
continuity of f?

(b) Is f uniformly continuous?

6.3.6. Let J be a box in R™ with sides of length less than §/n. Show that any
points z and Z in J satisfy |z — x| < .

6.3.7. For [, f to exist, it is sufficient that f : B — R be continuous, but it
is not necessary. What preceding exercise provides an example of this? Here is
another example. Let B = [0,1] and let f : B — R be monotonic increasing,
meaning that if £ < 22 in B then f(z;) < f(z2). Show that such a function
is bounded, though it need not be continuous. Use the Integrability Criterion
to show that [, f exists.

6.4 Integration of Functions of One Variable

In a first calculus course one learns to do computations such as: to evaluate
¢ (logz)?
/ (log ) de.
z=1 z

let u = log z; then du = dz/z, and as z goes from 1 to e, u goes from 0 to 1,
so the integral equals

Or such as: to evaluate
/9 dz
o V1+yT
let w = y/1+ 4/z. Then some algebra shows that z = (u? — 1)2, and so

dr = 4(u®> — 1)udu. Also, when x = 0, u = 1, and when z = 9, u = 2.
Therefore the integral is
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Although both of these examples use substitution, they differ from one
another in a way that a first calculus course may not explain. The first substi-
tution involved picking an z-dependent u (i.e., u = In z) where v'(z) (i.e., 1/x)
was present in the integral and got absorbed by the substitution. The second
substitution was of an opposite form to the first: this time the z-dependent u
was inverted to produce a u-dependent x, and the factor u'(z) was introduced
into the integral rather than eliminated from it. Somehow, two different things
are going on under the guise of “u-substitution.”

In this section we specialize our theory of multivariable integration ton = 1
and review two tools for evaluating one-dimensional integrals, the Fundamen-
tal Theorem of Integral Calculus (FTIC) and the Change of Variable Theorem.
Writing these down precisely will clarify the examples we just worked. More
importantly, generalizing these results appropriately to n dimensions is the
subject of the remainder of these notes.

The multivariable integral notation of this chapter, specialized to one di-
mension, is f[a ] f. For familiarity, replace this by the usual notation,

b
/f: f fora<hb.

[a,8]

As matters stand, the redefined notation f: f makes sense only when a < b,
so extend its definition to

/abfz—/baf for a > b.

Once this is done, the same relation between “signed” integrals holds regard-
less of which (if either) of a and b is larger,

b a
/f:—/f for all a and b.
a b

Something nontrivial is happening here: when the multivariable integration of
this chapter is specialized to one dimension, it can be extended to incorporate
a sign convention to represent the order on R. If a < b then fab describes
positive traversal along the real line from a up to b, while |, ba describes negative
traversal from b down to a. This sort of thing does not obviously generalize
to higher dimensions since R" is not ordered.

Casewise inspection shows that for any three points a,b,c € R in any
order, and for any integrable function f : [min{a, b, ¢}, max{a,b,c}] — R,

/acf=/abf+/bcf-

Also, if f : [min{a, b}, max{a,b}] — R takes the constant value k then
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/abf=k(b—a),

again regardless of which of a and b is larger. These facts generalize Proposi-
tion 6.2.4 and exercise 6.2.3 to signed one-variable integration.

Each of the next two theorems describes a sense in which one-variable dif-
ferentiation and integration are inverse operations. Both are called the Fun-
damental Theorem of Integral Calculus, but the second is more deserving of
the title because of how far it generalizes.

Theorem 6.4.1. Let the function f : [a,b] — R be continuous. Define a
function

Filab —R, F) =/ f
Then F is differentiable on [a,b] and F' = f.

Proof. Let z and x + h lie in [a, b] with h # 0. Study the difference quotient

Fa+h)—F@) _ 7" =0 7

h h h

If h > 0 then mppyn(f) -h < [ < My (f) - hy and dividing
through by h shows that the difference quotient lies between m, ,14)(f) and
Mg 041 (f)- This forces it to f(x) as h goes to 0, since f is continuous. Similar
analysis applies when h < 0. O

The alert reader will recall the convention in these notes that a mapping
can be differentiable only at an interior point of its domain. In particular,
the derivative of a function F' : [a,b] — R is undefined at a and b. Hence
the statement of Theorem 6.4.1 is inconsistent with our usage, and strictly
speaking the theorem should conclude that F' is continuous on [a, b] and dif-
ferentiable on (a,b) with derivative F' = f. The given proof does show this,
since the existence of the one-sided derivative of F' at each endpoint makes F’
continuous there.

However, we prohibited derivatives at endpoints only to tidy up our state-
ments. An alternative would have been to make the definition that for any
compact, connected set K C R™ (both of these terms were discussed in sec-
tion 2.4), a mapping f : K — R™ is differentiable on K if there exists an
open set A C R” containing K, and an extension of f to a differentiable map-
ping f : A — R™. Here the word “extension” means that the new function f
on A has the same behavior on K as the old f. One reason that we avoided
this slightly more general definition is that it is tortuous to track through the
material in chapter 4, especially for the student who is seeing the ideas for
the first time. Also, this definition requires that the Critical Point Theorem
(stating that the extrema a function occur at points where its derivative is 0)
be fussily rephrased to say that this criterion applies only to the extrema that
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occur at the interior points of the domain. From the same preference for tidy
statements over fussy ones, now we do allow the more general definition of
the derivative.

Proving the FTIC from Theorem 6.4.1 requires the observation that if two
functions Fy, F; : [a,b] — R are differentiable, and F| = Fj, then F} = Fy+c
for some constant c¢. This follows from the Mean Value Theorem and is an
exercise.

Theorem 6.4.2 (Fundamental Theorem of Integral Calculus). Sup-

pose that the function F : [a,b] — R is differentiable and F' is continuous.
Then

/b F' = F(b) — F(a).

Proof. Define F, : [a,b] — R by Fy(z) = [7 F'. Then F} = F' by the
preceding theorem, so there exists a constant ¢ such that for all z € [a, b],
Fy(z) = F(z) +c. (6.3)
Plug z = a into (6.3) to get 0 = F(a) + ¢, so ¢ = —F(a). Next plug in z = b
to get Fy(b) = F(b) — F(a). Since Fy(b) = [ F' by definition, the proof is
complete. O
In one-variable calculus one learns various techniques to find antideriva-
tives; i.e., given continuous f, one finds F such that F' = f. Once this is
done, evaluating f; f is mere plug-in to the FTIC. But since not all continu-
ous functions have antiderivatives that are readily found, or even possible to
write in an elementary form (for example, try f(z) = e * or f(z) = sin(z?)),
the FTIC has its limitations.
Another tool for evaluating one-dimensional integrals is the Change of

Variable Theorem. The idea is to transform one integral to another that may
be better suited to the FTIC.

Theorem 6.4.3 (Change of Variable Theorem; Forward Substitution
Formula). Let ¢ : [a,b] — R be differentiable with continuous derivative
and let f : ¢[a,b] — R be continuous. Then

b ¢(b)
/ (fod)-¢'=[ f (6.4)
a ¢(a)

Proof. Use Theorem 6.4.1 to define F : ¢[a,b] — R such that F' = f. By
the chain rule, F o ¢ has derivative (F o @) = (F'o¢)-¢' = (f o ¢) - ¢, which
is continuous on [a, b]. Thus by the FTIC twice,

b b
[od) ¢ = [(Foey=Fon)0) - (Fod)@

@(b) o(b)
= F($(3)) - F(d(a) = /¢ F = /¢ o
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One way to apply the Change of Variable Theorem to an integral fab g is

to recognize that the integrand takes the form g = (f o ¢) - ¢, giving the
left side of (6.4) for suitable f and ¢ such that the right side ff(g’)) f is easier
to evaluate. This method is called integration by forward substitution.

For instance, for the first integral f:zl((log 7)?)/z) dz at the beginning of the
section, take
g:Rt — R, g(z) = (logz)?/=.

To evaluate [, g, define
¢:RT — R, é(x) =logz

and
f:R—R, f(u)=u2.

Then g = (f o @) - ¢/, and ¢(1) = 0, ¢(e) = 1, so by the Change of Variable

Theorem, . . 50 )
/lg=/l (f°¢)-¢’=/¢(l) f=/0 .

Since f has antiderivative F where F(u) = u?/3, the last integral equals
F(1) — F(0) = 1/3 by the FTIC.

The second integral at the beginning of the section was evaluated not by
the Change of Variable Theorem as given, but by a consequence of it:

Corollary 6.4.4 (Inverse Substitution Formula). Let ¢ : [a,b]] — R
be differentiable with continuous derivative and let f : ¢la,b] — R be con-
tinuous. Suppose further that ¢ is invertible and that ¢~ is differentiable.

Then ) o)
fog)= (.
/a (f o) /¢ A

This is the formula for integration by inverse substitution. To obtain
it from (6.4), replace ¢ by ¢, f by fo¢, a by ¢(a), and b by ¢(b), and then
exchange the two sides of the equality.

To apply this formula to an integral f: g, write the integrand as g = f o ¢,
giving the left side, and then invert ¢ and differentiate the inverse to see
if the right side is easier to evaluate. For instance, for the second integral

fog dz/+/1+ +/z at the beginning of the section, let id denote the identity
function, and take

g:R>0 — R, g=1/\/1+Vid.

To evaluate fog g, define

¢:Rsg— R, ¢=11+Vid
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and
f:Rt — R, f(u) =1/id.

Thus g = f o ¢ as desired. From the definition of ¢, it follows by algebra that
(¢ — 1)2 = id. Letting s denote the squaring function, this relation rewrites
as so (so¢ — 1) =id. Consequently,

pl=s50(s—1).
Since s’ = 21id, it follows by the chain rule that
(™) = (2ido (s — 1)) - 2id = 4(s — 1) - id.

Also, ¢(0) =1 and ¢(9) = 2. By the inverse substitution formula, the integral

is now
? #(9) >(s—1)-id 2
o) — . _II: _— = — -
[oeo=[ trry=a [ EEgE a6

Since s — 1 has antiderivative ¢/3 — id where ¢ is the cubing function, the
integral equals 4(c(2)/3 — 2 —¢(1)/3 + 1) = 16/3 as before.

The variable-based notation used to work the two integrals at the begin-
ning of the section, with z and » and dz and du, is much easier mnemonically
than the function-based notation used to rework them with the Change of
Variable Theorem and its corollary. But a purist would object to it on two
counts. First, expressions such as (logz)?/z and u? are not functions, they
are the outputs of functions, so strictly speaking we can’t integrate them.
This is not a serious problem, it is mere pedantry: we simply need to loosen
our notation to let fwb:a f(x) be synonymous with f: f, at the cost of an un-
necessary new symbol x. This z is called a “dummy variable” since another
symbol would do just as well: f;:a f(y) and fé:a f(Q) also denote f; f. At
the theoretical level, where we deal with functions qua functions, this extra
notation is useless and cumbersome, but in any down-to-earth example it is
in fact a convenience since describing functions by formulas is easier and more
direct than introducing new symbols to name them.

The second, more serious objection to the variable-based notation is to
the dz, the du, and mysterious relations such as du = dz/x between them.
What kind of objects are dr and du? In a first calculus course they are typ-
ically described as infinitesimally small changes in x and u, but our theory
of integration is not based on such hazy notions; in fact it was created in
the 19th century to answer objections to their validity. (Though infinitesimals
were revived and put on a firm footing in the 1960s, we have no business
with them here.) An alternative is to view dz and du as formal symbols that
serve, along with the integral sign [, as bookends around the expression for
the function being integrated. This leaves notation such as du = dz/z still
meaningless in its own right. In a first calculus course it may be taught as
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a procedure with no real justification, whereas by contrast, the revisited ver-
sions of the two integral-calculations of this section are visibly applications
of results that have been proved. However, the classical method is probably
easier for most of us, its notational conventions dovetailing with the Change
of Variable Theorem and its corollary so well. So feel free to continue using
it. (And remember to switch the limits of integration when you do.)

However, to underscore that dx is an unnecessary, meaningless symbol, it
will not be used in these notes until it is defined next chapter, as something
called a differential form.

Exercises

6.4.1. (a) Show that for three points a,b,c¢ € R in any order, and any inte-
grable function f : [min{a,b, ¢}, max{a,b,c}] — R, [ f = fabf + i f-

(b) Show that if f : [min{a, b}, max{a, b}] — R takes the constant value k
then f: f = k(b — a), regardless of which of a and b is larger.

6.4.2. Complete the proof of Theorem 6.4.1 by analyzing the case h < 0.

6.4.3. Show that if Fi, F5 : [a,b] — R are differentiable and F| = Fy, then
F, = F; + C for some constant C.

6.4.4. (a) Suppose that 0 < a < b and f : [a?,b?] — R is continuous. Define
F:la,b)) — R by F(z) = f;; f- Does F' exist, and if so then what is it?

(b) More generally, suppose f : R — R is continuous, and o,  : R — R
are differentiable. Define F': R — R by F(z) = [ f ((;)) f- Does F' exist, and
if so then what is it?

6.4.5. Let f : [0,1] — R be continuous and suppose that for all z € [0, 1],
J5f=[)f What is f?

6.4.6. Find all differentiable functions f : R>g — R such that for all z €
< T -
Rxo, (f(2))* = [, [-

6.4.7. Define f : Rt — R by f(u) = et/¥/y and F : Rt — R
by F(z) = [ f. Show that F behaves somewhat like a logarithm in that
F(1/z) = —F(z) for all z € R™*. Interpret this property of F' as a statement
about area under the graph of f. (Hint: define ¢ : Rt — R™ by ¢(u) = 1/u,
and show that (fo¢)-¢' =—f.)

6.5 Integration Over Nonboxes

So far we know that [, f exists if B is a box and f : B — R is continuous
(Theorem 6.3.1). With some more work, the theorem can be refined to relax
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these requirements. The basic idea is that [ g [ still exists if f is discontinuous
on a small enough subset of B. This isn’t hard conceptually, but it requires
some bookkeeping. Once it is established, integration over compact sets K
other than boxes is easy to define provided that their boundaries are suitably
small.

To quantify the notion of small, and more generally the notion of set size,
let a set S C R™ be given. The characteristic function of S is

1 ifzeS
xs:R" — R, XS(”E):{

0 otherwise.

Suppose that S is bounded, meaning that S sits in some box B.

Definition 6.5.1 (Volume of a Set). The volume of a bounded set S C R"
is

vol(S) = / xs where B is any bozr containing S,
B

if this integral exists.

This definition requires several comments. At first glance it seems ill-posed.
Conceivably, [, xs could exist for some boxes B containing S but not others,
and it could take different values for the various B where it exists. In fact, some
technique shows that if [, x5 exists for some box B containing S then it exists
for any such box and always takes the same value, so the definition makes sense
after all. See the exercises. Also, an exercise shows that the volume of a box B
is the same under Definition 6.5.1 as under Definition 6.1.4, as it must be
for grammatical consistency. Finally, note that not all sets have volume, only
those whose characteristic functions are integrable.

Sets of volume zero are small enough that they don’t interfere with inte-
gration. To prove such a result explicitly, we first translate the definition of
volume zero into statements about the machinery of the integral. Let S C R™
sit in a box B, and let P be a partition of B. The subboxes J of P consist of
two types:

type I : J such that JNS # 0

and
type I : J such that J NS = 0.

Thus S sits in the union of subboxes J of type I and the sum of their volumes
gives an upper sum for [, xs.

For example, figure 6.14 shows a circle S inside a box B, and a partition P
of B, where the type I subboxes of the partition are shaded. The shaded boxes
visibly have a small total area. Similarly, figure 6.15 shows a smooth piece of
surface in R3, then shows it inside a partitioned box, and figure 6.16 shows
some of the type I subboxes of the partition. Figure 6.16 also shows a smooth
arc in R? and some of the type I rectangles that cover it, with the ambient
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box and the rest of the partition now tacit. Figure 6.16 is meant to show that
all the type I boxes, which combine to cover the surface or the arc, have a
small total volume.

Figure 6.14. Circle, box, partition, and type I subboxes

Figure 6.15. A two dimensional set in R>; the set inside a partitioned box

The following fact is convenient.

Proposition 6.5.2 (Volume Zero Criterion). A set S contained in the
box B has volume zero if and only if for every € > 0 there exists a partition
P of B such that
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Figure 6.16. Some type I subboxes of the partition, and for an arc in R?

Z vol(J) < e.

J:type I

The proof is an exercise. This criterion makes it plausible that any bounded
smooth arc in R? has volume zero, and similarly for a bounded smooth arc or
smooth piece of surface in R3. The next result uses the criterion to provide
a general class of volume zero sets. Recall that for any set S C R™ and any
mapping ¢ : S — R™, the graph of ¢ is a subset of R™ x R™,

graph(p) = {(z,¢(x)) : z € S}.

Proposition 6.5.3 (Graphs Have Volume Zero). Let B be a boz in R",
and let ¢ : B — R be continuous. Then graph(p) has volume zero.

Proof. The continuity of ¢ on B is uniform, and the image of ¢, being com-
pact, sits in some interval I.

Let ¢ > 0 be given. Set &' equal to any positive number less than
g/(2vol(B)) such that length(I) /e’ is an integer. There exists a partition Q of I
whose subintervals K have length &', and a § > 0 such that for all z,% € B,

|2 —z| <6 = lo(Z) — ()] < €' (6.5)

Now take a partition P of B whose subboxes J have sides of length less
than d/n, so that if two points are in a common subbox J then the distance
between them is less than d. Consider the partition P x @) of B x I. For each
subbox J of P there exist at most two subboxes J x K of P x @ over J that
intersect the graph of ¢, i.e., subboxes of type I. To see this, note that if we
have three or more such subboxes, then some pair J x K and J x K' are
not vertical neighbors, and so any hypothetical pair of points of the graph,
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one in each subbox, are less than distance d apart horizontally but at least
distance &' apart vertically. But by (6.5), this is impossible. (See figure 6.17.
The horizontal direction in the figure is only a schematic for R™, but the
vertical direction accurately depicts the one-dimensional codomain of ¢.)

Figure 6.17. The graph meets at most two boxes over each base

Now, working with subboxes J x K of P x ), compute that

Z vol(J x K) = Z vol(J) - &' since length(K) = &’

type 1 type 1

<2 Z vol(J) - &' by the preceding paragraph
J

=2vol(B)-¢' <e  since &’ < e/(2vol(B)),
and the proof is complete by the Volume Zero Criterion. O

An exercise shows that any finite union of sets of volume zero also has
volume zero, and another exercise shows that any subset of a set of volume
zero also has volume zero. These facts and the preceding proposition are
enough to demonstrate that many regions have boundaries of volume zero. The
boundary of a set consists of all points simultaneously near the set and near
its complement—roughly speaking, its edge. (Unfortunately, the mathematical
terms bounded and boundary need have nothing to do with each other. A set
with a boundary need not be bounded, and a bounded set need not have any
boundary points nor contain any of its boundary points if it does have them.)
For example, the set in figure 6.18 has a boundary consisting of four graphs
of functions on one-dimensional boxes, i.e., on intervals. Two of the boundary
pieces are graphs of functions y = f(z), and the other two are graphs of
functions = f(y). Two of the four functions are constant functions.
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Figure 6.18. Boundary with area zero

The main result of this section is that discontinuity on a set of volume
zero does not interfere with integration.

Theorem 6.5.4 (Near-continuity Implies Integrability). Let B C R"
be a bozx. Let f : B — R be bounded, and continuous except on a set S C B
of volume zero. Then fB [ exists.

Proof. Let € > 0 be given.

The proof involves two partitions. Since f is bounded there exists a pos-
itive number R such that |f(z)| < R for all z € B. Take a partition P of B
whose subboxes J of type I (those intersecting the set S where f is discon-
tinuous) have volumes adding to less than £/(4R). (See figure 6.19, in which
the function f is the dome shape over the unit disk but is 0 outside the unit
disk, making it discontinuous on the unit circle.)

Figure 6.19. Type I subboxes of small total area
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Consider some yet unspecified refinement P’ of P, dividing each subbox .J
of P into further subboxes J'. (See figure 6.20, in which the original boxes J
of type I remain shaded, but each box J of either type has been further
partitioned.) On any J', My (f) — my (f) < 2R, and so a short calculation
shows that regardless how the refinement P’ is to be specified, its subboxes J'
that sit inside type I subboxes J of P make only a small contribution to the
difference between the lower sum and the upper sum of f over P’,

Y Y (Mp(f) =ma(f)) vol(S')
J :typelJ'CJ
. (66

<2R Y S vol()=2R Y wol(J) < 235 =

J :type 1 J'CJ J : typel
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Figure 6.20. Refinement of the partition

To specify the refinement P’ of P that we need, consider the type II
subboxes J of P, i.e., the union of the unshaded boxes in figure 6.19. The
function f is continuous on each such subbox and hence integrable over it by
Theorem 6.3.1. Let the number of these subboxes be denoted N. By ( =)
of the Integrability Criterion, each type II subbox J has a partition P} such

that
€

U(f,P5) = L(f P§) < 5o
Let P' be a partition of the full box B that refines the original partition P
and also incorporates all the partitions Pj of the type II subboxes J. Thus
the intersection of P’ with any particular type II subbox J refines Pj. Since
refinement can not increase the distance between lower and upper sums, an-
other short calculation shows that the subboxes J' of P’ that sit inside type II
subboxes J of P also make only a small contribution to the difference between
the lower sum and the upper sum of f over P’,
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S S (M (f) = ma () vol(T)
J :type I1J' CJ
e _« (6.7)

< Y UEP)-LUL,PY<N-5o=5.

J : type Il

Finally, combining (6.6) and (6.7) shows that U(f, P') — L(f, P'") < &, and so
by ( <=) of the Integrability Criterion, [ f exists. O

To recapitulate the argument: The fact that f is bounded means that its
small set of discontinuities can’t cause much difference between lower and up-
per sums, and the continuity of f on the rest of its domain poses no problem
either. The only difficulty was making the ideas fit into our box-counting defi-
nition of the integral. The reader could well object that proving Theorem 6.5.4
shouldn’t be this hard. Indeed, the theory of integration being presented in
this chapter, Riemann integration, involves laborious proofs precisely because
it uses such crude technology: finite sums over boxes. More powerful theories
of integration exist, with stronger theorems and more graceful proofs. How-
ever, these theories also entail the startup cost of assimilating a larger, more
abstract set of working ideas, making them inappropriate for a course at this
level.

Now we can discuss integration over nonboxes.
Definition 6.5.5 (Known-Integrable Function). A function
f:K—R

is known-integrable if K is a compact subset of R™ having boundary of
volume zero, and if f is bounded and is continuous off a subset of K having
boundary zero.

Definition 6.5.6 (Integral Over a Nonbox). Let
f:K—R

be a known-integrable function. Extend its domain to R™ by defining a new
function
B . ; K
FRT R, @y =q0) dEek
0 ifx ¢ K.
Then the integral of f over K is

/ f= / f where B is any box containing K.
K B

This integral on the right side of the equality in the definition exists be-
cause f is bounded and discontinuous on a set of volume zero, as required for
Theorem 6.5.4. In particular, the definition of volume is now, sensibly enough,
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vol(K):/Kl.

Naturally, the result of Proposition 6.2.4, that the integral over the whole
is the sum of the integrals over the pieces, is not particular to boxes and
subboxes.

Proposition 6.5.7. Let K C R"™ be a compact set whose boundary has volume
zero. Let f : K — R be continuous. Further, let K = K1 UK, where each K
is compact and the intersection K1 N Ko has volume zero. Then f is integrable

over K a/nd sz, a/nd
/K] + /R 2 /K ’

if K
fi: K —R, fi(z) = flo) tze b
0 otherwise.

Proof. Define

Then f; is nearly continuous on K, and so [, fi exists and equals [ fi.
Define a corresponding function f; : K — R, for which the corresponding
conclusions hold. Tt follows that

/K1f1+/K2f2=/Kf1+/Kfz=/K(f1+f2)_

But f1 + f2 equals f except on the volume-zero set K1 N K5, which contributes
nothing to the integral. The result follows. O

Exercises

6.5.1. (a) Suppose that Iy = [a1,b1], I2 = [aa,b2], ... are intervals in R. Show
that their intersection Iy NI N --- is another interval (possibly empty).

(b) Suppose that S =851 x-+- xS, T=Ty x---XTp, U=Uy x -+ xUp,
...are cartesian products of sets. Show that their intersection is

SNTNUN---=S NThnUN---)Xx--- X (S NT,NU,N---).

(c) Show that any intersection of boxes in R™ is another box (possibly
empty).

(d) If S is a set and T4, Ty, T3, .. .are all sets that contain S, show that
T1 N T2 N T3 N--- contains S.

6.5.2. Let S be a nonempty bounded subset of R™, let B be any box con-
taining S, and let B’ be the intersection of all boxes containing S. By the
preceding problem, B’ is also a box containing S. Use Proposition 6.2.4 to
show that if either of [, xs and [, xs exist then both exist and they are
equal. It follows, as remarked in the text, that the definition of the volume
of S is independent of the containing box B.
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6.5.3. Let B C R™ be a box. Show that its volume under Definition 6.5.1
equals its volume under Definition 6.1.4. (Hint: Exercise 6.2.3.)

6.5.4. Let S be the set of rational numbers in [0, 1]. Show that S does not
have a volume (i.e., a length) under Definition 6.5.1.

6.5.5. Prove the Volume Zero Criterion.

6.5.6. If S C R™ has volume zero and R is a subset of S, show R has volume
zero. (Hint: 0 < xr < xs.)

6.5.7. Prove that if Sy, ..., Sy have volume zero, then so does S;U---U Sy.
(Hints: Induction on N; xs,us, < Xs; + XSs-)

6.5.8. Find an unbounded set with a nonempty boundary, and a bounded set
with empty boundary.

6.5.9. Use Theorem 6.5.4, the discussion immediately after its proof, Propo-
sition 6.5.3, and any other results necessary to explain why for each set K
and function f: K — R below, the integral [, f exists.

(a) K={(z,9) :2<y <3,0<z < 1+logy/y}, f(z,y) =e™.

(b) K ={(z,9) : 1 <2 < 4,1 <y <V}, f(a,y) = V" [y,

(c) K = the region between the curves y = 222 and = = 4y?, f(z,y) = 1.

(d )K {(z,9): 1 <2” +y* <2}, f(a,y) = 2.

() K = the pyramid with vertices (0,0,0), (3,0,0), (0,3,0), (0,0,3/2),
f(z,y,2) =z

( ) K = {z € R" : |z| < 1} (the solid unit ball in R™), f(z1,...,2,) =

L1 -""Tp.

6.6 Fubini’s Theorem

With existence theorems for the integral now in hand, this section and the
next one present tools to compute integrals.

An n-fold iterated integral is n one-dimensional integrals nested inside
each other, such as

/ / / $17$27"'7$n)7
z1=a1 J ro=as Tpn=0an

for some function f : [a1,b1] X - -+ X [an, b,] — R. This is definitely not the
same sort of object as an n-dimensional integral. We can evaluate the iterated
integral by working from the inside out. For the innermost integral, f is to
be viewed as a function of the variable z,, with its other inputs treated as
constants, and so on outwards. For example,

/1 /2 myz _ /vl lmy 2 B /1 §x éxQ
z=0 Jy=0 T 03 y=0 T 03 3
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There are n! different orders in which one can iterate n integrals, e.g., the ex-
ample just worked is not the same object as fyzzo fwl:o zy?. Regardless of order,
each one-dimensional integral requires varying its particular input to f while
holding the other inputs fixed. The upshot of all this variable-dependence is
that there is no reasonable alternative to naming and writing the variables in
an iterated integral.

In an inner integral, outermore variables may figure not only as inputs
to the integrand, but also in the limits of integration. For example, in the
calculation

K x K
/ / cos(z +y) = / sin(z + y)
z=0 Jy=0 z=0

each inner integral over y is being taken over a segment of z-dependent length
as the outer variable z varies from 0 to 7. (See figure 6.21.)

’ = /7r sin(2z) — sin(z) = -2,

y=0 =0

Figure 6.21. Variable Range of Inner Integration

Fubini’s Theorem says that under suitable conditions, the n-dimensional
integral is equal to the n-fold iterated integral. This provides an essential
calculational tool for multivariable integration.

Theorem 6.6.1 (Fubini’s Theorem). Let B = [a,b] X [c,d] C R?, and let
f : B — R be bounded, and continuous except on o subset S C B of area
2€T0, SO fB f exists. Suppose that for each x € [a,b], S contains only finitely
many points (possibly none) with first coordinate x. Then the iterated integral

b pd .
S fy:C f(z,y) also exists, and

Li-[ [ aen

For notational convenience, the theorem is stated only in two dimensions.
Replacing [a, b] and [c, d] by boxes gives a more general version with a virtually
identical proof. Thinking geometrically in terms of area and volume makes the
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Figure 6.22. Inner integral as cross-sectional area

theorem plausible in two dimensions since each inner integral is the area of a
cross-section of the volume under the graph of f. (See figure 6.22.)

However, since the multiple integral and the iterated integral are defined
analytically as limits of sums, the only available tactic for proving the theo-
rem is analytic: we must compare approximating sums for the two integrals.
A lower sum for the integral [, f is shown geometrically in the left side of
figure 6.23. A partition P x @ divides the box B = [a,b] X [¢,d] into sub-
boxes I x J, and the volume of each solid region in the figure is the area
of a subbbox times the minimum height of the graph over the subbox. By

contrast, letting g(z) = f:zc f(z,y) be the area of the cross-section at z, the

right side of figure 6.23 shows a lower sum for the integral fwb:a g(z) The par-
tition P divides the interval [a, b] into subintervals I, and the volume of each
bread-slice in the figure is the length of a subinterval times the minimum area
of the cross-sections orthogonal to I. Because integrating in the y-direction
is a finer diagnostic than summing minimal box-areas in the y-direction, the
bread-slices in the right side of the figure are a superset of the boxes in the left
side. Consequently, the volume beneath the bread-slices is at least the volume
of the boxes,
L(f,P x Q) < L(g, P).

By similar reasoning for upper sums, in fact we expect that
L(f,Px Q) < L(g,P) <U(g,P) <U(f,P x Q). (6.8)

Since L(f, P x Q) and U(f, P x Q) converge to [ f under suitable refinement
of P x @, so do L(g,P) and U(g, P). Thus the iterated integral exists and
equals the double integral as desired. The details of turning the geometric
intuition of this paragraph into a proof of Fubini’s Theorem work out fine
provided that we carefully tend to matters in just the right order. However,
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the need for care is genuine. A subtle point not illustrated by figure 6.23 is
that

e although the boxes lie entirely beneath the bread-slices (this is a relation
between two sets),
and although the boxes lie entirely beneath the graph (so is this),
and although the volume of the bread-slices is at most the volume beneath
the graph (but this is a relation between two numbers),

e the bread-slices need not lie entirely beneath the graph.

Since the bread-slices need not lie entirely beneath the graph, the fact that
their volume L(g, P) estimates the integral [, f from below does not follow
from pointwise considerations. The proof finesses this point by establishing
the inequalities (6.8) without reference to the integral, only then bringing the
integral into play as the limit of the extremal sums in (6.8).

Figure 6.23. Geometry of two lower sums

Proof. For each z € [a,b], define the cross-sectional function

ez il dl — R,  @i(y) = f(=,y).

The hypotheses of Fubini’s Theorem ensure that as x varies from a to b, each
cross-sectional function ¢, is continuous except at finitely many points and
hence it is integrable on [c, d]. Give the cross-sectional integral a name,
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d
g:lall >R, 9@ = [ g
c

The iterated integral f " fy . f(x,y) is precisely the integral f g. We need
to show that this exists and equals [, f

Consider any partition P x @) of B into subboxes J x K. Thus P partitions
[a,b] into subintervals J, and @ partitions [c,d] into subintervals K. Take
any subinterval J of [a,b], and take any point x of J. The lower sum of the
cross-sectional function ¢, over the y-partition @ is a lower bound for the
cross-sectional integral g(z),

d
3 mac(en) length(K) = Lige, @) < [ 02 = g(o)

K

Note that ¢, on each K samples f only on a cross-section of J x K, and so
f has more opportunity to be small on J x K than ¢, has on K. That is,

myxk(f) < mk(pz)-

This previous two displays combine to give a lower bound for the cross-
sectional integral g(x) that depends on the interval J but is independent
of the point z of J,

> mxx(f)length(K) < g(z) forallz € J.
K

That is, the left side of this last display is a lower bound of all values g(x)
where x € J. So it is at most the greatest lower bound,

> myxk(f)length(K) < m(g).

Multiply through by the length of J to get

ZmeK(f) area(J x K) < mj(g)length(J).

(This inequality says that each y-directional row of boxes in the left half of
figure 6.23 has at most the volume of the corresponding bread-slice in the
right half of the figure.) As noted at the end of the preceding paragraph, the
iterated integral is the integral of g. The estimate just obtained puts us in
a position to compare lower sums for the double integral and the iterated
integral,

L(f,Px Q)= ZmeK Jarea(J x K) < ZmJ )length(J) = L(g, P).

Concatenating a virtually identical argument with upper sums gives the an-
ticipated chain of inequalities,
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L(f,Px Q) < L(9,P) <U(g, P) <U(f,P x Q).

The outer terms converge to [ p f under suitable refinement of P x @), and

hence so do the inner terms, showing that f; g exists and equals [, f. O

Since we will use Fubini’s Theorem to evaluate actual examples, all the
notational issues discussed in section 6.4 arise here again. A typical notation

for examples is
b d
[ten=[ [ sww.
B z=a Jy=c

where the left side is a 2-dimensional integral, the right side is an iterated
integral, and f(z,y) is an expression defining f. For example, by Fubini’s
Theorem and the calculation at the beginning of this section,

1 2 4
fo [
[0,1]%[0,2] =0 Jy=0 3

Of course, an analogous theorem asserts that [ f(z,y) = fyd:C fxb:a f(z,y)
provided that the set S of discontinuity meets horizontal segments at only
finitely many points too. In other words, the double integral also equals the
other iterated integral, and consequently the two iterated integrals agree. For
example, fy2=0 [1_, zy* also works out easily to 4/3.

In many applications, the integral over B is really an integral over a non-
rectangular compact set K, as defined at the end of the previous section. If K
is the area between the graphs of continuous functions ¢1, @2 : [a,0] — R,
ie., if

K= {(xay) ra<z< 57901(37) <y< 902($)}a

pa(z)

y=p1(z) f(z,y). Similarly, if

then one iterated integral takes the form f;:a
K= {(xay) re<y< dael(y) <z < 02(3/)}’

then the other iterated integral is fydzc f;fi(oyl)(y) f(z,y). (See figure 6.24.)
The interchangeability of the order of integration leads to a fiendish class
of iterated integral problems where one switches order to get a workable inte-

grand. For example, the iterated integral

2 1 )
y=0 Jz=y/2

looks daunting because the integrand e~ has no convenient antiderivative,
but after exchanging the order of the integrations and then carrying out a
change of variable, it becomes

1 2z ) 1 ) 1
/ / e ¥ = / 2re ¥ = / e v=1—¢1
z=0 J y=0 z=0 u=0
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= pa(z)
m %x h
=61(y)
y = pi(x) : Y

Figure 6.24. Setting up nonrectangular double integrals

Interchanging the order of integration can be tricky in such cases; often one
has to break K up into several pieces first, e.g.,

2 2 1 2 2 2
Lol Lt L
z=1Jy=1/z y=1/2 Jz=1/y y=1Jz=1

A carefully labeled diagram facilitates this process. For example, figure 6.25
shows the sketch that arises from the integral on the left side, and then the
resulting sketch that leads to the sum of two integrals on the right side.

y y
-2
y 5
rz=1
T =2
11
y=1/z 121 e=1jy =
+ T T
1 2

Figure 6.25. Sketches for iterated integrals

Interchanging the outer two integrals in a triply iterated integral is no dif-
ferent from the double case, but interchanging the inner two is tricky because
of the constant-but-unknown value taken by the outer variable. Sketching a
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generic two-dimensional cross-section usually makes the substitutions clear.
For example, consider the iterated integral

/wl:o /y: /:y ' (6.9)

(The function being integrated is irrelevant to this discussion of how to ex-
change the order of integration, so it is omitted from the notation.) Exchanging
the outer two integrals is carried out via the first diagram in figure 6.26. The
diagram leads to the iterated integral

1 Yy z2
Jradewloy

On the other hand, to exchange the inner integrals of (6.9), think of z as fixed
but generic between 0 and 1 and consider the second diagram in figure 6.26.
This diagram shows that (6.9) is also the iterated integral

1 z? z
/ / / . (6.10)
z=0 Jz=23 Jy=23

Figure 6.26. Sketches for a triply-iterated integral

Switching the outermost and innermost integrals of (6.9) while leaving the
middle one in place requires three successive switches of adjacent integrals.
For instance, switching the inner integrals as we just did and then doing an
outer exchange on (6.10) virtually identical to the outer exchange of a moment
earlier (substitute z for y in the first diagram of figure 6.26) shows that (6.9)
is also
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1 ¥z z
L:O /zz\/z /y=m3 '

Finally, the first diagram of figure 6.27 shows how to exchange the inner
integrals once more. The result is

1 z &y
L:O /y=z3/2 /z—\/; ‘

The second diagram of figure 6.27 shows the three-dimensional figure that our
iterated integral has traversed in various fashions. It is satisfying to see how
this picture is compatible with the cross-sectional sketches, and to determine
which axis is which. However, the three-dimensional figure is unnecessary
for exchanging the order of integration. The author of these notes finds using
two-dimensional cross-sections easier and more reliable than trying to envision
an entire volume at once. Also, the two-dimensional cross-section technique
will work in an n-fold iterated integral for any n > 3, even when the whole
situation is hopelessly beyond visualizing.

3
y=x
23/2 V(EZ\S/:U
- 1

Figure 6.27. Another cross-section and the three-dimensional region

The unit simplex in R? is the set
S={(z,9,2):2>0,y>0,2>0,z+y+2<1}
(see figure 6.28). Its centroid is (T,7,z), where

Js® 7= Jsy 5= Js?
vol(S)’ vol(S)’ vol(S)”

T =

Fubini’s Theorem lets us treat the integrals as iterated, giving
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I
e
Il =
[e=]

vl

8

~

—_

|

8

SN—r
V]

Il
i
=

where the routine one-variable calculations are not shown in detail. Similarly,
vol(S) = [ 1 works out to 1/6, so T = 1/4. By symmetry, § = Z = 1/4 also.
See the exercises for an n-dimensional generalization of this result.

Figure 6.28. Unit simplex

To find the volume between the two paraboloids z = 8 — 22 — y? and
2z = x2 + 3y?, first set 8 — 22 — y2 = 22 + 3y? to find that the graphs intersect
over the ellipse {(z,y) : (2/2)? + (y/v/2)? = 1}. (See figure 6.29.) By Fubini’s
Theorem the volume is

4— Zy 8—z2 fyZ
/ / / 1 = 78v/2
4— 2y z=x2+43y2

where again the one-dimensional calculations are omitted.

Another example is to find the volume of the region K common to the
cylinders 22 + y? = 1 and 22 + 22 = 1. For each z-value between —1 and 1,
y and z vary independently between —/1 — 22 and /1 — z2. That is, the
intersection of the two cylinders is a union of squares, bounded by two tilted
circles. (See figure 6.30.) By the methods of this section, the integral has the
same value as the iterated integral, which is

Vi—z? Vi—z2 1
1
/ / / 1:4/ (1—1’2):—6.
=1 =—V1—22 Jz=—+/1—22 r=—1 3

Finally, we end the section with a more theoretical example.
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Figure 6.29. Volume between two graphs

4

q
Figure 6.30. Volume common to two cylinders

Proposition 6.6.2 (Differentiation under the Integral Sign). Consider

a function
f:]a,b] x [e,d] — R.

Suppose that f and D1 f are continuous. Also consider the cross-sectional

integral function,

d
g lab] —R, (o) = / f(@y).

Then g is differentiable, and g'(x) = f::c D, f(z,y). That is,
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d [* 49
&) tev=] giwo

Proof. Compute for any = € [a, b], using the Fundamental Theorem of Integral
Calculus (Theorem 6.4.2) for the second equality and then Fubini’s Theorem
for the fourth,

d
o(z) = / f(@y)

=cC

-/ i ([ pistn+sew)
d

d z
_ / Dif(t,y) + C where C =/ f(a,y)
y y

= t=a =cC
T d
=/ / Dy f(t,y) +C.
t=a Jy=c

It follows from Theorem 6.4.1 that the derivative equals the integrand evalu-
ated at z,

d
s@= [ Difte).
Yy=c
as desired. O

See exercise 6.6.10 for another example in this spirit.

Exercises

6.6.1. Let S be the set of points (z,y) € R? between the z-axis and the
sine curve as ¢ varies between 0 and 27. Since the sine curve has two arches
between 0 and 27, and since the area of an arch of sine is 2,

/1:4

S
27 sin x 27

/ / 1= / sinz = 0.
z=0 Jy=0 z=0

Why doesn’t this contradict Fubini’s Theorem?

On the other hand,

6.6.2. Exchange the order of integration in f;:a fyw:a f(z,v).

6.6.3. Exchange the inner order of integration in f;:O ;;Om f;joy f
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2 2
6.6.4. Exchange the inner order of integration in lezo y1:0 ;:; Y f. Sketch
the region of integration.

6.6.5. Evaluate [, f from in parts (a), (b), (c), (f) of exercise 6.5.9.

6.6.6. Find the volume of the region K in the first octant bounded by z = 0,
2=0,z=yy, and z = 4 — y2. Sketch K.

6.6.7. Evaluate [, (14 2 +y + 2)~® where K is the unit simplex.

6.6.8. Find the volume of the region K bounded by the coordinate planes,
z+y=1,and 2z = 2% + y?. Sketch K.

6.6.9. Find the volume of the region K between z = z2 + 9y? and 2z =
18 — 2 — 9y?. Sketch K.

6.6.10. Let f : R? — R have continuous mixed second order partial deriva-
tives, i.e., let D15 f and Do, f exist and be continuous. Rederive the familiar
fact that Dyaf = Doy f as follows. If D12 f(p, ) — D21 f(p, g) > 0 at some point
(p,q) then Diaf — Doy f > 0 on some rectangle B = [a,b] X [¢, d] containing
(p,4), so [g(Diaf — Da1f) > 0. Obtain a contradiction by evaluating this
integral.

6.6.11. Let K and L be compact subsets of R™ with boundaries of volume
zero. Suppose that for each z; € R, the cross sectional sets

Ky, ={(z2,--.,2p) : (z1,22,...,2,) € K}
Ly, = {(m2,...,7p) : (z1,72,...,2T,) € L}

have equal (n — 1)-dimensional volumes. Show that K and L have the same
volume. Ilustrate for n = 2.

6.6.12. Let o be a positive real, and let f : [0,29] — R be continuous.
Show that

/::0 /::0 /::_01 f(@n) = ﬁ /t:)(xo — )" £ ().

(Use induction. The base case n = 1 is easy, then the induction hypothesis
applies to the inner (n — 1)-fold integral.)

6.6.13. Let n € Z* and r € R>¢. The n-dimensional simplex of side r is
Sp(r) ={(x1,...,2n) :0< 21, ..., 0< Ty, 1 +-- -+ 2, <7}

(a) Make sketches for n = 2 and n = 3 showing that S, (r) is a union of
cross-sectional (n — 1)-dimensional simplices of side r — x,, at height z,, as z,,
varies from 0 to r. Prove this symbolically for general n > 1. That is, prove
that
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Sp(r) = {Sn—1(r —z,) x {z,} : 0 <z, <7}

(b) Prove that vol(Si(r)) = r. Use part (a) and Fubini’s Theorem to prove
that

vol(S,(r)) = /T vol(Sp—1(r — z,)) forn > 1,

2=0
and show by induction that vol(S,(r)) = r™/nl.

- " (r—ap)"!
(c) Use Fubini’s Theorem to show that / T = / Tn—— -
Sn(r) z,=0 (n - 1)'

Work this integral by parts to get fSn (r) Tn = "t/ (n + 1)\

(d) The centroid of S,(r) is (T1, .. .,Tn), Where Tj = [ z; /vol(Sn(r))
for each j. What are these coordinates explicitly? (Make sure your answer
agrees with the case in the text.)

6.7 Change of Variable

Any point p € R? with cartesian coordinates (x,y) is also specified by its
polar coordinates (r,8), where r is the distance from the origin to p and 6
is the angle from the positive z-axis to p. (See figure 6.31.)

Figure 6.31. Polar coordinates

The angle € is defined only up to multiples of 27, and it isn’t defined at
all when p = (0,0). Trigonometry expresses (z,y) in terms of (r,6),

x =rcosb, y =rsinb. (6.11)
But expressing (r,8) in terms of (z,y) is a little more subtle. Certainly
r =12+ y2.

Also, tanf = y/x provided that x # 0, but this doesn’t mean that § =
arctan(y/z). Indeed, arctan isn’t even a well-defined function until its range
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is specified, e.g., as (—n/2,7/2). With this particular restriction, the actual
formula for 6, even given that not both = and y are 0, is not arctan(y/z), but

arctan(y/z) if x > 0 and y > 0 (this lies in [0,7/2)),
/2 ifz=0and y >0,

0 = S arctan(y/z) + 7 if < 0 (this lies in (7/2,37/2)),
3r/2 ifr=0and y <0,

arctan(y/z) + 27 if £ > 0 and y < 0 (this lies in (37/2, 27)).

The formula is unwieldy, to say the least. (The author probably would not
read through the whole thing if he were instead a reader. In any case, see
figure 6.32.) A better approach is that given (z,y), the polar radius r is the
unique nonnegative number such that

2 2 2
=z +y°,

and then, if » # 0, the polar angle 6 is the unique number in [0, 27) such
that (6.11) holds. But still, going from polar coordinates (r,8) to cartesian
coordinates (z,y) asin (6.11) is considerably more convenient than conversely.
This is good since, as we will see, doing so is also more natural.

Figure 6.32. The angle 0 between 0 and 27

The change of variable mapping from polar to cartesian coordinates is
@ : Rx>g x [0,27] — R?, &(r,0) = (rcos@,rsinb).

The mapping is injective except that the half-lines R>¢ x {0} and R x {27}
both map to the nonnegative z-axis, and the vertical segment {0} x [0, 27] is
squashed to the point (0,0). Each horizontal half-line R x {#} maps to the
ray of angle § with the positive z-axis, and each vertical segment {r} x [0, 27]
maps to the circle of radius r. (See figure 6.33.)



6.7 Change of Variable 267

r b o]

Figure 6.33. The polar coordinate mapping

It follows that regions in the (z,y)-plane defined by radial or angular con-
straints are images under & of (r, #)-regions defined by rectangular constraints.
For example, the cartesian disk

Dy ={(z,y) : 2> +y* <V}
is the @-image of the polar rectangle
Ry={(r,0):0<r<b,0<6<2n}.
(See figure 6.34.) Similarly the cartesian annulus and quarter disk,
Agp ={(z,y) : a* < 2% + 9 <b*},
Qv ={(z,9) :2 >0,y >0, 2" +* < b},

are the images of rectangles. (See figures 6.35 and 6.36.)

2

an .
: @

Figure 6.34. Rectangle to disk under the polar coordinate mapping

Tterated integrals over rectangles are especially convenient to evaluate, be-
cause the limits of integration for the two one-variable integrals are constants
rather than variables that interact. For example,

/b /27r /271' /b
r=a J6=0 0=0 Jr=a
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2

Figure 6.35. Rectangle to annulus under the polar coordinate mapping

/4 b

Figure 6.36. Rectangle to quarter disk under the polar coordinate mapping

These tidy (r,6) limits describe the (z,y) annulus A4, ; indirectly via &, while
the more direct approach of an (z,y)-iterated integral over A, j requires four

messy pieces,

—a Vb2 —z2 a —va%—z2 Vb2—z2 b Vb2—z2

PR AN AR AR R A A

=—b /z— b2 —g?2 z=—a y=—+/b2—x2 y=va%—z2 z=a Jy=—b2—z2
Thus, since Fubini’s Theorem equates integrals over two-dimensional regions
to twofold iterated integrals, it would be a real convenience to reduce integrat-
ing over the (z,y)-annulus to integrating over the (r,§) rectangle that maps
to it under . The Change of Variable Theorem will do so. This is the sense
in which it is natural to map from polar to cartesian coordinates rather than
in the other direction.

The Change of Variable Theorem says in some generality how to transform
an integral from one coordinate system to another. Recall that given a set
A C R™ and a differentiable mapping ¢ : A — R™, the n-by-n matrix of
partial derivatives of @ is denoted @',

' = [D;P]; j=1..n-

A differentiable mapping whose partial derivatives are all continuous is called
a C'-mapping. Also, for any set K C R", an interior point of K is a point
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of K that is not a boundary point, and the interior of K is the set of all such
points,
K° = {interior points of S}.

We will discuss boundary points and interior points more carefully in the next
section. In the specific sorts of examples that arise in calculus, they are easy
enough to recognize.

Theorem 6.7.1 (Change of Variable Theorem for Multiple Inte-
grals). Let K C R"™ be a compact and connected set having boundary of
volume zero. Let A be an open superset of K, and let

$:A— R"
be a Ct-mapping such that
& is injective on K° and det® #0 on K°.

Let
f:®9(K)— R

be a continuous function. Then

/p(mf:/K(foqﬁ)-|det¢’|.

This section will end with a heuristic argument to support Theorem 6.7.1,
and then section 6.9 will prove the theorem after some preliminaries in sec-
tion 6.8. In particular, section 6.8 will explain why the left side integral in
the theorem exists. (The right side integral exists because the integrand is
continuous on K, which is compact and has boundary of volume zero, but the
fact that @#(K) is nice enough for the left side integral to exist requires some
discussion.) From now to the end of this section, the focus is on how the the-
orem is used. Generally, the idea is to carry out substitutions of the sort that
were called inverse substitutions in the one-variable discussion of section 6.4.
That is, to apply the theorem to an integral |, p [, find a suitable set K and
mapping & such that D = #(K) and the integral [,.(f o &) - |det &'| is easier
to evaluate instead. The new integral most likely will be easier because K has
a nicer shape than D (this wasn’t an issue in the one-variable case), but also
possibly because the new integrand is more convenient.

For example, to integrate the function f(z,y) = 22 + y? over the annulus
A,.p, recall the polar coordinate mapping #(r,6) = (r cosf,r sinf), and recall
that under this mapping, the annulus is the image of a box,

Agp = D([a,b] x [0, 27]).

The composition of the integrand with & is
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(f o ®)(r,0) =1,
and the polar coordinate has derivative matrix

& = cosf —rsinf
| sinf rcosf |’

with absolute determinant
|det &'| = r.

So by the Change of Variable Theorem, the desired integral is instead an
integral over a box in polar coordinate space,

o o
Aab [a,b] x[0,27]

By Fubini’s Theorem, the latter integral can be evaluated as an iterated in-

tegral,
2 b T
/ r3:/ / r3:—(b4—a4).
[a,b] xX[0,27] 0=0 Jr=a 2

Similarly, the quarter disk Q@ = #([0,b] x [0,7/2]) has centroid (Z,y) where

Joo _ Jilo fiorcos6or _ ¥/3 b

T j—

area(Q) b2 /4 T ob?2/4 T 31

T =

and 7 takes the same value by symmetry. Indeed 4/(3w) is somewhat less
than 1/2, in conformance with our physical intuition of the centroid of a
region as its balancing point.

The sharp-eyed reader has noticed that a subtle aspect of Theorem 6.7.1
was in play for this example. Although the polar change of coordinate map-
ping &(r,0) is defined on all of R?, it fails to be injective on all of the box
K = [a,b] x [0, 27]: the 27-periodic behavior of ¢ as a function of § maps the
top and bottom edges of the box to the same segment of the z-axis. Further-
more, if the annulus has inner radius a = 0, i.e., if the annulus is a disk, then
& not only collapses the left edge of the box to the origin in the (x,y)-plane,
but also det &' = 0 on the left edge of the box. Thus we need the theorem’s
hypotheses that ¢ need be injective only on the interior of K, and that the
condition det ' # 0 need hold only on the interior of K.

Just as polar coordinates are convenient for radial symmetry in R?, cylin-
drical coordinates in R? conveniently describe regions with symmetry about
the z-axis. A point p € R? with cartesian coordinates (z,y, z) has cylindrical
coordinates (r, 6, z) where (r,8) are the polar coordinates for the point (x,y).
(See figure 6.37.)

The cylindrical change of variable mapping is thus

®:Rxo x [0,27] x R — R?
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z
9 @
_—
T
Figure 6.37. Cylindrical coordinates
given by

&(r,0,2) = (rcosb,rsinb, z).

This is just the polar coordinate mapping on 2z cross-sections, so like the polar
map, it is mostly injective. Its derivative matrix is

cos@ —rsinf 0
¢ = |sinf rcosf 0],
0 0 1

and again

|det &'| = r.
So, for example, to integrate f(z,y,2) = y?z over the cylinder C : 2?43 < 1,
0 < z < 2, note that C' = &([0, 1] x [0, 27] %[0, 2]), and therefore by the Change
of Variable Theorem and then Fubini’s Theorem,

2 1 g2 2 A
/f:/ / / rzsin2€-z-r:/ sin? @ - —
C 6=0 Jr=0 J2=0 =0 4

From now on, Fubini’s Theorem no longer necessarily warrants comment.

For another example, we evaluate the integral [ /22 + y? where S is the
region bounded by 22 = z2+y2, 2 = 0, and z = 1. (This looks like an ice cream
cone with the ice cream licked down flat.) The Change of Variable Theorem
transforms the integral into (r,8, z)-coordinates,

1 2w 1
/x/a:2+y2=/ r2/ / 1=1,
S =0 0=0 J z=r 6

Spherical coordinates in R? are designed to exploit symmetry about
the origin. A point p = (z,y, z) € R? has spherical coordinates (p, 8, ¢) where

1
™

52
2 2’

2
2=0

=0
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the spherical radius p is the distance from the origin to p, the longitude
is the angle from the positive z-axis to the (z,y)-projection of p, and the
colatitude ¢ is the angle from the positive z-axis to p. By some geometry, the
spherical coordinate mapping is

®: R>o x [0,27] x [0,7] — R®

given by
®(p,0,p) = (pcosfsin g, psinfsin g, p cos p).

This has derivative matrix

cosfsinp —psinfsiny pcosf cosy
@' = |sinfsingp pcosfsing psinfcosy | ,
cos ¢ 0 —psing

with determinant det ®' = —p? sin ¢, so that since 0 < ¢ < T,
|det &'| = p?sin .

That is, the spherical coordinate mapping reverses orientation. It can be re-
defined to preserve orientation by changing ¢ to the latitude angle, varying
from —7/2 to 7/2, rather than the colatitude.

Figure 6.38 shows the image under the spherical coordinate mapping of
some (0, p)-rectangles, each having a fixed value of p, and similarly for fig-
ure 6.39 for some fixed values of 6, and figure 6.40 for some fixed values of ¢.
Thus the spherical coordinate mapping takes boxes to regions with these sorts
of walls, such as the half ice cream cone with a bite taken out of its bottom
in figure 6.41.

For an example of the Change of Variable Theorem using spherical coor-
dinates, the solid ball of radius r in R3 is

Bs(r) = &([0,r] x [0,2x] x [0, 7]),

and therefore its volume is

2 r T
1 4
vol(Bs(r)) = / 1= / / / p2 sing = 27 - grg -2 = §7r7‘3.
Bs(r) =0 J p=0 J =0

It follows that the cylindrical shell B3(b) — Bs(a) has volume 47 (b3 — a®)/3.
See exercises 6.7.12 through 6.7.14 for the lovely formula giving the volume
of the n-ball for arbitrary n.

The Change of Variable Theorem and spherical coordinates work together
to integrate over the solid ellipsoid of (positive) axes a, b, ¢,

Bope = {(x,9,2) : (x/a) + (y/b)* + (2/c)* < 1}.

For example, to compute the integral
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Figure 6.38. Spherical coordinates for some fixed spherical radii

z
Y
% e
x
p
Figure 6.39. Spherical coordinates for some fixed longitudes

/ (Az® + By? + C2%),
E

a,b,c

first define a change of variable mapping that stretches the unit sphere into
the ellipsoid,

@ : B3(1) — E,p.c, &(u,v,w) = (au, bv, cw).

Thus
a0

¢ =10b0], | det '| = abc.
00¢c
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x
p
Figure 6.40. Spherical coordinates for some fixed colatitudes
z
Y
% e
T

Figure 6.41. The spherical coordinate mapping on a box

Let f(z,y,2z) = C2%. Then since E,p. = ®(Bs3(1)) and (f o &)(u,v,w) =
Ccw?, part of the integral is

/ f:/ (fo®)-|detd'| = abc’C w?.
&(Bs(1)) Bs(1) Bs(1)

Apply the Change of Variable Theorem again, this time using the spherical
coordinate mapping into (u, v, w)-space,

1 2 ™
4
abc®*C w? = abc3C’/ / / pZcos? - p’sing = 2T abe3 0.
Bs(1) p=0 J6=0 =0 15
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By the symmetry of the symbols in the original integral, its overall value is
therefore

4
/ (Az® + By? + C2?%) = %abc(cﬁA + B+ 20).
Ea.,b,c

Another example is to find the centroid of upper hemispherical shell
S = (Bs(b) — Bs(a)) N {z > 0}.

By symmetry, T =7 = 0. As for Z, compute using spherical coordinates that

b 27 pm/2 T
/z:/ / / peosyp - pPsingp = —(b* — a*).
S p=a J6=0 =0 4

This needs to be divided by the volume 27(b® — a®)/3 of S to give

3(b* —a?)
8(b® —ad)’

Z =

In particular, the centroid of the solid hemisphere is 3/8 of the way up. It
is perhaps surprising that 7 does not figure in this formula, as it did in the
two-dimensional case.

Here is a heuristic argument to support the Change of Variable Theorem.
Suppose that K is a box. Recall the assertion: under certain conditions,

/@(K)fz/K(fodS)-|detd5'|.

Take a partition P dividing K into subboxes J, and in each subbox choose a
point z ;. If the partition is fine enough, then each J maps under & to a small
patch A of volume vol(A) ~ | det &'(zs)|vol(J) (cf. section 3.8), and each z;
maps to a point y4 € A. (See figure 6.42.) Since the integral is a limit of
weighted sums,

Lot = 5 faayvoa
~ Z [(®(zy))| det &' (z5)|vol(J)
J

x/ (fod)-|detd'|,
K

and these should become equalities in the limit as P becomes finer. What
makes this reasoning incomplete is that the patches A are not boxes, as are
required for our theory of integration.

Recall from sections 3.8 and 3.9 that the absolute value of det &'(z) de-
scribes how the mapping & scales volume at x, while the sign of det ¢'(x)
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Figure 6.42. Change of variable

says whether the mapping locally preserves or reverses orientation. The fac-
tor |det ®'| in the n-dimensional Change of Variable Theorem (rather than
the signed det ®') reflects the fact that n-dimensional integration does not
take orientation into account. This is less satisfying than the one-variable
theory, which does consider orientation and therefore comes with a signed

change of variable theorem, f(f(g))) f= f:( fod)-¢'. An orientation-sensitive

n-dimensional integration theory will be developed in chapter 8.
Exercises

6.7.1. Evaluate [¢2? 4+ y* where S is the region bounded by z? + y* = 22
and z = 2. Sketch S.

6.7.2. Find the volume of the region S between z2+y? = 4z and 2 +y>+2% =
5. Sketch S.

6.7.3. Find the volume of the region between the graphs of z = z? + 32 and
z=(z*+y*+1)/2.

6.7.4. Derive the spherical coordinate mapping.
6.7.5. Let & be the spherical coordinate mapping. Describe #(K) where
K ={(p,0,):0<8<2m,0<p<7/2,0< p<cosp}.
Same question for
K={(p,0,9):0<6<2m,0<p <, 0< p<sing}.

6.7.6. Evaluate [4 xyz where S is the first octant of Bs(1).
6.7.7. Find the mass of a solid figure filling the spherical shell

S = Bs(b) — Bs(a)

with density d(z,vy,2) = 2 + y? + 2°.
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6.7.8. A solid sphere of radius r has density d(z,y,2) = e~ (@ +y*+2%)*? ping
its mass, [p, 9.

6.7.9. Find the centroid of the region S = Bs(a) N {z? + y? < 22} N {z > 0}.
Sketch S.

6.7.10. Prove the change of scale principle: If the set X C R™ has volume
v then for any r > 0, the set rK = {rz : x € K} has volume r"v. (Change
variables by &(z) = rz.)

6.7.11. (a) Prove Pappas’s Theorem: Let K be a compact set in the (z, z)-
plane lying to the right of the z-axis and with boundary of area zero. Let S
be the solid obtained by rotating K about the z-axis in R®. Then

vol(S) = 27T - area(K),

where as always, T = [, x/area(K). (Use cylindrical coordinates.)
(b) What is the volume of the torus T, of cross-sectional radius a and
major radius b? (See figure 6.43.)

Figure 6.43. Torus

6.7.12. (Volume of the n-ball, first version.) Let n € Z* and r € R>o. The
n-dimensional ball of radius r is

Bu(r)={z:z e R" |z| <r} ={(®1,...,%p) 1 2] +--- + 22 < 7?}.

Let
vy, = vol(B,(1)).

(a) Explain how exercise 6.7.10 reduces computing the volume of B,(r) to
computing vy,.

(b) Explain why v1 = 2 and v2 = 7.

(c) Let D denote the unit disk By (1). Prove that for n > 2,

Bn(1) = {(z1,72) X Bp—2(1/1 — 22 — 22) : (z1,72) € D}.
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That is, the unit n-ball is a union of cross-sectional (n — 2)-dimensional balls
of radius \/1 — 23 — z3 as (21, z2) varies through the unit disk. Make a sketch
for n = 3, the only value of n for which we can see this.

(d) Explain why for n > 2,

2 2\ %2 -1
'Un:'Un—2/ (]-_‘7:1_'732)2
(z1,z2)ED

2w 1
:’Un72/ / (1-r?)s 1.y
6=0 Jr=0

= vp_om/(n/2).

(Use the definition of volume at the end of section 6.5, Fubini’s Theorem, the
definition of volume again, the change of scale principle from the previous
exercise, and the Change of Variable Theorem.)

(e) Show by induction only the for n even case of the formula

7.‘.n/2

n/2)!
7(T(’/L_)1)/22"((n —1)/2)!

n!

for n even,
Up =
for n odd.

(The for n odd case can be shown by induction as well, but the next two
exercses provide a better, more conceptual approach to the volumes of odd-
dimensional balls.)

6.7.13. This exercise computes the “improper” integral I = f;io e‘wg, de-
fined as the limit limp_ oo wa:O e~ Let I(R) = wazo e~ for any R > 0.
(a) Use Fubini’s Theorem to show that I(R)? = fS(R) e=2"=v* where S(R)
is the square
S(R)={(z,9):0<z<R,0<y< R}

(b) Let Q(R) be the quarter disk
QR) ={(z,y):0< 2,0 <y, 2” +y* < R*},

and similarly for Q(v/2 R). Explain why

/ e_z2_y2 S/ e_w2_y2 S/ e_wz_yz.
Q(R) S(R) Q(V2R)
2

(c) Change variables, and evaluate fQ(R) e~ =¥" and fQ(ﬁR) e~V
What are the limits of these two quantities as R — oo?
(d) What is I?

6.7.14. (Volume of the n-ball, improved version) Define the gamma function
as an integral,
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oo
I'(s)= / ¥ re ™ %dx, s> 0.
=0
(This “improper” integral is well-behaved, even though it is not being carried
out over a bounded region and even though the integrand is unbounded near
z=0when 0 <s<1)
(a) Show: I'(1) =1, I'(1/2) = \/m, ['(s + 1) = sI'(s). (Substitute and see
the previous exercise for the second identity, integrate by parts for the third.)
(b) Use part (a) to show that n! = I'(n+1) forn = 0,1,2,---. Accordingly,
define z! = I'(x+1) for all real numbers z > —1, not only nonnegative integers.
(c) Use exercise 6.7.12(b), exercise 6.7.12(d), and the extended definition
of the factorial ing part (b) of this exercise to to obtain a uniform formula for
the volume of the unit n-ball,
7.[.n/2
Up = n/2)" n=123,---.
(We already have this formula for n even. For n odd, the argument is essen-
tially identical to exercise 6.7.12(d) but starting at the base case n = 1.) Thus
the n-ball of radius r has volume
n/2

T o n=1,2,3,-.

vol(B,(r)) = W r",

6.8 Topological Preliminaries for the Change of Variable
Theorem

In preparation for proving the Change of Variable Theorem (Theorem 6.7.1),
we review its statement. The statement includes the terms boundary and in-
terior, which we have considered only informally so far, but we soon will
discuss them more carefully. The statement also includes the term open, and
the reader is reminded that a set is called open if its complement is closed;
we soon will review the definition of a closed set. The statement includes the
term C'-mapping, meaning a mapping such that all partial derivatives of all of
its component functions exist and are continuous. And the statement includes
the notation K° for the interior of a set K. The theorem says:

Let K C R™ be a compact and connected set having boundary of vol-
ume zero. Let A be an open superset of K, and let

$:A— R"
be a C'-mapping such that
& is injective on K° and det® #0 on K°.

Let
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f:®9(K)—R

be a continuous function. Then

L(K)f:/I((foﬁ)-|det¢'|.

Thus the obvious data for the theorem are K, ¢, and f. (The description of &
subsumes A, and in any case the role of A is auxiliary.) But also, although the
dimension n is conceptually generic-but-fixed, in fact the proof of the theorem
will entail induction on n, so that we should view n as a variable part of the
setup as well. Here are some comments about the data.

e The continuous image of a compact set is compact (Theorem 2.4.14), so
that ¢(K) is again compact. Similarly, by an invocation in section 2.4,
the continuous image of a connected set is connected, so that &(K) is
again connected. The reader who wants to minimize invocation may in-
stead assume that that K is path-connected, so that $(K) is again path-
connected (see exercise 2.4.9 for the definition of path-connectedness and
the fact that path-connectedness is a topological property); the distinction
between connectedness and path-connectedness is immaterial for any ex-
ample that will arise in calculus. We soon will see that also the image $(K)
again has boundary of volume zero, so that in fact #(K) inherits all of the
assumed properties of K.

e Thus both integrals in the Change of Variable Theorem exist, because in
each case the integrand is continuous on the domain of integration and the
domain of integration is compact and has boundary of volume zero.

e The hypotheses of the theorem can be weakened or strengthened in vari-
ous ways with no effect on the outcome. Indeed, the proof of the theorem
proceeds partly by strengthening the hypotheses. The hypotheses in The-
orem 6.7.1 were chosen to make the theorem fit the applications that arise
in calculus. Especially, parameterizations by polar, cylindrical, or spherical
coordinates often degenerate on the boundary of the parameter-box, hence
the conditions that @ is injective and det &' # 0 being required only on the
interior K°. On the other hand, while the hypotheses about & are weaker
than necessary in order to make the theorem easier to use, the hypothesis
that f is continuous is stronger than necessary in order to make the the-
orem easier to prove. The theorem continues to hold if f is assumed only
to be integrable, but then the proof is more work. In calculus examples, f
is virtually always continuous.

This section places a few more topological ideas into play to set up the
proof of the Change of Variable Theorem in the next section. The symbols K,
A, &, and f denoting the set, the open superset, the change of variable, and the
function in the theorem will retain their meanings throughout the discussion.
Symbols such as S will denote other sets, symbols such as ¥ will denote other
transformations, and symbols such as g will denote other functions.
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Recall some topological ideas that we have already discussed.

e For any point a € R™ and any positive real number r > 0, the open ball
centered at a of radius r is the set

Ba,r)={ze€R": |z —a| <r}.

e A point a € R" is called a limit point of a set S € R™ if every open ball
centered at a contains some point z € S such that z # a. The subset A
of R™ is called closed if it contains all of its limit points.

Definition 6.8.1. Let S be a subset of R™. Its closure S is the smallest
closed superset of S.

Here smallest is taken in the sense of set-containment. The intersection
of closed sets is closed (exercise 6.8.1(a)), and so S is the intersection of all
closed supersets of S, including R™. This shows that S exists and is unique.
The special-case definition

B(a,r)={ze€R": |z —a| <r}

from section 5.1 is consistent with Definition 6.8.1.
Closed sets can also be described in terms of boundary points rather than
limit points.

Definition 6.8.2. Let S be a subset of R™. A point p € R" is called a bound-
ary point of S if for every r > 0 the open ball B(p,r) contains a point from S
and a point from the complement S¢. The boundary of S, denoted 3S, is the
set of boundary points of S.

A boundary point of a set need not be a limit point of the set, and a limit
point of a set need not be a boundary point of the set (exercise 6.8.1(b)).
Nonetheless, similarly to the definition of closed set in the second bullet be-
fore Definition 6.8.1, a set is closed if and only if it contains all of its boundary
points (exercise 6.8.1(c)). The boundary of any set is closed (exercise 6.8.1(d)).
Since the definition of boundary point is symmetric in the set and its comple-
ment, the boundary of the set is also the boundary of the complement,

s = 9(S°).

In general, the closure of a set is the union of the set and its boundary (exer-
cise 6.8.2(a)), B
S=SuUdS.

If S is bounded then so is its closure S (exercise 6.8.2(b)), and therefore the
closure of a bounded set is compact. The special-case definition

0B(a,r) ={z €R": |z —a| =71}

from section 6.1 is consistent with Definition 6.8.2.
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Definition 6.8.3. An open box in R™ is a set of the form
J = (a1,b1) X (az,b2) X -+ X (an,by)-

The word box, unmodified, continues to mean a closed box.

Proposition 6.8.4 (Finiteness Property of Compact Sets). Consider a
compact set K C R™. Suppose that some collection of open boxes J; covers K.
Then a finite collection of the open bozes J; covers K.

Proof (Sketch). Suppose that no finite collection of the open boxes J; cov-
ers K. Let B; be a box that contains K. Partition B, into 2" subboxes B by
bisecting it in each direction. If for each subbox B, some finite collection of
the open boxes J; covers K N B, then the 2"-fold collection of these finite col-
lections in fact covers all of K. Thus no finite collection of the open boxes J;
covers K N B for at least one subbox B of B;. Name some such subbox B,
repeat the argument with B, in place of B;, and continue in this fashion,
obtaining nested boxes
By DB;DB3D---

whose sides are half as long at each succeeding generation, and such that no
K N B; is covered by a finite collection of the open boxes J;. The intersection
By N By N--- contains at most one point because the boxes B; eventually
shrink smaller than the distance between any two given distinct points. On
the other hand, since each B; is compact and the B; are nested, the sequence
{c;} of the centerpoints of the B, has a subsequence that converges in each B;
and hence converges in the intersection. Thus the intersection is nonempty,
consisting of a single point c. Some open box J; covers ¢, and so it covers B;
for all high enough indices j, and thus in fact it covers K N B; for all high
enough indices j. This is a contradiction, making the initial supposition that
no finite collection of the open boxes J; covers K untenable. O

The following lemma is similar to the Difference Magnification Lemma
(Lemma 5.1.3).

Lemma 6.8.5 (Box-Volume Magnification Lemma). Let B be a box
in R™ whose longest side is at most twice its shortest side. Let g be a dif-
ferentiable mapping from an open superset of B in R™ back to R™. Suppose
that there is a number c such that |D;g;(z)| < c for alli,j € {1,--- ,n} and
all x € B. Then g(B) sits in a box B' such that vol(B') < (2nc)™vol(B).

Proof. Let x be the centerpoint of B and let # be any point of B. Make the
line segment connecting z to Z the image of a function of one variable,

v:[0,1] — R", v(t) = z + t(Z — ).

Fix any i € {1,--- ,n}. Identically to the proof of the Difference Magnification
Lemma, we have for some ¢ € (0,1),
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9i(&) — gi(x) = (gi((1)), & — x).

For each j, the jth entry of the vector g;(y(t)) is D;g;(v(t)), and we are
given that |D;g;(v(t))] < c. Also, the jth entry of the vector & — x satisfies
|Z; — ;| < £/2 where £ is the longest side of B. Thus

|9:(%) — gi(z)| < nel/2,

and so
9i(B) C [gi(z) — nes/2, gi(x) + nel/2)].

Apply this argument for each i € {1,---,n} to show that g(B) lies in the
box B’ centered at g(x) having sides ncf and therefore having volume

vol(B') = (nct)".
On the other hand, since the shortest side of B is at least ¢/2,
vol(B) > (£/2)".
The result follows. O

Using the previous two results, we can show that the property of having
volume zero is preserved under mappings that are well enough behaved. How-
ever, we need to assume more than just continuity. Having volume zero is not
a topological property.

Proposition 6.8.6 (Volume Zero Preservation Under C!-Mappings).
Let S C R™ be a compact set having volume zero. Let A be an open superset
of S, and let

$:A—R"

be a Ct-mapping. Then ®(S) again has volume zero.

Proof. For each s € S there exists an rs > 0 such that the copy of the
box [—rs,rs|™ centered at s lies in A (exercise 6.8.5(a)). Let J; denote the cor-
responding open box, i.e., a copy of (—,, 7)™ centered at s. By the Finiteness
Property of compact sets, a collection of finitely many of the open boxes J;
covers S, so certainly the corresponding collection U of the closed boxes does
so as well. As a finite union of compact sets, U is compact (exercise 6.8.1(f)).
Therefore the partial derivatives D;®; for 4,j = 1,--- ,n are uniformly con-
tinuous on U, and so some constant ¢ bounds all D;®; on U.

Let € > 0 be given. Cover S by finitely many boxes B; having total volume
less than £/(2nc)™. After replacing each box by its intersections with the boxes
of U, we may assume that the boxes all lie in U. (Here it is relevant that the
intersection of two boxes is a box.) And after further subdividing the boxes if
necessary, we may assume that the longest side of each box is at most twice the
shortest side (exercise 6.8.6(b)). By the Box-Volume Magnification Lemma,
the #-images of the boxes lie in a union of boxes B] having volume
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Z vol(B]) < (2ne)" Z vol(B;) < e.
i i

O

The last topological preliminary that we need is the formal definition of
interior.

Definition 6.8.7 (Interior Point, Interior of a Set). Let S C R"™ be a
set. Any nonboundary point of S is an interior point of S. Thus x is an
interior point of S if some open ball B(z,r) lies entirely in S. The interior
of S is

S° = {interior points of S}.

The interior of any set S is open (exercise 6.8.6(a)). Any set decomposes
as the disjoint union of its interior and its boundary (exercise 6.8.6(b)),

S =5°U0S, S°nas =0.

As anticipated at the beginning of the section, we now can complete the
argument that the properties of the set K in the Change of Variable Theorem
are preserved by the mapping & in the theorem.

Proposition 6.8.8. Let K C R"™ be a compact and connected set having
boundary of volume zero. Let A be an open superset of K, and let  : A — R"™
be a C'-mapping such that det ' # 0 everywhere on K°. Then ®(K) is again
a compact and connected set having boundary of volume zero.

Proof. We have discussed the fact that #(K) is again compact and connected.
Restrict ¢ to K. The Inverse Function Theorem says that ¢ maps interior
points of K to interior points of #(K), and thus 9(P(K)) C $(0K). By the
Volume-Zero Preservation proposition vol($(0K)) = 0, and so vol(9($(K))) =
0 as well. O

Exercises

6.8.1. (a) Show that every intersection—mnot just twofold intersections and
not even just finite-fold intersections—of closed sets is closed. (Recall from
Proposition 2.4.5that a set S is closed if and only if every sequence in S that
converges in R™ in fact converges in S.)

(b) Show by example that a boundary point of a set need not be a limit
point of the set. Show by example that a limit point of a set need not be a
boundary point of the set.

(c) Show that a set is closed if and only if it contains each of its boundary
points. (Again recall the characterization of closed sets mentioned in part (a).)

(d) Show that the boundary of any set is closed.

(e) Show that every union of two closed sets is closed. It follows that any
union of finitely many closed sets is closed. Recall that by definition a set is
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open if its complement is closed. Explain why consequently every intersection
of finitely many open sets is open.
(f) Explain why any union of finitely many compact sets is compact.

6.8.2. Let S be any subset of R"™. B
(a) Show that its closure is its union with its boundary, S = SU 8S.
(b) Show that if S is bounded then so is S.

6.8.3. (a) Which points of the proof of Proposition 6.8.4 are sketchy? Fill in
the details.

(b) Let S be an unbounded subset of R™, meaning that S is not contained
in any ball. Find a collection of open boxes .J; that covers S but such that no
finite subcollection of the open boxes J; covers S.

(c) Let S be an bounded but non-closed subset of R™, meaning that S is
bounded but missing a limit point. Find a collection of open boxes J; that
covers S but such that no finite subcollection of the open boxes J; covers S.

6.8.4. Let ¢ > 0. Consider the box B = [0,1] x [0,e] C R?, and consider
the mapping g : R2 — R? given by g(z,y) = (x,z). What is the small-
est box B’ containing g(B)? What is the ratio vol(B')/vol(B)? Discuss the
relation between this example and Lemma, 6.8.5.

6.8.5. The following questions are about the proof of Proposition 6.8.6.

(a) Explain why for each s € S there exists an r; > 0 such that the copy
of the box [—rs,rs]™ centered at s lies in A.

(b) Explain why any box (with all sides assumed to be positive) can be
subdivided into boxes whose longest side is at most twice the shortest side.

6.8.6. Let S C R™ be any set.

(a) Show that the interior S° is open.

(b) Show that S decomposes as the disjoint union of its interior and its
boundary.

6.9 Proof of the Change of Variable Theorem

Again recall the statement of the Change of Variable Theorem:

Let K C R™ be a compact and connected set having boundary of vol-
ume zero. Let A be an open superset of K, and let & : A — R"™ be a
C-mapping such that & is injective on K° and det ®' # 0 on K°. Let
f:®(K) — R be a continuous function. Then

/P(K)f:/K(foqﬁ)-|det¢’|.

We begin chipping away at the theorem by strengthening its hypotheses.
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Proposition 6.9.1 (Optional Hypothesis-Strengthening). To prove the
Change of Variable Theorem, it suffices to prove the theorem subject to any
combination of the following additional hypotheses:

e K is a boz.
e & is injective on all of A,
e det® #0 on all of A.

Before proceeding to the proof of the proposition, it deserves comment
that we will not always want K to be a box. But once the proposition is
proved, we may take K to be a box or not as convenient.

Proof. Let € > 0 be given.
Let B be a box containing K, and let P be a partition of B into subboxes J.
Define three types of subbox,

type I : J such that J C K°,
type II : J such that JNOK # @ (and thus JNI(B\K) # (),
type III : J such that J C (B\K)°.

These three types of box are exclusive and exhaustive (exercise 6.9.2(a)). Also
define a function

) .
9:B—R, g(z)= {(fOQS)(x) | det o) i & K,
0 ifed K.
The continuous function f is necessarily bounded on &(K), say by R. The
partial derivatives D;®; of the component functions of ¢ are continuous on K,
and so the continuous function | det ¢'| is bounded on the compact set K, say
by R. Thus RR bounds gon B.

As in the proof of the Volume Zero Preservation proposition (Proposi-
tion 6.8.6), we can cover the subset K of A by a collection U of finitely
many boxes that is again a subset of A, and so the continuous partial deriva-
tives D;®; of the component functions of ¢ are bounded on the compact
set U, say by c. We may assume that the partition P is fine enough that all
subboxes J of type I and type II lie in U (exercise 6.9.2(b)). And we may
assume that the longest side of each subbox J is at most twice the shortest
side. Recall that € > 0 has been given. Because the boundary of K has volume
zero, we may further assume that the partition P is fine enough that

€ €
vol(J) < min {771, —~}
J:type 11 R(ch) RR
(exercise 6.9.2(c)).

Let
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Then the integral on the left side of the equality in the Change of Variable
Theorem decomposes into two parts,

/ I / /,
Q(K) Q(K)I <P(K)H

and because @ is injective on K, the previous display rewrites as

~/¢(K)f: Z /45(J)f+/q>(1<)uf' (6.12)

J : typel
Also,
s(Kuc |J o0,
J : type I1
so that
[ on<[ s X [
2(K)u @(K)u J : type 11 @(J)

By the Box-Volume Magnification Lemma (Lemma 6.8.5), for each box J of
type I, vol(®(J)) < (2nc)™ vol(J). Thus, by the bounds on f and on the sum
of the type II box-volumes, it follows that

/ 7
Q(K)H

That is, the second term on the right side of (6.12) contributes as negligibly
as desired to the integral on the left side, which is the integral on the left side
of the Change of Variable Theorem.

Meanwhile, the integral on the right side of the equality in the Change of
Variable Theorem also decomposes into two parts,

/K(foé)-|det¢'|= Z /Jg—l— Z /Jg. (6.13)

J : type I J : type II

<e.

By the bounds on g and on the sum of the type II box-volumes,

> [a< ¥ [ul<e

J : type 11 J i type 11

That is, the second term on the right side of (6.13) contributes as negligibly
as desired to the integral on the left side, which is the integral on the right
side of the Change of Variable Theorem.

The type I subboxes J of the partition of the box B containing the orig-
inal K (which is not assumed to be a box) satisfy all of the additional hy-
potheses in the statement of the proposition: each J is a box, and we may
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shrink the domain of ¢ to the open superset K° of each J, where @ is injective
and where det @' # 0. Thus, knowing the Change of Variable Theorem sub-
ject to any of the additional hypotheses says that the first terms on the right
sides of (6.12) and (6.13) are equal, making the integrals on the left sides lie
within € of each other. Since € is arbitrary, the integrals are in fact equal. In
sum, it suffices to prove the Change of Variable Theorem assuming any of the
additional hypotheses as desired. O

Proposition 6.9.2 (Alternative Optional Hypothesis-Strengthening).
To prove the Change of Variable Theorem, it suffices to prove the theorem sub-
ject to the following additional hypotheses:

o &(K) is a boz (but now we may not assume that K is a boz).
o & is injective on all of A.
e det® #0 on all of A.

Similarly to the remark after Proposition 6.9.1, we will not always want
the additional hypotheses.

Proof. With the previous proposition in play, the idea now is to run through its
proof in reverse, starting from the strengthened hypotheses that it grants us.
Thus we freely assume that K is a box, that the change of variable mapping &
is injective on all of A, and that det &' # 0 on all of A. By the Inverse Function
Theorem, the superset $(A) of #(K) is open and & : A — H(A) has a C!
inverse

&1 P(A) — A

Let € > 0 be given.
Let B be a box containing ¢(K), and let P be a partition of B into
subboxes J. Define three types of subbox,

type I :J such that J C $(K)°,
type II : J such that J N 8®(K) # @ (and thus J NO(B\S(K)) # 0),
type III : J such that J C (B\®(K))°.

These three types of box are exclusive and exhaustive. Also, define as before

0 ifed K.
Again, f is bounded on #(K), say by R, and |det #'| is bounded on K, say
by R, so that RR bounds gon B.

Cover the subset $(K) of $(A) by a collection U of finitely many boxes
that is again a subset of #(A). Then the continuous partial derivatives D;&; "
of the component functions of $~! are bounded on the compact set U, say
by c¢. We may assume that the partition P is fine enough that all subboxes J
of type I and type I lie in U. And we may assume that the longest side of each
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subbox J is at most twice the shortest side. Recall that € > 0 has been given.
Because the boundary of $(K) has volume zero, we may further assume that
the partition P is fine enough that

. Je €
Z vol(J) < mm{ﬁ, m}

J:type 11

Let
Ky = U 1)), Ky = K\Ki.
J:type 1

Then the integral on the left side of the equality in the Change of Variable
Theorem decomposes into two parts,

L(K)f:J:aeI/JfJ“J%;en/Jf- (6.14)

By the bounds on f and on the sum of the type II box-volumes,

3 /st z /J|f|<€-

J : type II J : type II

That is, the second term on the right side of (6.14) contributes as negligibly
as desired to the integral on the left side, which is the integral on the left side
of the Change of Variable Theorem.

Meanwhile, the integral on the right side of the equality in the Change of
Variable Theorem also decomposes into two parts,

/K<fo¢)-|det¢'|=/KIg+/Kng,

and because ¢! is injective, the previous display rewrites as

/K(fods)-|det¢'|= Z /q}_l(J)gjL/KHg. (6.15)

J : type I
Also,
Knc | o',
J : type I1
so that
[o<[ s > [
Ku Ku J : type II 2-1(J)

For each box J of type II, vol($1(J)) < (2nc)™ vol(J). Thus, by the bounds
on g and on the sum of the type IT box-volumes, it follows that
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[ e
K

That is, the second term on the right side of (6.15) contributes as negligibly
as desired to the integral on the left side, which is the integral on the right
side of the Change of Variable Theorem.

The type I subboxes J of the partition of the box B containing the orig-
inal #(K) (which is not assumed to be a box) satisfy the new additional
hypothesis in the statement of the proposition. The other two additional hy-
pothesis in the statement of the proposition are already assumed. Thus, know-
ing the Change of Variable Theorem subject to the additional hypotheses says
that the first terms on the right sides of (6.14) and (6.15) are equal, making
the integrals on the left sides lie within € of each other. Since ¢ is arbitrary, the
integrals are in fact equal. In sum, it suffices to prove the Change of Variable
Theorem assuming the additional hypotheses as desired. O

Proposition 6.9.3 (Further Optional Hypothesis-Strengthening). To
prove the Change of Variable Theorem, it suffices to prove the theorem subject
to the additional hypothesis that f is identically 1.

As with the other hypothesis-strengthenings, we will not always want f to
be identically 1, but we may take it to be so when convenient.

Proof. We assume the strengthened hypotheses given us by Proposition 6.9.2.
Let P be a partition of the box #(K) into subboxes J. For each subbox J,
view the quantity M;(f) = sup{f(z):z € J} both as a number and as a
constant function. Assume that the Change of Variable Theorem holds for
the constant function 1 and therefore for any constant function, and compute

/( o P) |det45'|—2/ )| det &'|

1(J)

<Z/ o®) - |det &

1(J)

= Z / My(f) Dby the assumption
J

= ZMJ VOl

=U (f, P).
As a lower bound of the upper sums, [ (fo®)-|det #'| is at most the integral,

/K(foé)-IdeW'IS/Q(K)f-

A similar argument gives the opposite inequality, making the integrals equal
as desired. O
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The next result will allow the proof of the Change of Variable Theorem to
decompose the change of variable mapping.

Proposition 6.9.4 (Persistence Under Composition). In the Change of
Variable Theorem, suppose that the change of variable mapping is a composi-
tion

d=I0oV

where the mappings
¥:A—R"

and
I': A— R"™ (where A is an open superset of ¥(K))

satisfy the hypotheses of the Change of Variable Theorem. If

/ g= / (go¥)-|det®'| for continuous functions g : ¥(K) — R
w(K) K

/ 1:/ | det I
I'(¥(K)) ¥(K)
/ 1:/ | det &'|.
B(K) K

Proof. This is a straightforward calculation using the definition of &, the
second given equality, the first given equality, the multiplicativity of the de-
terminant, the Chain Rule, and again the definition of &,

/ 1=/ 1=/ | det I"
o) Jrewy  Jeao

=/ | det(I" o %)| - | det ¥'|
K

and

then also

= [ laet ((r7om)- 7))

=/ |det(Fou7)’|=/ | det &'].
K K

O

Proposition 6.9.5 (Linear Change of Variable). The Change of Variable
Theorem holds for invertible linear mappings.

Proof. Let
T:R"— R"

be an invertible linear mapping having matrix M. Thus 7'(z) = M for all z.
Also, T is a composition of recombines, scales, and transpositions, and so
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by the persistence of the Change of Variable Theorem under composition it
suffices to prove the theorem assuming that T is a recombine or a scale or a
transposition. In each case, Propositions 6.9.1 and 6.9.3 allow us to assume
that K is a box B and f = 1. Thus the desired result is simply

vol(T(B)) = | det M| - vol(B),
and we established this formula back in section 3.8. O

The Change of Variable Theorem is proved partially by induction on the
dimension n.

Proposition 6.9.6 (Base Case for the Induction). The Change of Vari-
able Theorem holds if n = 1.

Proof. Because n = 1, K is an interval [a,b] C R where a < b. Here is
where we use the hypothesis that K is connected. Since we have not studied
connected sets closely, the reader is being asked to take for granted that any
compact and connected subset of R is a closed and bounded interval. (Or see
exercise 6.9.1 for a proof that any compact and path-connected subset of R is
a closed and bounded interval.) The continuous function

& :[a,b] — R

can take the value 0 only at a and b. Thus by the Intermediate Value Theorem,
&' never changes sign on [a, b]. If $' > 0 on [a, b] then & is increasing, and so
(using Theorem 6.4.3 for the second equality),

(®)
/215([a,b])f: /q:a: f= /ab(f“p) P = »/[a,b](f0¢) - |®|.

If &' <0 on [a,b] then @ is decreasing, and so

/45([a,b]) f= /q:b()a) f= _Lfij) f= _/ab(f 0 9P) P = /[a,b](f 09)- |45'|.

Thus in either case the desired result holds. O

Proposition 6.9.7 (Bootstrap Induction Step). For any n > 1, if the
Change of Variable Theorem holds in dimension n— 1 then it holds in dimen-
sion n subject to the additional hypothesis that the transformation ® fixes at
least one coordinate.

Proof. Propositions 6.9.1 and 6.9.3 allow us to assume that K is a box B,
that @' is injective on B, that det®' # 0 on B, and that f = 1. Also, we may
assume that the coordinate fixed by & is the last coordinate. There is a box
B, 1 C R"! and an interval I = [a,b] C R such that
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B=|JBn x{t}.

tel

By assumption, @ is a C'-mapping on an open superset A of B. For each t € T
let A; denote the cross-section of A with last coordinate t,

Ay ={z e R"!: (z,t) € A}
Then A; is an open superset of B,,_; in R"»~!. For each t € I define a mapping
12 :At _>Rn71; Wt(x) = (¢1($,t),'-- 7¢n—1(x7t))'

Each ¥, is a C'-mapping on an open superset of B,, 1, and
o(B) = | 0u(Ba1) x {t}.
terl

Since @ is injective on B and det®’ # 0 on B, it follows that each ¥; is
injective on B,_1, and the formula

|det ¥!(z)| = |det &' (z,t)|, (z,t) € B (6.16)

(exercise 6.9.3) shows that det¥; # 0 on B,,_;. Thus for each ¢, the set B,_;
and the transformation ¥, satisfy the Change of Variable Theorem hypotheses
in dimension n — 1. Compute, using Fubini’s Theorem, quoting the Change
of Variable Theorem in dimension n — 1, and citing formula (6.16) and again
using Fubini’s Theorem, that

/ 1:/ / 1:/ / |detsPt’|:/ | det &|.
&(B) tel Jw,(B,_1) tel JB, _, B

At long last we can prove the Change of Variable Theorem for n > 1.

Proof. We may assume the result for dimension n — 1, and we may assume
that K is a box B, that A is an open superset of B, and that & : A — R"
is a C'-mapping such that & is injective on A and det @' # 0 on A. We need

to show that
/ 1 =/ | det &'|. (6.17)
&(B) B

To prove the theorem, we will partition B into subboxes J, each J having an
open superset Ay on which @ is a composition

®=ToloV,

where ¥ and I' are C!'-mappings that fix at least one coordinate and T is a
linear transformation. Note that ¥, I', and T inherit injectivity and nonzero
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determinant-derivatives from &, so that in particular T is invertible. Since the
theorem holds for each of ¥, I', and T, it holds for their composition. In more
detail,

/ 1= / |det T'| by Proposition 6.9.5
T(r(2(J))) r(w(J))
= / |det(T" o I')| | det I| by Proposition 6.9.7
(J)
= / |det(T o I')| by the Chain Rule
w(J)
= / |det ((T o I')' oW)||det®’'| by Proposition 6.9.7
J

= / |det(T oI o W)'| by the Chain Rule.
J

/ 1=/|detd5’|,
&(J) J

and so summing over all subboxes J finally gives (6.17).
To obtain the subboxes J, proceed as follows. For each point z € B, let

That is, for each J,

T = D&

and define N
d=T"1og,

so that D{fw = id,, is the n-dimensional identity map. Let id denote the one-
dimensional identity map and further define

W:A—)Rn, W:(éla"':dsn—laid):

so that D¥, = id,, as well. By the Inverse Function Theorem, ¥ is locally
invertible. Let J, be a subbox of B containing x having an open superset A,
such that ¥~ exists on ¥(A,). Now define

r:v4,) —R", I'=(d,--,id, &, 0¥ 1),

Thus =T ol o¥ on A;, and ¥, I', and T have the desired properties.
Cover B by the collection of open interiors of the boxes J,. By the finite-
ness property of B, some finite collection of the interiors covers B, and so
certainly the corresponding finite collection of the boxes .J, themselves cov-
ers B. Partition B into subboxes J so that each J lies in one of the finitely
many J,, and the process is complete. O
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Exercises

6.9.1. Let K be a nonempty compact subset of R. Explain why the quantities
a=min{z:z € K} and b = max{z : ¢ € K} exist. Now further assume that
K is path-connected, so that in particular there is a continuous function

v:[0,1] — R
such that v(0) = a and (1) = b. Explain why consequently K = [a, b].

6.9.2. (a) Explain to yourself as necessary why the three types of rectangle
in the proof of Proposition 6.9.1 are exclusive. Now suppose that the three
types are not exhaustive, i.e., some rectangle J lies partly in K° and partly
in (B\K)° without meeting the set 0K = 9(B\K). Supply details as necessary
for the following argument. Let = € J lie in K° and let Z € J lie in (B\K)°.
Define a function from the unit interval to R by mapping the interval to the
line segment from z to &, and then mapping each point of the segment to 1 if
it lies in K and to —1 if it lies in B\ K. The resulting function is continuous
on the interval, and it changes sign on the interval, but it does not take the
value 0. This is impossible, so the rectangle J can not exist.

(b) In the proof of Proposition 6.9.1, show that we may assume that the
partition P is fine enough that all subboxes J of type I and type II lie in U.

(¢) In the proof of Proposition 6.9.1, show that given £ > 0, we may assume
that the partition P is fine enough that

3 3
vol(J) < min{in, —~} .
J:type II R(2TLC) RR

6.9.3. In the proof of Proposition 6.9.7, establish formula (6.16).

6.9.4. Here is a sketched variant of the endgame of the Change of Variable
proof: A slightly easier variant of Proposition 6.9.7 assumes that the transfor-
mation ¢ changes at most one coordinate, and then the process of factoring &
locally as a composition can be iterated until each factor is either linear or
changes at most one coordinate. Fill in the details.

6.10 Summary

Integration is a synthesis of many small elements into a whole. The integral
of a continuous function on a reasonably-shaped region exists, as is shown
by careful management of details and the technical point that continuity is
uniform on compact sets. Fubini’s Theorem, which is so apparent intuitively,
is also easy to prove essentially from the definitions. However, the Change
of Variable Theorem, which also seems plausible, requires a more elaborate
proof.
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Approximation by Smooth Functions

Let k be a nonnegative integer. Recall that a C*-function on R" is a function
all of whose partial derivatives up to order k exist and are continuous. That
is, to say that a function

f:R"—R

is C¥ is to say that f, and D;f for j = 1,--- ,n, and Dj; f for j,j' = 1,--- ,n,
and so on up to all Dj;,...;, f all exist and are continuous on R"™. Various ideas
that we have discussed so far have required different values of k:

e If fis C! then f is differentiable in the multivariable sense of derivative
(Theorem 4.3.3).

e If fis C? then its mixed second order derivatives Diof and Dy f are equal

(Theorem 4.4.1).
The multivariable max/min test (Proposition 4.5.8) assumes a C-function.
If f: R® — R" is componentwise C! and its derivative D f, is invertible
at a point a then f is locally invertible about a, and the local inverse is
again C! (Theorem 5.1.2).

o If f (again scalar-valued now) is C° then it is integrable over any compact
set having boundary of volume zero (section 6.5).

e In the Change of Variable formula | sy f = S, (fo®)-| det &'| for multiple
integrals (Theorem 6.7.1) the change of variable mapping & is assumed to
be C! and for now the integrand f is assumed to be C°. We will return to
this example at the very end of the chapter.

Meanwhile, a smooth function is a function on R"™ all of whose partial deriva-
tives of all orders exist. Smooth functions are also called C°°-functions, an
appropriate notation because the derivatives of each order are continuous
since the derivatives of one-higher order exist. This chapter briefly touches
on the fact that for functions that vanish off a compact set, C°-functions and
C'-functions and C2-functions are well approximated by C*®-functions.

The approximation technology is called convolution. One can see convolu-
tion in action visually by comparing graphs of convolutions against the graph
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of the original function. And the conceptual framework for establishing the
properties of convolution analytically is not difficult. Having discussed ap-
proximation by convolution, we will freely assume in the remaining chapters
of these notes that our functions are C*, i.e., that they are smooth.

7.1 Spaces of Functions

To begin, we quantify the phrase functions that vanish off a compact set from
the chapter introduction.

Definition 7.1.1 (Support). Consider a function
f:R" —R

The support of f is the closure of the set of its inputs that produce nonzero
outputs,

supp(f) = {x € R™: f(z) # 0}.
The function f is compactly supported if its support is compact. The class
of compactly supported C*-functions is denoted CE(R™). Especially, C2(R™)
denotes the class of compactly supported continuous functions.

Each class C¥(R™) of functions forms a vector space over R (exercise 7.1.1).
Figure 7.1 shows a compactly supported C-function on R and its support.
The graph has some corners, so the function is not C!.

b/

Figure 7.1. Compactly supported continuous function on R and its support

The spaces of compactly supported functions shrink as their member-
functions are required to have more derivatives,

CJR™) D C:(R") DCI(R™) D -+,

and we will see that all of the containments are proper.
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Definition 7.1.2 (Test Function). A test function is a compactly sup-
ported smooth function. The class of test functions is denoted C°(R™).

The class of test functions sits at the end of the chain of containments of
function-spaces from a moment ago,

CER™) = [ CER™),

k>0

and as an intersection of vector spaces over R, the test functions C°(R™)
again form a vector space over R. In the chain of containments

CJR™ DCHR™ DCIR™ D--- D CIR™),

all of the containments are proper. Indeed, for the first containment, Weier-
strass showed how to construct a function f of one variable, having sup-
port [0,1], that is continuous everywhere but differentiable nowhere on its
support. The function of n variables

fO(m1;$2; Tt an) = f(ml)

thus lies in C2(R™) but not in C!(R"). Next, the function

1
fi(zi,zo,--- ,2n) = folti,z2,--- , )

t1=0
lies in C!(R™) but not C2(R™) because its first partial derivative is fo, which
does not have a first partial derivative. Defining fs as a similar integral of f;

gives a function that lies in C2(R™) but not C3(R"), and so on. Finally, none
of the functions fj just described lies in C°(R™).

For any k > 0 and any f € C¥(R"™), the supports of the partial derivatives
are contained in the support of the original function,

supp(D; f) Csupp(f), j=1,---,n.

Thus the partial derivative operators D; take C¥(R") to CF~1(R") as sets.
The operators are linear because

D;(f+f)=D;f+D;f, ffect®m
and
Dj(cf) =cD;f, fe€CER"), ceR.

In addition, more can be said about the D, operators. Each space C¥(R™) of
functions carries an absolute value function having properties similar to the
absolute value on Euclidean space R™. With these absolute values in place,
the partial differentiation operators are continuous.
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Definition 7.1.3 (C¥(R") Absolute Value). The absolute value function
on CO(R™) is

| [:CCR™) — R, |f| =sup{|f(z)| : = € R"}.
Let k be a nonnegative integer. The absolute value function on C¥(R™) is

| |e:CER™ — R

given by
(|f1, )
|D]f| fOTj:].,"' s Ty
|f|k:max< |D]]’f|f07'],jl=1,,n, > .

\ |D.71]kf| fOT'jl,"' ij = 17 ey

That is, |f|x is the largest absolute value of f or of any derivative of f up to
order k. In particular, | |o =] |.

The largest absolute values mentioned in the definition exist by the Ex-
treme Value Theorem since the relevant partial derivatives are compactly
supported and continuous.

Proposition 7.1.4 (C¥(R™) Absolute Value Properties).

(A1) Absolute value is positive: |f|x > 0 for all f € CE(R™), and |f|x = 0 if
and only if f is the zero function.

(A2) Scaling Property: |cf|x = |c||f|x for all c € R and f € CF(R™).

(A3) Triangle Inequality: | + gli < |f1c + lglx for all f,g € CE(R™).

Proof. The first two properties are straightforward to check. For the third
property, note that for any f,g € C2(R") and any z € R,

I(f +9)(@) < |f(@)] +g(=)| < [f]+ lgl-

Thus |f| + |g| is an upper bound of all values |(f + g)(z)|, so that

|f +g] <|fl+1gl-

That is, |f +glo < |flo +|glo- If f,g € CL(R") then the same argument shows
that also [D;(f + g)| < |D;f| + |Djg| for j = 1,---,n, so that |f + g1 <
|f|1 + |gl1- The argument for higher values of k is the same. O

Now we can verify the anticipated continuity of the linear operators D;
from C¥(R™) to CF—1(R™).
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Proposition 7.1.5 (Continuity of Differentiation). For any k > 1, the
partial differentiation mappings

D]C(I?(RH)HC(I‘Cil(Rn)J j=1a"'7n
are continuous.

Proof. Consider any function f € C¥(R™) and any sequence {f,,} in C¥(R").
Suppose that
lirrnn|fm _f|k =0.

Then
li,,;n |fm - f| = 0,
m
lim [Djj f, — Djj f| =0 for j,j' =1,--- ,n,
m
B Dy jy - fn = Disjavein f| = 0 08 i, oo+, ju = 1, .
Fix any j € {1,---,n}. As a subset of the information in the previous display,
liIn"Djfm - D]f| = 0,
m
hm"D]]’fm - D]]lf| =0 for j' = ]_,. -,
m
lglnleJé“'jkfm - Djj2...jkf| =0forjo---,jp=1,---,n.
That is,

im [D; frm = D flk-1 = 0.
The implication that we have just shown,
lim |fm — f|k =0 = lim|Djfm — Djf'kfl = 0,
m m
is exactly the assertion that D; : C*(R") — C¥~1(R™) is continuous, and
the proof is complete. O

Again let k > 1. The fact that |f|r_1 < |f|x for any f € CF(R™) (exer-
cise 7.1.2) shows that for any f € C¥(R™) and any sequence { f,,} in C¥(R"), if
lim,,, | fr — fl& = 0 then lim,, | f;, — flk—1 = 0. That is, the inclusion mapping

i:CHR™) — CEYRY), W) =f

is continuous.
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The space C°(R™) of test functions is closed under partial differentiation,
meaning that the partial derivatives of a test function are again test functions
(exercise 7.1.3).

In this chapter we will show that just as any real number z € R is ap-
proximated as closely as desired by rational numbers ¢ € Q, any compactly
supported continuous function f € C¥(R"™) is approximated as closely as de-
sired by test functions g € C*(R™). More precisely, we will show that:

For any f € CF(R™), there exists a sequence {fmn} in C°(R™) such
that limy, | fm — flx = 0.

The fact that lim, |fm — f|r = 0 means that given any € > 0, there exists
a starting index mg such that f,, for all m > mg uniformly approximates f
to within £ up to kth order. That is, for all m > mg, simultaneously for
all z € R™,

|fm(z) — f(@)| <e,
|D]an(x) _DJf('r)| <6f0rj = 17 1,
|D_]J’fm($) _DJJ'f(x)| < e for j:jl = ]-7 U2

|Djy .. fm(x) — Djy,...jy f(x)| < € for ji,--- ,jp=1,--- ,n.
The use of uniform here to connote that a condition holds simultaneously over
a set of values is similar to its use in uniform continuity.
Exercises
7.1.1. Show that each class C¥(R") of functions forms a vector space over R.
7.1.2. Verify that | f|x—1 < |f|r for any f € CF(R™).

7.1.3. Explain why each partial derivative of a test function is again a test
function.

7.2 Pulse Functions

A pulse function is a useful type of test function. To construct pulse functions,
first consider the function

0 if <0,

:R—)R, =
s s(@) {el/m ifz > 0.

(See figure 7.2.) Each z < 0 lies in an open interval on which s is the constant
function 0, and each z > 0 lies in an open interval on which s is a composition
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of smooth functions, so in either case all derivatives s(¥)(z) exist. More specif-
ically, for any nonnegative integer k, there exists a polynomial py(x) such that
the kth derivative of s takes the form

0 if x <0,
s (z) = { pr(x)z=2ke 1/ if 2 >0,
? ifz=0.

Only s)(0) is in question. However, s(2(0) = 0, and if we assume that
s(k)(0) = 0 for some k > 0 then it follows (because exponential behavior
dominates polynomial behavior) that
®) (h) — s*)(0)
s s
lim ——————~ = i h)h~=2k—1e=1/h =,
R o e
That is, s**1)(0) exists and equals 0 as well. By induction, s*)(0) = 0 for
all k¥ > 0. Thus s is smooth: each derivative exists, and each derivative is
continuous because the next derivative exists as well. But s is not a test
function because its support is not compact: supp(s) = [0, ).

Figure 7.2. Smooth function

Now the pulse function is defined in terms of the smooth function,

p:R—R, pla)= —@rlscetl

fw:_l s(z+1)s(—z+1)

The graph of p (figure 7.3) explains the name pulse function. As a product of
compositions of smooth functions, p is smooth. The support of p is [-1,1], so
p is a test function. Also, p is normalized so that

/ p=1.
[71,1]
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The maximum pulse value p(0) is therefore close to 1 because the pulse graph
is roughly a triangle of base 2, but p(0) is not exactly 1. The pulse function
pa(z,y) = p(z)p(y) from R? to R, having support [—1,1]?, is shown in fig-
ure 7.4. A similar pulse function p3 on R? can be imagined as a concentration
of density in a box about the origin.

Figure 7.3. Pulse function

Figure 7.4. Two-dimensional pulse function

Exercises

7.2.1. Since the function s in the section is smooth, it has nth degree Taylor
polynomials T, (z) at a = 0 for all nonnegative integers n. (Here n does not
denote the dimension of Euclidean space.) For what = does s(z) = T, (z)?



7.3 Convolution 305

7.2.2. Let p be the pulse function defined in the section. Explain why
supp(p) = [-1,1].

7.2.3. Let p : R — R be the one-dimensional pulse function from the sec-
tion.

(a) Graph the function ¢(z) = p(2a — b+ z(b — a))), where a < b.

(b) Graph the function r(z) = [;” | p(t).

(c) Use the function 7 from part (b) to give a formula for a test function
that is 0 for < a, climbs from 0 to 1 fora <z < b, is 1 for b < z < ¢, drops
from 1 to 0 for ¢ <z < d, and is 0 for d < z.

7.3 Convolution

This section shows how to construct test functions from C?(R™)-functions. In
preparation, we introduce a handy piece of notation.

Definition 7.3.1 (Sum, Difference of Two Sets). Let S and T' be subsets
of R™. Their sum is the set consisting of all sums of a point of S plus a point
of T,

S+T={s+t:s€8,teT}.

Their difference is similarly
S—T={s—t:seS, teT}

Visually, S + T can be imagined as many copies of T', one based at each
point of S, or vice versa. For example, if K is a three-dimensional box and B
is a small ball about 03 then K + B is slightly larger than K, again shaped like
a box except that the edges and corners are rounded. Similarly, § — T is the
reflection of T through the origin. The sum or difference of two compact sets
is compact (exercise 7.3.1(a)). The sum of of the open balls B(a,r) and B(b, s)
is B(a+b,r+s) (exercise 7.3.1(b)). The reader is alerted that the set difference
here is different from another, more common notion of set difference, that
being the elements of one set that are not elements of another,

S\T={s€S:s¢T}.

Returning to CO(R")-functions, any such function can be integrated over
all of R™.

Definition 7.3.2 (Integral of a C2-Function). Let f € C2(R"). The inte-
gral of f is the integral of f over any box that contains its support,

/f :/Bf where supp(f) C B.
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In Definition 7.3.2 the integral on the right side exists by Theorem 6.3.1.
Also, the integral on the right side is independent of the suitable box B, always
being the integral over the intersection of all such boxes, the smallest suitable
box. Thus the integral on the left side exists and is unambiguous. We do not
bother writing [, f rather than [ f, because it is understood that by default
we are integrating f over R".

Definition 7.3.3 (Mollifying Kernel). Let f € C2(R™) be a compactly sup-
ported continuous function, and let p € C°(R™) be a test function. The mol-
lifying kernel associated to f and ¢ is the function

k:R"XR" — R,  &K(z,y) = f(y)e(r —y).

For any fized x € R", the corresponding cross section of the mollifying kernel
is denoted K,

Ky @ R" — R; nz(y) = K:(:I’.Jy)'

For each z € R"™, the mollifying kernel k;(y) can be nonzero only if y €
supp(f) and = — y € supp(yp). It follows that

supp(kz) C supp(f) N ({z} — supp(y)).

Therefore k, is compactly supported. (Figure 7.5 shows an example of the
multiplicands f(y) and ¢(x—y) of k,(y), and figure 7.6 shows their compactly
supported product.) Also, since f and ¢ are continuous, k, is continuous.
That is, for each z, the mollifying kernel k, viewed as a function of y again
lies in CJ(R"™), making it integrable by Theorem 6.3.1.

Figure 7.5. Multiplicands of the mollifying kernel

The mollifying kernel is so named for good reason. First, it is a kernel in
the sense that we integrate it to get a new function.

Definition 7.3.4 (Convolution). Let f € C2(R"™) and let p € C°(R™). The
convolution of f and ¢ is the function defined by integrating the mollifying
kernel,
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Figure 7.6. The mollifying kernel is compactly supported

f+o:R" R, (fxo)) =/nm<y) =/f(y)so(x—y).

Yy Yy

Second, although the mollifying kernel is only as well-behaved as f, inte-
grating it indeed mollifies f in the sense that the integral is as well behaved
as o, i.e., the integral is a test function. Even if f is nowhere differentiable,
f = ¢ has all partial derivatives of all orders while remaining compactly sup-
ported. Furthermore, the derivatives have the natural formula obtained by
passing them through the integral.

Proposition 7.3.5 (Derivatives of the Convolution). Let f € C2(R")
and let ¢ € C(R™). Then also f x ¢ € C(R™). Specifically, the partial
derivatives of the convolution are the convolutions with the partial derivatives,

D](f*ép):f*DJ(p, j:]-;"'ana
and similarly for the higher order partial derivatives.

The following result helps to prove Proposition 7.3.5. In its statement, the
symbol ¢, which usually denotes a test function, instead denotes a C!(R")-

function. The reason for the weaker hypothesis will appear soon in the proof
of Corollary 7.3.7.

Lemma 7.3.6 (Uniformity Lemma for C'-Functions). Let ¢ € C}(R").
Given any € > 0, there exists a corresponding § > 0 such that for oll a € R"
and all nonzero h € R, and for any j € {1,--- ,n},

pla+ hej) —p(a)
h

|h| <6 = —Djyp(a)| <e.

Proof. Supposing first that for each j € {1,--- ,n} a corresponding d; exists,
define 6 = min{d,---,6,}. Then for all nonzero h € R and for any j €
{1’ e n}’

|h| <6 = |h| < ;.
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Thus § works simultaneously for all j. So it suffices to find d; for one fixed-
but-arbitrary j, and from now on in this proof j is fixed

The Mean Value Theorem at the jth coordinate gives for all a € R™ and
all nonzero h € R,

a+ he;) —opla
Plathes) Z908) _ b oa)| = |Djpla+ te;) — Dypla)| where [ < .

Since Djy is continuous on R" and is compactly supported, it is uniformly
continuous on R"”, and so given any € > 0 there exists a corresponding §; > 0
such that for all a € R" and t € R,

|Djp(a+te;) — Djp(a)| <e if |t] < 6.
The desired result follows from the two displays. O
Now we can establish the derivative formula for the convolution.

Proof (of Proposition 7.3.5). To see that f * ¢ is compactly supported, recall
the observation that for a given z, the mollifying kernel k,(y) = f(y)p(z —y)
can be nonzero only at y-values such that

y € supp(f) N ({2} — supp(¢))-
Such y can exist only if z takes the form
z=y+z yE€supp(f), z € supp(p).

That is, the integrand is always zero if = ¢ supp(f) + supp(p) (see figure 7.7).
Hence,
supp(f * @) C supp(f) + supp(y)-

Figure 7.7. The mollifying kernel is zero for x outside supp(f) + supp(¢)

To show that D;(f * ¢) exists and equals f * Djp for j = 1,--- ,n is
precisely to show that each z-derivative passes through the y-integral,
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a%j/f@)s@(x—y)=/f(y)6—wj(x_y), =1,

Since the integral is being taken over some box B, the equality follows from
Proposition 6.6.2. But we prove it using other methods, for reasons that will
emerge later in the chapter. The function f is bounded, say by R, so we can
estimate that for any z € R™ and any nonzero h € R and any j,

‘ (f*o)(z+ he};-) = (fxp)(x) — (f *D;)(z)
z+ hej —y) — T —
_ |y fWele + :) Sy IWlele =y) _ /yf(y)Dg“P(ﬂ? - )

/yf(y) (w(w —y+he) —plz—y) Doz — y)) ‘

h
SR/
Y

plx—y+he;j) —p(z—y
( ,i) ( )—Dw(w—y)‘-
Assuming that |h| < 1, the support of the integrand as a function of y lies in
the bounded set

{z +tej : =1 < t < 1} — supp(p),

and therefore the integral can be taken over some box B. By the Unifor-
mity Lemma, given any ¢ > 0, for all small enough h the integrand is less
than /(R vol(B)) uniformly in y. Consequently the integral is less than /R.
In sum, given any € > 0, for all small enough h we have

(f * ) (@ + hej) = (F* ¢)(2)
h

— (f*Djp)(@)| < <.

Since z is arbitrary, this gives the desired result for first-order partial deriva-
tives,

As for higher-order partial derivatives, note that D;o € C°(R™) for each j.
So the same result for second-order partial derivatives follows,

D]]’(f*(p):D‘]’(f*D](p):f*DJJl(p, j,jI=17...7n,
and so on. -

The proof of Proposition 7.3.5 required only that each k, be integrable,
that f be bounded, and that ¢ lie in C!(R™). We will make use of this obser-
vation in section 7.5.

If the function f lies in the subspace Cl(R™) of CO(R™) then the partial
derivatives of the convolution pass through the integral to f as well as to .
That is, for differentiable functions, the derivative of the convolution is the
convolution of the derivative.
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Corollary 7.3.7. Let k > 1, let f € C¥(R"™), and let p € C°(R"). Then
Djl"'jk(f * (10) = Djl"'jkf xQ, JirsJe =1, m

Proof. Since
() /f

it follows by the Change of Variable Theorem (replace y by z — y) that also

(f+ )@ /fw—

Now the proof of the proposition works with the roles of f and ¢ exchanged
to show that D;(f x¢) = D;f % ¢ for j = 1,--- ,n. (Here is where it is
relevant that the Uniformity Lemma requires only a C!(R™)-function rather
than a test function.) Similarly, if f € C2(R™) then because D, f € CL(R")
for j =1,--- ,n it follows that.

Djj’(f*(P):Djj'f*SO, j,j':]_’---’n

The argument for higher derivatives is the same. O

Consider a function f € C2(R™). Now that we know that any convolution
fx@ (where p € C°(R")) lies in C°(R"), the next question is to what extent
the test function f % resembles the original compactly supported continuous
function f. As already noted, for any z the integral

- / f)e -

refers to values of f only on {z} —supp(p). Especially, if supp(yp) is a small set
about the origin then the convolution value (f*y)(z), depends only on the be-
havior of the original function f near x. The next section will construct useful
test functions ¢ having small support, the idea being that convolutions f * ¢
with such test functions will approximate the functions f being convolved.
For example, in figure 7.5 f(z) is small and positive, while the integral of the
mollifying kernel shown in figure 7.6 is plausibly small and positive as well.

Exercises

7.3.1. (a) Show that the sum of two compact sets is compact.

(b) Let B(a,r) and B(b, s) be open balls. Show that their sum is B(a +
b,r + s).

(c) Recall that there are four standard axioms for addition, either in the
context of a field or a vector space. Which of the four axioms are satisfied by
set addition, and which are not?

(d) Let 0 < a < b. Let A be the circle of radius b in the (z,y)-plane,
centered at the origin. Let B be the closed disk of radius a in the (z, z)-plane,
centered at (b,0,0). Describe the sum A + B.
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7.3.2. Let f € CO(R"), and let ¢ € C°(R™). Assume that ¢ > 0, i.e., all
output values of ¢ are nonnegative, and assume that f ¢ = 1. Suppose that R
bounds f, meaning that | f(z)| < R for all z. Show that also R bounds f * .

7.4 Smooth Approximate Identity and Convolution

Our next technical tool is a sequence of test functions whose graphs are ever
taller and more narrow, each enclosing volume 1.

Definition 7.4.1 (Smooth Approximate Identity). A smooth approx-
imate identity is a sequence of test functions

{(pm} = {‘Pl; Y2, P3, - }
such that:

(1) Each @y, is nonnegative, i.e., each ¢, maps R™ to R>o.
(2) Each ¢p, has integral 1, i.e., [ @m =1 for each m.
(3) The supports of the oy, shrink to {0}, i.e.,

supp(p1) D supp(p2) D -+, () supp(pm) = {0}

We can construct a smooth approximate identity using the pulse function p
from section 7.2. Define for m =1,2,3,---

om R — R, em(x) =m" p(mzy) p(mas) - - - p(may,).

Then supp(¢m) = [-1/m,1/m]™ for each m. Here the coefficient m™ is chosen
so that [ ¢, = 1 (exercise 7.4.1). Figure 7.8 shows the graphs of ¢, ¢4, s,
and @15 when n = 1. The first three graphs have the same vertical scale, but
not the fourth. Figure 7.9 shows the graphs of ¢; through ¢4 when n = 2, all
having the same vertical scale.

The identity being approximated by the sequence of test functions {¢,, } is
the n-dimensional Dirac delta function, conceptually a unit point mass at the
origin. That is, the n-dimensional Dirac function § should have the properties
that

supp(d) = {0}, /5 =1.

No such function exists in the orthodox sense of the word function. But regard-
less of sense, for any function f: R®™ — R and any x € R", the mollifying
kernel associated to f and 6,

kz(y) = f(y)d(z —y),

is conceptually a point of mass f(x) at each x. That is, its properties should
be
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8+ 8¢
-0.5 0.5 -0.25 0.25
8 15
-0.125 0.125

Figure 7.8. The functions @2, @4, ¢s, and @15 from an approximate identity

Figure 7.9. The functions ¢1 through ¢4 from a two-dimensional approximate
identity

supp(kz) = {z},  (f x0)(z)
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Under a generalized notion of function, the Dirac delta makes perfect sense as
an object called a distribution, defined by the integral in the previous display
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but only for a limited class of functions:
For all z, (f*0)(z) = f(x) for test functions f.

Yes, now it is f that is restricted to be a test function. The reason for this is
that ¢ is not a test function, not being a function at all, and to get a good
theory of distributions such as the Dirac delta, we need to restrict the functions
that they convolve with. In sum, the Dirac delta function is an identity in the
sense that

f =9 = f for test functions f.

Distribution theory is beyond the scope of these notes, but we may conceive
of the defining property of the Dirac delta function as the expected limiting
behavior of any smooth approximate identity. That is, returning to the envi-
ronment of f € C2(R") and taking any smooth approximate identity {¢.,},
we expect that

lim(f * o) = f for C2(R™)-functions f.

As explained in section 7.1, this limit will be uniform, meaning that the values
(f * om)(z) will converge to f(z) at one rate simultaneously for all z in R™.
See exercise 7.4.3 for an example of nonuniform convergence.

For an example of convolution with elements on a smooth approximate
identity, consider the sawtooth function

B il <1/4,
f:R—R, fle)y=91/2—|z| ifl/4<|z| <1/2,
0 if 1/2 < |a.

Recall the smooth approximate identity {¢,,} from after Definition 7.4.1.
Figure 7.10 shows f and its convolutions with @2, @4, s, and ¢i5. The con-
volutions approach the original function while smoothing its corners, and the
convolutions are bounded by the bound on the original function as shown in
exercise 7.3.2. Also, the convolutions have larger supports than the original
function, but the supports shrink toward the original support as m grows.
The following lemma says that if compact sets shrink to a point, then
eventually they lie inside any given ball about the point. Specifically, the sets
that we have in mind are the supports of a smooth approximate identity.

Lemma 7.4.2 (Shrinking Sets Lemma). Let
{Sm} = {Sla 52; S3a ) }

be a sequence of compact subsets of R™ such that

oo

$1 D08, D8 D, () Sm ={0}.
m=1
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Figure 7.10. The sawtooth function convolved with various ¢,

Then for any 0 > 0 there exists some positive integer mg such that
for all m > my, S, C B(0,9).

Proof. Let § > 0 be given. If no S,, lies in B(0,d) then there exist points

z; € S1\B(0,4),

X9 € 52\3(0,6),

x3 € S3\B(O,(5),
and so on. The sequence {z,} lies in Si, so it has a convergent subsequence.
The containments S; D Sy D --- show that replacing the sequence by the sub-

sequence preserves the displayed conditions, so we may assume that the origi-
nal sequence converges. Let = denote its limit. For any m > 1, the terms of the

sequence from index m onward lie in S,,, so € Sy,. Thus z € ,, Sm = {0},
i.e.,, z = 0. But also, |z,,| > ¢ for each m, so |z| > 4. This is a contradiction,
so we are done. O

The hypothesis of compactness is necessary in the Shrinking Sets Lemma
(exercise 7.4.2).

Theorem 7.4.3 (CJ(R")-Approximation by Convolutions). Let f €
CO(R™) and let {pm} : R™ — R be a smooth approzimate identity.
Given € > 0, there exists a positive integer mg such that for all integers m,

m>myg = |fxpm— f| <e.

That is, the convolutions f*p,, converge uniformly to the original function f.
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Proof. Let € > 0 be given. Since the support of f is compact, f is uniformly
continuous on its support, and hence f is uniformly continuous on all of R"™.
So there exists some § > 0 such that for all z,y € R",

ly—z[ <6 = [f(y) - f(2)] <e.

Since the supports of the approximate identity functions shrink to {0}, the
Shrinking Sets Lemma says that there exists some positive integer mg such
that for all integers m > my, supp(¢m) C B(0,0). Note that my depends only
on §, which in turn depends only on €, all of this with no reference to any
particular € R™. Now, for all z,y € R", and all m > my,

y € z —supp(ypm) = y € x — B(0,48) =z + B(0,4)
= |ly—z|<4d
= |f(y) — f(@)] <e.

Because the approximate identity functions ¢,, have integral 1, we have for
all z € R™ and all positive integers m,

f(@) = / F@)om(@ —y).

Use the fact that the approximate identity functions ¢,, are nonnegative to
estimate that for all x € R™ and all positive integers m,

(f % om)(@) — f(2)] = ‘ [6w) = 1@z -y
< / F@) = 1@)om (@ — 1).

We may integrate only over y-values in x — supp(p., ), so that if m > mg then
the integrand is less than ey, (x —y). That is, since the approximate identity
functions have integral 1 we have for all x € R™ and all positive integers m,

m>ma = |(f 9u)(e) = [@)] <& [ oulo -y =<
Y
This is the desired result. Note how the argument has used all three defining
properties of the approximate identity. O

Corollary 7.4.4 (C¥(R")-Approximation by Convolutions). Let k be a
positive integer. Let f € CE(R™) and let {on} : R — R be a smooth
approximate identity. Given € > 0, there exists a positive integer mg such
that for all integers m,

m>myg = |f*xom— fle <e.

That is, the convolutions and their derivatives converge uniformly to the orig-
inal function and its derivatives up to order k.
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Proof. Recall from Corollary 7.3.7 that if f € C}(R™) then for any test func-
tion ¢ the derivative of the convolution is the convolution of the derivative,

Since the derivatives D; f lie in C2(R™), the theorem says that their convo-
lutions D; f * ¢, converge uniformly to the derivatives D;f as desired. The
argument for higher derivatives is the same. O

Exercises

7.4.1. Recall that [p = 1 where p : R — R is the pulse function from
section 7.2. Let m be any positive integer and recall the definition in the
section,

Pm(x) = m" p(mazy) p(mas) - - - p(my)..
Explain why consequently [ ¢, = 1.

7.4.2. Find a sequence {S,,} of subsets of R satisfying all of the hypotheses
of the Shrinking Sets Lemma except for compactness, and such that no S, is
a subset of the interval B(0,1) = (-1,1).

7.4.3. This exercise illustrates a nonuniform limit. For each positive integer m,
define
fm :[0,1] — R, fm(z) = 2™.

Also define

0 ifo<z<1,
f:[O:]-]_>Ra f(x):{l . :
if x =1.

(a) Using one set of axes, graph f1, fa, f3, fi0, and f.
(b) Show that for any = € [0, 1], lim,, f,(z) = f(z). That is, given € > 0,
there exists some positive integer mq such that for all positive integers m,

m>mo = [fm(z) — f(z)| <e.
Thus the function f is the limit of the sequence of functions {f,,}. That is:

For each z, f(z) = liy}ln{fm ()}

(c) Now let € = 1/2. Show that for any positive integer m, no matter how
large, there exists some corresponding z € [0, 1] such that |fn(2) — f(z)| > €.
That is:

For each m, |fm(z) — f(z)| fails to be small for some z.

Thus the convergence of {f,,} to f is not uniform, i.e., the functions do not
converge to the limit-function at one rate simultaneously for all z € [0, 1].



7.5 Known-Integrable Functions 317
7.5 Known-Integrable Functions

Recall that the slogan-title of Theorem 6.5.4 is near-continuity implies in-
tegrability. The largest space of functions that we have considered so far in
this chapter is C2(R"), so we have not yet discussed the entire class of func-
tions that we know to be integrable. This section gives some results about
convolution and approximation for such functions.

Recall also that a function is called bounded if its outputs form a bounded
set.

Definition 7.5.1 (Known-Integrable Function). A function
f:R" — R.

is known-integrable if it is bounded, compactly supported, and continuous
except on a set of volume zero. The class of known-integrable functions is
denoted Z.(R™).

Unsurprisingly, the class Z.(R"™) forms a vector space over R.
Let f € Z.(R™). The integral of f is the integral of f over any box that
contains its support,

/f:/Bf where supp(f) C B.

Similarly to the remarks after Definition 7.3.2, the integral on the right side
exists, but this time by Theorem 6.5.4. The integral on the right side is inde-
pendent of the box B, and so the integral on the left side exists, is unambigu-
ous, and is understood to be the integral of f over all of R™.

The convolution remains sensible when f is known-integrable. That is, if
f € Z.(R™) and ¢ € C°(R™) then for each z € R™ the mollifying kernel

ke :R" — R, ke(y) = f(y)p(z —v)

again lies in Z,(R™). And so we may continue to define the convolution of f
and ¢ as
fxp:R" — R, (f*go)(a:):/nw(y).
y

The formulas for convolution derivatives remain valid as well. That is, if f €
Z.(R™) and ¢ € C°(R™) then also f x ¢ € C°(R™), and

Dj(f*(p):f*goja j:]-;"'ana
D]]'(f*(p)zf*D]]’(pja j7j1=1,"'7n7
and so on. Here is where it is relevant that our proof of Proposition 7.3.5

required only that each k;, be integrable, that f be bounded, and that ¢ lie
in C}(R™).
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Given a known-integrable function f € Z.(R") and a smooth approximate
identity {¢m }, we would like the convolutions { f * ¢, } to approximate f uni-
formly as m grows. But the following proposition shows that this is impossible
when f has discontinuities.

Proposition 7.5.2 (The Uniform Limit of Continuous Functions is
Continuous). Let

{fm}:R" —R

be a sequence of continuous functions that converges uniformly to a limit func-
tion
f:R" —R.

Then f is continuous as well.

Proof. For any two points z, £ € R™ and for any positive integer m we have

1F(Z) = f(@)| = |f(Z) = fm(Z) + fm(E) = frm (@) + fm(z) — f(2)]
<Uf(E) = fm @) + |fm(Z) = fm(@)] + |fm (2) = ()]

Let € > 0 be given. For all m large enough, the first and third terms are less
than /3 regardless of the values of z and Z. Fix such a value of m, and fix z.
Then since fp, is continuous, the middle term is less than /3 if Z is close
enough to z. It follows that

&

|f (%) — f(z)] <e for all Z close enough to z.
That is, f is continuous. O

Thus the convergence property of convolutions must become more tech-
nical for known-integrable functions rather than compactly supported con-
tinuous functions. In preparation for proving the convergence property, the
following lemma says that if K is a compact subset of an open set then so is
the sum of K and some closed ball.

Lemma 7.5.3 (Thickening Lemma). Let K and A be subsets of R™ such
that
K CcA, K iscompact, A is open.

Then

for somer >0, K+ B(0,r)C A.

Proof. Since K is compact, it lies in some ball B(0, R). Solving the problem
with the open set A N B(0, R) in place of A also solves the original problem.

Having replaced A by A N B(0,R), define a function on K that takes
positive real values,

d: K — Ry, d(a) = sup{r : B(a,r) C A}.
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The fact that we have shrunk A (if necessary) to lie inside the ball has ensured
that d is finite because specifically d(a) < R for all a. Fix some a € K and let
r = d(a). Let {rn,} be a strictly increasing sequence of positive real numbers
such that lim,,{r,,} = r. Then B(a,r,) C A for each m, and so

B(a,r) = U B(a,rm) C A.

This argument shows that in fact
d(a) = max{r: B(a,r) C A}.

The function d is continuous. To see this, fix some point a € K and let
r = d(a). Consider also a second point @ € K such that |@ — a| < r, and let
7 = d(a@). Then
B(a,r —|a —a|) C B(a,r) C A,

showing that 7 > r — |a — a|. Either 7 <r +|a—al, or # > 7+ |@a—a| > r so
that also |G@ — a| < 7 and the same argument shows that r > 7 — |d — al, i.e.,
7 < r 4+ |G — a| after all. That is, we have shown that for any a € K,

{| peK }=>|d(a)—d<a)|s|a—a|-

a—a| <r(a)

Thus d is continuous at a (given € > 0, let 6 = min{r(a),e/2}), and since

a € K is arbitrary, d is continuous on K as claimed.
Since K is compact and d is continuous, d takes a minimum value ¥ > 0.
Thus K + B(0,7) C A. Finally, let r = 7#/2. Then K + B(0,7) C A as desired.
O

Now we can establish the convergence property of convolutions for known-
integrable functions.

Theorem 7.5.4 (Z.(R")-Approximation by Convolutions). Let f €
Z.(R™) and let {pm} : R — R be a smooth approzimate identity. Let K be
a compact subset of R™ such that f is continuous on an open superset of K.
Given € > 0, there exists a positive integer mg such that for all integers m,

m>mg = |(f*xom)(z) — f(z)| <e foradlzeK.

That is, the convolutions converge uniformly to the original function on com-
pact sets where the function is continuous.

Proof. Let € > 0 be given. By the Thickening Lemma, there exists some r > 0
such that f is continuous on K + B(0,r). Hence f is uniformly continuous, on
K + B(0,r). That is, there exists § > 0 (with 6 < r) such that for all z € K
and all y € R™,
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ly—z[ <6 = [f(y) - f(@)] <e.

There exists some positive integer mg such that for all integers m > my,
supp(ym) C B(0,6). For all z € K, all y € R™, and all m > my,

y € x —supp(pm) = y € x — B(0,6) =z + B(0,9)
= ly—z| <0

= |fy) - f(@)| <e.
From here, the proof is virtually identical to the proof of Theorem 7.4.3. O

For example, consider the truncated squaring function

z? if |z < 1/2,
[:R—R,  fl@)= {0 if 1/2 < ||
Note that f lies in Z.(R") rather than in C2(R™) because of its discontinuities
at z = +1/2. Figure 7.11 shows f and its convolutions with @2, @4, ¥s,
and ¢35. The convolutions converge uniformly to the truncated parabola on
compact sets away from the two points of discontinuity. But the convergence
is not well behaved at or near those two points. Indeed, the function value
f(£1/2) = 1/4 rather than f(£1/2) = 0 is arbitrary and has no effect on
the convolution in any case. And again the convolutions are bounded by the
bound on the original function and their supports shrink toward the original
support as m grows.

Figure 7.11. The truncated squaring function convolved with various ¢,
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In consequence of Z.(R™)-approximation by convolutions, any integral of
a known-integrable function is approximated as closely as desired by the in-
tegral of a test function. Thus the hypothesis of a continuous integrand f in
the Change of Variable Theorem for multiple integrals (Theorem 6.7.1), men-
tioned in the last bullet of the chapter introduction, can now be weakened to
a known-integrable integrand.






8

Integration of Differential Forms

The integration of differential forms over surfaces is characteristic of a fully
developed mathematical theory: it starts from carefully preconfigured defini-
tions and proceeds to one central theorem, whose proof is purely mechanical
because of how the definitions are rigged. Furthermore, much of the work is
algebraic, even though the theorem appears analytical. Since the motivation
for the definitions is not immediately obvious, the early stages of working
through such a body of material can feel unenlightening, but the payoff lies
in the lucidity of the later arguments and the power of the end result. The
main theorem here is called often called Stokes’s Theorem, but in fact it is a
generalization not only of the classical Stokes’s Theorem (which is not due to
Stokes; he just liked to put it on his exams), but also of other nineteenth cen-
tury results called the Divergence Theorem (or Gauss’ Theorem) and Green’s
Theorem, and even of the Fundamental Theorem of Integral Calculus. In fact,
a better name for the theorem to be presented here is the Generalized FTIC.

The definitions of a surface and of the integral of a function over a surface
are given in section 8.1. Formulas for particular integrals called flow and flux
integrals are derived in section 8.2. The theory to follow is designed partly to
handle such integrals easily. The definitions of a differential form and of the
integral of a differential form over a surface are given in section 8.3, and the
definitions are illustrated by examples in sections 8.4 and 8.5. Sections 8.6
through 8.9 explain the algebraic rules of how to add differential forms and
multiply them by scalars, how to multiply differential forms, how to differen-
tiate them, and how to pass them through changes of variable. A Change of
Variable Theorem for differential forms follows automatically in section 8.10.
Returning to surfaces, sections 8.11 and 8.12 define a special class of surfaces
called cubes, and a geometric boundary operator from cubes to cubes of lower
dimension. The General FTIC is proved in section 8.13. Finally, section 8.14
explains how the classical vector integration theorems are special cases of the
General FTIC, and section 8.15 takes a closer look at some of the quantities
that arise in this context.
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8.1 Integration of Functions Over Surfaces

Having studied integration over solid regions in R", i.e., over subsets of R"
with positive n-dimensional volume, we face the new problem of how to in-
tegrate over surfaces of lower dimension in R™. For example the circle in R?
is one-dimensional, and the torus surface in R? is two-dimensional. Each of
these sets has volume zero as a subset of its ambient space, in which it is curv-
ing around. In general, whatever the yet-undefined notion of a k-dimensional
subset of R™ means, such objects will have volume zero when k < n, and
so any attempt to integrate over them in the sense of chapter 6 will give an
integral of zero and a dull state of affairs. Instead, the idea is to parameterize
surfaces in R™ and then define integration over a parameterized surface in
terms of integration over a non-curved parameter space.

Definition 8.1.1 (Parameterized Surface). Let A be an open subset of R™.
A k-surface in A is a smooth mapping

&:D— A

where D is a compact connected subset of R* whose boundary has volume
zero. The set D is called the parameter domain of &.

See figure 8.1. Here are some points to note about Definition 8.1.1:

e Recall that a subset A of R" is called open if its complement is closed.
The definitions in this chapter need the environment of an open subset
rather than all of R™ in order to allow for functions that are not defined
everywhere. For instance, the reciprocal modulus function is defined only
on surfaces that avoid the origin. In most of the examples, A will be all
of R™, but exercise 8.8.7 will touch on how the subject becomes more
nuanced when it is not.

o Recall also that compact means closed and bounded. Connected means
that D consists of only one piece, as discussed informally in section 2.4.
And as discussed informally in section 6.5 and formally in section 6.8, the
boundary of a set consists of all points simultaneously near the set and
near its complement—roughly speaking, its edge. Typically D will be some
region that is easy to integrate over, such as a box, whose compactness,
connectedness, and small boundary are self-evident.

e The word smooth in the definition means that the mapping & extends
to some open superset of D in R*, on which it has continuous partial
derivatives of all orders. Each such partial derivative is therefore again
smooth. All mappings in this chapter are assumed to be smooth.

¢ When we compute, coordinates in parameter space will usually be written
as (u1,--.,ux), and coordinates in R™ as (x1,...,%n)-

e It may be disconcerting that a surface is by definition a mapping rather
than a set, but this is for good reason. Just as the integration of the
previous chapter was facilitated by distinguishing between functions and
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their outputs, the integration of this chapter is facilitated by viewing the
surfaces over which we integrate as mappings rather than their images.

Figure 8.1. A surface

When k = 0, Definition 8.1.1 is a little tricky. By convention, RO is the
set of all points with no coordinates, each of the no coordinates being a real
number. (Our definition of R™ at the beginning of chapter 2 danced around
this issue by requiring that n be positive.) There is exactly one such point,
the point (). That is, R? consists of a single point, naturally called 0 even
though it is not (0). A O-surface in R™ is thus a mapping

$,: R — R", %,(0) = p,

where p is some point in R™. In other words, ¢, simply parameterizes the
point p. At the other dimensional extreme, if k¥ = n then any compact con-
nected subset D of R™ naturally defines a corresponding n-surface in R™ by
trivially parameterizing itself,

A:D—R", A(u) =wu for all w € D.

Thus Definition 8.1.1 of a surface as a mapping is silly in the particular cases
of £k =0 and k = n, when it amounts to parameterizing points by using the
empty point as a parameter domain, or parameterizing solids by taking them
to be their own parameter domains and having the identity mapping map
them to themselves. But for intermediate values of k, i.e., 0 < k < n, we
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are going to integrate over k-dimensional subsets of R™ by traversing them,
and parameterizing is the natural way to do so. Especially, a 1-surface is a
parameterized curve, and a 2-surface is a parameterized surface in the usual
sense of surface as in figure 8.1.

Let A be an open subset of R™, let # : D — A be a k-surface in A4, and
let f: A — R be a smooth function. As mentioned above, if & < n then
the integral of f over #(D) in the sense of chapter 6 is zero because $(D)
is lower-dimensional than its ambient space R™. However, the integral of f
over ¢ can be defined more insightfully.

For each point u of the parameter domain D, the n-by-k derivative matrix
&' (u) has as its columns vectors that are naturally viewed as tangent vectors
to @ at &(u), the jth column being tangent to the curve in ¢ that arises from
motion in the jth direction of the parameter domain. In symbols, the matrix
is

P (u) = [Ul - Uk]nxk’

where each column vector v; is

Dj@l (u)
v; = Djé(u) =

nxl

The parallelepiped spanned by these vectors (see figure 8.2) has a naturally
defined k-dimensional volume.

Figure 8.2. Tangent parallelepiped

Definition 8.1.2 (Volume of a Parallelepiped). Let vy, ..., v be vectors
in R™. Let V be the n-by-k matriz with these vectors as its columns. Then the
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k-volume of the parallelepiped spanned by the {v;} is

volg (P(v1,. .., ) = /det(VEV). (8.1)

In coordinates, this formula is

voly(P(v1, ..., vg)) = \/det (for 07l jr i) 5 (8.2)

where v; - vj is the inner product of v; and v;.

The matrix V in this definition is n-by-% and its transpose V¢ is k-by-n, so
neither of them need be square. But the product V!V is square, k-by-k, and
this is the matrix whose determinant is being taken. Equation (8.2) follows
immediately from (8.1) because

v{ V1 - V1 V1 - U
vv=li|eul =] 1 | =y

/Uk Vg - U1 Vg - Vg

=1,k '

For example, if k = 1 and v : [a,b)] — R™ is a l-surface (i.e., a curve)
in R™, then its derivative matrix at a point u of [a, b] has one column,

Consequently, formula (8.2) is

length(y'(u)) = v/7'(u) - ' (u).

That is, Definition 8.1.2 for k = 1 specializes to the definition of |y'| as /7" - v/
from section 2.2. At the other extreme, if k¥ = n then formula (8.1) is

vol, (P(v1,...,v,)) = | det(vy,...,v,)]|

That is, Definition 8.1.2 for k = n recovers the interpretation of |det| as
volume from section 3.8. When k = 2, formula (8.2) is

area(P(v1,v2)) = V|12 [v2]? = (v1 - v2)?
= \/|’U1|2|’02|2(1 — COS2 (912)
= |v1] [va| | sin 012/,

giving the familiar formula for the area of a parallelogram. When k£ = 2 and
also n = 3, we can study the formula further by working in coordinates.
Consider two vectors u = (Zy,Yu,2y) and v = (Zy, Yy, 2y). An elementary
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calculation shows that the quantity under the square root in the previous
display works out to

ul?|of* = (u-v)? = Jux vf”.
So when k& = 2 and n = 3, Definition 8.1.2 subsumes the familiar formula
area(P(v1,v2)) = |v1 X va.

Here is an argument that (8.2) is the appropriate formula for the k-
dimensional volume of the parallelepiped spanned by the vectors vy, ..., v
in R™. (The fact that the vectors are tangent vectors to a k-surface is irrele-
vant to this discussion.) Results from linear algebra guarantee that there exist
vectors vg41,-..,U, in R™ such that

e each of vy through v, is a unit vector orthogonal to all the other v;,
e det(vy,...,v,) > 0.

Recall the notation in Definition 8.1.2 that V is the n-by-k matrix with
columns v, ..., vg. Augment V to an n-by-n matrix W by adding the re-
maining v; as columns too,

W=v - vn] = [V pg1 - vn].

The scalar det(W) is the n-dimensional volume of the parallelepiped spanned

by v1, ..., v,. But by the properties of vg41 through v,, this scalar should
also be the k-dimensional volume of the the parallelepiped spanned by vy, ...,
vg. That is, the natural definition is (using the second property of vy, ..., v,

for the second equality to follow)

volg(P(v1,. .., vk)) = det(W) = /(det W)2 = /det(W?) det(W)
= /det(WtW).

The first property shows that

Wt W = Vt Vv ka(n—k)
Onryxk  In—k

so that det(W! W) = det(V? V) and the natural definition becomes the desired

formula,
volg (P(v1,...,uk)) = y/det(VEV).

The argument here generalizes the ideas used in section 3.10 to suggest a
formula for the area of a 2-dimensional parallelogram in R? as a 3-by-3 deter-
minant. Thus the coordinate calculation sketched in the previous paragraph
to recover the relation between parallelogram area and cross product length
in R® was unnecessary.

With k-dimensional volume in hand, we can naturally define the integral
of a function over a k-surface.
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Definition 8.1.3 (Integral of a Function over a Surface). Let A be an
open subset of R™. Let & : D — A be a k-surface in A. Let f : $(D) — R
be a function such that f o @ is smooth. Then the integral of f over & is

/f:/(fo¢)volk(P(D145,.-.,Dk45))-
[ D

In particular, the k-dimensional volume of ® is

VOlk(fﬁ):[pl:LVOlk(P(D1¢,...,Dk¢)).

By Definition 8.1.2 the k-volume factor in the surface integral is

Vol (P(D1&, ..., Dp®)) = \/det(&* &) = \/det([D,-di-Djsﬁ]i’j:l,___,k).

The idea of Definition 8.1.3 is that as a parameter u traverses the parameter
domain D, the composition f o @ samples the function f over the surface,
while the k-volume factor makes the integral the limit of sums of many f-
weighted small tangent parallelepiped k-volumes over the surface rather than
the limit of sums of many (f o &)-weighted small box volumes over the pa-
rameter domain. (See figure 8.3.) The k-volume factor itself is not small, as
seen in figure 8.2, but it is the ratio of the small parallelepiped k-volume to
the small box volume shown in figure 8.3.

Figure 8.3. Integrating over a surface

For example, let r be a positive real number and consider a 2-surface in R2,
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& : [0,27] x [0, 7] — R?, &(0, ) = (r cos @ sin , rsin 0 sin , r cos ).

This is the 2-sphere of radius r. Since the sphere is a surface of revolution,
its area is readily computed by methods from a first calculus course, but we
do so with the ideas of this section to demonstrate their use. The derivative
vectors are

—rsind sin ¢ 7 cos 0 cos
vy = | rcosfsing|, ve = |rsinfcosy |,
0 —rsingp

and so the integrand of the surface area integral is

VIvi2|v2]? = (v1 - v2)2 = y/rtsin® o = r2sing

(note that sin ¢ > 0 since ¢ € [0,7]). Therefore the area is

27 ™
area(®) = r? / / sinp = 4nr?.
0=0 J =0

The integral in Definition 8.1.3 seems to depend on the surface ¢ as a
parameterization rather than merely as a set, but in fact the integral is un-
affected by reasonable changes of parameterization, because of the Change
of Variable Theorem. To see this, let A be an open subset of R", and let
¢:D— Aand ¥ : D — A be k-surfaces in A. Suppose that there exists
a smoothly invertible mapping T : D — D such that ¥ o T = &. In other
words, T is smooth, T is invertible, its inverse is also smooth, and the follow-
ing diagram commutes (meaning that either path around the triangle yields

the same result):
D
\
T A
/
D

When such a mapping T exists, ¥ is called a reparameterization of &.
Let f : A — R be any smooth function. Then the integral of f over the
reparameterization ¥ of & is

/f)(fOW)\/det(W’tW').

By the Change of Variable Theorem, since D = T'(D), this integral is

/ (f 0@ o T)y/det (2 o T)t (¥ o T)) | det(T").
D
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But | det(T")| = y/det(T")2 = y/det(T"") det(T"), so this becomes

/ (foWo T)\/det (T (@' o T)t (P o T)T"),

D

and by the general matrix rule B'A*AB = (AB)! AB, this is in turn
/D(f o W o T)y/det (W' o T)T')! (¥ 0 T)T").

Finally, since ¥ o T' = @, the Chain Rule shows that we have

/D(foQS),/det (¢ 9'),

giving the integral of f over the original surface ¢ as desired.

Exercises

8.1.1. Consider two vectors u = (Zy,Yu, 2u) and v = (24, Yy, 2»). Calculate
that |[ul?|v]? — (u-v)? = |u x v|?.

8.1.2. Let f(z,y,2) = 2% + yz.
(a) Integrate f over the box B = [0, 1]°.
(b) Integrate f over the parameterized curve

7v:[0,27] — R®, ~(t) = (cost,sint,t).
(c) Integrate f over the parameterized surface
S:[0,1> — R?, S(u,v) = (u+v,u—v,v).
(d) Integrate f over the parameterized solid
V0,1 — R3 V(u,v,w) = (u+v,v—w,u+w).

8.1.3. (a) Let D C R* be a parameter domain, and let f : D — R be a
smooth function. Recall from exercise 2.4.3 that the graph of f is a subset
of Rk+1,

G(f) ={(u, f(u)) : u € D}.
Note that f is a l-surface in R, while the surface that captures the idea of
the graph of f as a k-surface in R**! is not f itself but rather

&:D— R &) = (u, f(u)).

Derive a formula for the k-dimensional volume of é. In particular, show that
when k = 2 the formula is

area(®) = /D V1+ (Dif)?+ (D2f)?.

(b) What is the area of the graph of the function f : D — R (where D
is the unit disk in the plane) given by f(z,y) = 2% + y??
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8.2 Flow and Flux Integrals

Let A be an open subset of R". A mapping F' : A — R" is also called a
vector field on A. (The usage of “field” here is unrelated to the field axioms.)
Ifv: I — Aisacurvein A and u is a point of I, then the flow of F' along -y
at u is the (scalar) component of F(y(u)) tangent to v at y(u). f ¢ : D — A
is an (n — 1)-surface in A and u is a point of D, then the flux of F' through &
at u is the (scalar) component of F' normal to ¢ at ®(u). Surface integrals
involving the flow or the flux of a vector field arise naturally. If F is viewed as
a force field then its flow integrals (also called line integrals) measure the work
of moving along curves v in A. If F' is viewed as a velocity field describing the
motion of some fluid then its flux integrals measure the rate at which fluid
passes through permeable membranes ¢ in A. Each of the classical theorems
of vector integral calculus to be proved at the end of the chapter involves a
flow integral or a flux integral.

Flow and flux integrals have a more convenient form than the general
integral of a function over a surface, in that the k-volume factor from Defini-
tion 8.1.3 (an unpleasant square root) cancels, and what remains is naturally
expressed in terms of determinants of the derivatives of the component func-
tions of @. These formulas rapidly become complicated, so the point of this
section is only to see what form they take.

Working first in two dimensions, consider a vector field,

F=(F,FR):R?> — R?
and a curve,
v=(n,7) :[a,b] — R*.

Assuming that the derivative 7/ is always nonzero, the unit tangent vector
to 7 at the point v(u), pointing in the direction of the traversal, is

T = 2.

Note that the denominator is the length factor in Definition 8.1.3. The parallel
component of F(y(u)) along T'(y(u)) has magnitude (£ - T)(y(u)). (See exer-
cise 2.2.15.) Therefore the net flow of F' along v in the direction of traversal
is f7 F - T. By Definition 8.1.3 this flow integral is

[y (w)]

and the length factor has canceled. In coordinates, the flow integral is

R b ! b
[rt=[ row T8 pwi= [ Pow e, 69

N b
[FT= [ (Bomi+ Eori)w. (84)
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On the other hand, for any vector (z,y) € R?, define (z,y)* = (~y,z).
(This seemingly ad hoc procedure of negating one of the vector entries and
then exchanging them will be revisited soon as a particular manifestation of
a general idea.) Then the unit normal vector to the curve « at the point v(u),
at angle m/2 counterclockwise from T(y(u)), is

Fyw) = %

Therefore the net flux of F' through v counterclockwise to the direction of
traversal is the flux integral

=R b
/ F-N= / Fy(w) -+ @), (8.5)
o u=a

or, in coordinates,

b
/F'N =/ ((Fzom)m — (Fr o y)m) (w). (8.6)
0% u=a
Next let n = 3 and modify the vector field F' suitably to
F=(F,F, F;):R> — R3.

The intrinsic expression (8.3) for the flow integral of F' along a curve + re-
mains unchanged in R?, making the 3-dimensional counterpart of (8.4) in
coordinates obvious,

b
/F T = / ((Fromm + (Fao)vs + (F 0 7)) (u).
v u=
As for the flux integral, consider a 2-surface in R?,

&= (&,55,%;3) : D — R3.

Assuming that the two columns D1® and D2® of the derivative matrix @' are
always linearly independent, a unit normal to the surface & at the point &(u)
(where now u = (u1,us)), is obtained from their cross product,

R D1®(u) X D9 (u)
N = 1D, (w) x Dt ()]

By property CP6 of the cross product, the denominator in this expression is
the area of the parallelogram spanned by D;®(u) and D2®(u), and this is
the area factor in Definition 8.1.3 of the surface integral. Therefore this factor
cancels in the flux integral of F' through @ in the N-direction,

/ FN= / F(®(u)) - (D1(u) x Dad(u)), (8.7)
[ ueD
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or, in coordinates,

(FL o ®)(D1®3 Dy®3 — D13 Dy Ps)
/ F-N= / +(F2 [¢] ¢)(D1¢3 D2¢1 - D1¢1 D2¢3) (u) (88)
? YED \ 4 (F; 0 8)(D1$; DBy — D1 By Dody)

Whereas the 2-dimensional flow and flux integrands and the 3-dimensional
flow integrand involved derivatives ; of the 1-surface v, the integrand here
contains the determinants of all 2-by-2 subblocks of the 3-by-2 derivative
matrix of the 2-surface &,

D1®1 Dy®q
@' = | D1Py D2Ps
D $3 Dy$3

This gives a hint about the general picture. Nonetheless, (8.8) is forebod-
ing enough that we should pause and think before trying to compute more
formulas.

For general n, formula (8.3) for the flow integral of a vector field along a
curve generalizes transparently,

b n

/VF'fZ/ub:a ((Fov).v’)(u)=/u (OO (Fi o)) (u). (8.9)

= =1

But the generalization of formulas (8.5) through (8.8) to a formula for the flux
integral of a vector field in R™ through an (n — 1)-surface is not so obvious.
Based on (8.7) the intrinsic formula should be

/F.Nz/ (Fod)-(Di®x - x Dy1®)(w),  (8.10)
[ ueD

where the (n — 1)-fold cross product on R™ is analogous to the 2-fold cross
product on R? from section 3.10. That is, the cross product should be orthog-
onal to each of the multiplicand-vectors, its length should be their (n — 1)-
dimensional volume, and when the multiplicands are linearly independent,
they should combine with their cross product to form a positive basis of R™.

Such a cross product exists by methods virtually identical to section 3.10.
What is special to three dimensions is that the cross product is binary, i.e., it
is a twofold product. In coordinates, a mnemonic formula for the cross product
in R? (viewing the vectors as columns) is

V1 X Vg = det, V1 | V2 | €2
€3

This formula appeared in row form in section 3.10, and it makes the corre-
sponding formula for the cross product of n — 1 vectors in R™ inevitable,
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€1

A T YR R (8.11)
en

vy X -+ X v,_1 = det

For example, in R? a single vector v = (x,) has a sort of cross product,

X

v =det[
Yy

el} = (—y,z)

€2

This is the formula that appeared with no explanation as part of the flux
integral in R2. That is, the generalization (8.10) of the 3-dimensional flux
integral to higher dimensions also subsumes the 2-dimensional case. Returning
to R™, the cross product of the vectors Dy ®(u),...,D,_1P(u) is

(D]_d5 XX anl¢)(u) = det Dlé(u) T Dn—lé(u)
€n

This can be understood better by considering the data in the matrix as rows.
Recall that for i = 1,...,n, the ith row of the n-by-(n—1) derivative matrix ¢’
is the derivative matrix of the ith component function of &,

&)(u) = [D1Bi(u) -+ Dp_1B;(u)] .

In terms of these component function derivatives, the general cross product is

P (u) | e er | 91(u)
(D1® X -++ x Dp_1P)(u) = det : Dl =(-1)"det | : :
& (u) | en en | Dy (u)
P (u) [ 81 (u) P (u)
@3(u) P3(u) P (u)
= (=1)""!(det Py(u) | ) — det | P4(4) | ey + det |Pa(W) | e5+ - )
@, (u) |, (u) 7, (u)
[ $1(u) ]
_(_1\n-1 - _1yi—1 452—;(“) .
= (-1) ;( D det | g )| &
| #,(u) |

Thus finally, the general flux integral in coordinates is
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F T

=)

(=1)" Y (F;0®) det | i 1| )(u). (8.12)
1 i+1

Jr

n

k3

The integrand here contains the determinants of all (n—1)-by-(n—1) subblocks
of the n-by-(n — 1) derivative matrix of the (n — 1)-surface @. The best way
to understand the notation of (8.12) is to derive (8.6) and (8.8) from it by
setting n = 2 and then n = 3.

We end the section by mentioning one more integral. Let ¥ = 2 and let
n = 4, and consider a 2-surface in R?,

& = (P,,P5,P3,84) : D — R™.
Note that @' is a 4-by-2 matrix,

® D, &, Dy®,
P, D &y Dydy
P, Di&; Do&s |
P, D &4 Do&y

& =

so that any two of its rows form a square matrix. Consider also any six smooth
functions
Fio,Fi3,Fia,Fo3, 4, F34:R" — R

] ! !

(Fy 5 0 @) det [g}] + (F1,3 0 D) det [g}] + (F1,0 0 D) det [g}]
2 3 ()

/ .

Then we can define an integral,
P, @3
+ (Fa,a0®)det | 7| + (F3a0P)det |
) 454 ) @4

Lo
(8.13)

Since the surface @ is not 1-dimensional, this is not a flow integral. And since
& is not (n — 1)-dimensional, it is not a flux integral either. Nonetheless, since
the integrand contains the determinants of all 2-by-2 subblocks of the 4-by-2
derivative matrix of the 2-surface @, it is clearly cut from the same cloth as
the flow and flux integrands of this section. The ideas of this chapter will
encompass this integral and many others in the same vein.

@,

+(Faz o) det |3
3

As promised at the beginning of the section, the k-volume factor has can-
celed in flow and flux integrals, and the remaining integrand features determi-
nants of the derivatives of the component functions of the surface of integra-
tion. Rather than analyze such cluttered integrals, the method of this chapter
is to abstract their key properties into symbol patterns, and then work with
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the patterns algebraically instead. An analysis tracking all the details of the
original setup would be excruciating to follow, not to mention being unimag-
inable to recreate ourselves. Instead, we will work insightfully, economy of
ideas leading to ease of execution. Since the definitions to follow do indeed
distill the essence of vector integration, they will enable us to think fluently
about the phenomena that we encounter. This is real progress in methodol-
ogy, much less laborious than the classical approach. Indeed, having seen the
modern argument, it is unimaginable to want to recreate the older one.

Exercises

8.2.1. Show that the n-dimensional cross product defined by a formula
in (8.11) satisfies the property

(v X - X vp_1,w) =det(vy,...,vp_1,w) forall we R".

As in section 3.10, this property characterizes the cross product uniquely.
Are there significant differences between deriving the properties of the cross
product from its characterization (cf. Proposition 3.10.2) in n dimensions
rather than in 37

8.2.2. Derive equations (8.6) and (8.8) from equation (8.12).

8.3 Differential Forms Syntactically and Operationally

We need objects to integrate over surfaces, objects whose integrals encompass
at least the general flow integral (8.9) and flux integral (8.12) of the previous
section. Let A be an open subset of R™. The objects are called differential
forms of order k£ on A or simply k-forms on A. Thus a k-form w is some
sort of mapping

w : {k-surfaces in A} — R.

Naturally the value w(®) will be denoted [, w. The definition of a k-form
will come in two parts. The first is syntactic: it doesn’t say what a k-form is
as a function of k-surfaces, only what kind of name a k-form can have. This
definition requires some preliminary vocabulary: An ordered k-tuple from
{1,...,n} is a vector

(i1,...,9) with each i; € {1,...,n}.
For example, the ordered 3-tuples from {1,2} are
(17 17 1)7 (17 17 2)7 (17 27 1)7 (17 27 2)7 (27 17 1)7 (27 17 2)7 (27 27 1)7 (27 27 2)'

A sum over the ordered k-tuples from {1,...,n} means simply a sum of terms
with each term corresponding to a distinct k-tuple. Thus we may think of an
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ordered k-tuple (iy,...,4;) as a sort of multiple index or multiple subscript,
and for this reason we often will abbreviate it to I. These multiple subscripts
will figure prominently throughout the chapter, so you should get comfortable
with them. Exercise 8.3.1 provides some practice.

Definition 8.3.1 (Syntax of Differential Forms). Let A be an open subset
of R™. A 0-form on A is a smooth function f : A — R. For k > 1, a k-form
on A is an element of the form

n
Z f(il,...,ik) d.’L‘i1 A ---/\dz’ik,

i1y ip=1

or

Zf1d$17
I

where each I = (i1,...,1i) is an ordered k-tuple from {1,...,n} and each fr
is a smooth function fr: A — R.

Make the convention that the empty set I = ) is the only ordered 0-tuple
from {1,...,n}, and that the corresponding empty product dzy is 1. Then
the definition of a k-form for £ > 1 in Definition 8.3.1 also makes sense for
k =0, and it subsumes the special definition that was given for k = 0.

For example, a differential form for n = 3 and k =1 is

e* V7 dy 4 sin(yz) dy + 2°z dz,
and a differential form for n =2 and k = 2 is
ydz ANdz + e dx Ady + ycosz dy A dx.

The expression

1
—dx
T

is a 1-form on the open subset A = {x € R : = # 0} of R, but it is not a
1-form on all of R. The hybrid expression

zdx ANdy + e® dz

is not a differential form because it mixes an order 2 term and an order 1
term.

Before completing the definition of differential form, we need one more
piece of terminology. If M is an n-by-k matrix and I = (i1,...,i) is an
ordered k-tuple from {1,...,n}, then M; denotes the square k-by-k matrix
comprised of the Ith rows of M. For example, if

12
M= [34],
56
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and if I = (3,1), then
56
=29
The second part of the definition of a k-form explains how to integrate it over

a k-surface. In this definition, a differential form in the sense of Definition 8.3.1
is called a syntactic differential form.

Definition 8.3.2 (Integration of Differential Forms). Let A be an open
subset of R™. For k = 0, a syntactic O-form w = f on A gives rise to a
function of 0-surfaces in A, also called w,

w : {0-surfaces in A} — R,
defined by the rule that for any point p € A,
w(®p) = f(p)-

That is, integrating w over a one-point surface consists simply of evaluating f
at the point. For k > 1, a syntactic k-form w =), frdzr on A gives rise to
a function of k-surfaces in A, also called w,

w: {k-surfaces in A} — R,

defined by the rule that for any k-surface ® : D — A,
w@%{/Eﬂﬁo@daﬂ. (8.14)
D

For all k, the integral of w over & is defined to be w(P),

Aw:w@)

Formula (8.14), defining w(®), is the key for everything to follow in this
chapter. It defines an integral over the image (D), which may have volume
zero in R™, by “pulling back” —this term will later be defined precisely—to an
integral over the parameter domain D, which is a full-dimensional set in R*
and hence has positive k-dimensional volume.

Under Definition 8.3.2, the integral of a differential form over a surface
depends on the surface as a mapping, i.e., as a parameterization. However, it
is a straightforward exercise to show that that the Multivariable Change of
Variable Theorem implies that the integral is unaffected by reasonable changes
of parameterization.

Returning to formula (8.14): despite looking like the flux integral (8.12),
it may initially be impenetrable to the reader who (like the author) does not
assimilate notation quickly. The next two sections will illustrate the formula
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in specific instances, after which its general workings should be clear. Before
long, you will have an operational understanding of the definition.

Operational understanding should be complemented by structural under-
standing. The fact that the formal consequences of Definitions 8.3.1 and 8.3.2
subsume the main results of classical integral vector calculus still doesn’t
explain these ad hoc definitions conceptually. For everything to play out so
nicely, the definitions must somehow be natural rather than merely clever,
and a structural sense of why they work so well might let us extend the ideas
to other contexts rather than simply tracking them. Indeed, differential forms
fit into a mathematical structure called a cotangent bundle, with each differ-
ential form being a section of the bundle. The construction of the cotangent
bundle involves the dual space of the alternation of a tensor product, all of
these formidable-sounding technologies being utterly Platonic mathematical
objects. However, understanding this language requires an investment in ideas
and abstraction, and in the author’s judgment the startup cost is much higher
without some experience first. Hence the focus of the chapter is purely op-
erational. Since formula (8.14) may be opaque to the reader for now, the
first order of business is to render it transparent by working easy concrete
examples.

Exercises

8.3.1. Write out all ordered k-tuples from {1,...,n} in the casesn =4, k = 1;
n = 3, k = 2. In general, how many ordered k-tuples I = (i1,...,4x) from
{1,...,n} are there? How many of these are increasing, meaning that i; <
.-+ < ip? Write out all increasing k-tuples from {1,2, 3,4} for k =1,2,3,4.

8.3.2. An expression w = ) _; frdx; where the sum is over only increasing
k-tuples from {1,...,n} is called a standard presentation of w. Write out
explicitly what a standard presentation for a k-form on R* looks like for
k=0,1,2,3,4.

8.4 Examples: 1-forms

A k-form is a function of k-surfaces. That is, one can think of a k-form w as
a set of instructions: given a k-surface @, w carries out some procedure on ¢
to produce a real number, [, w.
For example, let
w==xdy and \=ydz,

both 1-forms on R3. A 1-surface in R? is a curve,
Y= (’71772573) : [(I,b] — R35

with 3-by-1 derivative matrix
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For any such curve, w is the instructions, “integrate ;75 over the parameter
domain [a,b],” and similarly A instructs to integrate v27v5. You should work
through applying formula (8.14) to w and A to see how it produces these direc-
tions. Note that = and y are being treated as functions on R3—for example,

z(a,b,c) =a for all (a,b,c),

so that x oy = .
To see w and A work on a specific curve, consider the helix

H :[0,27] — R?, H(t) = (acost,asint, bt).
Its derivative matrix is

—asint
H'(t)= | acost| forallte |0,2n].
b

Thus by (8.14),

27 2w
/w:/ acost-acost =ma® and /)\:/ asint-b=0.
H t=0 H t=0

Looking at the projections of the helix in the (x,y)-plane and the (y, z)-plane
suggests that these are the right values for [, y Tdy and J y ydz if we interpret
the symbols 2 dy and y dz as in one-variable calculus. (See figure 8.4.)
For another example, let
w = dx,

a 1-form on R3, and consider any curve

v:la, b — R?, (1) = (n(t),72(t),73(t))-

/vw:/ab(lov)-%=/ab71=71(b)—71(a).

A change of notation makes this example more telling. Rewrite the component
functions of the curve as z, y, and z,

v :la bl — R,y (t) = (2(t),y(t), 2(t).

So now z is not a function on R? as in the previous example, but a function
on [a,b]. The integral rewrites as

/7w=/abz'=m(b)—x(a).

Then
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Figure 8.4. Integrating 1-forms over a helix

This shows that the form dx does indeed measure change in x along curves.
As a set of instructions it simply says to evaluate the z-coordinate difference
from the initial point on the curve to the final point. Think of dz as a Pac-
Man. You give it a curve, it runs along the curve and gives you back your
score: the net change in x along the curve. Returning to the helix H, it is now
clear with no further work that

/dazzO, /dyzO, /dz:27rb.
H H H

Tt is a good practice with formula (8.14) to confirm these values.
To generalize the previous example, let A be an open subset of R”, let
f : A — R be any smooth function, and associate a 1-form w to f,

w=D;fdri+---+ D, fdz,.

Then for any curve v : [a,b] — A,
b
/w =/ (Difer)m +---+ (Dnf o)1
0% a
b

= / (fon) by the chain rule in coordinates

=(fom)|
= f(v(0) — F(7(a)).

That is, the form w measures change in f along curves. This makes it tempting
to give w the name df, i.e., to define
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df =Difdxy +---+ D, fdx,.

Soon we will do so as part of a more general definition.
(Recall the chain rule: If A C R" is open, then for any smooth v : [a,b] —
Aand f: A— R,

(fon)(®) = Ff(v(®)Y'(®)

71 (t)
= [Dif(Y®)) ... Duf(Y@)] | -
Vn(t)
= Z D f(y()vi(t)
= lZ(DifOW’)%I'] (t),

so indeed (f o) = 32i_ (Dif 0 )7;.)
Continuing to generalize, consider now a 1-form that does not necessarily
arise from differentiation,
w=Fdx1 +---+ F,dx,.
For any curve v : [a,b] — R™ the integral of w over 7 is

[o= L5

k3

(F; 07)7;) (),
=1
and this is the general flow integral (8.9) of the vector field (Fi,...,F,)
along . That is, the flow integrals from section 8.2 are precisely the inte-
grals of 1-forms.

Exercises

8.4.1. Let w = zdy — ydz, a 1-form on R2. Evaluate fww for the following
curves.
(@) v:[-1,1] — 1212, v(t)
(b) v:[0,2] — R*, ~(t) =

= (t2 - 1:t3 _t);
(t,1%).

8.4.2. Let w = zdx + z?dy + ydz, a 1-form on R3. Evaluate f,yw for the
following two curves.

() 7+ [=1,1] — R, (1) = (t,af?, bt?);

(b) v :[0,27] — R3, y(t) = (acost,asint, bt).
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8.4.3. (a) Let w = fdy where f : RZ — R depends only on y. That is,
f(z,y) = p(y) for some ¢ : R — R. Show that for any curve v = (v1,72) :

[a,b] — R?,
72(b)
[ [
Y v2(a)

(b) Let w = fdzx + gdy where f depends only on z and g depends only
on y. Show that f,y w = 0 whenever 7 : [a,b] — R? is a closed curve, meaning

that v(b) = v(a).

8.5 Examples: 2-forms on R3

To get a more complete sense of what formula (8.14) is doing, we need to study
a case with k£ > 1, i.e., integration on surfaces of more than one dimension.
Fortunately, the case n = 3, k = 2 is rich enough in geometry to understand
in general how k-forms on n-space work.

Consider figure 8.5. The figure shows a 2-surface in R3,

&= ($,P5,%;3): D — R3.

The parameter domain D has been partitioned into subrectangles, and the
image ®(D) has been divided up into subpatches by mapping the grid lines
in D over to it via @. The subrectangle J of D maps to the subpatch B of #(D),
which in turn has been projected down to its shadow B(i ) in the (z,y)-
plane. The point (uj,vy) resides in J, and its image under @ is $(uy,vy) =
(‘Z'Ba YB, ZB) .

Note that B(1,2) = (€1, ®P2)(J). Rewrite this as

B(1,2) = 45(1,2)(J)-

That is, B(y,2) is the image of J under the (1,2) component functions of &. If
J is small then results on determinants give

area(B(1 2)) ~ | det {; 5 (us,vs)| area(J]).

Thus, the magnification factor between subrectangles of D and (x,y)-projected
subpatches of (D) is (up to sign) the factor det 4 from formula (8.14) for I =
(1,2). The sign is somehow keeping track of the orientation of the projected
patch, which would be reversed under projection onto the (y, z)-plane. (See
figure 8.6.)

Let w = fdz A dy, a 2-form on R3, where f : R® — R is a smooth
function. By (8.14) and Riemann sum approximation,
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1<
LS

Figure 8.5. 2-surface in 3-space

Figure 8.6. Projected patch and its reversal

/&)z/(f0¢)detqsl(1,2)
[ D

~ Z(f 0 ®)(us,vy) det ¢21,2)(UJ; vy)area(J)
J

~ Zf(-'EB,yB,ZB)( + a,rea(B(l,Q))).
B
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This gives a geometric interpretation of what it means to integrate f dx A dy
over &: to evaluate [, f dx Ady, traverse the set #(D) and measure projected,
oriented area in the (z,y)-plane, weighted by the density function f. And
similarly for forms with dy A dz and so on.

For an illustrative example, consider the forms dz Ady, dz Adz, and dyAdz
integrated over the arch surface

&:[-1,1] x [0,1] — R?, B(u,v) = (u,v,1 —u?).

(See figure 8.7.) The (z,y)-shadows of By, B> have the same areas as Ji, Jo
and positive orientation, so [ dz Ady should be equal to area(D), i.e., 2. (See
the left half of figure 8.8.) The (z,z)-shadows of B;, B2 have area zero, so
Jdz A dz should be an emphatic 0. (See the right half of figure 8.8.) The
(y, z)-shadows of B;, B have the same area but opposite orientations, so
Jzdy A dz should be 0 by some cancellation on opposite sides of the (y, z)-
plane or equivalently, cancellation in the u-direction of the parameter domain.
(See figure 8.9.)

Figure 8.7. An arch

Integrating with formula (8.14) confirms this intuition. Since

1 0
&' (u,v)=1 0 1],
—2u0

we have
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i x — z
B,
Figure 8.8. (z,y)-shadows and (z, z)-shadows
z z
/
A B Y B
Y (]

Figure 8.9. (y, 2)-shadows

1 1 10
dr Nd :/detfﬁ' :/ / det[ ]:2,
/¢ Y D (1.2) v=0 Ju=—1 01

and similarly

/dz/\da:—/detdS' —/1 /1 det[_Quo]—//O—O
[ D (371) v=0Ju=-1 10 vJu ’
1 1 0 1
d/\dzz/detfp' :/ / det[ ]://2u=0.
[P v D (2,3) v=0 =—1 —2U0 vJu

Note how the first integral reduces to integrating 1 over the parameter do-
main, the second integral vanishes because its integrand is zero, and the third
integral vanishes because of cancellation in the u-direction. All three of these
behaviors confirm our geometric insight into how forms should behave.

Since the differential form dz A dy measures projected area in the (z,y)-
plane, the integral
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/zdx/\dy
&

should give the volume under the arch. And indeed formula (8.14) gives

/zda:/\dy:/ (1—wu?)-1,
& (u,v)ED

which is the volume. Specifically, the integral is

/pzd;c/\dy:/::o/lz_l(l—ef):1-(2—u3/3 1_1):4/3.

Similarly, since dy A dz measures oriented projected area in the (y, z)-plane,
integrating the differential form z dy A dz should also give the volume under
the arch. Here the interesting feature is that for z > 0 the form will multiply
the positive distance from the (y, z)-plane to the arch by positive (y, z)-area,
while for z < 0 the form will multiply the negative distance from the plane to
the arch by negative (y, z)-area, again measuring a positive quantity. To see
explicitly that the integral is again 4/3, compute:

1 1
/:Udy/‘\dz:/ / u-2u=1-(2/3)u® =4/3.
@ v=0 Ju=—1 -1

With these examples, the meaning of a k-form w = fdz; on n-space is
fairly clear:

Integrating w over a surface @ : D — R™ means traversing the set
&(D) and measuring oriented, k-dimensional volume of &(D) pro-
jected into k-space R weighted by the density function f.

This interpretation explains the results from integrating various 1-forms over
the helix in the previous section. Those integrals deserve reviewing in light of
this intepretation.

As the last example of this section, consider a 2-form on R3,
w = F1 dib'g N dib'3 + F2 dflf3 N dflfl + F3 d.’L'l N d.’L'g.
For any 2-surface @ : D — R2? the integral of w over & is

F1 o ¢)(D1¢2 D2¢3 - D1¢3 D2¢2)

(
/ w= / +(Fy 0 @)(D193 D291 — D191 D2P3) | (u),
7 D\ 4 (Fy 0 ) (D1 &y Dy®y — D16y Do)

and this is the flux integral (8.8) of the vector field (Fi, Fs, F3) through &.
A straightforward generalization of this example shows that the general in-
tegral of an (n — 1)-form over an (n — 1)-surface in R™ is the general flux
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integral (8.12). That is, the flux integrals from section 8.2 are precisely the
integrals of (n — 1)-forms.

Along with the last example of the previous section, this raises the ques-
tion: Why bother with k-forms for values of k£ other than 1 and n — 1, and
maybe also 0 and n? The answer is that the amalgamation of k-forms for
all values of k has a coherent algebraic structure, making the whole easier to
study than its parts. The remainder of the chapter is largely an elaboration
of this point.

After this discussion of the mechanics and meaning of integrating forms,
you should be ready to prove a result that has already been mentioned: inte-
gration of forms reduces to ordinary integration when k£ = n, and integration
of forms is unaffected by reasonable changes of parameterization. These points
are covered in the next set of exercises.

Exercises
8.5.1. Let a be a positive number. Consider a 2-surface in R?,
®:[0,a] x [0,7] — R?, &(r,0) = (rcosf,rsinb, r?).

Sketch this surface, noting that 6 varies from 0 to 7, not from 0 to 2z. Try to
determine [ dz A dy by geometrical reasoning, and then check your answer
by using (8.14) to evaluate the integral. Do the same for dy A dz and dz A dz.

8.5.2. Let w = xdy A dz + ydx A dy, a 2-form on R3. Evaluate quw when &
is the 2-surface (a) @ : [0,1] x [0,1] — R3, &(u,v) = (u+ v,u* —v?,uv); (b)
& :[0,27] x [0,1] — R3, &(u,v) = (vcosu,vsinu,u).

8.5.3. Consider a 2-form on R*,

w = F172 dx1 Adzs + F1,3 dx1 Adzs + F174 dx1 N dzy
+ F273 dxs N\ dxs + F2’4 dzo Ndzy + F374 dxs Ndzy.

Show that for any 2-surface  : D — R*, the integral of w over @ is given
by formula (8.13) from near the end of section 8.2.

8.5.4. This exercise proves that integration of k-forms on R™ reduces to stan-
dard integration when k =n

Let D C R™ be compact and connected. Define the corresponding natural
parameterization, A : D — R”, by A(u1,...,un) = (U1,---,uy,). (This is
how to turn a set in R™, where we can integrate functions, into the corre-
sponding surface, where we can integrate n-forms.) Let w = fdxi A--- Adzy,
an n-form on R™. Use (8.14) to show that

[ L
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In particular if f =1, then w = dz1 A---Adx, and [, w = vol(D), explaining
why in this case w is called the volume form.

Thus in R", we may from now on blur the distinction between integrating
the function f over a set and integrating the n-form w = fdx; over a surface,
provided that I = (1,...,n) (i.e., the dz; factors appear in canonical order),
and provided that the surface is parameterized trivially.

8.5.5. This exercise proves that because of the Change of Variable Theorem,
the integration of differential forms is invariant under orientation-preserving
reparameterizations of a surface. _

Let A be an open subset of R". Tet  : D — Aand ¥ : D — A
be k-surfaces in A. Suppose that there exists a smoothly invertible mapping
T : D — D such that ¥oT = &. In other words, T is smooth, T is invertible,
its inverse is also smooth, and the following diagram commutes:

If det 7' > 0 on D then the surface ¥ is called an orientation-preserving
reparameterization of &, whereas if det7' < 0 on D then ¥ is an
orientation-reversing reparameterization of ®.

(a) Let T be a reparameterization as just defined. Let $ = T=: D —» D,
a smooth mapping. Starting from the relation (SoT)(u) = id(u) for all u € D
(where id is the identity mapping on l~)), differentiate, use the chain rule, and
take determinants to show that detT'(u) # 0 for all u € D.

(b) Assume now that the reparameterization T is orientation-preserving.
For any n-by-k matrix M and any ordered k-tuple I from {1,...,n}, recall
that My denotes the k-by-k matrix comprised of the Ith rows of M. If N is a
k-by-k matrix, prove the equality

(MN); = M;N.
In words, this says that
the I'th rows of (M times N) are (the Ith rows of M) times N.

(Suggestion: Do it first for the case I = 4, that is, I denotes a single row.)
(c) Use the chain rule and part (b) to show that for any I,

det & (u) = det ¥} (T (u)) det T'(u) for all u € D.

(d) Let w = f(x)dzr, a k-form on A. Show that
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[pw:/T(D)(fOW)detW}.

Explain why the Change of Variable Theorem shows that

/w:/ ((foW)detW;) oT -det T".
v D

e

What would the conclusion be for orientation-reversing ¥?
(e) Do the results from (d) remain valid if w has the more general form

W = ZI f]d.’lf[?

Explain why this shows that

8.6 Algebra of Forms: Basic Properties

One advantage of forms over earlier set-ups of vector integral calculus is that
one can do much of the necessary work with them algebraically. That is,
crucial properties will follow from purely rule-driven symbolic manipulation
rather than geometric intuition or close analysis.

Let A be an open subset of R™. Since k-forms on A are functions (functions
of k-surfaces), they come with an inherent notion of equality. The meaning of

W1 = W2

is that w1 (P) = we(P) for all k-surfaces & in A. In particular, the meaning of
w = 0 is that w(®) = 0 for all ¢, where the first 0 is a form while the second
is a real number. Addition of k-forms is defined naturally,

(W1 4+ wW2)(P) = W1 (P) + w2 (P) for all wy, wa,, P,

where the first “+” is between forms, the second between real numbers. Sim-
ilarly for scalar multiplication,

(aw)(P) = c(w(P)) for all ¢, w, .

The addition of forms here is compatible with the twofold use of summation
in the definition of forms and how they integrate. Addition and scalar multi-
plication of forms inherit all the vector space properties from corresponding
properties of addition and multiplication in the real numbers, showing that
the set of all k-forms on A forms a vector space. Proving familiar looking facts
about addition and scalar multiplication of forms reduces quickly to citing the
analogous facts in R. For example, (—1)w = —w for any k-form w (where the
second minus sign denotes additive inverse), because for any k-surface &,
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@+ (=Dw)(?) = w(®) + ((-))w)(?) = w(®) + (-1)(w(®)) = 0,

the last equality holding since (—1)z = —z for all real numbers .

Forms have other algebraic properties that are less familiar. For example,
on R2, dy A dr = —dz A dy. This is because of the skew symmetry of the
determinant: For any 2-surface & : D — R2,

(dy A dz)() = /D det d 1) = — /D det &, ,) = —(dz A dy)().

More generally, given two k-tuples I and J from {1,...,n}, dey = —dzr it J
is obtained from I by an odd number of transpositions. Thus for example,

dzNdy ANdx = —dx ANdy ANdz

since (3,2, 1) is obtained from (1,2, 3) by swapping the first and third entries.
Showing this reduces again to the skew symmetry of the determinant. As a
special case, dr; = 0 whenever the k-tuple I has two matching entries. This is
because exchanging those matching entries has no effect on I but negates dzy,
and so dxy = —dzy, forcing dzy = 0. One can also verify directly that dz;y = 0
if I has matching entries by referring back to the fact that the determinant
of a matrix with matching rows vanishes.

Using these rules (dy A dz = —dx A dy, dz A dez = 0 and their generaliza-
tions), one quickly convinces oneself that every k-form can be written

WZZfIdJII
T

where the sum is over only increasing k-tuples I = (iy, ..., %), meaning those
k-tuples such that i; < --- < i, as mentioned in exercise 8.3.1. This is the
standard presentation for w mentioned in Exercise 8.3.2. It is not hard to
show that the standard presentation for w is unique. In particular, w = 0 as
a function of surfaces if and only if w has standard presentation 0.

The next few sections will define certain operations on forms and develop
rules of algebra for manipulating the forms under these operations. Like other
rules of algebra, they will be unfamiliar at first and deserve to be scrutinized
critically, but eventually they should become second nature and you should
find yourself skipping steps fluently.

Exercise

8.6.1. Show that if w is a k-form on R™ that satisfies w = —w, then w = 0.

8.7 Algebra of Forms: Multiplication

Given a k-tuple I = (i1,...,%x) and an I-tuple J = (j1,...,5¢) both from
{1,...,n}, define their concatenation (I, J), a (k+£)-tuple from {1,...,n},in
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the obvious way: (I,J) = (i1,...,%k,J1,---,J¢)- Also, if f and g are functions
on an open subset A of R™ then their product fg is the function defined by
the formula (fg)(x) = f(z)g(x).

Definition 8.7.1 (Wedge Product). Let A be an open subset of R™. If
w =7 ;frder and A = ) ; gsdx; are respectively a k-form and an (-form
on A, then their wedge product w A X is a (k + £)-form on A,

WAAX= Z frgsdz(r ).
1,7

For convenient notation, let A¥(A4) denote the vector space of k-forms
on A. Thus the wedge product is a mapping,

A AF(A) x ALH(A) — AFFE(A).
For example, a wedge product of a 1-form and a 2-form on R3 is

(fidz+fady + fsdz) A (g1dy Adz + gadz A dx + g3 dx A dy)
= figrdx Ndy Ndz + figodx Adz ANdx + figsdz Adx A dy
+ fagr1dy Ndy ANdz + fagady ANdz Adx + fags dy A dx A dy
+ fsgrdz ANdy ANdz + fsgadz Adz ANdx + fzgsdz Adz A dy
= (f191 + fag2 + f393) dz A dy A dz.

This shows that the wedge product automatically encodes the inner product
in R®, and the idea generalizes easily to R™. For another example, a wedge
product of two 1-forms on R? is

(T dx + Yo dy + 24 d2) A (T4 dx + Yy dy + 2, d2)
= (Yu2v — zuYo) dy A dz
+ (24%y — Tu2y) dz A dx
+ (TuYv — YuTy) dz A dy.

Comparing this to the formula for the cross product in section 3.10 shows
that the wedge product automatically encodes the cross product. Similarly, a
wedge product of two 1-forms on R2 is

(adz +bdy) A (cdz + ddy) = (ad — be) dz A dy,

showing that the wedge product encodes the 2-by-2 determinant as well.
Lemma 8.9.2 to follow will show that it encodes the general n-by-n deter-
minant.

Naturally the wedge in Definition 8.7.1 is the same as the one in Defi-
nition 8.3.1. There is no conflict in now saying that the two wedges are the
same, since each wedge in the earlier definition sits between two 1-forms and
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the definition attached no meaning to the wedge symbol. Definition 8.3.1
also juxtaposes functions (0-forms) and dz; terms (k-forms) without putting
a wedge between them, and it is still unclear what sort of multiplication
that juxtaposition connotes. In fact, it is also a wedge product, but when we
wedge-multiply a 0-form and a k-form we usually suppress the wedge. A basic
property of the wedge, its skew symmetry, will explain why in a moment.

Proposition 8.7.2 (Properties of the Wedge Product). Let A be an
open subset of R™. The wedge product has the following properties.

(1) The wedge product distributes over form addition: for all w € A*(A) and
A, Az € A4(4),
WAAL+A2) =wA M +wA A,

(2) The wedge product is associative: for all w € AF(A), X € AY(A), and
pe Am(4),
(WANAp=wAAALD).

(3) The wedge product is skew symmetric: for all w € A¥(A) and X € AY(A),
Aw = (=1)Fu AN

The proof is an exercise. The unfamiliar (and hence interesting) property
is the third one. The essence of its proof is to show that for any k-tuple I and
any {-tuple J,

dry ANdxy = (—l)kf drr Ndzy.

This follows from counting transpositions.

Note that the skew symmetry of the wedge product reduces to symmetry
(i.e., commutativity) when either of the forms being multiplied is a 0-form.
This is why one generally doesn’t bother writing the wedge when a 0-form is
involved. In fact, the wedge symbol is unnecessary in all cases, and typically
in multivariable calculus one sees, for example,

drdydz rather than dx AdyAdz.

Indeed, we could use mere juxtaposition to denote form-multiplication, but
because this new multiplication obeys unfamiliar rules, giving it a new symbol
reminds us of its novel properties as we study it.

Also, the special case of multiplying a constant function ¢ and a k-form
w is consistent with scalar multiplication of ¢ (viewed now as a real number)
and w. Thus all of our notions of multiplication are compatible.

Exercises

8.7.1. Find a wedge product of two differential forms that encodes the inner
product of R?.
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8.7.2. Find a wedge product of three differential forms that encodes the 3-by-3
determinant.

8.7.3. Prove the properties of the wedge product.

8.7.4. Prove that (w1 +w2) AX = wi AX+wa A for all wy,ws € A¥(A) and
X € AY(A). (Use skew symmetry, distributivity, and skew symmetry again.)

8.8 Algebra of Forms: Differentiation

Definition 8.8.1 (Derivative of a Differential Form). Let A be an open
subset of R™. For each integer k > 0 define the derivative mapping,

d: A¥(A) — AFTH(A),
by the rules

df = iDif dz;  for a O-form f,

i=1

dw = de} ANdzxyr  for a k-form w = ij dzy.
I I

For example, we saw in section 8.4 that for a function f, the 1-form
df =Difdx1+ - -+ Dy fdzx,

is the form that measures change in f along curves. To practice this new kind
of function-differentiation in a specific case, define the function

m:R*— R
to be projection onto the first coordinate,
mi(z,y,2z) =z for all (z,y,2) € R3.
Then by the definition of the derivative,
dny = Dymidz + Damidy + D3mdz = da. (8.15)

This is purely routine. In practice, however, one often blurs the distinction
between the name of a function and its output, for instance speaking of “the
function z2” rather than “the function f : R — R where f(z) = z2” or
“the squaring function on R.” Such sloppiness is usually harmless enough
and indeed downright essential in any explicit calculation where we compute
using a function’s values. But in this case, if we blur the distinction between
7 and its output x then the calculation of dm in (8.15) rewrites as
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de =dz. (1)

The two sides here mean different things. The left side is the operator d acting
on the projection function z, while the right side is a single entity, the 1-form
denoted dz. The equation is better written

d(z) = dx.

However it is written, this equality ensures that there is no possible conflict
between naming the differential operator d and using this same letter as part
of the definition of differential form.

Similarly, for a function of one variable f : R — R, the definition of d
immediately says that o

df = %dx,

where the single, indivisible symbol df /dz is the Leibniz notation for the
derivative of f. This relation, which is sometimes presented in first semester
calculus with nebulous meanings attached to df and dz, and which can NOT
be proved by cancellation, is now a relation between 1-forms that follows from
the definition of d. The moral is that the operator d has been so named to
make such vague, undefined formulas into definitions and theorems. For more
examples of differentiation, if

w=2xdy —ydx
then according to Definition 8.8.1,
dw = (Dyzdx + Dazdy) Ady — (D1ydz + Doy dy) Adz = 2dz A dy.

And if
w=zdyNdz+ydzANdz+ zdx ANdy

then
dw=3dx ANdy A dz.

The differentiation operator d commutes with sums and scalar multiples.
That is, if wy, wy are k-forms and c is a constant then
d(cwr + w2) = cdwy + dws.

More interesting are the following two results about form differentiation.

Theorem 8.8.2 (Product Rule for Differential Forms). Let A be an
open subset of R™. Let w and X\ be respectively a k-form and an £-form on A.
Then

dw AN =dwAX+ (=1)FwAd
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Proof. Start with the case of 0-forms f and g. Then

d(fg) =Y Di(fg)dz;

i=1
n

Z(Dz’f g+ fD;g) dx;

i=1

(i D;f d:ci> g+ f (i Dig d:ci>

i=1 i=1

=df g+ fdg.

Next consider a k-form and an ¢-form with one term each, frdzr and gy dx;.
Then

d(frdxr A gydzy) = d(frgsdecr Adzy) by definition of multiplication

=d(frgs) Ndxy ANdzy by definition of d
by the result just shown
= (dfrgs + frdgs) Ndzy Adx,
for 0-forms
=dfr(gs Ndxy) Ndzxy by distributivity and
+ fr(dgs A dxr) A dxy associativity of A

=dfr A (—=1)"*(dz1 A g7) Ndzy
+ fr(=1D)Y*(dz; Adgy) A dxy
= (dfr Ndzr) A ggdzy
+ (=1)* frdzy A (dgs A day)

by skew symmetry

by associativity and symmetry.

Finally in the general case w = ) ; frdzy;, A=) ; g, dz;,

d(w A )\) =d (Z frdz; A ZgJ d.’L'J) = Zd(f[ dxr AN gy d:EJ)
J

I 1,0

> (dfr Adwr) A gyday + (=1)* frder A (dgs Adzy)
I,J
(Z dfr N dmI) A (Z 97 de>
T 7
+ (-1 (Z I dxf) A (Z dgs /\de>
I

J

=dwAX+ (=1)*w A d\.
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As the last step in this proof consisted of tediously pushing sums through
the other operations, it will typically be omitted from now on, and proofs will
be carried out for the case of one-term forms.

Theorem 8.8.3 (Nilpotence of d). Let A be an open subset of R™. Then
d*>w = 0 for any form w € A*(A), where d*> means d o d. In other words,

d’=0.
Proof. For a 0-form f,
df = Z D;f dz;,

i=1

and so
n

d*f =d(df) =Y _d(Dif) Adz; = Dy;f du; A da;.

i=1 (2]
All terms with ¢ = j cancel since dx; Adx; = 0, and the rest of the terms cancel
pairwise since for i # j, Djif = D;; f (equality of mixed partial derivatives)
and dz; A dzj = —dx; A dz; (skew symmetry of the wedge product). Thus
d’f =0.
Also, for a k-form dz; with constant coefficient function 1,
d(dzr) = d(1dzy) = (d1) Adx; = 0.
Next, for a one-term k-form w = fdxy,
dw = df Ndxg
and so by the first two calculations,

d*w = d(df Ndxy) = d*f Adzp + (—1)'df Ad(dz;) =040 =0.

For a general k-form, pass sums and d?s through each other. O

Exercises
8.8.1. Let w = fdz + gdy + hdz. Show that
dw = (D2h — D3g)dy Adz + (Dsf — D1h)dz Adz + (D1g — D2 f) dx A dy.

8.8.2. Let w = fdy Adz + gdz Adz + hdz A dy. Evaluate dw.
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8.8.3. Differential forms of orders 0,1,2,3 on R® are written

wo = @,

wi = fidz + fady + f3dz,

wo = g1dy Ndz + gadz ANdzx + g3 dx A dy,
w3 = hdzx Ady Adz.

(a) For a O-form ¢, what are the coefficients f; of d¢ in terms of ¢?

(b) For a 1-form w;, what are the coefficients g; of dw; in terms of the
coefficients f; of wy?

(c) For a 2-form wsy, what is the coefficient h of dws in terms of the coeffi-
cients g; of wy?

8.8.4. Classical vector analysis features the operator
V= (DI;D25D3)7

where the D; are familiar partial derivative operators. Thus, for a function
¢:R> — R,
V¢ = (D1¢aD2¢7D3¢)'

Similarly, for a mapping F = (f1, fo, f3) : R® — R3, V x F is defined in the
symbolically appropriate way, and for a mapping G = (g1, g2, 93) : R® — R3,
so is (V, G). Write down explicitly the vector-valued mapping V x F' and the
function (V,G) for F and G as just described. The vector-valued mapping
V¢ is the gradient of ¢ from section 4.6,

grad ¢ = V.
The vector-valued mapping V x F' is the curl of F,
curl F =V x F.
And the scalar-valued function (V,G) is the divergence of G,
divG = (V,G).

8.8.5. Continuing with the notation of the previous two problems, introduce
correspondences between the classical scalar-vector environment and the en-
vironment of differential forms, as follows. Let

ds = (d,dy, dz),
dn = (dy A dz,dz A dz, dz A dy),
dV =dz ANdy N dz.
Let id be the mapping that takes each function ¢ : R®> — R to itself. Let

-ds be the mapping that takes each vector-valued mapping F' = (f1, f2, f3) to
the 1-form
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F-ds= fidz+ fody + fsdz.

Let -dn be the mapping that takes each vector-valued mapping G = (g1, 92, 93)
to the 2-form

G-dn =gy dy Ndz + godz Adx + g3 da A dy.
And let dV be the mapping that takes each function h to the 3-form
hdV = hdz ANdy Ndz.

Combine the previous problems to verify that the following diagram com-
mutes, meaning that either path around each square yields the same result.

rad iv
¢ Fs ( f1;f2>f3) (91,92, 93) —— =
Id*n v
f1 dx g1dy Ndz
p—Ls  +fody —%s  +gadzAdr —%— hdz Ady Adz
+f3dz +gsdx A dy

Thus the form-differentiation operator d, specialized to three dimensions, uni-
fies the classical gradient, divergence, and curl operators.

8.8.6. Two of these operators are zero:
curl ograd, divocurl, divo grad.

Explain, using the diagram from the preceding exercise and the nilpotence
of d. For a function ¢ : R® — R, write out the harmonic equation (or
Laplace’s equation),

div(grad ¢) = 0.

8.8.7. A form w is called closed if dw = 0, and exact if w = dA for some
form A.

(a) Prove that any exact form is closed.

(b) Whether the converse holds is a much deeper question, depending on
the topology of the domain A on which the forms are defined. Here is a special
case of showing that a closed form is exact: A function f : R® — R is called
homogeneous of degree k if

ftz,ty, tz) =tF f(x,y,2z) forallt € R and (z,y,2) € R>.
Such a function must satisfy Euler’s identity,

.'L'le + ysz + ZD3f = kf



8.9 Algebra of Forms: the Pullback 361

Suppose that w = fidz + fady + f3dz is a closed 1-form whose coefficient
functions are all homogeneous of degree k where k£ > 0. Show that w = d¢
where

1
¢=17 1 (@fi+yfat2fs).
(c) Here is a closed form that is not exact: Let
rzdy —ydx
o2y

a 1-form on the punctured plane A = R? — {(0,0)}. Show that w is closed.
Integrate w around the counterclockwise unit circle,

v:[0,27] — A, v(t) = (cost,sint),

to show that there is no O-form (i.e., function) € on the punctured plane such
that w = db.

8.9 Algebra of Forms: the Pullback

Recall the Change of Variable Theorem from chapter 6: Given a change of
variable mapping now called T' (rather than @ as in chapter 6), and given a
function f on the range space of T', the appropriate function to integrate over
the domain is obtained by composing with 7" and multiplying by an absolute

determinant factor,
[ 5= tem)1dar)
T(D) D

A generalization to forms of the notion of composing with T lets us sim-
ilarly transfer forms—rather than functions—from the range space of of a
mapping T to the domain. This generalization will naturally include a deter-
minant factor that is no longer encumbered by absolute value signs. The next
section will show that integration of differential forms is inherently invariant
under change of variable.

We start with some examples. The familiar polar coordinate mapping from
(r,0)-space to (x,y)-space is

T(r,0) = (rcosé,rsin G)C%H(a:, Y)-

Using this formula, and thinking of T' as mapping from (r, #)-space forward to
(z,y)-space, any form on (z,y)-space can naturally be converted back into a
form on (r, §)-space, simply by substituting r cos 8 for z and r sin 8 for y. If the
form on (z,y)-space is named X then the form on (r,6)-space is denoted T*\.
For example, the 2-form that gives area on (z, y)-space,
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A =dz Ady,
has a naturally corresponding 2-form on (r, #)-space,
T*X = d(r cosf) Ad(rsin).
Working out the derivatives and then the wedge shows that

T*\ = (cos@dr —rsinfdf) A (sinfdr + r cos6 df)
=rdrANdb.

Thus (now dropping the wedges from the notation), this process has converted
dx dy into r dr df as required by the Change of Variable Theorem.

For another example, continue to let 7' denote the polar coordinate map-
ping, and consider a 1-form on (z,y)-space (for (z,y) # (0,0)),

_xdy—ydzx
o op2 4y

We studied this form in exercise 8.8.7(c). The corresponding 1-form on (r, )
space (for r # 0) is

T*y — rcos @ d(rsin @) — rsin 6 d(r cos 6)
“= (r cos )2 + (r sin )2

Here the differentiations give
d(rsinf) =sin@dr 4+ rcosfdf, d(rcosf) = cosfdr — rsinf db,
and so the form on (r, ) space is

__rcosf(sinfdr +rcosf df) —rsinb(cos b dr —rsinf df)

T*w
2

=df.

That is, despite the conclusion of exercise 8.8.7(c), apparently the form w is df
in some sense after all.
For a third example, again start with the 1-form

zdy —ydx
x2 +y2

but this time consider a different change of variable mapping,
T(u,v) = (u = v*, 2u0) = (z,y).
The 1-form on (u,v)-space (for (u,v) # (0,0)) corresponding to w is now

(u? — v?) d(2uv) — 2uv d(u? — v?)
(u?2 —v2)2 + (2uv)?

T*w =
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The derivatives are

d(2uv) = 2(wdu 4+ udv), d(u®—v?) =2udu—vdv),

and so
T* — 9 (u? — v?)(vdu + v dv) — 2uv(udu — v dv)
(uZ + v2)2
_y ((u? — v?)v — 2u?v) du + ((u?® — v?)u + 2uv?) dv
(u? + v?)?
_ 2udv —vdu
u? + v?

This is essentially the original form, except that it is doubled and now it
is a form on (u,v) space. What’s happening here is that T is the complex
square mapping, which doubles angles, and our calculation somehow reflects
this. The original form w, which measures change of angle in (x,y)-space,
has transformed back to the form that measures twice the change of angle in
(u,v)-space.

Given a mapping, the natural process of changing variables in a differen-
tial form on the range of the mapping to produce a differential form on the
domain of the mapping is called pulling the differential form back through the
mapping. The general definition is as follows.

Definition 8.9.1 (Pullback of a Differential Form). Let k be a nonneg-
ative integer. Let A be an open subset of R™, and let B be an open subset
of R™. Let

T=(Ty,...,Tn): A— B

be a smooth mapping. Then T gives rise to a pullback mapping of k-forms
in the other direction,

T : AF(B) — AF(A).
Let the coordinates on R™ be (z1,...,2,), and let the coordinates on R™ be

(Y1,---Ym). For each k-tuple I = (i1, ... i) from {1,...,m}, let dT1 denote
dTi, A--- ANdT;, . Then the pullback of any k-form on B,

w= ZfIdyI;

T*w="> (froT)dTr.

I

18

Since each Tj; is a function on A, each dTj; is a 1-form on A and the
definition makes sense. As usual, when k = 0, the empty products dyy and dT}
are interpreted as 1, and the pullback is simply composition,

T f=foT.
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As the examples before the definition have shown, computing pullbacks is easy
and purely mechanical: given a form w in terms of y’s and dy’s, its pullback
T*w comes from replacing each y; in w by the expression T;(z1,...,z,) and
then working out the resulting d’s and wedges.

The fact that pulling the form dz A dy back through the polar coordinate
mapping produced the factor r from the Change of Variable Theorem is no
coincidence.

Lemma 8.9.2 (Wedge—Determinant Lemma). Define an n-form valued
function A on n-tuples of n-vectors as follows. For any n vectors in R™,

a1 = (a11,012,- - -,01n),
as = (a21,a22,...,a2n),
an = (anlyanQ;---;ann)a

create the corresponding 1-forms,

w1 = a1 dey + a2 dzs + - -+ + aip dzy,

wo = a9 dr1 + azp dzs + - - - + asp dzy,

Wn = Gp1 dT1 + ana dzy + -+ + apy doy,
and then define
Alar,ag,...,an) = w1 Awa A+ Awp.

Then
Alay,az,-..,a,) = det(ay,as,...,a,)dry A--- Adz,.
That is, A = det -dz(,... p)-

We have already seen this result for n = 2 in section 8.7 and for n = 3 in
exercise 8.7.2.

Proof. The only increasing n-tuple from {1,...,n} is (1,...,n). As a product
of n 1-forms on R™, A(ay,as,...,a,) is an n-form on R™, and therefore it is
a scalar-valued function é(a1,as,...,a,) times dz(; . ). Various properties
of the wedge product show that

e the function § is linear in each of its vector variables, e.g.,
5((11,0,2 + &2; . '7an) = 5(@1,&2, . -:an) + 6(0’176’27 .. '5a’n)

and
d(ar,cas,...,a,) =cd(ai,as,...,a,),
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e the function ¢ is skew symmetric, i.e., transposing two of its vector vari-
ables changes its sign,
e and the function ¢ is normalized, i.e., d(e1,e2,...,€,) = 1.

The determinant is the unique function satisfying these three conditions,
so § = det. O

Theorem 8.9.3 (Pullback—Determinant Theorem). Let A be an open
subset of R™, and let B be an open subset of R™. LetT : A — B be a smooth
mapping. Let R™ have coordinates (x1,...,2y,), and let R™ have coordinates
(Y1, yYm). Let I = (i1,...,in) be an n-tuple from {1,...,m}. Then

T*dy; = det T} dzy A - -+ A dxy,.
Proof. By definition,
T*dyr = dTy =dT;, A---ANdT;,

A (DlTig d£U1 + -+ .DnT,2 d;L'n)

A (D1T;, dxy + - -+ + D, T;, dxy,).
This is precisely A(T; ,T;,,...,T; ), so the lemma completes the proof. O
In particular, when m =n and I = (1,...,n), the theorem says that
T*(dy1 A --- ANdyy,) =detT' dzy A--- Adzy,

confirming the polar coordinate example early in this section. Similarly, if T
is the spherical coordinate mapping,

T(p,0,p) = (pcosbsin @, psinfsin ¢, p cos @),
then the theorem tells us that

T*(dx Ady A dz) = —p*sing dp A df A do.

You may want to verify this directly to get a better feel for the pullback
and the lemma. In general, the Pullback—Determinant Theorem can be a big
time-saver for computing pullbacks when the degree of the form equals the
dimension of the domain space. Instead of multiplying out lots of wedge prod-
ucts, simply compute the relevant subdeterminant of a derivative matrix.

What makes the integration of differential forms invariant under change of
variable is that the pullback operator commutes with everything else in sight.

Theorem 8.9.4 (Properties of the Pullback). Let A be an open subset
of R™, and let B be an open subset of R™. Let T = (T1,...,Tm) : A — B
be a smooth mapping. Then:
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(1) For all wy,w2,w € A¥(B) and c € R,

T*(w1 + (UQ) =T*w + T*wg,
T*(ew) = e T*w.

(2) For all w € A*¥(B) and X\ € A4(B),
T*(wAA) = (T*w) A (T*N).

(3) For all w € A¥(B),
T*(dw) = d(T*w).

That is, the pullback is linear, the pullback is multiplicative (meaning that
it preserves products), and the pullback of the derivative is the derivative of
the pullback. The results in the theorem can be expressed in commutative
diagrams, as in exercise 8.8.5. Part (2) says that the following diagram com-

mutes:
AR(BY x A4B) — T gk(4) x A¢(A)

% P

AR (B) T AR A)

7

and part (3) says that the following diagram commutes:

AF(B) —E— Ak(4)
d d

AR (B) =L AR+ (4).

All of this is especially gratifying because the pullback itself is entirely natural.
Furthermore, the proofs are straightforward: all we need to do is compute, ap-
ply definitions, and recognize definitions. The only obstacle is that the process
requires patience.

Proof. (1) Is immediate from the definition.
(2) For one-term forms f dy; and gdyy,

T*(fdyr Ngdys) =T*(fgdy,s)) by definition of multiplication
= (fg) o T dT(1,y) by definition of the pullback
=foTdItAgoTdTy since (fg)oT =(foT)(goT)
=T*(fdyr) NT*(gdys) by definition of the pullback.

The result on multi-term forms follows from this and (1).
(3) For a 0-form f:R™ — R, df = >_1", D;f dy;, so by the chain rule,
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m

T*(df) =T" (Z D, f dy;) applying the definition of d
i=1

applying the definition

of the pullback

I
NE

(sz o T) de

<.
I
=

n
Dif oT > D;T; da; applying the definition of d

I

=1 j=1
n m
= Z Z D;foT-D;T;| dr; interchanging the sums
j=1 Li=1
n
= Z Dj(f oT)dz; recognizing the chain rule
j=1
=d(foT) recognizing the definition of d
=d(T*f) recognizing the pullback.

For a one-term k-form fdyy, d(f dyr) = df A dyr, so by (2) and the result for
0-forms,

T*(d(f dyr)) = T*(df A dyr) applying the definition of d
=T*df ANT*dy; since pullback and wedge commute
=d(T*f) ANT*dy; by the just-established result
=d(foT)ANdT; by definition of the pullback, twice
=d(f o T dTy) recognizing the definition of d
=d(T*(f dyr)) recognizing the pullback.

The multi-term result follows from this and (1). O
The pullback also behaves naturally with respect to composition.

Theorem 8.9.5 (Contravariance of the Pullback). Let A be an open
subset of R™, let B be an open subset of R™, and let C be an open subset
of Rt. Let T : A — B and S : B — C be smooth mappings. Then for any
form w € A¥(C),

(SoT)Y'w=(T"oS"w.

This peculiar-looking result—that the pullback of a composition is the com-
position of the pullbacks, but in reverse order—is grammatically inevitable.
Again, a commutative diagram expresses the idea:
AR(C) == AR(B) s AR(4).
\—/

(SoT)*
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Proof. For a O-form f : C — R, the result is simply the associativity of
composition,

(SoT) f=fo(SoT)=(fo8)oT =TS f) = (T" o 5*).

Let (z1,...,Z,) be coordinates on R™, and similarly for (y1,...,ym) on R™
and (z1,...,2) on R’ For a one-term 1-form dz, (where g is an integer from
{1,....4}),

applying the definition
of the pullback
=d(SqoT) since (SoT)g=8,0T

(SoT)*dzy =d(SoT),

= D;(S;0T)dz; applying the definition of d

:Z ZDS oT-DT;| dz; by the chain rule

i=1 | j=1

m
D;SyoT- Z D;T; dx; interchanging the sums
= i=1

j=1
m
Z(D iSq0T)dT; recognizing the definition of d
Jj=1
m
Z D;S, dy; recognizing the pullback
=T*(dS,) recognizing the definition of d
=T*(S"dz,) recognizing the pullback
= (T" 0 §*)dz, by definition of composition.

Since any k-form is a sum of wedge products of 0-forms and 1-forms, and since
the pullback passes through sums and products, the general case follows. 0O

Recapitulating the section: To pull a differential form back though a map
is to change variables in the form naturally. Because the wedge product has
the determinant wired into it, so does the pullback. Because the pullback is
natural, it commutes with addition, scalar multiplication, wedge multiplica-
tion, and differentiation of forms, and it anticommutes with composition of
forms. That is, everything that we are doing is preserved under change of
variables.

The results of this section are the technical heart of the chapter. The
reader is encouraged to contrast their systematic algebraic proofs with the
tricky analytic estimates in the main proofs of chapter 6. The work of this
section will allow the pending proof of the Generalized Fundamental Theorem
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of Integral Calculus to be carried out by algebra, an improvement over hand-
waving geometry or tortuous analysis. The classical integration theorems of
the nineteenth century will follow without recourse to the classical procedure
of cutting a big curvy object into many pieces and then approximating each
small piece by a straight piece instead. The classical procedure is either im-
precise or Byzantine, but for those willing to think algebraically, the modern
procedure is accurate and clear.

Exercises

8.9.1. Recall the two forms from the beginning of the section,

_xdy—ydz

A =dz Ady, 22147

Consider a mapping from the nonzero points of (u,v)-space to nonzero points
of (z,y)-space.

T(u,v) = (UQL —7@) <l ).

+ 027 u2 4 02

Compute the pullbacks T*\ and T*w, and explain why your answers make
sense in light of the fact that T is the complex reciprocal mapping. Or better
yet, in light of the fact that T is the complex reciprocal mapping, determine
what T*\ and T*w need to be, and then confirm your answers by computing
them.

8.9.2. Define S : R2 — R2 by S(u,v) = (u + v,uv) ¥ (z,y). Let w =
22 dy + y? dr and \ = xy dz, forms on (z,y)-space.

(a) Compute wAM, S'(u,v), and S*(wAN). (Use the Pullback—Determinant
Theorem.)

(b) Compute S*w, S*A, and S*w A S*A. How do you check the last of
these? Which of the three commutative diagrams from the section is relevant
here?

(c) Compute dw and S*(dw).

(d) Compute d(S*w). How do you check this? Which commutative diagram
is relevant?

(e) Define T : R? — R? by T'(s,t) = (s — t, sel) call (u,v). Compute
T*(S*X).

(f) What is the composite mapping S o T? Compute (S o T')*X. How do
you check this, and which commutative diagram is relevant?

8.9.3. Let r be a fixed positive real number. Consider a 2-surface in R3,
&:[0,27] x [0,7] — R?,  &(8, ) = (rcosh sinp,rsinf sin @, r cos ).

Consider also a 2-form on R3,
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w=—(z/r)dy Ndz — (y/r)dz Ndz — (z/r) dz A dy.

Compute the derivative matrix &'(0, ), and use the Pullback-Determinant
Theorem three times to compute the pullback &*w. Compare your answer
to the integrand of the surface integral near the end of section 8.1 used to
compute the volume of the sphere of radius r. (It follows that w is the area-
form for the particular surface @ in this exercise, but not that w is a general
area-form for all surfaces.)

8.10 Change of Variable for Differential Forms

The definition of integration and the algebra of forms combine to make a
Change of Variable Theorem for differential forms a triviality. First, a theorem
of independent interest allows us to replace any integral of a differential form
over a parameterized surface with an integral over the trivial parameterization
of the surface’s parameter domain.

Theorem 8.10.1 (Pullback Theorem). Let A be an open subset of R".
Let w be a k-form on A and let & : D — A be a k-surface in A. Define a
k-surface in R¥,

AP D — RF, AP (u) = u for allu € D.

/w:/ P*w.
3 AD

Proof. As usual, just do the case of a one-term form, w = f dzy. Then

Then

Lfdm; = /D(f o @) det & by definition, per (8.14)
= /AD (f o®)det ®) dus A--- Adup by Exercise 8.5.4
_ /A (fod)@duy by Theorem 8.9.3
- /A @ (fder) by definition of pullback.

O

The general Change of Variable Theorem for differential forms follows im-
mediately from the Pullback Theorem and the contravariance of the pullback.

Theorem 8.10.2 (Change of Variable for Differential Forms). Let A
be an open subset of R™, and let B be an open subset of R™. LetT : A — B
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be a smooth mapping. For any k-surface in A, & : D — A, the composition
Tod:D — B is thus a k-surface in B. Let w be a k-form on B. Then

/ w:/T*w.
Tod 3

Proof. Let A: D — RF be as above. Then
/ w= / (Tod)'w= / ¢ (THw) = / T*w.
Tod A A @

The Pullback Theorem is essentially equivalent to the definition of inte-
gration once one has the Pullback—Determinant Theorem. Thus, a logically
equivalent route to ours through this material is to define integration of a k-
form in k-space as ordinary integration, and integration of a k-form in n-space
for k < n via the pullback. Doing so would have been a little tidier (there
would not be two notions of integration when &k = n whose compatibility needs
to be verified), but the approach here has the advantage that one can start
integrating immediately before developing all the algebra.

O

Exercise

call

8.10.1.Let T : R?> — R2? be given by T'(z1,72) = (23 — 22,21122) =
(y1,y2). Let v be the curve 7 : [0,1] — R?2 given by 7(t) = (1,t) mapping
the unit interval into (x1,2)-space, and let T o« be the corresponding curve
mapping into (y1,y=2)-space. Let w = y1 dy», a 1-form on (y1, y2)-space.

(a) Compute [p,., w.

(b) Compute T*w, the pullback of w by T.

(c) Compute fv T*w. What theorem says that the answer here is the same
as (a)?

(d) Let A = dy1 A dya, the area form on (y;,y2)-space. Compute T*\.

(e) A rectangle in the first quadrant of (z1,z2)-space,

R = {(z1,22) : a1 < 21 < by,a2 < 22 < ba},

gets taken to some indeterminate patch B = T'(R) by T. Find the area of B,
S A, using (d). (This exercise abuses notation slightly, and identifying R with
its natural parameterization and B with the corresponding surface T o R.)

(f) Why does this exercise requires that R live in the first quadrant? Can
the restriction be weakened?

8.11 Cubes and Chains

Sections 8.7 through 8.9 introduced algebraic operators on differential forms:
the wedge product, the derivative, and the pullback. The next section will



372 8 Integration of Differential Forms

introduce a geometric operator on surfaces. The first thing to do is specialize
the definition of a surface a bit. As usual, let [0, 1] denote the unit interval.
For k > 0 the unit k-cube is the cartesian product

[0,11F =1[0,1] x --- x [0,1] = {(u1,--.,ug) : u; € [0,1] for i =1,...,k}.

As mentioned in section 8.3, when k& = 0 this means the one-point set whose
point is ().

Definition 8.11.1 (Singular Cube, Standard Cube). Let A be an open
subset of R™. A singular k-cube in A is a k-surface whose parameter domain

is the unit boz,
$:00,1)F — A.

In particular, the standard k-cube is
AF 0,1 — RY, A*(u) = u for all u € [0,1]F.

As with Definition 8.1.1 of a surface, now a cube is by definition a mapping,
and in particular a O-cube is the parameterization of a point. In practice,
we often blur the distinction between a mapping and its image, and under
this blurring the word “cube” now encompasses noncubical objects such as a
torus-surface or a solid sphere. The next definition allows us to consider more
than one cube at a time. The purpose is to integrate over several cubes in
succession, integrating over each of them a prescribed number of times.

Definition 8.11.2 (Chain). Let A be an open subset of R™. A k-chain in
A is a finite formal linear combination

C= Z Ilsé(s),
s

where each vs is an integer and each (4 is a singular k-cube in A. (The
surface subscript is in parentheses only to distinguish it from a component
function subscript.)

For example, if &, ¥ and I" are singular k-cubes in R"™ then

20 — 30 +23I

is a k-chain in R™. This is not the singular k-cube mapping points u to 2&(u) —
3¥(u)+23I(u) in R™. The term “formal linear combination” in the definition
means that we don’t actually carry out any additions and scalings. Rather, the
coefficients v, are to be interpreted as integration multiplicities. A k-chain,
like a k-form, is a set of instructions.

Definition 8.11.3 (Integral of a k-form over a k-chain in n-space). Let
A be an open subset of R™. Let
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C = Z I/sép(s)

be a k-chain in A, and let w be a k-form on A. Then the integral of w over C

is
/w: E I/s/ w,
¢ Ps)

s
This definition can be written more suggestively as

/ w= E 1/3/ w.
2 vsP(s) @(s)

S
Although C is a formal linear combination, the operations on the right of the
equality are literal addition and multiplication in R. For example, let a and b
be points in R”, and let ¢, and &, be the corresponding 0-cubes. Then for
any O-form on R", w = f: R" — R,

| e=10)- 1.
&, —D,

One can define predictable rules for addition and scalar multiplication (integer
scalars) of chains, all of which will pass through the integral sign tautologically.
Especially, the Change of Variable Theorem for differential forms extends from
integrals over surfaces to integrals over chains,

/ w:/T*w.
ToC C

We will quote this formula in the proof of the General FTIC.
Also, one can compose a suitable function g with a chain to get another
chain. That is,

if C = Zl/s@(s) then go C= Zl/s(g o ¢(s))7
s s
assuming that everything here is sensible.

Exercise
8.11.1. Consider the “inner product” (actually, it is called a pairing)
(,) : {k-forms on R"} x {k-chainsin R"} — R

defined by the rule (w,C) = [, w. Show that this inner product is bilinear,
meaning (3_; ciw;, C) = -, ci{w;, C) and (w, 3-; ¢iCi) = 3-; ci{w, Ci).

It makes no sense to speak of symmetry of this pairing since the arguments
may not be exchanged.

Do you think the pairing is nondegenerate, meaning that for any fixed
chain C, if {(w,C) = 0 for all w then C must be 0, and for any fixed w, if
{w,C) =0 for all C then w must be 07
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8.12 Geometry of Chains: the Boundary Operator

This section defines an operator that takes k-chains to (k — 1)-chains. The
idea is to traverse the edge of each singular k-cube in the chain, with suitable
multiplicity and orientation. The following definition gives three rules that
say how to do so. The first rule reduces taking the boundary of a k-chain
to taking the boundary of its constituent singular k-cubes. The second rule
reduces taking the boundary of a singular k-cube to taking the boundary
of the standard k-cube. The third rule, giving the procedure for taking the
boundary of the standard k-cube, is the substance of the definition. It is best
understood by working through specific cases.

Definition 8.12.1 (Boundary). Let A be an open subset of R™. For each
k > 1, define the boundary mapping

0 : {k-chains in A} — {(k — 1)-chains in A}

by the properties:
(1) For any k-chain ) v Py,

(3 vey) = 3 s09s).

(2) For any singular k-cube &,
0P = & o QA

(The composition here is of the sort defined at the end of the previous
section.)

(3) Define mappings from the standard (k — 1)-cube to the faces of the the
standard k-cube as follows: for any i € {1,...,n} and j € {0,1}, the
mapping to the face where the ith coordinate equals o is

A¥, 1[0, — [0, 1],

given by
Af’a(ul, ‘e ,Uk_l) = (ul, ey Ui—150, Ujy et s ;uk—l)-
Then
ko1 .
oAk =3 "N " (—1)iteAf,. (8.16)
i=1 a=0

In property (2) the composition symbol “o” has been generalized a little
from its ordinary usage. Since A* is a chain ) ps¥(s), the composition & o
OAF is defined as the corresponding chain ) us® o ¥(s)- The compositions in
the sum make sense since by property (3), each ¥(;) maps [0, 1]~ into [0, 1]*.
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To remember the definition of Aﬁa in (8.16), read its name as “set the ith of k
variables to @” or just “set the ith variable to a.” The idea of formula (8.16)
is that for each of the directions in k-space (i = 1,...,k), the standard k-
cube has two faces with normal vectors in the ith direction (o = 0,1), and
we should take these two faces with opposite orientations in order to make
both normal vectors point outward. Unlike differentiation, which increments
the degree of the form it acts on, the boundary operator decrements chain
dimension.

For example, the boundary of the standard 1-cube is given by (8.16)
oA! = _Aio + Air

This is the right endpoint of [0,1] with a plus and the left endpoint with
a minus. (See figure 8.10. The figures for this sections show the images of
the various mappings involved, with symbols added as a reminder that the
images are being traversed by the mappings.) One consequence of this is that
the familiar formula from the one-variable Fundamental Theorem of Integral
Calculus,

/0 = 1) - £(0),

is now expressed suggestively in the notation of differential forms as

Ju b= fout

As for the boundary of a singular 1-cube & : [0,1] — R™ (i.e., a curve in
space) with #(0) = a and (1) = b, property (2) of the boundary definition
gives

00 =PodA' = —PoAjy+PoA,.

This is the curve’s endpoint b with a plus and the start-point a with a minus.
The last example of section 8.4 now also takes on a more suggestive expression,

Figure 8.10. Standard 1-cube and its boundary

The boundary of the standard 2-cube is again given by (8.16)
oA = —A%,o + A%,l + A%,o - Ag,l'
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This traverses the boundary square of [0,1]? once counterclockwise. (See fig-
ure 8.11.) Next consider a singular 2-cube that parameterizes the unit disk,

&:[0,1]> — R?, &(r,8) = (r cos 2w, r sin 276).

By property (2), 0% = & 0 dA2. This traverses the boundary circle once coun-
terclockwise, two radial traversals cancel, and there is a degenerate mapping to
the centerpoint. (See figure 8.12.) Changing to &(r,0) = (r cos 278, —r sin 278)
also parameterizes the unit disk, but now 09 traverses the boundary circle
clockwise.

\

Figure 8.11. Standard 2-cube and its boundary

A

\

Figure 8.12. Boundary of a singular 2-cube

The boundary of the standard 3-cube is, by (8.16),
oA = _Aio + A:f,1 + Ag,o - A%J - Ag,o + Ag,l'

This traverses the faces of [0, 1], oriented positively if we look at them from
outside the solid cube. (See figure 8.13.)
The second boundary of the standard 2-cube works out by cancellation to
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Figure 8.13. Boundary of the standard 3-cube

AT =0.

(See the left side of figure 8.14.) And the second boundary of the standard
3-cube similarly is
9?A% =0.

(See the right side of figure 8.14.) These two examples suggest that the nota-
tional counterpart to the nilpotence of d is also true,

8% =0.

This is indeed a theorem, and it is readily shown by a double sum calculation
in which terms cancel pairwise. But it will also follow immediately from the
main theorem of the chapter, the Generalized FTIC, which states that in a
precise sense the differentiation operator d and the boundary operator 0 are
complementary. This is why they are notated so similarly.

Since integration is invariant under reparameterization, you needn’t be
too formal in computing boundaries once you understand how they work on
standard cubes. The boundary of the unit square (the 2-cube), for example,
is adequately described as its edge traversed counterclockwise at unit speed,
and so the boundary of any singular 2-cube @ from the unit square into R" is
simply the restriction of @ to the edge of the square with appropriate traversal,
or (once we finally prove the Change of Variable Theorem from the previous
chapter) any orientation-preserving reparameterization thereof. In particular,
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Figure 8.14. Second boundaries

any rectangle in R? can be obtained by scaling and translating the unit square
in an orientation-preserving fashion, so the boundary of such a rectangle is, as
one would hope, its edge, counterclockwise. More generally, a singular 2-cube
in R? is a sort of parameterized membrane floating in space, and its boundary
is just its edge, traversed in the direction inherited from the parameterization,
as we saw for the disk. Without the parameterization, neither direction of
traversing the membrane’s edge in R™ for any n > 2 is naturally preferable
to the other. Similarly in R3, the boundary of the unit cube is its six faces,
oriented to look positive from outside the cube. In other words, an acceptable
coordinate system for a boundary face of the cube is two orthonormal vectors
whose cross product is an outward unit normal to the cube. The boundary of
any singular 3-cube @ : [0,1]®> — R? is the restriction of @ to the boundary
faces of [0, 1]3.

Exercises

8.12.1. Define a singular k-cube called the simplex, & : [0,1]* — R*, by

k—1
¢(’U/1, .. 7“/@) = (u17 (1 - ul)“?a (1 - Ul)(]- - 'U/Q)’U/g, ERE] H(]' - ul)uk)
i=1
(a) Show that if (z1,...,z%) = B(u1,...,u) then Y F 2, = 1-T[F, (1-
Ui).
(b) Show that the image of @ lies in the set (also called the simplex)
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(In fact, the image is all of the simplex, but showing this would take us too
far afield.)

(c) For each of the values k = 1,2, 3, do the following. Calculate 0® (the
result is a (k — 1)-chain). Graph 8¢ by graphing each (k — 1)-cube in the
chain and indicating its coefficient (+1 or —1) beneath the graph. Each graph
should show [0, 1]*~1 and R*.

8.12.2. Describe the boundary of the hemispherical shell H : D — R? where
D is the unit disk in R? and H(z,y) = (z,y,1/1 — 22 — y2).

8.12.3. Describe the boundary of the solid unit upper hemisphere
H={(z,y,2) e R®: 22 +¢y> + 22 < 1,2 > 0}.

8.12.4. Describe the boundary of the paraboloid @ : {(u,v) € R? : u? 4+ v? <
1} — R? where
B(u,v) = (u,v,u? +0?).

8.12.5. Describe the boundary of & : [0, 27] x [0,7] — R? where
&(0, ) = (cos 0 sin ¢, sin O sin ¢, cos ¢).
8.12.6. Describe the boundary of @ : [0, 1] x [0,27] % [0, 7] — R?® where

®(p, 0, ) = (pcosfsin ¢, psin fsin @, pcos @).

8.12.7. Fix constants 0 < a < b. Describe the boundary of & : [0, 27] x [0, 27] x
[0,1] — R? where &(u,v,t) = (cosu(b+ at cosv), sinu(b + at cosv), at sinv).

8.13 The Generalized Fundamental Theorem of Integral
Calculus

As mentioned in the previous section, the algebraic encoding d of the deriva-
tive (an analytic operator) and the algebraic encoding 9 of the boundary (a
geometric operator) are complementary with respect to integration:

Theorem 8.13.1 (Generalized FTIC). Let A be an open subset of R™. Let
C be a k-chain in A, and let w be a (k — 1)-form on A. Then

/de=/acw. (8.17)

Before proving the theorem, we study two examples. First, suppose that
k =n =1, and that the 1-chain C is a singular 1-cube @ : [0,1] — R taking
0 and 1 to some points a and b. Then the theorem says that for any suitable
smooth function f,
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b
/ f'(@)dz = f(b) — f(a).

This is the one-variable Fundamental Theorem of Integral Calculus. Thus,
whatever else we are doing, we are indeed generalizing it.

Second, to study a simple case involving more than one variable, suppose
that C = A? (the standard 2-cube) and w = f dy for some smooth function f :
[0,1]? — R, i.e., f is a function of z and y. The derivative in the left side
of (8.17) works out to

dw = Dy fdx A dy,

Exercise 8.5.4 says that we may drop the wedges from the integral of this
2-form over the full-dimensional surface A2 in 2-space to obtain a chapter 6
function-integral, and so the left side of (8.17) works out to

/ dw = DifdxNdy = D f.
A2 A2 [0,1]2

Meanwhile, on the right side of (8.17), the boundary &A? has four pieces,
but on the two horizontal pieces dy is zero since y is constant. Thus only the
integrals over the two vertical pieces contribute, giving

frwo= [0 [ o= [ 00500

By the one-variable Fundamental Theorem, the integrand is

1

f(l,u)—f(O,u) = le(tau)a

t=0

and so by Fubini’s Theorem, the integral is

1,1

/ le(t, u) = le.
u=0 Jt=0 [0,1]2

Thus both sides of (8.17) work out to f[o 12 D f, making them equal as de-

sired, and the Generalized FTIC holds in this case. The first step of its proof
is essentially the same process as in this example.

Proof. Recall that we want to establish formula (8.17), [, dw = [,.w, where
C is a k-chain and w is a (k — 1)-form. Begin with the special case where C is
the standard k-cube,

C = A*,

and w takes the form w = fdz; A--- A C/lEj A -+ Adzy, where the " means
to omit the term. Thus

w= fdr; where J=(1,...,7,...,k).
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To evaluate the left side fc dw of (8.17), we need to compute dw. In this special
case ‘
dw = D;fdz; Ndzy = (-1Y"'D; fdxq, k),

and so by exercise 8.5.4, the left side reduces to the function-integral of the
jth partial derivative over the unit box,

/ dw:(—l)j_l/ Djfda:(l,m,k):(—l)j_l/ D;f. (8.18)
Ak Ak [0,1]%

To evaluate the right side |, scw of (8.17), we need to examine the boundary

ko1
aAk = Z Z(_l)i+aA§,a7

i=1 a=0

where A¥ (uy,...,up_1) = (un,...,ui_1,0,u;,...,up_1). Note that
F10---0[0--- 07
01---00---0
00---10---0
k \ _

(Aia)' = 00---00---0
00---01---0
[ 00---0[0--- 1|

This derivative matrix is k-by-(k — 1), consisting of the identity matrix except
that zeros have been inserted at the ith row, displacing everything from there
downwards. On the other hand, recall that J = (1,... . ., k). Tt follows
that the determinant of the Jth rows of the matrix is

det(at,)y =40 20
’ 0 ifi#j.

That is, the integral of w = fdz; can be nonzero only for the two terms in
the boundary chain OA* with 4 = j, parameterizing the two boundary faces
whose normal vectors point in the direction missing from dz ;:

fdz; = / fdzy
8Ak (—1)i+1(Ak, — Ak )
= -1y /[ IR DREEIARE

Here the last equality follows from the definition of integration over chains
and the defining formula (8.14). For any point u = (uy,...,ux_1) € [0,1]¥71,
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the integrand can be rewritten as an integral of the jth partial derivative by
the one-variable Fundamental Theorem of Integral Calculus,

(f o A%y — foAfo)(u)

= f(ula"'7uj71717uj7"'7uk71) _f(ula'"Juj71707uj7"'7uk71)

:/ D]-f(ul,...,uj,l,t,uj,...,uk,l).
t€[0,1]

Therefore, the right side of (8.17) is

/ w= (—]_)j+1/ / Djf(ul,...,uj_l,t,uj,...,uk_l).
A uel0,1]=1 Jte[o,1]

By Fubini’s Theorem this is equal to the right side of (8.18), and so the
Generalized FTIC is proved in the special case.

The rest of the proof is handled effortlessly by the machinery of forms and
chains. A general (k — 1)-form on A is

k k
szfjd:cl/\---/\dxj/\---/\dmk:ij
j=1 7j=1

where each w; is a form of the type covered by the special case. Also, dw =
> j dw;. So continuing to integrate over the standard k-cube,

Akdw:/Ak;dwj:; Akdwj
"L L=

where the crucial equality in the middle is the special case just shown. Thus
the theorem holds for a general form when C = A*.

For a singular k-cube @ in A and for any (k — 1)-form w on A, we now
have

/ dw = / &* (dw) by the Pullback Theorem
@ Ak

= d(P*w) since derivative commutes with pullback
Ak
= / d*w since the result holds on A*
Ak
/ by the Change of Variable Theorem for
= w
Fod Ak differential forms, extended to chains

by definition of boundary.

Il
m\
S

€
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So the result holds for singular cubes.
Finally, for a k-chain C =} vs®,) in A and for any (k—1)-form w on A4,

/dw:/ dw:ZVS dszt/s/ w,
¢ X v 2(s) s 0% (s)

s

with the third equality due to the result for singular cubes, and the calculation

continues
Yo =] o= [ v=[ w
8‘?(5) ZS V58¢(3) 8(25 VS‘P(S)) 8C

S

This completes the proof. O

The beauty of this argument is that the only analytic results that it uses are
the one-variable FTIC and Fubini’s Theorem, and the only geometry that it
uses is the definition of the boundary of a standard k-cube. All the complicated
twisting and turning of k-surfaces in n-space is filtered out automatically by
the algebra of differential forms.

Computationally, the Generalized FTIC will sometimes give you a choice
between evaluating two integrals, one of which may be easier to work. Note
that the integral of lower dimension may not be the preferable one, however;
for example, integrating over a solid 3-cube may be quicker than integrating
over the six faces of its boundary.

Conceptually the Generalized FTIC is exciting because it allows the pos-
sibility of evaluating an integral over a region by antidifferentiating and then
integrating only over the boundary of the region.

Exercises

8.13.1. Similarly to the second example before the proof of the Generalized
FTIC, show that the theorem holds when C = A% and w = fdz A dx.

8.13.2. Prove as a corollary to the Generalized FTIC that 62 = 0, in the
sense that [y, w = 0 for all forms w.

8.13.3. Let C be a k-chain in R”, f : R® — R a function, and w a (k — 1)-
form on R™. Use the Generalized FTIC to prove a generalization of the formula
for integration by parts,

/fdwz/ fw—/df/\w.
c ac c
8.13.4. Let & is a 4-chain in R* with boundary 0. Prove the identity,

fidyANdz ANdw + fadz ANdw ANdx + fsdw ANdz ANdy + fadz ANdy N dz
oF

= / (Difi — Dafs + D3 fs — Dyafy) dx ANdy A dz A dw.
F

Here the order of the variables is (z,y, z,w).
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8.14 The Classical Theorems

The classical integration theorems of vector calculus arise from specializing n
and k in the General FTIC. As already noted, the values n = k = 1 give the
one-variable FTIC,

b af

[ e = 10 = f(a).

If k = 1 but n is left arbitrary then the result is familiar from section 8.4. For
any curve v : [0,1] — R™, let a = v(0) and b = v(1). Then
of of
~Z coig =L e = F() — .
[ e+ g dan = S0~ S(@)

Setting n = 2, k = 2 gives Green’s Theorem: Let A be an open subset
of R2. For any singular 2-cube @ in A and functions f,g: A — R,

// (@—g> dw/\dy:/ fdx+gdy.
s \0z 0Oy od

The double integral sign is used on the left side of Green’s Theorem to em-
phasize the two-dimensional integral. Naturally the classical statement doesn’t
refer to a singular cube or include a wedge. Instead, the idea is to view & as a
set in the plane and require a traversal of 09 (also viewed as a set) such that &
is always to the left as one moves along 0¥. Other than this, the boundary
integral is independent of how the boundary is traversed because the whole
theory is to be invariant under orientation-preserving reparameterization. (See
figure 8.15.)

Figure 8.15. Traversing the boundary in Green’s Theorem

Green’s Theorem has two geometric interpretations. To undellstand them,
first let A C R? be open and think of a vector-valued mapping F : A — R?
as defining a fluid flow in A. Define two related scalar-valued functions on A,
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curl F = D1F, — DoF;,  and  divE = D F, + Do F.

These are two-dimensional versions of the quantities from exercises 8.8.4
and 8.8.5. Now consider a point p in A. Note that curl F(p) and div F(p )
depend only on the derivatives of F at p, not on F( ) itself. So replacing F
by F — F(p), we may assume that F(p) = 0, i.e., the fluid flow is stationary
at p. Recall that D, F3 is the rate of change of the vertical component of F' with
respect to change in the horizontal component of its input, and Dy F; is the
rate of change of the horizontal component of F' with respect to change in the
vertical component of its input. Thus, a scenario where the two terms Dq F5
and —DyFy of (curl F)(p) are positive looks like the left side of figure 8.16.
This explains why curl F is interpreted as measuring the vorticity of F at P,
its tendency to rotate a paddle-wheel at p counterclockwise. Similarly, D F}
is the rate of change of the horizontal component of F' with respect to change
in the horizontal component of its input, and Ds F5 is the rate of change of the
vertical component of F' with respect to change in the vertical component of
its input. A scenario where the terms of (div F))(p) are positive looks like the
right side of figure 8.16. Thus div F' is viewed as measuring the extent that
fluid is spreading out from p, i.e., how much fluid is being pumped into or
drained out of the system at the point. Specifically, the left side of the figure
shows the vector field .
F(may) = (_yax)

whose curl and divergence at the origin are
(curl F(0) =2,  (divF)(0) =0,

and the right side shows (with some artistic license taken to make the figure
legible rather than accurate) the vector field

F(z,y) = (z,y)
whose curl and divergence at the origin are
(curl F)(0) =0,  (divF)(0) =

For the two geometric interpretations of Green’s Theorem, introduce the
notation

dA=dxNdy, ds=(dz,dy), dn=/(dy,—dz).

The form-vectors ds and dn on & are viewed respectively as differential
increment around the boundary and differential outward normal (see the ex-
ercises), while dA is differential area. Then setting F= (f,9) and F= (9,—1)
respectively shows that Green’s Theorem says

//curlﬁdAz F.ds and /divﬁ’dA: F - dn.
D oP D od

The resulting two interpretations are
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Figure 8.16. Positive curl and positive divergence

the net counterclockwise vorticity of F throughout &
equals the net flow of F' counterclockwise around 0P

and

the net positive creation of fluid by F throughout ®
equals the net flur of F' outward through 0®.

These appeal strongly to physical intuition.

Setting n = 3, k = 2 gives Stokes’s Theorem: Let A be an open subset
of R3. For a singular 2-cube & in A and functions f,g,h: A — R,

Oh Og of Oh dg Of
//4;(81/ az) dy/\dz+<6z 6:1:) dz/\dalr+<aaj 8y> dz A dy

= fdz+gdy+ hdz.
%

Introduce the notation
ds = (dz,dy,dz) and  dn = (dy A dz,dz A dz,dz A dy),
and for a vector-valued mapping F : R? — R3 define
curl F = (DyF; — D3Fy, DsFy — D1 Fs, D1 Fy — Do Fy).

Then setting F' = (f, g, h) shows that Stokes’s Theorem is

//curlﬁ-d;L: F-ds
D oP

As with Green’s Theorem, the classical statement doesn’t refer to a singular
cube or include a wedge. Instead, ¢ is an orientable two-dimensional set in
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space, and its boundary 09 is traversed counterclockwise about its normal
vectors. The integrals on both sides of the equality are independent of how &
and 09 are paraemterized, provided that the geometry is just described.

For the interpretation of Stokes’s Theorem, think of a mapping F:R3 —
R3 as describing a fluid flow in space. The mapping curl F' is interpreted as
measuring the local vorticity of F around each positive coordinate direction.
The form-vector dn on & is viewed as differential outward normal, while ds
on 09 is viewed as differential increment around the boundary. Thus the
interpretation of Stokes’s Theorem is a 3-dimensional version of the first in-
terpretation of Green’s Theorem,

the net tangent vorticity of F throughout &
equals the net flow of F' around 0.

Setting n = 3, k = 3 gives the Divergence Theorem (or Gauss’s The-
orem): Let A be an open subset of R3. For a singular 3-cube @ in A and
functions f,g9,h: A — R,

/// (6_f+@+%) da:/\dy/\dz:/ fdyAdz+gdzAde+hde Ady.
od

Introduce the notation
dV =dz Ady A dz,

and for a vector-valued mapping F : R — R3 define
divE = D1 F, + Dy Fs + D3 F;.

Then setting F = (f, g, h) shows that the Divergence Theorem is

///divﬁdvz/ F.dn
b poled

Thus the interpretation of the Divergence Theorem is a 3-dimensional version
of the second interpretation of Green’s Theorem,

the net positive creation of fluid by F throughout @
equals the net flur of F' outward through 0®.

Again, the classical theorem views ¢ and 0% as sets, so long as whatever
parameterization of ¢ is used to compute the right-side integral has the same
orientation as the boundary of the parameterization of ¢ used to compute the
left-side integral.

Exercises

8.14.1. (a) Let v : [0,1] — R?, t = 7(t) be a curve, and recall the form-
vectors on R? ds = (dw,dy), dn = (dy, —dz). Compute the pullbacks ~*(ds)
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and 'y*(d;z) and explain why these are interpreted as differential tangent and
normal vectors to .

(b) Let v : [0,1] — R3, ¢t — 7(t) be a curve and & : [0,1]> — R?,
(u,v) — ®(u,v) a surface, and recall the form-vectors on R3 ds = (dz, dy, dz),
dn = (dy Adz,dz Adz, dz Ady). Compute the pullbacks v*(ds) and &*(dn) and
explain why these are interpreted respectively as differential tangent vector
to v and differential normal vector to @.

8.14.2. Use Green’s Theorem to show that for a planar region &,

area(P) :/ zdy = —/ ydz.
% o

Thus one can measure the area of a planar set by traversing its boundary. (This
principle was used to construct ingenious area-measuring machines before
Green’s Theorem was ever written down.)

8.14.3. Let H be the upper unit hemispherical shell,
H={(z,y,2) eR>:x? + 9> + 22 =1,2> 0}
Define a vector-valued function on R?,
F(z,y,2) = (x +y+ 2,2y +yz + zz,2y2).
Use Stokes’s Theorem to calculate [[,, curl F - dn.

8.14.4. Use the Divergence Theorem to evaluate
/ 22 dy Ndz + y? dz ANdx + 2 dx A dy,
oH

where OH is the boundary of the solid unit hemisphere
H={(z,y,2) e R®: 22 + > + 22 < 1,2 > 0}.

(Thus 0H is the union of the unit disk in the (z,y)-plane and the unit upper
hemispherical shell.) Feel free to cancel terms by citing symmetry if you’re
confident of what you’re doing.

8.14.5. Let g and h be functions on R?. Recall the operator V = (Dy, Do, D3),
which takes scalar-valued functions to vector-valued functions. As usual, define
the Laplacian operator to be A = Dy; + Das + D33. From an earlier exercise,
A = div o grad.

(a) Prove that div (g Vh) = g Ah + Vg - Vh.

(b) If D is a closed compact subset of R? with positively oriented bound-
ary 0D, prove that

///D(gAh—FVg-Vh)dV=//8D9Vh-d-h.
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(Here n is the unit outward normal to D and Vh-n is the directional derivative
of h in the direction of n.) Interchange g and h and subtract the resulting
formula from the first one to get

///D(!IAh—hAg)dV://BD(QVh_hvg)_d;L‘

These two formulas are Green’s identities.

(c) Assume that h is harmonic, meaning that it satisfies the harmonic
equation Ah = 0.

Take g = h and use Green’s first identity to conclude that if h = 0 on the
boundary 0D then h =0 on all of D.

Take g = 1 and use Green’s second identity to show that

/ Vh-dn = 0.
8D

What does this say about harmonic functions and flux?

8.15 Divergence and Curl in Polar Coordinates

The picture-explanations given in the previous section to interpret the diver-
gence and the curl are not entirely satisfying. Working with the polar coor-
dinate system further quantifies the ideas and makes them more coherent by
applying to both operators in the same way.

Rather than study the divergence and the curl of a vector field F at a
general point p, we may study the divergence and the curl of the modified
vector field B N

F(z) = F(z +p) — F(p)
at the convenient particular point 0, at which the value of F' is 0 as well. That
is, we may normalize the point p to be 0 by prepending a translation of the
domain, and we also may normalize F(0) to 0 by postpending a translation
of the range. With this in mind, let A C R? be an open set that contains the
origin, and let F' be a continuous vector field on A that is stationary at the
origin,
F=(F,FR):A—R? F(0)=0.

At any point other than the origin, F' resolves into a radial component and
an angular component. Specifically,

F =F, + Fy,
where
F.=f#,  fr=F-%,  #=/(cost,sind) = (z,9)/|(z,y)l,
Fy=f, fo=F-0, 6=¢%=(—sinb,cos6) = (—y,z)/|(z,y).
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(Recall that the unary cross product (z,y)* = (—y, ) in R? rotates vectors
90 degrees counterclockwise.) Here f, is positive if F, points outward and
negative if F}. points inward, and fy is positive if Fy points counterclockwise
and negative if Fyp points clockwise. Since F(0) = 0, the resolution of F' into
radial and angular components extends continuously to the origin, f.(0) =
f4(0) = 0, so that F,(0) = Fy(0) = 0 even though # and § are undefined at
the origin.

The goal of this section is to express the divergence and the curl of F
at the origin in terms of the polar coordinate system derivatives that seem
naturally suited to describe them, the radial derivative of the (scalar) radial
component of F',

D, f.(0) = lim fr(rcosﬁ,rsmé?)’

r—0t r

and the radial derivative of the (scalar) angular component of F,

D, fo(0) = lim fo(rcos¢9,rsm0).

r—0t r

However, matters aren’t as simple here as one might hope. If the (vector)
radial and angular components F,. and Fjy are differentiable at the origin then
so is their sum F', but the converse is not true. So first we need sufficient
conditions for the converse, i.e., sufficient conditions for the components to
be differentiable. Necessary conditions are always easier to find, so Proposi-
tion 8.15.1 will do so, and then Proposition 8.15.2 will show that the necessary
conditions are also sufficient. The conditions in question are the Cauchy—
Riemann equations,

D, F1(0) = D, F»(0),
D1 F5(0) = —DyF;(0).

When the Cauchy—Riemann equations hold, we can describe the divergence
and the curl of F' at the origin in polar terms, as desired. This will be the
content of Theorem 8.15.3.

Before we proceed to the details, a brief geometric discussion of the
Cauchy—-Riemann equations may be helpful. The equation Dy F; = Do F5 de-
scribes the left side of figure 8.17, in which the radial component of F' on the
horizontal axis is growing at the same rate as the radial component on the
vertical axis. Similarly, the equation Do Fy = —D; F» describes the right side
of the figure, in which the angular component on the vertical axis is growing
at the same rate as the angular component on the horizontal axis. Combined
with differentiability at the origin, these two conditions will imply that moving
outward in any direction, the radial component of F' is growing at the same
rate as it is on the axes, and similarly for the angular component. Thus the two
limits that define the radial derivatives of the radial and angular components
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of F at 0 (these were displayed in the previous paragraph) are independent
of 8. An example of this situation, with radial and angular components both
present, is shown in figure 8.18.

|
el

|

|

Figure 8.17. Geometry of the Cauchy—Riemann equations individually

=

Figure 8.18. Geometry of the Cauchy—Riemann equations together

As mentioned, the necessity of the Cauchy—Riemann equations is the nat-
ural starting point.

Proposition 8.15.1 (Polar Differentiability Implies Differentiability
and the Cauchy Riemann Equations). Let A C R? be an open set that

contains the origin, and let F' be a continuous vector field on A that is sta-
tionary at the origin,
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F:(Fl,FQ):A—)R2, F(0)=0.

Assume that the radial and angular components F, and Fy of F' are differen-
tiable at the origin. Then F' is differentiable at the origin, and the Cauchy-
Riemann equations hold at the origin.

For example, the vector field F(z,y) = (z,0) is differentiable at the origin,
but since D1 F;(0) = 1 and D5F5(0) = 0, it does not satisfy the Cauchy—
Riemann equations, and so the derivatives of the radial and angular compo-
nents of F' at the origin do not exist.

Proof. As already noted, the differentiability of F' at the origin is immedi-
ate. To begin establishing the Cauchy—Riemann equations, consider the radial
component of F,

Fy(z,y) = {fr@’yhﬁiizh if (2,y) # 0,
0 if (z,y) =0
_ Jor(@y)(z,y) if (z,9) #0,
0 if (z,y) = 0,
where
— fr(-’lf,y)

gr(z,y) = (2,9)] for (z,y) # 0.

The first component function of F, vanishes at 0, i.e., F.1(0) = 0. Also the
first component function of F;. vanishes on the y-axis away from the origin
because F, is radial, and so D,F; 1(0) = 0 as well. Thus the condition that
F, 1 is differentiable at 0 is

po | Fra(h k) = hDyFra (0))
(h,k)—0 |(h, k)|

=0,

But Fjy; vanishes on the z-axis since Fy is angular, and so D1 Fy1(0) = 0,
giving D1 F,.1(0) = D1F1(0). Also F,.1(h, k) = h g,(h, k) away from the origin,
so that the previous condition becomes

‘m |h| |gr(h, k) — D1F1(0)]
(h,k)—0 |(h, k)|

=0,

A similar argument using the second component function shows that

|k| lgr(h, k) — D2 F3(0)]

i 0] =0

Let (h,k) — 0 along the line h = k to see that

D, F;(0) = D, F5(0)



8.15 Divergence and Curl in Polar Coordinates 393

since both are limy_,¢ g,(h, h). This is the first Cauchy—Riemann equation at
the origin, but we show a bit more, to be used in the proof of Theorem 8.15.3.
Add the previous two displayed limits to get

i URL+1RD |9, (R, k) — D1 F, (0)]
(h,k)—0 |(h, k)|

=0,

and since |(h, k)| < |h| + |k|, it follows that

lim |g.(h,k) — D1 F, =0.
(h’}c) 0|9 (h, k) 1Fr(0)[ =0
That is,
lim g.(h,k) = D1F,.(0) = D>F,5(0).
(h,llc) Og( ) 1 ( ) 2 ,2( )

Next consider the radial component of the vector field —F* = fyr — fré,

X _ gﬂ(w7y)(x7y) if ('Z.7y) :l'é 07
(_F )T‘(may) - {0 if (x,y) _ 0’

where

_ f@(x7y) r
go(z,y) = o) for (z,y) # 0.

This radial component is differentiable at the origin since it is a rotation of
the angular component of the original F', so as just argued,

lim gy(z,y) = —D1FY(0) = =D, F;(0).

(z,y)—0
But
—D,F*(0) = D, F»(0) and — Dy F(0) = —DyFy(0),
and this gives the second Cauchy—-Riemann equation at the origin. O

Also as mentioned, the converse to Proposition 8.15.1 holds too.

Proposition 8.15.2 (Differentiability and the Cauchy—Riemann Equa-
tions Imply Polar Differentiability). Let A C R? be an open set that con-
tains the origin, and let F' be a continuous vector field on A that is stationary
at the origin,

F=(F,F):A— R? F(0)=0.

Assume that F is differentiable at the origin, and assume that the Cauchy-
Riemann equations hold at the origin. Then the radial and angular components
F,. and Fy are differentiable ot the origin.
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Proof. Let a = D1 F;(0) and let b = D; F5(0). By the Cauchy—Riemann equa-
tions, also a = Dy F5(0) and b = —D>F;(0), so that the Jacobian matrix of F'
at 0 is ;
! _|la -
Po=[2].
The condition that F' is differentiable at 0 is

\F(h, k) — (ah — bk, bh + ak)|

o [, ) =0

Decompose the quantity whose absolute value is the numerator into radial
and angular components,

F(h, k) — (ah — bk, bh + ak) = (F.(h, k) — (ah,ak)) + (Fy(h, k) — (—bk, bh))

Since the direction vectors # = (h,k)/|(h, k)| and § = (—k,h)/|(h, k)| are
orthogonal, and

Fy(h,k) — (ah,ak) | # and  Fy(h, k) — (—bk,bh) || 6,
it follows that

\F,(h, k) — (ah, ak)| < |F(h, k) — (ah — bk, bh + ak)|

and
|Fp(h, k) — (—bk,bh)| < |F(h, k) — (ah — bk, bh + ak)|.
Therefore,
. |Fr(h, k) — (ah,ak)|
| =
o (k) !
and
|F(hak) - (_bkabh)l =0

(hak)s0 (B, k)|

That is, F. and Fy are differentiable at the origin with respective Jacobian
matrices
! — a 0 12 _ 0 —b
E.(0) = [0 a] and Ey(0) = [b 0] .

This completes the proof. O
Now we can return to the divergence and the curl.

Theorem 8.15.3 (Divergence and Curl in Polar Coordinates). Let
A C R? be a region of R? containing the origin, and let F' be a continuous
vector field on A that is stationary at the origin,

F=(F,F): A —R?% F(0)=0.
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Assume that F' is differentiable at the origin and that the Cauchy—Riemann
equations hold at the origin. Then the radial derivatives of the radial and
angular components of F' at the origin,

Drfr(O): lim fr(TCOSH,rsmH)

r—0+ T

and 0 rsing
D, f5(0) = lim fo(r cos@,rsin )7

r—0+ r

both exist independently of how 6 behaves as r shrinks to 0. Furthermore,
the divergence of F at the origin is twice the radial derivative of the radial

component,
(div F)(0) = 2D,.f-(0),

and the curl of F at the origin is twice the radial derivative of the angular

component,
(curl F)(0) = 2D, f4(0).

Proof. By Proposition 8.15.2, the angular and radial components of F' are
differentiable at the origin, so that the hypotheses of Proposition 8.15.1 are
met. The first limit in the statement of the theorem was calculated in the
proof of Proposition 8.15.1,

: Ir(z,y) .
Dr g 0) = hm = llm T, = D4 F’ 0) = D> F. 0).
£:(0) (z,y)—=0 |(z,9)] (:c,y)—>0g (z,y) 1F1(0) 2F>(0)

This makes the formula for the divergence immediate,
(div F)(0) = D1 F1(0) + D2F5(0) = 2D.,.f,.(0).

Similarly,

: fo(may) :
D, fs(0) = 1 -1 ,y) = D1F5(0) = —DyF(0),
PO = B0 Tl ~ aio (0¥ = PrR(0) = =D (0)

so that
(CUI‘I F)(O) = D1F2 (0) — D2F1 (0) = QDng(O)
If F is a velocity field then the limit in the formula

(curl F)(0) =2 lim fo(rcosf,rsinb)

r—0t+ r

has the interpretation of the angular velocity of F' at the origin. That is:

When the Cauchy—Riemann equations hold, the curl is twice the an-
gular velocity.
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Indeed, the angular velocity w away from the origin is by definition the rate
of increase of the polar angle § with the motion of F'. This is not the counter-
clockwise component fy, but rather w = fy/r, i.e., w is the function called gq
in the proof of Proposition 8.15.1. To understand this, think of a uniformly
spinning disk such as a record on a turntable. At each point except the center,
the angular velocity is the same. But the speed of motion is not constant over
the disk, it is the angular velocity times the distance from the center. That is,
the angular velocity is the speed divided by the radius, as claimed. In these
terms, the proof showed that the angular velocity w extends continuously to 0,
and that (curl F)(0) is twice the extended value w(0).
Also, if F' is a velocity field then the right side of the formula

fr(rcos@,rsinf)

(div F)(0) = 2 lim

r—0t r
has the interpretation of the flux density of F' at the origin. That is:

When the Cauchy—Riemann equations hold, the divergence is the flux
density.

To understand this, think of a planar region of incompressible fluid about the
origin, and let r be a positive number small enough that the fluid fills the area
inside the circle of radius r. Suppose that new fluid being added throughout
the interior of the circle, at rate ¢ per unit of area. Thus fluid is being added
to the area inside the circle at total rate mr2c. Here c is called the flux density
over the circle and it is is measured in reciprocal time units, while the units
of mr2c are area over time. Since the fluid is incompressible, mr2c is also the
rate at which fluid is passing normally outward through the circle. And since
the circle has circumference 277, fluid is therefore passing normally outward
through each point of the circle with radial velocity

mrlc  rc

fr(rcos@,rsinf) = 5 = 3

Consequently,
zfr(r cosf,rsin )
r
Now let r shrink to 0. The left side of the display goes to the divergence of F'
at 0, and the right side becomes the continuous extension to radius 0 of the
flux density over the circle of radius r. That is, the divergence is the flux
density when fluid is being added at a single point.

Exercises

8.15.1. Put R? into correspondence with the complex number field C as
follows:

X .
—>T+1y.
M Y
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Show that the correspondence extends to
e=blll it @+iy)
b a|ly Y-
Show also that the correspondence preserves absolute value, i.e.,
z .
o] =1+

where the first absolute value is on R2 and the second one on C.

8.15.2.Let A C R2 be an open set that contains the origin, and let F :
A — R? be a vector field on A that is stationary at the origin. Define a
complex-valued function of a complex variable corresponding to F,

flx+iy) = Fi(z,y) +iF(z,y), (z,9) € A
Then f is called complex-differentiable at 0 if the following limit exists:

. flz+Az) = f(2)
Al;rgo Az ’

The limit is denoted f'(2).

(a) Suppose that f is complex-differentiable at 0. Compute f'(z) first by
letting Az go to 0 along the z-axis, and again by letting Az go to 0 along
the y-axis. Explain how your calculation shows that the Cauchy—Riemann
equations hold at 0.

(b) Show also that if f is complex differentiable at 0 then F' is vector
differentiable at 0, meaning differentiable in the usual sense. Suppose that f
is complex-differentiable at 0, and that f'(0) = re®’. Show that

(div F)(0) = 2r cos#, (curl F)(0) = 2rsin#.

(c) Suppose that F is vector-differentiable at 0 and that the Cauchy—
Riemann equations hold at 0. Show that f is complex-differentiable at 0.

8.16 Summary
The bulk of the ideas introduced in this chapter are algebraic. Even so, the

General FTIC eases the proof of the classical Change of Variable Theorem,
and it subsumes the three classical integration theorems of vector calculus.
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