
A Proposal for Simplifying Explanations from
Ensembles of Symbolic Classifiers

Flavia Cristina Bernardini1, Maria Carolina Monard2, and Ronaldo C. Prati3

1 Departamento de Ciência e Tecnologia — RCT
Pólo Universitário de Rio das Ostras — PURO

Universidade Federal Fluminense — UFF
Rio das Ostras, RJ, Brasil — fcbernardini@vm.uff.br

2 Departamento de Ciência da Computação - SCC
Instituto de Ciências Matemáticas e Computação – ICMC

Universidade de São Paulo – USP
São Carlos, SP, Brasil — mcmonard@icmc.usp.br

3 Centro de Matemática, Computação e Cognição – CMCC
Universidade Federal do ABC – UFABC

Santo André, SP, Brasil — ronaldo.prati@ufabc.edu.br

Abstract. Data mining applications generally use learning algorithms
in order to induce knowledge. To accomplish this task, these algorithms
should be able to operate with massive data sets. Several techniques, such
as data sampling, can be used to scale up learning algorithms to deal with
large datasets. Using data sampling, learning algorithms can be applied
to small samples of the original dataset, and the individual classifiers
can then be combined into an ensemble which, in numerous situation,
can be more accurate than the individual classifiers. However, ensembles
often lack the facility to explain their decisions. This work explores a
method to offer a concise explanation of ensembles decisions whenever
the ensembles are composed by a combination of symbolic classifiers.
Different methods used to construct ensembles are also described.

Keywords: Symbolic Machine Learning, Symbolic Ensembles, Explana-
tion of Symbolic Ensembles.

1 Introduction

Supervised machine learning aims to induce classifiers having good accuracy.
However, in some domains such as medicine, economy and others, it is impor-
tant to provide to the user the knowledge that has been used to classify new
cases. In other words, the classifier must be able to explain its decisions. In
these cases, symbolic machine learning has advantages over the so called “black-
box” learning, such as Neural Networks and Support Vector Machine. This is
due to the fact that the models induced by symbolic learning algorithms can be
easily interpreted by domain experts. In general, symbolic learning algorithms
can handle well datasets of medium/large size, inducing classifiers with high ac-
curacy. However, this is not the case in data mining applications where very large

datasets are considered. A possible solution to overcome this problem is the use
of ensembles. Ensembles consist of a set of classifiers whose individual predic-
tions are somehow combined to classify new instances [8,9]. The problem with
very large datasets can be tackle by splitting the dataset into small subsets and
then using an ensemble to combine the classifiers induced on each subset of the
dataset. Furthermore, the combination procedure beneath ensembles generally
produces more accurate classifiers than single classifiers do.

An often cited problem regarding ensembles is that standard ensemble ap-
proaches behave like “black-boxes”, i.e., they cannot offer an explanation re-
lated to the classification of new instances, as symbolic classifiers do [2,5,6,10].
As stated earlier, there are domains where these explanations are mandatory.
For instance, in some countries, when a bank does not approve a client’s credit
proposal, they should explain to the client why the proposal was denied. In these
cases, standard ensemble approaches could not be applied. In [4], we proposed an
approach for constructing ensembles of symbolic classifiers, where several ways
of combining the classifiers into an ensemble were proposed and experimentally
evaluated considering the error rate of the corresponding symbolic ensembles.
Furthermore, this approach enables the user to analyze the knowledge (rules)
used by the ensemble to classify new cases. However, the explanation shown
to the user usually contains many rules which are often redundant and/or too
specialized.

In this paper we extend this work by proposing a simple method to simplify
the explanation given by symbolic ensembles to the user/expert domain, by pro-
viding a more concise and comprehensible explanation than simply showing all
the rules used by the ensemble to classify a new case. After the ensemble classi-
fies a new instance, our proposed approach works by identifying some redundant
rules, which are not shown to the user when (s)he asks for an explanation.

This paper is organized as follows: Section 2 describes related work in ensem-
ble approaches. Section 3 presents concepts needed for a better comprehension
of this work, as well as the notation used. Section 4 describes an approach previ-
ously proposed to construct ensembles of symbolic classifiers. Section 5 presents
the method proposed to simplify the explanation offered to the user by a sym-
bolic ensemble, related to the classification given by the ensemble to a new
instance. Section 6 briefly describes the error rate of several symbolic ensem-
bles constructed using the three voting mechanisms already proposed, as well
as the performance of the explanation simplification algorithm proposed in this
work, considering new instances which have been previously classified by these
ensembles. Finally, Section 7 concludes this work.

2 Related Work

Ensembles are increasingly gaining acceptance in the data mining community.
Apart from showing a significant improvement in accuracy, this is also due to
their potential for on-line classification of large databases that do not fit into
memory. There are different ways in which ensembles can be generated and

the resulting output combined to classify new instances. In general, methods to
construct ensembles can be divided into two sub-tasks [9]. The first one consists
of generating a set of base-classifiers. The second one consists of deciding how
to combine the classifications of the base-classifiers to classify new instances.

Popular approaches to generate ensembles include altering the set of instances
used for training in order to construct the base-classifiers. These approaches use
techniques such as bagging [5], boosting [10], wagging [2] and others. To reach
improvements in accuracy, these methods generally rely on a large number of
base-classifiers so that a wrong classification given by some base-classifier can
be averaged out by the others. On the other hand, other papers focus on the
combination of classifiers (second sub-task), inducing the base-classifiers by us-
ing different learning algorithms [11], as in stacking, which construct another
classifier to combine the base-classifiers decisions [13]. However, unlike symbolic
classifiers, ensembles can be considered as “black-box” classifiers, since they are
not able to explain their classification decisions on new examples, like symbolic
classifiers do. However, as most of the ensembles proposed in the literature tend
to focus on the classification error rate, they frequently make use of black-box
base-classifiers. Although these kind of base-classifiers may improve the classifi-
cation error rate, they are a complicating factor in case an explanation should
be provided to the user.

In what follows, after section describing definitions and notation, we first de-
scribe the approach we have proposed in previous work [4] to construct ensembles
using symbolic classifiers and three voting mechanisms, which enables the en-
semble to explain its decisions to the user. This approach achieved meaningful
results using only a small number of base-classifiers [4]. Afterwards a method to
simplify the explanation given by symbolic ensembles, which extends this work,
is described.

3 Definitions and Notation

A training dataset T is a set of N classified instances {(x1, y1), ..., (xN , yN)}
for some unknown function y = f(x). The xi values are typically vectors of
the form (xi1, xi2, ..., xim) whose components are discrete or real values, called
features or attributes. Thus, xij denotes the value of the j-th feature Xj of xi. In
what follows, the i subscript will be dropped when implied by the context. For
classification purposes, the y values can assume any value from a discrete set of
NCl classes, i.e. y ∈ {C1, C2, ..., CNCl

}. Given a set S ⊆ T of training examples,
a learning algorithm induces a classifier h, which is a hypothesis about the true
unknown function f . Given a new instance x, h predicts the corresponding y
values.

In this work we consider that a symbolic classifier is a classifier whose de-
scription language can be transformed into a set of NR unordered or disjoint
rules, i.e. h = {R1, R2..., RNR

}. Recall that most classification rule learning al-
gorithms belong to one of two families, namely separate-and-conquer and divide-
and-conquer algorithms. Algorithms from the first family generally use an iter-

ative greedy set-covering algorithm to search in each iteration for the best rule.
When inducing an unordered set of rules, only correctly covered examples are
removed from the training set. However, when inducing an ordered set of rules,
correctly as well as incorrectly covered examples are removed from the training
set. Thus, in the unordered case rules can be interpreted in isolation, while in
the ordered set a rule has no meaning by itself, as the semantic of a fired rule
must take into account all previous non fired rules. This process is repeated in
the remaining examples until all examples have been covered or some stopping
criterion is met. Then, a classifier is built gathering the rules to form an ordered
rule list (or decision list) in case all covered examples were removed in each iter-
ation, or to form an unordered rule set in case only examples correctly covered
were removed in each iteration. On the other hand, algorithms from the second
family — divide-and-conquer — construct a global classifier using a top-down
strategy to consecutively refine a partial theory. Generally, the classifier is ex-
pressed as a decision tree which can be written as a set of disjoint unordered
rules.

A complex is a disjunction of conjunctions of feature tests in the form of Xi op
Value, where Xi is a feature name, op is an operator in the set {=, 6=, <,≤, >,≥}
and Value is a valid Xi feature value.

A rule R assumes the form if B then H or symbolically B → H, where H
stands for the head, or rule conclusion, and B for the body, or rule condition. H
and B are both complexes with no features in common. In a classification rule,
head H assumes the form class = Ci, where Ci ∈ {C1, ..., CNCl

}.
The coverage of a rule is defined as follows: considering a rule R = B → H,

instances that satisfy the B part compose the covered set of R, called B set;
in other words, these instances are covered by R. Instances that satisfy both
B and H are correctly covered by R, and these instances belong to set B ∩H.
Instances satisfying B but not H are incorrectly covered by the rule, and belong
to set B ∩H. On the other hand, instances that do not satisfy the B part are
not covered by the rule, and belong to set B.

Given two classification rules Ri = Bi → Hi and Rj = Bj → Hj with
identical headers (Hi = Hj), it is simple to verify whether Ri is a generalization
of Rj , i.e if Ri subsumes Rj , or whether Ri is a specialization of Rj , i.e if Rj

subsumes Ri, by considering the set of feature tests in the bodies of these rules.
Then, Ri is a generalization of Rj , or Rj is a specialization of Ri iff Ai F Aj ,
where F indicates that Ai is a subset of Aj , i.e. all feature test which are in Ai

are also in Aj , or tests which takes into account identical features and operators
in the set {<,≤, >,≥}, as shown in the following example. Considering the
following two classification rules:

Ri = If at1 = 2 and at2 ≥ 4 then class = +
and
Rj = If at1 = 2 and at2 > 4 and at3 = 5 then class = +

then

Ai = {at1 = 2, at2 ≥ 4}
and
Aj = {at1 = 2, at2 > 4, at3 = 5}.

In this case, Ri is a generalization of Rj , or Rj is a specialization of Ri, as
Ai F Aj . This is because at1 = 2 is present in both rules and, as at2 ≥ 4 in Ai

and at2 > 4 in Aj , the operator “≥” is a generalization of the operator “>”.
Analogously, the operator “≤” is a generalization of “<”.

Consider that Rexpl = {R1, ..., RNR
} is the set of all individual classifiers’

rules that correctly cover a new instance x, i.e. fired rules from the base-classifiers
that participate in the final (combined) ensemble classification. Then, the expla-
nation mechanism should discard from Rexpl all rules that are specialization of
other rules. This simple idea is used in this work to simplify the explanation of
symbolic ensembles, as explained in Section 5.

4 Constructing Ensembles of Symbolic Classifiers

The approach proposed in [4] for constructing ensembles of symbolic classifiers is
divided into two phases. In the first phase, a set of base-classifiers is constructed
in the following way: let L be the number of base-classifiers to be induced, given
a training dataset S. First of all, L samples S1, ..., SL without substitution are
extracted from S. Each sample is used as an input to a symbolic learning al-
gorithm, inducing L classifiers h1, ...,hL. Different symbolic learning algorithms
can be used in each of the L samples. Afterwards, given a new instance (ex-
ample) x to be classified, the individual decisions of the set of L classifiers
must be combined to output its label. Figure 1 illustrates the method where
Combine(h1(x), ...,hL(x)) constitutes the symbolic ensemble h∗(x).

Fig. 1. A method for constructing ensembles of classifiers

The use of symbolic classifiers enables us to explore different ways to classify
x using the L base-classifiers, as shown in [4]. In this work, each base-classifier is
responsible for classifying x, and the following three different implementations
of the Combine(h1(x), ...,hL(x)) function were considered in order to construct
the final ensemble h∗. The Unweighted Voting method was based on the bagging
technique for constructing ensembles of classifiers [5]; while the Weighted by
Mean and Weighted by Mean and Standard Error Voting methods were inspired
in the boosting technique [10].

1. Unweighted Voting – UV: the class label of x is the one that receives
more votes from the L classifiers;

2. Weighted by Mean Voting – WMV: the x class label given by each
classifier is weighted using the classifier’s mean error rate m err(hi), and
the class label of x is the one having maximum total weight from the L
classifiers:

WMV (x, Cv) = max
Ci∈{C1,...,CNCl

}

L∑
l=1

g(hl(x), Ci)

where

g(hl(x), Ci) =


lg((1−m err(hl))/m err(hl))

if hl(x) = Ci,

0 otherwise.

3. Weighted by Mean and Standard Error Voting – WMSV: similar to
the previous one, but also considering the standard error se err(hi)) of the
classifier’s mean error rate to estimate the corresponding weight:

WMSV (x, Cv) = max
Ci∈{C1,...,CNCl

}

L∑
l=1

g(hl(x), Ci)

where

g(hl(x), Ci) =


lg((1−m err(hl))/m err(hl))
+ lg((1− se err(hl))/se err(hl))

if hl(x) = Ci,

0 otherwise.

Voting method 1 (UV) is a straightforward voting mechanism. Methods 2
(WMV) and 3 (WMSV) aim to improve method 1. To this end, method 2 (WMV)
favors hypotheses having lower mean error rates. In similar fashion, method 3
(WMSV) favours hypotheses having lower mean error rates as well as lower stan-
dard error rates. In other words, the aim of the function g(hl(x), Ci), where lg is
the logarithmic function, is to increment accordingly the class weight whenever
the error rate and/or the standard error are less than 50%, and to decrement
it otherwise. In case the error rate and/or the standard error are zero, a maxi-
mum system defined weight is considered. These methods were implemented in

a computational system called Ensemble Learning Environment (ELE) [3]. Fur-
thermore, the method proposed in this work to improve the explanation ability
of the symbolic ensemble, described next, was also implemented into the system
ELE.

5 Explanation Construction

Given an ensemble of symbolic classifiers h∗, constructed using any of the three
Combine(h1(x), ...,hL(x)) functions defined in the previous section, the class of
a new instance x is given by h∗(x). Let Rexpl = {R1, ..., RNR

} be the set of
rules that correctly cover x, in other words, Rexpl contains all fired rules which
predict the same class as the one predicted by h∗(x). The rules in Rexpl are an
explanation of the class assigned by h∗ to x.

However, Rexpl is not an appropriate explanation to be shown to the user,
since it may contain redundant rules as well as rules that are a specialization of
others rules in Rexpl. Thus, the idea is to construct a reduced set of rules R∗expl

from Rexpl, using the idea described in Section 3, where some rules which are
specialization of other rules are removed. In order to accomplish this task, rules
in Rexpl are analyzed in pairs and, for all pair of rules in Rexpl it is verified
which rules are generalization of other rules, such that only the more general
rules are inserted in R∗expl and the specialized rules are discarded. At the end of
this process, R∗expl contains a simplified explanation of the class assigned to x
by the ensemble h∗.

The algorithm to find the final explanation R∗expl works as follows. The body
Be of each rule Re ∈ Rexpl = {R1, ..., RNR

} consists of a conjunction of feature
tests ft1 ∧ ...∧ ftb, where each fti is a feature test of the type Xi op Value. For
each Re ∈ Rexpl, a set of its corresponding feature tests Ae = {ft1, ..., ftb} is
constructed, as well as the superset, called Aexpl, containing all corresponding
Ae, i.e., Aexpl = {A1, ..., ANR

}. To simplify the explanation, all pairs of subsets
(Ai, Aj), i 6= j, are analyzed; (a) if Ai is a subset of Aj then Ai is removed from
Aexpl; or (b) if Aj is a subset of Ai then Aj is removed from Aexpl .

Observe that Ai F Aj not only considers that Ai F Aj if all ft ∈ Ai are also
in Aj , but also considers tests on same features tests and operators in the set
{<,≤, >,≥} as explained in Section 3.

After analyzing all pairs (Ai, Aj) in Aexpl, R∗expl is simply the set of rules
whose bodies are given by the remaining Ai in the final Aexpl, and the class of
these rules is given by h∗(x).

6 Experiments and Results

In [4] we presented, among other results, the results related to error rates as-
sessed using 10-fold stratified cross validation, obtained using 3 (three) differ-

ent datasets from the UCI repository [1]: Nursery4, Chess-Kr-Vs-Kp (Chess for
short) and Splice. These datasets are often used in the literature for empirical
evaluation of ensembles. Table 1 describes the characteristics of the datasets used
in this study. For each dataset, it shows: number of instances (# Inst.); number
of features (# Features), as well as the number of continuous and discrete fea-
tures; class distribution (Class %); majority error rate; presence or absence of
unknown values (Unknown Values) and number (and percentage) of duplicate
or conflicting instances (Dup./Conf. Examples).

Table 1. Datasets characteristics summary

Inst. 12958 3196 3190

Features (cont.,disc.) 8 (0,8) 36 (0,36) 60 (0,60)

not recom (33.34%) nowin (47.78%) EI (24.01%)
very recom (2.53%) won (52.22%) IE (24.08%)

Class (Class %)
priority (32.92%) N (51.88%)

spec prior (31.21%)

Majority 66.66% 47.78% 48.12%
Error in not recom in won in N

Unknown
Values

N N N

Dup./Conf. 0 0 184
Examples (0.00%) (0.00%) (5.77%)

The base-classifiers were induced using the unordered version of CN2 [7]
and the decision tree inducer C4.5 [12] symbolic learning algorithms. Therefore,
CN2 induces unordered rules and C4.5 induces disjoint rules. The experiments
were conducted using the three combination methods described in Section 4:
unweighted, weighted by mean and weighted by mean and standard error voting
methods, referred respectively by UV, WMV and WMSV. The experiments were
carried out using five different set-up scenarios described in Table 2. Different
scenarios could be explored using two different learning algorithms. In this work,
the same learning algorithm, CN2 or C4.5, were used in two scenarios with
different number of base-classifiers, while both algorithms were used in the last
scenario. More specifically, the learning algorithm CN2 was used in scenarios
Scn 1 and Scn 3 while C4.5 was used in scenarios Scn 2 and Scn 5. In scenario
Scn 4, both algorithms CN2 (in three samples) and C4.5 (in two samples) were
used. As sampling is carried out without substitution, we could not use a larger
number of partitions.

Table 3 summarizes the error rate and the standard error (in brackets) ob-
tained with datasets Nursery, Chess and Splice, already published in [4]. The
first column identifies the experiment and the next five columns show the results
4 The original Nursery dataset was modified to remove one of the classes that has

only 2 instances. As in [4], all references to this dataset in this paper refer to this
modified version.

Table 2. Experiments’ description

Experiment # of Partitions ML algorithms

Scn 1 3 CN2- CN2- CN2
Scn 2 3 C4.5- C4.5- C4.5
Scn 3 5 CN2- CN2- CN2- CN2- CN2
Scn 4 5 CN2- CN2- CN2- C4.5- C4.5
Scn 5 5 C4.5- C4.5- C4.5- C4.5- C4.5

obtained in each scenario. The first five rows, labeled as S1, S2, S3, S4 and S5,
present the results related to each base-classifier, while the other rows present
the results related to the ensembles’ construction methods. Results in bold in-
dicate that the ensemble is better than each one of the base-classifiers with a
95% confidence level according to a paired t-test. To facilitate the visualization,
identical results for all three voting methods are shown only once.

Table 3. Ensembles’ mean error rate

Nursery dataset
Sample Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

S1 5.60 (0.13) 6.16 (0.23) 7.64 (0.24) 7.75 (0.19) 7.92 (0.18)
S2 5.66 (0.25) 6.47 (0.21) 7.24 (0.21) 7.86 (0.10) 7.77 (0.24)
S3 5.43 (0.18) 5.97 (0.09) 7.93 (0.26) 7.47 (0.27) 7.80 (0.17)
S4 - - 7.83 (0.22) 7.50 (0.17) 7.73 (0.24)
S5 - - 7.82 (0.16) 7.94 (0.29) 7.46 (0.24)
UV 3.86 (0.13) 4.51 (0.16) 4.42 (0.15)

WMV 4.13 (0.13) 4.81 (0.18) 5.06 (0.18) 4.81 (0.11) 6.41 (0.14)
WMSV 4.18 (0.14) 4.95 (0.19) 4.88 (0.13)

Chess dataset
Sample Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

S1 2.72 (0.35) 1.69 (0.29) 3.82 (0.73) 3.63 (0.72) 3.04 (0.35)
S2 2.47 (0.32) 1.25 (0.19) 3.57 (0.44) 2.75 (0.36) 3.00 (0.46)
S3 2.72 (0.49) 1.75 (0.28) 2.88 (0.27) 3.00 (0.35) 2.53 (0.35)
S4 - - 2.94 (0.47) 2.22 (0.28) 3.13 (0.51)
S5 - - 3.04 (0.44) 2.50 (0.27) 3.04 (0.48)

UV,WMV,WMSV 2.50 (0.33) 0.91 (0.16) 2.25 (0.33) 1.60 (0.25) 2.32 (0.35)

Splice dataset
Sample Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

S1 18.50 (1.85) 9.03 (0.38) 15.33 (0.97) 14.61 (0.73) 11.25 (0.70)
S2 15.52 (1.04) 9.37 (0.47) 14.80 (0.92) 16.02 (1.20) 13.01 (0.67)
S3 15.92 (1.28) 9.00 (0.48) 15.30 (0.64) 19.75 (1.73) 11.41 (0.40)
S4 - - 15.45 (1.45) 11.72 (0.74) 12.13 (0.55)
S5 - - 16.77 (0.93) 11.32 (0.52) 13.26 (0.71)
UV 11.54 (0.49) 7.55 (0.39) 9.72 (0.45) 7.30 (0.70) 8.68 (0.42)

WMV 11.13 (0.39) 7.34 (0.27) 9.84 (0.41) 7.08 (0.66) 8.53 (0.53)
WMSV 11.19 (0.37) 7.59 (0.38) 9.59 (0.37) 7.15 (0.62) 8.53 (0.52)

As can be observed in Table 3, using Nursery and Splice datasets, better
precision results were obtained using the ensemble methods in all scenarios,
while using chess dataset better results were obtained only in one scenario —
Scn 4 — with 95% confidence level. Further analises about these results can be
found in [4].

To evaluate the performance of the explanation simplification algorithm pro-
posed in this work, we measured the reduction rate in the number of rules be-
tween the initial set Rexpl and the final explanation set R∗expl. Given an instance
x5, the reduction rate RR(x) on the number of rules between the initial expla-
nation set Rexpl(x) and the final simplified explanation set R∗expl(x), can be
defined by Equation 1.

RR(x) =
|Rexpl(x)| − |R∗expl(x)|

|Rexpl(x)|
. (1)

To obtain the mean and the standard error of the reduction rate of each
constructed ensemble, we averaged the reduction rate RR of all instances in the
datasets Nursery, Chess and Splice. Table 4 shows, for each dataset, the reduc-
tion rate obtained by applying the simplification process. For each dataset, it
shows the mean number of rules in Rexpl, R∗expl, the reduction rate RR and the
corresponding standard errors for the respective datasets. To facilitate visual-
ization, identical results for all three voting methods are shown only once.

Table 4. Reduction rate of the explanation set

Nursery Dataset
Comb. Meth. Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

UV 6.52 (3.22) 5.77 (2.06)
|Rexpl| WMV 4.04 (2.20) 2.92 (0.26) 6.51 (3.24) 5.77 (2.08) 4.78 (0.55)

WMSV 6.51 (3.25) 5.77 (2.07)
UV 1.70 (1.11) 2.01 (1.41)

|R∗
expl| WMV 1.69 (1.12) 1.17 (0.38) 2.00 (1.42) 1.80 (1.16) 1.16 (0.40)

WMSV 1.69 (1.12) 2.00 (1.42)
UV 58.19 (16.19) 68.88 (17.46) 68.88 (16.25)

RR% WMV 58.18 (16.22) 59.43 (14.22) 68.76 (17.75) 68.79 (16.49) 75.02 (10.61)
WMSV 58.18 (16.21) 68.77 (17.39) 68.92 (16.15)

Chess Dataset
Comb. Meth. Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

|Rexpl| UV, WMV e WMSV 4.22 (2.19) 2.99 (0.09) 7.18 (3.50) 6.14 (1.97) 4.92 (0.36)
|R∗

expl| UV, WMV e WMSV 1.91 (1.16) 1.05 (0.22) 2.48 (1.68) 2.83 (1.51) 1.06 (0.29)

RR% UV, WMV e WMSV 52.46 (19.93) 64.89 (7.43) 63.52 (20.95) 53.73 (21.23) 77.98 (9.83)

Splice Dataset
Comb. Meth. Scn 1 Scn 2 Scn 3 Scn 4 Scn 5

UV 7.07 (3.54) 6.09 (2.54)
|Rexpl| WMV 4.69 (2.99) 2.89 (0.31) 7.07 (3.54) 6.10 (2.51) 4.69 (0.64)

WMSV 7.06 (3.55) 6.10 (2.51)
UV 5.53 (2.77) 4.63 (2.03)

|R∗
expl| WMV 3.84 (2.34) 1.52 (0.61) 5.54 (2.76) 4.64 (2.01) 1.83 (0.88)

WMSV 5.53 (2.77) 4.64 (2.01)
UV 17.93 (18.94) 22.65 (15.40)

RR% WMV 14.07 (14.57) 46.79 (21.89) 17.91 (18.94) 22.67 (15.39) 59.39 (22.21)
WMSV 17.93 (18.94) 22.67 (15.39)

Analyzing the results, it can be observed that when CN2 is used as base-
classifier (Scn 1 and Scn 3), the average number of rules in |Rexpl| is larger than
in the other scenarios. A similar phenomena occurs in scenario Scn 4, in which
5 Recall that the classification of a new instance x is given by h∗(x).

CN2 was used to induce 3 (three) out of 5 (five) base-classifiers. Furthermore,
Scn 3 has the highest number of rules |Rexpl| before simplification. A possible
reason is that, unlike C4.5, which induces disjoint rule sets, CN2 may induce
overlapping rules, thus incrementing the number of rules that covers an instance.
Another aspect to be observed is that, for each dataset, the average number of
rules |Rexpl| in each of the five scenarios is almost the same for the three voting
methods; the same occurs with the average number of rules after simplification
|R∗expl|.

For all datasets, the maximum reduction rate was achieved in Scn 5 : 75.02%
for Nursery dataset; 77.98% for Chess dataset; and 59.42% for Splice dataset.
Considering the high reduction rate in the final set R∗expl, we can conclude that
most rules in Rexpl are specializations of other rules in Rexpl. On the other
hand, the minimum reduction rate occurs in scenario Scn 1 : 58.18% for Nursery
dataset; 52.46% for Chess dataset; and 14.07% for Splice dataset.

Table 5 illustrates an example of application of the algorithm described
in Section 5 using Nursery dataset. Features in Nursery dataset are parents,
has nurs, form, children, housing, finance, social, health; and the class feature is
nursery. The instance considered from the dataset is x = (usual, proper, complete,
1, less conv, convenient, nonprob, priority), which is (correctly) classified as prior-
ity by an ensemble h∗ constructed using Scenario Scn 1 and UV combination
method — h∗(x) = priority. In this table, the bodies of the rules that cover x
from h∗ are shown, as well as the final simplified explanation given by the algo-
rithm — bodies of the remaining rules. The first line in Table 5 shows the bodies
of the two rules from base-classifier h1, the second line shows the the bodies of
the 3 (three) rules from base-classifier h2, and the third line shows the the bod-
ies of the two rules from base-classifier h3, which correctly cover the instance
x. The last line in Table 5 shows the final explanation, composed by the bodies
of the more general rules from the original set of rules Rexpl. Observe that the
original set of rules Rexpl contains seven rules, while the simplified explanation
set R∗expl only contains two rules: rules 1a and 2a, as rules 1b and 1c are equal
to 1a, and 2b, 3b and 2c are specializations of 2a.

Table 5. Rules from hypotheses h1, h2 and h3 of ensemble h∗ that cover instance
x , and the final simplified explanation R∗expl.

1a – parents = usual AND has nurs = proper AND health = priorityh 1
2a – has nurs = proper AND children = 1 AND health = priority
1b – parents = usual AND has nurs = proper AND health = priority

(equals to 1a)
h 2 2b – has nurs = proper AND children = 1 AND housing = less conv AND

health = priority (a specialization of 2a)
3b – has nurs = proper AND form = complete AND children = 1 AND

health = priority (a specialization of 2a)
1c – parents = usual AND has nurs = proper AND health = priority

(equals to 1a)h 3
2c – has nurs = proper AND form = complete AND children = 1 AND

health = priority (a specialization of 2a)

1a – parents = usual AND has nurs = proper AND health = priorityR∗
expl 2a – has nurs = proper AND children = 1 AND health = priority

7 Conclusions and Future Work

In this work, we proposed a method to simplify classification explanations given
by symbolic ensembles, which are constructed using combination methods of
symbolic base-classifiers as proposed in [4]. Based on the symbolic ensembles
constructed using these combination methods, we conducted some experiments
to analyze the viability of our proposal to simplify the ensemble’s explanation.
Results show that a substantial reduction of the number of rules needed to
explain the ensembles decisions was achieved, showing the feasibility of our pro-
posal. Future work includes using more datasets to test the explanation method,
as well as analyzing the syntactic complexity of the resulting rules in explanation
set.

Acknowledgments: This research was supported by the Brazilian Research
Councils CNPq and FAPESP. We also would like to thank the anonymous ref-
erees for their important comments.

References

1. A. Asuncion and D.J. Newman. UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of
California, School of Information and Computer Science.

2. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting and variants. Machine Learning, 36(1/2):105–139, 1999.

3. F. C. Bernardini and M. C. Monard. ELE — Ensemble Learning Environment to
construct symbolic classifiers: Implementation description (in portuguese). Tech-
nical Report 243, ICMC/USP, 2004.

4. F. C. Bernardini, M. C. Monard, and R. C. Prati. Constructing ensembles of
symbolic classifiers. Int. J. Hybrid Intelligent Systems, 3(3):159–167, 2006.

5. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
6. L. Breiman. Arcing classifiers. The Annals Of Statistics, 26(3):801–849, 1998.
7. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.

In Y. Kodratoff, editor, Proc. of the 5th European Working Session on Learning
(EWSL 91), pages 151–163, 1991.

8. T. G. Dietterich. Machine learning research: Four current directions. AI Magazine,
18:97–136, 1997. http://www.cs.orst.edu/~tgd/.

9. T. G. Dietterich. Ensemble methods in machine learning. In First International
Workshop on Multiple Classifier Systems. LNCS, volume 1857, pages 1–15, New
York, 2000.

10. Y. Freund and R.E.. Schapire. A decision-theoretic generalization of on-line
learninng and an application to boosting. J. of Computer and System Sciences,
55(1):119–139, 1997.

11. K. T. Leung and D. S. Parker. Empirical comparisons of various voting methods
in bagging. In KDD ’03: Proc. 9th ACM SIGKDD Inter. Conf. on Knowledge
Discovery and Data Mining, pages 595–600. ACM Press, 2003.

12. J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann Publish-
ers, 1988.

13. L. Todorovski and S. Dzeroski. Combining classifiers with meta decision trees.
Machine Learning, 50(3):223–249, 2003.

