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ABSTRACT 

Pipeline physical and operational characteristics vary 

widely. So, there is not any external or internal method 

universally applicable that possesses all the features and 

functionality required for perfect leak detection performance. 

The authors of this work know very well that traditional 

methods, in a low uncertainty environment overcome leak 

detection systems artificial intelligence methods. Considering 

the real world as an uncertainty generator, neural networks and 

fuzzy systems are important emerging technologies for 

development of leak detection systems. In this work, we 

propose a method for constructing ensembles of ANNs for 

pipeline leak detection. The results obtained in our 

experiments were satisfactory. 

 

INTRODUCTION 

The detection methods of product leaks along a pipeline 

can be classified in direct and indirect (or inferential) methods. 

Direct methods are usually external detecting leak product 

outside the pipeline. External methods encompass physical 

inspections, acoustic emissions, fiber optic sensing, liquid 

sensing and vapor sensing. Indirect methods, called 

computational pipeline monitoring (CPM), use parameters for 

inferring product leaks. These parameters, such as pressure, 

flow, temperature, etc., are obtained form instruments internal 

to the pipeline. Internal leak detection systems (LDS) include 

Volume Balance, Pressure Analysis (Rarefaction Wave 

Monitoring) and Real Time Transient Modeling methods.  

The LDS selection for a pipeline is dependent of pipeline 

and product characteristics. However, pipeline physical and 

operational characteristics vary widely. So, there is not any 

external or internal method universally applicable that 

possesses all the features and functionality required for perfect 

leak detection performance. The authors of this work know 

very well that traditional methods, in a low uncertainty 

environment overcome LDS Artificial Intelligence (AI) 

methods. Considering the real world as an uncertainty 

generator we are proposing an alternative method for LDS 

using AI techniques.  Artificial Neural Networks (ANNs) and 

fuzzy systems are important emerging technologies for 

development of leak detection systems (Belsito, 1998; 

Carvalho, 2006; Silva, 2005).  The performance of these 

techniques of computational intelligence is surprising in 

relation to the reduced time of detection of the leaks, to small 

dimension of localized leaks, and to reduced rate of emitted 

false alarms. Since, traditional methods present uncertainty 

operational difficulties, the development of research on the 

application of computational intelligence techniques in the 

elaboration of leak detection systems gains great importance.  

In this work, we propose a method for constructing 

ensembles of ANNs for pipeline leak detection, combining 

different specialists (ANN) of the domain, each one looking 

into the problem from a different point of view. Due to lack of 

real world data, some experiments were executed using 

simulated data. Some insights in real data about normal 



 2 Copyright © 20xx by ASME 

operation in pipeline are also described in experiments section. 

The results obtained were satisfactory. 

This paper is organized as follows: Section 2 describes 

external methods in use for pipeline leak detection; Section 3 

describes Artificial Neural Networks; Section 4 describes 

methods for constructing ensembles of classifiers; Section 5 

describes our proposal for constructing ensembles of ANNs for 

pipeline leak detection; Section 6 briefly describes the 

computational system in development that implements our 

proposal; Section 7 describes our experimental results; and 

finally Section 8 concludes this work. 

EXTERNAL METHODS FOR PIPELINE LEAK 

DETECTION 

While pipelines are an efficient and economic means of 

transporting hazardous fluids over long distances, the risks 

associated with accidental releases are high. Leaks in pipelines 

carrying fluids such as oil, ammonia, gasoline, or chlorinated 

solvents can cause serious pollution, injuries and fatalities, if 

they are not promptly detected and repaired. For example, a 

leak in an NGL pipeline was responsible for the death of about 

700 persons in Russia in 1988. For the period 1970-1984 in 

the U. S. alone there were 46 serious accidents associated with 

natural gas pipelines leading to 86 casualities. Large leaks 

cause significant changes in pressure gradients and differences 

in mass flow rates at measurement points, and therefore are 

easy to detect. On the other hand, small leaks are more 

difficult to detect because changes in the usual process 

measurements are small. However, leaks as small as 1% of the 

nominal flow rate can cause the discharge of a large amount of 

dangerous fluid before they are detected, usually by the impact 

they have on the surrounding environment. The early detection 

of such small leaks is then the main goal of a leak-detection 

system. In what follows, some indirect methods for detecting 

leaks in pipelines are described (Belsito, 1998). 

Many methods for creating leak-detection systems in 

liquid and gas pipelines have been proposed, mainly based on 

process variables (pressure, flow rate, and temperature) usually 

measured in pipelines. Perhaps the most common is the line 

volume balance method (Ellul, 1989), based on mass 

conservation of the fluid in the pipeline. Data for line volume 

balance come from flowmeters. Usually a short-term and a 

long-term balance are calculated: the short-term balance 

provides fast response for large leaks, while it is claimed that 

the long-term balance will detect a 0.5% leak (of the nominal 

flow rate) in 3-6 hours. The volume balance can only identify a 

leak as being located somewhere in the line in which the fluid 

flow is measured. Since flowmeters are usually installed at 

input and exit points and seldom anywhere in between, this 

technique usually does not give any information on leak 

location along the length of a pipeline.  

Acoustic methods have been proposed as well. In 

principle, they can detect very small leaks in a short time, but 

they do not always work well for large networks, where there 

may be background noise from compressors and valves (Ellul, 

1989). Furthermore, spacing between detection stations must 

be of the order of 100 m, otherwise the reliability is low.  

Finally, pressure waves generated by the leak provide 

another potential method of leak detection by measuring the 

pressure disturbances that travel along the line (Silk and 

Carter, 1995). Signal conditioning is required in order to 

monitor the temperature and pressure variation in the pipeline 

(correcting the velocity of the sound for any variation) and to 

account for process operations, eliminating the pressure 

disturbances deriving from normal processes.  

 

ARTIFICIAL NEURAL NETWORKS 

A training dataset T is a set of N classified instances {(x1, 

y1), ..., (xN, yN)} for some unknown function y = f(x). The xi 

values are typically vectors of the form (xi1, xi2, ..., xim) whose 

components are discrete or real values, called features or 

attributes. Thus, xij denotes the value of the j-th feature Xj of 

xi. In what follows, the i subscript will be left out when 

implied by the context. For classification purposes, the y values 

are drawn from a discrete set of k classes, i.e. y  {C1,C2, 

...,Ck}. Given a set S  T of training examples, a learning 

algorithm induces a classifier h, which is a hypothesis about 

the true unknown function f. Given new x values, h predicts 

the corresponding y values. 

Many Artificial Neural Network architectures are 

available (Haykin, 1994). The architecture to be used is 

selected based on the kind of problem to be solved. Since in 

this work we consider pipeline leak detection as a classification 

problem, Multi-Layer Perceptron (MLP) is indicated. MLP is 

formed by at least 3(three) layers: an input layer, an output 

layer, and one or more intermediate layers. Each element of 

the output layer on our neural network model produces the 

output 
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where 
O

iy  represents the output of the i-th processing 

element, 
H

ij

O

ij wandw  represent the connection weights  

between processing elements i and j in output and hidden 

layers, KI  represents the input of the kth processing element 

and f represents the transfer function for processing elements. 

If we denote the overall action of the neural network by  then 

  txty )(  where x(t) is a sample of the data to classify. 
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Figure 1 - Artificial Neural Systems Architecture 

 

The learning algorithm used for training the networks in 

this work is backpropagation, which updates the weights using 

the error rate calculated on the network output with the desired 

output (label). 

Artificial neural networks (ANNs) have attributes that can 

actually make them good for processing routine measurements 

made in pipelines, and can be used in quite innovative leak-

detection systems. An ANN can be regarded as a nonlinear 

mathematical function that transforms a set of input variables 

into a set of output variables (Bishop, 1994), the 

transformation function depending on weights that are 

determined on the basis of a set of training examples. Training 

can be computationally very expensive and depends on the 

sizes of the networks and thc number of training examples. 

Once weights have been calculated, processing of new data is 

fast. In addition to offering very high processing speeds, ANNs 

are, in principle, capable of learning a general solution to a 

problem from a limited number of examples. Be that as it may, 

the use of ANNs does not appear to have received much 

attention for leak detection, as yet. However, there are many 

successful applications in tasks of similar complexity. A 

general review is presented in Bishop (1994). There are some 

specific reasons why using ANNs for leak detection is quite 

promising (Bishop, 1994), namely, ( 1 ) it is difficult to find an 

adequate first-principle or model-based solution; (2) new data 

must be processed at high speed, and (3) the system must be 

impervious to noise. Another important aspect for the 

development of ANNs, as outlined by Bishop (1994), is that a 

large set of data must be available. In general, such 

information is either available or can he developed for 

pipelines. 

METHODS FOR CONSTRUCTING ENSEMBLES OF 

CLASSIFIERS 

Ensemble methods are learning algorithms that construct 

a set of classifiers and then classify new data points by taking a 

vote of their predictions. There are three fundamental reasons 

for constructing ensembles of classifiers (Dietterich, 2001). 

The first reason is statistical. A learning algorithm can be 

viewed as searching a space H of hypotheses to identify the 

best hypothesis in the space. The statistical problem arises  

when the amount of training data available is too small 

compared to to the size of the hypothesis space. Without 

sufficient data, the learning algorithm can find many different 

hypotheses in H that all give the same accuracy in training 

data. By constructing an ensemble out of all of these accurate 

classifiers, the algorithm can average their votes and reduce 

the risk of choosing the wrong classifier. Figure 2 (top left) 

depicts this situation. The outer curve denotes the entire search 

space H; the inner curve denotes the hypothesis that gives good 

accuracy in training data. The f point depicted in the figure 

denotes the unknown true hypothesis, and we can see that 

averaging the accurate hypothesis, we can find a good 

approximation of f.  

The second reason is computation. Many learning 

algorithms work by performing some form of local search that 

may get stuck in local optima. For example, neural network 

algorithms employ gradient descent to minimize an error 

function over the training data. In cases where there is enough 

training data (so the statistical problem is absent), it may still 

be very difficult computationally for the learning algorithm to 

find the best hypothesis. Indeed, optimal training of neural 

networks is NP-hard. An ensemble constructed by running the 

local search from many different starting points may provide a 

better approximation to the true unknown function, as shown 

in Figure 2 (top right).  

The third reason is representational. In most applications 

of machine learning, the true function f cannot be represented 

by any of the hypothesis in H. By forming weighted sums of 

hypothesis drawn from H, it may be possible to extend the 

space of representable functions. Figure 2 (bottom) depicts this 

situation. 

Next section describes the proposed method for combining 

classifiers for pipeline LDS. 

 
Figure 2 - Three fundamental reasons for constructing 

ensembles of classifiers (Dietterich, 2001) 

 

A PROPOSAL FOR COMBINING CLASSIFIERS TO 

PIPELINE LEAK DETECTION 

To model a problem, the first step of the process is 

selecting what features are related to it. In literature [REFS], it 
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is found that the features that affect the models of pipelines for 

leak detections are flow rate, density, temperature and 

pressure. Looking for relations between measured values in the 

pipeline’s input and output to detect abnormal patterns is the 

purpose of the internal methods for leak detection known by 

the authors. 

An induced Artificial Neural Network (ANN) is a model 

that correlates non-linearly the features that describes the 

problem. In our application, we use a neural network to 

correlate the features, separating the instances into normal and 

abnormal operations of the pipeline (classification problem). 

Because of this, we need instances that represent the normal 

and the abnormal situations. Each instance is a set of values of 

flow rate, temperature, density and pressure read in some 

instance t in pipeline’s input and output. So, an ANN detects 

normal and leak situations if it is presented to it instances of 

normal and leak situations in training phases. However, in real 

applications, it is hard to find data with leak situations, which 

leads us to combine other artificial specialists in our LDS. 

Normal events in the pipeline, like start and stop pumping, 

adjustment of valve sets and batch changes, are responsible for 

false alarms in Leak Detection Systems (LDS). Thus, an ANN 

induced for classifying these events can help the LDS in 

detection of leaks.  

Our LDS is composed by 4 (four) specialists, which 

decisions are combined to give an answer to the operator. One 

specialist is responsible for classifying the read values 

(instances) into normal or leak classes; other specialist is 

responsible for classifying the same input instance into start 

and stop pumping, adjustment of valve sets, batch changes or 

continuous flow; other specialist is responsible to detect the 

percentage of the leak when a leak is detected; and the last one 

is responsible for detecting the location of the leak in the 

pipeline. Each specialist is an ANN, which are trained 

separately. The decisions of the first two specialists – the first 

one that detects the presence or absence of leaks and the 

second one that classifies the event that is occurring – are 

combined to say what is happening into the pipeline. The 

answers of the specialists are the events occurring and, when a 

leak is detected, the answer can be, for example, “there is a 

leak or the pumping is starting”. The operator will decide what 

is happening – if the operator knows that there is not a start 

pumping, than a leak is detected and the other two specialists 

says the location and the leak’s flow percentage. 

Our proposal allows us to train the ANN for leak detection 

of a pipeline initially using simulated data and, as the operator 

interact with the system, saying that an event is occurring, and 

not a leak, new instances are collected. With these new 

instances, the network can be re-trained with the old one and 

this new data. This process allows that the model can adapt 

over the time. 

Another observation is related to the available data: if 

there is not any instance about leak, only the specialist (ANN) 

in events can be initially trained. When the ANN detects an 

event that it is not happening in fact, if the operator verifies 

that a leak is happening, in time the system is fed by leak 

instances, what allows in future that an ANN for leak detection 

is induced. 

Since Neural Networks find non-linear correlation in 

input variables, and probably these variables are pipeline-

dependent, one ensemble for each pipeline is necessary. 

However, deeper studies using real and simulated data are 

necessary to verify this affirmative.  

ADDDUT SYSTEM 

In order to evaluate and put in practice our proposal, a 

system, called ADDDut, is under construction. This tool has 

two main functionalities. The first one is to help the user to 

1. Visualize the operations behavior, based on the signals 

obtained in time of pressure, density, flow rate, 

temperature, and others that should be considered – 

Figure 4 shows a print screen of the system that depict 

the signals over the time. The depicted data are from 

simulated operations in Pipeline Studio®; and  

2. Use an ensemble constructed for the pipeline under 

observation and ferify if there is some leak in the 

loaded data – Figure 5 shows the resulting analysis of 

the ensemble. 

The second one is to help to train the specialists (neural 

networks) into its own specific task. The interface of this part 

of the system is in development phase. 

 

 
Figure 3 - Visualization of the signals in time. From top to 

bottom: flow rate (input and output), temperature (input and 

output), pressure (input and output) and density (input output). 
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Figure 4 - Output of the ADDDut system: time elapsed, type of 

alarm, localization in pipeline and percentage of the flow rate. 

EXPERIMENTS 

Due to the difficult to obtain data from real leak situations 

in oil pipelines, we first experimented our approach using 

simulated dataset. In this phase. Our dataset were simulated 

using Pipeline Studio®. Figure 5 shows a schema of the 

pipeline on which the dataset was simulated. The pipeline has 

50Km of extension.  Figure 6 shows the instances plot in time 

from left to right. Each graph is related to a feature (Fin 

represents the flow read at input point of the pipeline; Fout 

represents the flow read at output; and so on). The time 

between two instant readings is 15 seconds. There are two 

weeks of simulated operations, totalizing 80641 instances. 

Initially, two class features were created. The features are leak, 

containing the values “normal” (66629 instances, or 82.62% of 

the entire dataset) and “leak” (14012, or 17.38%); and event, 

containing the values “normal” (77895 instances, or 96.60% of 

the entire dataset), “SP” – Stop Pumping (1010 instances, or 

1.25%); “SPVS” – Stop Pumping and Valve Setting (1168, or 

1.45%); “SPBCVS”  – Stop Pumping, Batch Changing and 

Valve Setting (489, or 0.60%); and “VS” – Valve Setting (79, 

or 0.10%). We induced two ANN, each of them having one of 

the class labels. The overall error rate obtained in each 

network are 1.81% using “leak” feature as the class feature 

(6.03% of error rate in “leak” class and 0.82% in “normal” 

class) and 0.99% of error rate using “event” feature (0.01% in 

“normal”, 11.58% in “SP”, 55.91% in “SPVS”; 1.02% in 

“SPBCVS”; and 17.72% in “VS”). Figures 6 and 7 shows, 

respectively, the results obtained with the ANNs induced, 

which shows, for each instance, the labeled and predicted 

classes. 

 

 
Figure 5 - Pipeline schema of the simulated dataset. 

 

 
Figure 6 - Visualization of the simulated dataset. 

 

 
Figure 7 - Visualization of the labeled instances in time and 

the neural network prediction. Red are instances labeled and/or 

predicted as normal and green are instances labeled and/or 

predicted as leak. 

 

 

 
 

Figure 8 - Visualization of the labeled instances in time 

and the neural network prediction. Red are instances labeled 

and/or predicted as normal and other colors are instances 

labeled and/or predicted as other events (pump start, valve 

adjustment and/or batch changes). 
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Figure 7 shows that all leak situations were detected; in 

three occasions there was a leak but it was not detected and 

there were only two false alarms. 

Real data was obtained only for normal situations. The 

dataset obtained allowed us to observe that, in real situations, 

many events occur in parallel and in four days of operations – 

in this dataset, we observed eight batch changing, many stop 

and start pumping and many valve adjustments. Due to 

confidentiality reasons, we cannot show in the signals of the 

operations. On the other hand, overall error rate obtained in 

event network is 2.99% (0.14% in “normal”, 66.15% in “VS”, 

45.91% in “SP”; 44.75% in “BC”; 58.36% in “STP” – Start 

Pumping; and 14.29% in “BCSTP” – Batch Changing and 

Start Pumping). These results, besides not so good, were 

expected, since real data has more uncertainties associated to 

it. Also, we could observe that many from the events were 

classified as undetermined by the ANN, which means that 

some events should be joint, for example Stop and Start 

Pumping, since both patterns are similar. 

 

CONCLUSIONS AND FUTURE WORK 

In this work, we proposed a method for constructing 

ensembles of ANNs for pipeline leak detection. This method 

we proposed allows to group different specialists, each one 

looking into the problem from different point of views. Results 

in our experiments were promising. Next steps of our work 

include experiment our proposal in real world data. This task 

is difficult because it is not simple to obtain this kind of data. 

We also intend to substitute the event ANN by one specialist to 

detect each event. 
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