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Abstract — Two main characteristics of multi-label dataset are cardinality and density, related to the number of labels
of (each instance of) a multi-label dataset. The relation between these characteristics and multi-label learning perfor-
mance has been observed with different datasets. However, the difference in domain dataset attributes also interfere
on multi-label learning performance. In this work, we use a real dataset, named The Million Song Dataset, available
in the internet, which presents the property of having too many labels associated to their instances (songs), as well
as so many instances. In this work we present the processed datasets used to conduct our experiments, and we also
describe our experiments results.
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1 INTRODUCTION

Some real applications are related to the task of classification, such as diagnosis, fault detection, and so on. These
problems are commonly treated by machine learning supervised algorithms, which induces classifiers, or predictors,
such as neural networks, SVM and decision trees, to cite just a few. These classifiers usually identify just one class of a
new instance, or case, from a set of possible labels. However, there are problems related to the task of predicting more
than one class for each case. For example, we can mention images and music labeling, failure diagnosis, and others.
These kind of problems are tackled by a special type of machine learning, called multi-label learning algorithms.
Many multi-label learning methods have been proposed in literature, such as [1-5]. A survey describing some multi-
label learning methods can be found in [6]. Two main characteristics analyzed in a multi-label dataset are cardinality
and density, both related to the number of labels of each instance of a dataset and also of the entire dataset. Cardinality
of a multi-label dataset is the mean of the number of labels of the instances that belong to the dataset, and density
of a multi-label dataset is the mean of the number of labels of the instances that belong to the dataset divided by the
number of dataset’s labels.

Some papers in literature indicate that these dataset characteristics — cardinality and density — may cause differ-
ent behaviors in multi-label learning methods. In [6], the authors affirm that two datasets with approximately the same
cardinality, but with great difference in density, may not exhibit the same properties, which causes different behaviors
in multi-label learning methods. In [5] we studied the influence of these two characteristics on the performance of the
multi-label learners used in our benchmark. We observed that there was a correlation between these characteristics
and the results obtained with some datasets; however, the domain of that datasets are quite different, what leaded us to
question how the domain features influenced the analysis. In [7], the authors proposed a new method called BREKNN,
an adaptation of the kNN algorithm for multi-label classification based on Binary Relevance method, and compared
this method with LPANN, another adaptation method of the kNN algorithm based on Label Powerset multi-label
method. The authors observed the influence between the LPANN method and the influence of low density values,
using three different datasets, with different domain features, but they could not safely argue that high density lead
to improve performance of the LPANN. These works analyze the relationship between cardinality (and density) and
multi-label learning algorithms results using different datasets, with different cardinality and density values, and dif-
ferent domain dataset attributes. In this way, it is unknown how much the domain difference interferes in cardinality
and density analysis. One issue that turns difficult this study is the unavailability of a dataset with the same features
but different cardinality and density values.
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In [8] the Million Song Dataset is presented, a freely-available collection of audio features and metadata for a
million contemporary popular music tracks. The dataset does not include any kind of audio music, only the derived
features from them. This collection is available as a relational database. This dataset is labeled by tags that can be
seen as musical genres. Each song has more than one of these tags associated to. The main advantage of this dataset
on other available multi-label datasets is the high number of labels, which allows to vary the number of labels without
loosing the multi-label problems characteristic. One problem with this dataset is the transformation process to allow
data mining on it using the available data mining and machine learning tools.

The aim of this work is to present an analysis of the influence of the cardinality and density measures to multi-label
learning. To allow this study, we pre-processed the Million Song Dataset. In this work, we present this dataset and
the data pre-processing step of the Million Song Dataset. To induce the multi-label classifiers, we used the Mulan
library! [9], based on Weka [10]. To induce the base classifiers, we used Naive Bayes and J48 algorithms, because
their low time consumption for induction of the classifiers and its lack of requirement for parameters adjustment. We
present the results obtained for MSD-based datasets, as well as for six datasets used in [5]. We analyze the relation
between (i) cardinality and (ii) density and the results obtained by each method.

This work is organized as follows: Section 2 describes Multi-Label Machine Learning concepts and notations.
Section 3 describes the Million Song Dataset, as well as our pre-process step of this dataset. Section 4 describes the
conducted experiments and results we obtained. Section 5 concludes this work.

2 MULTI-LABEL LEARNING

Multi-label problems appear in different domains, such as image, text, music, proteins and genome classifica-
tion [1-3], and failure diagnosis [4]. In multi-label problems, the input to the multi-label learning algorithms is a
dataset S, with IV instances 75,7 = 1, ..., N, chosen from a domain X with fixed, arbitrary and unknown distribution
D, of the form (x;,Y;), with i = 1,..., N, for some unknown function f(x) = Y. In this work, we call domain
attributes datasets the attributes that compose X. L is the set of possible labels of the domain D, and Y; C L, i.e.,
Y; is the set of labels of the ith instance. The output of multi-label learning algorithms is a classifier h that labels an
instance x; with a set Z; = h(x;), i.e., Z; is the set of labels predicted by h for x;>.

The number of labels |L| is frequently seen as a parameter that influences the performance of different multi-label
methods. There are two measures for evaluating the characteristics of a dataset, objects of this study: cardinality
Card and density Dens [6]. The cardinality of .S is the mean of the number of labels of the instances that belong to
S, defined by Eq. 1, and the density of .S is the mean of the number of labels of the instances that belong to .S divided
by |L|, defined by Eq. 2.
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2.1 EVALUATION MEASURES

Multi-label machine learning methods can be divided into two categories [6]: problem transformation and algo-
rithm adaptation. In the first category, the multi-label problem is transformed to (many) multiclass (or binary) machine
learning problems, and each sub-problem is given to a classic (binary or multiclass) supervised machine algorithm.
These (binary or multiclass) classifiers are called in this work base classifiers. In the second category, the machine
learning algorithm is adapted to deal with multi-label problems. In this work, we use three methods, commonly used
in multi-label learning, named BR, LP and RAKEL. The BR method transforms the original multi-label problem, with
|L| labels, into |L| binary problems. The LP method transforms the original multi-label problem into a multiclass
problem, considering the relation among the labels. The RAKEL method constructs an ensemble of LP classifiers,
which are trained using a small random subset of the set of labels constructed by LP. A more complete description of
these (and others) multi-label methods can be found in [6].

!Available at http://mulan.sourceforge.net.
’In this work, we use 7} to refer to an instance with associated label y; or Y;, and we use X; when we are not considering the associate
label, or x; does not have an associated label yet.
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Multi-label machine learners need classifiers evaluation. For this task, there are three groups of measures to
evaluate induced multi-label classifiers: based on instances, based on labels and based on ranking [6]. In this work,
we use the first two groups of measure, because multi-label ranking is not the aim of this work. In the first group, we
use in this work Hamming Loss (Ham), Subset Accuracy (SAcc), Accuracy (Acc) and F, defined by Eqs. 3 to 63,
respectively. In the second group, we use the micro and macro versions of F'1 measure. Measures based on labels are
calculated based on false positives f,,, false negatives f,,, true positives ¢, and true negatives t,, i.e., measures of the
type B(tp,tn, fp, fn) can be used in this case. Given that ¢, t,,, fp, and f,, are true positives, true negatives, false
positives and false negatives for each label [ € L, the micro version of B measures is denoted by B_ and given by
Eq. 7, whereas the macro version of B measures is denoted by B~ and given by Eq. 8. In this work, we use F'1 and
AUC as B measure. F1(ty,tn, fp, fn) is given by Eq. 9. In [11] there is an explanation about how to calculate Area
Under ROC Curves (AUC).
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2.2 DESCRIPTION OF MULTI-LABEL LEARNING METHODS USED IN THIS WORK

Some approaches for multi-label learning transform the original problem into binary subproblems, e.g. the BR
method, or transform the original problem into a single multiclass problem, e.g. the LP and SR methods [6]. These
three methods are described next. These methods were used as comparison benchmarks because they are the most
common methods used in literature and are the closest to our method.

2.2.1 Binary Relevance — BR

One possible solution to a multi-label learning problem is decomposing the original problem into various binary
problems. A popular method that works with this type of decomposition is called Binary Relevance — BR —, used
in [2]. In the BR method, a classifier for each class is constructed using a supervised machine learning, applicable
to binary problems. To this end, initially the training dataset S,, is transformed into |L| datasets S, where each
dataset corresponds to a label [;,7 = 1, ..., |L|. Given a learning algorithm applicable to binary problems, a classifier
h; is induced using each dataset S;. To classify a new instance x, x is given to each classifier h;,l = 1,...,|L|. x is
classified with the set of labels for which h; = 1 (or = true).

3In Eq. 3, A represents the symmetric difference between two datasets.
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2.2.2 Label Powerset — LP

The Label Powerset — LP — method, proposed in [12], transforms the original multi-label problem into a multiclass
problem. Each set of labels Y; in S, is considered a class of the new multiclass problem. For instance, considering
three labels /1, I and [3 and a multi-label training dataset S,,, the instance T € S,, labeled with Y7 = {l;, 5}, after
the transformation is labeled with i = [; 2; the instance Ty € S), labeled with Y7 = {l1,13}, after the transformation
is labeled with y = [; 3; the instance T3 € S, labeled with Y7 = {I; }, after the transformation is (still) labeled with
y = l1; and so on. With this new dataset S’, a multiclass classifier h is induced.

Given a new instance x to be labeled, the classifier h labels x with a set of labels that have probability higher than
a threshold ¢. Supposing that the output of h is a probability distribution over all the possible classes, LP method can
rank the original labels. For instance, let us consider that h outputs the following probability distribution: /1 o = 0.7,
la3 = 0.2and [; = 0.1. So, the probability of x being labeled by /1 = 0.7 x 1 4+ 0.2 x 0 + 0.1 x 1 = 0.8; being
labeled by ls = 0.7 x 1+ 0.2 x 1+ 0.1 x 0 = 0.9; and being labeled by I3 = 0.7 x 04+ 0.2 x 1 + 0.1 x 0 = 0.2.
Defining ¢ = 0.5, x is labeled with the set Z = {l1,l2}.

2.2.3 RAndom K-labELsets — RAKEL

The RAndom k-labELsets (RAKEL) algorithm constructs an ensemble of multi-label classifiers. Each member of the
ensemble is constructed by considering a small random subset of labels and learning LP multi-label classifier, i.e., a
single-label classifier for the prediction of each element in the powerset of this subset. In this way, the RAKEL aims to
take into account label correlations using single-label classifiers that are applied on subtasks with manageable number
of labels and adequate number of examples per label [13].

2.2.4 Hierarchy Of Multilabel classifiERs — HOMER

Problems with large number of labels can be found in several domains. For example, the version of the Million Song
Dataset that we use in this work, contains 726 genre music labels. The high dimensionality of the label space may
challenge a multi-label learning algorithm in many ways. Firstly, the number of training examples annotated with
each particular label will be significantly less than the total number of examples. This is similar to the class imbalance
problem in single-label data [14]. Secondly, the computational cost of training a multi-label model may be strongly
affected by the number of labels. There are simple algorithms, such as BR with linear complexity with respect to |L|,
but there are others, such as LP, whose complexity is worse. Thirdly, although the complexity of using a multi-label
model for prediction is linear with respect to q in the best case, this may still be inefficient for applications requiring
fast response times. Finally, methods that need to maintain a large number of models in memory, may fail to scale up
to such domains.

HOMER constructs a Hierarchy Of Multilabel classifiERs, each one dealing with a much smaller set of labels
compared to |L| and a more balanced example distribution. This leads to improved predictive performance along
with linear training and logarithmic testing complexities with respect to |L|. At a first step, HOMER automatically
organizes labels into a tree-shaped hierarchy. This is accomplished by recursively partitioning the set of labels into
a number of nodes using a balance clustering algorithm. It then builds one multi-label classifier at each node apart
from the leafs, following the Hierarchical Binary Relevance (HBR) approach. The HBR approach works as follow.
Given a label hierarchy, a binary classifier is trained for each non-root label [ of this hierarchy, using as training data
those examples of the full training set that are annotated with par(l). During testing, these classifiers are called in a
top-down manner, calling a classifier for [ only if the classifier for par(l) has given a positive output. The multilabel
classifiers predict one or more meta-labels m;, each one corresponding to the disjunction of a child node’s labels.

2.2.5 Classifier Chains — CC

The widely known binary relevance method for multi-label classification, which considers each label as an inde-
pendent binary problem, has often been overlooked in the literature due to the perceived inadequacy of not directly
modelling label correlations. The CC method combines the computational efficiency of BR method and the possibility
to use dependency between labels for classification. For each binary model, the space of domain features is extended
with 0/1 relevant labels of all former classifiers, building a classifier chain [15].
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3 DATASETS DESCRIPTION

In this work, we used the Million Song Dataset and some other multi-label dataset found in the internet. We
describe all these datasets in what follows.

3.1 The MSD Dataset

The MSD — The Million Song Dataset* [8] — is a freely-available collection of audio features and metadata for
a million contemporary popular music tracks. The core of the dataset is composed of features and metadata extracted
from one million songs, provided by The Echo Nest’. The dataset does not include any kind of audio music, only
the derived features from them. Each data music is stored using HDF5 format, which is a data model, library, and
file format for storing and managing data. These HDFS5 files were constructed using an API provided by The Echo
Nest. Each file consists of features extracted from a music, such as version, artist and two types of genres collection
associated to each music: (i) Terms, which are tags provided by The Echo Nest, and they can come from a number
of places, but mostly from blogs; and (ii) Mbtags, which are tags provided from MusicBrainz specifically applied by
humans to a particular artist. Particularly, Mbtags are cleaner than terms for genre recognition.

A HDFS5 file has 55 features, and the most important features to use for representing this domain are segment-
pitches and segments-timbre. Pitch is the sound property that classifies it as low or high in pitch, or, in other
word, bass or sharp sound, respectively. This feature is related to frequency of the signal sound: Higher frequencies,
or high pitches, correspond to lower wave length, or sharp sound; Lower frequencies, or low pitches, correspond to
higher wave length, or bass sound. Timbre is the sound property dependent from the complexity of the signal sound.
Perceiving timbre is affected either by frequencies domain aspects, i.e. the way the signal can be decomposed in
elementary periodical signals, or time domain aspects, i.e. the way the signal amplitude varies with time. Timbre
is usually defined as the color of the sound, because by timbre we can identify a sound produced by different fonts,
such as two musical instruments playing the same accord or two people singing the same melody [16]. Other impor-
tant features are artist name (the singer of the music), title of the music, location (where the music was recorded),
year when the music was recorded, time duration, segments-start, bars start, similar artists, terms and mb-
tags — MusicBrainz tags, provided by MusicBrainz®. The last five listed features, jointly to segments-timbres and
segments-pitches, are multi-valued. segments-start is a list of V' values, where V' is variable among songs. Each
value of segments-start corresponds to the start, in seconds, of intervals, or segments, of the music. segments-
pitches and segments-timbres are arrays of two dimensions, where the first one has 12 positions, and each of these
positions has V' values.

Because MSD contains many multi-valued features, a database-oriented approach to propositionalization is nec-
essary [17]. In [8], they propositionalized only segments-timbre for year prediction task. As described before,
segments-timbre has 12 lists, i.e, segT listy, ..., segT _list1o. In this case, the authors aggregate each list calculat-
ing 12 mean values, one for each list, generating the features meansegr jist,» ---» MEANseqgT List;,- Als0, the authors
calculate the covariance matrix for the twelve lists. The purpose of this covariance matrix was to verify the variance
between each pair of seg7'_list. The covariance matrix is a matrix whose elements in the (7, j) position is the co-
variance cov between two random variables = and y; in this case, x is the list segT list;, y is the list segT list;,
i,7 = {1,...,12}. The covariance between two random variables x and y, cov(x, y), is defined by the linear correla-

tion coefficient p,, = U?O%‘y When z # vy, cov(z,y) = cov(y, r); and when x = y, cov(z,y) = cov(z,r) = o2. In

this case, where there are 12 lists, instead of generating all the 122 = 144 matrix values, only a?e gtlist;? b = {1,...,12}
and Psegt_list;segt list;> by J = {1,...,12},4 > j are calculated, what means generating 12 variance features and 60 cor-
relation or covariance features, totalizing 78 covariance features. So, in [8], they generated 90 features from the
Million Song Dataset.

In this work, we did not only consider these 90 features, but we also considered the segments-pitches multi-
valued feature, because we believe that the pitch of the music may influence its genre definition. The same proce-
dure used to generate the features extracted from segments-timbre was used to generate features from segments-

pitches. In this way, three features subsets are constructed:

1. Means of segments-timbre lists, represented by {meangegp sist, , ---s MEANsegP list1s 13

*http://labrosa.ee.columbia.edu/millionsong/
Shttp://echonest.com/.
®http://musicbrainz.org/
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2. Variances of segments-timbre lists, represented by {ofegplistl, ey UgegP,listlg }; and

3. Correlation coefficients of segments-timbre lists, represented by { PsegP_list1segP listas -+ PsegP_list, segP_list1
PsegP listasegP listz +-+y PsegP listasegP listiay +++y PsegP_list11segP list1o }

Considering the aggregations of segments-timbre and segments-pitches, the description features totalize 180
domain features. Each instance was classified by the tags given by MusicBrainz, as described earlier.

The original dataset contains 1 million songs. The authors also made available a sample of the original dataset
containing 10.000 songs, which was used for this work. When analyzing this dataset sample, we observed that (i)
there were instances without any label; and (ii) there were labels with too few instances associated to them, as well as
there were labels with too many of them. Instances without any label were discarded, resulting 3.710 instances. Labels
with too few instances associated to them could be considered noisy labels. Next section describes the experiments

realized in this work.
Song
Root

Metadata

MusicBrainz

Analysis

Song Features Song Features Song Features
Artist Name Duration Year
Title Rate
Location
mblD | I T
Segments Start > MBTags
! T T T T T T T
o Terms s Bars Start
L 1 1 1 L 1 1 1
T T T T T T
> Similar Artists e
T T SR Segments Pitches
1 1 1 1 1 1 1
T T T T T T T
Segments Timbre
1 1 1 1 1 L L

Figure 1: A visualization of the structure of each HDFS5 file of the MSD dataset.

In this work, we used MSD to vary cardinality and density values. For this task, we considered that each label
should be linked to a minimum of Ny instances on the dataset. We considered the following values as minimum
instances to each label: Ny € {0,5,15,25,35,45,65,75,85,95, 145,195}, where Ny = 0 means that all the labels
were considered; Ny = 5, only labels with 5 or more instances associated with it were considered; No = 15, only
labels with 15 or more instances associated with it were considered; and so on. Each generated dataset was renamed
to MSD-000, MSD-005, MSD-015, MSD-025, MSD-035, MSD-045, MSD-055, MSD-065, MSD-075, MSD-085,
MSD-095, MSD-145 and MSD-1957. Table 1 describes the main characteristics of each generated datasets, where
Min #Inst indicates the minimum number of instances a label has to be associated to be considered; #Inst represents
the number of instances resulted after disconsidering labels that do not satisfy the Min #Inst Per Label condition;
#Labels represents the number of remaining labels; Card is the label cardinality value — Eq. 1; and Dens is the
label density value — Eq. 2. We should remember that each dataset has 180 domain dataset attributes, all numerical
ones.

3.2 Natural Datasets

We used six natural datasets in our experiments, also used in [5]3: Emotions, Genbase, Scene, Yeast, Enron e
Medical. Table 2 describes characteristics of these datasets, where #Inst. is the number of instances in the dataset;

"The generated datasets are available at http://www.professores.uff.br/fcbernardini/papers/compl/MSD_MR/
8These datasets and others are available at Mulan library site — http://mulan.sourceforge.net/datasets.html

6
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Table 1: MSD-Generated Datasets Characteristics

H Min #Inst [ #Inst [ #Labels [ Card [ Dens

MSD-000 0 3710 726 3.8919 | 0.0054
MSD-005 5 3669 483 3.7817 | 0.0078
MSD-015 15 3587 272 3.4767 | 0.0128
MSD-025 25 3541 202 3.2937 | 0.0163
MSD-035 35 3506 161 3.1954 | 0.0198
MSD-045 45 3466 140 3.1056 | 0.0222
MSD-055 55 3408 122 2.9759 | 0.0244
MSD-065 65 3372 107 29517 | 0.0276
MSD-075 75 3345 98 2.8906 | 0.0295
MSD-085 85 3340 90 2.8189 | 0.0313
MSD-095 95 3256 84 2.8443 | 0.0339
MSD-145 145 3080 62 2.6182 | 0.0422
MSD-195 195 2904 47 2.4938 | 0.0531

#Feat. Disc and #Feat. Cont. are, respectively, number of discrete and continuous features; #Labels is the total
number of labels; C'ard is the label cardinality value — Eq. 1; and Dens is the label density value — Eq. 2.

Table 2: Datasets Characteristics

Dataset #Inst. | #Feat. Disc. | #Feat. Cont || #Labels | Card | Dens
Yeast 2417 0 103 14 4.237 | 0.303
Scene 2407 0 294 6 1.074 | 0.179

Emotions 593 0 72 6 1.869 | 0.311

Genbase 662 1186 0 27 1.252 | 0.046
Enron 1000 1001 0 53 3.378 | 0.064

Medical 978 1449 0 45 1.245 | 0.028

Figures 2 and 3 show, respectively, cardinality and density values of each dataset used in this work. We can observe
in Figure 3 that density values in MSD datasets are much lower than density values of the natural datasets.
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Figure 2: Cardinality Values of Each Dataset

4 RESULTS AND ANALYSES

To evaluate the influence of cardinality and density characteristics to multi-label learning, we considered five multi-
label learning methods frequently used in literature, briefly described in Section 2.2 — BR, LP, RAKEL, HOMER [6]
and CC [15]. As base learning algorithms, we used Naive Bayes (NB) and J48 [10]. We denote each combination
of multi-label learning method and base learning algorithm as BR-NB, BR-J48, CC-J48, CC-NB, HOMER-J48,

7
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Figure 3: Density Values of Each Dataset

HOMER-NB, LP-J48, LP-NB, RAKEL-J48 and RAKEL-NB. Figures 4 and 5 shows all the results obtained for each
triple of (i) dataset, (ii) multi-label learning method and (iii) base learning algorithm. It is important to observe that the
methods CC-J48, CC-NB,LP-J48, LP-NB, RAKEL-J48 and RAKEL-NB could not be executed for MSD-000 dataset;
and HOMER-J48 and HOMER-NB could not be executed for both MSD-000 and MSD-005 datasets. All of these
executions could not be terminated by lack of memory problem.

We aim to analyze if there is a relation between cardinality C'ard, inherent to each multi-label dataset, and the
measure values obtained for each multi-label learning method and each dataset, as well as if there is some relation
between the density Dens and the measure values. To compute the correlation, we considered that C'ard and Dens
are variables, and the correlation was calculated between each of them and each of the evaluation measures. Be-
cause Pearson Correlation is a parametric statistic, we first executed the Anderson-Darling’s normality test for all
algorithms results. In some results we could reject the normality test, what leaded us to measure Spearman’s rank
correlation® [18].

Spearman’s rank correlation was calculated between Card and each measure results, and also was calculated
between Dens and each measure results. Correlation between the results and Card, as well as between the results
and Dens, was expected. Figures 6 and 7 shows the |p(Card, Mea)| and |p(Dens, Mea)| values for measures
Mea € {Ham,SA, F, Acc, F1_, F1~ AUC_}.

We can observe that, when putting together all results, we could not observe high correlation between Cardinality
values and measures’ results for all but four situations. These exceptions can be observed in Figure 6(a) for CC-
NB method, and in Figure 7(c) for CC-NB, HOMER-NB and LP-NB. On the other hand, for SAcc, F and Acc
measures, all the correlations between Card and Mea (p(Card, Mea)) are near 0.7. Regarding to density values,
we can observe that for Ham, S Acc, F', Acc and F'1_ measures, which correlation values are shown in Figures 6(a),
6(b), 6(c),6(d) and 7(a), all but three correlations are lower than 0.7. The exception are for Ham measure and CC-
NB, HOMER-J48 and RAKEL-NB methods. Also, we noticed that multi-label methods may be more affected by low
density values than by high cardinality values. Because LP and RAKEL transform the original multi-label problem into
transformed multi-class(es) problem(s), it was expected that these methods would show high correlation considering
both C'ard and Dens values. However, only Dens showed high correlations with M ea measures. Finally, we also
observed that, for F'1~ and AUC_ measures, we could not observe any pattern in correlation behaviour.

° Anderson-Darling’s normality test and Spearman’s rank correlation was calculated using R software, available at http: //www.
r-project.org/
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Figure 4: Results for instance-based measures Mea € {Ham, SA, F, Acc}, all datasets and all multi-label learning
methods.
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Figure 5: Results for label-based measures Mea € {F1_, F1~ AUC_}, all datasets and all multi-label learning
methods.
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S CONCLUSIONS AND FUTURE WORK

Cardinality and density are multi-label datasets’ characteristics related to the degree of difficulty to learn a multi-
label classifier, i.e., lower the density and higher the cardinality, more difficult the multi-label learning process. In
[5], we started our investigation on how much cardinality and density could impact the multi-label learning methods’
results. In that work, we used only six natural datasets, available in the internet. However, all of them have different
domain features. In this work, we describe the million song dataset, the pre-process phase for multi-label learning,
and the generated datasets, with the same domain features, but different cardinality and density values. Also, we
considered the results of the six datasets used before, to compose our analyzes. We could observe in this work
that density dataset characteristic shows more influence in multi-label learning than cardinality characteristic. So,
exploring how to increase density values without changing the learning problems could be an interesting approach.

Also, it is important to notice that real multi-label datasets may present low density values and high number of
labels. It should be observed that HOMER is a method developed to scale up multi-label learning according to number
of labels; however, HOMER could not be executed for the the datasets with highest number of labels, what indicates
that investigation of more scalable algorithms is interesting.
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