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Abstract. Two main characteristics of multi-label dataset are cardinality and
density, related to the number of labels of (each instance of) a multi-label da-
taset. The relation between these characteristics and multi-label learning per-
formance has been observed with different datasets. However, the difference in
domain dataset attributes also interfere on multi-label learning performance. In
this work, we use a real dataset, named The Million Song Dataset, available in
the internet, which presents the property of having too many labels associated
to their instances (songs), as well as so many instances. In this work we present
the processed datasets used to conduct our experiments, and we also describe
our experiments results.
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1. Introduction
Some real applications are related to the task of classification, such as diagnosis,

fault detection, and so on. These problems are commonly treated by machine learning
supervised algorithms, which induces classifiers, or predictors, such as neural networks,
SVM, decision trees, and so on. These classifiers usually identify just one class of a new
instance, or case, from a set of possible labels. However, there are problems related to the
task of predicting more than one class for each case. For example, we can mention images
and music labeling, failure diagnosis, and others. These kind of problems are tackled by a
special type of machine learning, called multi-label learning algorithms. Many multi-label
learning methods have been proposed in literature, such as [Schapire and Singer 2000,
Shen et al. 2004, Sebastiani 2002, Bernardini et al. 2009, da Gama et al. 2012]. A survey
describing multi-label learning methods can be found in [Tsoumakas et al. 2010a]. Two
main characteristics analyzed in a multi-label dataset are cardinality and density, both
related to the number of labels of each instance of a dataset and also of the entire dataset.
Cardinality of a multi-label dataset is the mean of the number of labels of the instances
that belong to this dataset, and density of a multi-label dataset is the mean of the number
of labels of the instances that belong to this dataset divided by the number of the labels.

Some papers in literature indicate that these dataset characteristics — cardi-
nality and density — may cause different behaviors in multi-label learning methods.
In [Tsoumakas et al. 2010a], the authors affirm that two datasets with approxima-
tely the same cardinality, but with great difference in density, may not exhibit the
same properties, which causes different behaviors in multi-label learning methods.



In [da Gama et al. 2012] we studied the influence of these two characteristics on the per-
formance of the multi-label learners used in our benchmark. We observed that there was
a correlation between these characteristics and the results obtained with some datasets;
however, the domain of that datasets are quite different, what leaded us to question how
the domain features influenced the analysis. In [Spyromitros et al. 2008], the authors
proposed a new method called BRkNN, an adaptation of the kNN algorithm for multi-
label classification based on Binary Relevance method, and compared this method with
LPkNN, another adaptation method of the kNN algorithm based on Label Powerset multi-
label method. The authors observed the influence between the LPkNN method and the
influence of low density values, using three different datasets, with different domain fe-
atures, but they could not safely argue that high density lead to improve performance of
the LPkNN. These works analyze the relationship between cardinality (and density) and
multi-label learning algorithms results using different datasets, with different cardinality
and density values, and different domain dataset attributes. In this way, it is unknown
how much the domain difference interferes in cardinality and density analysis. One issue
that turns difficult this study is the unavailability of a dataset with the same features but
different cardinality and density values.

In [Bertin-Mahieux et al. 2011] the Million Song Dataset is presented, a freely-
available collection of audio features and metadata for a million contemporary popular
music tracks. The dataset does not include any kind of audio music, only the derived
features from them. This collection is available as a relational database. This dataset
is labeled by tags that can be seen as musical genres. Each song has more than one of
these tags associated to. The main advantage of this dataset on other available multi-
label datasets is the high number of labels, which allows to vary the number of labels
without loosing the multi-label problems characteristic. One problem with this dataset is
the transformation process to allow data mining on it using the available data mining and
machine learning tools.

The aim of this work is to present an analysis of the influence of the cardina-
lity and density measures to multi-label learning. To allow this study, we pre-processed
the Million Song Dataset. In this work, to initiate our studies, we considered only the
Naı̈ve Bayes algorithm to induce the base classifiers, because of its low time consump-
tion for induction of the classifiers and its lack of requirement for adjustment parame-
ters. In this work, we also present this dataset and the data pre-processing step of
the Million Song Dataset. To induce the multi-label classifiers, we used the Mulan li-
brary1[Tsoumakas et al. 2010b], based on Weka [Witten and Frank 2005].

This work is organized as follows: Section 2 describes Multi-Label Machine Le-
arning concepts and notations. Section 3 describes the Million Song Dataset, as well as
our pre-process step of this dataset. Section 4 describes the experiments and results we
obtained. Section 5 concludes this work.

2. Multi-label Machine Learning
Multi-label problems appear in different domains, such as image, text, mu-

sic, proteins and genome classification [Schapire and Singer 2000, Shen et al. 2004,
Sebastiani 2002], and failure diagnosis [Bernardini et al. 2009]. In multi-label problems,

1Available at http://mulan.sourceforge.net.



the input to the multi-label learning algorithms is a dataset S, with N instances Ti, i =
1, ..., N , chosen from a domain X with fixed, arbitrary and unknown distribution D, of
the form (xi, Yi), with i = 1, ..., N , for some unknown function f(x) = Y . In this work,
we call domain attributes datasets the attributes that compose X . L is the set of possible
labels of the domain D, and Yi ⊆ L, i.e., Yi is the set of labels of the ith instance. The
output of multi-label learning algorithms is a classifier h that labels an instance xi with a
set Zi = h(xi), i.e., Zi is the set of labels predicted by h for xi2.

The number of labels |L| is frequently seen as a parameter that influences the
performance of different multi-label methods. There are two measures for evaluating
the characteristics of a dataset, objects of this study: cardinality Card and density
Dens [Tsoumakas et al. 2010a]. The cardinality of S is the mean of the number of labels
of the instances that belong to S, defined by Eq. 1, and the density of S is the mean of the
number of labels of the instances that belong to S divided by |L|, defined by Eq. 2.

Card =
1

N

N∑
i=1

|Yi| (1)

Dens =
1

N

N∑
i=1

|Yi|
|L|

(2)

Multi-label machine learning methods can be divided into two catego-
ries [Tsoumakas et al. 2010a]: problem transformation and algorithm adaptation. In the
first category, the multi-label problem is transformed to (many) multiclass (or binary) ma-
chine learning problems, and each sub-problem is given to a classic (binary or multiclass)
supervised machine algorithm. These (binary or multiclass) classifiers are called in this
work base classifiers. In the second category, the machine learning algorithm is adap-
ted to deal with multi-label problems. In this work, we use three methods, commonly
used in multi-label learning, named BR, LP and RAkEL. The BR method transforms the
original multi-label problem, with |L| labels, into |L| binary problems. The LP method
transforms the original multi-label problem into a multiclass problem, considering the
relation among the labels. The RAkEL method constructs an ensemble of LP classifi-
ers, which are trained using a small random subset of the set of labels constructed by
LP. A more complete description of these (and others) multi-label methods can be found
in [Tsoumakas et al. 2010a].

Multi-label machine learners need classifiers evaluation. For this task, there are
three groups of measures to evaluate induced multi-label classifiers: based on instances,
based on labels and based on ranking [Tsoumakas et al. 2010a]. In this work, we use the
first two groups of measure, because multi-label ranking is not the aim of this work. In
the first group, we use in this work (i) Hamming Loss (Ham), (ii) Accuracy (Acc) and
(iii) F1, defined by Eqs. 3 to 53, respectively. In the second group, we use the micro
and macro versions of F1 measure. Measures based on labels are calculated based on
false positives fp, false negatives fn, true positives tp and true negatives tn, i.e., measures

2In this work, we use Ti to refer to an instance with associated label yi or Yi, and we use xi when we
are not considering the associate label, or xi does not have an associated label yet.

3In Eq. 3, ∆ represents the symmetric difference between two datasets.



of the type B(tp, tn, fp, fn) can be used in this case. Given that tpl , tnl
, fpl and fnl

are
true positives, true negatives, false positives and false negatives for each label l ∈ L,
the micro and macro versions of B measures are given by Eqs. 6 and 7, respectively.
F1(tp, tn, fp, fn) is given by Eq. 8.

Hamm(h, S) =
1

N

N∑
i=1

|Yi∆Zi|
|L|

(3)

Acc(h, S) =
1

N

N∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(4)

F (h, S) =
1

N

N∑
i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

(5)

Bmicro(h, S) =
1

|L|

|L|∑
i=1

B(tpi , tni
, fpi , fni

) (6)

Bmacro(h, S) =
1

|L|
B(

|L|∑
i=1

tpi ,
|L|∑
i=1

tni
,
|L|∑
i=1

fpi ,
|L|∑
i=1

fni
) (7)

F1(tp, tn, fp, fn) =
2× fp

2× tp + fn + fp
(8)

3. The Million Song Dataset

The MSD — The Million Song Dataset4 [Bertin-Mahieux et al. 2011] — is a
freely-available collection of audio features and metadata for a million contemporary po-
pular music tracks. The core of the dataset is composed of features and metadata extracted
from one million songs, provided by The Echo Nest5. The dataset does not include any
kind of audio music, only the derived features from them. Each data music is stored using
HDF5 format, which is a data model, library, and file format for storing and managing
data. These HDF5 files were constructed using an API provided by The Echo Nest. Each
file consists of features extracted from a music, such as version, artist and two types of
genres collection associated to each music: (i) Terms, which are tags provided by The
Echo Nest, and they can come from a number of places, but mostly from blogs; and (ii)
Mbtags, which are tags provided from MusicBrainz specifically applied by humans to a
particular artist. Particularly, Mbtags are cleaner than terms for genre recognition.

A HDF5 file has 55 features, and the most important features to use for repre-
senting this domain are segment-pitches and segments-timbre. Pitch is the sound
property that classifies it as low or high in pitch, or, in other word, bass or sharp sound,
respectively. This feature is related to frequency of the signal sound: Higher frequencies,
or high pitches, correspond to lower wave length, or sharp sound; Lower frequencies,
or low pitches, correspond to higher wave length, or bass sound. Timbre is the sound

4http://labrosa.ee.columbia.edu/millionsong/
5http://echonest.com/.



property dependent from the complexity of the signal sound. Perceiving timbre is affec-
ted either by frequencies domain aspects, i.e. the way the signal can be decomposed in
elementary periodical signals, or time domain aspects, i.e. the way the signal amplitude
varies with time. Timbre is usually defined as the color of the sound, because by timbre we
can identify a sound produced by different fonts, such as two musical instruments playing
the same accord or two people singing the same melody [Stephanidis 2010]. Other impor-
tant features are artist name (the singer of the music), title of the music, location (where
the music was recorded), year when the music was recorded, time duration, segments-
start, bars start, similar artists, terms and mbtags — MusicBrainz tags, provided by
MusicBrainz6. The last five listed features, jointly to segments-timbres and segments-
pitches, are multi-valued. segments-start is a list of V values, where V is variable
among songs. Each value of segments-start corresponds to the start, in seconds, of in-
tervals, or segments, of the music. segments-pitches and segments-timbres are arrays
of two dimensions, where the first one has 12 positions, and each of these positions has
V values.

Because MSD contains many multi-valued features, a database-oriented approach
to propositionalization is necessary [Krogel et al. 2003]. In [Bertin-Mahieux et al. 2011],
they propositionalized only segments-timbre for year prediction task. As described be-
fore, segments-timbre has 12 lists, i.e, segT list1, ..., segT list12. In this case, the
authors aggregate each list calculating 12 mean values, one for each list, generating
the features meansegT list1 , ..., meansegT list12 . Also, the authors calculate the covari-
ance matrix for the twelve lists. The purpose of this covariance matrix was to verify
the variance between each pair of segT list. The covariance matrix is a matrix whose
elements in the (i, j) position is the covariance cov between two random variables x
and y; in this case, x is the list segT listi, y is the list segT listj , i, j = {1, ..., 12}.
The covariance between two random variables x and y, cov(x, y), is defined by the li-
near correlation coefficient ρxy = σxy

σxσy
. When x 6= y, cov(x, y) = cov(y, x); and

when x = y, cov(x, y) = cov(x, x) = σ2
x. In this case, where there are 12 lists, ins-

tead of generating all the 122 = 144 matrix values, only σ2
segt listi

, i = {1, ..., 12} and
ρsegt listisegt listj , i, j = {1, ..., 12}, i > j are calculated, what means generating 12 vari-
ance features and 60 correlation or covariance features, totalizing 78 covariance features.
So, in [Bertin-Mahieux et al. 2011], they generated 90 features from the Million Song
Dataset.

In this work, we did not only consider these 90 features, but we also considered the
segments-pitches multi-valued feature, because we believe that the pitch of the music
may influence its genre definition. The same procedure used to generate the features ex-
tracted from segments-timbre was used to generate features from segments-pitches.
In this way, three features subsets are constructed: (i) means of segments-timbre
lists, represented by {meansegP list1 , ...,meansegP list12}; (ii) variances of segments-
timbre lists, represented by {σ2

segP list1
, ..., σ2

segP list12
}; and (iii) correlation coefficients

of segments-timbre lists, represented by {ρsegP list1segP list2 , ..., ρsegP list1segP list12 ,
ρsegP list2segP list3 , ..., ρsegP list2segP list12 , ..., ρsegP list11segP list12}. Considering the ag-
gregations of segments-timbre and segments-pitches, the description features totalize
180 domain features. Each instance was classified by the tags given by MusicBrainz, as

6http://musicbrainz.org/



described earlier.

The original dataset contains 1 million songs. The authors also made available
a sample of the original dataset containing 10.000 songs, which was used for this work.
When analyzing this dataset sample, we observed that (i) there were instances without any
label; and (ii) there were labels with too few instances associated to them, as well as there
were labels with too many of them. Instances without any label were discarded, resulting
3.710 instances. Labels with too few instances associated to them could be considered
noisy labels. Next section describes the experiments realized in this work.

4. Experiments and Results
To evaluate the influence of cardinality and density characteristics to multi-label

learning, we considered three multi-label learning methods frequently used in literature,
briefly described in Section 2 — BR, LP and RAkEL [Tsoumakas et al. 2010a]. To vary
cardinality and density of MSD, we considered that each label should be linked to a mi-
nimum of N0 instances on the dataset. We considered the following values as minimum
instances to each label: N0 ∈ {0, 5, 15, 25, 35, 45, 65, 75, 85, 95, 145, 195}, whereN0 = 0
means that all the labels were considered; N0 = 5, only labels with 5 or more instan-
ces associated with it were considered; N0 = 15, only labels with 15 or more instances
associated with it were considered; and so on. Each generated dataset was renamed to
MSD-000, MSD-005, MSD-015, MSD-025, MSD-035, MSD-045, MSD-055, MSD-065,
MSD-075, MSD-085, MSD-095, MSD-145 and MSD-1957. Table 1 describes the main
characteristics of each generated datasets, where Min #Inst indicates the minimum num-
ber of instances a label has to be associated to be considered; #Inst represents the number
of instances resulted after disconsidering labels that do not satisfy the Min #Inst Per Label
condition; #Labels represents the number of remaining labels; Card and Dens represent
cardinality and density of the resulting dataset. We should remember that each dataset has
180 domain dataset attributes, all numerical ones. Figure 1 shows the relation between
cardinality and density over the generated datasets. In this figure, we can observe that
cardinality decreasing rate is lower than density increasing rate.

Tabela 1. Datasets Characteristics
Min #Inst #Inst #Labels Card Dens

MSD-000 0 3710 726 3.8919 0.0054
MSD-005 5 3669 483 3.7817 0.0078
MSD-015 15 3587 272 3.4767 0.0128
MSD-025 25 3541 202 3.2937 0.0163
MSD-035 35 3506 161 3.1954 0.0198
MSD-045 45 3466 140 3.1056 0.0222
MSD-055 55 3408 122 2.9759 0.0244
MSD-065 65 3372 107 2.9517 0.0276
MSD-075 75 3345 98 2.8906 0.0295
MSD-085 85 3340 90 2.8189 0.0313
MSD-095 95 3256 84 2.8443 0.0339
MSD-145 145 3080 62 2.6182 0.0422
MSD-195 195 2904 47 2.4938 0.0531

7The generated datasets are available at http://www.professores.uff.br/
fcbernardini/papers/compl/MSD_MR/



Figura 1. Cardinality and Density Values of Each Dataset

Each dataset was given to each multi-label method we considered in this
work — BR, RAkEL and LP. In this work, we used only the Naı̈ve Bayes algo-
rithm [Mitchell 1997] to induce the base classifiers, because its low time consuming
for induction of the classifiers and its lack of requirement for adjustment parameters.
We used the implementation of the multi-label learning algorithms available at Mulan
library [Tsoumakas et al. 2010a]. Mulan is based on Weka, a collection of machine lear-
ning algorithms for data mining tasks [Witten and Frank 2000]. Figures 2(a) to 2(e) shows
respectively the results obtained on each measure used in this work — Hamm, Acc, F ,
F1micro and F1macro — for each dataset and each multi-label algorithm in contrast to
cardinality values of the datasets. We should observe that all these measures present the
following characteristic: the lower the cardinality value, the better the result, i.e., higher
the measures values, independently from the multi-label algorithm considered. In fact,
even considering LP algorithm and Hamm measure — Figure 2(a) —, where the values
are lower than the BR and RAkEL values, we can observe this relation. Figs. 3(a) to 3(e)
also shows respectively the results obtained on each measure used in this work, but in
these plots these results are contrasted to density values of the datasets. We also should
observe that all these measures present the following characteristic: the higher the car-
dinality value, the better the result, i.e., higher the measures values, independently from
the multi-label algorithm considered. These plots (as well as the ones shown in Figs. 2(a)
to 2(e)), show that the multi-label methods improve the results while Dens increases (or
Card decreases), and there is not a stationary point. This observation indicates that di-
minishing the complexity problem improves the multi-label learning results and therefore
the threshold for selecting the labels to be learned should have an expert domain control.

To evaluate the correlation between the learning methods and cardinality and the
learning methods and density, we measured the correlation between each algorithm results
and the cardinality values, and also between the results and the density values. Because
Pearson Correlation is a parametric statistic, we first executed the Anderson-Darling’s
normality test for all algorithms results. In some results we could reject the normality
test, what leaded us to measure Spearman’s rank correlation8 [Ekstrøm 2011].

Spearman’s rank correlation was calculated between Card and each measure re-
sults, whose values are shown in Table 2, and also was calculated between Dens and
each measure results, whose values are shown in Table 3. In Table 2, we can observe that
correlation values are very close to -1, or, in some cases, ρ = −1, which indicates that

8Anderson-Darling’s normality test and Spearman’s rank correlation was calculated using R software,
available at http://www.r-project.org/



(a) Ham Measure and Cardinality (b) Acc Measure and Cardinality

(c) F Measure and Cardinality (d) Micro Version of F1 Measure and
Cardinality

(e) Macro Version of F1 Measure and
Cardinality

Figura 2. Comparison between Cardinality and Multi-Label Learning Measures.



(a) Ham Measure and Density (b) Acc Measure and Density

(c) F Measure and Density (d) Micro Version of F1 Measure and
Density

(e) Macro Version of F1 Measure and
Density

Figura 3. Comparison between Density and Multi-Label Learning Measures.



Card inversely impacts each evaluation measure. Similarly, in Table 3, we can observe
that correlation values are very close to 1, or, in some cases, ρ = 1, which indicates that
Dens proportionally impacts each evaluation measure. Correlation between the results
and Card, as well as between the results and Dens, was expected; however, the absolute
correlation values are nearest to 1, more times than we were expecting. Even with a high
dimensional feature domain, the results improve when Card is lower, or when Dens is
higher.

Tabela 2. Correlation ρ between Card and multi-label evaluation measures to
MSD-MR datasets

BR RAKEL LP
ρ(Hamm,Card) -0.962 -0.978 -0.995
ρ(Acc, Card) -0.995 -0.995 -0.945
ρ(F,Card) -0.995 -0.995 -0.945
ρ(F1micro, Card) -1.000 -0.995 -0.956
ρ(F1macro, Card) -0.984 -0.978 -0.978

Tabela 3. Correlation ρ between Dens and multi-label evaluation measures to
MSD-MR datasets

BR RAKEL LP
ρ(Hamm,Dens) 0.978 0.989 1.000
ρ(Acc,Dens) 1.000 1.000 0.967
ρ(F,Dens) 1.000 1.000 0.967
ρ(F1micro, Dens) 0.995 1.000 0.973
ρ(F1macro, Dens) 0.995 0.989 0.989

5. Conclusions and Future Work
In [da Gama et al. 2012] we studied the influence of cardinality and density on

the performance of the multi-label learners using six different datasets, with different
domains. We observed in that work that there was a correlation between these characte-
ristics and the results obtained with these datasets; however, the domain of that datasets
are quite different, what leaded us to question how the domain features influenced the
analysis. In this work, we present a study of the influence of two characteristics of multi-
label datasets — cardinality and density. A second contribution of this work is to present
multi-label datasets processed from a real dataset, named The Million Song Dataset. The
main advantage of this dataset on other available multi-label datasets is the high number
of labels, which allows to vary the number of labels without loosing the multi-label pro-
blems characteristic. To analyze how correlated are cardinality and density to multi-label
learning algorithms performance, we used three multi-label machine learning methods
and five evaluation measures. We can observe in our results that cardinality and density
are highly correlated to these evaluation measures considering the chosen three methods
and considering the dataset used in this study, which indicates that these characteristics
have a great influence on multi-label learners.

In future work, we intend to induce base classifiers using different learning algo-
rithms and other multi-label learning methods to expand our analysis. Also, this work in-
dicates that multi-label learners that take these dataset characteristics into account should
exhibit better performance to multi-label problems, which we intend to explore in the
future.
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