Aula 6 – Pontos Notáveis de um Triângulo

Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade.

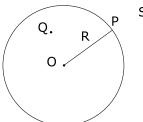
Uma linha ou figura é um lugar geométrico se:

- a) todos os seus pontos têm a propriedade;
- b) só os seus pontos têm a propriedade.

Exemplos:

Circunferência

1) Na figura, é a linha que representa uma circunferência de centro O e raio R.



Note que um ponto P dessa linha dista R do ponto O. A propriedade característica de cada ponto dessa linha em relação ao ponto O é distar R do ponto O. Não existe nenhum ponto não pertencente à circunferência que diste R do ponto O porque, se Q for interior à circunferência, então $\overline{OQ} < R$ e, se S for exterior à circunferência, então $\overline{OS} > R$.

Assim podemos afirmar que só os pontos dessa circunferência distam R de O. Daí, o lugar geométrico dos pontos que distam R do ponto O é a circunferência de centro O e raio R.

Mediatriz como lugar geométrico

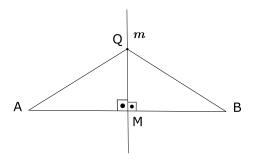
2) Já estudamos que mediatriz de um segmento é a reta perpendicular ao segmento que passa pelo seu ponto médio.

Teorema 1: A mediatriz de um segmento é o lugar geométrico dos pontos de um plano que equidistam dos extremos desse segmento.

Prova:

1^a parte: Vamos mostrar que todo ponto da mediatriz equidista dos extremos do segmento.

Considere m a reta perpendicular ao segmento AB e que passa pelo seu ponto médio M, e Q um ponto qualquer dessa mediatriz m. Vamos provar que $\overline{QA} = \overline{QB}$



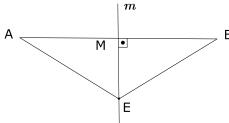
Sejam os triângulos AMQ e BMQ, temos:

$$\begin{cases} \overline{MA} = \overline{MB} \text{ (construção)} \\ A\hat{MQ} = B\hat{MQ} \text{ (ângulo reto)} & \underset{\text{LAL}}{\Longrightarrow} \Delta AMQ \equiv \Delta BMQ \Rightarrow \\ MQ = MQ \text{ (lado comum)} \end{cases}$$

Daí, $\overline{QA} = \overline{QB}$.

Logo, Q é equidistante dos extremos A e B.

 $2^{\underline{a}}$ parte: Só os pontos da mediatriz equidistam dos extremos desse segmento. Seja E um ponto qualquer do plano, tal que $\overline{EA} = \overline{EB}$, e provemos que Epertence à mediatriz de AB.



De fato, ligando E com o ponto médio M de AB e seja os triângulos AME e BME. Temos:

$$\begin{cases} \overline{EA} = \overline{EB} \text{ (Hipótese)} \\ \overline{AM} = \overline{BM} \text{ (Construção)} & \Longrightarrow \Delta AME \equiv \Delta BME \\ EM = EM \text{ (lado comum)} \end{cases}$$

Logo, os ângulos $A\hat{M}E$ e $B\hat{M}E$ são retos, pois são congruentes e adjacentes suplementares. Assim, a reta EM é perpendicular ao segmento AB, passando pelo ponto médio M do segmento AB e daí, pela unicidade de perpendicular, EM = m.

Logo, E pertence à mediatriz m de AB.

Bissetriz como lugar geométrico

Já estudamos que bissetriz de um ângulo é a semi-reta interior ao ângulo que determina com os seus lados, dois ângulos adjacentes e congruentes.

Teorema 2: A bissetriz de um ângulo é o lugar geométrico dos pontos de um plano que equidistam dos lados desse ângulo.

Prova:

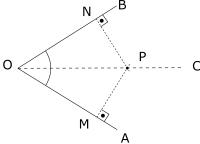
1^a parte: Todo ponto da bissetriz equidista dos lados desse ângulo.

Seja P um ponto qualquer da bissetriz \overrightarrow{OC} de um ângulo $A\widehat{OB}$, \overline{PM} e \overline{PN} são as distâncias de P aos lados \overline{OA} e \overline{OB} , respectivamente.

Vamos provar que:

$$\overline{PM} = \overline{PN}$$

Seja os triângulos MOP e NOP, temos:



$$\begin{cases}
OP \equiv OP \text{ (lado comum)} \\
M\hat{O}P \equiv N\hat{O}P \text{ (definição de bissetriz)} & \Longrightarrow_{\text{LAAo}} \Delta MOP \equiv \Delta NOP \\
O\hat{M}P \equiv O\hat{N}P \text{ (ângulo reto)}
\end{cases}$$

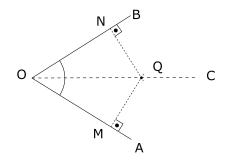
$$\Rightarrow \overline{PM} = \overline{PN}.$$

Logo, P é equidistante dos lados do ângulo $A\hat{O}B$.

2ª parte: Só os pontos da bissetriz equidistam dos lados desse ângulo.

Seja Q um ponto qualquer do plano tal que:

 $\overline{QM} = \overline{QN}$ (distâncias de Q aos lados \overline{OA} e \overline{OB} de um ângulo $A\hat{OB}$), e provemos que o ponto Q pertence à bissetriz de $A\hat{OB}$.



De fato, sejam os triângulos retângulos MOQ e NOQ. Temos:

$$\left\{\begin{array}{l} \overline{QM} = \overline{QN} \text{ (hipótese)} \\ \overline{OQ} = \overline{OQ} \text{ (lado comum)} \underset{\text{Caso Especial}}{\Longrightarrow} \Delta MOQ \equiv \Delta NOQ \end{array}\right.$$

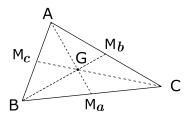
Daí, $\hat{MOQ} \equiv \hat{NOQ}$ e são adjacentes, e OQ é bissetriz. Logo, Q pertence à bissetriz de \hat{AOB} .

Vamos, agora, estudar os pontos notáveis de um triângulo.

1. Baricentro

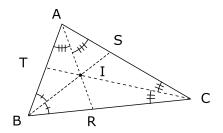
Definição: Baricentro de um triângulo é o ponto de encontro das medianas desse triângulo.

No triângulo ABC da figura, AM_a , BM_b e CM_c são as medianas relativas aos lados BC, AC e AB, respectivamente. O ponto G (encontro das medianas) é o baricentro do triângulo ABC.



2. Incentro

Definição: Incentro de um triângulo é o ponto de encontro das bissetrizes internas desse triângulo.

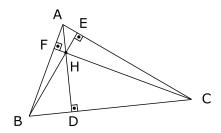


No triângulo ABC da figura, AR, BS e CT são as bissetrizes internas relativas aos lados BC, AC e AB, respectivamente.

O ponto I é o incentro do triângulo ABC, este ponto é o centro do círculo inscrito ao triângulo ABC.

3. Ortocentro

Definição: Ortocentro de um triângulo é o ponto de encontro das retas suportes das alturas desse triângulo.

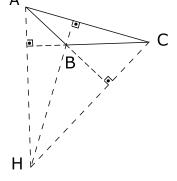


No triângulo ABC da figura, $\overrightarrow{AH}, \overrightarrow{BH}$, e \overrightarrow{CH} são as retas suportes das alturas $\overline{AD}, \overline{BE}, \overline{CF}$, respectivamente, relativas aos lados BC, AC e AB, respectivamente.

O ponto H é o ortocentro do triângulo ABC.

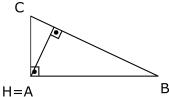
Observações:

1) Em um triângulo obtusângulo, o ortocentro é um ponto exterior a esse triângulo.



Na figura, o triângulo ABC é obtusângulo e o ortocentro H é exterior ao triângulo.

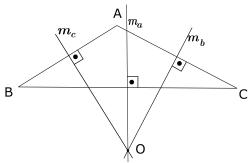
2) Em um triângulo retângulo, o ortocentro é o vértice do ângulo reto. Na figura, o triângulo ABC é retângulo em A e o ortocentro H coincide com A.



4. Circuncentro

Definição: Circuncentro de um triângulo é o ponto de encontro das mediatrizes dos lados desse triângulo.

No triângulo ABC da figura m_a, m_b e m_c são as mediatrizes dos lados BC, $AC \in AB$, respectivamente.



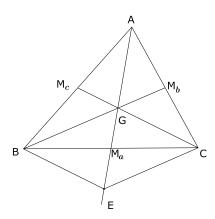
O ponto O é o circuncentro do triângulo ABC, este ponto é o centro do círculo circunscrito ao triângulo ABC.

Exercícios Resolvidos

1. Mostre que as três medianas de um triângulo concorrem em um mesmo ponto, o qual divide cada mediana em duas partes, tais que a que contém o vértice é o dobro da outra.

Solução: Seja o triângulo ABC e tracemos as medianas BM_b e CM_c , que se cortam em G, conforme figura.

Tracemos a semi-reta \overline{AG} que encontra BC e M_a .



Vamos provar que:

1) AM_a é a terceira mediana, isto é, M_a é o ponto médio de BC.

2)
$$\overline{AG} = 2 \cdot \overline{GM_a}$$
 ou $\overline{AG} = \frac{2}{3} \cdot \overline{AM_a}$.

De fato, seja E em \overrightarrow{AG} , tal que $\overline{GE} = \overline{AG}$ e tracemos BE e CE.

No \triangle ABE, $GM_c \parallel BE$, pois $G \in M_c$ são pontos médios dos lados AEe AB, respectivamente (base média).

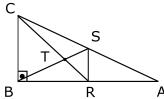
De modo análogo, $GM_b \parallel CE$ no $\triangle ACE$.

Daí, BECG é um paralelogramo (Definição) e suas diagonais BC e GE se encontram em seus pontos médios.

Logo,

1)
$$M_a$$
 é o ponto médio de BC e AM_a é a terceira mediana.
2) $\overline{AG} = \overline{GE} = 2 \cdot \overline{GM_a}$ ou $\overline{AG} = \overline{GE} = \frac{2}{3} \cdot \overline{AM_a}$
De modo similar, se prova que $\overline{BG} = 2 \cdot \overline{GM_b}$ e $\overline{CG} = 2 \cdot \overline{GM_c}$.

2. Na figura, o ponto R é ponto médio de AB, e o segmento RS é paralelo ao lado BC. Sendo $\overline{AC}=28$, calcule a medida do segmento ST.



Solução: Sendo R o ponto médio de AB e RS \parallel BC, então S é o ponto médio de AC.

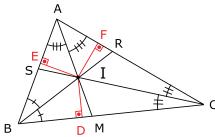
Daí, $BS \in CR$ são medianas e T é o baricentro do Δ ABC.

$$\overline{BT} = \frac{2}{3} \cdot \overline{BS} \underset{\text{Ex. 1}}{\Longrightarrow} \overline{TS} = \frac{1}{3} \cdot \overline{BS}, \text{ mas } \overline{BS} = \frac{\overline{AC}}{2} = \frac{1}{2} \cdot 28 = 14$$

Logo,
$$\overline{TS} = \frac{1}{3} \cdot 14 = \frac{14}{3} \Rightarrow \overline{TS} = \frac{14}{3}$$
.

3. Mostre que as três bissetrizes internas de um triângulo concorrem em um mesmo ponto, que é equidistante dos lados.

Solução: Seja o \triangle ABC e AM e BR as bissetrizes dos ângulos \hat{A} e \hat{B} na figura.



As semi-retas \overrightarrow{AM} e \overrightarrow{BR} formam com o lado AB, ângulos cuja soma $\frac{\hat{A}}{2}+\frac{\hat{B}}{2}$ é menor que 180° e, terão que encontrar-se. Seja Io ponto de interseção. I pertencendo à bissetriz AM, temos que

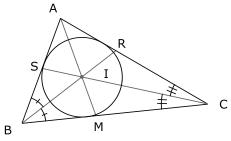
 $\overline{IE} = \overline{IF}$ (Teorema 2).

I pertencendo à bissetriz BR, temos que $\overline{IE} = \overline{ID}$.

Logo, $\overline{IF} = \overline{ID}$, então I pertence a bissetriz CS.

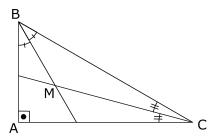
Logo, as três bissetrizes internas do Δ ABC concorrem em um mesmo ponto, que é equidistante dos lados.

Note que o incentro de um triângulo é o centro da circunferência inscrita neste triângulo.



4. Em um triângulo retângulo ABC, traçam-se as bissetrizes \overline{BM} e \overline{CM} dos ângulos agudos \hat{B} e \hat{C} , onde M é o incentro. Calcule a medida do ângulo BMC.

Solução: Seja um triângulo retângulo ABC, tracemos as bissetrizes \overline{BM} e \overline{CM} dos ângulos agudos \hat{B} e \hat{C} , onde M é o incentro.



Temos que:

$$\hat{A} + \hat{B} + \hat{C} = 180^{\circ} \text{ no } \Delta ABC \Rightarrow \hat{B} + \hat{C} = 180^{\circ} - 90^{\circ} = 90^{\circ}.$$

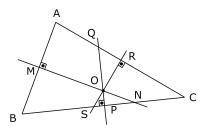
No \triangle BMC temos:

$$\begin{split} \frac{\hat{B}}{2} + B\hat{M}C + \frac{\hat{C}}{2} &= 180^{\circ} \quad \Rightarrow B\hat{M}C = 180^{\circ} - \frac{\hat{B}}{2} - \frac{\hat{C}}{2} \\ &\Rightarrow B\hat{M}C = 180^{\circ} - \frac{\hat{B} + \hat{C}}{2} \\ &\Rightarrow B\hat{M}C = 180^{\circ} - \frac{90^{\circ}}{2} = 180^{\circ} - 45^{\circ} = 135^{\circ}. \end{split}$$

Logo, a medida do ângulo $B\hat{M}C$ é 135°.

5. Mostre que as três mediatrizes de um triângulo concorrem em um mesmo ponto equidistante dos vértices desse triângulo.

Solução: Seja o triângulo ABC, e MN e PQ as mediatrizes relativas aos lados AB e AC.



Opertence à mediatriz MNdo lado $AB \Rightarrow \overline{OA} = \overline{OB}$ (1)

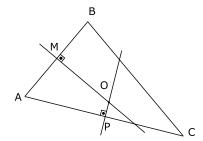
O pertence à mediatriz PQ do lado $BC \Rightarrow \overline{OB} = \overline{OC}$ (2)

De (1) e (2)
$$\overline{OA} = \overline{OB} = \overline{OC} \Rightarrow \overline{OA} = \overline{OC}$$

Logo, O pertence à mediatriz RS, do lado AC.

6. Exprimir os ângulos formados pelas mediatrizes em função dos ângulos \hat{A} , \hat{B} , \hat{C} do triângulo ABC.

Solução: Consideremos a figura, onde OM e OP são mediatrizes dos lados $AB \in BC$.



Então, no quadrilátero AMOP temos:

$$\hat{A} + M\hat{O}P = 180^{\circ} \Rightarrow M\hat{O}P = 180^{\circ} - \hat{A}$$

Chamando $\widehat{\alpha},\widehat{\beta},\widehat{\gamma}$ os ângulos formados pelas mediatrizes, temos que

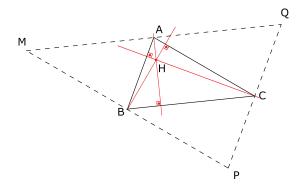
$$\widehat{\alpha} = 180^{\circ} - \widehat{A}$$

De forma similar

$$\widehat{\beta} = 180^{\circ} - \widehat{B} \in \widehat{\gamma} = 180^{\circ} - \widehat{C}$$

7. Mostre que as retas suportes das três alturas de um triângulo concorrem em um mesmo ponto.

Solução: Seja o triângulo ABC, e tracemos para cada vértice a paralela ao lado oposto. Estas cortam-se, porque são paralelas às retas secantes e formam o triângulo MPQ.



Os quadriláteros AMBC, ABCQ e CABP são paralelogramos, já que os lados opostos são paralelos.

Então:

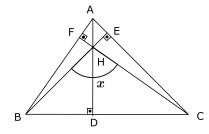
$$\overline{AM} = \overline{BC} = \overline{AQ}$$

$$\overline{BM} = \overline{AC} = \overline{BP} \text{ (Propriedade de paralelogramo)}$$

$$\overline{CP} = \overline{AB} = \overline{CQ}$$

Então, A, B e C são os pontos médios dos lados do triângulo MPQ. Assim, as três alturas do triângulo dado ABC, confundem-se com as três mediatrizes do triângulo MPQ e concorrem em um mesmo ponto, H.

8. Na figura, calcule o valor de x, se $A\hat{B}C=55^{\circ}$ e $A\hat{C}B=45^{\circ}$.



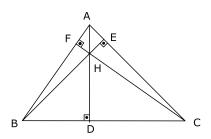
Solução: Seja a figura dada, temos que $A\hat{B}C = 55^{\circ}$ e $A\hat{C}B = 45^{\circ}$.

Então,

$$B\hat{A}C = 180^{\circ} - A\hat{B}C - A\hat{C}B = 180^{\circ} - 55^{\circ} - 45^{\circ} = 80^{\circ}$$

No quadrilátero AFHE, temos:

$$m(FME) = 180^{\circ} - 80^{\circ} = 100^{\circ}.$$



Como os ângulos $B\hat{H}C$ e $F\hat{H}E$ são opostos pelo vértice então:

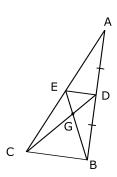
$$x = m(B\hat{M}C) = m(F\hat{H}E) = 100^{\circ}$$

Observações:

- 1) Em um triângulo isósceles os quatro pontos notáveis estão sobre a mesma reta, já que a mediatriz, mediana, altura e bissetriz relativas à base coincidem.
- 2) No caso do triângulo equilátero, esses quatro pontos se reduzem a um só.

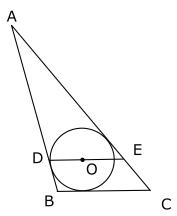
Exercícios Propostos

1. Na figura, o ponto D é médio do lado AB, e DE é paralelo ao lado BC. Sendo $\overline{AC} = 60$ cm, calcule a medida de GE.



- 2. Considere um triângulo ABC tal que as medianas BD e CE, que se cortam em G, sejam congruentes. Mostre que:
 - a) $\overline{BG} = \overline{CG}$
 - b) $\Delta CGD = \Delta BGE$
 - c) o triângulo ABC é isósceles.

3. Na figura, a circunferência de centro O está inscrita no triângulo ABC. Sendo DOE paralelo ao lado BC, $\overline{AB} = 16$, $\overline{AC} = 20$, calcule o perímetro do triângulo ADE.



- 4. Em um triângulo ABC as três mediatrizes fazem entre si três ângulos iguais a 120° . Mostre que este triângulo é equilátero.
- 5. Em um triângulo ABC, o ângulo \hat{A} mede 60° e o ângulo \hat{B} mede 80° . Calcule as medidas dos seis ângulos formados pelas alturas com vértice no ortocentro H desse triângulo.
- 6. Considere um triângulo ABC, o ângulo \hat{A} mede 40° e o ângulo \hat{B} mede 60° . Une-se o ponto médio M do lado BC aos pés D e E das alturas BD e CE. Determine as medidas dos ângulos internos do triângulo MDE.
- 7. As bissetrizes internas dos ângulos \hat{B} e \hat{C} de um triângulo ABC formam um ângulo de 116°. Determinar a medida do menor ângulo formado pelas alturas relativas aos lados \overline{AB} e \overline{AC} desse triângulo.
- 8. Mostre que em um triângulo acutângulo o ortocentro é incentro do seu triângulo órtico.

Nota: Triângulo órtico é o triângulo cujos vértices são os pés das alturas de um triângulo.

- 9. Considerando os quatro pontos notáveis de um triângulo,
 - a) Quais os que podem ser externos ao triângulo?
 - b) Qual o que pode ser ponto médio de um lado?
 - c) Qual o que pode ser vértice de um triângulo?

- 10. A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos 20° .
 - a) Qual a medida da mediana relativa à hipotenusa?
 - b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

Gabarito

- 1. 10.
- 2. Demonstração.
- 3. 36.
- 4. Demonstração.
- 5. $80^{\circ}, 60^{\circ}, 40^{\circ}, 80^{\circ}, 60^{\circ}, 40^{\circ}$.
- 6. $100^{\circ}, 40^{\circ}, 40^{\circ}$.
- 7. 52°
- 8. Demonstração.
- 9. a) ortocentro e circuncentro; b) circuncentro; c) ortocentro.
- 10. a) 10 cm; b) 25°.