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Preface

The Notes on Conduction Heat Transfer are, as the name suggests, a compilation of lecture notes
put together over ∼ 10 years of teaching the subject. The notes are not meant to be a comprehensive
presentation of the subject of heat conduction, and the student is referred to the texts referenced
below for such treatments. A goal of mine, in preparing the notes, has been to address an apparent
shortcoming in many of the current texts, in that the texts present the mathematical formulation
and analytical solution to a wide variety of conduction problems, yet they spend little if any time
on discussing how numerical and graphical results can be obtained from the solutions. As will be
seen, this task in itself is not trivial, and to this end mathematical software packages (in particular,
the package Mathematica) will be used extensively in application of the analytical solutions.

The notes were prepared using the LATEX typesetting program, which is freely available via
internet download. I wish to thank my former students, who have (and continue) to catch the
multitude of mistakes and typos in the notes.

These notes are dedicated to the memory of Clifford Cremers, an outstanding teacher of heat
transfer and a fine fly fisherman.
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Chapter 1

Preliminaries and Review

1.1 The Conduction Equation

The basic objective of this course can be stated as: given an object that is subjected to known
temperature and/or heat flux conditions on the surface, predict the distribution of temperature
and heat transfer within the object. The fundamental physical principle we will employ to meet
this objective is conservation of energy – often referred to as the first law of thermodynamics.
Thermodynamics, however, is typically applied to a system at equilibrium, whereas we will be
dealing with systems that most definitely are not at equilibrium. For example, you may want to
predict how long it takes a rod of hot metal to cool to the ambient temperature, or predict the rate
of heat transfer through a slab that is maintained at different temperatures on the opposite faces.
In such situations the temperature throughout the medium will, generally, not be uniform – for
which the usual principles of equilibrium thermodynamics do not apply. What is needed, therefore,
is a first–law statement that applies to the discrete elements within a nonequilibrium system – as
opposed to the system as a whole.

In undergraduate heat transfer you were presented with such an analysis – which typically
involved applying the first law to a small, ‘differential’ control volume within the system. Presented
here is an alternative (and more mathematically elegant) method for obtaining the differential
equation for energy conservation. It starts with an arbitrary system as shown in Fig. 1.1. Assuming
that the volume of the system is fixed (so that no work is transferred) and it’s mass is constant,
energy conservation is simply described by

dE

dt
= Q̇ (1.1)

in which Q̇ is the rate of heat transfer into the system and E is the energy of the system. If the
system is not in equilibrium then E cannot be related to a single temperature of the system1. It is

1an average temperature could be defined from E, but this would not be of much use in predicting heat transfer

7



8 CHAPTER 1. PRELIMINARIES AND REVIEW

qgen
q''

Figure 1.1: an abritrary system

possible, however, to represent E as a sum of energies of small volume elements within the system
– with each element assumed to be in thermodynamic equilibrium at any instant. As the volume
of the elements go to zero the sum can be expressed as an integral, which gives:

dE

dt
=

∫

V
ρ
∂e

∂t
dV =

∫

V
ρc
∂T

∂t
dV (1.2)

where e is the specific energy, ρ is the density, c is the specific heat and the integral is over the
volume of the system. The heat transfer can also be written in integral form as

Q̇ = −
∫

A
q′′ · n dA+

∫

V
q′′′ dV (1.3)

In the first integral q′′ is the heat flux vector, n is the normal outward vector at the surface
element dA (which is why the minus sign is present) and the integral is taken over the area of the
system. The second integral represents the generation of heat within the system (through chemical
or nuclear reactions, radiation absorption/emission, viscous dissapation etc.) which is described by
a volumetric heat source function q′′′ (W/m3).

The area integral can be transformed into a volume integral by use of the divergence theorem
of vector calculus: ∫

A
q′′ · n dA =

∫

V
∇ · q′′ dV (1.4)

The terms in the energy equation are now all in the form of volume integrals. Energy conservation
therefore appears as

∫

V

(

ρc
∂T

∂t
+ ∇ · q′′ − q′′′

)

dV = 0 (1.5)

Realize that this equation should hold for integrals over any arbitrary volume within the system.
That is, the system could be split into two volumes, and we would expect the integral to hold
individually for each of the volumes. The only way that this condition can be met is for the
integrand to be identically zero at all points within the system, i.e.,

ρc
∂T

∂t
+ ∇ · q′′ − q′′′ = 0 (1.6)
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which is a differential equation for energy conservation within the system. It is not of much use in
the present form – because it involves two variables (T and q′′). An additional, independent means
of relating heat flux to temperature is needed to ‘close’ the problem.

1.1.1 Fourier’s Law and the thermal conductivity

Before getting into further details, a review of some of the physics of heat transfer is in order.
As you recall from undergraduate heat transfer, there are three basic modes of transferring heat:
conduction, radiation, and convection. Conduction is the transfer of heat through a medium
by virtue of a temperature gradient in the medium. It is a microscopic–level mechanism, and
results from the exchange of translational, rotational, and vibrational energy among the molecules
comprising the medium. Radiation, on the other hand, is the transfer of heat via electromagnetic
waves (or, equivalently, photons). Unlike conduction, radiation requires no intervening medium to
occur as is obvious in the transfer of heat from the sun to the earth. Convection can be viewed as
a macroscopic form of energy transfer through a fluid which occurs by the combined processes of
conduction in the fluid and the bulk motion (mass transfer) of the fluid.

This course will focus almost exclusively on conduction heat transfer. Radiation and convection
will enter the picture only as ‘given’ conditions on the surfaces to which we are applying our
conduction analysis.

The transfer of heat though a medium by conduction can usually be described by Fourier’s law,
which is stated

q′′ = −k∇T (1.7)

The quantity k is referred to as the thermal conductivity of the medium, and has units of W/m·K.
Fourier’s law does not have the same ‘legal’ standing as, say, the first law of thermodynamics.
Rather, Eq. (1.7) presents a phenomenological linear relationship between q′′ and ∇T – which will
be highly accurate providing that the characteristic length scale of the temperature gradient is
significantly larger than the ‘microscopic’ length scale of the medium (i.e., the molecular length
scale). Practically all engineering applications will fall into this category, with the exception being
heat transfer in highly nonequilibrium conditions (for example, the boundary layer in a re–entering
space vehicle).

In the most general sense the thermal conductivity is a tensor quantity – in that it relates one
vector to another. In a cartesian frame Fourier’s law would appear for a tensor k as





q′′x
q′′y
q′′z



 =





kxx kxy kxz

kxy kyy kyz

kxz kyz kzz



×





∂T/∂x
∂T/∂y
∂T/∂z



 (1.8)

Material such as crystals can posses a highly anisotropic structure, and accordingly the thermal
conductivity of these materials can be equally anisotropic: heat can be transferred more effectively
in one direction than in other directions. The conductivity k is also a (usually weak) function of
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temperature. In general, the thermal conductivity of gases increases with temperature, whereas for
liquids and solids k decreases with temperature. This temperature dependence can considerably
complicate (and usually eliminates) the ability to analyze conduction via analytical means.

Having duly noted the generality of k, we will constrain our attention to cases in which k is a
scalar and is independent of temperature.

1.1.2 The form of the conduction equation

Returning to Eq. (1.6), Fourier’s law is to eliminate the heat flux, which results in

ρc
∂T

∂t
= ∇ · k∇T + q′′′ (1.9)

The assumption of constant thermal conductivity simplifies the above to

1

α

∂T

∂t
= ∇2T +

q′′′

k
(1.10)

where α = k/ρc (precisely, k/ρcp) is the thermal diffusivity of the material – which has units of
square length by time (m2/s). As the name implies, the thermal diffusivity can be viewed as a
measure of the rate at which heat ‘diffuses’ through the material2. When a thermal perturbation
is applied at some point in a medium (say, for example, an instantaneous change in a surface
temperature), it generally takes on the order of t = r2/α for the perturbation to appear at a
distance r from the point.

Heat conduction is analogous in many respects to mass diffusion. Similar to heat flux, the
diffusion mass flux j′′A (kg/m2·s) of a dilute component (or species), denoted species A, through a
medium of species B is given by Fick’s law of diffusion as

j′′A = −ρDAB∇wA (1.11)

where wA is the mass fraction of A in B and DAB is the binary diffusion coefficient (m2/s). Similar
to the derivation of the energy equation, the species conservation equation for A can be obtained
by applying mass conservation laws to the system. The resulting differential equation would be in
the same form as Eq. (1.10), with T replaced by wA, α by DAB, and q′′′/k by ṡ′′′A/ρDAB, where ṡ′′′A

is the volumetric creation rate (through chemical reactions) of species A.

The quantity ∇2T is commonly referred to as the Laplacian operator. The particular form
of this operator will depend on the coordinate system that best represents the system. It turns
out that there are 11 orthogonal coordinate systems in the Laplacian can be cast as a differential

2early scientists considered heat to be a substance – consisting of heat ‘particles’ – which were transported in the
same way as mass is transported.
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operator. We will deal with the most common geometries of cartesian, cylindrical, and spherical.
In these systems, the Laplacian is

∇2T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
(1.12)

=
1

r

∂

∂r
r
∂T

∂r
+

1

r2
∂2T

∂φ2
+
∂2T

∂z2
(1.13)

=
1

r2
∂

∂r
r2
∂T

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂T

∂θ
+

1

r2 sin θ

∂2T

∂φ2
(1.14)

1.1.3 Boundary conditions

Much of the course will focus on methods of solving Eq. (1.10). Two principal elements go into
the solution method: 1) application of mathematical techniques to obtain a general solution to the
differential equation, and 2) application of the given boundary and initial conditions to obtain a
complete solution for the temperature field within the system.

Three basic types of boundary conditions will be encountered. The first (and most basic) type
is where the temperature is specified at the surface of the system. In one dimension, this would
appear in the form

T (x = 0) = T0, T (x = L) = TL (1.15)

where T0 and TL are the known boundary temperatures of the system. The second type of boundary
condition is specified heat flux at the surface:

− k
∂T

∂x

∣
∣
∣
∣
x=0

= q′′0 , k
∂T

∂x

∣
∣
∣
∣
x=L

= q′′L (1.16)

in which q′′′0 and q′′′L are the applied heat fluxes at x = 0 and L. Note the sign of the derivatives
– the flip in sign at x = L reflects the usual convection of heat flux into the surface as positive.
Before writing a heat flux boundary condition, use physical reasoning to figure out which way the
sign should be: would the temperature be increasing or decreasing into the region for a given flux?
A special and common case is the adiabatic (or insulated) surface, for which

∂T

∂x

∣
∣
∣
∣
x=0

= 0, adiabatic (1.17)

Finally, the third type of boundary condition is commonly referred to as the convection condition,
in which the heat flux to/from the surface is proportional to the difference between the surface
temperature and an ambient fluid temperature;

k
∂T

∂x

∣
∣
∣
∣
x=0

= h(T (x = 0) − T∞)

−k ∂T
∂x

∣
∣
∣
∣
x=L

= h(T (x = L) − T∞) (1.18)
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The quantity h is the heat transfer (or convection) coefficient (W/m2·K). Similar to Fourier’s law,
the convection rate law represents a phenomenological relation between surface heat flux and the
difference in surface and ambient temperature. The heat transfer coefficient h is not a property
solely of the surface – rather, it depends mostly on the properties and flow conditions of the fluid
in contact to the surface.

Determination of h requires a detailed analysis of momentum and heat transfer within the
fluid boundary layer adjacent to the surface – which is outside the objectives of this course. We
will typically treat h as a given quantity when such boundary conditions are encountered. It is
important to understand that the convection boundary condition implies knowledge of neither
the temperature nor the gradient at the surface. Rather, the convection condition provides a
relationship between the surface temperature and gradient. You should again be able to deduce
the proper sign convention of the boundary condition by physical reasoning: if the wall is being
cooled (T (x = 0) > T∞) which way will the temperature gradient be directed?

Heating/cooling via radiation can become significant when the surface temperatures are rela-
tively high. Assuming that the surface is surrounded by an environment at temperature T∞, heat
transfer to the surface via radiation can typically be expressed as

q′′s,rad = ǫσ(T 4
∞ − T 4

s ) (1.19)

where ǫ is the surface emissivity and σ is the Stefan–Boltzmann constant. The complication with
this boundary condition is that temperature appears to the fourth power – which makes the problem
nonlinear in T and eliminates most hopes of finding an analytical solution the conduction problem.
One way to deal with this is to linearize the radiation rate law via a first–order Taylor series
expansion. This process gives

T 4
∞ − T 4

s ≈ 4T 3
∞(T∞ − Ts) (1.20)

The quantity 4ǫσT 3
∞ can now be viewed as a linearized radiation heat transfer coefficient, denoted

hrad.

1.2 One–Dimensional Steady Conduction

1.2.1 The Thermal Resistance

The most simple conduction situation consists of one dimension, steady heat transfer without
sources or sinks of heat. Consider, for example, the plane wall illustrated in Fig. 1.2. In the
cartesian system, the conduction equation reduces to the ordinary differential equation:

d2T

dx2
= 0 (1.21)

Assume that the boundary conditions have T = T1 and T = T2 for x = 0 and L. The solution to
this problem is the familiar linear profile:

T = T1 + (T2 − T1)
x

L
(1.22)



1.2. ONE–DIMENSIONAL STEADY CONDUCTION 13

T1 T2L

Figure 1.2: plane wall configuration

and the heat transfer through the wall is

q =
kA

L
(T1 − T2) (1.23)

where A is the wall area.
For 1–D steady heat transfer with no heat generation, the heat transfer will be proportional

to the temperature difference across the surfaces. This allows for an analogy with current flow in
electric circuits – in which the current is proportional to the voltage drop divided by the resistance.
Here, heat is current, voltage is temperature, and the resistance is defined from the above equation:

q =
T1 − T2

(L/kA)
=
T1 − T2

Rc
(1.24)

The electrical analogy allows for a simplified analysis of heat transfer across more complicated 1–D
configurations. Say, for example, that convection heat transfer occurs on both faces. As opposed to
the surface temperature, the known information would now be the ambient fluid temperatures T∞,1

and T∞,2 on both ends and (hopefully) the heat transfer coefficients h1 and h2 which characterize
the convective processes. The heat transfer into surface 1 would be

q = h1A(T∞,1 − T1) (1.25)

and likewise for surface 2. Equation (1.24) would also remain valid, which together with the two
convection rate laws would give three equations for the three unknowns q, T1, and T2. If one,
however, uses the circuit analogy, the system as a whole can be recognized as a series circuit, for
which the current q is the total voltage drop across the circuit (T∞,1 − T∞,2) divided by the total
resistance;

The heat transfer would simply be given by

q =
T∞,1 − T∞,2

∑
R

=
T∞,1 − T∞,2

1/h1A+ L/kA+ 1/h2A
(1.26)



14 CHAPTER 1. PRELIMINARIES AND REVIEW

The surface temperature T1 could be obtained by equating the previous two equations. More
complicated situations, such as composite walls, can be analyzed in a similar manner.

A problem with the circuit analogy is that it is too easy. Too often, it is used in situations
in which it is not valid, and it is important to remember that it applies only to steady, 1–D heat
transfer without energy generation. For example, if the wall was not homogeneous in the lateral
direction (if, for example, studs are present) then the temperature field would be two–dimensional
(i.e., heat flow parallel and perpendicular to the wall surface). You might be tempted to apply a
‘parallel’ circuit to such a situation – but the accuracy of such an analysis is difficult to estimate.
Suffice to say that such a method will not be exact.

One–dimensional cylindrical systems can be examined in a similar manner. The heat conduction
equation in cylindrical (r) coordinates is

1

r

d

dr
r
dT

dr
= 0 (1.27)

which, when integrated, gives

T = c1 ln r + c2 (1.28)

This shows that for r–directed steady heat flow in a cylinder (without generation!) the temperature
field is linear in ln r. Take the system to be a pipe with inside and outside temperatures of T1 and
T2. The temperature field will then be

T = T1 + (T2 − T1)
ln(r/r1)

ln(r2/r1)
(1.29)

and the heat transfer through the pipe (per unit length) will be

q′ =
T1 − T2

ln(r2/r1)/2πk
(1.30)

which identifies the resistance.

1.2.2 Heat generation

Conduction problems are often encountered in which the flow of heat is steady and 1–D, yet heat
generation is present. The wall could be absorbing radiation within it’s volume, or a wire could be
carrying current. Again, the circuit analysis will not be valid under these conditions, and we are
forced to formally solve the conduction equation, for the given boundary conditions, to obtain the
temperature profile within the object.

Start again with the plane wall. The conduction equation is now

d2T

dx2
= −q

′′′

k
(1.31)
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Assume that the temperatures are specified on both surfaces. The problem then becomes well–
posed, i.e., all information is present to allow a complete prediction of the temperature profile
within the wall.

Before proceeding further, the problem will first be re–cast in an nondimensional form. This
procedure will be used extensively throughout the course. A dimensionless problem offers several
advantages; 1) the number of quantities involved in the problem is reduced to the minimum number
possible (thus making algebra easier), and 2) the fundamental parameters which govern the flow
of heat can be identified. A formal method exists for converting a dimensional problem to a
nondimensional one (i.e., the Buckingham π theorem), yet it is probably easiest (for most conduction
problems) to convert the problem by simple inspection.

Define the new, dimensionless variables as

T ≡ T − T1

T2 − T1
, x ≡ x

L
(1.32)

Replacing the above into the conduction equation leads to

d2T

dx2 = −S, S ≡ q′′′L2

k(T2 − T1)
(1.33)

The boundary conditions are now

T (x = 0) = 0, T (x = 1) = 1 (1.34)

Integrating the DE twice results in

T = −Sx
2

2
+ c1x+ c2 (1.35)

Applying the boundary conditions gives us two equations for the two integration constants. The
final solution is:

T = x+
Sx

2
(1 − x) (1.36)

Upon obtaining a solution to a problem, you should perform a check to see if it is correct. Are the
boundary conditions satisfied? Does the solution satisfy the DE?

Consider another example involving heat generation in a slab. Heat is generated uniformly in
a wall of thickness 2L. At both surfaces heat is convected away to the surrounding fluid, and this
process is characterized by a heat transfer coefficient h and an ambient temperature T∞. Note that
this situation presents a symmetrical configuration – in that the boundary conditions are the same
on both surfaces and the heat generation rate is uniform. The midpoint of the slab is thus a plane
of symmetry, and the temperature profile on one side of this plane will be the mirror image of the
profile on the other side. No heat can flow across this plane because the temperature gradient will
be zero at the plane of symmetry. Consequently, the problem can be recast as a slab of length
L with an adiabatic surface at x = 0 and convection at x = L. it will usually make sense to
incorporate any symmetry in a problem into the formulation – because the resulting problem will
often be easier to solve.
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Identification of dimensionless groups

The problem, on a dimensional basis, is

d2T

dx2
= −q

′′′

k
dT

dx

∣
∣
∣
∣
x=0

= 0

−k dT
dx

∣
∣
∣
∣
x=L

= h(T (x = L) − T∞)

As before, we start by nondimensionalizing the problem. Perhaps it is best to introduce some
formalism at this point because the choice of dimensionless variables and parameters is not obvious.
In general, the dimensionless length will be the dimensional length divided by the characteristic
length of the system, i.e., x = x/LC . In this problem the characteristic length is obviously LC = L.
Likewise, the dimensionless temperature will be

T ≡ T − TC

∆TC
(1.37)

where TC and ∆TC are the characteristic temperature and temperature difference of the system.
Usually TC can be found by inspection – here it will obviously be TC = T∞. The characteristic
temperature difference is often less obvious to spot. The previous problem had ∆TC = T2 − T1 –
but here there is no second temperature such as T2 to make a difference with T∞. In this problem,
the quantity q′′′L2/k has units of temperature – and it represents the temperature difference across
a wall of thickness L and thermal conductivity k that would occur due to a steady heat flux of q′′′L.
This quantity can therefore be used to scale the temperature. The dimensionless temperature is
defined as

T ≡ (T − T∞)k

q′′′L2
(1.38)

and the DE becomes
d2T

dx2 = −1 (1.39)

You might have been tempted to use T∞ as the characteristic temperature difference. The problem
with this approach is, first, it does not represent a temperature difference, and second, it would not
reduce the problem down to the fewest number of dimensionless parameters. By using Eq. (1.38)
the heat generation rate becomes ‘absorbed’ into the problem – it no longer explicitly appears in
the DE. On the other hand, the use of ∆TC = T∞ would have left the q′′′ term explicitly in the
DE.

The dimensionless boundary conditions are

dT

dx

∣
∣
∣
∣
x=0

= 0,
dT

dx

∣
∣
∣
∣
x=1

= −BiT (x = 1) (1.40)
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where Bi = hL/k is the Biot number for the system – which represents the ratio of conduction and
convection thermal resistances.

The formal solution to Eq. (1.39) is

T = −1

2
x2 + c1x+ c2 (1.41)

Using the BC at x = 0 gives c1 = 0. At x = 1 the BC gives

1 = Bi

(

−1

2
+ c2

)

−→ c2 =
1

2
+

1

Bi
(1.42)

and the final solution is

T =
1

2

(
1 − x2

)
+

1

Bi
(1.43)

For certain problems (such as this one) it is often possible to use physical insight to simplify
the analysis. Such was done by invoking the symmetry arguments – which led to a problem that
is much easier to solve than that for the entire slab. Physics could also be used to simplify the
boundary condition at x = L. In general, convection–type boundary conditions will involve more
complicated algebra than fixed–temperature BC’s – yet for this problem the temperature was not
initially specified at x = L. However, all the heat generated in the slab must be removed from the
x = L surface by convection because the slab is in steady state and the x = 0 surface is adiabatic.
This gives the energy conservation statement of

Q̇gen =

∫

V
q′′′ dV = A

∫ L

0
q′′′ dx (1.44)

= LAq′′′ = hA(Ts − T∞) (1.45)

from which

Ts = T (x = L) = T∞ +
q′′′L

h
(1.46)

By using the definition of dimensionless temperature, this becomes

T (x = 1) =
1

Bi
(1.47)

which agrees perfectly with the solution – as it must. Equation (1.47) could therefore have been
used as a boundary condition in the original DE.

Heat generation problems become more complicated when the distribution of heat generation
in the system becomes nonuniform. The following example illustrates such a problem.

A sphere, of radius R, and thermal conductivity k contains radioactive material. Heat is being
generated within its volume at a rate

q′′′ = q′′′0 e
−ar/R (1.48)
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where q′′′0 and a are constants. The above function is chosen as representative of heat generation
by nuclear decay (fission). Heat is convected from the surface of the sphere, which is characterized
by an ambient temperature and a heat transfer coefficient.

Define the nondimensional variables of the problem as

T =
(T − T∞)k

R2q′′′0

, r =
r

R
(1.49)

The problem statement, in spherical coordinates, becomes

1

r2
d

dr
r2
dT

dr
= −e−ar (1.50)

dT

dr

∣
∣
∣
∣
r=0

= 0

dT

dr

∣
∣
∣
∣
r=1

= −BiT (r = 1)

where Bi = hR/k.

The problem is now well–posed. A solution can be obtained by direct integration of the DE
followed by substitution of the BCs. Before proceeding, however, it will be worthwhile to simplify
the problem where possible. When dealing with radial problems in spherical coordinates, the DE
can usually be simplified by substitution of the variable u = r T . This gives

r2
dT

dr
= r2

d(u/r)

dr
= r

du

dr
− u

d

dr
r2
dT

dr
= r

d2u

dr2
+
du

dr
− du

dr
= r

d2u

dr2

and the DE becomes
d2u

dr2
= −re−ar

The DE is now integrated over r:

du

dr
= −

∫

re−ar dr =
r

a
e−ar − 1

a

∫

e−ar dr

=
r

a
e−ar +

1

a2
e−ar + c1

u =

∫ (
r

a
e−ar +

1

a2
e−ar + c1

)

dr

= − r

a2
e−ar − 2

a3
e−ar + c1r + c2
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The integrations in the above were performed using integration by parts – which is an extremely
useful formula for integration of a product of two functions. For the indefinite integrals appearing
above, the general formula is

∫

v(x)w′(x) dx = vw −
∫

v′w dx (1.51)

in which the prime denotes differentiation. To apply the formula, it was recognized that if w′ =
exp(−ar) then w = − exp(−ar)/a.

The temperature gradient is zero at the center of the sphere (equivalently, T must remain finite
at the center). In term of u, the BC at r = 0 becomes

T
′
(r → 0) =

(u

r

)′

r→0
=
u′

r

∣
∣
∣
∣
r→0

− u

r2

∣
∣
∣
r→0

= 0

which implies that
u(r = 0) = 0 (1.52)

Likewise, the convection BC at r = 1 can be posed with u as the dependent variable. Alternatively,
the surface temperature can be deduced directly from an energy balance;

hAs(Ts − T∞) = Q̇tot = 4π

∫ R

0
q′′′r2 dr

or, in terms of nondimensional variables

BiT (r = 1) =

∫ 1

0
e−arr2 dr

= −
[(

r2

a
+

2r

a2
+

2

a3

)

e−ar

]1

0

=
2

a3

(
1 − e−a

)
− 1

a

(

1 +
2

a

)

e−a

which gives

u(r = 1) =
2

Bia3

(
1 − e−a

)
− 1

Bia

(

1 +
2

a

)

e−a (1.53)

Equations (1.43), (1.52) and (1.53) can now be combined to eliminate the constants c1 and c2. The
final result is

u =
r

a3

[

−2 − ae−ar +
2

Bi

(
1 − e−a

)
−
( a

Bi
− 1
)

(a+ 2) e−a

]

+
2

a3

(
1 − e−ar

)
(1.54)
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The dimensionless temperature is given from T = u/r. Obtaining the center temperature takes
some mathematical maneuvers, because the second term, when divided by r, becomes indeterminate
at r = 0. We then use

lim
r→0

(
1 − e−ar

r

)

= a

The center temperature of the sphere is (dimensionlessly)

T (r = 0) =
1

a3

[

−2 + a+
2

Bi

(
1 − e−a

)
−
( a

Bi
− 1
)

(a+ 2) e−a

]

(1.55)

Modern computer technology has almost eliminated most of the subtle mathematical manip-
ulations used in this example. At the end of this chapter the same problem is solved using the
symbolic mathematical manipulation package Mathematica. This package essentially reduces the
solution procedure to a ‘black box’. Most linear, ordinary differential equations – which are the
type most frequently encountered in 1–D steady heat transfer problems – can be solved using
Mathematica.

1.3 Extended Surfaces

1.3.1 The fin equation

The purpose of extended surfaces (commonly known as fins) is to enhance convective heat transfer
from surfaces. The primary mechanism behind the operation of fins is to increase the effective heat
transfer area of a surface. They are commonly used in situations in which cooling is attained via
free (or natural) convection – for which the heat transfer coefficients h are relatively small.

Typically fins are much longer than they are thick. Because of this it is common, and fairly
accurate, to assume that the temperature varies only in the lengthwise direction. That is, at any
point x along the length of the fin the temperature is essentially uniform across the cross section
of the fin. What results from this assumption is a one–dimensional heat transfer problem – yet the
1–D DE from the previous section cannot be directly applied to analyze the fin. Rather, an energy
conservation equation specific to the fin must be derived.

Consider the arbitrary fin illustrated in Fig. 1.3. The heat flow direction is x, and the cross
sectional area of the fin (the area exposed to the heat flow) is taken to be a function of x. Consider
the small volume element of the fin of length ∆x. An energy balance is performed on this element,
in which it is assumed that the element is at a constant and uniform temperature of T . This yields

qcond,in − qcond,out − qconv = 0

Substitution of the rate laws for convection and conduction gives

− kAc(x)
dT

dx

∣
∣
∣
∣
x

+ kAc(x+ ∆x)
dT

dx

∣
∣
∣
∣
x+∆x

− h dAs(x)(T − T∞) = 0
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Figure 1.3: fin geometry

where Ac is the cross sectional area of the fin (a function of x) and dAs is the differential surface
area of the fin at position x. The latter can be approximated by the first term in a Taylor series
via

dAs ≈
dAs

dx
∆x+ . . . = P (x)∆x

in which P is the fin perimeter (again a function of x). The two previous equations are combined
and divided by ∆x, and the limit of ∆x→ 0 is taken. This gives

k
d

dx
Ac
dT

dx
− hP (T − T∞) = 0 (1.56)

which is known as the fin equation.

The typical boundary condition at the base (x = 0) is T = TB, i.e., the base temperature
is specified. Three forms of boundary condition can be specified at the fin tip, i.e., specified
temperature, specified flux, or convection. Before introducing further details, the dependent and
independent variables are made dimensionless by the definitions

T =
T − T∞
TB − T∞

, x =
x

L

for which the fin equation becomes

d

dx
Ac
dT

dx
− hPL2

k
T = 0 (1.57)

This equation is not completely dimensionless – each term has units of area – but further reduction
cannot be made until the specific form of Ac has been set. This will depend on the shape of the fin
(uniform cross section, triangular, annular, etc.).
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The three types of boundary conditions at the tip are:

T (x = 1) = T t, fixed tip T

dT

dx

∣
∣
∣
∣
x=1

= 0, insulated tip

− dT

dx

∣
∣
∣
∣
x=1

= Bit, T (x = 1) tip convection

where Bit = htL/k is the Biot number characterizing convection at the tip. Of all the boundary
conditions the third (tip convection) is the most realistic – yet it is also the most difficult to
mathematically analyze.

There is a certain contradiction inherent in the assumptions that led up to the fin equation,
Eq. (1.57). It was assumed that temperature varies only with the x direction – yet this cannot
be completely true because heat is removed from the sides of the fin by convection. If heat is
transferred from a surface, then a temperature gradient must exist normal to the surface to supply
the heat. More specifically, if y denotes the direction normal to the surface area, then the energy
balance at the surface would give

− k
∂T

∂y

∣
∣
∣
∣
y=b

= h(T − T∞)

where b denotes the thickness of the fin at a particular position x. The above clearly indicates that
a temperature gradient must exist in the y direction – that is, if the fin is designed to remove heat
– and because of this the temperature must be a function of both x and y.

How then, can the y variation in temperature be neglected? To try to get a gauge of the accuracy
in the 1–D assumption, we can approximate the derivative in the above equation as ∆T/b, where
∆T represents the average temperature difference across the fin in the y direction. If the surface
energy balance is divided by TB − T∞ and rearranged, it becomes

∆T =
∆T

TB − T∞
≈ hb

k
T = Bib T

where Bib is the Biot number based on the fin thickness. The dimensionless temperature T ranges
between 1 and 0 – and for the 1–D assumption to be correct we would expect that ∆T ≪ T , i.e.,
the variation in temperature in the y direction is much smaller than the variation in the x direction.
In view of the above surface energy balance, this assumption will therefore be valid when Bib ≪ 1.
This is consistent with the general interpretation of a small Biot condition; the temperature in
an object will essentially be uniform (here in the y direction) because the dominant resistance
to heat transfer occurs at the surface from convection. It turns out that Bib will typically be a
very small number for most fins. To give an example, consider aluminum (a common fin material)
for which k ≈ 400 W/m·K. For free convection in air the heat transfer coefficient is typically no
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greater than 10 W/m2·K. A fin with a thickness of 1 cm (which is a very thick fin) will have
Bib = (10)(.01)/400 = 0.0025 – which is small enough to validate the 1–D approximation of the
fin.

1.3.2 Simple fins of uniform cross section

The most simple type of fin has a constant cross sectional area, The fin equation reduces to

T
′′ −N2T = 0 (1.58)

where the prime denotes differentiation and the dimensionless parameter N is defined

N2 =
hPL2

kAC
(1.59)

The reason the DE uses N2 – rather than N – will soon become obvious. The general solution to
the ODE is

T = AeNx +Be−Nx

where A and B are integration constants. The boundary condition T (x = 0) = 1 gives B = 1 −A.
Again, the BC at x = 1 can be posed using either of the three basic forms. The most simple
outcome will result from the adiabatic tip condition, which has

dT

dx

∣
∣
∣
∣
x=1

= N
(
AeN −Be−N

)
= Ne−N +NA

(
eN + e−N

)
= 0 (1.60)

which leads to

A = e−N/
(
eN + e−N

)

B = 1 −A = eN/
(
eN + e−N

)

and the final solution is

T =
eN(1−x) + e−N(1−x)

eN + e−N

=
cosh[N(1 − x)]

cosh(N)
(1.61)

Hyperbolic functions

A math digression is in order. The hyperbolic function cosh and sinh are given as

cosh(x) =
1

2

(
ex + e−x

)

sinh(x) =
1

2

(
ex − e−x

)
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They are defined as the two linearly independent solutions to the ODE:

d2y

dx2
− y = 0

The cosh function is even, in that cosh(−x) = cosh(x), whereas sinh(x) is odd, i.e., sinh(−x) =
− sinh(x). Also, the functions have the properties

d

dx
cosh(x) = sinh(x),

d

dx
sinh(x) = cosh(x)

which is not precisely the same as the triginometric functions cos and sin (although they are
similar in that cosh(0) = 1 and sinh(0) = 0). The exact equivalence between the hyperbolic and
triginometric functions are

cosh(ix) =
1

2

(
eix + e−ix

)
= cos(x)

sinh(ix) =
1

2

(
eix − e−ix

)
= i sin(x)

Likewise,
cos(ix) = cosh(x), sin(ix) = −i sinh(x)

In the above, i =
√
−1 is the radical. Complex mathematics will prove to be very useful throughout

this course
Returing to the problem of a constant cross section fin, the general solution can appear as

T = A cosh(Nx) +B sinh(Nx)

At x = 1 the condition is T
′
= 0. Consequently, the solution will be in the form

T = C cosh[N(1 − x)] (1.62)

Recognize that if cosh(x) is a solution to the DE, then cosh(a+x) (where a is a constant) is also a
solution. This amounts to a shifting of the system origin. The BC at x = 0 gives the final solution:

T =
cosh[N(1 − x)]

cosh(N)
(1.63)

1.3.3 Measures of fin performance

The temperature distribution in the fin is of limited usefulness to us as engineers. A more relevant
and useful quantity is the rate of heat removal by the fin. One method to calculate q would be to
compute the total convection from the fin surface, i.e.,

q =

∫

As

h(T − T∞) dAs = hL(TB − T∞)

∫ 1

0
PT dx (1.64)
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Figure 1.4: fin effectiveness ǫ for Ac = constant

Equivalently, all the heat removed from the fin must be transported into the fin at the base by
conduction. This gives

q = −kAC,B
dT

dx

∣
∣
∣
∣
x=0

= −kAC,B(TB − T∞)

L

dT

dx

∣
∣
∣
∣
x=0

(1.65)

For the specific case of the constant cross section fin, the heat transfer rate becomes

q =
kAC(TB − T∞)

L
N tanh(N) =

√

hPkAC (TB − T∞) tanh(N) (1.66)

Note that tanh(N) → 1 for N ≫ 1, and tanh(3) ≈ 0.995. Consequently a fin with N > 3 is
essentially ‘infinite’ in length. Adding additional length to the fin (and thus increasing N) will
not significantly increase the heat transfer from the fin. From a design viewpoint, there is little
justification for making a fin with N > 2 to 2.5.

Fin performance can measured by two main criteria. The first is the fin effectiveness ǫ, which is
defined as the heat transfer from the fin divided by that from the base without the fin. The Ac =
constant fin has

ǫ =
q̇fin

q̇w/o fin
=

√
hPkAC (TB − T∞) tanh(N)

hAC(TB − T∞)

=
N

Bi
tanh(N) (1.67)

where Bi = hL/k is the Biot number of the fin based on the fin length. The effectiveness ǫ gives
the engineer an idea of the cooling improvement offered by the fin. One would certainly want ǫ ≥ 1
– anything less would mean that the fin is insulating the surface. A rule of thumb is that fins are
justified only if ǫ ≥ 2. The plot in Fig. 1.4 shows the general behavior of ǫ for two values of Bi,
corresponding to typical free and forced convection values.
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Figure 1.5: fin efficiency η for Ac = constant

Fins are most effective for small h convection conditions – which again correspond to free
convective situations. For such conditions heat transfer from a surface can be greatly enhanced by
extending the area of the surface. As the plot indicates, when Bi = 1 only a fin with relatively
large N will be effective – in that ǫ exceeds 2 only for N > 2. When Bi = 0.1, on the other hand,
practically any length of fin will improve the heat transfer from the base. The limiting behavior
for large N (say N ≥ 3) has ǫ ≈ N/Bi =

√

(kP/hAC) – which is independent of fin length. The
fact that ǫ → 0 for N = 0 is an artifact of our particular solution. We have assumed that the tip
is adiabatic – primarily because it simplifies the analysis. If the fin length went to zero (N → 0)
the base would become covered by an insulating surface, and ǫ → 0. In reality, some heat will be
convected from the tip. For realistic fins, however, the amount of heat transferred though the tip
will be a small fraction of the total fin heat transfer, and because of this it is usually reasonable to
approximate the tip as adiabatic.

The quantity N plays a critical role in fin design. A physical interpretation of this parameter
can be obtained from the definition:

N2 =
hPL2

kAC
=

hPL(TB − T∞)

kAC(TB − T∞)/L
≈ Rcond

Rconv
(1.68)

i.e., N2 is proportional to the ratio of axial conduction resistance to surface convection resistance.
Once N exceeds a certain value (around 3) the resistance to heat transfer in the fin is dominated
by axial conduction. As mentioned above, there will be little gained by adding more length to the
fin when this condition is met.

The second criteria for measuring fin performance is the fin efficiency η. The efficiency is
defined as the ratio of the actual to the theoretical maximum heat transfer from the fin. This
latter quantity corresponds to the same type of fin, except with a thermal conductivity that goes
to infinity. Equivalently, the maximum heat transfer would occur if the fin was entirely at the
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Figure 1.6: triangular fin

temperature of the fin base:

qmax = hAfin(TB − T∞) = hPL(TB − T∞), uniform AC (1.69)

The constant Ac fin will have η given by

η =
tanh(N)

N
(1.70)

A plot of η vs. N is shown in Fig. 1.5.
The name ‘efficiency’ is somewhat misleading – it implies that a better fin would have a higher

efficiency. This is not necessarily the case. As the fin length decreases the efficiency will increase
(and η → 1 in the limit of L → 0). However, the heat transfer from the fin decreases as L → 0 –
which defeats the purpose of heat removal from a surface. The real advantage of the efficiency is
that, for many types of fins, it is a function primarily of the parameter N (and is solely a function
of N for the uniform cross section, adiabatic tip fin).

As is encountered in the analysis of most types of heat transfer equipment, there are two
basic types of engineering problems when working with fins; rating problems and design problems.
The rating problem predicts the heat transfer rate from a given fin configuration and convection
conditions – which is straightforward. The design problem, as the name implies, seeks to identify
a fin configuration which will remove a specified amount of heat for fixed convection conditions.
Unlike the rating problem, there is (in general) no unique solution to a given design problem,
although there are so–called optimum configurations which maximize heat transfer for a given
mass of fin. An analysis of fin optimization is presented in a following section.

1.3.4 Fins of non uniform cross section

Fins of non–uniform cross section can usually transfer more heat for a given mass than those of a
constant cross section. Given in this section are forms of the fin equation for common shapes.

Consider first the triangular shaped fin shown in Fig. 1.6. The fin is W wide (in and out of the
paper), and it is assumed that W ≫ L ≫ b. The cross sectional area and perimeter of the fin, for
these assumptions, will be

AC = 2bW
(

1 − x

L

)

P = 2(W + b) ≈ 2W



28 CHAPTER 1. PRELIMINARIES AND REVIEW

ri
ro

b

Figure 1.7: annular fin

Redefine the x coordinate origin so that the dimensionless x becomes

x = 1 − x

L
(1.71)

The fin differential equation, Eq. (1.57), can now be cast in the form

x
d2T

dx2 +
dT

dx
−N2T = 0 (1.72)

in which N is now defined

N2 =
hL2

kb
(1.73)

The boundary conditions for the problem are

dT

dx

∣
∣
∣
∣
x=1

= 0, T (x = 0) = 1 (1.74)

Equation (1.72) is a form of Bessel’s equation – which has a solution involving Bessel functions.
Details of the solution will be addressed in the next chapter.

Another common type of nonuniform cross section fin is the annular (or circular) fin, as illus-
trated in Fig. 1.7. These are typically used in to assist heat transfer to/from pipes. The cross
sectional area (in the r direction) is AC = 2πrb, and the perimeter is P = 2× 2πr (remember that
P = dAS/dr if this does not make any sense. The extra 2 comes from including both sides of the
fin). By using these definitions in the fin DE, and choosing the nondimensional radial coordinate
as r ≡ r/ro, the problem becomes

r
d2T

dr2
+
dT

dr
− rN2T = 0 (1.75)

where N is defined

N2 =
2r0h

kb
(1.76)

Assume we have an adiabatic tip at ro. The boundary conditions are then

T (r = a) = 1,
dT

dr

∣
∣
∣
∣
r=1

= 0 (1.77)
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Figure 1.9: Possible ‘shapes’ of the rectangular fin

where a is the radius ratio ri/ro. Just like the triangular fin, the circular fin DE does not have an
obvious solution in terms of familiar functions. Again, Eq. (1.75) is a form of Bessel’s equation,
and the solution will be given in terms of Bessel functions.

1.3.5 Fin optimization

Fins can come in a variety of shapes, e.g., rectangular and circular with constant cross section,
and annular and triangular with variable cross section. For a given fin shape, fin material, and
convection conditions, there exists an optimized design which transfers the maximum amount of
heat for a given mass of the fin. The methodology to finding this optimum design is presented here.

The simplest case to examine is the rectangular fin, as illustrated in Fig. 1.8. The fin is taken to
be long in and out of the paper (i.e., W ≫ L, where W is the width). Since fin mass is proportional
to the profile area AP (= bL) times W , the optimization problem can be stated as finding the
thickness b and length L which maximize q/W for a given AP . Possible shapes of the fin, for a
fixed profile area AP , are illustrated (in a very exaggerated manner) in Fig. 1.9.

To further simplify the problem the fin assumed to have an adiabatic tip. The heat transfer is

q =
√

hPkAc(Tb − T∞) tanhN

with

N2 =
hPL2

kAc

For a long fin (W ≫ b), P ≈ 2W and AC = bW . Thus

q′ =
q

W
=

√
2bhk (Tb − T∞) tanhN (1.78)

where now

N2 =
2hL2

kb
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The length L can be eliminated using AP = bL. The formula for N becomes

N2 =
2hA2

P

kb3

and by inverting this equation,

b =

(
2hA2

P

kN2

)1/3

(1.79)

and replacing this into the formula for the heat transfer gives

q′ =
(
4h2k AP

)1/3
(Tb − T∞)N−1/3 tanhN (1.80)

Observe that we are taking the profile area Ap to be fixed. Likewise, the properties h, k, and
Tb − T∞ are assumed to be constants. The above formula therefore indicates that, for these given
constraints, there is an optimum value of N which will maximize the fin heat transfer rate.

Obtaining the optimum N is relatively easy at this point. From the previous equation, the heat
transfer is functionally related to N via

f(N) = N−1/3 tanhN

and a maximum q′ implies that
df

dN
= 0

or, for this particular case,
coshN sinhN − 3N = 0 (1.81)

This is a nonlinear equation for N and can be solved using standard numerical techniques. The
solution is

Nopt = 1.419 =

(

2hA2
P

kb3opt

)1/2

(1.82)

Once AP is fixed, the above formula can be used to obtain bopt, and L follows from L = AP /bopt.
And by replacing Nopt into Eq. (1.80) we get

q′opt =

(
4h2kAP

Nopt

)1/3

(Tb − T∞) tanhNopt

= 1.256
(
h2kAP

)1/3
(Tb − T∞) (1.83)

The same process can be applied to triangular fins (which will require information on Bessel
functions that will be presented in the following chapter). Under the assumption of b2/L2 ≪ 1 –
which is consistent with the 1–D heat transfer approximation – the following result can be obtained:

q′opt = 1.422
(
h2kAP

)1/3
(Tb − T∞) (1.84)
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Recognize that for a fixed AP (and consequently, fin mass), an optimized triangular fin can transfer
more heat than an optimized rectangular fin.

In designing a fin, one would always want to choose the optimum value of b for a fixed q′ and
AP . Fins are often placed in arrays (such as on the head of a motorcycle engine). To maximize the
heat transfer coefficient, the spacing between the fins should be somewhat greater than twice the
boundary layer thickness. In selecting a material for the fin, it follows from Eqs. (1.83) and (1.84)
that

AP ∝ 1

h2k

(
q′opt

Tb − T∞

)3

(1.85)

For a given required heat transfer rate and fixed ‘environmental’ parameters (h, Tb, T∞), the opti-
mum profile area will be inversely proportional to the fin thermal conductivity. Consequently, the
fin mass (which is ρAPW ) will be proportional to ρ/k, where ρ is the density of the fin material.
Aluminum is often a good choice for fins – since it has relatively high k and low ρ. It is also
relatively cheap.

Exercises

1. Consider again the derivation of the heat conduction equation, Eq. (1.10). Say that mass
transfer occurs at the boundaries and convects an energy flux ρue into/out of the system,
where u is the velocity vector. Using the fact that ∂e = c∂T , and taking the mass of the
system to be constant, derive the more general form of the energy equation:

1

α

(
∂T

∂t
+ u · (∇T )

)

= ∇2T +
q′′′

k

Note: this will involve use of the divergence theorem as outlined in Sec. 1. Also, use continuity
(system mass = constant) along with the vector identity

∇ · (ρue) = e∇ · ρu + ρu · (∇e)

2. A 1 cm thick copper wire (kc = 400 W/m/K) conducts a large electrical current, which results
in a heat dissipation within the wire of 60 W per meter of length. The wire is covered with
insulation having kins = 1.2 W/m/K, and the outer surface of the insulation is cooled by
convection, with h = 30 W/m2 ·K and T∞ = 25 ◦C.

(a) Formally ‘pose’ the heat conduction problem for the wire and the insulation regions.
What are the boundary conditions at the interface between the wire and the insulation?

(b) Using a resistance analogy for the insulation, determine, via energy balance principles
(not via solution of the DEs) the surface temperature of the wire (i.e., T at r = 1 cm) as
a function of the insulation outer radius rins. Identify an appropriate Biot number for
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the wire. Based on the magnitude of this Biot number, would you think it is necessary
to solve the conduction equation for the wire to obtain the wire centerline temperature?

(c) Plot the wire surface temperature vs. rins. Physically interpret the minimum in Ts that
occurs for a critical value of rins. Analytically, what is this critical thickness equal to?

3. A rectangular fin of length L, thickness t and width W is mounted on a surface that is
maintained at a constant temperature Tb. The fin is exposed to a uniform source of radiant
flux q′′R, of which a fraction α is absorbed by the fin. Heat transfer from the fin occurs
by convection to an ambient at T∞ (which is less than Tb), which is characterized by a heat
transfer coefficient h. Assuming that 1) the tip of the fin is adiabatic, and 2) thermal emission
from the fin is negligible in comparison to convection, determine formulas for the temperature
distribution in the fin and the total heat transfer from the base. If thermal emission is not
negligible, how is the problem complicated? Devise a way of approximating the effect of
thermal emission on the fin by ‘linearizing’ the thermal emission rate law.

4. Shown that, for an arbitrary fin, Eqs. (1.64) and (1.65) are completely equivalent. Hint: use
the DE.

5. A plane wall of thickness L has an insulated boundary at x = 0. Radiation is absorbed
within the wall, which results in a heat generation characterized by κq′′0e

−κ(L−x), where κ is
the radiative absorption coefficient of the wall material and q′′0 is the incident radiative flux
on the wall surface. The outer surface of the wall is cooled by convection to an ambient
temperature T∞. Formulate and solve the heat conduction equation for the temperature
distribution within the wall. What happens to the distribution when κL ≫ 1 (i.e., the wall
becomes highly absorbing)? Show that this case becomes equivalent to a problem in which
radiation absorption ‘disappears’ from the DE (as a heat generation function), yet ‘reappears’
in the problem in the boundary condition at x = L.

Mathematica solution

Given here is the Mathematica solution to the spherical coordinate heat transfer problem, presented
beginning with Eq. (1.50). A more detailed explanation of the application of Mathematica to
solution of ODEs will be given in Ch. 2.

The formulas given below are in nondimensional form. The inner boundary condition – which is
typically posed for spherical coordinates as finite T at r → 0 – needs to be given in a more precise
mathematical form. This is done by imposing

r2
dT

dr

∣
∣
∣
∣
r→0

= 0

which is essentially the same as saying that the total heat transfer rate at the center is zero. The
extra r2 is needed to keep the solution finite at the origin. A functional form of the solution (i.e.,
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T (r,Bi, a)) which can be used to generate plots for numerical values of the parameters is defined
in line [6]. Pay attention to the replacement rules when such definitions are made: the quantities
x, bix, and ax are simply dummy variables – problems would arise if the arguments were written
as r, bi, and a since these symbols are already used in the symbolic form of the solution.

In[1]:=de=D[r^2D[t[r],r],r]/r^2+E^(-a r)==0;

bc1=Limit[x^2 D[t[x],x],x->0]==0;

bc2=-t’[1]==bi t[1];

soln=DSolve[{de,bc1,bc2},t[r],r]

Out[4]={{t[r] ->

-((2 + 2*a + a^2 - 2*bi - a*bi -

2*E^a + 2*bi*E^a)/(E^a*a^3*bi)) \

+ (-(1/a^2) - 2/(a^3*r))/E^(-(-a*r)) +

2/(a^3*r)}}

In[5]:=Simplify[%]

Out[5]={{t[r] ->

-(1/a^3*((a^2 - a*(-2 + bi) +

2*(-1 + bi)*(-1 + E^a))/

(E^a*bi) - 2/r +

(2 + a*r)/(r/E^(-(-(-a*r))))))}}

In[6]:=tfunc[x_,bix_,ax_]:=t[r]/.soln[[1]]

/.r->x/.bi->bix/.a->ax

In[7]:=Plot[{tfunc[r,10,.1],tfunc[r,10,1],

tfunc[r,10,10]},{r,0,1}]
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Chapter 2

Advanced 1–D Analytical Methods

2.1 Introduction

In a wide variety of heat conduction problems the flow of heat occurs primarily in one direction.
Chapter 1 outlined the application of a steady, 1–D conduction analysis to relatively ‘simple’
configurations, such as the plane wall, the infinite–length cylinder and the sphere (with heat flow
in the r direction), and the fin with a uniform cross sectional area. On the other hand, fins of
nonuniform cross section present a more difficult analytical problem. The difficulty arises simply
from the fact that the ordinary differential equations which describe the heat flow in these situations
do not have ‘common’ analytical solutions.

When I took this course as a graduate student, and when I have taught it in the past, several
lectures were devoted to deriving analytical solution to ODEs that are typical of general, 1–D
extended surface heat transfer. Such derivations typically begin with a power series representation
of the solution, which, when manipulated into the ODE, can be used to define the functional form
of the solution. Perhaps you recall such methods in your differential equations courses – one (of
many) analytical methods which were painful to comprehend and easy to forget.

It is, in my opinion, no longer necessary to present such derivations in an advanced conduction
class. These derivations are inherently mathematical in nature, and do not reveal any of the
underlying physics to the problem (such as a grasp of the temperature profile in a fin). In addition,
the advanced symbolic mathematics packages (i.e., Mathematica) which are available today allow
us to completely bypass the painful details to deriving the solution to an ODE – and cut to the
chase.

This chapter will examine the solutions to ordinary differential equations that characterize 1–D
heat flow in triangular and annular fins (which are forms of Bessel’s equation), and introduce the
use of Mathematica to derive and manipulate the solutions.

35
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2.2 Application of Mathematica to the annular fin

2.2.1 Formulation of the problem

From the previous chapter, the governing DE for the annular fin was

r
d2T

dr2
+
dT

dr
− rN2T (2.1)

Assuming an adiabatic tip, boundary conditions are

T (r = a) = 1

dT

dr

∣
∣
∣
∣
r=1

= 0 (2.2)

where a = R1/R2. The problem as stated is well–posed and can be given directly to Mathematica

for solution. The code which obtains the solution is listed below.

In[1]:=de=r t’’[r]+t’[r]-r n^2 t[r]==0;

bc1=t[a]==1;

bc2=t’[1]==0;

soln=Simplify[DSolve[{de,bc1,bc2},t[r],r][[1,1]]]

Out[1]=t[r] ->

((BesselI[-1, Sqrt[n^2]] +

BesselI[1, Sqrt[n^2]])*

BesselK[0, Sqrt[n^2]*r] +

BesselI[0, Sqrt[n^2]*r]*

(BesselK[-1, Sqrt[n^2]] +

BesselK[1, Sqrt[n^2]]))/

((BesselI[-1, Sqrt[n^2]] +

BesselI[1, Sqrt[n^2]])*

BesselK[0, a*Sqrt[n^2]] +

BesselI[0, a*Sqrt[n^2]]*

(BesselK[-1, Sqrt[n^2]] +

BesselK[1, Sqrt[n^2]]))

In[3]:=soln=Simplify[

soln/.{BesselK[-1,x_]->BesselK[1,x],

BesselI[-1,x_]->BesselI[1,x]}/.(n^2)^(1/2)->n]

Out[3]=t[r] ->

(BesselI[1, n]*BesselK[0, n*r] +

BesselI[0, n*r]*BesselK[1, n])/

(BesselI[1, n]*BesselK[0, a*n] +
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BesselI[0, a*n]*BesselK[1, n])

In[29]:=

Plot[t[r] /. soln/. n -> 1.5/. a -> .3, {r, .3, 1},

Frame -> True, Axes -> False,

FrameLabel -> {r, T}]
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The functions BesselI and BesselK appearing in the solution are Modified Bessel Functions

of order -1, 0, and 1, and are typically given the symbol In and Kn (where n is the order). Some
general properties of Bessel functions appear in Sec.(2.3), including formulas for computation of
integrals and derivatives – which are needed to calculate properties such as heat transfer rate from
the fin. For now, however, we will let Mathematica do the symbolic manipulations and numeric
calculations.

2.2.2 Explanation of the Mathematica code

Several points can be made regarding the Mathematica code that was used to obtain the solution.

1. Mathematica begins all intrinsic functions and mathematical constants with upper case letters,
i.e., BesselI[n,x] for In(x), Sin[x] for sin(x), Pi for π, and I for i =

√
−1. It is strongly

advised that you use lower case letters for all variables and parameters in your solution. By
doing so you will avoid any conflict with a Mathematica–defined function or constant. For
example, the temperature was denoted as t[x] and the fin number N was denoted as n (the
upper case N is an intrinsic function in Mathematica).

2. The single equal sign ‘=’ refers to an assignment in Mathematica, whereas the double equals
sign ‘==’ denotes the condition of equality. In the first line, the variable de is assigned to
represent the differential equation, and likewise with the assignment of the boundary condition
equations to bc1 and bc2. This assignment is not necessary; the equations could have been
written out explicitly in the argument of the DSolve function.

3. By writing the dependent variable as t[r], it is implied that T is a function of r.
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4. The differential operator t’[r] is equivalent in Mathematica to D[t[r],r], and t’’[r] would
be D[t[r],r,2]. The expression t’[0] implies the derivative of T with respect to r evaluated
at r = 0. This could also appear as D[t[r],r]/.r->0.

5. soln denotes the simplified solution returned by the Mathematica function DSolve. The use
of DSolve should be self–explanatory from the context. The command Simplify finds the
algebraically reduced form of the solution (if it exists). The solution appears as a list in the
form of a replacement rule.

(a) A list is a group of one or more quantities, and the list construction and manipulation
features of Mathematica enable one to perform vector and matrix mathematics. A 3 ele-
ment vector would appear as {a,b,c}, whereas a 2×2 matrix would be {{a,b},{c,d}}.
The depth of the list is the dimensionality (or rank) of the list plus 1; a vector would
have a depth of 2 and a matrix would have a depth of 3. A part, or element, of a list
can be extracted using the double brace format as follows; {a,b,c}[[2]] gives b and
{{a,b},{c,d}}[[2,1]] gives c. The solution to DSolve appears as a depth 3 list with
one element – the reason the output appears as a list is because the DE can, in general,
have more than one solution. To extract this one element from the list and assign it to
soln, the part specification [[1,1]] is included at the end of the assignment to soln.
This may or may not be necessary – it is done here to avoid any subsequent problems
with the list structure of the solution.

(b) A replacement rule is in the form f[a]/. a -> b. It is somewhat akin to an assignment,
in that a is replaced by b, except that the replacement acts only within the command
(or line) with which it is executed. The given line would compute f[b] (where f is some
function) – yet the variable a will not be assigned the value b in subsequent calculations.
This is different than a=b followed by f[b]; for which a has now been assigned to b

for all subsequent operations. As another example, D[t[r],r]/.r->0 first computes
t’[r] and then replaces r with zero. The operation r=0, followed by D[t[r],r], would
try to compute D[t[0],0] and would give an error because r has been assigned to
the constant 0 and is not a valid variable. The solution soln to DSolve appears as a
replacement; t[r] -> f[r], where f[r] is shorthand for the actual solution. It does

not assign t[r] to the solution; the operation t[.5], for example, would simply return
t[.5]. To compute the solution at r = .5, one would use t[r]/.soln/.r->.5. This
command first replaces t[r] with the functional form of the solution, and then replaces
r with 0.5. Any other parameters appearing in the solution (i.e., a and n) would also
have to be given values (via a direct assignment or a replacement) to obtain a numerical
answer. The use of this can be seen in the Plot argument.

6. Mathematica will often not give the most ‘simple’ form to an equation. For example, it does
not automatically recognize that I−1 = I1, K−1 = K1 (which are properties of the modified
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Bessel functions), and
√
N2 = N . In line [6] substitutions are made (via replacement rules)

into the solution, and the operation Simplify is used to condense the result. The two Bessel
function replacement rules are applied first to the result (by appearing together in a list they
are applied simultaneously) and the

√
N2 replacement rule is applied next. The underscore

following x in BesselK[-1,x ]->BesselK[1,x] denotes that x can have any value or form;
by doing so the Bessel function for argument N , Na, and Nr are all replaced accordingly.

7. Mathematica offers comprehensive online help – which includes a complete hypertext version
of the Mathematica book. There you can find more information on the strategy used in the
code and on other features (such as the plotting function).

2.2.3 Heat transfer

As can be seen in the Mathematica plot, the temperature distribution in the annular fin follows
similar behavior to that for a straight fin, i.e., exponential–like decay. Indeed, the Modified Bessel
functions I and K are analogous to the hyperbolic functions which form the solution for the uniform
cross section case, in that they have exponential behavior.

The solution for the temperature distribution, as derived by Mathematica, stands as

T =
I0(Nr)K1(N) +K0(Nr)I1(N)

I0(Na)K1(N) +K0(Na)I1(N)
(2.3)

This obviously gives T = 1 at r = 1. If we use the fact that I ′0 = I1 and K ′
0 = −K1, we find that

the adiabatic BC is satisfied at r = a.

The heat flux from the fin follows from

qfin = −kAB
dT

dr

∣
∣
∣
∣
ri

= −2πkbri(TB − T∞)

ro

dT

dr

∣
∣
∣
∣
a

= 2πakb(TB − T∞)N
K1(Na)I1(N) − I1(Na)K1(N)

K0(Na)I1(N) + I0(Na)K1(N)
(2.4)

Since the heat transfer from the base without the fin is qbase = 2πbrih(TB − T∞), it follows that
the effectiveness of the fin is

ǫ =
N

Bi
· K1(Na)I1(N) − I1(Na)K1(N)

K0(Na)I1(N) + I0(Na)K1(N)
(2.5)

where Bi = hro/k is the Biot number based on the outer radius. This formula is qualitatively
similar to that obtained for the rectangular fin – except the hyperbolic tangent function in the
latter is now replaced with a function of modified Bessel functions. The effectiveness will be a
function of N , Bi and the radius ratio a.
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Figure 2.1: annular fin η

The efficiency, on the other hand, is obtained using qmax = 2π(r2o − r2i )(TB − T∞), from which

η =
2a

N(1 − a2)
· K1(Na)I1(N) − I1(Na)K1(N)

K0(Na)I1(N) + I0(Na)K1(N)
(2.6)

The efficiency η is a function only of N and the geometrical parameter a – and not a function of Bi.
A plot of η vs. N with a as a parameter is given in Fig. 2.1. As a → 1 the fin becomes ‘stubbier’.
Accordingly, there is less of a temperature drop across the fin and the efficiency becomes closer to
unity.

2.3 Ordinary and modified Bessel functions

2.3.1 Definitions and Properties

The ordinary Bessel functions of integer order n, denoted Jn(x) and Yn(x), are solutions to the
ODE

x2u′′ + xu+ (x2 − n2)u = 0 (2.7)

i.e.,

u(x) = AJn(x) +BYn(x) (2.8)

whereas the modified Bessel functions In(x) and Kn(x) are solutions to

x2u′′ + xu− (x2 + n2)u = 0 (2.9)

Plots of Jn, Yn, In, and Kn for n = 0, 1 and 2 are shown in Fig. 2.2.

The ordinary Bessel functions share some of the same characteristics of the sine and cosine
functions, in that they exhibit oscillatory behavior about zero. Indeed, when x≫ n they have the
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Figure 2.2: ordinary Bessel functions Jn and Yn, and modified Bessel functions In and Kn

asymptotic limit of

Jn(x≫ n) ∼
√

2

πx
cos
(

x− nπ

2
− π

4

)

Yn(x≫ n) ∼
√

2

πx
sin
(

x− nπ

2
− π

4

)

which indicates a direct linkage between the Bessel and triginometric functions. Both Jn and Yn

go to zero (at rate 1/
√
x) for x→ ∞. In the other limit, i.e., x→ 0, the properties are

Jn(x≪ 1) ∼ 1

n!

(x

2

)n
, n ≥ 0

Y0(x≪ 1) ∼ 2

π
ln(x)

Yn(x≪ 1) ∼ −(n− 1)!

π

(x

2

)−n
, n ≥ 1

The modified Bessel functions, on the other hand, are cousins to the hyperbolic functions. Recall
that sin and cos are related via complex arithmetic to sinh and cosh (from the previous chapter).
Likewise, the modified Bessel functions are related to the ordinary Bessel functions by analogous
complex relationships.

For large argument (x≫ n) the modified Bessel functions behave as

In(x≫ n) ∼
√

1

2πx
exp(x)

Kn(x≫ n) ∼
√

1

2πx
exp(−x)
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which shows the hyperbolic (or exponential) behavior. In the opposite limit, the behavior is

In(x≪ 1) ∼ 1

n!

(x

2

)n
, n ≥ 0

K0(x≪ 1) ∼ − ln(x)

Kn(x≪ 1) ∼ (n− 1)!

2

(x

2

)−n
, n ≥ 1

The derivatives of ordinary Bessel functions can be obtained via the following recurrence rela-
tions. Here, C and D represents J , Y or any linear combination of the two:

Cn+1(x) =
2n

x
Cn(x) − Cn−1(x) (2.10)

d

dx
Cn(x) =

1

2
(Cn−1(x) − Cn+1(x)) (2.11)

= −Cn+1(x) +
n

x
Cn(x) (2.12)

Useful integral relationships are
∫

xJ0(x) dx = xJ1(x) (2.13)
∫

xY0(x) dx = xY1(x) (2.14)
∫

J1(x) dx = −J0(x) (2.15)
∫

Y1(x) dx = −Y0(x) (2.16)

∫

x2n+1J2
n(x) dx =

x2n+2

2(2n+ 1)

[
J2

n(x) + J2
n+1(x)

]
(2.17)

∫

xJ2
n(x) dx =

x2

2

[
J2

n(x) − J2
n+1(x)J

2
n−1(x)

]
(2.18)

∫

xn+1Cn(x) dx = xn+1Cn+1(x) (2.19)
∫

x1−nCn(x) dx = −x1−nCn−1(x) (2.20)
∫

xCn(hx)Dn(gx) dx =
x

h2 − g2
[hCn+1(hx)Dn(gx) − gCn(hx)Dn+1(gx)] (2.21)

∫

xCn(hx)Dn(hx) dx = −x
2

4
[Cn−1(hx)Dn+1(gx) − 2Cn(hx)Dn(hx) + Cn+1(hx)Dn−1(gx)]

(2.22)
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For formulas for the modified Bessel functions, let Cn = In, (−1)nKn, or any linear combination
of the previous two;

Cn+1(x) = −2n

x
Cn(x) + Cn−1(x) (2.23)

d

dx
Cn(x) =

1

2
(Cn−1(x) + Cn+1(x)) (2.24)

= Cn+1(x) +
n

x
Cn(x) (2.25)

The integral formulas are;

∫

xI0(x) dx = xI1(x) (2.26)
∫

xK0(x) dx = −xK1(x) (2.27)
∫

I1(x) dx = I0(x) (2.28)
∫

K1(x) dx = −K0(x) (2.29)

The above relationships should give you ∼90% of the formulas needed to work with ordinary and
modified Bessel function problems. Mathematica will be able to perform most of the calculations
of integrals and derivatives on the Bessel functions, and will also compute numerical values as well.
You can get FORTRAN subroutines to calculate Bessel functions from most numerical libraries –
contact me if you are interested.

2.3.2 The general Bessel equation

The differential equations describing the temperature profile in the annular and the triangular fins
are both forms of Bessel’s equation, the solutions of which will involve Bessel functions. In the
most general form, Bessel’s equation appears as

x2u′′ +
[
(1 − 2A)x− 2Bx2

]
u′ +

[
C2D2x2C +B2x2 −B(1 − 2A)x+A2 − C2n2

]
u = 0 (2.30)

where A, B, C, and n are constants. The solution to the above DE is

xAeBx
[
C1Jn(DxC) + C2Yn(DxC)

]
(2.31)

where C1 and C2 are integration constants which are determined from the boundary conditions
of the problem. The cookbook approach to using Eq. (2.30) is to start with the particular DE at
hand, put it in the form of Eq. (2.30), and deduce the constants A, B, C, D, and n from inspection.



44 CHAPTER 2. ADVANCED 1–D ANALYTICAL METHODS

To give an example, start again with the annular fin DE, which is

r2T
′′

+ rT
′ − r2N2T = 0 (2.32)

Recognize that r has been factored through to make the first term consistent with Eq. (2.30).
Comparing the second term to Eq. (2.30) shows that both A and B must be zero, and the third
term gives n = 0, C = 1, and D2 = −N2. This last relation is equivalent to D = ±iN , and the
positive root should be taken. In addition, when D is imaginary (i.e., if i is present), then In and
Kn are substituted in place of Jn and Yn in Eq. (2.31). The general solution to the circular fin DE
is then

T = C1I0(Nr) + C2K0(Nr) (2.33)

which is in the same form as obtained by Mathematica.
From Chapter 1, the DE for the triangular fin was

x2T
′′

+ xT
′ − xN2T = 0 (2.34)

Comparison to the general Bessel equation gives A = B = 0 from the second term, n = 0 from the
third, and C = 1/2 (since C2D2x2C is the only remaining non–zero part of the third term). We
then have −N2 = D2/4, or D = 2iN . Replacing Jn and Yn with In and Kn (since D is imaginary),
the general solution to the triangular fin problem is

T = C1I0(2Nx
1/2) + C2K0(2Nx

1/2) (2.35)

Boundary conditions are T
′
= 0 at x = 0 (which is the fin tip – recall that the dimensionless x

now runs from the tip of the fin to the base) and T = 1 at x = 1. Actually, an explicit BC at
x = 0 is not needed for this particular solution. The function K0 is singular at x = 0, and C2 must
therefore be zero to keep the temperature finite at the tip. The same reasoning does not apply to
the annular fin because the point r = 0 was not included in the domain, i.e., r ranged from a to
1. The BC at x = 1 provides a simple equation for the remaining constant C1, and the complete
solution is

T =
I0(2Nx

1/2)

I0(2N)
(2.36)

It is interesting to compare the above old–fashioned method with the Mathematica approach:

In[35]:=

de=x^2 t’’[x]+x t’[x]-x n^2 t[x]==0;

bc2=t[1]==1;

soln=Simplify[DSolve[{de,bc2},t[x],x][[1,1]]]

Out[35]=t[x] ->

(BesselI[0, 2*Sqrt[n^2]]*
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BesselK[0,

2*Sqrt[n^2]*Sqrt[x]]*C[2] +

BesselI[0,

2*Sqrt[n^2]*Sqrt[x]]*

(1 - BesselK[0, 2*Sqrt[n^2]]*

C[2]))/

BesselI[0, 2*Sqrt[n^2]]

In[43]:=

soln=Simplify[soln/.C[2]->0/.(n^2)^(1/2)->n]

Out[43]=t[x] ->

BesselI[0, 2*n*Sqrt[x]]/

BesselI[0, 2*n]

Mathematica would have trouble with an explicit BC at x = 0 because of the singularity in K0.
Perhaps a BC could be stated using a Limit function as was done in an example in the previous
chapter. In this case, however, it is easiest to simply leave the tip BC initially unspecified. The
returned solution contains an integration constant C[2] which appears as a product with the K0

function. Since this part of the solution must dissapear, the constant C[2] is zeroed out by a
replacement operation, which is performed in the second line.

Exercises

1. A conical pin fin of circular cross section is shaped (as the name implies) as a circular cone. It
has a length L and a radius R at the base. The cross sectional area is zero at the tip (i.e., the
tip is a point). Assuming 1–D conduction within the fin, derive the fin differential equation
for this geometry, and identify the appropriate fin parameter N . Obtain a solution for this
configuration by using the general Bessel equation, and check the solution with that obtained
with Mathematica. Derive equations for the heat flux though the fin, the fin effectiveness,
and the fin efficiency.

2. Perform the fin optimization analysis, presented in the previous chapter, for a triangular fin.
Determine the optimum value of N and the optimum heat flux for a fixed profile area. Note
that the answer to the latter part is given in the previous chapter.

3. A parabolic–profile fin has a cross sectional area given by

AC = 2bW
(x

L

)2
(2.37)

where W is the fin width, b is the half–thickness at the base, L is the fin length, and x runs
from the tip of the fin inwards (i.e., in the same manner used for the triangular fin). It will
be assumed here that W ≫ b.
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(a) Formulate the DE and boundary conditions for this particular type of fin, and solve the
problem. Note: this is not Bessel’s equation. Rather, the solution will be in the form
T ∝ xα, where α will be a function of N .

(b) Obtain an equation for the fin heat transfer rate, and determine the optimum heat
transfer, per unit width of fin, for a fixed profile area using the procedure in the previous
chapter. How does the parabolic fin compare to the straight rectangular and triangular
fins with regard to optimum heat transfer per unit mass? Also, what is the form of the
temperature profile in the fin for optimum N?

4. A pin fin with a circular cross section has a length L and a radius R, and the cross section
AC = πR2 is constant.

(a) Perform an optimization analysis on the fin for constant fin k, h, and base/environment
temperatures. What you are looking for is the optimum length/radius ratio of the fin
for a fixed fin volume V = LAC .

(b) For free convection around a horizontal cylinder, the heat transfer coefficient will vary
as h ≈ CR−1/4, where C is a constant which depends on the fluid properties. For this
situation, derive the optimum L/R.

5. Consider now a pin fin with a square cross section, with b denoting the thickness of the fin
and L the length. Fins of this type are to be mounted in a rectangular array on a circuit
board, subject to the constraint that the gap between adjacent fin surfaces is fixed at a value
t. With this constraint, the centers of the fins will be spaced at a distance b+ t on the board,
and the total number of fins on a square board of width W will be nF ≈ W 2/(b+ t)2. Now
take both W and the total volume of fin material on the board, V = b2LnF to be fixed.
By performing an optimization analysis, determine the optimum dimensionless fin thickness
bopt/t as a function of the effective board fin number N2

B = 4hS2/kt, in which S = V/W 2

is an effective length based on the volume of the fins and the board area. Prepare a plot of
bopt/t vs. NB, and explain the limiting behavior for large NB.

6. A wire, of length L and radius R, is suspended between two posts. The temperature at each
post is fixed at TB, and the wire is exposed to a convection environment characterized by h
and T∞. The wire is carrying current, which results in a heat dissipation rate of q′ per m of
wire length. Derive the temperature distribution in the wire and the net rate of heat transfer
from the wire to the post.



Chapter 3

Transient and One Dimensional
Conduction

3.1 Introduction

One–dimensional, steady heat transfer is, more often than not, an idealization of the actual process
we are attempting to model. For example, in modeling heat transfer through a plane wall it is
typically assumed that the ambient temperatures, on either side of the wall, are at steady, fixed
values – when in reality these temperatures will change with the changing environmental conditions
(such as night and day). We know that a 1–D, steady analysis would be appropriate for such
situations providing the characteristic time for ambient temperature change is significantly larger
than the characteristic diffusion time (or thermal relaxation time) of the wall. For such cases, the
heat transfer in the wall could be modelled as a quasi–steady process, i.e., a succession of steady
processes. This approach formed the basis of the so–called lumped capacity (or small Biot number)
approximation for transient heating/cooling of an object. When this criterion is not met – which
is of interest here – it becomes necessary to model the interacting dependence of time and position
on the temperature field. Analytically, this implies that the governing differential equations for the
temperature field will involve partial derivatives, as opposed to ordinary derivatives.

When examining transient heat transfer problems, it is important to recognize the nature (or
source) of the transient effect and the spacial dimensionality of the temperature field. The latter
can obviously be grouped into zero–dimension problems (which correspond to the lumped capacity
approximation) and 1, 2, and 3–D problems. The former can be categorized into impulse problems
in which the conditions at the boundaries (or within the system) instantaneously change from one
state to another, forced problems in which the boundary and/or system properties change from
an initial state to a final state over a set length of time (as opposed to the instantaneous change
in impulse problems), and periodic problems in which the boundary conditions and/or system
properties cycle over time.

47
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T2

T1

x
T2

Figure 3.1: plane wall configuration

This chapter will address the modelling of impulse problems in one spacial dimension. By doing
so, we will become familiar with the separation–of–variables method (SOV) for solution of certain
types of partial differential equations (PDEs). Extension to two and three spacial dimensions, and
forced problems, is relatively direct once the basic analytical concepts for transient impulse and 1–D
problems are understood. Periodic problems, on the other hand, will require a uniquely different
analytical approach. These topics will be addressed in subsequent chapters.

3.2 The transient impulse and 1–D cartesian problem

Perhaps the easiest way to introduce the SOV procedure is to apply it to a relatively simple problem.
Consider a plane, symmetrical wall as illustrated in Fig. 3.1. Initially the wall is at a temperature
T1. At time t = 0 the boundaries are brought to temperature T2. The problem is to find the
temperature distribution in the wall as a function of x and t.

The heat conduction equation for this situation – which is 1–D and transient, without heat
generation – is

1

α

∂T

∂t
=
∂2T

∂x2
(3.1)

The temperature field will, for this problem, remain symmetrical about the midplane of the slab
because the boundary conditions are identical at both surfaces. The x coordinate origin can then
be placed at the center of the slab and an adiabatic condition can be imposed at x = 0. The
boundary conditions of the problem are then

∂T

∂x

∣
∣
∣
∣
0

= 0, T (x = L, t) = T2 (3.2)
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and the initial condition is

T (x, t = 0) = T1 (3.3)

It is assumed that the surface temperature is T2 for any finite time into the process – which implies
that the solution (once obtained) will be valid only for t > 0. Of course, the instantaneous change
in surface temperature, which occurs at t = 0, is an idealization of physics. Such an impulse would
correspond to an infinite surface heat flux at t = 0; in any real situation the surface temperature
would change over a finite length of time. It turns out, however, that modelling of the real,
finite–heat–up–time problem requires a solution to the idealized, impulse problem (which, as was
mentioned in the introduction, will be addressed in a future chapter).

The problem is first made dimensionless. Let x = x/L, T = (T − T2)/(T − T1), and t = tα/L2.
The problem becomes

∂T

∂t
=
∂2T

∂x2 (3.4)

∂T

∂x

∣
∣
∣
∣
0

= 0, T (x = 1, t) = 0 (3.5)

T (x, t = 0) = 1 (3.6)

The solution procedure can be stated as follows: we assume that the solution T can be expressed
as a product of two functions, each of which depends only on a single variable. In other words,

T (x, t) = u(x) · v(t) (3.7)

This approach will be tested by applying it to the problem at hand – if a valid solution is obtained,
then the procedure works (at least for this particular problem). By replacing Eq. (3.7) into Eq. (3.4),
one obtains

∂(u(x) · v(t))
∂t

=
∂2(u(x) · v(t))

∂x2

u(x)
dv(t)

dt
= v(t) · d

2u(x)

dx2 (3.8)

Again, u depends only on x, and v only on t – which explains the transformation in the second
line. Recognize that the differential operators are now ordinary rather that partial. The equation
is rearranged to obtain

v′

v
=
u′′

u
(3.9)

The left hand side of the above is a function only of t, whereas the right hand side is a function
only of x. The only way that this equality could hold is if both sides of the equation are, in fact,
constant. The precise value(s) of this constant will be determined later, but for now the only
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distinguishing feature of the constant is whether it is positive, negative, or zero. Therefore, denote
the constant as λ2, and Eq. (3.9) becomes

v′

v
=
u′′

u
= ±λ2 (3.10)

We write λ2 (as opposed to simply λ) for a convenience which will soon become evident, and also to
fix the fact that λ2 is a positive number (that is, it is assumed that λ is real valued). Two separate
ordinary differential equations are now obtained from Eq. (3.10);

v′ = ±λ2v (3.11)

u′′ = ±λ2u (3.12)

This last statement illustrates the central objective of the separation of variables method – in that
the partial differential equation has been separated into two ordinary differential equations. And
the latter can be easily solved.

Perhaps the concern over the sign of the separation constant λ2 can now become evident. The
sign will completely dictate the nature of the solution, and only one choice in sign will lead to
a physically meaningful result. Precise mathematical procedures will be introduced in following
sections to prescribe the choice of sign on λ2; yet for this particular problem the sign can be deduced
from physical reasoning. The wall will eventually reach a steady state temperature distribution,
and the solution must be consistent with this behavior in the limit of t → ∞. Because the back
boundary is insulated the steady–state profile will simply be T = T2, or (nondimensionally) T = 0
for t→ ∞. For non–zero λ, Eq. (3.11) has the solution

v = Ce±λ2t (3.13)

Since T is u · v, only the case of λ2 < 0 will give the physically correct result, i.e., an exponentially
decaying solution in time. A zero value of λ would give v equal to a constant (or T independent
of time), and λ2 > 0 would give an exponentially–growing solution. Therefore, the cases of λ2 ≥ 0
can be eliminated.

Having fixed the sign of λ2, a solution to the ODE for u, Eq. (3.12), can be obtained:

u = A cos(λx) +B sin(λx) (3.14)

The general solution to the conduction equation is, again, T = v ·u. The constant C, in Eq. (3.13),
can be absorbed into A and B in Eq. (3.14) to obtain

T = u · v = [A cos(λx) +B sin(λx)] e−λ2t (3.15)

Three constants appear in this solution (A, B, and λ) and three equations exist for their specification
(the 2 BCs and the IC) – so it appears that the finishing touches on the solution will be trivial.
Unfortunately, this is not the case: the real complications to the method have only begun.
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Apply the solution first to the BC at x = 0:

∂T

∂x

∣
∣
∣
∣
0

= 0 = [0 + λB] e−λ2t (3.16)

This gives either λ = 0 or B = 0. The first option has already been discounted, so the correct
choice is B = 0. This result could have been deduced from the symmetry of our problem; the
solution must be even in x (i.e., T (−x, t) = T (x, t)), from which the sin part of the solution can be
eliminated.

The boundary condition at x = 1 has

T (x = 1, t) = 0 = A cos(λ)e−λ2t (3.17)

Again, the choice A = 0 leads to T = 0 as the solution – which is obviously not correct. Rather,
the outcome should be

cos(λ) = 0 (3.18)

This represents an transcendental equation for λ; meaning that an infinite number of roots exist
for the equation. For this particular relation the roots can be obtained explicitly as

λ =
π

2
,

3π

2
,

5π

2
, . . . (3.19)

or, in a more general form

λ = λn =
1

2
(2n− 1)π, n = 1, 2, . . . (3.20)

We have no rationale for rejecting any particular value of λ. That is, each value of λ could (in
general) have a meaningful and essential contribution to the solution. The integration constant A
in Eq. (3.17) would also be expected to depend on the particular value of λ, and can be denoted, for
the nth value of λ, as An. Because the heat conduction equation is linear, the sum of any number
of separate solutions to the equation is also a solution. The most general solution to the problem
would include all possible valid solutions. The outcome of this reasoning is that the general solution
is

T =

∞∑

n=1

An cos[
1

2
(2n− 1)πx] exp

[

−
(

1

2
(2n− 1)π

)2

t

]

(3.21)

Recognize that each term in the series 1) is a solution to the PDE, and 2) satisfies both BCs. The
initial condition has yet to be satisfied.

At this point you may be questioning the usefulness of the SOV procedure. One equation
remains (the IC) to fix the integration constants of the problem, yet the general solution contains
an infinite number of constants (i.e., the expansion coefficients An for n = 1, 2, . . .). It would
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therefore appear that the problem is ‘underconstrained’, i.e., there is not enough information to
give a unique solution. Specifically, the initial condition, when applied to Eq. (3.21), gives

T (x, t = 0) = 1 =
∞∑

n=0

An cos[
1

2
(2n− 1)πx] (3.22)

The very nature of this equation is somewhat contradictory – the left hand side is obviously constant,
yet the right hand side appears to show a clear functionality on x. The distiguishing feature of the
right hand side, however, is the fact that an infinite number of terms are included in the series. If
this condition is exactly met (in a mathematical sense), it is possible to choose values for the An

so that the condition in Eq. (3.22) is exactly satisfied for all x. On the other hand, if only a finite
number of terms are included in the series – which would be required for any numerical evaluation
of the solution – then the condition can only be met in an approximate sense.

One possible method of fixing the An coefficients would be to select a set of ‘collocation’ points
x = x1, x2, . . . xM and use these to obtain equations for the An’s, i.e.,

∞∑

n=1

An cos[
1

2
(2n− 1)πx1] = 1

∞∑

n=1

An cos[
1

2
(2n− 1)πx2] = 1

∞∑

n=1

An cos[
1

2
(2n− 1)πxM ] = 1

If the series is limited (or ‘truncated’) to M terms, one would obtain a system of M equations for
the M coefficients. This method, however, is ill–advised and not very practical.

A much more efficient and elegant approach manages to eliminate every term in the series in
Eq. (3.22) except one. And the one remaining term leads to an explicit equation for the corre-
sponding An. To demonstrate this method, first multiply Eq. (3.22) through by cos[12(2m− 1)πx],
where m is an integer, and integrate over x from 0 to 1:

∫ 1

0
cos[

1

2
(2m− 1)πx] dx

=

∫ 1

0
cos[

1

2
(2m− 1)πx]

( ∞∑

n=1

An cos[
1

2
(2n− 1)πx]

)

dx

=
∞∑

n=1

An

∫ 1

0
cos[

1

2
(2m− 1)πx] cos[

1

2
(2n− 1)πx] dx (3.23)

The orders of integration and summation can be switched in the above equation because it is
assumed that the series is convergent – if it was not, the solution would not be very useful. The
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left hand side integral is

∫ 1

0
cos[

1

2
(2m− 1)πx] dx =

2

(2m− 1)π
sin(

1

2
(2m− 1)π)

=
2

(2m− 1)π
(−1)m−1

The integral on the right hand side will have two possible outcomes. Denoting λn as shorthand for
(2n− 1)π/2, one has

∫ 1

0
cos[λmx] cos[λnx] dx

=







λm cos(λn) sin(λm) − λn cos(λm) sin(λn)

λ2
m − λ2

n

, λm 6= λn

1

2
+

sin(2λn)

4λn
, λm = λn

The first case, for n 6= m, is zero because cos(λn) = 0 for all integer n. Likewise, the second case,
n = m, gives a value of 1/2 because sin(2λn) = 0. To summarize, the result is

∫ 1

0
cos[λmx] cos[λnx] dx =







0 , n 6= m
1

2
, n = m

(3.24)

Substitution of this result into Eq. (3.23) leads to the removal of all terms in the series except the
one for which n = m. What remains is simply

2(−1)m−1

(2m− 1)π
= Am × 1

2

or

Am =
4(−1)m−1

(2m− 1)π
=

2(−1)m−1

λm
(3.25)

This is the sought explicit equation for Am. Of course, the index m can be set to any number
or symbol we choose, i.e. An. The final, complete solution to the temperature field is then

T (x, t) = 2
∞∑

n=1

(−1)n−1 cos[λnx]

λn
exp

[
−λ2

nt
]

(3.26)

where λn = (2n− 1)π/2.
As was mentioned above, the solution is ‘formally’ exact only when the upper limit of the sum

appears as infinity. To obtain a useful numerical result, however, it is only necessary to sum a finite
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Figure 3.2: Solution to Eq. (3.26)

number of terms (say N) so that the series converges. This number typically corresponds to the
point where the relative change in the sum due to the n = N th term is less that a set tolerance. It
can be easily seen that the ‘truncation limit’ N decreases as time t increases – which is due to the
exponential dependence of the solution on λ2

nt.
Series solutions will occur in the significant majority of PDE solutions examined in this course.

As engineers, we are obviously interested in obtaining numerical results from the analytical solu-
tion, and this will typically require evaluation of the solution in a Mathematica, fortran, or other
programming language code1. A discussion of the aspects of Mathematica evaluation of infinite
series solutions is presented in Sec. 3.5.

Shown in Fig. 3.2 are calculated results from the solution, in which dimensionless temperature
is plotted vs. x for various values of dimensionless time. It is important to be able to produce
and plot numerical results from an analytical solution – for this allows one to perform a ‘reality
check’ on the solution. The plot shows that the boundary and initial conditions appear to be met.
Zero gradient exists at x = 0, the temperature is zero at x = 1, and for small values of time (i.e.,
t = 0.01) the temperature is nearly uniform in the interior of the wall. It takes a finite amount
of time for a temperature ‘wave’ to propagate through the wall. That is, for dimensionless times
somewhat less that 0.1 the temperature at x = 0 is essentially unaffected by the sudden alteration
of temperature at x = 1. Up until this time the wall could be treated as semi–infinite, i.e., of
effectively infinite thickness. The advantage of this approximation is that it can lead to somewhat
simpler expressions for the temperature field. This (and other) approximation methods will be
explored in future chapters. The temperature in the wall has decayed nearly to ambient for t = 1.

1Series solution can also be numerically evaluated with a spreadsheet – but this approach is NOT advised
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This, again, is to be expected: an order–of–magnitude analysis would give a characteristic cooling
time of tc ≈ L2/α. This corresponds to a dimensionless time of unity, and is consistent with our
exact results.

Basic elements of Separation–of–Variables

Here is a summary of what has been covered, with some additional mathematical terminology
introduced:

1. Problem Statement: The governing differential equations and boundary conditions are formu-
lated and cast in nondimensional form:

∂T

∂t
=
∂2T

∂x2

∂T

∂x

∣
∣
∣
∣
0

= 0

T (x = 1, t) = 0

T (x, t = 0) = 1

In the above and what follows, it is understood that all quantities – unless specified otherwise
– are in a nondimensional form. The differential equation and the two boundary conditions are
homogeneous, whereas the initial condition is inhomogeneous. An equation is homogenous if the
substitution T → C ·T , where C is a constant, leads to the same original equation. The homogeneity
and/or inhomogeneity of the DE and BC/ICs are of critical importance in using separation of
variables. In the particular problem examined above, the success of the method actually required
both the DE and the BCs to be homogeneous. A modified analytical approach would have been
required had this not been the case. Inhomogeneities in the DE will typically arise from sources
or sinks in the energy equation (i.e., heat generation). An inhomogeneous boundary condition
would have resulted had the surfaces been maintained at constant yet unequal temperatures, or if
a specified heat flux (as opposed to an adiabatic condition) had been applied at a surface. As you
can imagine, such situations will not be uncommon – and because of this it will be necessary to
generalize the analytical procedure to situation in which SOV, by itself, cannot work.

A completely homogeneous problem (say an IC of T (x, t = 0) = 0 along with homogeneous
DE and BCs) would have given the trivial solution of T = 0 for all x and t. You should be able
to prove this to yourself. In any meaningful heat conduction problem, there must be at least one
inhomogeneity in the problem statement.

2. Separation of Variables: The dependent variable T (x, t) is split into the product of two functions,
with each function being dependent solely on one independent variable. That is, T (x, t) = u(x)·v(t).
The product is swapped back into the partial differential equation, and the equation is rearranged
so that one side contains only the u function and its derivatives, and the other side contains only
the v function and its derivative. It can then be declared that each side must be constant. The
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constant is denoted as ±λ2, and two ordinary differential equations are formed from the original
partial differential equation:

u′′ = ±λ2u

v′ = ±λ2v

3. Choice of the sign of λ2: This part is critical. In the previous example physics were used to
determine that −λ2 was the correct choice, with the additional constraint that λ is non–zero. For
other problems (such as in two–dimensional, steady conduction and problems in which there is no
steady–state solution) the choice of the sign of λ2 will not be so obvious. For these problems it
will be necessary to resort to mathematical, rather than physical, reasoning. More about this will
be learned as such problems are encountered. Once the sign of λ2 has been established, the two
characteristic solutions for u and v are obtained;

u = A cos(λx) +B sin(λx)

v = e−λ2t

Note that it is not necessary to include a ‘C’ in front of the solution for v, because this will
ultimately be absorbed into the constants A and B when the product T = u · v is formed.

4. Apply the homogeneous BCs: The homogeneous conditions (here at x = 0 and 1) are used to
eliminate one of the constants A and/or B and establish a condition for λ. In the previous problem
the adiabatic wall condition at x = 0 was used to set B = 0, and the boundary condition at x = 1
led to the condition

cos(λ) = 0 −→ λ = λn =
1

2
(2n− 1)π, n = 1, 2, . . . (3.27)

This is known as an eigencondition, and the associated values of λ (referred to as λn) are known
as eigenvalues. The corresponding functions cos(λnx) are known as eigenfunctions. These ‘eigen’
terms are hybrids of German and English, in which eigen has the meaning ‘characteristic’. The
general solution for T is then put in the form of an infinite series involving the eigenfunctions:

T =
∞∑

n=1

An cos(λnx)e
−λ2

nt

in which the An’s are the expansion coefficients for the series.

5. Apply the inhomogeneous condition: The initial condition, which is the sole inhomogeneous as-
pect of the previous example, gave the equation

T (x, t = 0) = 1 =
∞∑

n=0

An cos(λnx)
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This result was multiplied through by cos(λmx) and integrated over x from 0 to 1. By use of the
fact that

∫ 1

0
cos(λnx) cos(λmx) dx =

{

0, n 6= m
1
2 , n = m

it was found that

An = 2

∫ 1

0
cos(λnx) dx = −2(−1)n

λn

Having completely specified the expansion coefficients, a complete solution to the problem has been
obtained.

3.3 Orthogonal functions and orthogonality

Perhaps one of the most difficult concepts to grasp in the separation of variables (SOV) method
is the ‘expansion’ of the solution into a series, and the use of the integral relationships presented
above to establish the values of the expansion coefficients in the series. It is no lucky coincidence
that these integral relationships occurred for the particular problem we addressed; rather, they will
be features of any problem that is solved with the SOV method.

The origin and properties of these integral relationships can be better understood by general-
ization of some of the details presented in the previous section. The x dependence of the dependent
variable T was taken to reside in a function u(x), which satisfied the ODE (obtained from the SOV
procedure)

u′′ + λ2u = 0 (3.28)

The boundary conditions in the x direction are homogeneous. In the most general case these
homogeneous boundary conditions can be cast as

C1T + C2 ·
∂T

∂x
= 0, x on boundaries (3.29)

where the constants C1 and C2 may have different values on different boundaries, but are not a
function of time. In the previous example we had C1 = 0 and C2 = 1 at x = 0 and visa–versa at
x = 1. Since T = u · v, the above BC is equivalent to

C1uv + C2vu
′ = 0, x on boundaries (3.30)

or, cancelling out the v,
C1u+ C2u

′ = 0, x on boundaries (3.31)

The fact that the time dependence part (in v) cancels from the BCs is due entirely to the homo-
geneity of the BCs. So, for the problem at hand, u has boundary conditions of

u′(x = 0) = 0, u(x = 1) = 0 (3.32)
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The function that will satisfy the DE and BCs for u is, again, referred to as an eigenfunction,
which will be denoted by the general symbol φn(x). It is important to realize that the solution
to Eqs. (3.28) and (3.32) is not unique. That is, their exist an infinite number of eigenfunctions
φn, n = 0, 1, 2,. . ., each of which exactly satisfies the DE and the BCs. As was mentioned in the
previous section, this may seem like a problem when it comes to ‘pinning down’ a solution to the
PDE. However, the eigenfunctions will exhibit an integration property which will be immensely
useful in constructing series solutions to the PDE from the eigenfunctions. Specifically, it will be
shown – without resorting to a table of integrals – that

∫ 1

0
φn(x)φm(x) dx =

{
0, n 6= m
not necessarily 0, n = m

(3.33)

The original DE (Eq. (3.28)) gives φn = −φ′′n/λ2
n, or

∫ 1

0
φn(x)φm(x) dx = − 1

λ2
n

∫ 1

0
φ′′nφm dx (3.34)

Now factor out the λ2
n and integrate by parts:

λ2
n

∫ 1

0
φn(x)φm(x) dx

= −φ′nφm

∣
∣
∣

1

0
+ φnφ

′
m

∣
∣
∣

1

0
−
∫ 1

0
φnφ

′′
m dx

= −φ′nφm

∣
∣
∣

1

0
+ φnφ

′
m

∣
∣
∣

1

0
+ λ2

m

∫ 1

0
φnφm dx

The last part came from replacing φ′′m with −λ2
mφm. After rearranging:

∫ 1

0
φnφm dx =

1

λ2
n − λ2

m

[

φ′nφm

∣
∣
∣

1

0
+ φnφ

′
m

∣
∣
∣

1

0

]

The boundary conditions on the problem give φ′n = φ′m = 0 at x = 0 and φn = φm = 0 at x = 1.
Consequently, the boundary terms in the above are identically zero. It can then be stated that the
above integral is zero for n 6= m. However, if n = m then λ2

n − λ2
m = 0, and the above result gives

0/0 – which is indeterminate. This only means that integration–by–parts, as used above, cannot
determine the integral of φ2

n dx. We can deduce, however, that this integral cannot be zero unless
φn is itself zero for all x: φ2

n will be a positive quantity, and the definite integral of a quantity that
is always greater than zero cannot be zero. General formulas for the integral of φ2

n are presented
in the appendix.

Recognize also that the integral in the above equation would be zero, for n 6= m, whenever φn

and φm satisfy any homogeneous boundary condition at the boundaries. That is, if the BCs were



3.3. ORTHOGONAL FUNCTIONS AND ORTHOGONALITY 59

in the general form of Eq. (3.31) (with C1 and C2 not depending on n), then the boundary terms
in the above equation would have cancelled. You should prove this to yourself.

This integral property exhibited by the φn functions is known as orthogonality. Orthogonal
functions will appear whenever analytical solutions to the conduction equation (and a host of other
partial differential equations) are obtained by separation of variables techniques. An orthogonal
function will always display oscillatory behavior about zero – as is the case with the trigonometric
functions encountered here. Because of this the product φn(x)φm(x) will also oscillate about zero
(providing n 6= m) and will do so in such a way that the integral of the product will equal zero.

Expansion in orthogonal functions

The property of orthogonality allows one to expand practically any function into a series of orthog-
onal functions. For example, say the arbitrary function f(x) is single–valued on the interval (0, 1).
An expansion of f over this interval in terms of orthogonal functions φn would be

f(x) =

∞∑

n=0

Anφn(x) (3.35)

Explicit formulas for the expansion coefficients (An) are obtained by multiplying each side through
by φm(x) and integrating from 0 to 1. From Eq. (3.33), each term in the series vanishes upon the
integration except the one with n = m. The general formula for the Ans becomes:

An =

∫ 1

0
f(x)φn(x) dx ·

[∫ 1

0
φ2

n(x) dx

]−1

(3.36)

The process described in the previous two equations was used in the example of Sec. 3.2 to expand
the initial temperature profile of the slab in terms of the orthogonal functions (or eigenfunctions)
φn(x) = cos(λnx). In this case the function f was simply unity. Realize, however, that any
arbitrary (within reason) initial temperature distribution could have been specified within the wall.
For example, the initial distribution could have been linear, quadratic, exponential, discontinuous,
etc. If this profile can be represented by a function f , then the expansion coefficients would be
given by Eq. (3.36).

An example of this strategy is now presented. Say f is a step function, represented by

f(x) =

{

0, 0 ≤ x ≤ 1
2

1, 1
2 < x ≤ 1

and say that the eigenfunctions are defined by

φn(x) = cos(nπx), n = 0, 2, . . . (3.37)
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Note that, as defined above, φn satisfies the homogeneous boundary conditions of φ′n(0) = φ′n(1) =
0. Because of this, φn will be orthogonal on the interval (0,1). The integrals appearing in Eq. (3.36)
will be

∫ 1

0
f(x)φn(x) dx =

∫ 1

1/2
cos(nπx) dx

=







1

2
, n = 0

− 1

nπ
sin(nπ/2), n > 0

∫ 1

0
φ2

n(x) dx =

∫ 1

0
cos2(nπx) dx

=







1, n = 0

1

2
, n > 0

The formula for the An is therefore:

An =







1

2
, n = 0

− 2

nπ
sin(nπ/2), n > 0

(3.38)

The An will be zero for even n – with the exception of n = 0. The index n can then be replaced
with 2n− 1, and

An =







1

2
, n = 0

2

(2n− 1)π
(−1)n, n = 1, 2, . . .

(3.39)

The final formula for the function is

f(x) =
1

2
+

2

π

∞∑

n=1

(−1)n cos[(2n− 1)πx]

2n− 1
(3.40)

Illustrated in Fig. 3.3 is a plot of f(x) calculated using Eq. (3.40) for 1,2,5 and 100 terms
retained in the series The series for N = 100 terms appears (to the eye) to be a good representation
of the actual step function. For this case, the worst accuracy occurs at the points where f(x)
undergoes the most rapid change. Indeed, the exact function f(x) has f ′ → ∞ for x = 1/2. At
this point the series gives

f ′(1/2) = −2
∞∑

n=1

(−1)n sin[(2n− 1)π/2] = 2
∞∑

n=1

1 → ∞ (3.41)
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Figure 3.3: series representation of the step function

The series result is consistent with the exact result – in that the singularity in f ′ at x = 1/2 is
represented by a non–convergent series. This example points out, however, one of the most powerful
aspects of a series expansion in orthogonal function, in that it can express a discontinuous function
(such as the f(x) used here) in terms of a series of continuous functions.

The Sturm–Liouville system

The property of orthogonality can now be generalized. Consider an ODE of the form:

(p(x)u′)′ +
[
s(x) + λ2w(x)

]
u = 0 (3.42)

where p(x), s(x), and w(x) are prescribed functions of x. The problem of Sec. 3.2, Eq. (3.28), had
p(x) = w(x) = 1 and s(x) = 0. The boundary conditions on u are also prescibed as homogeneous,
i.e.,

a1u(x1) + b1u
′(x1) = 0

a2u(x2) + b2u
′(x2) = 0 (3.43)

where a and b are constants and x1 and x2 are the bounds on the domain of the system. The above
system (Eqs. (3.42) and (3.43)) is known as the Sturm–Liouville problem. The solution for u will
be in the form of eigenfunctions φn(x), and these eigenfunctions will be orthogonal. The specific
form of the orthognality relationship will be

∫ x2

x1

φn(x)φm(x)w(x) dx = 0, n 6= m (3.44)

The function w(x), which appeared first in the DE for u, is commonly known as a weighting
function. In problems involving cylindrical or spherical coordinates the weighting functions will be
other than unity.
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3.4 More on transient problems

3.4.1 Convection BCs

A more realistic representation of a transient cooling and/or heating problem is offered by a con-
vection boundary condition. Consider the same problem examined in Sec. 3.2, i.e., a plane wall,
of length L, that has an adiabatic boundary at x = 0 and is initially at a temperature at T = T1,
yet now at t = 0 the surface at x = L is instantaneously subjected to convective cooling, charac-
terized by a heat transfer coefficient h and an ambient temperature T∞. As before, the evolution
of temperature within the wall is to be determined.

Nondimensional variables are defined according to x = x/L, T = (T − T∞)/(T − T1), and
t = tα/L2. The overbar notation, signifying nondimensionality, will now be dropped and it is
understood that all quantities (unless otherwise specified) are nondimensional. The corresponding
problem is

∂T

∂t
=
∂2T

∂x2
(3.45)

∂T

∂x

∣
∣
∣
∣
0

= 0

∂T

∂x

∣
∣
∣
∣
1

= −BiT (x = 1, t) (3.46)

T (x, t = 0) = 1 (3.47)

where Bi = hL/k is the Biot number. The only modification to the problem is the convection BC
at x = 1 – which is still a homogeneous BC. Both the BCs are homogeneous and the separation of
variables can proceed as before.

Following the same procedure based on T (x, t) = u(x) · v(t) the characteristic DE for u is the
same as before;

u′′ + λ2u = 0

which gives us
u = A cos(λx) +B sin(λx)

The adiabatic condition at x = 0 gives B = 0. At x = 1 the BC for u is

u′(x = 1) = −Biu(x = 1)

or, after substitution of the solution:

λ sin(λ) = Bi cos(λ) −→ λ tan(λ) −Bi = 0 (3.48)

This result represents the eigencondition to the convection BC problem under examination. Similar
to the eigencondition that was obtained for the fixed–temperature BC (Eq. (3.18)), Eq. (3.48)
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Figure 3.4: plot of λ tan(λ) − 1

represents a transcendental equation that has an infinite number of roots; λ = λ1, λ2, . . .. Unlike
the previous example, the convection BC eigencondition does not provide a closed–form, explicit

expression for the roots. Rather, the eigencondition is now an implicit relation for λn.

To further illustrate, a plot of the function F (λ) = λ tan(λ) − 1 (i.e., Eq. (3.48) with Bi = 1)
is given in Fig. 3.4. Singular points occur in the function tan(λ) for λ = π/2, 3π/2, 5π/2 . . .. The
roots occur where the continuous part of the curve crosses the F = 0 line. Determination of the
eigenvalues (or roots) from Eq. (3.48) requires use of either a chart (such as illustrated above for
Bi = 1), a table, or a numerical method for solving the nonlinear equation. The latter is easily
coded into Mathematica, and this is discussed in Sec. 3.5.

Assume now that the set of eigenvalues λn, n = 1, 2,. . ., corresponding to the roots of Eq. (3.48)
for a given value of Bi, are known. From this point on the problem follows the same procedure as
that used before. The solution will be in the form of the series

T =
∞∑

n=1

An cos(λnx)e
−λ2

nt (3.49)

At t = 0 the initial condition gives

1 =
∞∑

n=1

An cos(λnx) (3.50)
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Multiply through by cos(λmx) and integrate from 0 to 1. Use the orthogonality of the eigenfunctions
to obtain

An =

∫ 1

0
cos(λnx) dx ·

[∫ 1

0
cos2(λnx) dx

]−1

(3.51)

These integrals will have different values than before because λn is different. The first integral is
∫ 1

0
cos(λnx) dx =

sin(λn)

λn
(3.52)

This can be simplified somewhat. By taking the square of the eigencondition, the following is
obtained:

λ2
n sin2(λn) = Bi2 cos2(λn) = Bi2

[
1 − sin2(λn)

]
(3.53)

or

sin(λn) = ± Bi

(λ2
n +Bi2)1/2

(3.54)

If λn is between 2nπ and (2n + 1)π then sin(λn) will be positive; otherwise it will be negative.
Looking at the previous plot, it appears that the λn’s with odd n will be in the positive sin(λn)
region, and the even λn’s will give the negative. Actually, you can prove to yourself that this will
hold for arbitrary Bi. The first integral becomes

∫ 1

0
cos(λnx) dx = − (−1)nBi

λn(λ2
n +Bi2)1/2

(3.55)

Similarly, the second integral is
∫ 1

0
cos2(λnx) dx =

1

2

(

1 +
cos(λn) sin(λn)

λn

)

=
1

2

(

1 +
Bi

λ2
n +Bi2

)

Again, the eigencondition was used to eliminate the trigonometric functions. Combining the pre-
vious two equations, the formula for the An is

An = −2(−1)nBi
(
λ2

n +Bi2
)1/2

λn [λ2
n +Bi(1 +Bi)]

(3.56)

Of course, we could have left the result in terms of the trigonometric functions.
The key feature of convection boundary conditions in separation of variables solutions is that

the eigencondition becomes an implicit, rather than explicit, equation for λn. This does limit
somewhat the accessibility of the solution, in that a numerical root finding method (or tables or
charts) is required to obtain the eigenvalues prior to evaluation of the series. Since, however, a code
is usually used to evaluate the series, it should be, in principle, little added difficulty to include
routine that evaluates the λn’s from the eigencondition.
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Limiting forms of the eigencondition

The convection boundary condition can reduce, for appropriate limiting values of Bi, to isothermal
or adiabatic BCs. When Bi → ∞ (large h limit) the (dimensional) surface temperature would go
to T∞ – corresponding to a zero dimensionless temperature. The eigencondition would reduce in
this case to

cos(λn) =
λn sin(λn)

Bi
→ 0 or λn =

1

2
(2n− 1)π

which is the result of the original problem. Likewise, for Bi→ 0 the condition becomes

λn sin(λn) → 0, or λn = nπ, n = 0, 1, . . . (3.57)

You could prove to yourself analytically (by going though the SOV process) that this particular
eigenvalue will give the trivial solution of T = 1 for all t and x. This, of course, follows from
physical insight: if insulated boundaries exist at both the x = 0 and L surfaces, then no heat can
be removed from the system and the wall will remain in equilibrium at T = T1.

A more realistic situation is the small Bi regime (say Bi ≪ 1). For this situation an approxi-
mation can be obtained to the first eigenvalue. The eigencondition would correspond to

λn sin(λn) = Bi cos(λn) ≪ 1 (3.58)

which implies that λn has to be near the values of (n− 1)π, with n = 1, 2, . . .. The first eigenvalue
λ1 will therefore be a small number. By expanding sin(λ1) and cos(λ1) in powers of λ1 about
λ1 = 0, the eigencondition for the first root will become

λ1

(

λ1 −
λ3

1

3!
+ . . .

)

= Bi

(

1 − λ2
1

2!
+ . . .

)

(3.59)

Retaining only powers of λ2
1, one obtains

λ1 ≈
(

2Bi

2 +Bi

)1/2

≈ (Bi)1/2 (3.60)

Eigenvalues for arbitrary n can be obtained by expanding the triginometric functions for the argu-
ment λn about (n − 1)π – which would give a quadratic equation for the roots. It will turn out,
though, that these higher–order roots are not needed when Bi≪ 1.

Given in Fig. 3.5 is a plot of the dimensionless temperature in the wall for three values of Bi (=
0.01, 1, and 100) and three values of a re–scaled nondimensional time t ·Bi = th/ρcL. Recall that
this nondimensional time appears in ‘lumped–capacity’ (or small–Biot) heating cooling problems.
For Bi≪ 1 the temperature within the wall will remain nearly uniform and decay at the rate

T ≈ exp

(

− th

ρcL

)

(3.61)
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Figure 3.5: T distribution for Bi = 0.01, 1 and 100

Inspection of Eq. (3.60) reveals that the Bi ≪ 1 regime gives λ2
1t ≈ Bit. Likewise, cos(λ1x) ≈ 1

(since λ1 ≪ 1) and A1 ≈ 1. The first term in the exact series solution, Eq. (3.49), therefore
reduces for Bi ≪ 1 to the lumped capacity result. Indeed, the exact result presented in Fig. 3.5
for Bi = 0.01 shows that a lumped capacity analysis would be entirely appropriate – in that the
temperature distribution remains essentially uniform throughout the cooling process. For Bi = 1
the distribution of temperature becomes more nonuniform within the wall, and for Bi = 100 the
solution approachs the conditions of the first problem examined – i.e., an instantaneous change in
the boundary temperature to T∞.

3.4.2 Heat transfer

Continue with the same symmetrical plane wall configuration. At any instant into the cooling (or
heating) process the heat flux from the wall would be given by (in dimensional form)

q′′ = −k ∂T
∂x

∣
∣
∣
∣
L

or, in dimensionless variables and using Eq. (3.49), the flux is

q′′ ≡ q′′L

k(T1 − T∞)
= − ∂T

∂x

∣
∣
∣
∣
1

=
∑

n=1

λnAn sin(λn)e−λ2
nt

Another quantity of interest is the net amount of heat Q that has been removed (or added) to the
wall during the time interval 0 − t. This quantity would be in units of J (or Q′′, J/m2), and could
be obtained by integrating q′′ over time from 0 to t. Alternatively, this quantity can be obtained
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from the First Law of thermodynamics, which states

Q = ρcV (Tm,1 − Tm,2) (3.62)

where Tm,1 and Tm,2 are the mean temperatures of the wall at the initial and final points of the
process. A positive Q is defined as heat removed from the system. By using the definition of the
mean temperature, the net heat transfer at time t would be

Q(t) = ρc

∫

V
[T1 − T (x, t)] dV = ρcA

∫ L

0
[T1 − T (x, t)] dx (3.63)

where T1 is the initial temperature of the wall. For the problem at hand, the wall will eventually
reach a steady state temperature of T∞. Consequently Qtot = ρcAL(T1 − T∞) is the total net heat
transfer that would be transferred to/from the wall during the entire process. With this in mind,
the above equation can be recast in a dimensionless form;

Q(t)

Qtot
= Q(t) = 1 −

∫ 1

0
T dx

= 1 −
∞∑

n=1

An sinλn

λn
e−λ2

nt (3.64)

This result represents sort of a ‘generalized’ lumped capacity relation – in that the dimensionless
net heat transfer will be proportional to the dimensionless mean temperature, i.e.,

Q = 1 − Tm − T∞
T1 − T∞

(3.65)

Equation (3.64) (and those like it) can therefore be used to determine characteristic cooling times
of the wall.

3.4.3 Non–homogeneous BCs/DEs: Partial solutions

Inhomogeneous boundary conditions

The boundary conditions in the plane wall problem are now modified. As before, the wall is
initially at T = T1, yet the surface at x = 0 is maintained at T = T1 and the surface at x = L
is instantaneously brought to T = T2 at t = 0. By defining the non–dimensional temperature as
T = (T − T1)/(T2 − T1), the problem becomes

∂T

∂t
=
∂2T

∂x2 (3.66)

T (x = 0, t) = 0

T (x = 1, t) = 1

T (x, t = 0) = 0 (3.67)
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The overbar notation will now be dropped from the variables. For this problem the BC at x = 1
is now inhomogeneous, and the IC is homogeneous. Because of this, SOV cannot be directly
applied to the problem as stated. This is because the time ‘direction’ of the problem (which
has the homogeneous condition) cannot be put in the Sturm–Liouville form, i.e. time–dependent
eigenfunctions would not result from the separated problem.

In a subsequent chapter a more robust method of solving PDEs (know as variation of parame-
ters) will be introduced, which allows one to get around this problem. For now, though, a solution
can be obtained by (again) appealing to physics. It is not hard to see that this particular problem
will attain a steady–state condition for t → ∞. Denoting the steady–state solution as s(x), this
behavior would be

T (x, t→ ∞) = s(x) = x (3.68)

That is, the steady state temperature profile in the wall is simply the linear profile x. Continuing
with this concept, the function defined by w(x, t) = T (x, t) − s(x) would go to zero for t → ∞.
Consequently, the solution for the temperature can be split into the two parts:

T (x, t) = w(x, t) + s(x) (3.69)

in which w(x, t) represents the transient portion (that goes to zero for large t) and s(x) is the
steady–state portion. The next step is to determine the PDE, BCs, and IC for w. By replacing the
above equation into the PDE for T , one obtains

∂w

∂t
+

∂s

∂t
︸︷︷︸

= 0

=
∂2w

∂x2
+
d2s

dx2
︸︷︷︸

= 0

(3.70)

The second derivative of s is zero in the above because s satisfies the steady–state conduction
equation. The homogeneous 1–D and transient conduction PDE is therefore obtained for w. The
boundary conditions for w are found in a similar manner, in that T = w+ s is substituted into the
BCs and IC;

T (x = 0, t) = w(x = 0, t) + s(x = 0)
︸ ︷︷ ︸

= 0

= 0 −→ w(x = 0, t) = 0 (3.71)

T (x = 1, t) = w(x = 1, t) + s(x = 1)
︸ ︷︷ ︸

= 1

= 1 −→ w(x = 0, t) = 0 (3.72)

T (x, t = 0) = w(x, t = 0) + s(x) = 0 −→ w(x = 0, t) = −s(x) = −x (3.73)

The problem for w is now has homogeneous BCs and an inhomogeneous IC – which is the form
that can be tackled by SOV. Note that the IC for w is simply the negative of the steady–state
temperature profile – which makes physical sense.
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Following the separation of variables procedure, we set w = u · v as before, and find that
v = exp(−λ2t), as before. The solution for u will be

u = A cos(λx) +B sin(λx)

The result A = 0 will satisfy the BC at x = 0, and the BC at x = 1 gives the eigencondition:

sin(λn) = 0 −→ λn = nπ, n = 1, 2, . . .

The specific case of n = 0 can be eliminated here, because it does not give the correct time–
asymptotic behavior for w. The general solution for w is then

w =
∞∑

n=1

An sin(λnx)e
−λ2

nt

Application of the initial condition w = −x gives

− x =

∞∑

n=1

An sin(λnx)

By use of the orthogonality properties of the eigenfunctions, the expansion coefficients are found
as

An = −
∫ 1

0
x sin(nπx) dx ·

[∫ 1

0
sin2(nπx) dx

]−1

=
2 cos(nπ)

nπ
=

2(−1)n

nπ
(3.74)

And the complete solution is T = w + s, or

T = x+
2

π

∞∑

n=1

(−1)n sin(nπx)

n
e−(nπ)2t (3.75)

The method of splitting the solution for T into two parts, i.e., T = w+s, is sometimes known as
‘partial solutions’. The goal in using this method is to transform a problem that cannot, directly,
be solved with SOV into a problem (or problems) that can. The partial solutions technique is one
example of a general method known as superposition, in which two or more solutions to a modified
problem are superimposed (or, equivalently, added) to form a solution to the whole problem (DE,
BCs, and IC) under consideration. The feature of the DE and BCs that allows for this method is
linearity – for which a sum of independent solutions to the DE will also be a solution.
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Inhomogeneous DE

Consider now an example in which heat generation occurs in the wall. Say the surface at x = 0
is adiabatic and the surface at x = 1 is maintained at T = T1. Initially the wall is at a uniform
temperature of T1. At time t = 0 uniform heat generation occurs in the wall, of strength q′′′0 .

The dimensionless temperature in this case will be T → (T −T1)k/q
′′′
0 L

2, and the dimensionless
problem is

∂T

∂t
=
∂2T

∂x2
+ 1 (3.76)

∂T

∂x

∣
∣
∣
∣
0

= 0 (3.77)

T (x = 1, t) = 0 (3.78)

T (x, t = 0) = 0 (3.79)

Both the BCs and the IC are homogeneous, yet the DE is inhomogeneous. Again, SOV cannot
be directly applied to this problem, because the resulting ODE for u(x) will not be in the Sturm-
Liouville form. However, the method of partial solutions can be applied because this particular
situation will have a steady–state. As before, let

T (x, t) = w(x, t) + s(x) (3.80)

in which s(x) is the steady state temperature distribution in the wall. The problem presented by
s is

s′′ + 1 = 0, s′(0) = 0, s(1) = 0 (3.81)

which has the solution

s =
1

2

(
1 − x2

)
(3.82)

Using T = w + s in Eqs. (3.76–3.79) leads to

∂w

∂t
+

∂s

∂t
︸︷︷︸

= 0

=
∂2w

∂x2
+

d2s

dx2
︸︷︷︸

= −1

+1 (3.83)

∂w

∂x

∣
∣
∣
∣
0

+
ds

dx

∣
∣
∣
∣
0

︸ ︷︷ ︸

= 0

= 0 (3.84)

w(x = 1, t) + s(x = 1)
︸ ︷︷ ︸

= 0

= 0 (3.85)

w(x, t = 0) + s(x)
︸︷︷︸

=
1

2
(1 − x2)

= 0 (3.86)



3.4. MORE ON TRANSIENT PROBLEMS 71

So again, a homogeneous DE and homogeneous BCs are obtained for w, and the initial condition
for w is equal to the negative of the steady state solution.

The general solution for w is

w =
∞∑

n=1

An cos(λnx)e
−λ2

nt (3.87)

in which the eigenvalues are

λn =
(2n− 1)π

2
At t = 0 the condition is

− s(x) = −1

2
(1 − x2) =

∞∑

n=1

An cos(λnx)

Using the orthogonality of the eigenfunctions gives

An = −
∫ 1

0
s(x) cos(λnx) dx ·

[∫ 1

0
cos2(λnx) dx

]−1

= −2

∫ 1

0
s(x) cos(λnx) dx

At this point the formula for s could be inserted and the formula integrated (which would be easy
with Mathematica), yet it is instructive to demonstrate how this integral can be easily evaluated
by making use of the DE and BCs for s. Let φn denote the eigenfunction cos(λnx). The previous
integral becomes

∫ 1

0
s(x)φn(x) dx = − 1

λ2
n

∫ 1

0
sφ′′n dx

= − 1

λ2
n

[

sφ′n

∣
∣
∣

1

0
− s′φn

∣
∣
∣

1

0
+

∫ 1

0
s′′φn dx

]

=
1

λ2
n

∫ 1

0
φn dx

=
1

λ3
n

sin

(
(2n− 1)π

2

)

= − 8(−1)n

(2n− 1)3π3

Integration by parts was used in evaluating the integrals. The boundary terms are zero by virtue
of the BC’s on φn and s. Also, s′′ was eliminated using the DE for s, i.e., s′′ = −1. The formula
for the An becomes

An =
16(−1)n

(2n− 1)3π3
(3.88)
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which, together with Eqs. (3.87) and (3.82), gives the complete solution for the temperature distri-
bution in the wall.

3.4.4 Problems with no steady state

The partial solutions method, as shown in the previous examples, relies on the splitting of the
sought T solution into a steady state part and a transient part. The transient part will conform
to the SOV requirements. However, not all transient problems have a steady state. Consider, for
example, a situation in which a wall is initially at T1, the boundary at x = 0 is insulated, and at
t = 0 a uniform heat flux of q′′0 is applied at x = L. If the dimensionless variables are defined as

T → (T − T0)k

q′′0L
, x→ x

L
, t→ αt

L2

the problem statement becomes

∂T

∂t
=
∂2T

∂x2
(3.89)

∂T

∂x

∣
∣
∣
∣
0

= 0 (3.90)

∂T

∂x

∣
∣
∣
∣
1

= 1 (3.91)

T (x, t = 0) = 0 (3.92)

Because the wall receives a flux at x = 1, yet is insulated at x = 0, it will never attain an equilibrium
state. Rather, the temperature throughout the wall will continuously increase with time.

The analytical procedure follows the general approach already developed – in that the solution
is represented by a superposition of partial solutions. For this case, the superposition is

T (x, t) = w(x, t) + s(x) + Tm(t) (3.93)

The function w(x, t) has the same meaning as before; it is a transient part which decays to 0 for large
t. The quantity Tm(t) is the mean (or average) temperature in the wall – which will be a function
solely of time, and s(x) can be interpreted as a stationary solution: it is the temperature profile

in the wall which occurs after the transient portion has decayed. Alternatively, s(x) represents the
solution to T (x, t) − Tm(t) for t → ∞. This approach therefore makes the assumption that, for
adequately long times past the initial transient, the time and position dependencies on temperature
are additive. Such an approach will be valid because the boundary conditions are not functions of
time.
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The solution for the mean temperature Tm(t) is obtained by integration of the DE, Eq. (3.89),
over x from 0 to 1;

∫ 1

0

∂T

∂t
dx =

∫ 1

0

∂2T

∂x2
dx

d

dt

∫ 1

0
T dx

︸ ︷︷ ︸

= Tm

=
∂T

∂x

∣
∣
∣
∣
1

︸ ︷︷ ︸

= 1

− ∂T

∂x

∣
∣
∣
∣
0

︸ ︷︷ ︸

= 0

→ dTm

dt
= 1

Since the mean temperature is zero at t = 0, solution of the above DE gives the result Tm(t) = t.
This could have been anticipated: the rate change in mean temperature will be proportional to
the rate of heat addition to the wall. Since the latter is a constant and equal to unity, the mean
temperature will be equal to t.

Now replace Eq. (3.93) into the problem statement for T ;

∂w

∂t
+
dTm

dt
︸︷︷︸

= 1

=
∂2w

∂x2
+ s′′(x)

∂w

∂x

∣
∣
∣
∣
0

+ s′(0) = 0

∂w

∂x

∣
∣
∣
∣
1

+ s′(1) = 1

w(x, 0) + s(x) + Tm(0)
︸ ︷︷ ︸

= 0

= 0

The associated problem for s(x) represents the steady state solution to T − Tm, and is

s′′ = 1, s′(0) = 0, s′(1) = 1

which represents, equivalently, a uniform heat sink of unit strength in a wall with a uniform unit
flux at one side and adiabatic conditions at the other. The net heat addition to the wall is zero
(the sink balances the input flux), and a steady condition is physically realizable. The solution for
s is

s(x) =
x2

2
+ C (3.94)

where C is an undetermined constant: this arises because both boundary conditions for s are in
terms of derivatives of s – the solution to s can therefore be shifted by an arbitrary constant. The
constant, however, can be pinned down by invoking the definition of the average temperature; the
integral of T over x is defined as Tm and this implies (using T = Tm + s for t → ∞) that the
integral of s over x must be zero. Consequently, C = −1/6.
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The problem for w is

∂w

∂t
=
∂2w

∂x2

∂w

∂x

∣
∣
∣
∣
0

= 0

∂w

∂x

∣
∣
∣
∣
1

= 0

w(x, 0) = −s(x)

which has the general solution

w =
∑

n=1

An φn(x) e−λ2
nt

The eigenfunctions and eigenconditions to the solution are

φn(x) = cos(λnx), λn = nπ

Again, the special case of λ = 0 can be neglected in this problem2.
The expansion coefficients are determined following the procedures already established;

An = −2

∫ 1

0
s(x)φn(x) dx

=
2

λ2
n

∫ 1

0
s(x)φ′′n(x) dx

=
2

λ2
n



s(x)φ′n(x)

∣
∣
∣
∣
∣

1

0

− s′(x)φn(x)

∣
∣
∣
∣
∣

1

0

−
∫ 1

0
s′′(x)φn(x) dx





=
2

λ2
n

[0 − 1 · φn(1) − 0]

= −2(−1)n

λ2
n

(3.95)

and the complete solution for the temperature distribution is

T = −1

6
+ t+

x2

2
− 2

∑

n=0

(−1)n

λ2
n

φn(x) e−λ2
nt (3.96)

The solution is plotted in Fig. 3.6 for times of 0.01, .2, and 1. The evolution to the stationary
solution is clearly evident.

2Retention of the λ0 = 0 term would actually give the zeroth series coefficient = t – which has already been
counted for in Tm
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Figure 3.6: temperature profile: constant heat flux BC

3.4.5 Transient problems in radial systems

The solid cylinder

The basic analytical methods introduced above for the 1–D (in space) slab apply directly to prob-
lems in cylindrical and spherical coordinates; only the basis functions for the eigenfunctions will
change. To illustrate, consider the following problem: A long solid circular cylinder is initially at
temperature T1. At t = 0 the surface temperature is instantaneously brought to T2. Find the
temperature distribution within the cylinder as a function of time and radial position.

It is assumed that the cylinder is sufficiently long, relative to the diameter, so that there is
no temperature variation in the z (axial) direction. In addition, there is no φ dependence in the
problem. The problem is therefore 2–D in r and t. The nondimensional variables are defined in
the usual manner:

T → T − T2

T1 − T2
, r → r

R
, t→ tα

R2
(3.97)

where R is the cylinder radius. The dimensionless problem appears as

∂T

∂t
=

1

r

∂

∂r
r
∂T

∂r
(3.98)

T (r = 0, t) is finite (3.99)

T (r = 1, t) = 0 (3.100)

T (r, t = 0) = 1 (3.101)
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The BCs and the DE are homogeneous, and SOV can proceed in the usual manner. Let T (r, t) =
u(r) · v(t), and replace this into the DE and separate:

v′

v
=

1

ru
(ru′)′ = constant = −λ2 (3.102)

Choose −λ2 as the separation constant because this will give the correct time–decaying solution.
The solution for v is the same as before:

v = e−λ2t (3.103)

For the u variable, the characteristic DE is

(ru′)′ + rλ2u = 0 (3.104)

or
r2u′′ + ru′ + r2λ2u = 0 (3.105)

From the previous chapter, this is recognized as Bessel’s equation and has the solution

u = AJ0(λr) +BY0(λr) (3.106)

The function Y0 is singular at the origin, so set B = 0 to keep the centerline temperature finite.
Application of the BC at r = 1 gives

J0(λ) = 0

This condition provides the eigencondition to the problem. A plot of J0(x) in the previous chapter
shows that the function oscillates about 0 much in the same way as the triginometric functions.
The eigenvalues λn correspond to the first, second, etc. roots to the above equation, i.e.,

J0(λn) = 0, n = 1, 2, 3, . . . (3.107)

An explicit formula for the eigenvalues cannot be obtained for this particular eigenfunction. Rather,
one must resort to an appropriate rootfinding method to obtain the λn’s – much in the same way as
for convection–type eigenconditions. A table of the first few roots of the above equation is included
in the Appendix.

Continuing with the SOV procedure, the general solution to the problem is given as a series
expansion of the eigenfunctions (which are J0(λnr)) times the time–dependent part of the solution:

T (r, t) =
∞∑

n=1

AnJ0(λnr)e
−λ2

nt (3.108)

At t = 0 the condition is

1 =
∞∑

n=1

AnJ0(λnr) (3.109)
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One could anticipate at this point that J0(λn) is orthogonal and proceed to obtain the integral for-
mula for the Ans – yet the precise nature of the orthogonality relation (in particular, the weighting
function) are unknown. Equation (3.104) is in the Sturm–Liouville form (Eq. (3.42)) with w(r) = r
as the weighting function. Each side of the equation is therefore multiplied by rJ0(λmr) and inte-
grated from 0 to 1. To make the notation compact, denote J0(λnr) as φn(r), i.e., the eigenfunction.
Again, this function satisfies the DE

(rφ′n)′ + rλ2
nφn = 0 (3.110)

and the BCs
φ′n(0) = 0, φn(1) = 0 (3.111)

The orthogonality relation is then
∫ 1

0
φnφmr dr = − 1

λ2
n

∫ 1

0
(rφ′n)′φm dr

= − 1

λ2
n

[

rφ′nφm

∣
∣
∣

1

0
− rφnφ

′
m

∣
∣
∣

1

0
+

∫ 1

0
φn(rφ′m)′ dr

]

=
λ2

m

λ2
n

∫ 1

0
φnφmr dr (3.112)

Recognize again how the BC’s on φn were used to eliminate the boundary terms in the above. The
integral is

(

1 − λ2
m

λ2
n

)∫ 1

0
J0(λnr)J0(λmr)r dr = 0 (3.113)

which provides the desired orthogonality proof.
With this information in hand, the expansion coefficients are obtained from Eq. (3.109) as

An =

∫ 1

0
J0(λnr)r dr ·

[∫ 1

0
J2

0 (λnr)r dr

]−1

Using the integral formulas from the previous notes (and the appendix) results in
∫ 1

0
J0(λnr)r dr =

1

λ2
n

∫ λn

0
J0(x)x dx

=
1

λ2
n

[xJ1(x)]
∣
∣
∣

λn

0
=
J1(λn)

λn
(3.114)

∫ 1

0
J2

0 (λnr)r dr =
1

λ2
n

∫ λn

0
J2

0 (x)x dx

=
1

λ2
n

[
x2

2

(
J2

0 (x) + J2
1 (x)

)
]λn

0

=
1

2
J2

1 (λn) (3.115)
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In the second integral the eigencondition was used to eliminate J0(λn). Also, J1(0) = 0 by the
properties of Bessel functions. The final formula for An is

An =
2

λnJ1(λn)
(3.116)

and the complete solution for the temperature is

T (r, t) = 2
∞∑

n=1

J0(λnr)

λnJ1(λn)
e−λ2

nt (3.117)

Annular cylindrical regions

A more complicated problem is now examined. Consider a cylindrical pipe, as illustrated in Fig. 3.7.
Initially the pipe is at a uniform temperature of T1. At time t = 0 a uniform heat flux of q′′0 is
applied to the inner surface. The heat is removed from the outer surface by convection, which is
characterized by a heat transfer coefficient h and an ambient temperature T∞.

On a dimensional basis, the problem is

∂T

∂t
=
k

r

∂

∂r
r
∂T

∂r

−k ∂T
∂r

∣
∣
∣
∣
Ri

= q′′0

−k ∂T
∂r

∣
∣
∣
∣
Ro

= h(T (r = Ro, t) − T∞)

T (r, t = 0) = T1

Following the usual procedure, the problem is recast in nondimensional form. The characteristic
temperature is obviously T∞, yet we two choices exist for the characteristic temperature difference,
namely ∆TC = q′′0L/k and T1 −T∞. The choice is arbitrary – for lack of a better reason choose the
first. The variable definitions become

T → (T − T∞)k

q′′0Ro
, r → r

Ro
, t→ tα

R2
o

(3.118)

Three dimensionless parameters fall out of the problem, which are

a =
Ri

Ro
, Bi =

hRo

k
, T1 → (T1 − T∞)k

q′′oRo
(3.119)
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Figure 3.7: annular pipe

The dimensionless problem is now

∂T

∂t
=

1

r

∂

∂r
r
∂T

∂r
(3.120)

∂T

∂r

∣
∣
∣
∣
a

= −1 (3.121)

∂T

∂r

∣
∣
∣
∣
1

= −BiT (r = 1, t) (3.122)

T (r, t = 0) = T1 (3.123)

The problem has a homogeneous DE, yet the inner BC and the IC are inhomogeneous. Conse-
quently, it cannot be attacked as–is with SOV. Rather, partial solutions are needed to split the
problem into sub–problems which, individually, admit solutions amenable to our analtical tech-
niques.

This particular system will eventually attain a steady state, and the solution is therefore for-
mulated in terms of a steady–state part and a transient part, i.e.,

T (x, t) = w(r, t) + s(r) (3.124)

The steady–state part has a simple, 1–D conduction solution, details of which need not be repeated
here. The problem is

(rs′)′ = 0 (3.125)

s′(a) = −1 (3.126)

s′(1) = −Bi s(1) (3.127)

which has the solution

s = a

(
1

Bi
− ln(r)

)

(3.128)
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The superposition T = w + s is now substituted into Eqs. (3.120–3.123);

∂w

∂t
+
∂s

∂t
=

1

r

∂

∂r
r
∂w

∂r
+

1

r
(rs′)′

∂w

∂r

∣
∣
∣
∣
a

+ s′(a) = −1

∂w

∂r

∣
∣
∣
∣
1

+ s′(1) = −Bi(w(r = 1, t) + s(1))

w(r, t = 0) + s(r) = T1

and the DE and BCs for s are used to cancel terms. The problem statement for w becomes

∂w

∂t
=

1

r

∂

∂r
r
∂w

∂r
(3.129)

∂w

∂r

∣
∣
∣
∣
a

= 0 (3.130)

∂w

∂r

∣
∣
∣
∣
1

= −Biw(r = 1, t) (3.131)

w(r, t = 0) = T1 − s(r) (3.132)

The problem for w now has homogeneous BCs, and can be solved directly with the SOV method.
The time–dependent part to w will be identical to those in previous solutions (exponential

decay). The spacial dependence will be of the form,

u(r) = AJ0(λr) +BY0(λr)

The Y0 Bessel function must now be retained, because the origin (r = 0) is not included in the
domain. The condition at r = a is

u′(a) = 0

which gives (after employing formulas for the derivatives of Bessel functions)

0 = −λ [AJ1(λa) +BY1(λa)] (3.133)

A general solution for u, which satisfies the DE and the inner BC, is therefore

u = A [J0(λr)Y1(λa) − J1(λa)Y0(λr)] (3.134)

The condition at r = 1 is
u′(1) = −Biu(1)

or, after using Eq. (3.134) and cancelling constant terms:

λn [J1(λn)Y1(λna) − J1(λna)Y1(λn)] = Bi [J0(λn)Y1(λna) − J1(λna)Y0(λn)] (3.135)
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This provides the eigencondition for the problem, in which λn represents the nth root to Eq. (3.135).
Do not be overly concerned about the apparent complexity of this equation. In general, numerical
rootfinding techniques are required to solve the most simple of eigenconditions for radial problems –
such as that encountered in Eq. (3.107) from the previous example. Providing that an appropriate
rootfinding ‘black box’ is available in your numerical tools (which is the case in Mathematica), the
only extra overhead involved in finding the roots to Eq. (3.135) is coding the equation into the
package.

To condense some of the notation, let φn(r) denote the eigenfunction of this problem, i.e.,

φn(r) = J0(λr)Y1(λa) − J1(λa)Y0(λr) (3.136)

The general solution is then

T (r, t) =
∞∑

n=1

Anφn(r)e−λ2
nt (3.137)

and the initial condition is

T1 − s(r) =
∞∑

n=1

Anφn(r) (3.138)

The eigenfunctions φn are orthogonal on the interval (a, 1) (not (0, 1) as have been all previous
problems), with a weighting function r. The expansion coefficients are then

An =

∫ 1

a
[T1 − s(r)]φn(r)r dr ·

[∫ 1

a
φ2

n(r)r dr

]−1

Obviously, the difficult part in wrapping up this example is evaluation of the integrals. The
eigenfunction φn represents a linear combination of ordinary Bessel functions of order zero (see
Eq. (3.136)), so let

φn(r) = J0(λnr)Y1(λna) − J1(λna)Y0(λnr) ≡ C0(λnr) (3.139)

where C0 denotes the linear combination of J0 and Y0. The integral formulas for combinations of
Bessel functions, given in the previous notes, can now be applied. In particular,

∫ 1

a
C2

0 (λnr)r dr =

[
r2

2

(
C2

1 (λnr) + C2
0 (λnr)

)
]1

a

=
1

2

[(

1 +
Bi2

λ2
n

)

φ2
n(1) − a2φ2

n(a)

]

(3.140)

Alternatively, the formulas in the appendix could have been used in the above. As has been done in
practically every previous example, the BC at r = a and the eigencondition were used to simplify
the result. The other integral appearing in the formula for An is

∫ 1

a
[T1 − s(r)]φnr dr
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This can be split into two parts. The first half is

T1

∫ 1

a
φnr dr = −T1

λ2
n

∫ 1

a
(rφ′n)′ dr

= −T1

λ2
n

[
φ′n(1) − aφ′n(a)

]

=
T1Bi

λ2
n

φn(1) (3.141)

and the second half is

∫ 1

a
s(r)φnr dr = − 1

λ2
n

∫ 1

a
s(rφ′n)′ dr

= − 1

λ2
n



rsφ′

∣
∣
∣
∣
∣

1

a

− rs′φ

∣
∣
∣
∣
∣

1

a

+

∫ 1

a
(rs′)′φn dr





= − 1

λ2
n

[
s(1)φ′n(1) − as(a)φ′n(a) − s′(1)φn(1) + as′(a)φn(a)

]

=
aφn(a)

λ2
n

(3.142)

Pay attention to the fact that the explicit forms of s (Eq. (3.128)) and φn (Eq. (3.136)) are never
used in evaluation of the integral: all that is needed are the DEs (which provides the rules for
integration by parts) and BCs (which are used to evaluate the boundary terms) that s and φn

satisfy. This property has been exploited in practically every example of the chapter. The final
formula for the An is

An =
2[T1Biφn(1) − aφn(a)]

[(λ2
n +Bi2)φ2

n(1) − a2λ2
nφ

2
n(a)]

(3.143)

and the dimensionless temperature in the cylinder is

T = a

(
1

Bi
− ln r

)

+
∞∑

n=1

Anφn(r)e−λ2
nt (3.144)

Calculation results are presented in Fig. 3.8 for a system with a = 1/2, Bi = 5, and T1

= 1. Perhaps the most noteworthy aspect of the results is the initial increase in temperature
at the inner wall (r = a = 0.5), followed by a decrease in temperature to a steady–state value
that is less than the starting value of unity. Such behavior is easily explained from a physics
perspective: the initial increase in temperature at the inner surface results from the instantaneous
application of the heat flux at t = 0. On the other hand, the steady–state inner surface temperature
(= a(1/Bi− ln a) = 0.446) is less than the initial temperature of unity for the conditions used here.



3.5. COMPUTATIONAL STRATEGIES IN MATHEMATICA 83

0.5 0.6 0.7 0.8 0.9 1
x

0.2

0.4

0.6

0.8

1

T

t= 0.001

0.01

0.1

1

Figure 3.8: solution of Eq. (3.144), Bi = 5, a = 0.5, T1 = 1

Consequently, the inner surface temperature will attain a maximum value at a finite time period
into the process, and will then relax to a minimum as t→ ∞.

It is not easy, however, to anticipate this behavior solely from inspection of the analytical
solution, Eq. (3.144). As is the case will all solutions in this chapter that have a time–independent
steady–state limit, the time dependence in the solution appears in the series terms as decaying
exponentials. Since the magnitude of each term in the series must therefore monotonically decease
in time, one might expect that the series, as a whole, would display the same monotonic behavior –
which would imply that the maxima and minima in the series would occur at t = 0 and/or t→ ∞.
This behavior does not occur because of the delicate balancing of terms in the series; the terms
have different signs (some are +, others -) and they decay at different rates. With this property, it
is entirely possible for the series to have a local maximum/mininum in time.

3.5 Computational Strategies in Mathematica

3.5.1 Evaluation of simple series

A series solution for a problem in which the eigenvalues are explicitly known, such as Eq. (3.26), is
relatively easy to evaluate in Mathematica. For such solutions evaluation of the terms in the series is
‘cheap’ (i.e., not involving a great deal of computational time), and the series can be summed using
the Mathematica function Sum for a fixed number of terms. For example, a Mathematica-defined
function to evaluate Eq. (3.26) could appear as
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tsoln[x_,t_]:=-2 Sum[((-1)^n Cos[lambdan x]

E^(-lambdan^2 t)/lambdan

/.lambdan->(2n-1)Pi/2), {n,1,20}]

This function will sum 20 terms in the series – which is assumed beforehand to provide adequate
precision. The total number of required terms, of course, could be smaller or greater depending
on the value of t. Typically only the first term is required for t > 0.4 and evaluation of 20 terms
would certainly be overkill. Mathematica, however, will (usually) not complain about underflow
errors – which could occur in compiled programming languages (e.g., fortran) when the exponential
function is evaluated for a large negative argument. Make note also of the coding convention in the
Mathematica code: the replacement operator lambdan->(2n-1)Pi/2 was used to avoid explicitly
writing out each λn where it occured in the formula.

3.5.2 Eigencondition evaluation

A more difficult numerical problem is to evaluate non–explicit eigenconditions, such as those occur-
ing for convection–type BCs in cartesian geometries and any SOV solution in cylindrical geometries.
Mathematica provides an intrisic rootfinding algorithm, FindRoot, which uses Newton’s method to
find a root of a nonlinear equation. This function requires the equation to be solved (say f(x) = 0),
the independent variable (x), and the starting point of the variable for the search (x1). This last
piece of information (the starting point) is the most challenging quantity to pin down. Recognize
that the eigencondition intrinsically has an infinite number of roots, and to select any one root via
FindRoot requires that the search begin at a point relatively ‘close’ to the desired root.

A way to overcome this problem is to find a pair of points, x = xp and xm, so that f(xp) and
f(xm) bisect the desired solution f(x = xR) = 0. This bisection implies that f(xp) · f(xm) ≤ 0
– because one function must be in the region where f ≥ 0 and the other in the region f ≤ 0.
Two such points are relatively easy to find; one would begin with two initial points xm = x1 and
xp = xm + ∆x, where ∆x is a chosen step size for x, and make the test f(xm) · f(xp) ≤ 0. If this is
not the case, then set xm = xp, xp = xp + ∆x, and reperform the test. Essentially, the algorithm
steps (or marches) x along until a bisection in the function is obtained.

Once the bisection is identified, the root can be approximated by linear interpolation;

xR ≈ xp −
f(xp)∆x

f(xp) − f(xm)

This approximation can then be given to the Mathematica FindRoot function to finish the job.
A Mathematica function which performs this strategy is given below;
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eigenroot[lamstart_]:=Module[{dlam = 0.2,

lam0,eigen0,eigen1,lamr,lamroot},

lam0=lamstart+1*^-6;

eigen0=eigencond[lam0];

lam0=lam0+dlam;

eigen1=eigencond[lam0];

While[eigen0 eigen1>0,

lam0=lam0+dlam;

eigen0=eigen1;

eigen1=eigencond[lam0];

];

lamr=lam0-eigen1 dlam/(eigen1-eigen0);

lamroot=

lam/.FindRoot[eigencond[lam]==0,{lam,lamr}];

lamroot]

The function returns the first root to the user–defined equation eigencond[lam] that occurs after
the point lam=lamstart. It uses a hard–wired step size of ∆λ = 0.2, which is adequately small
for all problems encountered in this chapter. The command Module provides a way of coding a
‘subroutine’ in Mathematica. The variable names enclosed in brackets in the first line of Module are
the ‘temporary variables’ of the subroutine; assignments to these variables are made only within
the subroutine and are not ‘global’. The rest of the subroutine consists of individual statements,
with each statement ended by a semicolon except the last one. The quantity returned by Module

is the last statement (i.e., the value of lamroot. Refer to Mathematica help for more information
on coding with Module.

The algorithm used by the function follows that described above; eigen0 and eigen1 correspond
to f(xm) and f(xp), and the first value of xm is set to lamstart + 10−6. The While block continues
the marching process until the bisection point is found. lamr corresponds to the interpolated
root from the bisection, and lamroot is the root returned by FindRoot using the interpolated
approximation as the starting point.

The addition of the small number 10−6 to lamstart, to derive the first evaluation point, is
included so that lamstart can correspond to a known root; when, for example, lamstart is set at
λ1 (where λ1 is known), the function will return the next root λ2. The first root λ1 will be returned
by setting lamstart=0, providing that the root is larger than 10−6.

The code requires the user to define beforehand the function eigencond[lam], which must
return a numerical value of the eigencondition relation for a given numerical value of λ = lam.
The eigencondition corresponds to eigencond[lam]==0. This function should be coded to avoid
singularities for λ > 0. For example, the plane wall convective BC eigencondition should appear

eigencond[lam_]:=lam Sin[lam] -bi Cos[lambda]
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as opposed to the equivalent form λ tan(λ) − Bi, which has singularities at λ = (2n − 1)π/2.
Recognize that the constant bi in the eigencondition must be assigned a numerical value prior to
execution of the functions, e.g., by executing the line bi = 5 for a Bi value of 5. This would apply
to any numerical parameters that appear in the eigencondition.

Series evaluation with eigencondition roots

The most simple – and the computationally most expensive (and most stupid) – method to in-
corporate the eigencondition roots into series evaluation would be to modify the series summation
code via

tsoln[x_,t_]:=-2Sum[((-1)^n Cos[lambdan x]

E^(-lambdan^2 t)/lambdan

/.lambdan->lambda[n], {n,1,20}]

lambda[n_]:=eigenroot[lambda[n-1]]/;n>1

lambda[n_]:=eigenroot[0]/;n<=1

It is easy to see that the function lambda[n] returns the nth root of the eigencondition by recur-
sively calling the eigenroot function for λn−1, λn−2, . . . λ1 – and the first root is obtained from
eigenroot[0]. The Mathematica convention ‘/;’, following a function definition, represents a con-
ditional test; the first definition of lambda is used if n > 1, otherwise the second definition is used.
Of course, such a method will be tremendously time–consuming; evaluation of each root requires
evaluation of all previous roots. Furthermore, this process would be performed every time the
tsoln function is called – even though the all the roots may have been found in a previous function
evaluation.

An easy way around this problem is to calculate the roots beforehand and store them in an
array. The code could now appear as;

lambda[1]=eigenroot[0];

Do[lambda[n]=eigenroot[lambda[n-1]],{n,2,20}];

tsoln[x_,t_]:=-2Sum[((-1)^n Cos[lambdan x]

E^(-lambdan^2 t)/lambdan

/.lambdan->lambda[n], {n,1,20}]

The quantity lambda[n] now denotes an array element which contains the numerical value of the
nth root: note that the operator ‘=’ was used to assign values to lambda[1], lambda[2], etc., as
opposed to the function definition ‘:=’ used in the previous code.

3.5.3 Series terms that are expensive to computute: advanced summation
methods

Evaluation of series using the methods described above took the cheap approach; which was to
calculate an adequately large number of eigencondition roots and series terms so that the sum will
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always converge within the chosen number of terms. An obvious problem with this method is that
it provides no real test of the series convergence; mostly likely one is either including unnecessary
terms in the series or not including enough terms. This can be a problem if the terms are expensive
to calculate (i.e., if they involve special functions such a Bessel functions) and can lead to long run
times and/or inaccurate answers.

To overcome this problem, it is necessary to explicitly perform a convergence test on the series
– so that only enough terms are included to obtain a desired precision. This is performed in the
following code;

seriessum[x_, t_] := Module[{ssum, n, err,

sumold, lambda=0.},

If[t > .4,

(* if t > .4 only the first term is used*)

lambda = eigenroot[lambda];

ssum= seriesterm[lambda, x, t]

,

(* the following lines are for t <= .4 *)

n = 1; ssum = 0; err = 1;

While[err > 1*^-5 && n < 100,

sumold = ssum;

lambda = eigenroot[lambda];

ssum = ssum

+ seriesterm[lambda, x, t];

n++;

lambda = eigenroot[lambda];

ssum = ssum

+ seriesterm[lambda, x, t];

n++;

err = Abs[ssum - sumold];

];

];

ssum]

seriesterm[lambda_,x_,t_]:=an[lambda]

phi[lambda,x] E^(-lambda^2 t)

The code adds terms, two at a time, until the relative change in the sum is less than 10−5. The
two–at–a–time approach is used to avoid the possible case of φn(x) ≈ 0, for a particular n and
x, prematurely terminating the series. When t > 0.4 the code includes only the first term in the
series. The user–defined function seriesterm[lambda,x,t] calculates the term in the series that
corresponds to the eigenvalue λ as a function of the independent variables (here x and t). An
example of this function is given on the last line. Prior to each evaluation of seriesterm, the code
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calculates the current eigenvalue via lambda=eigenroot[lambda]. This could be modified if the
λn values were evaluated beforehand and stored in an array. Note also that the summation code
is limited to a maximum of 100 terms (see the While statement, where && denotes ‘and’) – this is
to prevent a runaway loop.

One would have to define functions for the eigenfunction phi[lambda,x], the expansion coef-
ficients an[lambda] and the eigencondition eigencond[lambda] prior to use of seriesterm and
seriessum.

For the annular pipe problem discussed in the text, the eigenfunctions, eigencondition, and
solution are defined by

j0[r_]:=BesselJ[0,r] y0[r_]:=BesselY[0,r] j1[r_]:=BesselJ[1,r]

y1[r_]:=BesselY[1,r]

phi[lam_,r_]:=j0[lam r] y1[lam a]

-j1[lam a] y0[lam r]

eigencond[lam_]:=lam (j1[lam] y1[lam a]-j1[lam a] y1[lam])

-bi (j0[lam]y1[lam a]-j1[lam a] y0[lam])

an[lam_]:=(2(t1 bi phi[lam,1]-a phi[lam,a]))/

((lam^2+bi^2)phi[lam,1]^2-(a lam phi[lam,a])^2)

tempsoln[r_,t_]:=a(1/bi-Log[r])+seriessum[r,t]

The code was used to generate the curves in Fig. 3.8. It’s relatively slow – due to the computational
effort required to evaluate the eigenvalues each and every time the solution is called. Given below
is a code which stores the λn and An values in an array. I’ve redefined seriessum to do this. Note
the timing comparisons – the new code is almost 50 times faster than the old.

bi = 5; a = .5; t1 = 1;

In[218]:=Timing[tempsoln[.5, .01]]

Out[218]={7.96 Second, 1.10367}

lam = 0; Clear[andat, lamdat]; Do[lam = eigenroot[lam]; lamdat[n]

= lam;

andat[n] = an[lam], {n, 1, 102}]
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seriessum[r_, t_] := Module[{sum, oldsum, n, lam},

If[t > 0.4, n = 1;

lam = lamdat[1];

sum = andat[1]phi[lam , r]E^(-lam^2 t)

,

oldsum = 0;

lam = lamdat[1];

sum = andat[1]phi[lam , r]E^(-lam^2 t);

err = 1; n = 1;

While[err > 1*^-5 && n <= 100,

oldsum = sum;

n++; lam = lamdat[n];

sum = sum + andat[n]phi[lam , r]E^(-lam^2 t);

n++; lam = lamdat[n];

sum = sum + andat[n]phi[lam , r]E^(-lam^2 t);

err = Abs[sum - oldsum];

];

];

sum]

In[257]:=Timing[tempsoln[.5, .01]]

Out[257]={0.17 Second, 1.10367}

3.6 Summary

This chapter has introduced the basics of applying the separation of variables method to solution of
1–D and transient heat conduction problems. Key concepts are 1) the series nature of the solution;
2) eigen–conditions, functions, and values; 3) the property of orthogonality and how it can be used,
and 4) methods of re–arranging problems so that can be fit into the SOV framework (i.e., partial
solutions).

This material, no doubt, will take time and practice to master. I know of only one way of doing
this: practice via the solution of problems. This is the type of material which, on the surface,
may seem relatively straightforward, yet it is also relatively easy to complicate things by changing,
for example, the type of boundary conditions or the form of the initial condition. Also, many
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of these problems can take considerable time and paper to work out – as was seen with the last
example. Again, there are few shortcuts. Codes such as Mathematica can help with much of the
manipulation, yet the main analytical aspects to the solution must still be done by human brains3.

In the next chapter the analysis will be extended to multidimensional heat conduction prob-
lems. For the most part the procedure will be similar to what was introduced here – except that
the addition of extra dimensions will result in more complicated series solutions to the problem.
Nevertheless, most of the concepts (such as eigenfunctions, orthogonality, etc.) will be the same.

Eigenfunctions and Integral Relationships

Provided here are some general forms and integrals of the eigenfunctions for transient and 1–D
problems. In what follows φn refers to the nth eigenfunction and φ′n denotes the derivative of φn

with respect to the independent variable.

Cartesian Systems

The eigenfunction DE will be

φ′′n + λ2
nφn = 0 (3.145)

with the general solution

φn(x) = A cos(λnx) +B sin(λnx) (3.146)

The normalization is
∫ b

a
φ2

n dx =
1

2

[

x

(

φ2
n +

1

λ2
n

(φ′n)2
)

− 1

λ2
n

φnφ
′
n

]b

a

(3.147)

Cylindrical Systems

Eigenfunction DE:
(
rφ′n

)′
+ rλ2

nφn = 0 (3.148)

Solution:

φn(r) = AJ0(λnr) +B Y0(λnr) (3.149)

Normalization:
∫ b

a
φ2

n r dr =

[
r2

2

(
1

λ2
n

(φ′n)2 + φ2
n

)]b

a

(3.150)

3It should be noted that Mathematica CANNOT solve the PDEs examined in this chapter – at least not yet
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Spherical Systems

Eigenfunction DE:
(
r2φ′n

)′
+ r2λ2

nφn = 0 (3.151)

Solution (by making the substitution φn = un/r, the problem will reduce to the cartesian case):

φn(x) =
1

r
(A cos(λnr) +B sin(λnr)) (3.152)

Normalization:
∫ b

a
φ2

n r
2 dr =

1

2

[

r3
(

1

λ2
n

(φ′n)2 + φ2
n

)

+
r2

λ2
n

φ′nφn

]b

a

(3.153)

Eigencondition roots

The following numerical roots can be found in most heat transfer textbooks, they are included here
for your reference and to provide checks in numerical codes you may develop.

Roots of Bessel Functions

n J0(λn) = 0 J1(λn) = 0

1 2.4048 3.8317
2 5.5201 7.0156
3 8.6537 10.1735
4 11.7915 13.3237
5 14.9309 16.4706
6 18.0711 19.6159
7 21.2116 22.7601
8 24.3525 25.9037
9 27.4935 29.0468

10 30.6346 32.1897

Exercises

1. A plane wall of thickness L is initially at temperature of T1. At time t = 0 a uniform heat
flux of strength q′′ is applied to the surface at x = L. The surface at x = 0 is maintained
at temperature T1. Formulate the problem in appropriate nondimensional variables. Us-
ing separation of variables and the partial solutions procedure, determine the temperature
distribution in the wall as a function of position and time.
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2. Another plane wall, thickness L, is initially at T∞. At time t = 0 heat generation is applied
within the wall. The heat generation is a function of x and is given by

q′′′(x) = q′′′0 e
−ax/L

where q′′′0 and a are constants. The surface at x = 0 is adiabatic, and convection occurs at
the x = L surface, characterized by a heat transfer coefficient h and an ambient temperature
T∞. Non–dimensionalize the problem, and, using the SOV and partial solutions methods,
find the solution for the nondimensional temperature field in the wall. Finally, prepare a plot
of the nondimensional temperature at x = 0 and x = L as a function of dimensionless time.
Use values of a = 2 and Bi = 10 in calculating the numbers for this plot.

3. A pipe has an inner radius of Ri and an outer radius of R0. Initially the pipe is at a
temperature of T1. At t = 0 the inside temperature of the pipe is brought to the steady value
of T2. Convection occurs on the outer surface, characterized by h and T∞. Formulate the
problem in appropriate non–dimensional variables, and use SOV to determine the solution to
the problem.

4. A solid sphere, of radius R, is initially at a temperature of T1. At time t = 0 the surface of
the sphere is instantaneously brought to the temperature T2. Formulate the nondimensional
problem, and use SOV to determine the solution. Prepare a plot of the dimensionless tem-
perature distribution in the sphere vs. dimensionless radius for several values of dimensionless
time. NOTE: the eigenfunctions for this problem can be easy or difficult to calculate. If you
go the difficult (and cookbook) route, you will wind up with Bessel functions of order 1/2.
The easy route is to use the substitution that was discussed in Ch. 1 in the example involving
heat generation in the sphere. That is, use something like u(r) = f(r)/r when you solve
the ODE for the separated function u(r). If you do this, you should get an ODE that has a
simple solution.

5. An egg has been sitting in a pan of boiling water for 12 minutes, at which point it can be
considered hard–boiled. The egg is removed from the water and placed under the cold–water
tap. Estimate the minimum amount of time the egg must remain under the flow of cold
water so that, when the egg is removed from the flow and allowed to sit in air, the surface
temperature of the egg will not exceed 50◦C. Make whatever assumptions are necessary, and
obtain correlations for the convection coefficients and thermophysical property data from any
undergraduate heat transfer text.



Chapter 4

Two Dimensional Steady–State
Conduction

4.1 Introduction

This chapter carries on from the previous one. The focus, as before, is on obtaining analytical
solutions to the heat conduction equation, with an emphasis on steady, two–dimensional heat
transfer. The same separation–of–variables (SOV) method developed in Ch. 3 for the 2–D in space
and time problem can be applied directly to the 2–D in space problem, and the solutions will
contain many of the same features. As before, the presentation will start with relatively simple
problems, and will gradually be built up and generalized to arbitrarily complex (within reason)
2–D situations.

4.2 2–D Cartesian configurations

4.2.1 Specified temperature boundary conditions

Consider the 2–D square region illustrated in Fig. 4.1. This could represent a cross section in a long
square rod, for example. The sides and bottom surfaces of the rod are maintained at temperature
T1, and the top surface is held at T2. It will be shown below that these particular boundary
conditions are physically impossible, but for now the problem is posed simply in a mathematical
sense. The objective is to determine the temperature distribution in the rod.

We begin by casting the problem in non–dimensional form. The characteristic temperature
difference is obviously T2 − T1, and let T1 be the characteristic temperature. This gives

T =
T − T1

T2 − T1
, x =

x

L
, y =

y

L
(4.1)

93
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∇2T = 0T1 T1

T1

T2

6
-

y

x

L

L
Figure 4.1: square region, specified surface T

The problem statement becomes

∂2T

∂x2 +
∂2T

∂y2 = 0 (4.2)

T (x = 0, y) = 0 (4.3)

T (x = 1, y) = 0 (4.4)

T (x, y = 0) = 0 (4.5)

T (x, y = 1) = 1 (4.6)

Note that the choice of T1 as the characteristic temperature resulted in homogeneous BCs on all
surface except the top surface. This is desired – the more homogeneous the problem, the easier it
is to solve.

As was done before, the temperature T (x, y) is split into the product of two functions, each of
which depends only on one variable:

T (x, y) = u(x) · v(y) (4.7)

Replacing the above into Eq. (4.2) gives

vu′′ + uv′′ = 0 (4.8)

or, after separating the variables,
u′′

u
= −v

′′

v
= ±λ2 (4.9)

The quantity λ2 is the separation constant, which will ultimately be put in the form of an eigenvalue.
Again, the rationale for introducing the constant λ2 is that the separated equation has a function
of x on one side, and a function of y on the other side. Both sides must therefore be constant.
Equation (4.9) leads to the two ODEs for the u and v variables:

u′′ ∓ λ2u = 0

v′′ ± λ2v = 0
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By choosing +λ2 as the separation constant, and restricting the situation to non–zero λ, the
following solutions are obtained for u and v;

u = A cosh(λx) +B sinh(λx) (4.10)

v = C cos(λy) +D sin(λy) (4.11)

and for −λ2 just the opposite is obained:

u = A cos(λx) +B sin(λx) (4.12)

v = C cosh(λy) +D sinh(λy) (4.13)

Finally, for λ2 = 0 the solutions are

u = A+Bx (4.14)

v = C +Dy (4.15)

Only one set of solutions will lead to a physically correct solution, yet it is not obvious which set
should be chosen. When dealing with transient problems we could use physical reasoning to decide
the sign of the separation constant. This is not the case with the steady–state problem; there is
no intuitive information which would appear to rule out the functional dependencies obtained from
+λ2 or −λ2 – although the case of λ = 0 appears suspicious simply because it is too simple.

Mathematical, rather than physical, reasoning must therefore be utilized to decide on the proper
sign. Specifically, the sign of λ2 is chosen so that a Sturm–Liouville form of an ODE is obtained
in the direction with the homogeneous boundary conditions. Recall that the Sturm–Liouville ODE
has solutions in terms of eigenfunctions (or orthogonal functions) such as sin, cos, and the ordinary
Bessel functions. The hyperbolic functions and modified Bessel functions, on the other hand,
will not be orthogonal functions. For the problem at hand the x direction has the homogeneous
boundary conditions. Therefore, we want the x–direction function ODE (which is the one for u)
to be in the Sturm–Liouville form – which is the one that has Eq. (4.12) as a solution.

The solutions for λ2 = 0 can always be considered a special case for a positive or negative
separation constant. Again, such cases were usually inconsistent with transient behavior in time–
dependent problems. In steady–state problems, however, more attention will have to be given to the
λ2 = 0 case. Specifically, if it is determined that the eigenvalue λn can have a value of zero, then the
unique solution for λ2 = 0 will have to be included into the analysis. This situation will be discussed
further when it is encountered. To briefly summarize, we want to obtain the eigenfunctions (and
eigencondition) in the direction with homogeneous boundary conditions – which is the x direction
for the problem at hand.

The BCs in the x direction can now be used to eliminate one of the constants A or B and
determine the eigencondition. At x = 0 the condition is

T (0, y) = u(0) · v(y) = 0
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which gives

u(0) = 0 = A −→ A = 0

At x = 1 the BC gives

T (1, y) = u(1) · v(y) = 0

which leads to

u(1) = 0 = B sin(λ)

This provides the eigencondition for the problem:

λ = nπ, n = 0, 1, 2, . . . (4.16)

The correspondition eigenfunctions are:

φn(x) = sin(λnx) = sin(nπx) (4.17)

The unique case of a zero eigenvalue, i.e., λ0 = 0, does occur for this eigencondition. We therefore
need to consider this case separately. When λ = 0 the solution for u is, again,

u = A+Bx

The zero-temperature condition at x = 0 eliminates A, and the zero temperature condition at
x = 1 eliminates B. The corresponding solution for λ0 is zero, and we need not consider the
λ0 case further. Another way of arriving at this conclusion is to note that the eigenfunction for
λ0 is itself zero. This procedure may have seemed trivial – but it is important to go through it.
Situations will occur in which the λ = 0 condition plays a role in the solution.

The general solution to the problem will be in the form of a series expansion of the v function
times the corresponding eigenfunctions. In other words,

T =
∞∑

n=1

(An cosh(λny) +Bn sinh(λny))φn(x) (4.18)

This equation is the most general form of the solution for 2–D steady conduction in cartesian
coordinates when the homogeneous direction is x. Had the homogeneous direction been y, the roles
of x and y would simply be switched.

The final step is to determine formulas for the expansion coefficients An and Bn, which is done
by using the BCs in the y direction and the orthogonality properties of the eigenfunctions. At
y = 0 the condition is

0 =
∞∑

n=1

(An + 0)φn(x)
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x

y

Figure 4.2: isotherms for Eq. (4.21)

which is satisfied by An = 0 for all n. The inhomogeneous boundary condition at y = 1 has

1 =
∞∑

n=1

Bnφn(x) sinh(λn) (4.19)

The eigenfunctions are orthogonal over the interval (0,1) with a weighting function of unity. Each
side is therefore multiplied by φm(x) and integrated over x from 0 to 1. All terms in the series
disappear except the one for n = m. The result is

Bn =

∫ 1

0
sin(nπx) dx ·

[

sinh(nπ)

∫ 1

0
sin2(nπx) dx

]−1

=
2[1 − (−1)n]

nπ sinh(nπ)

This gives zero Bn for even n. Therefore, the index n can be replaced with 2n− 1, and

Bn =
4

(2n− 1)π sinh[(2n− 1)π]
, n = 1, 2, . . . (4.20)

The final solution for the temperature field is

T =
4

π

∞∑

n=1

sin[(2n− 1)πx] sinh[(2n− 1)πy]

(2n− 1) sinh[(2n− 1)π]
(4.21)

Shown in Fig. 4.2 is a contour plot of the dimensionless temperature in the square region. The
lines in the plot correspond to isotherms. The temperature field shows the expected symmetry
about x = 1/2. It could have been recognized, at the onset, that the problem had a plane of
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symmetry, and this information could have been exploited in the solution. The equivalent domain
would have been a rectangular rod, of height equal to twice the width, with an adiabatic condition
at x = 0.

Observe also the large temperature gradient at the top left and right corners. This results
from the discontinuous jump in surface temperature from the side to the top – which is a physical
impossibility. The consequence of this behavior becomes evident when we calculate the net heat
transfer at the top surface. The heat flux at the top is given by

q′′y (x) =
k(T1 − T2)

L

∂T

∂y

∣
∣
∣
∣
1

=
4k(T1 − T2)

L

∞∑

n=1

sin[(2n− 1)πx] cosh[(2n− 1)π]

sinh[(2n− 1)π]

and the total heat transfer (per unit length of rod) through the top surface will be

q′ =

∫ L

0
q′′ dx = k(T1 − T2)

∫ 1

0

∂T

∂y

∣
∣
∣
∣
1

dx

=
8k(T1 − T2)

π

∞∑

n=1

cosh[(2n− 1)π]

(2n− 1) sinh[(2n− 1)π]

=
8k(T1 − T2)

π

∞∑

n=1

1

(2n− 1) tanh[(2n− 1)π]

= ∞ (4.22)

This series does not converge – i.e, it has a value of infinity. This is because tanh[(2n − 1)π] → 1
for n ≫ 1, which leaves for large n the simple series of

∑
1/(2n− 1) – which will not converge to

a constant. Therefore, the net heat transfer rate through the upper face would be infinite.
The impossibility in the problem arises from the chosen boundary conditions. It would take

an infinite amount of heat transfer to maintain the top and side surfaces at the precisely uniform
values of T2 and T1, respectively. In reality, the heat transfer through the rod would be finite, and
the temperature at the upper corners would vary continuously from T1 to T2.

4.2.2 Convection boundary conditions

Continue with the same square region, yet impose now convective boundary condtions on the sides
and bottom. The convection on all surfaces is characterized by a heat transfer coefficient h and an
ambient temperature T∞. The upper surface temperature remains at T2.

Define the dimensionless temperature as T = (T − T∞)/(T2 − T∞) – which is formulated to
provide homogeneous boundary conditions on the bottom and sides. The symmetry along the
x = 1/2 plane is also exploited, and the origin is placed in the middle of the bottom surface. The



4.2. 2–D CARTESIAN CONFIGURATIONS 99

∇2T = 0
∂T

∂x
= 0 −∂T

∂x
= BiT

∂T

∂x
= BiT

T = 1

6
-

y

x

2

1

Figure 4.3: region for convective BC problem

domain becomes a rectangle of height equal to twice the width, and the dimensionless coordinates
x = x/(L/2) and y = y/(L/2) run from 0 to 1 and 0 to 2, respectively1. The problem configuration
appears in Fig. 4.3.

The boundary conditions for the problem appear as

∂T

∂x

∣
∣
∣
∣
0

= 0 (4.23)

∂T

∂x

∣
∣
∣
∣
1

= −BiT (0, y) (4.24)

∂T

∂y

∣
∣
∣
∣
0

= BiT (x, 0) (4.25)

T (x, 2) = 1 (4.26)

Again, the boundary conditions in the x direction are homogeneous, so we choose the sign of the
separation constant so that eigenfunctions are obtained in the x direction. Using T = u(x) · v(y)
gives

u = A cos(λx) +B sin(λx) (4.27)

v = C cosh(λy) +D sinh(λy) (4.28)

1it is good practice to use the same characteristic length to scale the position variables
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Bi = 0.1 Bi = 10

Figure 4.4: convective BC isotherms: Bi = 0.1 (left), = 10 (right)

At x = 0, Eq. (4.23) results in B = 0. At x = 1, Eq. (4.24) gives the eigencondition:

λn sin(λn) = Bi cos(λn) (4.29)

Note that λ = 0 is not a solution to the above eigencondition – at least not for non–zero Bi – and
can be eliminated from the solution. The corresponding eigenfunction for the problem is

φn(x) = cos(λnx) (4.30)

The general form of our solution will be the same as before;

T =

∞∑

n=1

(An cosh(λny) +Bn sinh(λny))φn(x)

The convection boundary condition at y = 0 is homogeneous. When a homogeneous BC occurs in
the non–homogeneous direction of the problem (here, y), the boundary condition can be applied to
each term in the series without ‘formally’ applying the orthogonality procedure. This is equivalent
to application of the BC directly to the v(y) function in Eq. (4.28), and was (trivially) done in the
previous example. The result for this case is

λnBn = BiAn → Bn = An
Bi

λn
(4.31)

With this, the general solution reduces to

T =
∞∑

n=1

Anφn(x)

(

cosh(λny) +
Bi

λn
sinh(λny)

)

(4.32)
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Figure 4.5: q′ vs. Bi

Finally, the inhomogeneous BC at y = 2 is

1 =

∞∑

n=1

Anφn(x)

(

cosh(2λn) +
Bi

λn
sinh(2λn)

)

(4.33)

The orthogonality of φn can now be used to obtain the expansion coefficients:

An =

∫ 1

0
φn(x) dx

×
[(

cosh(2λn) +
Bi

λn
sinh(2λn)

)∫ 1

0
φ2

n(x) dx

]−1

The integrals have already been worked out in Ch. 3; φn and λn are the same eigenfunction and
eigenvalues as that occurring for the transient, plane–wall convective cooling problem. The result
is

An = − 2(−1)nBi
(
λ2

n +Bi2
)1/2

[λ2
n +Bi(1 +Bi)] [λn cosh(2λn) +Bi sinh(2λn)]

(4.34)

Replacing the above in Eq. (4.32) gives the complete solution for the temperature field.

Results of Eq. (4.32) are plotted in Fig. 4.4 using Bi values of 0.1 and 10. As the Biot number
gets large the temperature field approaches the previous solution of uniform temperature on the
side and bottom surfaces. In the opposite limit (Bi→ 0) the temperature of the rod would become
uniform at the value of unity.

The total heat transfer from the top surface is obtained from the same procedure given in the
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previous problem:

q′ = 2k(T∞ − T2)

∫ 1

0

∂T

∂y

∣
∣
∣
∣
2

dx (4.35)

= 2k(T∞ − T2)

∞∑

n=1

An sin(λn)

(

sinh(2λn) +
Bi

λn
cosh(2λn)

)

(4.36)

The terms in the series still approach 1/n as n→ ∞ – yet they will not all have the same sign and
the series will converge for Bi < ∞. Presented in Fig. 4.5 is the dimensionless heat transfer rate
q′, defined by

q′ =
q′

2k(T∞ − T2)Bi
=

q′

hL(T∞ − T2)
,

vs. the Biot number Bi. This particular scaling for q′ is chosen so that in the limit of Bi→ 0, the
dimensionless q′ → 3. This limit has a relatively simple physical explanation which you should be
able to figure out. The quantity q′ goes to zero for Bi→ ∞ – because q′ ∼ q′/Bi – yet the actual
heat transfer would also go to infinity in this limit.

4.3 Superposition

It is not uncommon to have conduction problems that have inhomogeneous boundary conditions
in both directions or that have an inhomogeneous DE (through heat generation). Separation of
variables, however, can only work if a separated ODE and the associated BCs conform to the
Sturm–Liouville system, which constrains the method to conduction problems with a homogeneous
DE and homogeneous BCs in all but one direction. The way around this dilemma is to apply the
technique of superposition – which is a generalized form of the partial solutions technique that was
learned in Ch. 3. The superposition method exploits the fact that the heat conduction equation is
linear. Because of this, any sum of solutions to the DE is also a solution. If solutions to the DE
can be found which, when summed together, satisfy all the BCs to the original problem, then the
original problem has been solved.

Devising a superimposed solution involves some creativity and imagination. In general, the
procedure is to sequentially replace the inhomogeneous conditions with homogeneous conditions of
the same type, and then solve the resulting problems with appropriate techniques. If N inhomo-
geneous conditions appear in the original problem, then the complete solution will need at most
N partial solutions that are pasted together. Often this number can be reduced by inspection or
appropriate combinations.

4.3.1 Superposition example #1

The application of the method is best seen through application. Consider a square region of width
= height = L. The surface at y = 0 is maintained at T1, and convection occurs at the y = L
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surface, characterized by h and T∞. The surface at x = 0 is adiabatic, and a uniform heat flux of
q′′0 is applied at x = L. Finally, a uniform heat generation, of strength q′′′0 occurs within the region.

The dimensional problem is

∂2T

∂x2
+
∂2T

∂y2
+
q′′′0

k
= 0

∂T

∂x

∣
∣
∣
∣
0

= 0

∂T

∂x

∣
∣
∣
∣
L

=
q′′0
k

T (x, 0) = T1

∂T

∂y

∣
∣
∣
∣
L

= −h(T (x, L) − T∞)

Define the dimensionless temperature by

T =
T − T∞
T1 − T∞

(4.37)

and the dimensionless problem becomes

∂2T

∂x2 +
∂2T

∂y2 + q′′′0 = 0 (4.38)

∂T

∂x

∣
∣
∣
∣
0

= 0 (4.39)

∂T

∂x

∣
∣
∣
∣
1

= q′′ (4.40)

T (x, 0) = 1 (4.41)

∂T

∂y

∣
∣
∣
∣
1

= −BiT (x, 1) (4.42)

in which the dimensionless parameters are

q′′ =
q′′0L

k(T1 − T∞)
, q′′′ =

q′′′0 L
2

k(T1 − T∞)
, Bi =

hL

k

The dimensionless domain is shown in Fig. 4.6
The problem has an inhomogeneous DE and inhomogeneous BCs at x = 1 and y = 0. SOV

cannot be applied to the total problem at hand, but the problem can be split into several sub–
problems which, individually, can be solved using SOV or more simple methods.
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∇2T = −q′′′∂T

∂x
= 0

∂T

∂x
= q′′

T = 1

∂T

∂y
= −BiT

6
-

y

x

1

1

Figure 4.6: a complicated problem

For this particular case, it will now be demonstrated the problem can be split into the two
superimposed problems illustrated in Fig. 4.7. Problem A consists of a square region with adiabatic
conditions at x = 0 and 1, uniform temperature of unity at y = 0, convection at y = 1 and uniform
heat generation of q′′′. Problem B has an adiabatic condition at x = 0, uniform flux of q′′ at x = 1,
zero temperature at y = 0, convection at y = 1, and no heat generation.

Denote as TA and TB the solutions to these individual problems, which satisfy

∂2TA

∂x2 +
∂2TA

∂y2 + q′′′ = 0 (4.43)

∂TA

∂x

∣
∣
∣
∣
0

= 0 (4.44)

∂TA

∂x

∣
∣
∣
∣
1

= 0 (4.45)

TA(0, y) = 1 (4.46)

− ∂TA

∂y

∣
∣
∣
∣
1

= BiTA(0, y) (4.47)



4.3. SUPERPOSITION 105

∇2TA = −q′′′∂TA

∂x
= 0

∂TA

∂x
= 0

TA = 1

∂TA

∂y
= −BiTA

6
-

y

x

1

1

∇2TB = 0
∂TB

∂x
= 0

∂TB

∂x
= q′′

TB = 0

∂TB

∂y
= −BiTB

6
-

y

x

1

1

Figure 4.7: the two superimposed problems

and

∂2TB

∂x2 +
∂2TB

∂y2 = 0 (4.48)

∂TB

∂x

∣
∣
∣
∣
0

= 0 (4.49)

∂TB

∂x

∣
∣
∣
∣
1

= q′′ (4.50)

TB(0, y) = 0 (4.51)

− ∂TB

∂y

∣
∣
∣
∣
1

= BiTB(0, y) (4.52)

(4.53)

You should be able to convince yourself, by substitution of the above equations into the original
problem in Eqs. (4.38–4.42), that the superposition T = TA + TB solves the original problem.
Specifically, TA takes care of the inhomogeneous bondary condition at y = 0 and the heat generation
term, whereas TB takes care of the inhomogeneous boundary condition at x = 1.

It is important to recognize that in formulating the problem for A, the heat flux condition at
x = 1 was replaced with the corresponding homogeneous condition – which is an adiabatic condition.
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Likewise, in formulating the problem for B the inhomogenous, unit–temperature condition at y = 0
was replaced with the corresponding homogeneous condition of TB = 0. This procedure is critical:
always replace an inhomogeneous BC in a superimposed solution with a homogenous on of the
same type.

It turns out that the problem for A has a relatively simple solution because the A configuration
presents a one dimensional problem. That is, the adiabatic conditions at x = 0 and 1 eliminates
any heat flow in the x direction, for which the temperature will depend only y. The corresponding
1–D solution for TA is

TA = 1 − q′′′y2

2
+
q′′′(2 +Bi) − 2Bi

2 + 2Bi
y (4.54)

The B problem must be solved by separation of variables. The y direction has the homogeneous
boundary conditions, and the separation constant is chosen to give eigenfunctions in the y direction.
Since TB(x, 0) = 0, the eigenfunction will be of the form

φn(y) = sin(λny) (4.55)

The convection condition at y = 1 provides the eigencondition

λn cos(λn) +Bi sin(λn) = 0, n = 1, 2, . . . (4.56)

The special case of λ = 0 is a solution to the above eigencondition, and this case must therefore be
examined further. The zeroth eigenfunction would be (from solution of the characteristic ODE in
the homogeneous direction)

φ0(y) = A+By

The constant A = 0 from the BC at y = 0. At y = 1 the convection condition has

B = −BiB

which can be satisfied for arbitrary Bi only if B = 0. Consequently, the zeroth eigenfunction is
zero, and can be dismissed from the solution. Recognize that λ1 will now denote the first non–zero
root to Eq. (4.56).

In the x direction the zero–gradient condition at x = 0 will eliminate the sinh term in the
general solution of Eq. (4.18). The solution for TB will then appear as

TB =

∞∑

n=1

An cosh(λnx) sin(λny)

At x = 1 the specified heat flux BC gives

q′′ =
∞∑

n=1

λnAn sinh(λn) sin(λny) (4.57)
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Figure 4.8: superimposed solution: q′′′ = Bi = 0, q′′ = 1 (left), q′′′ = 10, q′′ = −10, Bi = 1 (right)

from which the expansion coefficients are obtained as

An =

q′′
∫ 1

0
sin(λny) dy

λn sinh(λn)

∫ 1

0
sin2(λny) dy

=
2q′′[1 − cos(λn)]

λn sinh(λn)[λn − cos(λn) sin(λn)]
(4.58)

The complete solution to the problem is now given by T = TA + TB, or

T = 1 − q′′′y2

2
+
q′′′(2 +Bi) −Bi

2 + 2Bi
y + 2q′′

∞∑

n=1

[1 − cos(λn)] cosh(λnx) sin(λny)

λn sinh(λn)[λn − cos(λn) sin(λn)]
(4.59)

in which the eigenvalues λn are obtained from the roots of Eq. (4.56).
The solution to this problem is plotted in Fig. 4.8 for Bi = q′′′ = 0, q′′ = 1 (left plot) and

Bi = 1, q′′ = −10, q′′′ = 10 (right). Setting Bi = 0 results in an adiabatic top surface, and this is
observed in the perpendicular intersection of the isotherms with the upper surface. Recognize that
the first set of parameters results in TA = 1 throughout the domain; this result therefore provides
a check on the correctness of the SOV solution for TB. It is difficult to gauge from a contour
plot whether or not a constant, non–zero flux condition is satisfied at a boundary (as occurs along
x = 1); to examine the results in a different perspective a plot of T vs. x, using q′′ = Bi = 0
and q′′ = 1, is shown in Fig. 4.9. The sloping lines represent the temperature profile at a constant
values of y; increasing height of the lines correspond to increasing y. This view shows that the flux
condition is met at x = 1, in that the lines uniformly intersect the surface with a slope of unity.
The one point where this condition would fail would be at y = 0 and x = 1 – which is a result of
the contradiction implied in maintaining the bottom surface at T = 1 while providing a uniform
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Figure 4.9: T vs. x for q′′′ = Bi = 0, q′′ = 1

flux from the side. This is solely a mathematical artifact and, for reasons discussed above, would
not occur physically; it would be impossible to maintain the uniform surface temperature and/or
the constant flux in the vicinity of this point.

4.3.2 Superposition example #2

The domain for this example consists of a square region of width = height = 2L in which all four
surfaces are maintained at T = T1. Uniform heat generation occurs within the region of strength
q′′′0 . This problem is completely symmetric about the x = L and y = L planes. Therefore, we need
only consider one quadrant of the region – say the first quadrant.

By defining the dimensionless variables as as

T =
(T − T1)k

q′′′0 L
2

, x =
x

L
, y =

y

L

the dimensionless problem becomes

∂2T

∂x2 +
∂2T

∂y2 + 1 = 0 (4.60)

∂T

∂x

∣
∣
∣
∣
0

= 0 (4.61)

T (1, y) = 0 (4.62)

∂T

∂y

∣
∣
∣
∣
0

= 0 (4.63)

T (x, 1) = 0 (4.64)
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All BCs in the problem are homogeneous, yet the DE is inhomogeneous. Because of the latter, we
cannot apply SOV directly to the problem.

The approach to this problem is to use a superposition method that is similar to the partial
solutions technique that was developed for transient problems. The procedure is to let T = w(x, y)+
s(x), where s is chosen to ‘absorb’ the heat generation term in the DE. That is, s satisfies the
problem

s′′ + 1 = 0 (4.65)

s′(0) = 0, s(1) = 0 (4.66)

The solution for s is simply

s =
1

2

(
1 − x2

)
(4.67)

By replacing T with w(x, y) + s(x) in Eqs. (4.60–4.64), the following system is obtained for w.

∂2w

∂x2 +
∂2w

∂y2 = 0 (4.68)

∂w

∂x

∣
∣
∣
∣
0

= 0 (4.69)

w(1, y) = 0 (4.70)

∂w

∂y

∣
∣
∣
∣
0

= 0 (4.71)

w(x, 1) = −s(x) (4.72)

As is evident from the above, the problem for w has a homogeneous DE and an inhomogeneous BC
at y = 1 – and this problem can be solved directly with SOV.

The homogeneous direction of the problem is x. In view of the BC at x = 0, the eigenfunction
will be

φn(x) = cos(λnx) (4.73)

and the BC at x = 1 delivers the eigencondition:

cos(λn) = 0 −→ λn =
1

2
(2n− 1)π, n = 1, 2, . . . (4.74)

The specific case of λn = 0 does not contribute to the solution. The BC at y = 0 will eliminate the
sinh part to the y functional dependence, and the general solution for w becomes

w =
∑

n=0

Anφn(x) cosh(λny) (4.75)
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At y = 1 the condition is

− s(x) =
∑

n=1

Anφn(x) cosh(λn) (4.76)

from which we obtain

An = −

∫ 1

0
s φn dx

cosh(λn)

∫ 1

0
φ2

n dx

= − 2

cosh(λn)

∫ 1

0
s φn dx

The remaining integral is evaluated using integration by parts:

∫ 1

0
s φn dx = − 1

λ2
n

∫ 1

0
sφ′′n dx

= − 1

λ2
n

[

sφ′n

∣
∣
∣

1

0
− s′φn

∣
∣
∣

1

0
+

∫ 1

0
s′′φn dx

]

=
1

λ2
n

∫ 1

0
φn dx =

sin(λn)

λ3
n

= −(−1)n

λ3
n

The complete solution to the problem is

T =
1

2

(
1 − x2

)
+ 2

∞∑

n=1

(−1)n cos(λnx) cosh(λny)

λ3
n cosh(λn)

(4.77)

The solution to the problem is plotted in Fig. 4.10. The solution shows the expected symmetry
– observe that the x = y line is an adiabat. It would have been entirely possible and valid to pose
the partial solution s in the y direction, as opposed to the x direction. This would have given
exactly the same solution, expect that x and y would have been interchanged.

What you should have gathered from the previous two examples is that the goal of superposition
methods is to split a problem into a number of sub–problems, each of which can be solved by SOV
or simpler analytical methods. The SOV method requires that the problem have a homogeneous
DE and only one inhomogeneous BC. In the second example we transformed the inhomogeneous
DE/homogeneous BCs problem into a homogeneous DE problem with one inhomogeneous BC. This
could be solved with SOV. Likewise, in the first example we developed a relatively simple partial
solution which took care of the source term in the DE and the inhomogeneous BC at y = 0. The
remaining problem (for TB) had a homogeneous DE and only one inhomogeneous BC, which again
could be solved with SOV.
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Figure 4.10: result of Eq. (4.77)

Application of SOV requires some imagination, but the procedure is fairly straightforward.
When a problem is split into sub (or partial) problems, it is important to insure that the partial
solutions, when superimposed (or added), satisfy both the DE and the BCs of the original problem.

4.3.3 Superposition example #3

The region for this example consists of a rectangle with width W and height H. A uniform heat
flux of q′′ is applied to the left face, convection occurs on the right face, and the bottom and top
surfaces are maintained at T1 and T2, respectively.

As is usally the case, one of the boundary conditions can be made homogeneous by defining the
right dimensionless temperature. The following definitions will be used;

T =
(T − T∞)k

q′′W
, x =

x

W
, y =

y

W

The rationale for this choice is 1) the convection BC at the right face will become homogenous,
and 2) the heat flux gets absorbed into the definition of T , so a unit flux BC will occur at the left

∇2T = 0
∂T

∂x
= −1

∂T

∂x
= −BiT

T = T 1

T = T 2

6
-

y

x

a

1

Figure 4.11: problem for Ex. 4.3.3
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face. The dimensionless problem becomes

∂2T

∂x2 +
∂2T

∂y2 = 0 (4.78)

∂T

∂x

∣
∣
∣
∣
0

= −1 (4.79)

∂T

∂x

∣
∣
∣
∣
1

= −BiT (1, y) (4.80)

T (x, 0) = T 1 (4.81)

T (x, a) = T 2 (4.82)

in which the dimensionless parameter a = H/W is the aspect ratio of the region, Bi = hW/k is the
Biot number, T 1 = (T1 − T∞)k/q′′W and likewise for T 2. It would have been possible to make the
BCs on either the top or bottom homogeneous by appropriate definition of T – yet this would have
resulted in an inhomogeneous convection condition on the right side. Inhomogeneous convection
BCs should be avoided when possible.

A set of partial solutions must now be devised in which 1) each have completely homogeneous
BCs in at least one direction (so that SOV can be applied to obtain the solution), and 2) satistfy
BCs that, when added together, represent the complete set of BCs for the original problem.

As before, let T = TA + TB, where TA and TB satisfy the following boundary value problems:

∂2TA

∂x2 +
∂2TA

∂y2 = 0
∂2TB

∂x2 +
∂2TB

∂y2 = 0

∂TA

∂x

∣
∣
∣
∣
0

= 0
∂TB

∂x

∣
∣
∣
∣
0

= −1

∂TA

∂x

∣
∣
∣
∣
1

= −BiTA(1, y)
∂TB

∂x

∣
∣
∣
∣
1

= −BiTB(1, y)

TA(x, 0) = T 1 TB(x, 0) = 0

TA(x, a) = T 2 TB(x, a) = 0

You should prove to yourself that addition of the boundary conditions for A and B recovers the
original problem. Each problem is completely homogeneous in one direction (x and y, respectively),
and SOV can be applied to each problem in turn.

Minimal detail will be given to the solution procedure for the partial solutions – because the
procedure should be familiar by now. Start with the problem for A. The homogeneous direction is
x, and the eigenfunctions and eigencondition must have zero x–gradient at x = 0 and convection
at x = 1. This leads to

φn(x) = cos(λnx) (4.83)
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λn sin(λn) = Bi cos(λn), n = 1, 2, . . . (4.84)

Again, the general solution will be in the form

TA =

∞∑

n=1

(An cosh(λny) +Bn sinh(λny))φn(x)

At y = 0 the condition is

T 1 =
∞∑

n=1

Anφn(x)

Multiplying through by φm, integrating over x, and borrowing some previous results for the integrals
will result in

An = −2(−1)nT 1Bi
(
λ2

n +Bi2
)1/2

λn [λ2
n +Bi(1 +Bi)]

At y = a the second inhomogeneous BC gives

T 2 =
∞∑

n=1

(An cosh(λna) +Bn sinh(λna))φn(x)

Again, the orthogonality of φn is used to solve for Bn. The result is

Bn = T 2

∫ 1

0
φn dx

sinh(λna)

∫ 1

0
φ2

n dx

− An

tanh(λna)

= Cn

(
T 2 − T 1 cosh(λna)

)

where the coefficient Cn is defined

Cn = − 2(−1)nBi
(
λ2

n +Bi2
)1/2

λn sinh(λna) [λ2
n +Bi(1 +Bi)]

(4.85)

By using some identities for the hyperbolic functions, the complete solution for TA can be made
to appear as

TA =
∞∑

n=1

Cn

[

T 1 sinh[λ(a− y)] + T 2 sinh(λny)
]

(4.86)

This form could have been anticipated from the start – note how the boundary condition in the y
direction are satisfied by the sinh(0) = 0 property.
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The homogeneous direction for the B problem is y, and the eigenfunctions will have zero tem-
perature at y = 0 and a. The corresponding functions are

ψn(y) = sin(βny) (4.87)

βn =
nπ

a
(4.88)

where ψn and βn denote the eigenfunction and eigenvalue, respectively. The change in symbols is
to avoid confusion with the functions for TA. Once again, the solution will be in the form

TB =
∞∑

n=1

(An cosh(βnx) +Bn sinh(βnx))ψn(y)

By applying first the homogeneous BC at x = 1, the above solution can reduce to

TB =
∞∑

n=1

An

(

cosh[βn(1 − x)] +
Bi

βn
sinh[βn(1 − x)]

)

(4.89)

and at x = 0 the inhomogeneous, unit–gradient BC gives

− 1 = −
∞∑

n=1

An (βn sinh(βn) +Bi cosh(βn)) sin(βny)

Orthogonality of the sin functions gives

An =
2

a
· (1 − cos(βn))

βn (βn sinh(βn) +Bi cosh(βn))

=
2a(1 − (−1)n)

πn (πn sinh(nπ/a) +Bi a cosh(nπ/a))
(4.90)

Note that the An are zero for even n. We usually find this sort of cancellation whenever we have
failed to fully exploit the symmetry in a problem – in this case the adiabatic plane that occurs at
y = a/2.

The solution for TB is given by Eq. (4.89), with An given by Eq. (4.90). And the complete
solution to the problem is given by T = TA + TB.

Results for the solution are shown in Fig. 4.12. The parameters used in the plot correspond to
T 1 = 1.5, T 2 = 0.5, Bi = 10, and a = 1.5. Shown are the individual partial solutions (TA and TB)
along with the superimposed solution. This plot gives a good graphical view of the workings of
superposition. The normal gradient at x = 0 for A is identically zero, and it is −1 for B. Adding
the two solutions therefore gives the desired normal gradient at the wall, i.e., the A solution does
not contribute anything to the gradient at x = 0. Likewise, the B solution has zero temperature at
y = 0 and a, yet the A solution has temperatures of 1.5 and 0.5 here. Finally, each solution obeys
the homogeneous convection BC at x = 1 – so the sum of the solutions obeys the same BC.
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A B A+B

Figure 4.12: superposition solution #3

4.4 Two dimensional problems in cylindrical coordinates

4.4.1 2–D heat transfer in a circular fin

A good place to begin a discussion on steady, 2–D conduction in cylindrical coordinate systems is
to examine heat transfer in a circular pin fin. The 1–D analysis for fin heat transfer, developed in
Ch. 1, was based on the assumption of BiR = hR/k ≪ 1 (where R is the fin radius). When this
condition is not met the temperature distribution in the fin will be a function of both axial position
z and radial position r, and the prediction of the temperature field (and heat transfer rate) will
require solution of the 2–D steady conduction equation in cylindrical coordinates.

Assume that the fin, of length L, is mounted to a base that is maintained at a uniform tem-
perature of TB, and take the tip of the fin to be adiabatic. The sides of the fin are cooled by
convection.

The nondimensional temperature is obviously T = (T − T∞)/(TB − T∞). Let L be the charac-
teristic length, so that z = z/L and r = r/L. Again, it is good practice to non–dimensionalize all
spacial variables by the same characteristic length. The boundary value problem is

1

r

∂

∂r
r
∂T

∂r
+
∂2T

∂z2 = 0 (4.91)

T (r, 0) = 1 (4.92)

∂T

∂z

∣
∣
∣
∣
1

= 0 (4.93)

T (0, z) is finite (4.94)

− ∂T

∂r

∣
∣
∣
∣
a

= BiT (a, z) (4.95)
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in which Bi = hL/k and a = R/L.
The problem is completely homogeneous in the r direction, so we can proceed with the SOV

method. By separating T = u(r) · v(z) the following characteristic ODEs are obtained;

(ru′)′ ± λ2ru = 0

v′′ ∓ λ2v = 0

The choice of +λ2 in the first ODE will give a solution involving the ordinary Bessel functions
of order zero, and −λ2 will return the modified Bessel functions of order zero. The homogeneous
direction to the problem is r, and eigenfunction are therefore required in this direction. The
ordinary Bessel functions (which oscillate about zero) can serve as eigenfunctions, whereas the
modified Bessel functions cannot. Alternatively, one could seek to obtain the Sturm–Liouville
problem in the r direction – which would require the choice of +λ2.

The solution for u is therefore

u = AJ0(λr) +BY0(λr)

The BC at r = 0 eliminates B because the Y function is singular at the origin. The eigenfunctions
to the problem become

φn(r) = J0(λnr) (4.96)

and the convection BC gives the eigencondition:

φ′n(a) = −Biφn(a)

By use of the formulas for the derivative of J0, the eigencondition becomes:

λnJ1(λna) = Bi J0(λna), n = 1, 2, . . . (4.97)

The solution of the characteristic DE in the z direction will be in terms of the hyperbolic functions.
The general, 2–D form of the solution will then be

T =
∞∑

n=1

(An cosh(λnz) +Bn sinh(λnz))φn(r) (4.98)

The derivative with respect to z must vanish at z = 1, so the general solution can be put in the
form

T =
∞∑

n=1

An cosh[λn(1 − z)]φn(r) (4.99)

Recognize again that cosh(λnz) and cosh[λn(1− z)] are both valid solutions to the DE. The second
form provides a simplified means for satisfying the homogeneous BC at z = 1. At z = 0 the
remaining inhomogeneous BC gives

1 =
∞∑

n=1

An cosh(λn)φn(r) (4.100)
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The orthogonality of φn is now used to obtain the An’s. Recall that the orthogonality relationship
for Bessel functions has a weighting function of w(r) = r. Each side of Eq. (4.100) is multiplied by
rφm(r) and integrated over the r domain – which extends from 0 to a. The integration kills every
term in the series except the one for which n = m, and the An expansion coefficients are

An =

∫ a

0
J0(λnr)r dr

cosh(λn)

∫ a

0
J2

0 (λnr)r dr

=
2J1(λna)

aλn cosh(λn)
(
J2

0 (λna) + J2
1 (λna)

)

By substitution of Eq. (4.97) in the above, the formula reduces to

An =
2Bi

a cosh(λn)J0(λna) (λ2
n +Bi2)

(4.101)

and the complete solution is

T =
2Bi

a

∞∑

n=1

cosh[λn(1 − z)]J0(λnr)

cosh(λn)J0(λna) (λ2
n +Bi2)

(4.102)

Predicted isotherms from Eq. (4.102) are given in Fig. 4.13. The results correspond to an aspect
ratio a of 0.75 (a stubby fin) and a Biot number of 20. This would not represent a very effective
fin – but it does show that the solution is valid. In particular, notice how the unit temperature BC
at z = 0 and the adiabatic BC at z = 1 are satisfied.

The heat transfer from the fin would be obtained from the net conduction at the base:

q =

∫

AB

q′′z (r, 0) dA = −2πk

∫ R

0

∂T

∂z

∣
∣
∣
∣
0

r dr

r

z

Figure 4.13: isotherms in a stubby fin
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or, using the dimensionless quantities:

q = −2πLk(TB − T∞)

∫ a

0

∂T

∂z

∣
∣
∣
∣
0

r dr

= 2πLk(TB − T∞)
∞∑

n=1

λnAn sinh(λn)

∫ a

0
J0(λnr) r dr

= 2π La k(TB − T∞)
∞∑

n=1

An sinh(λn)J1(λna)

= 2π RkBi(TB − T∞)
∞∑

n=1

An

λn
sinh(λn)J0(λna)

= 2π RLh(TB − T∞)
∞∑

n=1

An

λn
sinh(λn)J0(λna)

The maximum heat transfer from the fin is 2πRLh(TB − T∞). Using this in the above along with
Eq. (4.101), the fin efficiency becomes:

η =

∞∑

n=1

An

λn
sinh(λn)J0(λna)

=
2Bi

a

∞∑

n=1

tanh(λn)

λn (λ2
n +Bi2)

= 2Bi a
∞∑

n=1

tanh(λn)

λn [(λna)2 + (Bi a)2]
(4.103)

This is starting to look somewhat like the 1–D formula for the uniform cross section fin, which is

η1−D =
tanh(N)

N
, N =

√

2hL2

kR
(4.104)

It is now shown that the exact solution, in Eq. (4.103), reduces to the 1–D approximation of
Eq. (4.104) for Bi a = hr/k ≪ 1. By multiplying the eigencondition (Eq. (4.97)) by a, one obtains

(λna)J1(λna) = BiR J0(λna) (4.105)

where BiR = Bi a. This provides an equation for the roots λna in terms of BiR. Now, for
BiR ≪ 1, we would expect that only the first term in the series in Eq. (4.103) would be important
– because the solution has to reduce to the simple analytical expression in Eq. (4.104). From the
Bessel function relations in Ch. 2, it can be shown, for small x, that J0(x) ≈ 1 and J1(x) ≈ x/2.
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Figure 4.14: efficiency η for a circular pin fin

Therefore, for BiR → 0, the above equation would predict that λ1a would become a small number.
Specifically,

λ1a ≈
√

2BiR, BiR ≪ 1

or

λ1 ≈
√

2BiR
a2

=

√

2hL2

kR
= N

So – in the limit of BiR ≪ 1 the first eigenvalue λ1 goes to the fin parameter N . By using this in
Eq. (4.103) and retaining only the first term in the series, the 1–D approximate solution for η is
recovered.

Presented in Fig. 4.14 is a plot of the fin efficiency η, calculated from the 2–D model, vs. the
fin parameter N with BiR as a parameter. The aspect ratio a is obtained from N and BiR from
a =

√
2BiR/N . As expected, once BiR becomes less than unity the 2–D, exact results correspond

closely to the 1–D approximate result. Perhaps surprisingly, the poorest agreement between the
1–D and the 2–D models occurs for N ∼ 0.1 − 1, i.e., for a stubby (or short) fin. This behavior
is an artifact of the mathematical model of the fin – and you should be able to explain why such
behavior occurs.

4.4.2 The long, annular cylinder: problems in r and φ

Two dimensional conduction problems in spherical coordinates typically occur for the independent
variable pairs (r, z) and (r, φ). An example of the first type was encountered in the previous
section. The latter case will occur whenever the surface of the cylinder is subjected to an uneven
heating/cooling situation.



120 CHAPTER 4. TWO DIMENSIONAL STEADY–STATE CONDUCTION
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h1, T∞,1

h2, T∞,2

q′′0

φ

Figure 4.15: pipe configuration

To pose an example, consider an annular pipe, having inner and outer radii of R1 and R2,
that is carrying a fluid at temperature T∞,1. Convection occurs between the inner surface and the
fluid with a heat transfer coefficient h1, and likewise the outer surface is exposed to a convection
environment characterized by h2 and T∞,2. In addition , the outside of the pipe is exposed to
a collimated source of thermal radiation, which has a flux of q′′0 . The problem is schematically
illustrated in Fig. 4.15.

Taking into account the angle between surface normal and the incident radiation, the normal
component of the absorbed heat flux at the exterior pipe surface is

q′′r =







αq′′0 cos(φ), −π
2
≤ φ ≤ π

2

0,
π

2
< φ <

3π

2

where α is the surface absorptivity of the pipe. The objective of the problem is to predict the
temperature distribution in the pipe and the heat flux at the inner wall.

Assuming that the temperature varies only in the r and φ directions, the dimensional problem
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is

1

r

∂

∂r
r
∂T

∂r
+

1

r2
∂2T

∂φ2
= 0

k
∂T

∂r

∣
∣
∣
∣
R1

= h1(T (R1, φ) − T∞,1)

−k ∂T
∂r

∣
∣
∣
∣
R2

= −q′′r (φ) + h2(T (R2, φ) − T∞,2)

T (r, φ) = T (r, φ+ 2π)

The BC on φ simply states a ‘continuation’ principle – in that the temperature at φ has to be the
same as the temperature at φ+ 2π (i.e., once around the pipe).

Let the nondimensional radial position and temperature be defined

r =
r

R2
, T =

(T − T∞,1)k

αq′′0R2

The dimensionless problem becomes

1

r

∂

∂r
r
∂T

∂r
+

1

r2
∂2T

∂φ2
= 0 (4.106)

∂T

∂r

∣
∣
∣
∣
a

=
Bi1
a
T (a, φ) (4.107)

∂T

∂r

∣
∣
∣
∣
1

= f(φ) −Bi2 (T (1, φ) − T∞,2)) (4.108)

T (r, φ) = T (r, φ+ 2π) (4.109)

where a = R1/R2, Bi1 = h1R1/k, Bi2 = h2R2/k, T∞,2 = (T∞,2 − T∞,1)k/αq
′′
0R2, and

f(φ) =







cos(φ), −π
2
≤ φ ≤ π

2

0,
π

2
< φ <

3π

2

(4.110)

The dimensionless problem has a homogeneous DE and homogeneous BCs in the φ direction,
and an inhomogeneous convection BC occurs at r = 1. The 1/a in Eq. (4.107) comes from the fact
that we are defining Bi1 with respect to R1 instead of R2.

Separation of variables can be applied directly to this problem. Let T = u(r)v(φ), which leads
to

r(ru′)′ ± λ2u = 0

v′′ − (±λ2)v = 0
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The homogeneous direction of the problem is φ and eigenfunctions are required in the φ direction.
We then choose −λ2 in the above which will give a solution for v in terms of the trigonometric
functions. Specifically,

v = A cos(λφ) +B sin(λφ)

Because of the symmetry of the problem, the temperature field must have T (r, φ) = T (r,−φ) – i.e,
the temperature is even in φ. The constant B can therefore be set to zero. From Eq. (4.109) the
eigencondition of the problem is, simply,

λn = n, n = 0, 1, 2, . . .

This will give the desired periodic behavior in φ.
The ODE for u becomes

r2u′′ + ru′ − n2u = 0

Two cases need to be examined – depending on whether or not n is zero. If n 6= 0 the DE takes
the form of an equidimensional equation, in which each term has the same net dimension in r.
The solution to such equations is typically obtained by setting u = Crβ, where β is a constant.
Replacing this into the DE, the solution to the above becomes

u = Anr
n +Bnr

−n, n = 1, 2, . . .

For the case of n = 0 the DE for u will appear as

(ru′)′ = 0

Integrating twice over r gives

u = A0 +B0 ln(r), n = 0

which is recognized simply as the 1–D radial temperature profile in cylindrical coordinates.
At this point the general solution to the problem appears as

T = A0 +B0 ln(r) +
∞∑

n=1

(
Anr

n +Bnr
−n
)
cos(nφ) (4.111)

The BC at r = a is now used to eliminate the B coefficients. Since this BC is homogeneous it can
be applied to each individual term in the series. For n > 0 the result is

n
(
Ana

n−1 −Bna
−n−1

)
=
Bi1
a

(
Ana

n +Bna
−n
)

which gives

Bn = Ana
2nn−Bi1
n+Bi1
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and for n = 0:
B0

a
=
Bi1
a

(A0 +B0 ln(a))

or

B0 = A0
Bi1

1 −Bi1 ln(a)

To make the notation more compact, define the function gn(r) as

gn(r) = rn + a2nn−Bi1
n+Bi1

r−n (4.112)

With this convention, the general solution can now be written as

T = A0

(

1 +
Bi1 ln(r)

1 −Bi1 ln(a)

)

+
∞∑

n=1

Angn(r) cos(nφ) (4.113)

Application of the remaining inhomogeneous BC at r = 1 results in

A0
Bi1

1 −Bi1 ln(a)
+

∞∑

n=1

Ang
′
n(1) cos(nφ)

= f(φ) −Bi2A0 −Bi2

∞∑

n=1

Angn(1) cos(nφ) +Bi2T∞,2 (4.114)

where

g′n(1) = n

(

1 − a2nn−Bi1
n+Bi1

)

(4.115)

Multiply Eq. (4.114) by cos(mφ) and integrate over φ from 0 to π. The orthogonality relation is

∫ π

0
cos(mφ) cos(nφ) dφ =







0, n 6= m
π

2
, n = m, m > 0

π, n = m = 0

Three distinct cases are obtained from Eq. (4.114), depending on whether m = 0, 1, or > 1. For
m = 0 we find that

πA0
Bi1

1 −Bi1 ln(a)
=

∫ π/2

0
cos(φ) dφ− πBi2A0 + πBi2T∞,2

which simplifies to

A0 =
(1 + πBi2T∞,2)(1 −Bi1 ln(a))

π [Bi1 +Bi2(1 −Bi1 ln(a))]
(4.116)
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The m = 1 case gives
π

2
A1g

′
1(1) =

∫ π/2

0
cos2(φ) dφ− π

2
Bi2A1g1(1)

The integral has the value π/4, so the formula for A1 is

A1 =
1

2 (g′1(1) +Bi2g1(1))
(4.117)

Finally, for m > 1 we have

π

2
Ang

′
n(1) =

∫ π/2

0
cos(φ) cos(nφ) dφ− π

2
Bi2Angn(1)

The value of the integral is now
∫ π/2

0
cos(φ) cos(nφ) dφ =

cos(nπ/2)

1 − n2

and the corresponding formula is

An =
2 cos(nπ/2)

π (1 − n2) (g′n(1) +Bi2gn(1))
, n > 1 (4.118)

Observe that the An in the above equation will be zero for odd n. Taking this into consideration,
the complete solution for the temperature is

T (r, φ) =
1 + πBi2T∞,2

π [Bi1 +Bi2(1 −Bi1 ln(a))]

(

1 +Bi1 ln

(
r

a

))

+
1

2 (g′1(1) +Bi2g1(1))
g1(r) cos(φ)

+
2

π

∞∑

n=1

(−1)ng2n(r) cos(2nφ)

(1 − 4n2) (g′2n(1) +Bi2g2n(1))
(4.119)

Some typical results are in Fig. 4.16, in which a = 0.5 and Bi1 = 5, Bi2 = 0 (left plot) and
Bi1 = 1000, Bi2 = 5 (right plot). The external ambient temperature is T∞,2 = 0 for both plots.
The left plot (for which external convection is absent) shows how the exterior surface becomes
adiabatic for φ > π/2. The second plot illustrates a case that would be typical of a liquid flow in
the pipe (high Bi) and free convection to air on the outside.

The total rate of heat transfer into the fluid would be (per unit length)

q′ = 2R2k

∫ π

0

∂T

∂r

∣
∣
∣
∣
R2

dφ

= 2R2αq
′′
0

∫ π

0

∂T

∂r

∣
∣
∣
∣
1

dφ
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Figure 4.16: isotherms in the pipe: Bi1 = 5, Bi2 = 0 (left); Bi1 = 1000, Bi2 = 5 (right)

By replacing the solution for T into the above and integrating, it turns out that the only term in
the series that contributes anything to the total heat transfer is the one associated with ln(r). The
final result is

q′ =
2αq′′0R2

(
1 + πBi2T∞,2

)
Bi1

[Bi1 +Bi2 (1 −Bi1 ln(a))]
(4.120)

What may be remarkable to you is the fact that the net heat transfer does not depend, in any way,
on the SOV–derived expansion coefficients for the temperature distribution. Indeed, the above
formula could have been derived by integration of the governing DE (Eq. (4.106)) over φ and
solution of the subsequent 1–D boundary value problem. This is left as an exercise.

By setting Bi2 = 0 (i.e., no exterior convection), the result shows (as it must) that q′ = 2R2αq
′′
0 ,

i.e., the net heat transfer to the fluid is equal to the incident flux times the absorptivity times the
projected area of the pipe. This makes sense since all of the absorbed radiant energy has to go to
the fluid – none can escape back to the environment. Conversely, by setting Bi1 = 0 (insulated
inner surface) the result q′ = 0 is obtained – because none of the absorbed heat can reach the fluid.

4.4.3 Math digression: 2–D in r and φ solutions

The general solution for the steady–state temperature field in r and φ cylindrical coordinates can
be deduced by application of complex variables, as opposed to the SOV procedure used above. To
illustrate, consider the cartesian conduction equation in two dimensions:

∂2T

∂x2
+
∂2T

∂y2
= 0

It is readily shown that a solution to the above is obtained from

T = (x+ iy)n (4.121)
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where n is a constant. In application of the complex variables it would be understood that we are
ultimately interested in the real part of the solution – but for now it is useful to retain the complex
formulation. Differentiation of the solution twice with respect to x results in

∂2T

∂x2
= n(n− 1)(x+ iy)n−2

Likewise, differentiation of Eq. (4.121) twice with respect to y gives

∂2T

∂y2
= i · in(n− 1)(x+ iy)n−2 = −n(n− 1)(x+ iy)n−2

The conduction equation is therefore satisfied. Now, from complex variables, the variable x + iy
can be represented on the complex plane by

x+ iy = reiφ (4.122)

where

r =
(
x2 + y2

)1/2
, φ = tan−1

(y

x

)

(4.123)

The variables r and φ are the cylindrical coordinate equivalents to x and y. Realize that a solution
to Laplace’s equation (i.e., the steady conduction equation) must be invariant with respect to the
coordinate system. That is, if the solution is valid in cartesian coordinates, it must also be valid in
cylindrical coordinates. Consequently, the solution in cylindrical coordinates becomes

(x+ iy)n = rneinφ = rn[cos(nφ) + i sin(nφ)] (4.124)

Using the continuation principle (T (φ) = T (φ+2π)) fixes the constant n as the integers 0,±1,±2, . . ..
Finally, an additional solution is obtained from

ln
[

(x2 + y2)1/2
]

=
1

2
ln(x2 + y2) = ln(r) (4.125)

By differentiation of this solution twice with respect to x and with respect to y, it will be seen that
the cartesian 2–D conduction equation is satisfied. The general solution to the problem in radial
coordinates would then be

T = A0 +B0 ln(r) +
∑

n=1

[

cos(nφ)
(
Anr

n +A−nr
−n
)

+ i sin(nφ)
(
Bnr

n −B−nr
−n
)]

In general, the expansion coefficients Bn would be imaginary in the above equation – because the
temperature field must be real–valued. One could simply eliminate i from the above and fix Bn as
real.
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Figure 4.17: Convective–diffusion pipe flow situation

4.5 Convection–Diffusion Problems

The methods developed to examine steady–state heat transfer in a 2–D region can also be applied
to convection–diffusion heat transfer in situations in which the velocity of the convective flow is
fixed and known. Such a problem is illustrated in Fig. 4.17. Say flow enters a circular pipe with
a uniform and constant velocity of u and an inlet temperature of T0. The walls of the pipe are
maintained at a uniform temperature of Tw. We want to predict the temperature distribution of
the fluid in the pipe and the rate of heat transfer to/from the wall.

This is not a fluid mechanics problem: we know the velocity distribution throughout the pipe.
This particular example, in which the velocity in the pipe is assumed uniform and constant, would
be referred to as a plug–flow. A more realistic model, for laminar flow conditions, would be to use
a parabolic velocity profile, yet the plug flow model will offer mathematical simplicity and would
be more representative of certain turbulent flow conditions (in which the average velocity profile is
mostly uniform over the cross sectional area of the pipe).

The steady form of the energy equation (in dimensional coordinates) will be

u

α

∂T

∂x
=

1

r

∂

∂r

(

r
∂T

∂r

)

+
∂2T

∂x2
(4.126)

with α = k/ρcp being the thermal diffusivity of the fluid. The term on the left, as you probably
recognize, accounts for the axial convection of enthalpy in the flow. There is no corresponding
r–directed term because there is no r component of velocity.

Take the radius of the pipe, R, to be the characteristic length. The problem can be made
dimensionless by defining the variables as

T → T − Tw

T0 − Tw
, r → r

R
, x→ x

R

so that the DE now appears as

Pe
∂T

∂x
=

1

r

∂

∂r

(

r
∂T

∂r

)

+
∂2T

∂x2
(4.127)

in which Pe = uR/α is the Peclet number of the flow. The Peclet number is analogous to the
Reynolds number; it is a ratio of the characteristic rates of axial convective and radial diffusive
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heat transfer in the pipe. Often the Peclet number is defined using diameter D instead of radius
R; we’ll use the radius definition to keep things more simple.

In pipe flow problems, the axial diffusion term (the second term on the right hand side) is
often neglected – because the gradients in the axial direction (for developed flow conditions) will
be relatively small compared to the radial gradients. If we removed this term, we would simply get
a DE in the same form as the 1–D and transient problems in the previous chapter (i.e., a parabolic
DE, with x taking the place of the time variable). However, for this developing flow problem we
cannot, in general, neglect the axial diffusion term.

Boundary conditions to the dimensionless problem are

T (0, x) is finite (4.128)

T (1, x) = 0 (4.129)

T (r, 0) = 1 (4.130)

T (r, x→ ∞) = 0 (4.131)

Note that the last boundary condition simply states that the fluid temperature will go to the wall
temperature after sufficient distance in the pipe.

This problem can be solved with SOV methods, the solution of which will be outlined here.
The problem has a homogeneous direction (r), and we anticipate that the solution will be in the
form

T (r, x) =
∞∑

n=1

Anφn(r) vn(x) (4.132)

Characteristic ODEs for φn(r) and vn(x) are obtained by substituting φn(r) · vn(x) into the PDE,
Eq. (4.127);

1

r
(rφ′n)′ = −λ2

nφn (4.133)

Pe v′n − v′′n = −λ2
nvn (4.134)

The eigenfunction ODE is in the same form as previous cylindrical problems, and we obtain

φn(r) = J0(λnr) (4.135)

J0(λn) = 0 (4.136)

Two independent solutions exist to Eq. (4.134), only one of which satisfies the zero condition at
x→ ∞. This solution is

vn(x) = exp
(x

2

[

Pe−
(
4λ2

n + Pe2
)1/2

])

(4.137)

The expansion coefficients An in the solution are obtained from the inhomogeneous condition at
the inlet:

1 =
∞∑

n=1

Anφn(r) vn(0)
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or, using vn(0) = 1 and the orthogonality of the eigenfunctions,

An =

∫ 1

0
φn r dr

∫ 1

0
φ2

n r dr

(4.138)

This completes the solution for the temperature profile. In convective/diffusive problems such
as this, it is often of interest to define the heat transfer coefficient h from the solution to the
temperature profile. The heat transfer coefficient, for this pipe flow problem, is defined so that the
heat flux to the pipe wall is given by

q′′(x) = h(x)(Tm(x) − Tw) (4.139)

where Tm is the mean temperature of the fluid at position x (the quantities in the above equation
are now dimensional). The mean temperature is defined as

Tm =
2

R2

∫ R

0
T (r, x) r dr (4.140)

and the heat flux is

q′′ = −k ∂T
∂r

∣
∣
∣
∣
r=R

(4.141)

If we now return to dimensionless coordinates and use the above three equations, we will obtain

hR

k
≡ 1

2
NuD = −

∂T

∂r

∣
∣
∣
∣
r=1

2

∫ 1

0
T r dr

(4.142)

The dimensionless quantity NuD = hD/k is the Nusselt number based on pipe diameter. It has the
same grouping of quantities as the Biot number, yet it has a fundamentally different interpretation.
The Nusselt number, as the above equation shows, is basically a dimensionless temperature gradient
at the surface, scaled by a nondimensional mean temperature of the flow. Essentially, it is a
nondimensional way of expressing the heat transfer coefficient h. The Biot number, on the other
hand, relates conduction resistance within a solid to convection resistance from the solid.

A plot of NuD vs. dimensionless axial position x is given in Fig. 4.18, in which Pe = 10. At
the entrance to the pipe NuD → ∞, due to the instantaneous change in temperature of the wall.
As the flow progresses into the pipe both the heat flux and the mean temperature decrease to zero.
The ratio of the two, however, approaches a constant. In the large x limit it is easy to show that
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Figure 4.18: NuD vs. length into pipe x for plug flow conditions

only one term is retained in the series solution for temperature. For this case the Nusselt number
will become independent of both x and Pe and equal to

NuD

∣
∣
∣
∣
∣
x→∞

= λ2
1 = 5.783 (4.143)

This would be considered the fully developed flow limit. You might recall that, for fully developed
laminar flow in a pipe (with a parabolic velocity profile), the Nusselt number for isothermal wall
conditions is the constant value of 3.66. We get a different value here because of the assumed plug
flow velocity distribution.

4.6 Summary

A whole lot of details remain to be covered; such as superposition techniques in radial problems
and spherical coordinate solutions. The latter topic will be addressed in a later chapter, and the
former would extend directly from the examples in cartesian coordinates.

As a reference, a list of the general solution forms for problems in cartesian and cylindrical 2–D
steady conditions is given below.

In cartesian coordinates, with homogeneous boundary conditions in the x direction, the solution
will take the form

T =
∞∑

n=1

[An cosh(λny) +Bn sinh(λny)]φn(x) (4.144)

where φn is the eigenfunction for the x direction and λn is the eigenvalue. The eigenfunction will
involve combinations of the trigonometric functions, i.e.,

φn = [cos(λnx), sin(λnx)] (4.145)
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in which the square brackets denote a linear combination of the two functions.
In cylindrical r − z coordinates with r as the homogeneous direction, the solution will appear

in the same form as before:

T =
∞∑

n=1

[An cosh(λnz) +Bn sinh(λnz)]φn(r) (4.146)

except the eigenfunctions φn(r) will now involve the ordinary Bessel functions of order 0:

φn(r) = [J0(λnr), Y0(λnr)] (4.147)

If the homogeneous direction is z, the general solution will appear

T =
∞∑

n=1

[AnI0(λnr) +BnK0(λnr)]φn(z) (4.148)

where the eigenfunctions φn(z) will involve the trigonometric functions as in Eq. (4.145).
And as always, the constants An and Bn are obtained from the BCs in the non–homogeneous

direction and (when needed) the orthogonality relations for the eigenfunctions.

Exercises

1. A square, 2–D rod is exposed to identical convection conditions on the left and right faces.
The bottom surface is insulated, and the top surface receives a nonuniform heat flux given by

q′′(x) = q′′0 exp
[

−a2 (x− L/2)2
]

in which q′′0 and a are constants. Formulate the problem for the temperature distribution
in appropriate dimensionless form, and derive a solution using the SOV method. Note: the
boundary conditions can be simplified by exploiting the symmetry of the problem.

2. A solid circular rod, of length L and radius R, has the ends at z = 0 and L maintained at T1

and T2. Electrical current flows through the rod which results in a uniform heat generation
rate of q′′′ within the rod. The surface at r = R is cooled by convection to T∞.

(a) Using the superposition and SOV methods, determine the solution for the temperature
distribution in the rod. Be sure to cast the problem in dimensionless variables.

(b) Re–derive the solution for the case of L → ∞. Recognize that in this limit there will
no longer be an explicit BC stated at L, rather, the solution must asymptote to the
correct behavior for z → ∞. Derive a formula for the total rate of heat transfer to/from
the z = 0 surface of the wire, and plot the result (in appropriate dimensionless form)
as a function of dimensionless generation rate q′′′ using BiR = hR/k = 1. Discuss the
physical significance of your results.



132 CHAPTER 4. TWO DIMENSIONAL STEADY–STATE CONDUCTION

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

convection

circuit

spreaderq''c t
RRc

Figure 4.19: circular spreader, side view

3. A thermal spreader is a device used to transfer heat from a (typically small) integrated circuit
to a cooling environment. Often they are designed to provide a larger heat transfer area to
the convection environment than that occupied by the circuit, thereby ‘spreading’ out the
heat much like a fin. A circular disk spreader is illustrated in Fig. 4.19, which has a radius of
R and a thickness of t. The circular IC, of radius Rc, is centered on the top of the spreader,
and a uniform flux of q′′c enters the spreader from the IC. The bottom surface of the spreader
is cooled by convection, and all other surfaces are adiabatic.

(a) Formulate the problem in appropriate dimensionless variables, and derive the analytical
solution for the temperature distribution in the spreader. You will want to use R as
the characteristic length and q′′cR/k as the characteristic temperature difference. Please
note that this problem will admit a zero eigenvalue (λ0 = 0) with a non–zero zeroth
eigenfunction (φ0 6= 0). It is critically important that you include the contribution of
these terms.

(b) In the limit of Bi = hR/k → 0, and assuming t = t/R < 1, your solution should give
the result of T → (Rc/R)2/Bi. Explain, using physical arguments, why this is the case.

(c) Make a plot of T (x = t, r = 0) ·Bi (i.e., the dimensionless spreader temperature directly
under the IC, multiplied by Bi) vs. dimensionless thickness t for Bi = 0.5, 1, and 5 and
with Rc/R = 0.25. Using this plot, identify an optimum thickness of the spreader, i.e.,
that which minimizes the IC temperature for the fixed heat dissipation rate. Explain,
using physical principles, why such an optimum occurs.

4. Consider the convective–diffusion problem examined in the last section, but now the boundary
condition at the wall is a constant heat flux condition, i.e.,

k
∂T

∂r

∣
∣
∣
∣
r=R

= q′′w = constant

Develop a solution for the dimensionless temperature profile in the tube as a function of r
and x. Note that the zeroth eigenfunction will play a role in this situation. Also obtain
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series solutions for the mean temperature Tm(x) and the Nusselt number NuD(x), and plot
these quantities as a function of x using Pe = 10 Note that the mean temperature will not
→ 0 for x → ∞, since heat is continuously being added to the fluid. Finally, obtain the
fully–developed value for the Nusselt number.
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Chapter 5

General Multidimensional Conduction

5.1 Introduction

The problems examined in the previous chapters were restricted to two dimensions (space + time
or space + space) and could be solved with the SOV/superposition methods. The first item of
business in this chapter will be to extend SOV/superposition to problems involving three or more
dimensions. In doing so we will retain, for time–dependent problems, the transient impulse model
of the initial condition; this restriction will be lifted in the following chapter. We will also examine
the variation of parameters method for solution of multidimensional conduction-type PDEs – which
is somewhat more generalized than the SOV/superposition approach. Finally, we will introduce
the concept of a semi–infinite domain and examine the steady flow of heat in such situations. A
fundamentally different analytical method, known as the Fourier cosine transform, will be developed
to describe the temperature field in the semi–infinite domain.

5.2 Transient and 2–D conduction

5.2.1 Reduction to 1–D

Here we combine the material from chapters three and four to address the problem in which we
have a two–dimensional spacial domain that is undergoing a transient conduction process. There
are a number of different ways that these problems can be tackled – depending on the type of
problem.

The most fundamental problem is a 2–D domain that has homogeneous boundary conditions
at all boundaries and an inhomogeneous IC. This would simply be the generalization to 2–D of
the problem initially presented at the beginning of Ch. 3. Consider, for example, a square rod of
width=height=2W , and a length much longer than the width. Initially the rod is at a uniform
temperature of T1. At t = 0 the surfaces are exposed to a convection environment. The objective
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is to determine the transient and spacial distribution of the temperature in the rod.
The nondimensional variables are defined in the usual manner;

T =
T − T∞
T1 − T∞

, x =
x

W
, y =

y

W
, t =

tα

W 2
(5.1)

Recognizing that the problem is symmetrical in each quadrant of the rod, the origin can be taken
at the center of the rod. The problem is then

∂T

∂t
=
∂2T

∂x2 +
∂2T

∂y2 (5.2)

∂T

∂x

∣
∣
∣
∣
x=0

= 0 (5.3)

∂T

∂y

∣
∣
∣
∣
y=0

= 0 (5.4)

∂T

∂x

∣
∣
∣
∣
x=1

= −BiT (1, y, t) (5.5)

∂T

∂y

∣
∣
∣
∣
y=1

= −BiT (x, 1, t) (5.6)

T (x, y, 0) = 1 (5.7)

In general, the solution method would begin with the basic SOV procedure, in which T (x, y, t) =
u(x)·v(y)·w(t). This approach will be employed later, but there is a simpler route for this particular
problem. This is because the BCs (and the DE) are all homogeneous. For this particular case, the
2–D spacial and transient problem will reduce to the product of two 1–D and transient problems.

To see this, let the solution be given by the product T = T x(x, t) · T y(y, t), where T x does not
depend on y and T y does not depend on x. Replacing this into the DE in Eq. (5.2) results in

T y
∂T x

∂t
+ T x

∂T y

∂t
= T y

∂2T x

∂x2 + T x
∂2T y

∂y2 (5.8)

Now let T x and T y each satisfy the 1–D and transient conduction equation:

∂T x

∂t
=
∂2T x

∂x2 (5.9)

∂T y

∂t
=
∂2T y

∂y2 (5.10)

By doing so, the product T = T xT y will satisfy the conduction equation for our entire problem.
The BCs for T x and T y are deduced in a similar manner. At x = 0 the condition is

∂

∂x

[
T xT y

]

x=0
= T y

∂T x

∂x

∣
∣
∣
∣
x=0

= 0
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which is satisfied if T x obeys
∂T x

∂x

∣
∣
∣
∣
x=0

= 0 (5.11)

Likewise, at x = 1

T y(y, t)
∂T x

∂x

∣
∣
∣
∣
x=1

= −BiT x(1, t) · T y(y, t) (5.12)

Cancelling out T y gives

∂T x

∂x

∣
∣
∣
∣
x=1

= −BiT x(1, t) (5.13)

This shows that T x satisfies the same homogeneous BCs in the x direction as did T . The same
result for T y would be obtained with the y direction homogeneous BCs. Finally, the IC is

1 = T (x, y, 0) = T x(x, 0) · T y(y, 0)

This can be satisfied by imposing ICs on T x and T y of

T x(x, 0) = 1 (5.14)

T y(y, 0) = 1 (5.15)

For T x we therefore get the 1–D and transient problem given by Eqs. (5.9–5.14). This problem was
encountered in Ch. 3, and has the solution

T x =
∞∑

n=1

Anφn(x)e−λ2
nt

in which the eigenfunctions and eigencondition are

φn(x) = cos(λnx) (5.16)

λn sin(λn) = Bi cos(λn) (5.17)

and the expansion coefficients are

An =

∫ 1

0
φn dx

∫ 1

0
φ2

n dx

This specific problem requires absolutely no new mathematical formulation; the existing 1–D
and transient solutions can be multiplied together to form the 2–D and transient solution. This
technique is known as reduction to 1–D, and can be applied to problems that have a unit initial
temperature and completely homogeneous BCs and DE.
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Reduction to 1–D can also be applied to non–cartesian problems and 3–D configurations, pro-
viding the restrictions on the BCs and DE are met. For example, a finite–length cylindrical rod,
of length L and radius R, that is initially at a temperature of T = 1 and exposed at t = 0 to a
convection environment, could be split into the two problems of 1) an infinite length rod of radius
R with the same BCs and ICs (a 1–D and transient problem in cylindrical coordinates), and a slab
of length L with the same BCs and IC (another 1–D and transient problem – except in cartesian
coordinates).

5.2.2 Separation of Variables

It is usually not possible to reduce a problem to a product of 1–D and transient solutions if the BCs
and/or DE contain inhomogeneities. The general SOV method, with superposition techniques, will
have to be employed for such cases.

The SOV procedure can be applied directly to transient + multidimensional problems that have
homogeneous BCs and a homogeneous DE – which are the same class of problems that are amenable
to 1–D reduction methods. To illustrate, consider again the 2–D square region used in the previous
section. Instead of taking T (x, y, t) = T x(x, t) · T y(y, t), now use T (x, y, t) = u(x) · v(y) · w(t) per
the standard SOV procedure.

Replacing this into Eq. (5.2) and separating the variables results in

w′

w
=
u′′

u
+
v′′

v
(5.18)

Each term in the above equation depends only on one variable. Therefore, to satisfy the equation
each term must be constant. We could equate each side, at this point, to a constant (i.e., ±λ2) and
proceed, yet it will work out better in the end (as you will see) if two constants are introduced into
the equation. Specifically, let u′′/u = −λ2 and v′′/v = −β2, in which λ and β are constants, and
replace this back into the separated equation;

w′

w
= −

(
λ2 + β2

)
= constant (5.19)

This maintains SOV principle in that w′/w is contant. You can also see that the choice of sign on
λ2 and β2 will lead to the desired time–decaying solution, i.e.,

w = e−(λ2+β2)t (5.20)

The characteristic solutions for u(x) and v(y) are now examined. Since the problem in the x
direction is completely homogeneous, we can pose the problem for u as

u′′ + λ2u = 0 (5.21)

u′(0) = 0 (5.22)

u′(1) = −Biu(1) (5.23)
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The solution to this system provides the eigenfunction and the eigencondition:

u = φn(x) = cos(λnx) (5.24)

λn sin(λn) = Bi cos(λn), n = 1, 2, . . . (5.25)

Likewise, an identical problem for v will be obtained in the y direction;

v′′ + β2v = 0 (5.26)

v′(0) = 0 (5.27)

v(1) = 0 (5.28)

This has the same solution as for u;

v = ψm(y) = cos(βmy) (5.29)

βm sin(βm) = Bi cos(βm), m = 1, 2, . . . (5.30)

Even though the eigenfunctions for x and y are identical for this problem, I use the different symbol
ψm(y) to denote the y eigenfunction; this is to emphasize that the functions need not be the same
– as would be the case if the BCs had had different forms in the x and y directions.

The general solution to the problem is the sum of all possible solutions. To include all possible
combinations of the x and y eigenfunctions, it is necessary to let n and m run independently of
each other. That is, the general solution will now be in the form of the double infinite series

T =

∞∑

n=1

∞∑

m=1

Anmφn(x)ψm(y)e−(λ2
n+β2

m)t (5.31)

in which the expansion coefficient Anm depends on both n and m. The above equation is the most
general form of the transient and 2 cartesian dimensions SOV solution. The double series reflects
the fact that the problem contains two independent spacial directions.

The expansion coefficients Anm are obtained from the initial condition by employing the or-
thogonality properties of both φn(x) and ψm(y). At t = 0 the solution becomes

1 =
∞∑

n=1

∞∑

m=1

Anmφn(x)ψm(y)

Multiply each side through by φn′ and integrate over x from 0 to 1. Each term in the series over
n dissapears except the one in which n = n′. Likewise, multiply what’s left by ψm′ and integrate
over y. Each term in the series over m dissapears except the one with m = m′. The end result is

Anm =

∫ 1

0
φn(x) dx

∫ 1

0
ψm(y) dy

∫ 1

0
φ2

n(x) dx

∫ 1

0
ψ2

m(y) dy

(5.32)
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which can be evaluated using the formulas for φn and ψm.
For this particular problem, Eq. (5.32) can be written as the product of two quantities Anm =

BnCm, each given by

Bn =

∫ 1

0
φn dx

∫ 1

0
φ2

n dx

Cm =

∫ 1

0
ψm dy

∫ 1

0
ψ2

m dy

By replacing this into Eq. (5.31), the double series can be split into the product of two single series:

T =
∞∑

n=1

Bnφn(x)e−λ2
nt ×

∞∑

m=1

Cmψm(y)e−β2
nt

= T x(x, t) · T y(y, t)

We therefore recover our original solution that was obtained using reduction to 1–D.
The ability to split Anm into Bn · Cm – which provides the basis for reduction to 1–D – relied

on a ‘separable’ initial condition. That is, the form of the initial condition could be represented as
a function of x times a function of y, i.e., T (x, y, 0) = fx(x) · fy(y). The problem examined above
had the trivial case of fx = fy = 1. Reduction to 1–D, however, could be utilized for arbitrary fx

and fy – so long as the initial condition can be represented in this form (and providing that the
DE and the BCs are homogeneous). The corresponding 1–D and transient problems, used to form
the 2–D solution, would obey the following initial conditions,

T x(x, 0) = fx(x)

T y(y, 0) = fy(y)

5.2.3 Inhomogeneous problems

A slight modification of the BCs in the previous problem results in a situation that cannot be
handled with the 1–D reduction method. Specifically, assume that the x = 1 face is instantaneously
brought to T∞ yet the face at y = 1 is mainained at T = 1. Using the same definitions for the
nondimensional variables, the problem becomes

∂T

∂t
=
∂2T

∂x2 +
∂2T

∂y2 (5.33)
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∂T

∂x

∣
∣
∣
∣
x=0

= 0 (5.34)

∂T

∂y

∣
∣
∣
∣
y=0

= 0 (5.35)

T (1, y, t) = 0 (5.36)

T (x, 1, t) = 1 (5.37)

T (x, y, 0) = 1 (5.38)

An inhomogeneous BC now occurs at y = 1, and SOV cannot be applied directly to the problem.
Rather, superposition techniques are needed get the problem into a form (or forms) that can be
individually handled with SOV.

The procedure used for this problem follows that developed in Ch. 3. Specifically, the solution
will be cast as the sum of a decaying part w(x, y, t) and a steady–state part s(x, y). Let s satisfy
the same DE and BCs as T in Eqs. (5.33–5.37) – including the inhomogeneous condition at y = 1.
That is,

∂2s

∂x2 +
∂2s

∂y2 = 0 (5.39)

∂s

∂x

∣
∣
∣
∣
x=0

= 0 (5.40)

∂s

∂y

∣
∣
∣
∣
y=0

= 0 (5.41)

s(1, y) = 0 (5.42)

s(x, 1) = 1 (5.43)

The solution to s will be (from the previous chapter)

s = −2
∞∑

n=1

(−1)nφn(x) cosh(λny)

λn cosh(λn)
(5.44)

where the eigenfunction φn and eigenvalue λn are given by

φn(x) = cos(λnx) (5.45)

λn =
π

2
(2n− 1), n = 1, 2, . . . (5.46)
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By using w = T − s, the following problem for w will be obtained:

∂w

∂t
=
∂2w

∂x2 +
∂2w

∂y2 (5.47)

∂w

∂x

∣
∣
∣
∣
x=0

= 0 (5.48)

∂w

∂y

∣
∣
∣
∣
y=0

= 0 (5.49)

w(1, y, t) = 0 (5.50)

w(x, 1, t) = 0 (5.51)

w(x, y, 0) = 1 − s(x, y) (5.52)

This problem has completely homogeneous BCs. Following the procedure given in the previous
example, the solution will be

w =
∞∑

n=1

∞∑

m=1

Anmφn(x)ψm(y)e−(λ2
n+β2

m)t (5.53)

in which the y–directed eigenfunction and eigenvalue, denoted ψm and βm, have the same form as
φn and λn given in Eq. (5.45) and (5.46). The expansion coefficients are

Anm =

∫ 1

0
(1 − s(x, y))φn(x)ψm(y) dx dy

∫ 1

0
φ2

n(x) dx

∫ 1

0
ψ2

m(y) dy

(5.54)

Observe that the initial condition cannot (at least not obviously) be split into a product of two
functions, each of which depend on only one spacial variable. This prevents us from using a
reduction of order method.

For our particular eigenfunctions the denominator in Eq. (5.54) will have the value 1/4. The
integral of the first term in the numerator (the one with ‘1’) will be (−1)n(−1)m/λnβn. The second
(with s) would appear to be more difficult to evaluate. However, a remarkably simple answer for
this part can be obtained by using the tried–and–true method of integration by parts. First, use
φn = −φ′′n/λ2

n and integrate over x:

∫ 1

0

∫ 1

0
sφnψm dx dy = − 1

λ2
n

∫ 1

0

∫ 1

0
sφ′′n dxψm dy

= − 1

λ2
n

∫ 1

0

[

sφ′n

∣
∣
∣

1

0
− ∂s

∂x
φn

∣
∣
∣

1

0
+

∫ 1

0

∂2s

∂x2φn dx

]

ψm dy
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The boundary terms are identically zero because s and φn(x) both satisfy homogeneous BCs. Now
use Eq. (5.39) in the integrand to turn the partial of s with respect to x into a partial with respect
to y, and integrate by parts over y:

∫ 1

0

∫ 1

0
sφnψm dx dy = − 1

λ2
n

∫ 1

0

∫ 1

0

∂2s

∂x2φn dxψm dy

=
1

λ2
n

∫ 1

0

∫ 1

0

∂2s

∂y2ψm dy φn dx

=
1

λ2
n

∫ 1

0

[
∂s

∂y
ψm

∣
∣
∣

1

0
− sψ′

m

∣
∣
∣

1

0
+

∫ 1

0
sψ′′

m dy

]

φn dx

The boundary conditions on s and ψm(y) are now used to evaluate the boundary terms. The
only nonzero term will occur for the inhomogeneous condition at y = 1, for which s(x, 1) = 1 by
Eq. (5.43) and ψ(1) = 0 by definition. Finally, use ψ′′

m = −β2
mψm in the integrand – and observe

that the resulting integral is the same as the one we started with. Multiplying through by λ2
n,

collecting the terms, and using the formulas for φn and ψm, the final result is
∫ 1

0

∫ 1

0
sφnψm dx dy = − ψ′

m(1)

λ2
n + β2

m

∫ 1

0
s(x, 1)φn dx

= − ψ′
m(1)

λ2
n + β2

m

∫ 1

0
φn dx

=
(−1)n+mβm

λn (λ2
n + β2

m)

Putting it together, the formula for the Anm expansion coefficients are

Anm =
4(−1)n+m

λn

(
1

βm
− βm

λ2
n + β2

m

)

=
4(−1)n+mλn

βm (λ2
n + β2

m)
(5.55)

You should recognize that it was not necessary to use, in any way, the explicit formula for s
(Eq. (5.44)) in the above manipulations. The application of Mathematica to a problem of this type
– which avoids most of the subtle mathematical manipulations – is given at the end of the chapter.

The complete solution to the problem is given by T = w + s, or

T = 4
∞∑

n=1

∞∑

m=1

(−1)n+mλnφn(x)ψm(y)

βm (λ2
n + β2

m)
e−(λ2

n+β2
m)t − 2

∞∑

n=1

(−1)nφn(x) cosh(λny)

λn cosh(λn)
(5.56)

Shown in Fig. 5.1 are surface plots for the dimensionless temperature in the region for dimen-
sionless times of t = 0.02, 0.2, and steady–state. The results are consistent with the boundary
conditions and expected behavior of the model problem – note in particular the steep gradient
about x = y = 1, which results from the discontinuous change in surface temperature at this point.
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Figure 5.1: transient response in the 2–D slab

5.2.4 Cylindrical geometry example

A thick solid wire of length 2L and radius R is suspended between two bases, which are both
maintained at the temperature T1. Heat is removed from the surface of the wire by convection.
This configuration exists long enough for a steady–state temperature distribution to develop in
the wire. At t = 0 current is passed through the wire, which results in a uniform heat generation
within the wire of strength q′′′. As the wire heats up the temperatures at the ends are maintained
at T1, and the convection conditions remain unaltered. Determine the transient, 2–D temperature
distribution in the wire.

This problem will be symmetrical in axial position z about z = L – so we can consider only half
the wire length and impose an adiabatic condition at z = L. The dimensional problem statement
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is

1

α

∂T

∂t
=

1

r

∂

∂r
r
∂T

∂r
+
∂2T

∂z2
+
q′′′

k

T (0, z, t) is finite, −k ∂T
∂r

∣
∣
∣
∣
R

= h(T (R, z, t) − T∞)

T (r, 0, t) = T1,
∂T

∂z

∣
∣
∣
∣
L

= 0

T (r, z, 0) = Ts(r, z)

in which Ts is the initial steady–state temperature distribution, which is obtained from solution of
the same system without the time derivative and the heat generation.

Define the nondimensional variables as

T =
T − T∞
T1 − T∞

, r =
R

L
, z =

z

L
, t =

tα

L2

The dimensionless parameters in the problem are

Bi =
hL

k
, q′′′ =

q′′′L2

(T1 − T∞)k
, a =

R

L

and the dimensionless problem becomes

∂T

∂t
=

1

r

∂

∂r
r
∂T

∂r
+
∂2T

∂z2 + q′′′ (5.57)

T (0, z, t) is finite (5.58)

− ∂T

∂r

∣
∣
∣
∣
a

= BiT (a, z, t) (5.59)

T (r, 0, t) = 1 (5.60)

∂T

∂z

∣
∣
∣
∣
1

= 0 (5.61)

T (r, z, 0) = T s(r, z) (5.62)

The initial temperature distribution also satisfies the following system:

1

r

∂

∂r
r
∂T s

∂r
+
∂2T s

∂z2 = 0 (5.63)

T s(0, z) is finite (5.64)

− ∂T s

∂r

∣
∣
∣
∣
a

= BiT s(a, z) (5.65)
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T s(r, 0) = 1 (5.66)

∂T s

∂z

∣
∣
∣
∣
1

= 0 (5.67)

The problem for T s can be solved directly using SOV for 2–D, steady configurations – because it
has a homogeneous DE and homogenous BCs in r. The problem for T , on the other hand, has an
inhomogeneous DE and an inhomogeneous BC in z.

As before, we seek a superimposed solution in the form T = w(r, z, t) + s(r, z), where s is
the steady–state solution (with heat generation) and w is a time decaying part. Let s satisfy the
following system:

1

r

∂

∂r
r
∂s

∂r
+
∂2s

∂z2 + q′′′ = 0 (5.68)

s(0, z) is finite (5.69)

− ∂s

∂r

∣
∣
∣
∣
a

= Bi s(a, z) (5.70)

s(r, 0) = 1 (5.71)

∂s

∂z

∣
∣
∣
∣
1

= 0 (5.72)

By direct substitution of w = T − s, the following system is obtained for w:

∂w

∂t
=

1

r

∂

∂r
r
∂w

∂r
+
∂2w

∂z2 (5.73)

w(0, z, t) is finite (5.74)

− ∂w

∂r

∣
∣
∣
∣
a

= Biw(a, z, t) (5.75)

w(r, 0, t) = 0 (5.76)

∂w

∂z

∣
∣
∣
∣
1

= 0 (5.77)

w(r, z, 0) = T s(r, z) − s(r, z) (5.78)

The problem for w now has a homogeneous DE and completely homogeneous BCs, and can be
solved with SOV.

Obtaining a solution for s, however, will take one more superposition step – because of the
inhomogeneous DE in Eq. (5.68). Let s = u(r) + v(r, z) (I’m running out of symbols), and let u
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satisfy the following 1–D problem:

1

r
(ru′)′ + q′′′ = 0 (5.79)

u(0) is finite (5.80)

u′(a) = −Biu(a) (5.81)

If s = v − u is substituted into Eqs. (5.68–5.72), the problem for v becomes

1

r

∂

∂r
r
∂v

∂r
+
∂2v

∂z2 = 0 (5.82)

v(0, z) is finite (5.83)

− ∂v

∂r

∣
∣
∣
∣
a

= Bi v(a, z) (5.84)

v(r, 0) = 1 − u(r) (5.85)

∂v

∂z

∣
∣
∣
∣
1

= 0 (5.86)

The problem for v now has a homogeneous DE and homogeneous BCs in r. Note that the substi-
tution s = v + u effectively ‘moved’ the inhomogeneous term from the DE into the BC at z = 0.

Our complete solution would therefore be T = u(r)+v(r, z)+w(r, z, t), i.e., three superpositions.
Only an outline of the solution procedure will be given at this point. The initial steady–state
temperature distribution Ts will be in the form

T s =
∑

n=1

An cosh[λn(1 − z)]φn(r) (5.87)

with an eigenfunction and eigencondition of

φn(r) = J0(λnr) (5.88)

λnJ1(λna) = Bi J0(λna) (5.89)

Note that an ‘origin shift’ in the z direction has been used in Eq. (5.87). The 1−z argument in the
cosh function appears simply because the z derivative of the solution must vanish at z = 1. The
expansion coefficients An are obtained from the inhomogeneous BC at z = 0 via

An =

∫ a

0
φn(r)r dr

cosh(λn)

∫ a

0
φ2

n(r)r dr

(5.90)

Recognize that the eigenfunctions φn are orthogonal on the interval (0, a) – not (0, 1).
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The solution for u(r) is

u(r) =
q′′′

4Bi

[
2a+Bi

(
a2 − r2

)]
(5.91)

The solution for v will be in the same form as T s – note that the only difference between the
systems for T s (Eqs. (5.63–5.67)) and v (Eqs. (5.82–5.86)) is the BC at z = 0. Therefore, v will be
given by

v =
∞∑

n=1

Bn cosh[λn(1 − z)]φn(r)

in which the eigenfunctions and eigenvalues are the same as in Eqs. (5.88) and (5.89), and the Bn

coefficients are obtained from

Bn =

∫ a

0
[1 − u(r)]φn(r)r dr

cosh(λn)

∫ a

0
φ2

n(r)r dr

= An −

∫ a

0
u(r)φn(r)r dr

cosh(λn)

∫ a

0
φ2

n(r)r dr

The integral involving u can be readily integrated using integration by parts:
∫ a

0
uφnr dr = − 1

λ2
n

∫ a

0
u(rφ′n)′ dr

= − 1

λ2
n

[

u rφ′n

∣
∣
∣

a

0
− u′rφn

∣
∣
∣

a

0
+

∫ a

0
(ru′)′φn dr

]

=
1

λ2
n

∫ a

0
rq′′′φn dr

Comparing the above with Eq. (5.90) gives

Bn = An

(

1 − q′′′

λ2
n

)

(5.92)

Finally, the solution for w will be in the general form

w =
∞∑

n=1

∞∑

m=1

Cnmφn(r)ψm(z)e−(λ2
n+β2

m)t (5.93)

The eigenfunctions and eigencondition in r are the same as before. The z direction requires a
trigonometric eigenfunction that gives zero temperature at z = 0 and zero gradient at z = 1. The
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function that satisfies this is

ψm(z) = sin(βmz)

βm =
2m− 1

2
π

Alternatively, we could state the eigenfunctions in a manner consistent with the 1− z argument of
the hyperbolic functions in the previous solutions:

ψm(z) = cos[βm(1 − z)] (5.94)

βm =
2m− 1

2
π (5.95)

The expansion coefficients will be obtained from the initial condition in Eq. (5.78) via

Cnm =

∫ 1

0

∫ a

0
[Ts(r, z) − u(r) − v(r, z)]φn(r)r ψm(z) dr dz

∫ a

0
φ2

n(r)r dr

∫ 1

0
ψ2

m(z) dz

Again, integration by parts, combined with substitution of the DE/BC relationships that are sat-
isfied by T s, u, v and the eigenfunctions, would be used to evaluate the integrals. You certainly
would not want to directly substitute into the integrands the equations for T s, u, and v. That
would create a mess.

5.3 3–D steady conduction

5.3.1 Cartesian geometries

As you would guess by now, SOV can be applied directly to steady problems in 3 dimensions pro-
viding that the DE and the BCs in all but one direction are homogeneous. In cartesian coordinates,
and assuming that the homogeneous directions are x and y, the general form of the solution will
be be

T =
∞∑

n=1

∞∑

m=1

[Amn cosh(γmnz) +Bmn sinh(γmnz)]φn(x)ψm(y) (5.96)

in which φn(x) and ψm(y) are the eigenfunctions in the x and y directions, which have corresponding
eigenvalues of λn and βm. The eigenvalue γmn is defined

γmn =
(
λ2

n + β2
m

)1/2
(5.97)

As before, formulas for the Amn and Bmn coefficients are obtained by using the BCs in the inho-
mogeneous direction along with orthogonality of the eigenfunctions.
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Non–homogeneous problems – which occur more often than not – can be handled via superpo-
sition techniques. The procedure here is exactly the same as what was covered in previous sections
and chapters. Nothing fundamentally different is created by the 3–D nature of the problems.

5.3.2 Cylindrical geometries

Unlike the cartesian case, the general 3–D solution in cylindrical coordinates takes on different
forms depending on the inhomogeneous direction. A conduction domain that consists of a circular
cylinder (of a given radius and length) will always have homogeneous BCs in the φ direction –
because the surfaces of the domain do not correspond to φ = constant. Recall that the φ BCs for
circular cylinders were formulated as ‘continuation conditions’, in which the solution was forced to
obey T (r, z, φ) = T (r, z, φ+ 2π).

The SOV procedure is now outlined for circular cylinders with homogeneous BCs in the r and
φ directions. The governing DE is

1

r

∂

∂r
r
∂T

∂r
+

1

r2
∂2T

∂φ2
+
∂2T

∂z2 = 0

The separated solution is taken as T (r, φ, z) = u(r) · v(φ) · w(z) and replaced into the DE. Rear-
ranging the terms leads to

1

r u
(r u′)′ +

v′′

r2 v
︸ ︷︷ ︸

= −γ2

+
w′′

w
︸︷︷︸

= γ2

= 0 (5.98)

where γ is a separation constant, the sign of which is chosen to give Sturm–Liouville systems in the
r and φ directions (this will become evident later). Rearranging the first two terms in the above –
which are equal to −γ2 – leads to

r

u
(r u′)′ + r2 γ2

︸ ︷︷ ︸

= n2

+
v′′

v
︸︷︷︸

= −n2

= 0

The separation constant of n2, where n is an integer, is chosen to make the characteristic solution
for v periodic in 2π. Specifically, v will appear in the most general form as

v(φ) ≡ ψn(φ) = [cos(nφ), sin(nφ)] (5.99)

where the square brackets denote a linear combination. The particular nature of the eigenfunction
ψn would depend on the form of the temperature profile; if, for example, the temperature field is
even in φ (i.e., T (−φ) = T (φ)), then the eigenfunction would consist only of the cosine function.

The characteristic DE for u becomes

(r u′)′ +

(

r γ2 − n2

r

)

u = 0
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This is in the Sturm–Liouville form, and has the general solution

u(r) ≡ φnm(r) = [Jn(γnmr), Yn(γnmr)] (5.100)

where Jn and Yn are the ordinary Bessel functions of order n. The integer indices m and n have
now been appended to γ to denote that γnm is an eigenvalue, and would correspond to the mth root
of the r–direction eigencondition using the nth–order eigenfunction. To illustrate via an example,
suppose that the domain included the origin r = 0, and the boundary condition at r = 1 was T = 0.
The Yn part of the eigenfunction would be eliminated to avoid singular behavior at r = 0, and the
eigencondition would become

Jn(γnm) = 0

The characteristic solution for w, from Eq. (5.98), will involve the hyperbolic functions, and the
general form of the solution becomes

T =
∞∑

n=0

∞∑

m=1

(Anm cosh(γnmz) +Bnm sinh(γnmz))φnm(r)ψn(φ) (5.101)

Derivation of the general form of the solution when the homogeneous BCs are in the φ and z
directions is left as an exercise.

A cylindrical domain that consisted of an angular section (or wedge) of a cylinder could have
inhomogeneous BCs in the φ direction – because for this case φ = constant describes a surface.
Such problems admit analytical solutions only for specified T and/or adiabatic conditions on the
φ = constant surface.

5.3.3 Spherical coordinates

A conduction region that takes the form of a sphere (solid or hollow) will, almost exclusively, have
homogeneous boundary conditions in the θ and φ directions. Similar to the cylindrical case, the
BCs for θ and φ take the form of continuation conditions – in which the solution must be even in
θ and periodic in φ about 2π.

The general form of the solution to Laplace’s equation in spherical coordinates appears as

T =
∞∑

n=0

n∑

m=−n

(

Amnr
−(n+1) +Bmnr

n
)

Pm
n (cos θ)eimφ (5.102)

The function Pm
n appearing above is referred to as the associated Legendre function of order n

and degree m. This function is a solution to Legendre’s equation (which arises from the SOV
procedure);

1

sin θ

d

dθ
sin θ

dPm
n (cos θ)

dθ
+

(

n(n+ 1) − m2

sin2 θ

)

Pm
n (cos θ) = 0
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The Legendre function is non–zero only for |m| ≤ n – which explains why the sum over m in
Eq. (5.102) runs from −n to n. Observe also that the complex function eimφ has been used in the
general solution. This could be split into cos(mφ) + i sin(mφ) – from which the real part of the
solution could be derived – but the complex form results in a much more compact formulation of
the solution. Use of the complex formulation also implies that the expansion coefficients Amn and
Bmn are themselves complex – yet in the end it is understood that only the real part of the solution
is meaningful.

The functions Pm
n (cos θ) and eimφ are the the eigenfunctions for the problem. Each of these

functions have orthogonality properties when integrated over their domain. The existence of com-
plex functions in the solution requires a generalization of the orthogonality relation. Specifically,
for eimφ the relation becomes

∫ 2π

0
eimφ

(

eim
′φ
)∗

dφ =

∫ 2π

0
ei(m−m′)φ dφ =

{

0, m 6= m′

2π, m = m′′ (5.103)

The superscript ∗ in the above denotes complex conjugate – in which the sign of the imaginary
parts of the function are reversed. For complex eigenfunctions one would therefore integrate the
product of one eigenfunction, of degree m, with the conjugate of another, of degree m′, to obtain
the orthogonality relation.

The domain in the θ direction is from 0 to π, and the orthogonality relation is

∫ π

0
Pm

n (cos θ)Pm
n′ (cos θ) sin θ dθ =







0, n 6= n′

2

2n+ 1

(n+m)!

(n−m)!
, n = n′

(5.104)

Observe that the product Pm
n (cos θ)eimφ can be viewed as a single eigenfunction that has or-

thogonality properties when integrated over the surface of a sphere. That is, the eigenfunction
defined by

ψmn(θ, φ) = Pm
n (cos θ)eimφ (5.105)

has the property

∫ 2π

0

∫ π

0
ψmnψ

∗
m′n′ sin θ dθ dφ

=







0, n 6= n′ or m 6= m′

4π

2n+ 1

(n+m)!

(n−m)!
, n = n′ and m = m′

(5.106)

The eigenfunction ψmn(θ, φ) is often referred to as a spherical harmonic. By use of the orthog-
onality of these functions, the expansion coefficients Amn and Bmn appearing in Eq. (5.102) can be
obtained from the boundary conditions.
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As a very general example, suppose that a solid sphere has a surface temperature distribution
given by T (r = 1, θ, φ) = f(θ, φ), where f is a known function. The Amn coefficients in Eq. (5.102)
would be zero by virtue of the singular behavior of r−(n+1) at the origin (this would not be the case
if the sphere was hollow). The Bmn coefficients would be obtained from

Bmn =
2n+ 1

4π

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
f(θ, φ)ψ∗

mn(θ, φ) sin(θ) dθ dφ

Formulas would be needed for the integrals of Legendre functions to complete the problem. These
can be obtained in several standard mathematical texts or generated (for specified m and n) by
Mathematica.

5.4 Variation of Parameters

5.4.1 Transient problems

As has been observed in this and the previous two chapters, the solution of arbitrarily inhomoge-
neous problems usually involves the superposition of several partial solutions, each of which can be
solved using SOV or simpler techniques. The result is often that the final solution is a fairly com-
plicated quilt of the individual solutions. One consequence of this is that the functional dependence
of a particular independent variable can appear in several different forms within a solution. For
example, a 2–D steady–state problem with inhomogeneous BCs in all directions can be split into
two separate superimposed problems, with one having eigenfunctions in the x direction and the
other having eigenfunctions in the y direction. Because of this, the dependence of the final solution
for T on x would be represented by both the trigonometric functions (i.e., the eigenfunctions) and
the hyperbolic functions. This can complicate things if certain manipulations are required on the
solution, such as integration over space and/or time.

There is a method that can generate a solution to an arbitrarily inhomogeneous problem in
terms of a single series expansion – and which therefore obviates any need to construct superimposed
solutions. This method is known as variation of parameters (VOP). In many respects it is similar
to SOV – in that the solution to the problem is obtained as a series expansion of eigenfunctions.
Variation of parameters, however, is not constrained by the homogeneity of the DE or the BCs.

To introduce the method we will solve a simple 1–D cartesian and transient problem. In
particular, a plane wall, initially at temperature T = 0, has the surface at x = 1 instantaneously
brought to T = 1 while the surface at x = 0 is maintained at T = 0. The formal problem statement
is

∂T

∂t
=
∂2T

∂x2 (5.107)

T (0, t) = 0 (5.108)

T (1, t) = 1 (5.109)
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T (x, 0) = 0 (5.110)

This problem, as you may recall, was solved in Ch. 3 via the superposition T = w(x, t)+s(x), where
s was the steady–state solution and w was a time–decaying partial solution. In VOP, on the other
hand, the solution is not split into separate parts. Rather, the solution, in a general form, is posed
as a single expansion. The terms in the expansion will be the eigenfunctions for the corresponding
homogeneous problem times a undetermined function of the remaining variable.

For this particular problem, the general solution is therefore stated as

T =
∞∑

n=1

An(t)φn(x) (5.111)

where φn are the eigenfunctions of the corresponding homogeneous problem and An(t) is an unde-
termined function of t. The eigenfunctions are identified by replacing all inhomogeneous terms in
the DE and/or the x BCs by homogeneous ones of the same type. One inhomogeneous BC occurs
in the problem at x = 1, and the corresponding homogeneous BC would have zero temperature at
both x = 0 and x = 1. Therefore, the eigenfunctions would be

φn(x) = sin(λnx) (5.112)

λn = nπ (5.113)

The key difference between SOV and VOP is that the characteristic function in the inhomoge-
neous direction is not identified at the start of the procedure. In SOV, for example, it is recognized
at the onset that the time dependence of the solution appears as exp(−λ2

nt) (if, that is, the problem
had homogeneous BCs and DE). In VOP the functional form of the time dependence is initially
unknown – and is contained in the function(s) An(t) for n = 1, 2, . . .. The obvious objective of the
method is to specify the function An(t). This will be done by identifying an ODE and an IC (or
BCs, for multidimensional steady–state problems) that describe the An(t) functions, and solving
the ODE to obtain the An(t).

The first step in the process is to use the orthogonality properties of the φn eigenfunctions to
‘formally’ solve for the An(t) functions. That is An(t) in Eq. (5.111) is given by by

An(t) =

∫ 1

0
T (x, t)φn(x) dx

∫ 1

0
φ2

n(x) dx

= 2

∫ 1

0
T (x, t)φn(x) dx (5.114)

This relationship is perfectly valid – it’s just not very useful at this point because the integrand is
an unknown quantity.

The next step is to derive an ODE for An(t) by differentiating the above formula with respect
to t;

A′
n(t) = 2

∫ 1

0

∂T

∂t
φn(x) dx
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The derivative operator ∂/∂t can be brought inside the integral because the limits on the integral
do not depend on t. The original PDE to the problem, Eq. (5.107), is used next to eliminate the
partial with respect to t;

A′
n(t) = 2

∫ 1

0

∂2T

∂x2 φn(x) dx (5.115)

Had heat generation been present, the source term would also have appeared in the integrand.
Integration by parts is now employed:

A′
n(t) = 2

∫ 1

0

∂2T

∂x2 φn(x) dx

= 2

[
∂T

∂x
φn

∣
∣
∣

1

0
− Tφ′n

∣
∣
∣

1

0
+

∫ 1

0
Tφ′′n dx

]

= 2

[
∂T

∂x
φn

∣
∣
∣

1

0
− Tφ′n

∣
∣
∣

1

0
− λ2

n

∫ 1

0
Tφn dx

]

= 2

[
∂T

∂x
φn

∣
∣
∣

1

0
− Tφ′n

∣
∣
∣

1

0

]

− λ2
nAn(t)

The characteristic DE for φn was used in the second–to–last line to eliminate φ′′n, and the definition
of An, in Eq. (5.114), was employed in the last step.

We now evaluate the boundary terms that resulted from integration by parts. To do this, the
original BCs on T , and the boundary properties for φn, are substituted into the above equation.
The eigenfunction φn is zero at 0 and 1, and the temperature is also zero at x = 0. However, from
Eq. (5.109), the temperature is unity at x = 1. Using this information, the only surviving boundary
term is T (1, t)φ′n(1) = 1 · φ′n(1). The ODE for An is now

A′
n(t) = 2φ′n(1) − λ2

nAn(t)

= 2λn cos(λn) − λ2
nAn(t)

= 2(−1)nλn − λ2
nAn(t)

We now have a complete ODE for An. The general solution is

An(t) = C1e
−λ2

nt − 2(−1)n

λn
(5.116)

To evaluate the integration constant an initial condition is needed for An. This is obtained by ap-
plication of the original initial condition, Eq. (5.110), directly to the definition of An in Eq. (5.114):

An(0) = 2

∫ 1

0
T (x, 0)φn dx = 0 (5.117)
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Using this in Eq. (5.116), the complete solution for An(t) is

An(t) =
2(−1)n

λn

(

e−λ2
nt − 1

)

=
2(−1)n

πn

(

e−(nπ)2t − 1
)

(5.118)

and the complete solution for the temperature, from Eq. (5.111), is

T =
2

π

∞∑

n=1

(−1)n

n

(

e−(nπ)2t − 1
)

sin(nπx) (5.119)

As a reference, the SOV/superposition solution derived for this problem (from Ch. 3) is

T = x+
2

π

∞∑

n=1

(−1)n

n
sin(nπx)e−(nπ)2t (5.120)

At first glance, it does not appear that the solutions are the same – as they must be because they
both satisfy the same DE, BCs, and IC. The equivalence, however, is established by expanding the
function x into a series of eigenfunctions via

x = − 2

π

∞∑

n=1

(−1)n

n
sin(nπx) (5.121)

A key feature of the VOP method is that the solution is forced to take on the form of a single
expansion of the eigenfunctions. As mentioned above, this has certain mathematical advantages.
The solution in Eq. (5.119) has the x dependence embedded entirely within the eigenfunctions
φn = sin(nπx). Numerically, however, the VOP solutions often are more time–consuming to
evaluate than the equivalent SOV/superposition solutions. This is because the eigenfunctions, by
themselves, do not naturally obey the inhomogeneous BCs of the problem. For example, the above
solution must give T = 1 at x = 1. However, replacing x = 1 into the solution would appear to give
zero – because the eigenfunctions are defined to be identically zero at x = 1. On a more precise
level, we would find that in the limit of x → 1, the solution would yield T → 1. Obtaining this
limit, however, would require evaluation of an increasingly large number of terms in the series.

5.4.2 Steady problems

To illustrate further the application of VOP, consider now a 2–D steady–state problem, in which
we have a square region with adiabatic BCs at x = 0 and y = 0, zero temperature at x = 1, and
unit temperature at y = 1.
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∂2T

∂x2 +
∂2T

∂y2 = 0 (5.122)

∂T

∂x

∣
∣
∣
∣
x=0

= 0 (5.123)

∂T

∂y

∣
∣
∣
∣
y=0

= 0 (5.124)

T (1, y) = 0 (5.125)

T (x, 1) = 1 (5.126)

The SOV solution to this problem is

T = −2
∞∑

n=1

(−1)nφn(x) cosh(λny)

λn cosh(λn)
(5.127)

where the eigenfunction and eigenvalues are

φn(x) = cos(λnx) (5.128)

λn =
(2n− 1)π

2
(5.129)

The above solution can be obtained from direct application of the SOV method – because the
direction (x) has completely homogeneous BCs and the DE is homogeneous. SOV would dictate
that we define the eigenfunctions in the x direction. VOP, on the other hand, makes no restrictions
on our choice of eigenfunctions – aside from that they represent the corresponding homogeneous
problem. For example, eigenfunctions for this particular problem can be chosen to run in the y
direction – which would violate the SOV procedure. This would not be the smart choice, but we
still will be able to get a valid solution out of the problem.

Choosing y as the direction of our eigenfunctions, we would then pose the solution to the
problem as

T =
∞∑

n=1

An(x)φn(y) (5.130)

The eigenfunctions satisfy the corresponding homogeneous BCs to the problem, which would have
zero gradient at y = 0 and zero value at y = 1. The form is the same as that for x:

φn(y) = cos(λny) (5.131)

λn =
(2n− 1)π

2
(5.132)
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Using the orthogonality of the eigenfunctions, the An(x) functions are obtained from Eq. (5.130)
via

An(x) =

∫ 1

0
T (x, y)φn(y) dy

∫ 1

0
φ2

n(y) dy

= 2

∫ 1

0
T (x, y)φn(y) dy (5.133)

We now construct an ODE for An(x). Differentiating the above twice with respect to x and using
the original DE and BCs results in

A′′
n(x) = 2

∫ 1

0

∂2T

∂x2 φn(y) dy

= −2

∫ 1

0

∂2T

∂y2 φn(y) dy

= −2

[
∂T

∂y
φn

∣
∣
∣

1

0
− Tφ′n

∣
∣
∣

1

0
+

∫ 1

0
Tφ′′n dy

]

= −2

[
∂T

∂y
φn

∣
∣
∣

1

0
− Tφ′n

∣
∣
∣

1

0

]

+ λ2
nAn(x)

= 2φ′n(1) + λ2
nAn(x)

= −2λn sin(λn) + λ2
nAn(x)

= 2λn(−1)n + λ2
nAn(x)

This is the desired ODE for the An(x) functions. The general solution is

An(x) = C1 cosh(λnx) + C2 sinh(λnx) −
2(−1)n

λn
(5.134)

Boundary conditions for theAn are obtained by applying the original BCs in the problem, Eqs. (5.123)
and (5.125), into Eq. (5.133). Since the normal gradient of T is zero at x = 0 and T is zero at
x = 1, the BCs for A are A′

n(0) = An(1) = 0. The BC at x = 0 gives C2 = 0, and at x = 1 the
solution gives

C1 =
2(−1)n

λn cosh(λn)

The complete solution for An is

An(x) =
2(−1)n

λn

(
cosh(λnx)

cosh(λn)
− 1

)

(5.135)
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The VOP solution to the temperature profile is therefore

T = 2

∞∑

n−1

(−1)n

λn

(
cosh(λnx)

cosh(λn)
− 1

)

φn(y) (5.136)

Compare this solution to the one obtained directly with SOV – Eq. (5.127). There are certain
similarities. The VOP solution appears as the sum of two separate functions. The first (involving
the hyperbolic and trig functions) is essentially the same as the SOV solution, except that the x
and y dependencies are switched and the sign is changed. The second part to the VOP solution
is a function solely of y. Similar to the previous example, this part of the solution represents the
eigenfunction expansion of a relatively simple function. Specifically, for the given eigenfunction and
eigenvalue, it’s relatively easy to show that

1 = −2
∞∑

n=1

(−1)n

λn
φn(y) (5.137)

Consequently, the VOP solution is equivalent to 1 minus the SOV solution of the same problem,
except with the x and y BCs switched. That is:

T V OP (x, y) = 1 − TSOV (y, x) (5.138)

You should prove to yourself that the superposition of the two partial solutions given in the right
hand side will satisfy the given problem.

Again, a problem with the VOP solution is that it often leads to a slowly–converging series –
especially compared to that obtained from SOV/superposition. To illustrate, the table in Fig. 5.2
lists the results from numerical evaluation of the VOP solution, as written in Eq. (5.136), compared
to the results from the SOV solution in Eq. (5.127). Included are the number of terms in the series
needed to obtain 3–digit accuracy in the computed results. Five terms are evaluated at a time in
the series, so the nmax results are evenly divisible by 5. All results are for x = 0.5.

The numbers in the table clearly show different convergence characteristics between the two
solutions. Observe also that the VOP solution does not return the correct result at y = 1. Again –
this is a numerical artifact rather than a mathematical flaw. The correct result would be obtained
in the limit of y → 1 – it’s just that an infinite number of terms would be required to get it.

To summarize, VOP is (in my opinion) a more methodical approach to finding a solution to a
problem than is SOV/superposition. In the former a cookbook procedure can basically be followed,
whereas in the latter a superposition scheme must be invented that satisfies the problem. VOP can
also lead to a more compact form of the solution – because everything is embedded into a single
eigenfunction expansion. However, VOP solutions often have poor convergence rates, and also do
not obviously satisfy all of the BCs to the problem.

For the most part, you will probably be better off sticking to the SOV procedure – espe-
cially if you ultimately want to calculate numerical results from your solution. We’ll only use
VOP when it provides a mathematical form to the solution that offers clear advantages over the
SOV/superposition solution. We’ll discuss such applications when we get to them
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VOP SOV

y T nmax T nmax

0.0 0.3640 6370 0.3641 10
0.1 0.3692 3230 0.3691 10
0.2 0.3818 135 0.3843 10
0.3 0.4102 3580 0.4103 10
0.4 0.4484 7875 0.4484 10
0.5 0.5001 4510 0.5000 10
0.6 0.5639 170 0.5671 10
0.7 0.6514 7020 0.6515 15
0.8 0.7539 20605 0.7538 15
0.9 0.8721 20355 0.8720 20
1.0 0.0000 0 1.0001 4510

Figure 5.2: VOP and SOV convergence results

5.5 Application of Mathematica to multidimensional problems

Mathematica can greatly simplify the derivation and computation of multidimensional problems.
To illustrate its use, an example will be worked out entirely within the Mathematica framework.

Consider a square rectangular region which is initially at T∞. The surfaces at x = 0 and y = 0
are adiabatic, that at x = 1 is cooled by convection, and at t = 0 the surface at y = 1 is exposed
to a uniform heat flux of q′′0 . Determine the transient temperature response in the region.

The dimensionless problem is

∂T

∂t
=
∂2T

∂x2
+
∂2T

∂y2
(5.139)

∂T

∂x

∣
∣
∣
∣
0

=
∂T

∂y

∣
∣
∣
∣
0

= 0 (5.140)

∂T

∂x

∣
∣
∣
∣
1

= −BiT (1, y, t) (5.141)

∂T

∂y

∣
∣
∣
∣
1

= 1 (5.142)

T (x, y, 0) = 0 (5.143)

This problem has an inhomogeneous BC and must be broken up into superimposed parts per the
usual procedure. Let T (x, y, t) = w(x, y, t) + s(x, y), in which s satisfies the steady problem and w
satisfies the corresponding homogeneous BC problem with an initial condition of −s. The form of
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s will be

s(x, y) =

∞∑

n=1

An φn(x) cosh(λny) (5.144)

φn(x) = cos(λnx) (5.145)

λn sin(λn) = Bi cos(λn) (5.146)

An =

∫ 1

0
φn(x) dx

λn sinh(λn)

∫ 1

0
φ2

n(x) dx

(5.147)

and w will have

w(x, y) =
∞∑

n=1

∞∑

m=0

Bnm φn(x)ψm(y) e−(λ2
n+β2

m)t (5.148)

φn(x) = cos(λnx) (5.149)

λn sin(λn) = Bi cos(λn) (5.150)

ψm(y) = cos(βmy) (5.151)

βm = mπ (5.152)

Bnm = −

∫ 1

0

∫ 1

0
s(x, y)φn(x)ψm(y) dx dy

∫ 1

0
φ2

n(x) dx

∫ 1

0
ψ2

m(y) dy

(5.153)

The Mathematica code is given below

eigencond[l_]:=l Sin[l]-bi Cos[l]

eigenroot[lamstart_]:=Module[

{dlam=0.2,lam0,eigen0,eigen1,lamr,

lamroot},

lam0=lamstart+1*^-6;

eigen0=eigencond[lam0];

lam0=lam0+dlam;

eigen1=eigencond[lam0];

While[eigen0 eigen1>0,
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lam0=lam0+dlam;

eigen0=eigen1;

eigen1=eigencond[lam0];

];

lamr=lam0-eigen1 dlam/(eigen1-eigen0);

lamroot=

lam/.FindRoot[eigencond[lam]==0,{lam,lamr}];

lamroot]

ntot=100;bi=2;

lambda[1]=eigenroot[0];

Do[lambda[n]=eigenroot[lambda[n-1]],{n,2,ntot}]

phi[n_,x_]:=Cos[lambda[n] x]

psi[n_,y_]:=Cos[n Pi y]

an[n_]:=Evaluate[Integrate[phi[n, x],{x,0,1}]

/(lambda[n] Sinh[lambda[n]]Integrate[phi[n,x]^2,{x,0,1}])]

(* this shows the definition of an[n]*)

In[51]:=an[n]

Out[51]=(Csch[lambda[n]]*Sin[lambda[n]])/

(lambda[n]^2*(1/2 + Sin[2*lambda[n]]/(4*lambda[n])))

sterm[n_,x_,y_]:=an[n] phi[n,x] Cosh[lambda[n] y]

bnm[n_,m_]:=

Evaluate[Simplify[

Integrate[-sterm[n,x,y]phi[n,x]psi[m,y],{x,0,1},{y,0,1}]

/(Integrate[phi[n,x]^2,{x,0,1}]

*Integrate[psi[m,y]^2,{y,0,1}])]]

(* this is the special case for m=0*)

bnm[n_,0]:=

Evaluate[Simplify[

Integrate[-sterm[n,x,y]phi[n,x]psi[0,y],{x,0,1},{y,0,1}]

/(Integrate[phi[n,x]^2,{x,0,1}]

*Integrate[psi[0,y]^2,{y,0,1}])]]

(* here are the definitions of Bnm *)
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In[88]:=bnm[n, m]

Out[88]=-((16*m*Pi*Csch[lambda[n]]*Sin[lambda[n]]*

(m*Pi*Cosh[lambda[n]]*Sin[m*Pi] + Cos[m*Pi]*

lambda[n]*Sinh[lambda[n]]))/

(lambda[n]*(-I*m*Pi + lambda[n])*

(I*m*Pi + lambda[n])*(2*m*Pi + Sin[2*m*Pi])*

(2*lambda[n] + Sin[2*lambda[n]])))

In[89]:=bnm[n, 0]

Out[89]=-(Sin[lambda[n]]/(lambda[n]^3*

(1/2 + Sin[2*lambda[n]]/(4*lambda[n]))))

wterm[n_,m_,x_,y_,t_]:=

Re[bnm[n,m]] phi[n,x] psi[m,y] E^(-(lambda[n]^2+(Pi m)^2) t)

s[x_,y_]:=Module[{sum,n,err,oldsum},

sum=0;n=1;err=1;

While[err>.00001&&n<ntot-2,

oldsum=sum;

sum=sum+sterm[n,x,y]+sterm[n+1,x,y];

err=Abs[sum-oldsum];

n=n+2;

];sum]

w[x_,y_,t_]:=Module[{sum,n,err,oldsum},

sum=0;n=1;err=1;

While[err>.00001&&n<ntot-2,

oldsum=sum;

sum=sum+wmsum[n,x,y,t]+wmsum[n+1,x,y,t];

err=Abs[sum-oldsum];

n=n+2;

];sum]

wmsum[n_,x_,y_,t_]:=Module[{sum,m,err,oldsum},

sum=0;m=0;err=1;

While[err>.00001&&m<100,

oldsum=sum;

sum=sum+wterm[n,m,x,y,t]+wterm[n,m+1,x,y,t];
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Figure 5.3: Temperature contours for Bi = 2; t = 0.02 (left) and t = 1 (right)

err=Abs[sum-oldsum];

m=m+2;

];sum]

temp[x_,y_,t_]:=s[x,y]+w[x,y,t]

cf[x_] := Hue[.8(1 - x)]

ContourPlot[temp[x, y, .02], {x, 0, 1}, {y, 0, 1},

ContourLines -> False,PlotPoints -> 20,

ColorFunction -> cf, Contours -> 100]

The code begins by calculation of λn, for n = 1, 2, . . . 100 and Bi = 2, using the algorithm
discussed in Ch. 3. It then calculates formulas for the An and Bnm expansion coefficients directly
from their integral definitions in Eqs. (5.147) and (5.153). Note that, in the definition of Bmn,
the integral of s(x, y)φn over x would give an orthogonal relation because s is expanded in the φ
eigenfunctions. The numerator of Eq. (5.153) would therefore only include the nth term in the series
for s, and this is used in the Mathematica formula. I use the Mathematica command Evaluate to
define the An and Bnm coefficients via their integral definitions; by doing so the symbolic formula
for the integrals is evaluated first and then used in the function definition. The function returned
by this strategy is seen in the lines immediately following the function definition (i.e., when I have
Mathematica evaluate an[n]). Without the Evaluate present, Mathematica would perform the
integration each and every time the function is called – and this would be very time consuming.

The formula for Bmn has two distinct forms depending on whether m = 0 or m > 0; these two
cases need to be explicitly defined. Even though the result for Bnm is real valued, the symbolic
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result contains the radical i (seen as I in the code); to avoid the inclusion of the zero imaginary part
(i.e., 1.+0.I) in the solution the real value of Bnm must be taken where it is used (via Re[bnm[n,m]).

The evaluation of the double series for w proceeds directly from the algorithm used to evaluate
a single series. To do this, I write the formula for w as

w(x, y, t) =
∞∑

n=1

wn(x, y, t)

wn(x, y, t) =
∞∑

m=0

Bnm φn(x)ψm(y) e−(λ2
n+β2

m)t

The algorithm used to sum a single series, discussed in Ch. 3, is then employed in a nested procedure
to calculate w and wn.

The results are shown in Fig. 5.3 and correspond to Bi = 2; the contour plot on the left has
t = 0.02 and the one on the right has t = 1 – which essentially is the steady–state condition.

5.6 Semi–Infinite Regions

All of the problems encountered up to this point have been of the class of two–point boundary
value problems. Specifically, the region to which the analysis is applied is bounded by two distinct
points, i.e., the inner and outer surfaces of the slab or the cylinder.

Semi–Infinite (SI) regions correspond to situations in which the medium is unbounded in one or
more directions. A common example is the ground – for all practical purposes (at least those involv-
ing length scales on the order of human scales) we can assume that the earth extends downwards
to infinity. In a more general sense we can consider a boundary to be at ‘infinity’ when the length
to the boundary is significantly larger than all other characteristic length scales in the problem.
For example, a circular pin fin (a.k.a. an extended surface) of length L and radius R can be taken
to be infinite in length whenever L ≫ R and L ≫

√

kR/2h. Likewise, a plane wall of thickness L
can be considered semi–infinite following an instantaneous change in surface temperature providing
that L≫

√
αt. Analytical methods for treating transient SI problems will be examined in the next

chapter; here we are concerned only with the steady state condition.

Certain steady SI problems can be handled with the same techniques used in proceeding ex-
amples. Specifically, the SOV/superposition methods can be applied directly to problems in which
only one direction extends to infinity – which implies that the other directions are bounded. As
an example, consider a square cross section fin of unit width with a length L sufficiently long to
meet the SI criterion. Per the usual fin model, the base (z = 0) is maintained at unit temperature
and the sides (x, y = 1) are cooled by convection to a zero ambient temperature. The boundary
condition at z → ∞ would be T → 0, i.e., at sufficiently far distances from the base the fin would
cool to the ambient temperature.
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The general solution to this problem will be in the same form as Eq. (5.96), except that the
hyperbolic functions are replaced by the decaying exponential in z, i.e.,

T =
∞∑

n=1

∞∑

m=1

Amn φn(x)ψm(y) e−γmn z (5.154)

where γmn = (λ2
n + β2

m)1/2 as before. Recall that the hyperbolic functions are defined as combi-
nations of exponentials with positive and negative argument; to satisfy the boundary condition at
z → ∞ we want to include only the decaying part of the solution. Of course, we could have retained
the hyperbolic–function formulation and used the fact that

e−γmnz = cosh(γmnz) − sinh(γmnz)

This would provide a perfectly valid mathematical solution in the form of Eq. (5.96) yet numerically
it would be a computational disaster – in that a very small number (the left hand side) would be
produced from the difference of two very large numbers.

Inhomogeneous problems in regions with one SI direction can be handled per the superpostion
methods. For example, say that the fin in the above example had, in addition to the stated BCs, a
uniform internal heat generation rate of q′′′. The solution approach would be to split the problem
into T (x, y, z) = s(x, y) + w(x, y, z), where the problem for s contains the generation term. The
resulting problem for w would be amenable to SOV solution techniques.

5.6.1 SI problems in two directions: Fourier transform techniques

Consider now the problem illustrated in Fig. 5.4. An electronic circuit (a ‘chip’), of square cross
section with width 2W , is mounted onto the surface of a large heat–conducting plate. The plate
can be assumed to extend to infinity in the ±x, ±y, and z directions. The chip dissapates a uniform
heat flux of strength q′′C into the plate, and the rest of the plate surface (that not under the chip)
is adiabatic. At distances far from the chip the temperature of the plate is T∞.

The problem here is to calculate the temperature distribution in the plate. Define the dimen-
sionless variables in the usual way;

T → T − T∞
kW/q′′C

, x→ x

W
, y → y

W

The temperature distribution in the plate will be symmetrical in each quadrant of the plate, and



5.6. SEMI–INFINITE REGIONS 167

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

y

Figure 5.4: chip on a semi–infinite plate; the z direction extends downwards

the problem statement becomes

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
= 0

∂T

∂x

∣
∣
∣
∣
x=0

= 0

∂T

∂y

∣
∣
∣
∣
y=0

= 0

∂T

∂z

∣
∣
∣
∣
z=0

=

{

−1 x ≤ 1 and y ≤ 1

0 x > 1 or y > 1
(5.155)

T (x→ ∞, y, z) → 0

T (x, y → ∞, z) → 0

T (x, y, z → ∞) → 0

Even though the boundary conditions in the x and y directions are homogeneous for this prob-
lem, the SOV method cannot be applied to the problem. That this is the case should be easy to
see; the eigenfunctions would have to be in the form cos(λnx), yet the eigencondition would have
cos(λn ·∞) = 0 – which does not make any mathematical sense. A fundamentally new mathematical
procedure is needed to tackle this problem.

The new procedure will involve what is known as a Fourier Cosine transformation of the
dependent variable (temperature). The workings of this method can be seen by starting with our
familiar Fourier series expansion method and ‘stretching’ the domain to infinity – for which the
series will reduce to an integral.
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Say we have some arbitrary function f(x) that is defined between 0 ≤ x ≤ L. The Fourier
cosine expansion of f between 0 and L would be given by

f(x) =
∞∑

n=0

An cos(nπ x/L)

where

An =

∫ L

0
f(x) cos(nπ x/L) dx

∫ L

0
cos2(nπ x/L) dx

=
2

L

∫ L

0
f(x) cos(nπ x/L) dx

The series expansion is, therefore,

f(x) =
2

L

∞∑

n=0

(∫ L

0
f(x′) cos(nπ x′/L) dx′

)

cos(nπ x/L)

where x′ denotes a dummy variable of integration. Now define ∆λ ≡ π/L and substitute into the
above

f(x) =
2

π

∞∑

n=0

(∫ L

0
f(x′) cos(n∆λx′) dx′

)

cos(n∆λx)∆λ

If we now take the limit of ∆λ → 0 (for which L → ∞), we see that the summation becomes
equivalent to the definition of an integral over the variable λ. That is, n∆λ → λ and ∆λ → d λ,
and the formula for L→ ∞ becomes

f(x) =
2

π

∫ ∞

0

(∫ ∞

0
f(x′) cos(λx′) dx′

)

cos(λx) dλ (5.156)

Equation (5.156) defines both a Fourier cosine transform and an inverse transform of a function
f , those being

f̂(λ) =

√

2

π

∫ ∞

0
f(x) cos(λx) dx (5.157)

f(x) =

√

2

π

∫ ∞

0
f̂(λ) cos(λx) dλ (5.158)

The transform variable λ can be viewed as the ‘continuous’ analog to the discrete eigenvalues
λn = nπ/L. The only restriction on f is that |f(x)| → 0 for x→ ∞.

Application of the Fourier cosine transform to the problem at hand follows this basic strategy:
We first apply the tranform to the homogeneous directions (x and y) in the governing DE and BCs
of the problem to obtain a DE for the transformed variable T̂ – which will be a function of z and
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the transform variables. The boundary conditions at x and y → ∞ will be automatically satisfied
by the transform procedure. We solve the resulting DE for T̂ and (this is the hard part) perform
the inverse transform on T̂ to obtain the desired solution T .

The transformed variable T̂ will be defined by the 2–D analog to Eq. (5.157), i.e.,

T̂ (λ, β, z) =
2

π

∫ ∞

0

∫ ∞

0
T (x, y, z) cos(λx) dx cos(β y) dy (5.159)

Transformation of the governing DE for T is straightforward. By using integration by parts, you
should see that

2

π

∫ ∞

0

∫ ∞

0

∂2T

∂x2
cos(λx) dx cos(β y) dy

= − 2

π

∫ ∞

0

∫ ∞

0
λ2 T cos(λx) dx cos(β y) dy = −λ2 T̂ (λ, β, z)

and likewise for the partial with respect to y. We assume, in application of integration by parts,
that the gradient of T vanishes at x → ∞ – which is logical since T goes to the constant 0 in this
limit. To transform the z–differentiated term in the DE we switch the order of differentiation and
integration, leading to

2

π

∫ ∞

0

∫ ∞

0

∂2T

∂z2
cos(λx) dx cos(β y) dy =

2

π

∂2

∂z2

∫ ∞

0

∫ ∞

0
T cos(λx) dx cos(β y) dy =

d2T̂

dz2

We take the z derivative of the transformed temperature to be ordinary rather than partial, because
the transformed DE will have only z as the independent variable. Specifically, the transformed
equation is

d2T̂

dz2
−
(
λ2 + β2

)
T̂ = 0 (5.160)

which has the solution
T̂ = Ae−γ z +B eγz

where
γ =

(
λ2 + β2

)1/2

The temperature must vanish at z → ∞ – and consequently T̂ must also vanish in this limit. This
condition is met by setting B = 0. We now transform the inhomogeneous boundary condition at
z = 0, Eq. (5.155), which gives

dT̂

dz

∣
∣
∣
∣
∣
z=0

= −A
(
λ2 + β2

)1/2

= − 2

π

∫ 1

0

∫ 1

0
cos(λx) dx cos(β y) dy = −2 sin(λ) sin(β)

πλβ
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Figure 5.5: temperature contours under the chip: z = 0 (left) and z = 1 (right)

or

A =
2 sin(λ) sin(β)

πλβ (λ2 + β2)1/2

Recognize that the limits on the integration over x and y in the right–hand–side of the above
equation extend only to 1, as opposed to ∞, because the heat flux into the plate is non–zero only
directly under the chip.

The complete solution to the transformed temperature is therefore

T̂ (λ, β, z) =
2 sin(λ) sin(β)

πλβ (λ2 + β2)1/2
exp

[

−
(
λ2 + β2

)1/2
z
]

(5.161)

and the temperature is given by the inverse transform,

T (x, y, z) =
2

π

∫ ∞

0

∫ ∞

0
T̂ (λ, β, z) cos(λx) cos(β y) dλ dβ (5.162)

Mathematica issues

Equations (5.161) and (5.162) provide the complete analytical solution for the temperature field in
the plate. Unlike the series solutions that we have derived in previous problems, the solution here
now appears as an integral equation. The difficult part in utilizing the solution, as mentioned above,
is evaluating the inverse transform. It turns out that integral in Eq. (5.162), for the transformed
variable given in Eq. (5.161), does not have an analytical solution. This is, more often than not,
the case when using the Fourier transform method for solution of heat conduction problems.
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Making matters worse, the integral posed by Eq. (5.162) is notoriously difficult to compute nu-
merically using quadrature methods – especially for large x and y. The troublesome nature of the
integral actually arises from the oscillatory cos(λx) cos(βy) function in the integrand. Increasing x
and y results in a shorter wavelength of oscillation, which in turn requires an increasing number
of quadrature points to obtain an accurate result. Recognize that it is the cancellation of posi-
tive/negative cycles in the oscillations, during integration over λ and β, that make T → 0 as x and
y become ≫ 1.

Some attention and user–intervention is therefore required to evaluate Eq. (5.162) by the
NIntegrate command in Mathematica. The following code is very slow – yet it manages to ob-
tain around 3–digit accuracy in the temperature solution with a minimum of complaints from
Mathematica.

hatt[lam_,bet_,z_]:=2 Sin[lam]Sin[bet]/

(Pi lam bet (lam^2+bet^2)^(1/2))*

E^(-(lam^2+bet^2)^(1/2) z)

t[x_,y_,z_]:=2/Pi NIntegrate[hatt[lam,bet,z] Cos[lam x]

Cos[bet y],{lam,1*^-6,30},{bet,1*^-6,30},

PrecisionGoal->4,AccuracyGoal->4,MaxRecursion->20]

Observe that the limits of integration have been changed to 10−6 and 30 in the numerical scheme.
The lower limit avoids the singularity in T̂ at λ or β = 0 (which is integratable yet difficult to work
with) and the upper limit is chosen simply to be sufficiently large so that T̂ ≪ 1 at the limit value.
Both these values have to be set by inspection – one experiments with increasingly smaller lower
and larger upper limits until the results no longer change significantly.

The Mathematica code is good if you need only a few temperature values from the solution. For
example, the temperatures directly under the center of the chip and at the corner of the chip are
T (0, 0, 0) = 1.122 and T (1, 1, 0) = 0.561 – which would be desired information from an electronic
cooling point of view. Production runs of numerical results – such as that needed for a contour plot
– would probably be best obtained from a compiled fortran code employing a numerical integration
package.

Contour plots in the x− y plane of the temperature distribution are shown in Fig. 5.5, in which
the left plot has z = 0 (the surface) and the right has z = 1. The surface temperature plot clearly
shows the presence of the square chip, yet these shape effects have largely disappeared at z = 1 for
which the contours are essentially circular about the symmetry axis of the plate.

Exercises

1. A rectangular pin fin, having length L, thickness b and a very wide width, is initially at the
ambient temperature T∞. At t = 0 the base temperature is instantaneously brought to Tb.
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Obtain the solution for the transient and 2–D dimensionless temperature distribution in the
fin. Show that the solution reduces to the 1–D and transient form when hb/k ≪ 1.

2. A long solid circular cylinder of radius R is initially at a temperature of T∞. At t = 0 one
side of the cylindrical surface is exposed to a source of thermal radiation which results in a
heat flux into the cylinder. The distribution of flux is given by

q′′s =

{

q′′0 cosφ, −π
2 ≤ φ ≤ π

2

0, π
2 ≤ φ ≤ 3π

2

where q′′0 is a constant. The cylindrical surfaces also transfer heat by convection to T∞.

(a) Formulate the problem in dimensionless variables and parameters.

(b) Devise a partial solutions approach to the problem, involving a transient solution and a
steady–state solution.

(c) Derive the transient and steady parts to the solution. Note that a similar form of the
steady problem was examined in Ch. 4.

3. A long square rod, of width 30 cm, is to be heated in a high–temperature convection furnace.
The rod is at an initial temperature of 30◦C and has a thermal conductivity and thermal
diffusivity of 60 W/m·K and 18×10−6 m2/s, respectively. The rod will remain in the furnace
until the center temperature reaches 300◦C. To minimize thermal stresses in the rod, the
surface temperature of the rod cannot exceed 600◦C during the heating. The objective of this
problem is to develop a pair of design curves for the furnace. One plot would give hmax vs.
oven temperature T∞, where hmax is the maximum allowable heat transfer coefficient which
maintains the surface temperature constraint. For example, if T∞ ≤ 600◦C then hmax would
→ ∞ – since the surface temperature could not exceed 600◦C for this condition. For any T∞
greater than 600◦C the value of hmax will be finite, and will decrease as T∞ increases. The
second plot would show the required heating time t as a function of T∞. Considering that
h values for forced convection in air are around 100–1000 W/m2·K, comment on the likely
operating conditions for the furnace.

4. A solid cylinder has a length L and a radius R. The surface of the cylinder at r = R has a
prescribed temperature distribution given by f(z, φ), whereas the surfaces at z = 0 and L are
adiabatic. Derive the series expansion for the steady–state temperature distribution in the
cylinder, and give formulas for the expansion coefficients.

5. Consider the problem examined in Sec. (5.6.1), except now take the plate to have a finite
depth of L in the z direction. At z = L (the bottom) the plate is cooled by convection to T∞.
All other boundary conditions remain the same. Formulate the problem in non–dimensional
variables and use the Fourier cosine transform method to derive the analytical solution to the
problem.



Chapter 6

General Time–Dependent Conduction

6.1 Introduction

The transient problems that we have encountered so far have all dealt with an instantaneous
perturbation of a system – such as a sudden change in wall temperature – followed by a relaxing
of the system to a new equilibrium condition. We have not dealt with problems in which we apply
a time–dependent ‘forcing’ to the system. For example, perhaps we change the wall temperature
from T0 to T1 over a time interval ∆t. Or perhaps the system is exposed to a time–periodic heat
flux. What we want to do in this chapter is cover some of the analytical techniques that are used to
predict the time-dependent temperature fields and heat fluxes for systems that have more general,
time–dependent boundary conditions and sources.

6.2 Initial value problems with time–dependent BCs and/or sources

Here we want to extend the transient SOV analysis that was developed in Ch. 3 and 5 to include
problems in which the BCs and/or heat source are a non–periodic function of time. This class of
initial–value problems include all situations in which the BCs and/or source function are ‘forced’
(i.e., changed by external means) from one fixed state to another fixed state over a finite (i.e.,
non–zero) time interval.

The transient impulse problems examined so far had BCs that were, in a sense, a function of
time – in that at t = 0 the conditions at one or more of the surfaces instantaneously changed
from one state to another. The same type of problem was encountered for heat generation – at
t = 0 the source function q′′′ would be turned on (or off). Mathematically, we would say that the
time–dependence of the BCs or q′′′ in such problems would be represented by a step function H(t),
for which

H(t) =

{

0, t ≤ 0

1 t > 0
(6.1)

173
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For example, consider a problem in which we have a unit–width slab with zero temperature main-
tained at x = 0, zero initial temperature, and at t = 0 the temperature at x = 1 is instantaneously
brought to unity. We can write the generalized problem statement using the step function as

∂T

∂t
=
∂2T

∂x2
(6.2)

T (0, t) = 0 (6.3)

T (1, t) = H(t) (6.4)

T (x, t ≤ 0) = 0 (6.5)

So, ‘formally’, the BC is now represented by a time–dependent function – although we have simply
introduced some new mathematical terminology into a problem that has already been solved with
SOV and superposition methods.

The objective at hand is to develop a solution method for a forcing that is an arbitrary function
of time. With regard to the example problem given above, the condition at x = 1 would now
appear in the general form of

T (1, t) = F (t) (6.6)

in which F is a prescribed function of t. The only restriction we place on F is that it is zero for
t ≤ 0.

Problems with time–dependent BCs in the form of Eq. (6.6) (or sources of equivalent form) can
be solved (in principle) by the method of variation of parameters, and an example of the application
of this approach to such problems will be presented in the following section. A different approach
– which has greater recognition among the analytical community – is to use a method that is
analogous to the superposition technique developed to handle arbitrarily inhomogeneous transient
impulse problems.

6.2.1 Time–dependent superposition: Duhamel’s theorem

Duhamel’s theorem is an analytical method in which the solution for a forced system is obtained
from an integral transformation of the solution to the fundamental problem that corresponds to
the system. The systems to which this method can be applied must have an initial state of zero
temperature, and be completely homogeneous except for a single time–dependent forcing function
appearing in a BC or the source. This forcing function can be only a function of time (not of
position). The corresponding fundamental solution, which is given the symbol U(x, t), represents
the solution to the same system except with the forcing function replaced by an equivalent unit
step function at t = 0.

The fundamental solutions are essentially the types of problems we have been solving up to
now – but again with the restriction that the initial temperature is zero and the problem contains
a single inhomogenous term. The example problem presented in the previous section (Eq. (6.2)–
(6.5)) would represent the corresponding fundamental problem to the situation in which the BC at
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x = 1 is Eq. (6.6). The forcing in this example appears as a time–dependent surface temperature;
accordingly, the equivalent step function at the boundary appears as an instantaneous change in
surface temperature from 0 to 1 at t = 0. Similarly, a forcing which appeared as a time–dependent
heat flux at the boundary would have an instantaneous change in flux from 0 to 1 in the fundamental
problem. And a time–dependent source term q′′′ would be represented in the fundamental problem
by a unit step change in generation rate at t = 0.

Providing that the problem at hand meets the above restrictions, Duhamel’s theorem states
that the solution T (x, t) for the forced problem will be given by

T (x, t) =

∫ t

0
U(x, t− τ)

dF

dτ
dτ (6.7)

The variable τ in the above is simply a dummy variable of integration. The above integral – in
which the integrand has one function evaluated at t− τ and another evaluated at τ – is known as
a convolution integral.

The proof of Duhamel’s theorem is straightforward. To determine if T satisfies the conduction
equation, first differentiate Eq. (6.7) with respect to t. Leibnitz’ rule for differentiation of an integral
is needed to do this because the upper limit (t) is a function of t. For our purposes, this rule is

∂

∂t

∫ f(t)

0
u(t, τ) dτ = u[t, f(t)]

df

dt
+

∫ f(t)

0

∂

∂t
u(t, τ) dτ

Application of this to Eq. (6.7) gives

∂T

∂t
= U(x, t− t)

dF

dt
+

∫ t

0

∂

∂t
[U(x, t− τ)]

dF

dτ
dτ

Our definition of the fundamental solution has U(x, 0) = 0 for all x and this eliminates the first
term. Likewise, the second derivative of T with respect to x is

∂2T

∂x2
=

∫ t

0

∂2

∂x2
[U(x, t− τ)]

dF

dτ
dτ

Subtracting the two previous equations and combining the integrands gives

∂T

∂t
− ∂2T

∂x2
=

∫ t

0

(
∂

∂t
[U(x, t− τ)] − ∂2

∂x2
[U(x, t− τ)]

)
dF

dτ
dτ

The quantity t − τ is ≥ 0 and can be denoted as a new time variable t′. If no heat generation is
present, then U(x, t′) must satisfy the homogeneous conduction equation for all times. The integral
on the right hand side must therefore be zero – regardless of F – which shows that T satisfies the
homogeneous conduction equation.
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If heat generation is present, then the conduction equations for the forced and fundamental
problems would have

∂T

∂t
− ∂2T

∂x2
= F (t),

∂U

∂t
− ∂2U

∂x2
= 1

for all t′ ≥ 0. Replacing these into the previous integral would give

F (t) =

∫ t

0

dF

dτ
dτ = F (t) − F (0)

︸︷︷︸

= 0

= F (t)

which uses the fact that F (0) is constrained to be zero – because the system must commence from
a zero temperature initial state. Therefore, the solution given by Eq. (6.7) correctly satisfies the
inhomogeneous conduction equation when heat generation is present.

If, on the other hand, the forcing appeared as a time–dependent BC at x = 1, Eq. (6.7) would
have

T (1, t) =

∫ t

0
U(1, t− τ)
︸ ︷︷ ︸

= 1

dF

dτ
dτ

=

∫ t

0

dF

dτ
dτ = F (t) − F (0)

︸︷︷︸

= 0

= F (t)

which now uses the fact that U(1, t′) = 1 for all t′ ≥ 0. Equation (6.7) is therefore consistent with
the time–dependent BC. The remaining BC in the problem must be homogeneous and application
of this BC to the right–hand–side of Eq. (6.7) must give zero – which will automatically provide
the same homogeneous BC on T .

Duhamel’s theorem is essentially a superposition solution – in which the desired solution for
T (x, t) is constructed from the addition of partial solutions. To see this, approximate the integral
in Eq. (6.7) as a sum over M segments, of width ∆τ , via

T (x, t) ≈
M∑

i=1

U(x, t− τi)∆F (τi)

where τi = i · ∆τ and ∆F (τi) represents the change in F that occurs at time τi over the time
step ∆τ . Recall now that the fundamental solution U(x, t) represents the response of the system
at time t to a unit step change at t = 0. It then follows that ∆F (τi)U(x, t − τi) would represent
the response of the system at time t − τi to a step of ∆F (τi) at time t = τi. The summation
formula given above can therefore be interpreted as a superposition of a multitude of infinitesimal
step–change events, each occuring further and further ‘back’ from the present time. In the limit of
∆τ → 0 (and M → ∞), we would recover the integral formula in Eq. (6.7).
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6.2.2 Discontinuous and piecewise continuous forcing functions

Some attention must be paid to the implementation of Eq. (6.7) when the forcing function F
changes discontinuously within the range of integration. The simplest case of this occurrence is
when the forcing function takes the form of a step function H(t), i.e., the forcing represents a unit
step change in the BC or source at t = 0. In general, however, the forcing function could have an
arbitrary number of discontinuous jumps at t = t1, t2, . . .. The value of dF/dτ at the jumps would
goto infinity – which might seem to imply that the solution predicted by Eq. (6.7) would become
singular for discontinuous forcing functions.

To show that this is not the case, consider the unit step F (t) = H(t). The derivative of H at
t = 0 is modelled by a delta function δ(t), which is defined by

dH

dt
= δ(t)

{

= 0, t 6= 0

→ ∞, t = 0

The delta function, when appearing in an integrand, has the following ‘combing’ property,

∫ t

0
f(τ)δ(t1 − τ) dτ = f(t1)

in which f is an arbitrary continuous function and the jump point t1 is in between 0 and t. This
integration property can be proved by combination of the previous two equations and applying
integration by parts;

∫ t

0
f(τ)δ(t1 − τ) dτ = −

∫ t

0
f(τ)

dH(t1 − τ)

dτ
dτ

= −f(t) H(t1 − t)
︸ ︷︷ ︸

= 0

+f(0) H(t1 − 0)
︸ ︷︷ ︸

= 1

+

∫ t

0

df(τ)

dτ
H(t1 − τ) dτ

︸ ︷︷ ︸

= f(t1) − f(0)

= f(t1)

where we’ve used the fact that H(t− τ) is 0 for t ≤ τ and 1 for t > τ .
With this information in hand, we can now generalize Eq. (6.7) to situations in which the forcing

function changes discontinuously. First we need to formulate a sufficiently general equation for the
forcing function – which is provided by the ‘piecewise continuous’ form of

F (t) =







0 , t = 0

F1(t) , 0 < t ≤ t1

F2(t) , t1 < t ≤ t2
...

(6.8)
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Figure 6.1: an arbitrary piecewise continuous forcing function

in which F1, F2, . . . are taken to be continuous (or more precisely, first–order differentiable) in the
specified range. This form can also be written using the step functions as

F (t) = (H(t) −H(t− t1)) F1(t) + (H(t− t1) −H(t− t2)) F2(t) + . . .

and the derivative of F is obtained using the chain rule and Eq. (6.8);

dF

dt
= ∆F0 δ(t) + (H(t) −H(t− t1))

dF1

dt

+ ∆F1 δ(t− t1) + (H(t− t1) −H(t− t2))
dF2

dt
+ . . .

where ∆F0 = F1(t→ 0), ∆F1 = F2(t→ t1)− F1(t1), etc. An arbitrary forcing function, consisting
of three continuous segments and two jumps at t = 0 and t2, is illustrated in Fig. 6.1. For this
particular example the jumps in the function at t1 and t3 are zero – even though the function
changes its characteristic form at these points.

When applied to Eq. (6.7) and using the integration properties of the delta function, the tem-
perature solution for the generalized forcing function becomes

T (x, t) = ∆F0 U(x, t)

+
M∑

i=1

(

∆Fi U(x, t− ti) +

∫ ti

ti−1

U(x, t− τ)
dFi

dτ
dτ

)

+

∫ t

tM

U(x, t− τ)
dFM+1

dτ
dτ (6.9)

in which the limit M in the sum is defined by the largest tM such that t > tM . That is, the solution
includes all forcings that have occured prior to time t – we would not expect the solution at t to
be affected by an event in the future!.

The workings of Eq. (6.9) can be seen by application to the situation in which the forcing
function is F (t) = H(t), i.e., the unit step at t = 0. The only surviving term in Eq. (6.9) would be
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Figure 6.2: ramped surface temperature

the jump at t = 0, for which ∆F0 = 1. This would give T (x, t) = U(x, t) – which it must since this
problem represents the fundamental solution by definition.

A more challenging – yet still simple – example of a forcing function is given in Fig. 6.2, in
which the boundary temperature linearly changes from 0 to T1 over a period of t1, and then
instantaneous drops to 0 at t = t1 and remains at zero for all time. Mathematically, the forcing
function is represented by

F (t) =







T1 ·
t

t1
, 0 < t ≤ t1

0, t > t1

(6.10)

The initial jump ∆F0 = 0, and Eq. (6.9) would give

T (x, t) =







T1

t1

∫ t

0
U(x, t− τ) dτ, t ≤ t1

−T1 U(x, t− t1) +
T1

t1

∫ t1

0
U(x, t− τ) dτ, t > t1

(6.11)

Recognize that the forcing function changes from T1 to 0 at t = t1; consequently ∆F1 = −T1.

To complete the problem we first need the fundamental solution U . The fundamental problem is
given by Eqs. (6.2)–(6.5) – which consists again of zero temperature at x = 0 and unit temperature
at x = 1. From superpositon/SOV, U is

U(x, t) = x+
∞∑

n=1

Anφn(x)e−λ2
nt (6.12)



180 CHAPTER 6. GENERAL TIME–DEPENDENT CONDUCTION

in which

φn(x) = sin(λnx)

λn = nπ

An =
2(−1)n

λn

Consequently, U(x, t− τ) is

U(x, t− τ) = x+
∞∑

n=1

Anφn(x)e−λ2
nteλ

2
nτ (6.13)

For t ≤ t1, Eq. (6.11) will give

T = x
T1t

t1
+
T1

t1

∞∑

n=1

Anφn(x)

λ2
n

e−λ2
nt
(

eλ
2
nt − 1

)

= x
T1t

t1
+
T1

t1

∞∑

n=1

Anφn(x)

λ2
n

(

1 − e−λ2
nt
)

, t < t1 (6.14)

and for t > t1 the solution is

T = xT1 +
T1

t1

∞∑

n=1

Anφn(x)

λ2
n

e−λ2
nt
(

eλ
2
nt1 − 1

)

− xT1 − T1

∑

n=1

Anφn(x)e−λ2
nteλ

2
nt1

= T1

∞∑

n=1

Anφn(x)

[
1

t1λ2
n

(

eλ
2
nt1 − 1

)

− eλ
2
nt1

]

e−λ2
nt (6.15)

Observe that the solution for t ≫ t1 decays to 0 – which it must since the surface temperature at
x = 1 has been brought back to 0.

Surface plots of the solution are shown in Fig. 6.3 for t1 = 0.05 (left) and t1 = 0.5 (right).
In both cases T1 = 1. Notice that when t1 = 0.05 the region next to the x = 0 surface is
essentially unaffected by the changing conditions at x = 1; for this case the characteristic time
of the disturbance ∼ t1 = 0.05 is less than the characteristic diffusion time of the wall (which
corresponds, dimensionlessly, to td ∼ 0.1). Consequently, the disturbance is diffused (or damped
out) before it can affect the back wall conditions. Indeed, the wall could be modelled as semi–

infinite for this condition – and this topic will be addressed in a forthcoming section. On the other
hand, the case for t1 = 0.5 shows that during the ramp–up period the temperature distribution in
the wall is nearly linear at any moment. The reason for this behavior follow the same logic; the time
of the disturbance is now much larger than the diffusion time of the wall and, consequently, the
wall attains essentially a ‘quasi’–steady–state temperature distribution during the heat up process.
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Figure 6.3: effect of the linear ramp in surface temperature

Alternative form to Duhamel’s theorem

One way of getting around the need to ‘specially’ treat the discontinous parts of F in Eq. (6.7) is
to integrate Eq. (6.7) by parts – as was done when we defined the integral property of the delta
function. Doing this, we find

T (x, t) =

∫ t

0
U(x, t− τ)

dF

dτ
dτ

= F (t)U(x, 0) − F (0)U(x, t) −
∫ t

0

∂U(x, t− τ)

∂τ
F (τ) dτ

Since both U and F are zero at t = 0 the first two terms disappear. We can also use

∂U(x, t− τ)

∂τ
= −∂U(x, t− τ)

∂t

which gives the alternative form of Duhamel’s theorem:

T (x, t) =

∫ t

0

∂U(x, t− τ)

∂t
F (τ) dτ (6.16)

The above equation is completely equivalent to the original form in Eq. (6.7). The convenient
aspect of the above, however, is that we no longer need to be concerned about jumps in F . Rather,
for the arbitrary piecewise continuous forcing function, Eq. (6.16) appears

T (x, t) =
M∑

i=1

∫ ti

ti−1

∂U(x, t− τ)

∂t
Fi(τ) dτ +

∫ t

tM

∂U(x, t− τ)

∂t
FM+1(τ) dτ (6.17)
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subject to the same restriction that t > tM .

The solutions obtained from Eq. (6.17), however, will often look completely different than the
corresponding solution from Eq. (6.9). To illustrate, consider the same example as before in which
the fundamental solution is given by Eq. (6.12). The dervative of U with respect to time is

∂U(x, t− τ)

∂t
= −

∞∑

n=1

λ2
nAnφn(x)e−λ2

nteλ
2
nτ

For t < t1, Eqs. (6.17) and (6.10) yield

T = −T1

t1

∞∑

n=1

λ2
nAnφn(x)e−λ2

nt

∫ t

0
eλ

2
nτ · τ dτ

= −T1

t1

∞∑

n=1

Anφn(x)e−λ2
nt

[

teλ
2
nt − 1

λ2
n

(

eλ
2
nt − 1

)]

=
T1

t1

∞∑

n=1

Anφn(x)

[
1

λ2
n

(

1 − e−λ2
nt
)

− t

]

, t < t1 (6.18)

and for t ≥ t1 we get

T = −T1

t1

∞∑

n=1

λ2
nAnφn(x)e−λ2

nt

∫ t1

0
eλ

2
nτ · τ dτ

= T1

∞∑

n=1

Anφn(x)

[
1

t1λ2
n

(

eλ
2
nt1 − 1

)

− eλ
2
nt1

]

e−λ2
nt, t ≥ t1 (6.19)

Equation (6.19) is identical to what was obtained from our previous formula, which appears in
Eq. (6.15). However, Eqs. (6.18) and (6.14) appear different. The equivalence between the two
solutions can be established if the function T1x – which appears in Eq. (6.14) – is expanded into a
series of the eigenfunctions.

Cylindrical system example

Another example is now examined. Say we have a long, solid cylindrical rod, of radius R, that
initially is at a temperature of T1. At time zero a uniform yet time–dependent heat source is applied
to the rod, given by

q′′′(t) = q′′′0

(

1 − e−t/tc
)

where tc is a constant. Convection is maintained at the surface of the rod. Determine the transient
temperature distribution in the rod.
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The first thing we need to do here is determine the fundamental solution U(r, t) for the problem
in which 1) the system is initially at zero temperature, and 2) a unit–step heat source is applied
at t = 0. To make the initial temperature zero, we would define our nondimensional temperature
with T1 as the reference temperature. Therefore, let

T =
(T − T1)k

q′′′0 R
2

, r =
r

R
, t =

tα

R2

Our dimensionless problem is then

∂T

∂t
=

1

r

∂

∂r
r
∂T

∂r
+
(

1 − e−t/t1
)

(6.20)

T (0, t) is finite (6.21)

∂T

∂r

∣
∣
∣
∣
1

= −Bi [T (1, t) − T∞] (6.22)

T (r, 0) = 0 (6.23)

where T∞ = (T∞ − T1)k/q
′′′
0 R

2. The fundamental problem is when we replace the time–dependent
source with 1, giving

∂U

∂t
=

1

r

∂

∂r
r
∂U

∂r
+ 1 (6.24)

U(0, t) is finite (6.25)

∂U

∂r

∣
∣
∣
∣
1

= −Bi [U(1, t) − T∞] (6.26)

U(r, 0) = 0 (6.27)

A complication arises from the inhomogeneous BC at r = 1. We can easily fix this by letting

S(r, t) = U(r, t) − T∞

which gives us the homogenous BC problem:

∂S

∂t
=

1

r

∂

∂r
r
∂S

∂r
+ 1 (6.28)

S(0, t) is finite (6.29)

∂S

∂r

∣
∣
∣
∣
1

= −BiS(1, t) (6.30)

S(r, 0) = −T∞ (6.31)

(6.32)
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Using superposition methods, the general solution to S is

S = s(r) +
∞∑

n=1

Anφn(r)e−λ2
nt

where s(r) is the steady–state solution given by

s(r) =
1

2

(
1

Bi
+

1

2
(1 − r2)

)

and with eigenfunctions and eigenconditions given by

φn(r) = J0(λnr)

λnJ1(λn) = Bi J0(λn)

The expansion coefficients are obtained from

An = −

∫ 1

0

(
T∞ + s(r)

)
φnr dr

∫ 1

0
φ2

nr dr

which can be evaluated using techniques developed in the previous notes or with Mathematica.
The fundamental solution would therefore be U = S + T∞, or

U(r, t) = s(r) + T∞ +
∞∑

n=1

Anφn(r)e−λ2
nt

We now let the time–dependent forcing function be

F (τ) =
(

1 − e−τ/tc
)

(6.33)

Since F is continuous, it is probably easiest to obtain T using Eq. (6.7). We would then have

T =

∫ t

0
U(r, t− τ)

dF

dτ
dτ

=
1

tc

∫ t

0

(

s(r) + T∞ +

∞∑

n=1

Anφn(r)e−λ2
nteλ

2
nτ

)

e−τ/tc dτ

=
(
s(r) + T∞

) (

1 − e−t/tc
)

+
∞∑

n=1

Anφn(r)

tcλ2
n − 1

(

e−t/tc − e−λ2
nt
)

(6.34)

It’s easy to see from the above that in the limit of tc → 0 – for which the source function becomes
instantaneous – the solution reduces to that obtained for the fundamental problem.
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6.2.3 Solution by variation of parameters

The analytically–robust variation of parameters (VOP) method, introduced in Ch. 5, can be directly
applied to time–dependent forcing problem. Unlike Duhamel’s theorem, the VOP method is not
constrained to problems where the sole inhomogeneity occurs in the forcing function and the system
is initially at zero temperature. Furthermore, VOP could be used to examine problems in which the
forcing function was dependent on position as well as time – such as in a space and time–dependent
heat source function.

As before, the starting point of this method is to formulate the solution as an eigenfunction
expansion in which the expansion coefficients are initially–undetermined functions of time. The
eigenfunction and eigencondition are identified as those for the corresponding homogeneous problem
in which the BCs (including the time dependent one) are replaced by homogeneous ones of the same

type. Consider, for example, the plane wall problem posed in Sec. 2, in which the initial and x = 0
temperatures are 0 and at x = 1 the temperature is given by

T (1, t) = F (t) (6.35)

Since the temperature is specified in Eq. (6.35), the corresponding homogeneous condition would
have zero temperature. The eigenfunction and eigencondition are therefore

φn(x) = sin(λnx), λn = nπ (6.36)

Continuing with the same example, the eigenfunction expansion of the temperature field would
be

T (x, t) =
∞∑

n=1

An(t)φn(x) (6.37)

and the expansion functions An(t) are

An(t) =

∫ 1

0
T (x, t)φn(x) dx

∫ 1

0
φ2

n(x) dx

= 2

∫ 1

0
T (x, t)φn(x) dx (6.38)
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We now obtain the ODE for An(t) by differentiation and application of the governing DE and BCs;

dAn

dt
= 2

∫ 1

0

∂T

∂t
φn dx

= 2

∫ 1

0

∂2T

∂x2
φn dx

= 2

[
∂T

∂x
φn

∣
∣
∣

1

0
− T φ′n

∣
∣
∣

1

0
+

∫ 1

0
T φ′′n dx

]

= −2T (1, t)φ′n(1) − 2λ2
n

∫ 1

0
T φn dx

= −2(−1)n λn F (t) − λ2
nAn (6.39)

By use of an integrating factor, the DE for An can appear as

e−λ2
nt d

dt

(

eλ
2
ntAn

)

= −2(−1)n λn F (t)

This can be directly integrated from 0 to t to give

e−λ2
ntAn(t) −An(0) = −2(−1)n λn

∫ t

0
F (τ) eλ

2
nτ dτ

We would now use the definition in Eq. (6.38) to generate an initial condition on An(0); the initial
condition on T does not have to be zero but assume here that it is. This would give An(0) = 0,
and the complete solution for the expansion functions becomes

An(t) = −2(−1)n λn

∫ t

0
F (τ) e−λ2

n(t−τ) dτ (6.40)

Observe that the VOP approach gives a convolution integral solution for An that is analogous to
Eq. (6.16); if F is a unit step at t = 0 the solution would give

An(t) = −2(−1)n λn

∫ t

0
e−λ2

n(t−τ) dτ

= −2
(−1)n

λn

(

1 − e−λ2
nt
)

≡ Un(t)

in which Un denotes the fundamental solution for An, i.e., that corresponding to the unit step
forcing. By direct substitution, you should see that

An(t) =

∫ t

0
F (τ)

dUn(t− τ)

dt
dτ
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which is identical in form to Eq. (6.16). If we now specified F as the linear ramp function used
in the example of Sec. 3, we would ultimately get a solution for T identical to that obtained from
Eq. (6.16). Alternatively, we could formally integrate the above equation using integration by parts,
and arrive at the analogous VOP formula to Eq. (6.7).

In the end, the VOP method, when applied to the class of problems admissible by Duhamel’s
theorem, will give solutions that are identical to those obtained from Duhamel’s theorem. That this
is the case should not be surprising – there is only going to be one solution to a particular problem
(at least physically). VOP, on the other hand, does not have the restrictions on homogeneity and
initial conditions that does Duhamel’s theorem.

6.3 Time–harmonic boundary conditions and sources

It is not uncommon to find situations in which the heating conditions on a surface oscillate in time.
For example, a side of a building could be heated during the day by the sun, and cooled at night,
or a thin electically–conducting wire could be subjected to the an oscillating heat dissapation rate
corresponding to the 60–cycle alternating current. For such problems we will never attain a steady–
state solution – since the conditions at the surface or the heat generation function are constantly
changing. However, we would expect that, given enough time from a ‘starting’ point, the system
would eventually ‘forget’ everything about the initial state. In this situation, the temperature at
discrete points in the system would oscillate at the same frequency as the temperature oscillation
at the surface – yet the phase and magnitude of the oscillations would not necessarily be the same
for all points in the system.

To pose a simple example, say we have a plane wall of thickness L, for which the surface at
x = 0 is maintained at T1 and the surface at x = L oscillates over a range ∆T about T1 during a
time period of t1 seconds. Specifically, say that the surface temperature is given by

T (L, t) = T1 + ∆T cos(2πt/t1)

The cosine representation of the temperature variation is known as a time–harmonic boundary
condition. This form is representative of many oscillatory BCs – such as daytime/nighttime tem-
perature variations or AC electrical heating processes. The dimensional problem statement could
then be posed as

1

α

∂T

∂t
=
∂2T

∂x2

T (0, t) = T1

T (L, t) = T1 + ∆T cos(2πt/t1)

There is no initial condition – and because of this the problem could not be considered ‘well–posed’,
i.e., we don’t have enough information to obtain a complete solution. However, the item of interest
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is, again, the limiting form of the solution for t → ∞. The solution will be a periodic function of
time and consequently will have the same behavior for t→ ∞ and t→ −∞.

First nondimensionalize the problem using

T =
T − T1

∆T
, x =

x

L
, t =

tα

L2
, ω =

2πL2

t1α
(6.41)

The dimensionless quantity ω can be viewed as a dimensionless frequency of oscillation, and repre-
sents the ratio of characteristic diffusion and oscillation times. The problem is now

∂T

∂t
=
∂2T

∂x2 (6.42)

T (0, t) = 0 (6.43)

T (1, t) = cos(ωt) (6.44)

Solving such a problem is immensely simplified if we use complex arithmetic. Whenever we have a
time–harmonic BC of the form in Eq. (6.44), we assume that the solution for T can be represented
by the real part of the complex variable:

T = Re
(

s(x)e−iωt
)

(6.45)

where s(x) is a complex–valued function that depends only on x, and Re denotes the real part. If
we replace this form into the DE, we will find that

Re
(

−iωs(x)e−iωt − s′′(x)e−iωt
)

= 0

Note that we can factor out the exp(−iωt) part to the above. Consequently, if we let s satisfy

s′′(x) + K2s(x) = 0 (6.46)

in which K is the complex wavenumber of the medium, given by

K =
√
i ω (6.47)

then the form in Eq. (6.45) will satisfy the DE. Also, by letting

s(0) = 0 (6.48)

we will recover the BC in Eq. (6.43). Finally, to formulate the BC for s at x = 1, note that

cos(ωt) = Re e−iωt (6.49)
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Using Eq. (6.45) in Eq. (6.44), we would then have

Re
(

s(1)e−iωt − e−iωt
)

= 0 (6.50)

Accordingly, we can let s(1) be given by
s(1) = 1 (6.51)

The approach used here attempts to anticipate the time dependence of the solution – which
will be proportional to exp(−iωt). By doing so, we can separate out the time dependence from the
spacial dependence and obtain an ordinary differential equation for the spacial part of the problem.

The general solution to Eq. (6.46) is

s = C1 cos(Kx) + C2 sin(Kx)

To satisfy Eq. (6.48) we set C1 = 0. Using Eq. (6.44), the complete solution for s is

s =
sin(Kx)
sin(K)

and our solution for the temperature in the wall is

T = Re

(
sin(Kx)
sin(K)

e−iωt

)

(6.52)

Algebraically obtaining the real part to the above is not easy. In practice, you would not want
to try to separate out the real part. Rather, you would code up the above equation using complex
number types and functions (which are standard on most FORTRAN and C compilers) or use
Mathematica, and let the code pull the real part out.

The wavenumber K plays an important role in the behavior of the solution. This number is
complex, i.e., it has real and imaginary parts. To identify these parts, note first that K is, again,

K =
√
ω ·

√
i

If we use the fact that
eiπ/2 = cos(π/2) + i sin(π/2) = i

then √
i = eiπ/4 = cos(π/4) + i sin(π/4) =

1√
2
(1 + i)

or,

K = K′ + iK′′ =

√
ω

2
+ i

√
ω

2
(6.53)

So it turns out that the real and imaginary parts of K have the same magnitude. The effect of
these different parts on the solution will now be explored for two limiting cases.
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Consider first the case in which ω ≫ 1 (and, equivalently, |K| ≫ 1). Physically this would
correspond to a period of oscillation much greater than the diffusion time of the slab. The sin
function can be expanded into the complex representation of

sin(K) = − i

2

(
eiK − e−iK)

Now
eiK = ei(K

′+iK′′) = eiK
′−K′′ → 0, |K| ≫ 1

Carrying on with this approach, it turns out that

sin(Kx)
sin(K)

→ eiK
′(1−x) · e−K′′(1−x), |K| ≫ 1

It then follows that, in the limit of |K| ≫ 1, the solution for T in Eq. (6.45) reduces to

T = Re
(

ei(K
′(1−x)−ωt)

)

· e−K′′(1−x)

= cos
[
(K′(1 − x) − ωt)

]
· e−K′′(1−x) (6.54)

This result would be recognized by people familiar with acoustics and electromagnetics as a wave

equation. The first part of the solution gives the phase of the wave as it propagates into the medium.
From inspection, all combinations of x and t in which K′(1 − x) − ωt is a constant will have the
same phase. By differentiating this quantity and setting it to zero, and using the definitions of our
dimensionless quantities, it follows that

− dx

dt

∣
∣
∣
∣
phase=C

=
√

2

(
2πα

t1

)1/2

= V (6.55)

which identifies the velocity of the wavefront as it moves into the medium. Note that this velocity
is not a function of the slab thickness.

The second term in Eq. (6.54) identifies the attenuation of the amplitude of the wave. The
amplitude will exponentially decay with distance into the slab, with a exponential factor of K′′ =
√

ω/2. Again using the definitions for the dimensionless quantities, the distance into the slab at
which the amplitude has decayed by a factor of 1/e is

√

(t1α/π). This quantity is independent of the
slab thickness and is proportional to

√
t1. As the frequency of oscillation increases (t1 decreases),

the depth of penetration of the wave will decrease.
To put another physical interpretation to the |K| ≫ 1 limit, recall that ω is defined as

ω =
2πL2

t1α
=

tdif

toscil
(6.56)

The dimensionless frequency ω can therefore be viewed as a ratio of the characteristic time scales
for thermal diffusion and wall temperature oscillation. When tdiff ≫ toscil the wall will act to
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Figure 6.4: periodic surface temperature: ω = 0.1(TL), 1(TR), 10(BL), 100(BR)

‘damp’ out the temperature disturbances – and consequently the regions that are removed from the
surface do not experience the fluctuation in the surface temperature. This situation is analogous to a
damped mechanical system that is being forced at a frequency that is greater than the characteristic
frequency of the system1.

In the opposite limit, i.e., ω ≪ 1, we can apply L’Hospitals rule to the solution for s and find
that

T (ω → 0) ≈ Rex e−iωt = x cos(ωt) (6.57)

Here, the characteristic time of the surface oscillation is considerably greater than the diffusion
time. In this limit the wall, at any instant, will essentially be in a steady–state condition. The
resulting solution would therefore be x times the surface temperature, and the surface temperature
is given by cos(ωt).

Surface plots of the dimensionless temperature in the wall, for ω values of 0.1, 1, 10, and 100,
are given in Fig. 6.4. The results show the temperature distribution that would exist during ∼
4 cycles of the surface temperature. Again, for small ω (top plots) the wall maintains a nearly
linear temperature profile at any time – the profile simply oscillates up and down in phase with

1It is important to recognize that the analogy with a mechanical system can only go so far. It is physically
impossible for the temperature ‘waves’ within the system to reach an amplitude that exceeds those at the surface.
That is, the thermal system has no analog to inertia (or mass) in the mechanical system – and thus cannot have
‘resonant’ behavior
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the surface temperature. On the other hand, for ω = 10 and 100 (bottom plots) the temperature
disturbance is confined to an increasingly smaller region near the surface. Regions farther from the
surface are essentially unaffected by the wall temperature oscillation. Note also, for this case, that
the temperature in regions slightly in from the surface (say x ∼ 0.6 − 0.8) is somewhat retarded
in phase behind the surface temperature. This reflects the finite amount of time in takes the
temperature ‘wave’ to propagate from the surface into the inner regions.

6.3.1 Periodic BCs/sources of arbitrary form

The previous section dealt with a specific (and fundamental) form of the periodic BC and/or source,
i.e., the time–harmonic form of cos(2π t/t1). In general, the oscillating function that is driving the
system could take on an arbitrary form – with the only restriction being that it be periodic with
interval t1. To illustrate, the plane–wall problem examined in the previous section could have a
time–dependent surface temperature given by

T (L, t) − T1 = ∆T F (2πt/t1)

where the function F is periodic (i.e., F (2π(t + t1)/t1) = F (2πt/t1)) and has unit amplitude and
zero mean. This function could represent, for example, a square wave, a saw–tooth wave, or any
arbitrary periodic function.

The solution approach to such problems is a relatively simple extension of that developed for
the simple, time–harmonic case. The first step is to represent F by a general Fourier expansion, of
the form

F (ωt) = Re
∞∑

n=−∞
fn e

−inωt (6.58)

in which ω = 2πL2/αt1 is the dimensionless fundamental frequency. The expansion coefficients fn

are given by

fn =

∫ 2π/ω

0
F (ωt) einωt dt

∫ 2π/ω

0
dt

=
ω

2π

∫ t1

0
F (ωt) einωt dt (6.59)

It should now be easy to see that a general solution for the temperature field is obtained from

T (x, t) = Re
∞∑

n=−∞
fn sn(x) e−inωt (6.60)

where sn is the solution to the wave equation (Eq. (6.46)) for frequency nω.
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This shows that the solution for an arbitrary oscillation F is obtained from a rather simple
superposition of the solutions for time–harmonic oscillations, each solution representing an integer
multiple of the fundamental frequency ω. As we saw in the previous section, the higher frequencies
are increasingly damped by diffusion as one extends into the medium. Because of this, the temper-
ature fluctuation in the medium will approach the time–harmonic form, of fundamental frequency
ω, for regions well removed from the oscillating surface – regardless of the form of F .

An application of the formulation presented in this section is left as a homework exercise.

6.4 The semi–infinite medium

A semi–infinite medium is, in a mathematical sense, one in which the system extends in one
direction to infinity. Although there are situations in which this condition is literally met – such
as the ground – it applies to all cases in which the system has a finite yet sufficient depth so that
the temperature at the inner boundary (the boundary removed from the surface) is unaffected by
a perturbation in temperature at the outer boundary (the surface).

If the perturbation at the surface takes the form of a step change from one constant temperature
to another constant temperature (such as the plane wall problem examined first in Ch. 3), it will
be only a matter of time before any point within the medium experiences the effect of the surface
temperature change. We have seen in numerous examples that a change in surface temperature sets
up thermal ‘wave’ which propagates into the medium and that the characteristic time of propagation
of the wave across a distance L is on the order of td ∼ 0.1L2/α. In this sense, a finite–thickness
medium (such as a wall) can be considered semi–infinite for times up to td following a change in
surface temperature.

A system which undergoes a finite–time–length change in surface temperature – e.g., the surface
temperature increases at t = 0 and then returns to its initial temperature after a time of tc – can be
considered semi–infinite providing that tc ≪ td. We observed this behavior when examining, using
Duhamel’s theorem, the effect of a ramp in surface temperature from zero to T 1 over a period t1
followed by a sudden drop back to zero. When t1 was less than around 0.1 the temperature change
at the surface had negligible effect on the temperature at the inner boundary. Likewise, the inner
boundary was unaffected by a periodic change in surface temperature providing that the period of
oscillation was significantly less than the diffusion time of the wall.

Semi–infinite problems involving periodic boundary conditions can be analyzed using the same
methods as those for finite regions, i.e., time–harmonic substitution. However, semi–infinite prob-
lems in which the surface temperature change is not periodic must use completely different methods
than those for finite systems. It is easy to see why this is the case. The SOV method, when applied
to transient problems, requires that the boundary conditions in all spacial direction be homoge-
neous. It will be impossible to identify an eigenfunction and eigencondition which can satisfy the
boundary condition at x→ ∞. For example, φn(x) = sin(λnx) obviously satisfies the homogeneous
condition of φn(0) = 0, yet the second BC φn(x → ∞) = 0 could only be satisfied by λn = 0 for
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all n – and this would give the trivial (and useless) solution of φn = 0 for all n. The implication is
that time–dependent SOV can only be applied to regions that have a finite length.

A couple of methods can be used to examine the semi–infinite medium, transient impulse
problem – those being a similarity transformation and Laplace transform. Extension to forced time–
dependent boundary conditions can utilize Duhamel’s theorem as given in the previous section, in
which the fundamental solution corresponds to that obtained, for the semi–infinite medium, for the
unit impulse problem.

6.4.1 The step change in temperature: similarity solution

The most mathematically simple semi–infinite problem occurs when the medium (taken to be a
slab) is initially at temperature T1, and at t = 0 the surface of the slab is instantaneously brought
to T∞. We want to find solutions for the temperature distribution in the slab that are valid for
t/td ∼ 10tα/L2 ≪ 1 where L is the characteristic length of the system. For this we can treat the
far boundary as being at infinity, and pose the dimensional problem as

1

α

∂T

∂t
=
∂2T

∂x2

T (0, t) = T∞

T (x→ ∞, t) → T1

The non–dimensional temperature is obviously

T =
T − T∞
T1 − T∞

However, when we attempt to nondimensionalize the length x, we find that there is no characteristic
length – other that

√
αt ! Likewise, when we try to nondimensionalize the time, we see that the only

characteristic time scale is x2/α. The only way in which the problem can be made nondimensional
– and all problems must have a valid nondimensional form – is if time and length coordinates
become combined into the same variable. Indeed, if we go through a formal nondimensionalization
procedure, we would find that

T = T (
x√
αt

)

i.e., the dimensionless temperature must be a function of one variable. For reasons which will
become obvious below, define the dimensionless variable as

η =
x

2
√
αt

(6.61)
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If we now use

∂T

∂t
=
dT

dη

∂η

∂t
= − η

2t
T
′

∂T

∂x
=
dT

dη

∂η

∂x
=
η

x
T
′

∂2T

∂x2
=

∂

∂x

∂T

∂x
=
d2T

dη2

(
∂η

∂x

)2

=
(η

x

)2
T
′′

our differential equation will become

− η

2αt
T
′
=
η2

x2
T
′′

or

T
′′

= −2ηT
′

Separating out the DE, we get

dT
′

T
′ = −2η dη

and integrating;

ln(T
′
) = −η2 + C1

or

T
′
= C ′e−η2

Integrating once more:

T = C ′
∫ η

0
e−z2

dz + T (0)

where z is a dummy variable of integration. For our choice of T we have T (0) = 0. The remaining
constant is obtained from the second BC (or, equivalently, the IC) for which T (η → ∞) → 1. This
gives

C ′ =

[∫ ∞

0
e−z2

dz

]−1

=
2√
π

And the formula for T is

T =
2√
π

∫ η

0
e−z2

dz = erf(η) (6.62)

where erf(η) is the Gaussian Error Function. This function is tablulated in the standard mathe-
matical and heat transfer texts and appears as an intrinsic function in Mathematica.

The concept of similarity suggests that the temperature profiles in the slab, for different values
of t, are mathematically similar. Because of this, a single coordinate η, which ‘collapses’ the profiles
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for different t onto a single curve, can be identified. The specific solution in Eq. (6.62) provides also
a more quantitative measure of semi–infinite criterion. The condition T ≥ 0.99 (i.e., T (x, t) − T∞
will be 99% of T1 − T∞) will be met for η ≥ 1.821. Accordingly, a slab of length L can be modeled
as semi–infinite providing that L ≥ 3.642

√
αt. Alternatively, if we use the common definition

of dimensionless time as t = α t/L2, it follows that a semi–infinite analysis would be accurate
in a finite–thickness slab providing that t ≤ 0.075 ∼ 0.1 – which is consistent with our previous
observations for the characteristic diffusion time.

6.4.2 Laplace transform methods

If the same configuration is examined – with the exception that the boundary condition at x = 0
becomes an imposed uniform heat flux of q′′0 starting at t = 0 – we will find that a similarity
solution will no longer be possible. This is because the parameters in the problem now provide a
characteristic length scale, that being Lc = k T1/q

′′
0 . If we now define the temperature scale per the

usual approach for imposed flux conditions as ∆Tc = q′′0Lc/k, we find simply that ∆Tc = T1. This
is not a temperature difference yet it is the only temperature scale that can make the temperature
dimensionless. Consequently, the nondimensional variables become

T → T − T1

T1
, x→ xq′′0

kT1
, t→ αt

(
q′′0
kT1

)2

and the problem statement is

∂T

∂t
=
∂2T

∂x2
(6.63)

∂T

∂x

∣
∣
∣
∣
x=0

= −1 (6.64)

T (x→ ∞, t) → 0 (6.65)

T (x, 0) = 0 (6.66)

The solution method for this problem is the Laplace transform. This may be a mathematical
technique that you learned in a differential equations class – one of many that were promptly
forgotten. The Laplace transformation of a function f(t) is defined by

f̂(s) =

∫ ∞

0
f(t) e−s t dt

in which s is a transform variable. The inverse transform involves a contour integration of f̂(s)
over the complex plane; details of which need not be presented here. Suffice to say that the inverse
transform of f̂(s) yields the original function f(t), i.e.,

L−1
(

f̂(s)
)

= L−1 (L (f(t))) = f(t)
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The usefulness of the Laplace transform is that it can remove the time dependence from a
problem. In particular, the partial DE in t and x (Eq. (6.63)) when transformed becomes an
ordinary DE in x with s appearing as a parameter, and this DE can usually be solved easily. We
then take the inverse transformation of this solution to obtain the full solution of the partial DE.

Only a few basic properties of the Laplace transform need to be presented for our purposes.
The transform of a function of x and t (i.e., T (x, t)) simply becomes T̂ (x, s). The transform of a
derivative of the function with respect to t is given by

L
(
∂T

∂t

)

= s T̂ (x, s) − T (x, 0)

Likewise, the transform of the derivative with respect to x is simply the derivative of the transformed
function – since the order of differentiation and integration can be exchanged. That is

L
(
∂2T

∂x2

)

= T̂ ′′(x, s)

in which the primes denote differentiation with respect to x; we don’t have to use the partial
differential notation because (in view of the equation proceeding the above one) differentials with
respect to s will not occur in the transformed problem. Finally, the transform of a constant is given
by

L (C) =
C

s

Using the above tools, we apply the Laplace transform to the system of equations in Eqs. (6.63–
6.65). This gives

s T̂ (x, s) − T (x, 0) = T̂ ′′(x, s) (6.67)

T̂ ′(0, s) = −1

s
(6.68)

T̂ (x→ ∞, s) = 0 (6.69)

The initial condition eliminates the T (x, 0) appearing in the DE, and the solution for T̂ is obtained
directly as

T̂ (x, s) = s−3/2 exp
(
−
√
s x
)

(6.70)

So far the problem has been simple. The hard part is obtaining the inverse transform, i.e.,

T (x, t) = L−1
(

T̂ (x, s)
)

in which T̂ (x, s) is explicitly given by Eq. (6.70). Most of the material on the application of Laplace
transforms to solution of DEs is devoted to the problem of the inverse transform. We, however,
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will not go into these details, because the black–box provided by Mathematica can perform this
chore for us.

On earlier versions of Mathematica, the user (you) needs to load a special (or add–on) package,
which contains functions for performing transforms and inverse transforms. This is not required for
Version 4.2. The following code, which is based on an earlier version, shows how the package was put
to use. For those of you using the latest version, simply ignore the <<Calculus‘LaplaceTransform‘
step.

<<Calculus‘LaplaceTransform‘

InverseLaplaceTransform[E^(-s^(1/2)x)/s^(3/2),s,t]

Out[41]=

1/Sqrt[Pi]*(2*Sqrt[t]*(E^(-(x^2/(8*t))) -

(E^(x^2/(8*t))*Sqrt[Pi]*x)/

(2*Sqrt[t]) +(E^(x^2/(8*t))*Sqrt[Pi]*

Sqrt[x^2]*Erf[Sqrt[x^2]/(2*Sqrt[t])])/

(2*Sqrt[t])))/E^(x^2/(8*t))

Simplify[%]

Out[42]=

(2*Sqrt[t])/(E^(x^2/(4*t))*Sqrt[Pi]) - x + Sqrt[x^2]*

Erf[Sqrt[x^2]/(2*Sqrt[t])]

temp[x_, t_] :=(2*Sqrt[t])/(E^(x^2/(4*t))*Sqrt[Pi]) -

x +Sqrt[x^2]*Erf[Sqrt[x^2]/(2*Sqrt[t])]

The Mathematica instructions used in the code should be self–explanatory.
The results of the solution are shown in Fig. 6.5, in which T is plotted vs. x with t = 0.01, 0.1,

and 1. The unit flux BC at x = 0 is clearly evident. This problem would obviously have no steady
state, as the surface temperature would continuously increase with time.

The associated problem involving instantaneous convection conditions at x = 0 would be solved
using the same methods. This problem is left as an exercise.

Recognize that the solution for the instantaneous, unit heat flux in a semi–infinite medium,
given in the Mathematica output, corresponds to the a fundamental solution U(x, t) that could be
used, in conjunction with Duhamel’s theorem, to obtain the temperature response in a semi–infinite
medium for time–dependent flux boundary conditions. The basic equations presented in the section
on Duhamel’s theorem, i.e., Eqs. (6.7) and (6.16), would apply directly to the fundamental solutions
for the semi–infinite medium.
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Figure 6.5: temperature response in the semi–infinite medium: unit flux BC

A Laplace transform method could also be used to solve time–dependent problems in media
of finite extent – such as the plane wall and the cylinder. However, the method offers no real
advantange over the SOV approach for such problems, and the solution that it would provide
would, of course, be completely equivalent to that obtained from SOV.

6.4.3 Periodic BCs in semi–infinite media

As mentioned above, the analytical methods developed to examine periodic effects in finite systems
will apply directly to semi–infinite media. Consider, for example, the periodic BC problem which
was examined originally except now applied to an infinite thickness slab. The x origin is (obviously)
placed now at the surface, and the problem become

1

α

∂T

∂t
=
∂2T

∂x2

T (0, t) = T1 + ∆T cos(2πt/t1)

T (x→ ∞, t) → T1

If we nondimensionalize the problem we find that the characteristic length becomes proportional
to

√
α t1. Therefore, let

T =
T − T1

∆T
, x = x

√
2π

α t1
, t =

2πt

t1
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The dimensionless problem is then

∂T

∂t
=
∂2T

∂x2

T (0, t) = cos(t)

T (x→ ∞, t) → 0

As before, the solution is taken to be in a time harmonic form,

T = Re
(

s(x)e−i t
)

(6.71)

Observe that there is no longer an ω in this problem – because the dimensionless time is defined
with respect to the period of oscillation. Our characteristic problem for s is

s′′ − is = 0

s(0) = 1

s(x→ ∞) = 0

which has the simple solution

s = e−
√

ix = exp

[

− 1√
2
(1 + i)x)

]

= exp

(

− x√
2

)[

cos

(
x√
2

)

+ i sin

(
x√
2

)]

Using some trigonometric identities, our complete solution from Eq. (6.71) is

T = exp

(

− x√
2

)

cos

(

t+
x√
2

)

(6.72)

The above solution shows that the temperature at x lags in phase an amount x/
√

2 behind the
surface temperature oscillation. In addition, the magnitude of the temperature oscillations expo-
nentially decrease with x/

√
2.

Exercises

1. A semi–infinite medium is initially at temperature T∞. At time t = 0 the medium is subjected
to a radiative flux which results in a position–dependent heat generation rate within the
medium. The form of the generation rate is given by

q′′′(x) = q′′Rκ e
−κ x

where q′′R and κ are the incident flux (W/m2) and absorption coefficient (1/m), respectively,
and x is measured from the surface inwards. Throughout the heating process the surface is
cooled by convection to T∞, characterized by a heat transfer coefficient h.
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(a) How many characteristic length and temperature scales occur in this problem? Which
ones do you think are most appropriate to nondimensionalize the problem? Note that
there is no one ‘correct’ answer to this question. Choose an appropriate pair of scales
and formulate the problem in dimensionless variables.

(b) Solve for the temperature distribution in the medium by application of the Laplace
transform method.

2. Consider the semi–infinite example discussed in Sec. 6.4.2. The flux applied at the surface is
now a function of time, given by

q′′(t) =

{

q′′0 , 0 < t ≤ t1

0 , otherwise

Use Duhamel’s theorem along with the fundamental solution obtained from the Laplace trans-
form to derive the analytical solution for the temperature field in the medium. Plot a surface
plot (i.e., dimensionless T as a function of dimensionless x and t) for dimensionless t1 = 1.

3. A slab, of thickness L, has one surface insulated and the other exposed to a periodic, pulsed
laser beam. The irradiance of the beam, as a function of time, is given by

G(t) =

{

G0 0 ≤ t < t1

0 t1 ≤ t ≤ t2

Observe that the pulse is on for t = 0 to t1, and off for t = t1 to t2. The sequence is periodic,
with period t2 (i.e., G(t + t2) = G(t)). Assuming that all of the incident flux is absorbed
by the surface, and assuming that the surface also exchanges heat with the environment by
convection, derive the solution for the periodic temperature distribution in the slab.

4. An infinite–length circular wire, of radius R, is embedded within an infinite medium. The
wire and medium have thermal conductivities and thermal diffusivities of kw, km and αw,
αm. The wire carries alternating current and is uniformly and periodically generating heat
at the rate

q′(t) = q′0 cos(ωt)

where q′0 (W per m of length) and ω (1/s) are constants. Far from the wire the temperature
in the medium is T∞.

(a) Cast the problem in dimensionless form; use the properties of the medium (km and αm)
along with R and T∞ to define the dimensionless variables. Recall that the temperature
field must be split into two parts; one in the wire and another in the medium.

(b) Use the time–harmonic procedure to determine the temperature distribution in the wire
and the medium as a function of dimensionless r and t. You can leave the solutions in
a complex form: do not attempt to factor out the real part.
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Chapter 7

Moving Interface Problems

7.1 Introduction

Up to this point we have taken our domains to be homogeneous – that is, comprised of a single
substance with uniform values of thermophysical properties. The boundaries of the domain have
also been fixed in time and in space. A class of problems which go beyond these assumptions are
the moving interface problems, the typical example being the melting (or freezing) of a liquid/solid
system.

For such systems, the interface (i.e., the boundary between the liquid/solid phases) moves as
a result of heat transfer. It is relatively simple to apply heat and mass conservation principles
at the interface – and we will do so shortly – yet what complicates the analysis of heat transfer
for such problems is the fact that the interface is moving. Physically the interface represents a
boundary of the system (although the boundary is, in a sense, internal to the system) and as such
boundary conditions are applied to it to ‘close’ the analytical problem. However, the boundary is
not stationary, and in this respect the boundary conditions implicitly become a function of time.

It turns out that analytical solutions to moving interface problems are possible only for some
simplified problems, as we will see below.

7.2 The Interface Continuity Conditions

Consider the diagram of an interface in Fig. 7.1. This particular drawing represents the melting of
a solid to a liquid, and for such the interface moves into the solid region. To apply conservation
principles, it is convenient to fix the coordinate system to the moving interface – and in this
representation the interface becomes stationary, and the solid and liquid phases move into and out
of it, respectively.

Because the system is in steady state – and no mass is accumulated within the system – the

203
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UL US
Liquid Solid

Figure 7.1: Melting of solid to liquid. The interface is stationary

mass flux into the interface must balance the flux out. Accordingly,

ρLUL = ρSUS (7.1)

in which US and UL denote the solid and liquid phase velocities.

There is no temperature jump at the interface (that is, temperature is continuous), so

TL,int = TS,int (7.2)

There are two modes of heat transfer to/from the interface: conduction and convection. Con-
sidering both, conservation of energy has

− kL
∂TL

∂x

∣
∣
∣
∣
int

− ρL UL hL = −kS
∂TS

∂x

∣
∣
∣
∣
int

− ρS US hS (7.3)

Note that the terms on the left represent the net heat flux into the interface from the liquid side, in
which hL is the enthalpy of the liquid at the interface. The negative sign in front of the convection
term is needed because U is directed in the negative x direction. Likewise, the terms on the right
represent the net heat flux from the interface into the solid. By using Eq. (7.1) and introducing
the latent heat of fusion, hSL = hL − hS , we get

− kL
∂TL

∂x

∣
∣
∣
∣
int

+ kS
∂TS

∂x

∣
∣
∣
∣
int

= −ρS US hSL (7.4)

Now switch the coordinate origin so that it becomes fixed to a system boundary. Also assume that
the densities of the liquid and solid phases are the same (ρS = ρL = ρ), so that US = UL = U . In
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this representation the interface becomes located at x = xSL, and the speed at which the interface
moves will be

U = −dxSL

dt
(7.5)

Putting this in the previous equation gives

− kL
∂TL

∂x

∣
∣
∣
∣
x=xSL

+ kS
∂TS

∂x

∣
∣
∣
∣
x=xSL

= ρ hSL
dxSL

dt
(7.6)

This represents the interface condition in the system–fixed coordinate system. Because density
of both phases is assumed equal, there will be no motion of the liquid or solid phases due to
expansion/compression during the phase transition. That is, both phases will be at rest, and
conduction will be the sole energy transfer mechanism. One point to make is that the melting (or
freezing) of the interface results in a heat flux boundary condition at the interface; the heat flux
arising from the latent heat associated with the phase change. Indeed, another way to interpret (or
derive) the interface condition is to recognize that ρU represents the mass rate of phase transition
per unit area of interface, and multiplying this by hSL gives the heat release, per unit area, at the
interface due to the phase transition.

We can also apply thermodynamic principles to fix the temperature of the interface, TSL, which
would be equal to the liquid/solid equilibrium temperature (i.e., the fusion temperature) of the
substance at the given pressure.

7.3 The Neumann problem

An exact solution to a moving interface problem can be obtained for the 1–D, semi–infinite domain
as derived by Neumann in 1912. The problem is illustrated in Fig. 7.2. The system consists
of a semi–infinite domain, initially in the solid phase at temperature T0 < TSL. At t = 0, the
temperature at the x = 0 boundary is suddenly brought to T = T1 > TSL. The solid melts at
the surface, and as time progresses the interface recedes in the positive x direction. We want to
determine the rate at which the interface moves.

The problem has two distinct regions – liquid and solid – and we need to pose the conduction
problem for each region. The DEs are

1

αL

∂TL

∂t
=
∂2TL

∂x2
, 0 ≤ x < xSL (7.7)

1

αS

∂TS

∂t
=
∂2TS

∂x2
, xSL ≤ x <∞ (7.8)

in which xSL is the location of the interface. The initial condition for the solid phase is

TS(x, t = 0) = T0 (7.9)
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Figure 7.2: The semi–infinite moving interface problem

The IC for the liquid phase cannot be formally posed because at t = 0 the liquid region does not
exist. This problem, though, will work out in the end. The boundary conditions have

TL(x = 0, t) = T1 (7.10)

TS(x→ ∞, t) = T0 (7.11)

TL(x = xSL, t) = TSL (7.12)

TS(x = xSL, t) = TSL (7.13)

−kL
∂TL

∂x

∣
∣
∣
∣
x=xSL

+ kS
∂TS

∂x

∣
∣
∣
∣
x=xSL

= ρ hSL
dxSL

dt
(7.14)

It may seem that the boundary conditions are over–constrained, in that we have five conditions
given whereas only four are needed to close the problem (two for each phase). However, the rate
at which the interface moves, dxSL/dt, is itself an unknown and is sought from the solution. In
this sense the heat flux condition at the interface does not provide a proper boundary condition.
Rather, we will use this condition to obtain the speed of the interface.

As was the case with the semi–infinite domain with specified temperature boundary conditions,
the form of the solution to this problem will reveal itself when we attempt to make the problem
dimensionless. Specifically, the problem does not present a fixed characteristic length. You may
think that xSL is an appropriate length, yet this is an unknown quantity in itself. Using xSL as
the characteristic length would fix the interface at position x = 1; this may be elegant yet it does
little to tell us the actual location of the interface as a function of time.

In view of this rationale, it follows that the solution will be a function of the variables

ηL =
x

2
√
αLt

, ηS =
x

2
√
αSt

(7.15)
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We can define our dimensionless temperatures by

TL =
TL − T1

TSL − T1
= func ηL (7.16)

TS =
TS − T0

TSL − T0
= func ηS (7.17)

By transforming the PDEs for TL and TS , one obtains the usual similarity form of the conduction
equation for semi–infinite media;

T
′′
L + 2ηLT

′
L = 0 (7.18)

T
′′
S + 2ηST

′
S = 0 (7.19)

Boundary conditions are

TL(ηL = 0) = 0 (7.20)

TL(ηL = ηSL) = 1 (7.21)

TS(ηS = β ηSL) = 1 (7.22)

TS(ηS−→∞) = 0 (7.23)

in which ηSL is the dimensionless position of the interface, defined as

ηSL =
xSL

2
√
αLt

(7.24)

The solid diffusivity αS could have been used to define ηSL; the choice is arbitrary. The quantity
β in Eq. (7.22) is

β =

√
αL

αS
(7.25)

which is a fixed parameter of the system. It is needed in Eq. (7.22) because the solid phase variable
ηS is defined using αS , whereas ηSL is defined using αL.

The solutions to the liquid and solid phase problems are easily obtained using the methods
learned for transient, semi–infinite problems, and are

TL =
erf(ηL)

erf(ηSL)
(7.26)

TS =
1 − erf(ηS)

1 − erf(β ηSL)
(7.27)

In obtaining the solution, it was implicitly assumed that the dimensionless interface position ηSL

is constant, i.e., not a function of time or position. Indeed, if our similarity solution is to be valid,
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then ηSL must be a constant. That is, the solution is assumed to be only a function of η (evaluated
in the appropriate liquid or solid phase). The value of η at the interface will be ηSL – by definition –
and this quantity could not depend on time because the solution is not a function of time, only of η.
A result of this logic is that the time variation of the interface velocity can be deduced immediately.
The interface speed is given by U = dxSL/dt, and using xSL = 2

√
αL t ηSL it follows that

U =

√
αL

t
ηSL (7.28)

Recognize again that ηSL is a constant – the value of which is sought from the solution. The above
formula shows that the interface speed will vary as 1/

√
t – a result which is obtained solely from

dimensional analysis.

The remaining part is to determine the value of ηSL. To do this, the remaining condition in
Eq. (7.14) is put to use. The liquid phase temperature derivative is given by

∂TL

∂x

∣
∣
∣
∣
xSL

= (TSL − T1)
dTL

dηL

∣
∣
∣
∣
ηSL

· 1

2
√
αLt

(7.29)

and likewise for the solid phase. Performing the operations on Eq. (7.14) and simplifying, the result
is

dTL

dηL

∣
∣
∣
∣
ηSL

− kS
√
αL (TSL − T0)

kL
√
αS (T1 − TSL)

dTS

dηS

∣
∣
∣
∣
β ηSL

= 2
hSL

cP,L (T1 − TSL)
ηSL (7.30)

Now use the solution for TL and TS to evaluate the derivatives;

T
′
L(ηSL) =

2√
π

exp
(
−η2

SL

)

erf (ηSL)
(7.31)

T
′
S(β ηSL) = − 2√

π

exp
(
−(β ηSL)2

)

1 − erf (β ηSL)
(7.32)

and replace into Eq. (7.30) to obtain

exp
(
−η2

SL

)

erf (ηSL)
− kS

√
αL (TSL − T0)

kL
√
αS (T1 − TSL)

exp
(
−(β ηSL)2

)

1 − erf (β ηSL)
=

√
π

hSL

cP,L (T1 − TSL)
ηSL (7.33)

Equation (7.33) provides a nonlinear equation for ηSL as a function of the dimensionless system
parameters (TSL − T0)/(T1 − TSL), β =

√

αL/αS , kS/kL, and hSL/cP,L(T1 − TSL). This last
parameter is especially relevant in most phase change problems and is referred to as the Stefan

number Ste. It provides a ratio of the heat released by fusion to the heat required to change the
temperature of the generated phase by T1 − TSL. Often, the initial phase of the system (which
here is the solid yet it could obviously be the liquid for the case of solidification) is initially at the
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Figure 7.3: Dimensionless interface position

fusion temperature TSL. For such cases the second term in the above equation disappears, and ηSL

becomes solely dependent on Ste, i.e,

ηSL erf (ηSL) exp
(
η2

SL

)
=
cP,L(T1 − TSL)√

π hSL
=

1√
π Ste

, (T0 = TSL) (7.34)

A plot of ηSL, scaled with the large–Ste result (discussed below), is presented in Fig. 7.3.
In problems involving water, the Stefan number is typically large due to the relatively large

heat of fusion of water. For such cases ηSL will be small – which corresponds to a relatively small
interface velocity U . By using the small argument expansion of the error function,

erf(η) ≈ 2η√
π
, η ≪ 1

Eq. (7.34) reduces to

ηSL ≈
(

1

2Ste

)1/2

(7.35)

The dimensional form of this result is

xSL =

(
2kL(T1 − TSL)

ρ hSL

)

(7.36)

This result can be derived from a simpler outlook. The time scale associated with the interface
motion is xSL/U , and the diffusion time (the time it would take heat to diffuse from the interface
to the boundary) is x2

SL/αL. When the latter is significantly smaller than the former, i.e.,

U xSL

αL
≪ 1
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then the liquid can be assumed to be in a quasi–steady thermal state. That is, the temperature
distribution would be linear, and the gradient at the interface would be

dTL

dx

∣
∣
∣
∣
xSL

≈ TSL − T1

xSL

If this result is now used in

−kg
dTL

dx

∣
∣
∣
∣
xSL

= −ρU hSL

then one arrives at the simple DE

xSLdxSL =
kL(T1 − TSL)

ρ hSL

which is integrated from xSL = 0 to xSL to arrive at Eq. (7.36).

7.4 Radial Coordinates

The same procedure can be applied to cylindrical and spherical coordinates, in which the interface
moves in the r direction. One example of such a situation would be that of a cylindrical pipe
immersed in a frozen medium. At t = 0 the surface of the pipe is brought above the melting
temperature, and a liquid–solid interface propagates away from the pipe. Another example is that
of nucleation, in which a small spherical particle is immersed in a subcooled liquid. At t = 0
solidification occurs at the surface of the particle, and the interface moves out from the particle.

An analytical solution, however, is possible only if the initial radius of the cylinder or the
sphere is infinitesimally small, so that the cylinder or sphere can be modeled as a line or point

source of heat. A line source releases (or absorbs) a fixed amount of heat q′ out of/into a cylinder
of vanishingly small radius, per unit length of the cylinder. The temperature gradient at the surface
of this cylinder goes to infinity, yet the area of the cylinder goes to zero, and the product remains
constant. That is, the heat transfer in the medium surrounding the cylinder obeys the condition

lim
r→0

2π km r
dT

dr
= −q′ = constant, line source (7.37)

where km is the thermal conductivity of the medium surrounding the source and T is the temper-
ature in the medium. A similar expression is obtained for the point source,

lim
r→0

4π km r2
dT

dr
= −q = constant, point source (7.38)

Note that the temperature at the line/point source would be unbounded (i.e., to infinity or negative
infinity). This obviously is not physically realistic. In reality, all sources must have a finite radius
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R and a finite surface temperature. The point of the line/point source model, however, is not to
predict the temperature at the source. Rather, the method is used to model the temperature field
at a sufficiently large radii r from the source; large in the sense that r/R ≫ 1 so that, for all
practical purposes, the source can be modeled as a line or a point. The line source (in cylindrical
coordinates) or point source (spherical) condition is required to obtain an analytical solution to the
phase change, moving interface problem in radial coordinates. In such a problem, an initially solid
medium (or liquid) is exposed to a line or a point source (or sink) at t = 0, and a moving interface
propagates away from the source. The reason the line/point source condition is needed is because
the analytical solution relies on a similarity variable approach akin to that used in the previous
section. And this similarity method (in which the independent variable becomes η ∼ r/

√
αt) is

possible only if the problem does not offer a characteristic geometrical length. Such is the case with
the line or point source, since the radius of the source is essentially zero.

A line source method may be used to model a melting or solidifying interface that forms from
a ‘thin’ wire, for example. Such problems are, however, somewhat contrived because it must be
assumed that the heat transfer rate to the wire is fixed

Of course, it is entirely possible (and realistic) for the interface to begin on a finite–sized cylinder
or sphere (with non–negligible radius) and move away from the surface. Analysis of such problems,
however, would require numerical methods.

7.4.1 Moving interface from a line source

A similar problem to that worked in the previous section will now be examined, except one that
deals with a line source of heat. A medium is initially in the solid phase at temperature T0. At
time t = 0 a line source is turned on, resulting in a heat transfer rate (per unit length) of q′0. The
heat melts the liquid, and a circular interface propagates out from the source. The objective is to
determine the speed and position of the interface as a function of time.

The problem is cast in cylindrical coordinates. Governing DEs are

1

αL

∂TL

∂t
=

1

r

∂

∂r
r
∂TL

∂r
, 0 ≤ r < rSL (7.39)

1

αS

∂TS

∂t
=

1

r

∂

∂r
r
∂TS

∂r
, rSL ≤ r <∞ (7.40)

in which rSL is the location of the interface. The initial condition for the solid phase is

TS(x, t = 0) = T0 (7.41)

As was the case with the cartesian problem, the IC for the liquid phase cannot be formally posed.
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The boundary conditions have

lim
r→0

2π kL r
dTL

dr
= −q′0 (7.42)

TS(r → ∞, t) = T0 (7.43)

TL(r = rSL, t) = TSL (7.44)

TS(r = rSL, t) = TSL (7.45)

−kL
∂TL

∂r

∣
∣
∣
∣
r=rSL

+ kS
∂TS

∂r

∣
∣
∣
∣
r=rSL

= ρ hSL
drSL

dt
(7.46)

The BCs are the same as before, with the exception of the line source condition in Eq. (7.42).
The dimensionless temperatures can be defined as

TL =
TL − TSL

q′0/(2πkL)
(7.47)

TS =
TS − TSL

q′0/(2πkL)
(7.48)

There is no fixed characteristic length in the problem – which you should prove to yourself by
trying to derive a length from the fixed parameters of the problem – and the problem must admit
a similarity solution. For convenience, the similarity variable is defined as

η =
r2

4αLt
(7.49)

The transformed dimensionless equations and boundary conditions become

T
′′
L +

(

1 +
1

η

)

T
′
L = 0 (7.50)

T
′′
S +

(

β +
1

η

)

T
′
S = 0 (7.51)

lim
r→0

2η T
′
L = −1 (7.52)

TS(η → ∞, t) = T 0 =
T0 − TSL

q′0/(2πkL)
(7.53)

TL(η = ηSL, t) = 0 (7.54)

TS(η = ηSL, t) = 0 (7.55)

in which the prime denotes differentiation with respect to η, and β is now defined as

β =
αL

αS
(7.56)
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As before, the similarity solution results in ηSL = r2SL/(4αLt) being a constant. This implies that
the interface position will increase with t1/2, which is the same behavior seen with the cartesian
case.

The solutions to TL and TS are

TL =
1

2
(Ei(ηSL) − Ei(η)) (7.57)

TS = T 0

(

1 − Ei(βη)

Ei(βηSL)

)

(7.58)

In which Ei is the exponential integral function. It is defined here as

Ei(η) =

∫ ∞

η

exp(−x)
x

dx (7.59)

and important properties and limiting values are

dEi(x)

dx
=

exp(−x)
x

lim
x→0

Ei(x) → ∞

lim
x→0

(

r
dEi(x)

dx

)

→ 1

lim
x→∞

Ei(x) → 0

The exponential integral is an intrinsic function in Mathematica, although it is defined differently in
that the Mathematica version has the integral running in Eq. (7.59) from −η to ∞. The equivalence
between that used here and Mathematica is

Ei(x) = − ExpIntegralEi[−x]

The interface boundary condition in Eq. (7.46) can now be evaluated. The transformed form
appears as

T
′
L(ηSL) − kS

kL
T
′
S(ηSL) =

2π ραL hSL

q′0
(7.60)

and using the solutions for TL and TS and the properties of Ei(η) gives

exp(−ηSL) +
2T 0 exp(β ηSL)

Ei(β ηSL)
=

2π ραL hSL

q′0
ηSL (7.61)

This provides a nonlinear equation for the dimensionless interface position ηSL as a function of the
dimensionless parameters of the system.
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Chapter 8

Hybrid Analytical/Numerical
Methods in Conduction

8.1 Introduction

In spite of the apparent power and glory of the SOV/superposition/integral methods that have been
developed in the previous chapters, the methods remain applicable only to a relatively constrained
(or idealized) set of problems. The domain to which the analysis is applied must conform to an
orthogonal coordinate system (such as the cartesian, cylindrical, and spherical systems with which
we have limited our focus) and the boundary condition on each surface of the system must be
limited to a single type (fixed T , fixed gradient, or convection).

Seldom do such ideal situations occur in actual engineering practice. The domain, for example,
might take the shape of a coffee cup or a gear, which would not – at first glance – correspond to
the simple configurations that we have examined. Perhaps, on the other hand, the domain is in
the form of a rectangle or a cylinder, yet the boundary conditions on a particular surface might
be of ‘mixed type’, e.g., convective over one portion of the surface, and adiabatic on the remaining
portion.

When faced with such situations, a common practice is to hold one’s nose and apply a seemingly
unrealistic model to the actual system (e.g., the cow modelled as a sphere). The desire behind such
actions, of course, is to formulate a problem that admits an analytical solution – yet the formulated
problem may be so removed from reality that any conclusions based on the model problem would
be suspect.

The other approach to such problems, of course, is to apply a completely numerical method –
which would provide, in priciple, an exact (to the numerical accuracy of the algorithm) solution
to the differential equation and boundary conditions that are posed for the system. Numerical
methods and computational technology have advanced to the point where a relative idiot can use a
black–box package to obtain a vast set of numbers and color–coded, 3–D pictures of a ‘solution’. As

215
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you may detect, I am suspicious of such methods – because they can remove analytical reasoning
from the so–called analysis of a problem.

The objective of this chapter is to present methods of extending the analytical approaches devel-
oped in the previous chapters to situations in which, formally speaking, analytical solutions do not
exist. The basic procedure of the methods is to use an eigenfunction expansion of the temperature
field which identically satisfies the governing differential equation and as many of the boundary
conditions as possible. The boundary conditions that cannot be analytically satisfied are matched
in an approximate sense, by manipulation (or fitting) of the solution to the prescribed boundary
conditions. This last step will involve numerical strategies (specifically, solution of linear equa-
tions), and because of this the methods can be viewed as a hybrid analytical/numerical approach.
Alternatively, such approaches are often referred to as spectral or moment methods.

The advantage of hybrid methods over completely numerical methods (such as finite difference
and finite element) is that the resulting system of equations can be considerably smaller under
the hybrid approach, and that integrated quantities such as heat transfer from a surface can be
obtained analytically from the solution. Hybrid methods can also be applied to situations involving
mixed coordinate systems (such as a combination of a rectangle and a cylindrical system) which are
difficult to ‘grid’ under standard discretized–based numerical methods. In addition, the symbolic
manipulation and linear equation solving capabilities of Mathematica make application of hybrid
methods relatively simple.

There is no unique procedure for developing a hybrid method – the approach requires some
mathematical imagination and an ability to anticipate the expected form of the temperature field.
In view of this, the presentation on hybrid methods will be given as a series of examples.

8.2 Mixed boundary conditions

8.2.1 The rectangular enclosure

A square, 2–D region, illustrated in Fig. 8.1, has adiabatic boundaries at x = 0 and L. The bottom
surface, at y = 0, is cooled by convection that is characterized by h and T∞,1. The top surface at
y = L, on the other hand, has mixed boundary conditions. From x = 0 to x1 the surface is heated
by convection from T∞,2, with the same convection coefficient h as on the bottom surface, and from
x = x1 to L the surface is adiabatic.

Even though both the convection and flux conditions that exist on the top surface could be
posed as homogeneous (by suitable definition of T ), the fact that they are of two distict types
would prevent the characteristic form of the v(y) solution from matching both BCs simultaneously.
The problem therefore would not have a closed–form analytical solution.

The hybrid procedure begins by posing an eigenfunction expansion for the temperature field in
the region. This expansion will automatically satisfy the DE (here, Laplace’s equation) and should
be defined so that it matches as many of the boundary conditions as possible.
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Figure 8.1: mixed boundary conditions

The boundary conditions at x = 1, x = L, and y = 0 are all of single–type, and the expansion
can be modelled so that these conditions are identically satisfied. Specifically, if the dimensionless
variables are defined by

T =
T − T∞,1

T∞,2 − T∞,1
, x =

x

L
, y =

x

L

for which the boundary conditions become

∂T

∂x

∣
∣
∣
∣
0

= 0 (8.1)

∂T

∂x

∣
∣
∣
∣
1

= 0 (8.2)

∂T

∂y

∣
∣
∣
∣
0

= BiT (8.3)

∂T

∂y

∣
∣
∣
∣
1

=

{

−Bi(T − 1), x ≤ x1

0, x > x1

(8.4)

then the expansion, eigenfunction, and eigencondition of

T = A0 (Bi y + 1) +
∞∑

n=1

Anφn(x) (Bi sinh(λny) + λn cosh(λny)) (8.5)

φn(x) = cos(λnx) (8.6)

λn = nπ (8.7)



218 CHAPTER 8. HYBRID ANALYTICAL/NUMERICAL METHODS IN CONDUCTION

will satisfy Eqs. (8.1–8.3). The leading term in Eq. (8.5) is needed to account for the zeroth
eigenvalue part of the solution – recognize that this term would be the only remaining part of the
solution for the case of x1 → 1 (for which the top surface would be entirely convective and the
solution would become 1–D).

If we were dealing with a well–behaved problem, the expansion coefficients in Eq. (8.5) would
be obtained explicitly from application of the orthogonality properties of φn on the one remaining
inhomogeneous BC. Equation (8.4), however, will not provide an orthogonal relation for the coeffi-
cients – because the convective condition (which is inhomogeneous) is maintained only to x = x1.
Nevertheless, the solution will now be applied to Eq. (8.4) per the usual procedure, and we will see
what happens.

Replacing the solution directly into the BC gives

A0Bi+
∞∑

n=1

Anφn(x)λn (Bi cosh(λn) + λn sinh(λn))

=







Bi−Bi

[

A0 (Bi+ 1) +
∞∑

n=1

Anφn(x) (Bi sinh(λn) + λn cosh(λn))

]

x ≤ x1

0 x > x1

The equation can now be multiplied by the eigenfunction φm and integrated over x from 0 to 1.
On the right hand side, the integral can be split into two parts, covering x = 0 to x1 and x1 to 1.
And the second part will be zero, per the above formula. The result is

∫ 1

0

[

A0Bi+
∞∑

n=1

Anφn(x)λn (Bi cosh(λn) + λn sinh(λn))

]

φm(x) dx

= Bi

∫ x1

0

{

1 −A0 (Bi+ 1) −
∞∑

n=1

Anφn(x) (Bi sinh(λn) + λn cosh(λn))

}

φm(x) dx

The left hand side is orthogonal, and all terms in the expansion disappear except the one for n = m.
This is not the case, however, on the right hand side. For m = 0 (i.e., the zeroth eigenvalue for
which φ0 = 1), the result is (after cancelling the common Bi factor)

A0 = [1 −A0 (Bi+ 1)] x1 −
∞∑

n=1

An
sin(λnx1)

λn
(Bi sinh(λn) + λn cosh(λn)) (8.8)

and for m > 0, the formula appears

1

2
Am λm (Bi cosh(λm) + λm sinh(λm)) = Bi [1 −A0 (Bi+ 1)]

sin(λnx1)

λn

−Bi
∞∑

n=1

AnGmn (Bi sinh(λn) + λn cosh(λn)) (8.9)
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where Gmn is shorthand for the integral

Gmn =

∫ x1

0
φm(x)φn(x) dx

=







(m+ n) sin((m− n) π x1) + (m− n) sin((m+ n) π x1)

2 (m− n) (m+ n) π
, m 6= n

2mπ x1 + sin(2mπ x1)

4mπ
, m = n

(8.10)

The previous equations shown that application of the mixed boundary condition does result
in a relationship for the expansion coefficients (in Eqs. (8.8) and (8.9)) – yet for this case all of
the coefficients are linearly related to each other. That is, Am depends on A0, A1, A2, . . .. This
relationship is not of much use if one retains the precise mathematical definition of the infinite
series expansion – i.e., the summation of an infinite number of terms. However, if the upper limit
on the series expansion is fixed at the onset at some number N , then the derived relationships lead
to a system of linear equations for the coefficients. That is, Eqs. (8.8) and (8.9) can be condensed
into the form

Am +
N∑

n=0

FmnAn = fm, m = 0, 1, 2, . . . N (8.11)

in which the matrix Fmn and the vector fm would depend on the parameters Bi and x1. For
numerical values of these parameters, this system of N+1 equations could be solved using standard
numerical methods to yield numerical values of the N + 1 expansion coefficients.

The system of equations in Eqs. (8.11) can be viewed as moment equations. In a most general
sense, a moment of some function f(x), defined with respect to the weighting function φm(x), would
be given by

〈f φm〉 ≡
∫ 1

0
f(x)φm(x) dx

in which the braces < . . . > denote the inner product – which can be viewed as a generalized dot
product1. The function f to which we are applying the moments corresponds, in the case here,
to the normal temperature gradient at y = 1, and the moments would be equal to Am times a
constant. If the convective condition were maintained across the entire upper face (which is the
sort of problem examined in all prior SOV applications), the moment equations in Eq. (8.11) would
reduce to a diagonal form, i.e., the matrix G would be identically zero. Consequently, an explicit,
closed–form formula could be derived for the expansion coefficients

For mixed BCs (and for other situations which will be examined in subsequent sections) the
moment equations are no longer diagonal – yet this only limits our ability to obtain explicit formulas

1 The mth moment of the eigenfunction φn is, by the very property of φn, zero except for m = n. This is why
such functions are called orthogonal. In euclidian geometry a dot product between two orthogonal vectors is zero
(e.g., x̂ · ŷ = 0). By the same concept, the eigenfunction set φ0, φ1, . . . φN can be viewed as an N th–dimensional set
of basis ‘vectors’ (or directions).
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for the coefficients. Rather, we must resort to linear equation solution methods to numerically
calculate the set of coefficients. The validity and accuracy of the solution is not compromised
by this feature (providing that the equations are correct and the equations can be solved). As is
the case with standard SOV solutions, the solution would be mathematically exact in the limit of
N → ∞ – and anything less is approximate.

The coding and solution procedure is straightforward to implement on Mathematica– since the
package contains routines for solution of linear equations and for symbolic integration. The code
used to obtain a solution is listed below

g[m_, n_] :=(2 m Pi x1 + Sin[2 m Pi x1])/

(4 m Pi) /; n == m && m > 0

g[m_, n_] := ((m + n) Sin[(m - n) Pi x1] +

(m - n) Sin[(m + n) Pi x1])/(2 (m - n) (m + n) Pi) /; m != n

g[m_, n_] := x1 /; n == m && m == 0

g[n_] := Which[n == 0, 1, n > 0, 1/2]

phi[n_,x_]:=Cos[n Pi x]

lam[n_]:=Pi n

term[n_, y_] :=an[0] (bi y + 1) /; n == 0

term[n_, y_] := (an[n] (Cosh[lam[n] y] lam[n]+

bi Sinh[lam[n] y]))/Cosh[lam[n]] /; n > 0

temp[x_, y_] :=Sum[term[n, y] Cos[lam[n] x],{n, 0, ntot}]

ntot = 50; x1 = 0.5; bi = 100;

anvec = Table[an[n], {n, 0, ntot}];

eqns = Table[(D[term[m, y], y] /.y -> 1) g[m] == bi g[m, 0] -

bi Sum[term[n, 1] g[m, n],{n, 0, ntot}], {m, 0, ntot}];

soln = NSolve[eqns, anvec][[1]];

The function g[m,n] defined in the first three lines denotes the integral Gmn in Eq. (8.10) (in
which the case of m = 0 has been included into the definition), and g[n] gives the normalization of
the eigenfunction. The formulas for Gmn were entered into the code by calculation of the integral
using Integrate and subsequent pasting of the result into a function definition. Note that placing
a ‘/;’ following a function definition results in a conditional test. That is, the commands /; n

== m && m > 0 following the first definition indicates that the definition for g[m,n] holds only for
m = n and m > 0. The quantity term[n,y] represents the y–dependent part of the nth term in
the series – including the unknown expansion coefficients An. I have divided this term in the code
by cosh(λn), which eliminates excessively large elements in the coefficient matrix Gmn and thereby
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Figure 8.2: isotherms for the mixed BC problem

avoids numerical loss–of–precision errors. The limit N (=ntot) is assigned a value of 50, and
numerical values are also given to Bi and x1. The quantity anvec represents a vector (or a list in
Mathematica parlance) of the unknown coefficients, and eqns represents a list of the equations for
each m. Observe how the equations were formulated; I let Mathematica calculate the y derivative
of the solution as it appears in the BC, and the use of the term[n,y] and g[m,n] functions enables
the equations for m = 0 and m > 0 to be written with the same form.

Contour plots of the temperature field, and a plot of the normal gradient at y = 1, are generated
with the following commands;

ContourPlot[temp[x,y]/.soln,{x,0,1},{y,0,1},PlotPoints->40,

Contours->40,ContourShading->False]

Plot[(D[temp[x,y],y]/.y->1/.soln),{x,0,1}]

The plots from the computations appear in Fig. 8.2 and 8.3, in which Bi = 100 and x1 = 0.5.
The contour plot shows, qualitatively, that the upper surface temperature is nearly uniform for x ≤
0.5 (which would be the case for the large Bi used) and adiabatic elsewhere. A more quantitative
measure of the success of the method is provided by the plot of the normal gradient. As can
be seen, the gradient is not identically zero at all points along the surface for x > 0.5 – rather, it
oscillates about zero. This behavior is similar to that encountered in Ch. 3 when a step function was
expanded into a series of eigenfunctions. The oscillations can be viewed as an aliasing error in the
solution. This occurs because the minimum wavelength (or length scale) that can be represented



222 CHAPTER 8. HYBRID ANALYTICAL/NUMERICAL METHODS IN CONDUCTION

0.2 0.4 0.6 0.8 1

5

10

15

20

Figure 8.3: normal gradient at y = 1, mixed BC problem
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Figure 8.4: total heat transfer vs. truncation number N

by the truncated series is ∼ π/N (∼ 0.06 for N = 50), yet the step change that occurs at x = x1

has a wavelength of essentially zero. As you may recall from Fourier transforms, the ‘information’
in the BC that has a wavelength smaller than π/N will ‘appear’ in the series as spurious signals.
If, on the other hand, the form of the BC was such that the change from convective to adiabatic
conditions was continuous, then the series would have provided a much improved representation of
the exact solution.

Numerical methods based on finite difference or finite element methods can resolve the tem-
perature field to the scale of the steps size ∆x used to discretize the governing equations. For the
2–D problem examined here, and for a constant mesh size, these numerical methods would require
solution of ∼ 1/∆x2 equations to obtain the temperature field. A comparable level of precision
between the numerical and the hybrid methods would have ∆x ∼ π/N – which indicates that the
hybrid method will require solution of significantly fewer equations (on the order N) to obtain the
same level of precision as the numerical methods. This is not surprising, because the hybrid method
utilizes a functional form of the solution which automatically satisfies the differential equation (and
the homogeneous BCs, in this case).
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Figure 8.5: sawtooth region

Observe also that the dimensionless total heat transfer (per unit width in and out of the paper)
across the region would be

q′ =

∫ 1

0

∂T

∂y

∣
∣
∣
∣
y=0

dx = BiA0 (8.12)

(of course, the derivative could have been evaluated on the upper surface as well – the same result
would be obtained). The point to make here is that the total heat transfer – which would be an
important quantity from the solution – is obtained from a single moment of the solution. The value
of the heat transfer converges fairly quickly for increasing N , which can be observed in Fig. 8.4.

8.2.2 The saw–tooth region

Prediction of conduction heat transfer across a gap is trivial if the structure of the gap corresponds
to two parallel surfaces separated by a distance L. In many relevant situations – such as in the
prediction of contact resistance – the gap surfaces are rough and irregular. As a first stab towards
predicting heat transfer between two rough surfaces, the surfaces are modeled in a sawtooth pattern
as illustrated in Fig. 8.5. The geometry of the pattern is characterized by the gap width a and
length L. The separate surfaces are at uniform temperatures of T1 and T2, respectively.

The given situation obviously does not, as a whole, correspond to an orthogonal coordinate
frame. However, providing that a/L ≤ 0.5, a section of the geometry can be modeled as the 2–D
rectangular region of length L and width a. This is shown in Fig. 8.5, in which the coordinate x
runs in the L direction. For a/L > 0.5 the tangent from one ‘tooth’ (seen as the dotted line in
Fig. 8.5) would no longer intersect with the face of the opposite tooth, and a temperature field
could not be described by that in a single rectangular subregion.

Let L represent the characteristic length and T1 the characteristic temperature. Redifine the
variables as a→ a/L, T → (T − T1)/(T2 − T1), x→ x/L, and y → y/L.

The boundary conditions on the x = 0 and 1 faces are simple; T of 0 and 1, respectively. The
situation is more complicated on the y = 0 and a surfaces – in that part of the surface (that
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corresponding to the physical surface) is at a uniform T (either 0 on the y = a face or 1 on the
y = 1 face), yet the remaining part (that corresponding to the gap) is at an unknown condition.
Formally speaking, the problem stands as

T (0, y) = 0

T (1, y) = 1

T (x, 0) =

{

?, x ≤ a

1, x > a
(8.13)

T (x, a) =

{

0, x < 1 − a

?, x ≥ 1 − a
(8.14)

For this particular problem, the needed boundary condition information must be obtained from
the symmetries in the temperature field. It should be easy to see that the temperature field
throughout the region has a sort of ‘reversed’ mirror symmetry, in that

T (x, y) = 1 − T (1 − x, a− y) (8.15)

Prove this to yourself by testing several pairs of points within the region (including the surfaces).
With this in mind, the analytical form of the solution could be cast as

T (x, y) = x+
N∑

n=1

An φn(x) [sinh(λny) + (−1)n sinh(λn(a− y)] (8.16)

φn(x) = sin(λnx) (8.17)

λn = πn (8.18)

The superposition of the leading term x into the solution provides a means of satisfying the BC
at x = 1; it also would give the (trivially) exact solution for a → 1, for which the problem would
become 1–D. The eigenfunctions are chosen in the x direction because (with the superposition of
x) this direction is homogeneous. The particular form of the solution is based on the fact that
φn(1 − x) = −(−1)nφn(x) – which will provide the desired symmetry. The use of the hyperbolic
sin function is arbitrary; cosh would have given an equivalent result in the end.

The general solution in Eq. (8.16) will automatically satisfy the condition that T (x, 0) = T (1−
x, a) – which when applied to the gap (x ≤ a for y = 0) would seem to provide a boundary
condition. This, however, is not the case – the temperature profile in the gaps is still unknown; the
form of the solution simply states that the profile in both gaps are identical.

The information required to close the problem comes from a higher–level symmetry in the prob-
lem. Specifically, the line joining opposite corners of the hot and cold surfaces would represent a
plane of symmetry (i.e., an adiabatic surface), as illustrated in Fig. 8.6. The temperature distrib-
ution in the square, a× a subregion at either end of the domain would be symmetrical about this
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Figure 8.6: symmetries in the region

adiabatic plane. With regard to the boundary condition in the gap, it could then be stated that

T (x, 0) =

{

T (a, a− x) = 1 − T (1 − a, x) x ≤ a

1, x > a
(8.19)

This piece of information will close the problem. The boundary condition is not of a ‘traditional’
form – in that it relates the temperature on the boundary to the interior temperature – yet it does
provide an adequate constraint on the solution that is independent of Eq. (8.15).

Equation (8.16) is now substituted into Eq. (8.19), and the result is multipled by φm(x) and
integrated over x from 0 to 1 to obtain

∫ 1

0

(

x+
N∑

n=1

An φn(x) (−1)n sinh(λna)

)

φm(x) dx

=

∫ a

0

(

1−(1−a)−
N∑

n=1

An φn(1−a)
[

sinh(λnx)+(−1)n sinh(λn(a−x)
]
)

φm(x) dx+

∫ 1

a
φm(x) dx

Similar to the previous example, the left hand side can be interpreted as the mth moment of the
surface temperature along y = 0 – which will be dependent solely on the mth expansion coefficient.
The integrands involving An on the right hand side, however, are not orthogonal functions and
consequently all of the expansion coefficients will exist following the integration.

In a condensed form, the above equation will appear as

(−1)n

2
sinh(λma)Am = fm(1) − (1 − a)fm(a) − gm +

N∑

n=1

An φn(1 − a)Gnm (8.20)
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in which

fm(y) =

∫ y

0
φm(x) dx (8.21)

gm =

∫ 1

0
xφm(x) dx (8.22)

Gnm =

∫ a

0

[

sinh(λnx) + (−1)n sinh(λn(a− x)
]

φm(x) dx (8.23)

All of these integrals can be worked out by simple inspection or by Mathematica, and the explicit
results need not be given here.

Optimized Mathematica code

The system of equations in Eq. (8.20) can be directly coded into Mathematica, and a set of expansion
coefficients (for a given N and a) can be calculated via the Solve function. The Mathematica code
which obtains the solution is given below;

fm[m_] := (-m Pi Cos[m Pi] + Sin[m Pi])/(m^2 Pi^2)

gm[m_, x1_] := (1 - Cos[m Pi x1])/(m Pi)

gnm[n_, m_] :=1/((m^2 + n^2) Pi) (m ((-1)^n - Cos[a m Pi]) +

n Coth[a n Pi] Sin[a m Pi] -

(-1)^n n Csch[a n Pi] Sin[a m Pi])

phi[n_,x_]:=Sin[lambda[n] x]

lambda[n_]:=n Pi

temp[x_,y_]:=

x+Sum[an[n](Sinh[lambda[n] y]+(-1)^n Sinh[lambda[n](a-y)])/

Sinh[n Pi a]phi[n,x],{n,1,ntot}]

ntot=50;a=.25;

coefvec=Table[an[n],{n,1,ntot}];

eqns=Table[fm[m]+an[m] (-1)^m /2==

gm[m,1]-(1-a)gm[m,a]-

Sum[an[n] phi[n,1-a] gnm[n,m],{n,1,ntot}],

{m,1,ntot}];

soln=Solve[eqns,coefvec][[1]]

The formulas for the integrals, given in the first three function definitions, were again coded
by first using Integrate to evaluate the integral, and then pasting the result into a function
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Figure 8.7: surface temperature distribution, a = 0.25

definition. As before, I divided each term in the series with sinh(λna) to avoid complaints from
Mathematica due to an ill–conditioned matrix (which is essentially the same as dividing Eq. (8.20)
by sinh(λma)), and the integral definitions reflect this scaling. Realize that you would not want to
define the integral functions using Integrate in the definition – this would be terribly inefficient
as Mathematica would derive the integral each and every time the functions are called. Rather, the
optimized code used here employs the symbolic result of the integrals – which can be generated
much faster.

Inefficient (yet easy) Mathematica code

If you are willing to sacrifice execution speed for code simplicity, there is an easy and direct method
to translate the formulas for the An coefficients into Mathematica instructions. The approach is to
leave the formulas for the moment equations in the most basic form and let Mathematica take care
of the details. In particular, the equation for the mth moment is obtained directly from Eq. (8.19)
as ∫ 1

0
T (x, 0)φm(x) dx =

∫ 1

0
φm(x) dx−

∫ a

0
T (1 − a, x)φm(x) dx (8.24)

Mathematica could perform the integrations providing that φm(x) and T (x, y) have a defined func-
tional form – which are given in Eqs. (8.16–8.18). The An coefficients in Eq. (8.16), however,
would initially be undefined – and would appear as variables in Eq. (8.24) for each m. Executing
Eq. (8.24) for m = 1, 2, . . . N would therefore given N equations for the N unknown coefficients.

This strategy can be applied in a few lines of code;
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phi[n_,x_]:=Sin[lambda[n] x]

lambda[n_]:=n Pi

temp[x_,y_]:=x+Sum[an[n](Sinh[lambda[n] y]+(-1)^n Sinh[lambda[n](a-y)])/

Sinh[n Pi a]phi[n,x],{n,1,ntot}]

ntot=5;a=.25;

coefvec=Table[an[n],{n,1,ntot}];

eqns=Table[

Integrate[temp[x,0] phi[m,x],{x,0,1}]==

Integrate[phi[m,x],{x,0,1}]-

Integrate[temp[1-a,x]phi[m,x],{x,0,a}],

{m,1,ntot}];

soln=Solve[eqns,coefvec][[1]]

Observe the literal translation of the working formulas in Eq. (8.24) into Mathematica code.
This approach works – it is entirely equivalent to the optimized code – yet it is slow. As discussed
above, the integrations are performed ‘from scratch’ for each n and m pair. Furthermore, the
approach does not recognize beforehand the orthogonality inherent in the left hand side integral.
Nevertheless, this approach allows for a quick determination (using only a few terms in the series)
of the correctness in the formulation.

Results

Results are presented for a = 1/4, in which 50 terms were retained in the series. A precise test of
this limit could be obtained from, say, examination of the convergence of the total heat transfer
rate across the cooled surface for increasing N . I used 50 here because it ‘qualitatively’ gave results
that looked correct (a poor standard). Plotted in Fig. 8.7 is the temperature profile along the
y = 0 surface as a function of x – which indicates directly that the imposed uniform temperature
boundary condition is met on the physical surface (x > a). An additional measure of accuracy is
seen in the contour plots of Fig. 8.8, in which I superimposed three contour plots together to form a
plot for the sawtooth geometry. The lines line up very nicely, and the symmetry condition between
adjacent corners – which provided the BC information – is well established.

Heat transfer

The heat transfer rate across the gap can be obtained by integrating the normal flux over the
isothermal surface. For this situation the heat transfer rate per unit width (in and out of the
paper) could be given from a ‘shape factor’ formula via

q′ = S k(T1 − T2) (8.25)
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Figure 8.8: superimposed temperature profiles in the sawtooth
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Figure 8.9: Dimensionless heat transfer in the sawtooth gap

where the dimensionless shape factor S is defined by

S = −
∫ 1

a

∂T

∂y

∣
∣
∣
∣
0

dx (8.26)

Note that the integral of the flux covers only the isothermal surface along y = 0. Since this surface
does not span the limits of the eigenfunction, the integral will not result in an orthogonal product
of eigenfunctions, i.e., all the terms in the series for T will contribute to the total heat transfer.

In the limit of a → 0 the flux will be dominated by 1–D conduction across the gap, and
accordingly the flux will become linearly proportional to 1/a in this limit. The quantity Sa would
therefore approach unity for small a. It is possible in this limit to use simple shape factor analyses
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(from any undergraduate heat transfer text) to estimate the heat transfer rate. Specifically,

Sa ≈ 1 − 2a+ 0.54 a (8.27)

This approximation superimposes the 1–D conduction formula for a gap of thickness a and length
1 − 2a with a 2–D formula for heat transfer across a corner. Plotted in Fig. 8.9 are the exact and
approximate (dotted line) formulas for the dimensionless Sa. Evidently, all the effort that went in
to the exact formula is of questionable value – because the approximate formula predicts the heat
transfer rate rather well. This sort of information, though, is difficult to assess without the exact
‘benchmark’ provided here.

8.3 Nonorthogonal domains

8.3.1 Joined rectangular regions

This example relates to the heat removal from small electronic components by conduction to a
cooled boundary. The components are modelled as an array of 2–D rectangular elements, of width
2a and height b, and they are situated on an adiabatic boundary. The centers of the elements are a
distance 2L apart, and the elements will be assumed to have a uniform surface temperature of T1.
The cooled boundary is located a distance H above the lower adiabatic boundary, and the surface
is maintained at a uniform temperature T2. All of this is illustrated in Fig. 8.10.

We will assume that the number of elements in the array is large (i.e., effectively infinite).
Because of this, the temperature distribution about each array would be symmetrical. In particular,
the vertical planes running midway between the elements and midway between the spaces would
be adiabatic in view of the required symmetry of the temperature field. It is therefore possible to
analyze the array as a whole by examining the temperature field about a single array, as shown in
Fig. 8.11. I’ve flipped the original configuration, so that the cooled surface is on the bottom and
the element is in the top right hand corner.

The heat transfer domain for this problem corresponds to a non–rectangular cartesian system.
The SOV method will certainly not be applicable for such a system – because the location of the
surfaces cannot be described simply by x = constant or y = constant. Rather, the location of the
surfaces are a function of both variables; e.g., the side of the element exists at x = L− a providing

that y > H − b.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

H

b a
L2

2

T1
T2

Figure 8.10: an array of heated rectangular elements
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Figure 8.11: the equivalent domain
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Figure 8.12: the split domain domain

In the following section we will examine a technique in which a single eigenfunction expansion
is used to represent the temperature field throughout the entire domain – much as was done in
the previous two examples yet one that involves more sophisticated mathematics. The problem at
hand, though, lends itself well to a split representation of the temperature field.

In the split approach, the domain is split into two or more sub–domains (or regions), and
expansions are formulated for the temperature field within each region. Obviously, each region
should be of a shape that will conform to an orthogonal coordinate system (i.e., rectangular)
so that analytical solutions can be formulated for the temperature field within the region. The
boundary conditions on boundaries between one region and another will not be known a priori –
yet it is possible to obtain complete sets of moment equations for each region by application of
continuity principles at the common boundaries.

For the problem at hand, the heat transfer domain can be split into region A corresponding
to y ≤ H − b (which would have width L), and region B corresponding to y > H − b (of width
L − a) (Fig. 8.12). From this point on the problem taken to be dimensionless, in which L is the
characteristic length and T1 the characteristic temperature. Denote as TA(x, y) and TB(x, y) the
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temperature in regions. The boundary conditions along surfaces that are not common to both A
and B can be posed in ‘traditional’ form, i.e.,

TA(x, 0) = 0
∂TB

∂y

∣
∣
∣
∣
y=H

= 0

∂TA

∂x

∣
∣
∣
∣
x=0

= 0
∂TB

∂x

∣
∣
∣
∣
x=0

= 0

∂TA

∂x

∣
∣
∣
∣
x=1

= 0 TB(1 − a, y) = 1 (8.28)

Recognize that the same coordinate origin is used for B as for A; in this convention TB is valid
only for 0 ≤ x ≤ 1 − a, H − b ≤ y ≤ H whereas TA is limited to 0 ≤ x ≤ 1 and 0 ≤ y ≤ H − b.
Separate coordinate origins could be used for both domains – the choice is one only of style – yet
the origin(s) must be used consistently in formulating the BCs and in posing the solution.

Three BCs are provided each for TA and for TB in Eqs. (8.28); closure of the problem requires
one additional BC for A and B. These are provided by continuity (or matching) conditions along
the interface between A and B, which will correspond to continuity of temperature and continuity
of flux. Specifically, these conditions will appear as

TA(x,H − b) =

{

TB(x,H − b), 0 ≤ x ≤ 1 − a

1, 1 − a ≤ x ≤ 1
(8.29)

∂TB

∂y

∣
∣
∣
∣
y=H−b

=
∂TA

∂y

∣
∣
∣
∣
y=H−b

, 0 ≤ x ≤ 1 − a (8.30)

The upper surface boundary condition of A appears as a mixed condition, in which part of the
surface is open (and connected with B) and the other part is at the uniform element temperature
of unity. Solution of the problems for A and B therefore becomes somewhat equivalent to that
developed for the mixed BC case of Sec. 8.2.1. Specifically, we now formulate general solutions for
TA and TB and develop moment equations for the unknown expansion coefficients in each solution.

To generate the moment equations, it will be absolutely necessary to formulate the general
solutions so that the eigenfunctions run in the direction of the shared boundary between A and B,
i.e., the x direction. This should be easy to do, because the problem for A is naturally homogeneous
in the x direction, and the problem for B can be made homogeneous by a simple superposition.
Specifically, let the general solutions be defined by

TA(x, y) = A0y +

NA∑

n=1

An φn(x)
sinh(λny)

sinh(λn(H − b))
(8.31)

φn(x) = cos(λnx) (8.32)

λn = nπ (8.33)
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TB(x, y) = 1 +

NB∑

n=1

Bn ψn(x)
cosh(βn(H − y))

cosh(βnb)
(8.34)

ψn(x) = cos(βnx) (8.35)

βn =
(2n− 1)π

2(1 − a)
(8.36)

These solutions are formulated to represent the most general solutions to Laplace’s equation which
identically satisfy the BCs in Eqs. (8.28). The leading term of A0y in Eq. (8.31) accounts for the
zeroth eigenvalue contribution, and the 1 in Eq. (8.34) represents a superposition which satisfies
the unit temperature condition at the right face (recognize that the eigenfunctions ψn(x) give 0
at x = 1 − a). The hyperbolic, y–dependent functions in the series are scaled with respect to
their values at the common boundary; this is done solely for numerical reasons in order to avoid
complaints from Mathematica during solution of the moment equations. Observe also that the series
for A and B are limited to NA and NB terms; these numbers need not be identical. Obtaining
comparable precision in the formulas for TA and TB will require that φNA

and ψNB
have similar

wavelengths – which in turn will imply that NA/NB ∼ 1/(1 − a).

Moment equations are now generated for A and B per the methods developed in the previous
sections. Equation (8.29) is multiplied by φm and integrated over the region for A, and likewise
Eq. (8.30) is multiplied by ψm and integrated over the B region. This gives, symbolically,

∫ 1

0
TA(x, 1 − a)φm(x) dx =

∫ 1−a

0
TB(x, 1 − a)φm(x) dx

+

∫ 1

1−a
φm(x) dx (8.37)

∫ 1−a

0

∂TB

∂y

∣
∣
∣
∣
y=1−a

ψm(x) dx =

∫ 1−a

0

∂TA

∂y

∣
∣
∣
∣
y=1−a

ψm(x) dx (8.38)

The left hand side of both equations will yield an orthogonal equation and thus retain only the mth

coefficient term, whereas the right hand side will involve all terms. Substitution of Eqs. (8.31) and
(8.34) into the moment equations results in the following system of equations for the expansion
coefficients;

fmA0 = δm0 +

NB∑

n=1

Bn gmn (8.39)

−1 − a

2
βm tanh(βmb)Bm = A0 g0m +

NA∑

n=1

λn

tanh(λn(H − b))
An gnm (8.40)
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in which

δm0 =

{

1, m = 0

0, m 6= 0
(8.41)

fm =

{

H − b, m = 0
1
2 , m 6= 0

(8.42)

gmn =

∫ 1−a

0
φm(x)ψm(x) dx

=







1 − a

π

[

cos[(n− (1 − a)m)π]

1 − 2(n− (1 − a)m)
+

cos[(n+ (1 − a)m)π]

1 − 2(n+ (1 − a)m)

]

, n− 1

2
6= (1 − a)m

1 − a

2
, n− 1

2
= (1 − a)m

(8.43)

The first formula appearing in Eq. (8.43) is the one derived by Mathematica. Mathematica will
not automatically find the limiting value of this formula when it is indeterminate (i.e., when the
denominator goes to zero) – it simply complains and returns indeterminate. Avoiding such
problems requires some intervention by the user (you) – such as finding the limit (by application
of L’Hospital’s rule) and defining the function for gmn so that the correct form is chosen.

Optimized Mathematica code

The listing of the code is as follows;

lambda[n_]:=Pi n

beta[n_]:=(2n-1) Pi/(2(1-a))

phi[n_,x_]:=Cos[lambda[n] x]

psi[n_,x_]:=Cos[beta[n] x]

delta[n_]:=Which[n==0,1,n>0,0]

fn[n_]:=Which[n==0,h-b,n>0,1/2]

gmn[m_,n_,a_]:=Which[n-.5!=(1.-a)m,

((-1+a) ((1+2 (-1+a) m-2 n)

Cos[((-1+a) m+n) Pi]+(1-2 (-1+a) m-2 n)

Cos[(m-a m+n) Pi]))/

((1+2 (-1+a) m-2 n) (-1+2 (-1+a) m+2 n)Pi),

1==1,(1-a)/2]
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ta[x_,y_]:=

an[0]y+Sum[

an[n] phi[n,x]Sinh[lambda[n] y]/

Sinh[lambda[n] (h-b)],{n,1,ntota}]

tb[x_,y_]:=1+Sum[bn[n] psi[n,x]Cosh[beta[n](h-y)]/

Cosh[beta[n] b],{n,1,ntotb}]

h=.75;a=.5;b=.3;ntota=50;ntotb=25;

anvec=Flatten[{Table[an[n],{n,0,ntota}],

Table[bn[n],{n,1,ntotb}]}];

eqns=Flatten[{

Table[fn[m] an[m]==delta[m]+Sum[bn[n]gmn[m,n,a],

{n,1,ntotb}],{m,0,ntota}],

Table[-(1-a)/2 beta[m] Tanh[beta[m] b] bn[m]==

an[0] gmn[0,m,a] +

Sum[lambda[n]/Tanh[lambda[n](h-b)]an[n]gmn[n,m,a],

{n,1,ntota}],{m,1,ntotb}]

}];

soln=Solve[eqns,anvec][[1]];

temp[x_,y_]:=Which[x>=1-a&&y>=h-b,1,y>h-b,tb[x,y],

y<=h-b,ta[x,y]]

ContourPlot[temp[x,y]/.soln,{x,0,1},{y,0,h},

Contours->20,PlotPoints->40,

AspectRatio->h,ContourShading->False,

TextStyle->{FontFamily->"Times",FontSize->12},

FrameLabel->{StyleForm["x",FontSlant->"Italic",

FontSize->16],StyleForm["y",FontSlant->"Italic",

FontSize->16]},RotateLabel->False]

The structure of the code follows that given in previous codes; the only new feature here is the
use of the Flatten command. This operation ‘flattens’ nested lists, so that

Flatten[{{a, b}, {c, d}}] = {a, b, c, d}

It is used to combine the two sets of coefficient and equation lists generated for the A and B parts
into single lists, for which Solve can then be applied. I also define a single function temp[x,y]



236 CHAPTER 8. HYBRID ANALYTICAL/NUMERICAL METHODS IN CONDUCTION

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Figure 8.13: isotherms for the nonrectangular domain
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Figure 8.14: cooling pipe array

which picks out the proper part of the solution (A or B) depending on the location of x and y in
the domain.

The contour plot is given in Fig. 8.13, and it clearly shows the first–order continuity in the
temperature field between A and B.

8.3.2 Rectangular–cylindrical systems

It often is impossible to split the non–orthogonal domain into a set of individually–orthogonal
regions; this will occur whenever the boundaries of the domain cannot be simply described by a
single coordinate system. For such conditions a single expansion for the temperature must be ‘fit’
to match the conditions on all surfaces.

As an example, consider a somewhat similar problem to that examined in the previous section.
Heat is removed from an isothermal surface to an array of circular cooling channels, which each
channel having a radius R, a channel–to–channel separation distance of 2L, and a position of H1

below the heated surface and H2 above an adiabatic boundary. The situation is illustrated in
Fig. 8.14

Owing to the symmetry of the problem, the domain can be reduced to that existing about a
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Figure 8.15: equivalent domain

single pipe as shown in Fig. 8.15. The situation has been rotated 90◦ relative to that in Fig. 8.14 –
which is done for convenience in defining the coordinate systems. The planar surfaces on the top
and bottom are adiabatic, as is the leftmost surface. The inside surface of the pipe experiences
convection conditions and the right surface of the domain is at the uniform temperature of T1.

What we have here is a mix of rectangular and cylindrical coordinates. Clearly, the domain
will not allow for a simple, SOV–based solution for the temperature field. Furthermore, it is not
obvious how we would proceed with the moment–based hybrid strategy. In all previous problems
the moment equations were obtained by integration of the proposed solution, multiplied by the
eigenfunction, over the one remaining surface in which the solution did not automatically satisfy
the boundary conditions. Because of the orthogonality of the eigenfunctions, our equations so far
have always been in the form of const ·Am =

∑

nGmnAn. The situation here will not directly lend
itself to this simple approach. If, for example, we pose our solution in cylindrical coordinates and
have the solution automatically satisfy the boundary conditions along the cylinder surface, then
this solution will certainly not be orthogonal when applied to the cartesian surfaces of the domain.
And if the solution was posed in rectangular coordinates, the integration over the cylindrical surface
would also not lead to ‘standard’ moment equations.

The way around this problem will be to utilize a mathematical relationship known as Green’s

second identity. Before we get into the details of this, it will be useful to fill in some details on the
problem at hand.

Use R to scale the length coordinate, and define the dimensionless temperature as T → (T −
T∞)/(T1 − T∞). The temperature field will then satisfy the homogeneous convection condition on
the cylindrical surface, will be unity on the upper surface, and be adiabatic on all other surfaces.
We will formulate the solution in cylindrical coordinates – a solution in rectangular coordinates
could also be used but this would, in the end, be more difficult to work with. The general form of
the solution would be

T (r, φ) = A0 +B0 ln(r) +
N∑

n=1

(
An r

n +Bn r
−n
)

cos(nφ)
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The cosine dependence on φ is taken because the solution must be even in φ; T (r, φ) = T (r,−φ).
The convection BC along the cylinder surface is

∂T

∂r

∣
∣
∣
∣
r=1

= BiT (1, φ)

Application of this to the previous equation allows Bn to be specified in terms of An, and the result
is

T (r, φ) = A0 (1 +Bi ln(r)) +
N∑

n=1

An

(

rn +
n−Bi

n+Bi
r−n

)

cos(nφ) (8.44)

Application of Green’s Second Identity

Equation (8.44) provides a sufficiently general expansion for the temperature field in the domain;
the problem at hand is to choose the expansion coefficients An so that the boundary conditions on
all planar surfaces are satisfied.

To do this we will employ, as mentioned above, Green’s second identity. Say that the functions
T (r, φ) and u(r, φ) both satisfy Laplace’s equation, i.e., ∇2T = ∇2u = 0. It can then be shown
that

∫

A
T n̂ · ∇u dA =

∫

A
u n̂ · ∇T dA (8.45)

in which the integration is taken over all surfaces of the domain and n̂ is the outward–pointing
normal. The trivial case of u = 1 simply gives a conservation of energy statement: the first integral
would be zero and the second implies that all of the heat conducted in would equal all the heat
conducted out of the domain.

Green’s identity will provide the tool with which we obtain the moment equations for this
problem. The first step is to apply Eq. (8.45) to the six distinct surfaces in the problem at hand.
Leaving u unspecified, the integration over area would appear as

−
∫ π

0

(

T
∂u

∂r
− u

∂T

∂r

)

r=1

dφ−
∫ −1

−H2

(

T
∂u

∂y
− u

∂T

∂y

)

y=0

dx

+

∫ L

0

(

T
∂u

∂x
− u

∂T

∂x

)

x=−H2

dy +

∫ H1

−H2

(

T
∂u

∂y
− u

∂T

∂y

)

y=L

dx

+

∫ L

0

(

T
∂u

∂x
− u

∂T

∂x

)

x=H1

dy −
∫ H1

1

(

T
∂u

∂y
− u

∂T

∂y

)

y=0

dx = 0

The boundary conditions on T can now be applied; all adiabatic surfaces have a normal gradient
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of zero and the heated surface has a temperature of unity. This gives

−
∫ π

0

(

T
∂u

∂r
− u

∂T

∂r

)

r=1

dφ−
∫ −1

−H2

(

T
∂u

∂y

)

y=0

dx

+

∫ L

0

(

T
∂u

∂x

)

x=−H2

dy +

∫ H1

−H2

(

T
∂u

∂y

)

y=L

dx

+

∫ L

0

(
∂u

∂x
− u

∂T

∂x

)

x=H1

dy −
∫ H1

1

(

T
∂u

∂y

)

y=0

dx = 0 (8.46)

Finally, we need to specify the so–called test function u. An essentially infinite number of
choices are available – the only requirement for u being that it satisfies Laplace’s equation – yet
we obviously want to select a test function which will yield simple and solvable moment equations.
Since T is formulated in cylindrical coordinates (Eq. (8.44)), it makes sense to choose a set of test
functions u = um, m = 0, 1, . . . N so that an orthogonal integral is obtained from the surface
integral over φ. By doing so, the integral over φ in Eq. (8.46) will kill every term in the series
expansion for T except that for which n = m. With this in mind, define u by

u(r, φ) = um(r, φ) = r−m cos(mφ) (8.47)

Recognize that the choice of um will identically satisfy the adiabatic condition along y = 0 (which
is due to the even property of the cosine function) and because of this the integrals along y = 0
can be removed from Eq. (8.46). In addition, the special case of m = 0 gives u = 1, for which
Eq. (8.46) reduces to the conservation of energy statement.

By replacing Eqs. (8.47) and (8.44) into Eq. (8.46), we arrive at the following set of moment
equations for the expansion coefficients

fmAm = bm +
N∑

n=0

gmnAn (8.48)

The various quantities appearing above are defined by

fm =

{

π Bi, m = 0

πm, m > 0
(8.49)

pm = −
∫ L

0

(
∂um

∂x

)

x=H1

dy (8.50)

gmn =

∫ L

0

(

um
∂vn

∂x

)

x=H1

dy −
∫ H1

−H2

(

vn
∂um

∂y

)

y=L

dx+

∫ L

0

(

vn
∂um

∂x

)

x=−H2

dy (8.51)

vn(r, φ) =







1 +Bi ln(r), n = 0
(

rn +
n−Bi

n+Bi
r−n

)

cos(nφ), n > 0
(8.52)
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The function vn is the nth–order ‘harmonic’ from the expansion of the temperature in Eq. (8.44).
The surface integrals in fm and gmn involve the cartesian coordinates x and y; conversion of the
cylindrical–based um and vn functions to their cartesian equivalents is made by the substitions

r =
(
x2 + y2

)1/2
, φ = tan−1

(y

x

)

(8.53)

Mathematica Coding and numerical issues

The moment equations in Eq. (8.48) are now complete insofar as the mathematical theory is con-
cerned. Similar to the previous examples, we have a system of N + 1 linear equations for the
expansion coefficients. The numerical problem in this example, however, is somewhat more dif-
ficult because the surface integrals (i.e., the matrix gmn and the vector bm) do not have simple

closed–form analytic expressions. That this is the case is not surprizing, because the path of the
integration (i.e., x or y = constant) does not naturally translate to an equally simple path in the
cylindrical ‘language’ of the functions um and vn.

Since the objective in solving the moment equations will be to obtain numerical values of the
expansion coefficients for fixed values of Bi, H1, H2, and L, it makes sense to use a numerical inte-
gration scheme to calculate the integrals. Mathematica comes with an efficient, adaptive numerical
integration scheme which is invoked via the command NIntegrate. The use of this command is
illustrated in the following code.

u[n_,x_,y_]:=(x^2+y^2)^(-n/2 )Cos[n ArcTan[x,y]]/;n>0

u[n_,x_,y_]:=1/;n==0

v[n_,x_,y_]:=1+bi Log[(x^2+y^2)^(1/2)]/;n==0

v[n_,x_,y_]:=((rt^n+(n-bi)/(n+bi)rt^(-n))Cos[n pt]/.

{rt->(x^2+y^2)^(1/2),pt->ArcTan[x,y]})/;n>0

nint[integrand_,limits_]:=

NIntegrate[integrand,limits,AccuracyGoal->6,

PrecisionGoal->6,MaxRecursion->12]

gmn[m_,n_]:=nint[(u[m,x,y]D[v[n,x,y],x])/.x->h1,{y,0,l}]-

nint[(v[n,x,y] D[u[m,x,y],y])/.y->l,{x,-h2,h1}]+

nint[(v[n,x,y] D[u[m,x,y],x])/.x->-h2,{y,0,l}]

bm[m_]:=-nint[D[u[m,x,y],x]/.x->h1,{y,0,l}]

fm[m_]:=Which[m==0,Pi bi,m>0,m Pi]

bi=100;h2=2;h1=2;l=2;ntot=20;

anvec=Table[an[n],{n,0,ntot}];
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Figure 8.16: isotherms for Bi = 100 (top), Bi = 1 (bottom)

eqns=Table[

fm[m]an[m]==bm[m]+Sum[gmn[m,n] an[n],{n,0,ntot}],

{m,0,ntot}];

soln=Solve[eqns,anvec][[1]];

The nint functioned defined in the code simply calls NIntegrate with specified precision,
accuracy, and iteration limits. As is the case with most ‘black box’ numerical packages – such
as those for nonlinear root finding and DE solving – it is necessary to experiment with the user–
adjustable parameters of the package to obtain accurate and reliable results. At the least, you
need to read the Mathematica help material on the use and options of NIntegrate. As has been
done in previous examples, the elements of the matrix gmn need to be scaled to avoid numerical
loss–of–precision errors during solution of the equations. I do this by multiplying and dividing un

and vn respectively by rmax = (H2
1 + L2)m/2. The effect of this is to make the elements of gmn all

of order unity – which usually is enough (for these sorts of problems) to avoid a poorly conditioned
matrix.

Temperature profiles within the system are shown in Fig. 8.16 for Bi = 100 (top) and Bi =
1 (bottom), in which the geometry corresponds to H1 = H2 = L = 2 (i.e., the boundary of
the enclosing rectangle are located at two pipe radii). The plot shows the desired behavior: an
isothermal right surface and adiabatic top and left walls. The top surface of the cylinder is also
(nearly) isothermal for Bi = 100 – which is expected because of the minimal convection resistance
for this case. Observe that essentially all of the heat flux to the cylinder occurs near the φ ∼ 0
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region – very little heat makes its way to the opposite side of the surface. This is not the case when
Bi = 1. Because of the smaller convection resistance, the heat flux to the cylinder is more spread
out over φ. Indeed, in the limit of Bi≪ 1 the enclosure would become isothermal at a temperature
of unity, and the heat flux to the cylinder would be controlled solely by the convection resistance.
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