CHAPTER 11  ORTHOGONAL FUNCTIONS AND FOURIER SERIES

Answers to odd-numbered problems begin on page A-21.

In Problems 1-6 show that the given functions are orthogonal on the
indicated interval.

L fix) = x, filx) = x5 [-2,2]

2. filx) =23 fhx) =x*+1; [-1,1]

3. filx) = e, filx) = xe™* — e [0, 2]
4. fi(x) = cos x, fo(x) = sin’x; [0, 7]

5. filx) = x, fa(x) = cos 2x; [—n/2, w/2]
6. fi(x) = €%, foi(x) = sin x; [u/4, 57/4]

In Problems 7-12 show that the given set of functions is orthogonal on
the indicated interval. Find the norm of each function in the set.

7. {sin x, sin 3x, sin 5x, ...}; [0, #/2]
8. {cos x, cos 3x, cos 5x, ...}; [0, w/2]

9. {sinnx},n=1,2,3,...; [0,n]

10. {sin%x},n=l,2,3,...; [0, p]

11. {1,cos£p7—r-x},n=l,2,3,...; [0, p]

12. {1 cos X » x sm?ﬂx} n=123,.... m=1273,...; [-p,0p]

In Problems 13 and 14 verify by direct integration that the functions are
orthogonal with respect to the indicated weight function on the given in-
terval.

13. Hy(x) = 1, Hy(x) = 2x, Hy(x) = 4x2 -2 w() =e™, (—», ©)
14. Ly(x) =1,Li(x) = —x + 1, Ly(x) = —x -2x+1; w(kx)=e7][0,»)

15. Let {¢.(x)} be an orthogonal set of functions on [a b] such that
u(x) = 1. Show that [ ¢,(x) dx = O forn = 1,2, .

16. Let {¢,(x)} be an orthogonal set of functxons on [a b] such that
¢o(x) = 1 and ¢y(x) = x. Show that [*(ax + B)¢,(x) dx = 0 for
n = 2,3,...and any constants & and f3.

17. Let {¢>,,(x)} be an orthogonal set of functions on [a, b]. Show that
lbn(x) + u(OIF = @I + llbu ()| m # 1.

18. From Problem 1 we know that fi(x) = x and f,(x) = x? are orthogonal
on [—2, 2]. Find constants ¢; and ¢, such that f;(x) = x + ¢;x? + ¢;x3
is orthogonal to both f; and f, on the same interval.

19. The set of functions {sin nx}, n = 1, 2, 3, ..., is orthogonal on the
interval [—m, 7]. Show that the set is not complete.

20. Suppose fi, f», and f; are functions continuous on the interval [a, b].

Show that (f; + f2, f3) = (fi, f5) + (f2. f3).
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m Convergence to the Periodic Extension

The Fourier series (13) converges to the periodic extension of (12) on
the entire x-axis. The solid dots in Figure 11.2 represent the value

fOH) +f0-) 7
2 2

at 0, £2m, =47, .... At £, =37, £57, ..., the series converges to
the value

fla=) +f=n+) _
. .
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SECTION 11.2 EXERCISES

Answers to odd-numbered problems begin on page A-21.
In Problems 1-16 find the Fourier series of f on the given interval.
-1, —-7<x<0

2, O=sx<mw

3 _{1, -1<x<0 4 _{O, -1<x<0
- ) = x, O0=x<1 - fx) = x, 0=x<l1

0, —7<x<0
1, O=sx<m

1. f(x) = { 2. fx) = {

5 _{0, —-r1<x<0 p [ —r<x<0
- () = X2, 0=x<mw - fx) = m—xt 0=x<mw
1. fx)=x+m, —-w1<x<m 8 f(x)=3-2x, —w<x<mw
9 3 {O, —1<x<0 1 _{0, —m2<x<0
- fx) = sinx, O0=x<wmw - f) = cosx, O0=x<u2
0, —2<x<-l 0, —2<x<0
-2, -1=x<0
11. f(x) = 1 0<x<1 12. f(x)=1~x, 0=x<1
’ o 1, 1=x<2?2
0, 1=x<2
13 _{1, -5<x<0 14 _{2+x, -2<x<0
SO =14x, 0=x<s =1, 0=x<2

0, —-T<x<0

15. f(x) = e, —-m<x<mw 16.f(x)={ex_1 O<x<nm
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17. Use the result of Problem 5 to show

. 1 1 1 7 11 1
=l —=1-S+—=
6 L TrTRTg and  pEl-St 52

18. Use Problem 17 to find a series that gives the numerical value of 7?%/8.
19. Use the result of Problem 7 to show

T 1 1 1
17375777

20. Use the result of Problem 9 to show
7 1 1 1 1

1 1

472713735757 79
21. (a) Use the complex exponential form of the cosine and sine,

4+ ...

4+ ..

nw eimlxlp + e—imrx/p nmw
cos—x=—-—7T—7""—, sin—x =
p 2 p

to show that (8) can be written in the complex form

eimrx/p — e—imlxlp

2i ’

)= 3 e,

n=-o

where ¢, = ay/2, ¢, = (a, — ib,)/2, and c_, = (a, + ib,)/2, where
n=1,273....
(b) Show that ¢y, c,, and c_, of part (a) can be written as one integral

:i 4 —inmxlp — + +
Cn 2 f_pf(x)e dx, n=0,*x1,*2,....

22. Use the results of Problem 21 to find the complex form of the Fourier
series of f(x) = e™* on the interval —7 < x < 7.

FOURIER COSINE AND SINE SERIES

m Even and odd functions w Properties of even and odd functions
m Fourier cosine and sine series m Sequence of partial sums m Gibbs phenomenon
m Half-range expansions

Even and Odd Functions You may recall that a function f is said
to be

even if f(—x)=/f(x) and odd if f(—x)=—f(x).

fx)! ' ) m Even/0dd Functions
| |

* r X (a) f(x) = x%is even since f(—x) = (—x)? = x2 = f(x). See Figure 11.3.

(b) f(x) = x* is odd since f(—x) = (—x)* = —x* = —f(x). See Fig-
FIGURE 11.3 ure 11.4. L]
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expansion of f(¢) = mt, 0 < ¢t < 1. With p = 1 it follows from (5) and
integration by parts that
—1\nt+1
b, = 2[1 wtsinnwtdt = &L
0 n

From (11) the differential equation of motion is seen to be

2 © —1)\n+1
Ldx, 20

67 2 , sin nt. a3

To find a particular solution x,(f) of (13) we substitute (12) into the
equation and equate coefficients of sin nwt. This yields

[ — + =/ =t
( 6" 4)3" n or B, n(64 — n’xn?)

® —1)\n+1

Thus x,(t) = ; % sin nwt. (14) «

Observe in the solution (14) that there is no integer n = 1 for which
the denominator 64 — n2x? of B, is zero. In general, if there is a value
of n, say N, for which N7/p = w, where o = Vk/m, then the system
described by (11) is in a state of pure resonance. In other words, we have
pure resonance if the Fourier series expansion of the driving force f(r)
contains a term sin(Nz/L)t (or cos(N7/L)t) that has the same frequency
as the free vibrations.

Of course, if the 2p-periodic extension of the driving force f onto the
negative -axis yields an even function, then we expand fin a cosine series.

SECTION 11.3 EXERCISES

Answers to odd-numbered problems begin on page A-22.

In Problems 1-10 determine whether the function is even, odd, or neither.

1. f(x) = sin 3x 2. f(x) = xcosx
3 f(x) =x>+x 4 f(x) = x> — 4x
5. f(x) = e 6. £(x) = |

[ ¥, —1<x<0 [ x+5, —2<x<0
7 f(x)_{—xz, 0=x<1 8. f(x)_{—x-l-S, 0=x<2
9 fx) =x0=x=2 10. f(x) =2|x| - 1

In Problems 11-24 expand the given function in an appropriate cosine
or sine series.

1, -2<x<-1

-1, —-7<x<0
. = ’ . =10, -1<x<1
1L fx) {1, O=x<mw 12. fx) *
1, 1<x<2
13, f(x) = |x|, ~m<x<n 4 fx)=x,—-71<x<m
15, f(x) =x%, -1 <x<1 16. f(x) = x|x|, -1 <x<1

17. f(x) =m? —x%, —n<x<m 18. f(x) =x3, —-n<x<m
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1 _{x—l, —-T<x<0 20 )_{x+1, -1<x<0
- fx) = x+1, O=x<nw - fx) = x—1, 0=x<1
1, —2<x<-1
-7, —2n<x<-m
-x, —1=x<0 - e
2 £ =1 . goxe1 2. fx)=1{ x n;x<727
1, l1=x<2 T mEASA
23. f(x) = |sinx|, —m<x<mw 24. f(x) = cosx, —m/2 <x <ml2

In Problems 25-34 find the half-range cosine and sine expansions of the
given function.

1, 0<x<3 0, 0<x<1i
25'f(x)={o, 1=x<1 26'f(x)={1, i=x<1
27. f(x) =cosx,0 < x <m/2 28. f(x) =sinx,0<x<m

X, 0<x<mu/2 0, O<x<mw
29°f(x)={77—x, m2=x<mw 30'f(x)={x—7r, T=x<2m

x, 0<x<1 1, 0<x<l1
31.f(x)={1, 1=x<2 32'f(x)={2—x, 1=x<2

3B fx)=x2+x,0<x<1 M. f(x) =x2—-x),0<x<2
In Problems 35-38 expand the given function in a Fourier series.

35 f(x) =x% 0<x<2m

36. f(x) =x, 0<x<m

3. fx)=x+1, 0<x<1

3. fx)=2-x, 0<x<2

In Problems 39 and 40 proceed as in Example 7 to find a particular solution
of equation (11) when m = 1, k = 10, and the driving force f(¢) is as
given. Assume that when f(f) is extended to the negative t-axis in a
periodic manner, the resulting function is odd.

5, 0<t<m

39. f(t) = {_ ; fle+2m)=f()

5, m<t<2mw
4. f)=1-1,0<t<2; ft+2)=f@

In Problems 41 and 42 find a particular solution of equation (11) when
m = i, k = 12, and the driving force f(¢) is as given. Assume that when
f(2) is extended to the negative #-axis in a periodic manner, the resulting

function is even.
41. f(¢) = 2mt — 2,0 <t <2m; f(t+ 2m) = f(¢)

Q. f(t —{t’ O<i<i t+1)=f(¢
43. Suppose a uniform beam of length L is simply supported at x = 0

and x = L. If the load per unit length is given by w(x) = wyx/L,
0 < x < L, then the differential equation for the deflection y(x) is

where E, I, and w, are constants. (See equation (4), Section 5.2.)
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(a) Expand w(x) in a half-range sine series.
(b) Use the method of Example 7 to find a particular solution y(x)
of the differential equation.

. Proceed as in Problem 43 to find the deflection y(x) when w(x) is as

given in Figure 11.15.

Prove Property (a) in Theorem 11.2.  46. Prove Property (c).
Prove Property (d). 48. Prove Property (f).
Prove Property (g).

Prove that any function f can be written as a sum of an even and an
odd function.

[Hint: Use the identity f(x) = fx)

+f(=x) |, f@) = F(=x) ]
2 2 )

Find the Fourier series of

0, —7<x<0
X, O=sx<m

f(X)={

using the identity f(x) = (|x| + x)/2, —7 < x < =, and the results of
Problems 13 and 14. Observe that |x|/2 and x/2 are even and odd,
respectively, on the interval (see Problem 50).

The double sine series for a function f(x, y) defined over a rectangular
region 0 = x = b,0 = y = cis given by

fy) =2 > A sinrlqusinn—cny,

m=1 n=1
4 fc (b ..mm . nmw
where A= be fo fo f(x,y)sin =, Xsin——y dx dy.

Find the double sine series of f(x,y) = 1,0=x =70y =n7.

The double cosine series of a function f(x, y) defined over a rectangu-
lar region 0 = x = b,0 = y = cis given by

f,y)=An+ 2, Amocos%x + EAO,,cos%y
m=1 n=1

+ E A, cosmxcosﬂy,
m=1n=1 b c
1 c b
where Ap= he fo fo f(x,y)dxdy

2 [c(b mm
Ap= Efo fo flx,y) cos ==X dx dy
_2 (e na
Au = [} [oFox ) cos Ty dxdy
4 (e qp mm nmw
A,,,,,—Efofof(x,y)cos—b X cos — ydxdy.

Find the double cosine series of f(x,y) = xy,0=x=1,0=y =1
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10.

11.

12.

<Y+ Ay =0, y'(0)=0,y1) +y (1) =0
.Y+ Ay =0, y(0) +y(0)=0,y(1)=0
. Consider y” + Ay = 0 subject to y'(0) = 0, y'(L) = 0. Show that the

. . T 2w . L
eigenfunctions are {1, cos I X, COS fx, .. } This set, which is ortho-

gonal on [0, L], is the basis for the Fourier cosine series.

. Consider y” + Ay = 0 subject to the periodic boundary conditions
y(=L) = y(L), y'(—L) = y'(L). Show that the eigenfunctions are
1,cos X x coszﬁx sin = x sinz—#x sin3—ﬂx
s L, L DRI L, L s L N

This set, which is orthogonal on [—L, L], is the basis for the
Fourier series.

. Find the square norm of each eigenfunction in Problem 1.
. Show that for the eigenfunctions in Example 2

[[sin VAx|? = % [1 + cos? VA, ).

. (a) Find the eigenvalues and eigenfunctions of the boundary-value

problem
Xy +xy' +ay =0, y(1)=0, y©) =0

(b) Put the differential equation in self-adjoint form.
(¢) Give an orthogonality relation.

. (a) Find the eigenvalues and eigenfunctions of the boundary-value

problem
y' +y + Ay =0, y(0) =0, y2)=0.

(b) Put the differential equation in self-adjoint form.
(¢) Give an orthogonality relation.

. (a) Give an orthogonality relation for the Sturm-Liouville problem

in Problem 1.

(b) Use a CAS as an aid in verifying the orthogonality relation for
the eigenfunctions y; and y, that correspond to the first two eigen-
values A; and A, respectively.

(a) Give an orthogonality relation for the Sturm-Liouville problem
in Problem 2.

(b) Use a CAS as an aid in verifying the orthogonality relation for
the eigenfunctions y; and y, that correspond to the first two eigen-
values A; and A,, respectively.

Laguerre’s differential equation xy” + (1 — x)y’ + ny =0,n =0, 1,

2,. .., has polynomial solutions L,(x). Put the equation in self-adjoint

form, and give an orthogonality relation.

Hermite’s differential equation y” — 2xy’ + 2ny=0,n=0,1,2,...,

has polynomial solutions H,(x). Put the equation in self-adjoint form

and give an orthogonality relation.
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13. Consider the regular Sturm-Liouville problem

d ,
S+ )+ 55y =0, ¥ =0, y1)=0.

(a) Find the eigenvalues and eigenfunctions of the boundary-value
problem. [Hint: Let x = tan 6 and then use the Chain Rule.]
(b) Give an orthogonality relation.

14. (a) Find the eigenfunctions and the equation that defines the eigenval-
ues for the boundary-value problem

¥y +xy' + (2 =1)y=0,  yisboundedatx =0, y(3)=0.

(b) Use Table 6.1 to find the approximate values of the first four
eigenvalues A, A,, A3, and Aq.

Discussion Problem

15. Consider the special case of the regular Sturm-Liouville problem on
the interval [a, b]:

L@y + @y =0, y(@=0, y(b)=0.

Is A = 0 an eigenvalue of the problem? Defend your answer.

m Orthogonal set of Bessel functions m Fourier-Bessel series m Differential recurrence relations
m Forms of Fourier-Bessel series m Convergence of a Fourier-Bessel series

w Orthogonal set of Legendre polynomials m Fourier-Legendre series

m Convergence of a Fourier-Legendre series

Fourier series, Fourier cosine series, and Fourier sine series are three
ways of expanding a function in terms of an orthogonal set of functions.
But such expansions are by no means limited to orthogonal sets of trigono-
metric functions. We saw in Section 11.1 that a function f defined on an
interval (a, b) could be expanded at least formally in terms of any set of
functions {¢,(x)} that is orthogonal with respect to a weight function on
[a, b]. Many of these so-called generalized Fourier series come from
Sturm-Liouville problems arising in physical applications of linear partial
differential equations. Fourier series and generalized Fourier series, as
well as the two series considered in this section, will appear again in the
subsequent consideration of these applications.

11.5.1 Fourier-Bessel Series

In Example 3 of Section 11.4 it was seen that the set of Bessel functions
{.(ax)}, i =1,2,3,...,is orthogonal with respect to the weight function
p(x) = x on an interval [0, b] when the eigenvalues A; are defined by
means of a boundary condition

a,J,(Ab) + B AJL(Ab) = 0. 1)
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Answers to odd-numbered problems begin on page A-22.

1150

1. Find the first four eigenvalues A, defined by Ji(31) = 0. [Hint: See
Table 6.1 on page 247.]
2. Find the first four eigenvalues A, defined by J3(2A) = 0.

In Problems 3-6 expand f(x) = 1,0 <x < 2in a Fourier-Bessel series using
Bessel functions of order zero that satisfy the given boundary condition.
3. 7,2A) =0 4. J;(22) =0
5. Jo(2A) + 2MJ5(20) = 0 6. Jo(2A) + AJ5(21) =0
In Problems 7-10 expand the given function in a Fourier-Bessel series

using Bessel functions of the same order as in the indicated boundary con-
dition.

7. f(x) =5x, 0<x<4 8 f(x)=x} 0<x<1
3J1(41) + 4AJ{(41) =0 BH(A) =0

9 f(x) =x} 0<x<3 10. fx) =1—-x% 0<x<1
Jo(3A) =0 [Hint: £ = t* - 1] J(A) =0

11.5.2

A Fourier-Legendre expansion of a polynomial function defined on the
interval (—1, 1) is necessarily a finite series. (Why?) In Problems 11 and
12 find the Fourier-Legendre expansion of the given function.

11. f(x) = x? 12. f(x) = x*

In Problems 13 and 14 write out the first four nonzero terms in the Fourier-
Legendre expansion of the given function.

0, -1<x<0
13. fix) = X 0<x<1

15. The first three Legendre polynomials are Py(x) = 1, Pi(x) = x, and
Py(x) = 3(3x*> — 1). If x = cos 6, then Py(cos 6) = 1 and P;(cos 6) =
cos 6. Show that P,(cos 6) = %(3 cos 26 + 1).

16. Use the results given in Problem 15 to find a Fourier-Legendre expan-
sion (23) of F(6) = 1 — cos 26.

17. A Legendre polynomial P,(x) is an even or odd function, depending

on whether n is even or odd. Show that if fis an even function on
(=1, 1), then (21) and (22) become, respectively,

4. f(x) =e, -1<x<1

fx) = 5‘6 ConPon(x) (25)

e = (n + 1) [ f(0)Pu(x) d. @6)
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18.

19.

- CHAPTER 11 REVIEW EXERCISES

Show that if fis an odd function on the interval (—1, 1), then (21)
and (22) become, respectively,

fx) = iocblHPbﬁl(x) 27
Coner = (41 + 3) j  FO) oy (x) d. (28)

The series (25) and (27) can also be used when f is defined on only
(0, 1). Both series represent fon (0, 1); but on (—1, 0), (25) represents
its even extension, whereas (27) represents its odd extension. In Prob-
lems 19 and 20 write out the first three nonzero terms in the indicated
expansion of the given function. What function does the series repre-
sent on (—1, 1)?

fx)=x,0<x<1; (25 20. fx) =1,0<x<1; (27)

Answers to odd-numbered problems begin on page A-22.

Answer Problems 1-10 without referring back to the text. Fill in the blank
or answer true/false.

1

2. The product of an odd function with an odd function is

The functions f(x) = x> — 1 and f(x) = x° are orthogonal on
[—m, m].

3. To expand f(x) = |x| + 1, —7 < x < 7 in an appropriate Fourier

6. y = Ois never an eigenfunction of a Sturm-Liouville problem.

7. A = 0is never an eigenvalue of a Sturm-Liouville problem.

. The Fourier series of f(x) = {

series we would use a series.

. Since f(x) = x%, 0 < x < 2, is not an even function, it cannot be

expanded in a Fourier cosine series.

3, —71<x<0

will converge to
0, 0<x<m g

atx = 0.

8. For A = 25 the corresponding eigenfunction for the boundary-value

10.

problem y” + Ay = 0, y'(0) = 0, y(7/2) = 0 is

. Chebyshev’s differential equation (1 — x?)y” — xy’ + n’y = O has a

polynomial solution y = T,(x) forn =0,1,2, . ... The set of Chebyshev
polynomials {7,(x)} is orthogonal with respect to the weight func-
tion on the interval

The set {P,(x)} of Legendre polynomials is orthogonal with respect
to the weight function p(x) = 1 on [—1, 1] and Py(x) = 1. Hence
S Pux) dx = forn > 0.




11.

12.

13.
14.
15.
16.
17.

18.

19.

20.
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Show that the set

sin—ﬂ—x sin-?’—zx sinizx
2L 2L 2L

is orthogonal on the interval 0 = x = L.

Find the norm of each function in Problem 11. Construct an orthonor-
mal set.

Expand f(x) = |x| — x, —1 < x < 1, in a Fourier series.
Expand f(x) = 2x* — 1, =1 < x < 1, in a Fourier series.
Expand f(x) = e™*, 0 < x < 1, in a cosine series.
Expand the function given in Problem 15 in a sine series.
Find the eigenvalues and eigenfunctions of the boundary-value prob-
lem
xy"+xy' +92y =0, y'(1)=0, y(e)=0.
State an orthogonality relation for the eigenfunctions in Problem 17.

1, 0<x<?2
Expand f(x) = 0, 2<x<4

functions of order zero that satisfy the boundary condition Jy(41) = 0.
Expand f(x) = x*, —1 < x < 1, in a Fourier-Legendre series.

in a Fourier-Bessel series using Bessel
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du Ju Ju u
1. —=— 2. —+3—-=
ax dy ax ay
Jou,tu =u 4 u,=u,+tu
u u ou u
5. x—=y— 6. y — —=0
ox y ay y ox * d
u  d*u  du ’u
7. — — =0 8. =
ax*  9xdy 9y? y axay u=0
d’u du ’u  du
9. k——-—u=—, k>0 10. k—=—, k>0
axr YT o ax? ot
u d’u u  d’u du
11. i* —=— 12. > —=—+2k—, k>0
ax? or? ax?  ar? at
u  d’u u  d’u
13. —+—=0 4. x?—+—=0
ax? 9y Yot ay?
15. u, +uy =u 16. a’u,. — g = u,, g a constant

In Problems 17-26 classify the given partial differential equation as hyper-
bolic, parabolic, or elliptic.

u , o | du 9%u u | du
17. — — =0 18. 3— +5 — =0
dax?  9xdy 9dy? ax? T oxay ay?
0’u ’u *u u u
19. T8 46 2L 19— 20, 24 TH 30U
ax? " 9xay =~ ay? dax? 9xay =~ ay?
0’u 0’u u ou
2. =9 22, -—+2—=0
ax? T~ 9xay axay ay? dx
2 2 2
23 Uy 0u  Ou u_gou_
ox dxdy dy* ox ay
u | du
24, S8 08
ax?  ayr
u _ du u _ du
25, a' — =— 26. k—=—, k>0
axr a9t ax* at’

27. Show that the equation
%u  1ou\ _du
—_ + —_— ) = —
k <6r2 r ar) at
possesses the product solution
u= e *Nt(AJy(Ar) + BYy(Ar)).
28. (a) Show that the equation

o2
ax* 9

can be put into the form 9?u/dn 3¢ = 0 by means of the substitu-
tions £ =x + at,m = x — at.
(b) Show that a solution of the equation is

u=F(x+at) + G(x — at),

where F and G are arbitrary, twice-differentiable functions.
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SECTION 12.3 EXERCISES

Answers to odd-numbered problems begin on page A-23.

In Problems 1 and 2 solve the heat equation (1) subject to the given
conditions. Assume a rod of length L.

L u(©,6) =0, u(L,t)=0 2. u(0,1) =0, u(L,r)=0
0 _{1, 0<x<L/2 u(x, 0) = x(L — x)
ux0 =10 Ln<x<L

3. Find the temperature u(x, t) in a rod of length L if the initial tempera-
ture is f(x) throughout and if the ends x = 0 and x = L are insulated.

insulated 0° insulated x, 0<x<1
4. Solve Problem 3 if L = 2 and f(x) =
g ) {Q 1<x<2.
of ¥ 1 Of’ T x 5. Suppose heat is lost from the lateral surface of a thin rod of length L
into a surrounding medium at temperature zero. If the linear law of
?Zf;rgf;‘jg;cféz? heat transfer applies, then the heat equation takes on the form
the rod ko*ulox? — hu = dulot, 0 < x < L, t > 0, h a constant. Find the
temperature u(x, ) if the initial temperature is f(x) throughout and
FIGURE 12.7 the ends x = 0 and x = L are insulated. See Figure 12.7.
6. Solve Problem 5 if the ends x = 0 and x = L are held at tempera-
ture zero.

WAVE EQUATION

m Solution of a boundary-value problem by separation of variables m Standing waves
u Normal modes w First normal mode m Fundamental frequency m Qvertones

We are now in a position to solve the boundary-value problem (11) of
Section 12.2. The vertical displacement of u(x, t) of the vibrating string
of length L shown in Figure 12.2(a) is determined from

o

@5="5 0<x<L, (>0 )
u(0,t) =0, u(L,t)=0, t>0 ?2)
u(,0) =, | =g), 0<x<L. @3

Separating variables in (1) gives

XII . TII _ 5

X @1 "
so that X" +AX=0 and T+ A\a’T=0
and therefore X =cicos Ax + ¢, sin Ax

T = c3cos Aat + c4sin Aat.
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SECTION 12.4 EXERCISES

Answers to odd-numbered problems begin on page A-23.

In Problems 1-8 solve the wave equation (1) subject to the given condi-

tions.
P 1. u(0,£)=0, u(L,t)=0 2. u(0,£)=0, u(L,t)=0
X
Lo -0 9% _ (-
1 u(x,0) = 4x(L x), 3t o u(x,0) =0, i x(L —x)
. u(0,6) =0, u(L,t)=0 4. u(0,¢) =0, u(mt)=0

L3 2LI3 L * u(x, 0), as specified in u(x, 0) = ix(7* — x?),
ou ou
FIGURE 12.9 i . = = = =
Figure 12.9, 5t |ico 7 |ico
. u(0,6) =0, u(met)=0 6. u(0,t) =0, u(1,¢7)=0
ou u(x, 0) = 0.01 sin 37x,
u(x,0) =0, —| =sinx
dt li=0 a_u _
at =0
7. u(0,¢) =0, u(L,t)=0
z@, 0<x< L
L 2 5y
u(x,0) = L v
x =
Zh(l Z)’ ) =x<L

The constant 4 is positive but small compared to L. This is referred
to as the “plucked string” problem.

u Ju

8. =0, — =0
9x 1x=0 0xlx=L
u(x,0)=x dul - _

b b at t=0

This problem could describe the longitudinal displacement u(x, ¢) of
a vibrating elastic bar. The boundary conditions atx = 0 and x = L

FIGURE 12.10 are called free-end conditions. See Figure 12.10.

9. A string is stretched and secured on the x-axis at x = O and x = 7
for t > 0. If the transverse vibrations take place in a medium that
imparts a resistance proportional to the instantaneous velocity, then
the wave equation takes on the form

2 2
6u=6_+ZB

u u
ax?  oar?

—, 0<B< >0.

o 0<B<1, >0

Find the displacement u(x, ¢) if the string starts from rest from the
initial displacement f(x).



10.

11.

0 L

FIGURE 12.11
Simply supported beam

12.

13.

14.
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Show that a solution of the boundary-value problem

u_
ax? a2
u(0,£) = 0,

u(x,0) = {

au
ot

+u, 0<x<m t>0

u(m,t)=0, t>0
o<x<m/2
m2=x<mw

X,

T— X,

=0, 0<x<mw
t=0

is u(x,t) =ii(_—1)k+l—sin(2k— DxcosV(2k—1)*+1¢
’ 7o (2k — 1) )
The transverse displacement u(x, t) of a vibrating beam of length L
is determined from a fourth-order partial differential equation
'u | du
l—t == <x< > 0.
i ey 0, 0<x<L, t>0
If the beam is simply supported, as shown in Figure 12.11, the bound-
ary and initial conditions are

u(©,0)=0, u(L,5)=0, t>0

u| ul

WX=0 ’ ax2x=L_0, t>0
u@r,0)=f(x), L =g, 0<x<L.

at le=0
Solve for u(x, t). [Hint: For convenience use A* instead of A2 when
separating variables.]

What are the boundary conditions when the ends of the beam in
Problem 11 are embedded at x = 0 and x = L?

Consider the boundary-value problem given in (1), (2), and (3) of
this section. If g(x) = 0 on 0 < x < L, show that the solution of the
problem can be written as

u(x, ) = % [F(x + at) + f(x — at)].

[Hint: Use the identity 2 sin 6, cos 6, = sin(6; + 6,) + sin(6; — 6,).]

The vertical displacement u(x, ¢) of an infinitely long string is deter-
mined from the initial-value problem

u _ du
Coxis o X SEFS® 120

. ou| ©)
u(e0)= 1), 3| =g,

This problem can be solved without separating variables.
(a) Recall from Problem 28 of Exercises 12.1 that the wave equation
can be put into the form 9*u/dna¢ = 0 by means of the substitu-



494

CHAPTER 12 PARTIAL DIFFERENTIAL EQUATIONS AND BOUNDARY-VALUE PROBLEMS

tions § = x + at and n = x — at. Integrating the last partial
differential equation with respect to 7 and then with respect to
& shows that u(x, t) = F(x + at) + G(x — at), where F and G
are arbitrary twice-differentiable functions, is a solution of the
wave equation. Use this solution and the given initial conditions
to show that

F(x)= %f(x) + ;—ajjog(s) ds +c¢
and G = % Fx) - 21—a | T ds— o

where x, is arbitrary and c is a constant of integration.
(b) Use the results in part (a) to show that

1 B _1__ x+at
u(e,0) =5 [f(c +an) + f(x — an)] + 5 j " g(s)ds.  (10)
Note that when the initial velocity g(x) = 0 we obtain
u(x,t) =%[f(x +at)+ f(x —at)], —e<x<o,

The last solution can be interpreted as a superposition of two
traveling waves, one moving to the right (that is, 5 f(x — at)) and
one moving to the left (3f(x + at)). Both waves travel with speed
a and have the same basic shape as the initial displacement f(x).
The form of u(x, t) given in (10) is called d’Alembert’s solution.

In Problems 15-17 use d’Alembert’s solution (10) to solve the initial-
value problem in Problem 14 subject to the given initial conditions.

15. f(x) = sinx, gx) =1
16. f(x) = sinx, g(x) = cos x
17. f(x) = 0, g(x) = sin 2x

18.

19.

20.

Suppose f(x) = 1/(1 + x?%), g(x) = 0, and a = 1 for the initial-value
problem stated in Problem 14. Graph d’Alembert’s solution in this
case at the times¢t = 0,¢=1,and ¢t = 3.

A model for an infinitely long string that is initially held at the three
points (—1, 0), (1, 0), and (0, 1) and then simultaneously released at
all three points at time ¢ = 0 is given by (9) with

f _{l—lxl, Ix|=1 q =0
x)= 0, | > 1 an gx)=0.

(a) Plot the initial position of the string on the interval [—6, 6].

(b) Use a computer algebra system to plot d’Alembert’s solution (10)
on [—6,6] fort =02k, k=0,1,2,...,25.

(¢) Use the animation feature of your computer algebra system to
make a movie of the solution. Describe the motion of the string
over time.

An infinitely long string coinciding with the x-axis is struck at the
origin with a hammer whose head is 0.2 inch in diameter. A model
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2 (b . nmw
where An—EfoF(y)smjydy

- 2 in""y dy — nm
B, = (bfoG(y)sm b ydy — A, cosh 3 a).

SECTION 12.5 EXERCISES

Answers to odd-numbered problems begin on page A-24.

In Problems 1-8 find the steady-state temperature for a rectangular plate
with boundary conditions as given.

1. u(0,y)=0, u(a,y) =0 2. u(0,y) =0, u(a,y)=0
ulx,0 =0, u(x,b)=f(x
(%0) =0, uxb) = fx) W0 e — o
ayly=o
3. u(0,y) =0, u(a,y) =0 4.3—” =0, g—” =
u(x, 0) = f(x), u(x,b) =0 ri=0 e
u(x,0)=x, u(x, b)=20
ou
5 u(0,y)=0, u(l,y)=1-y 6. u(0, y) = g(y), ro
u u
— =0, —| =0 ou ou
yl,- T Ayl — =0, —| =0
6y "~ a ayly=o Y ly=r
15§w=uan umy)=1 8. u@©,y) =0, u(l,y) =0
ou
u(x,0) =0, ulx,m) =0 5 0= u(x,0), u(x,1)=f(x)
=

In Problems 9 and 10 find the steady-state temperature in the given semi-
infinite plate extending in the positive y-direction. In each case assume
u(x, y) is bounded as y — oo.

9. 10.

N <

u=0 u=0 insulated insulated

O/ﬂx O/ﬂx

u=f() u=fx)
FIGURE 12.14 FIGURE 12.15

In Problems 11 and 12 find the steady-state temperature for a rectangular
plate with boundary conditions as given.

1L u(0,y) =0, u(a,y) =0 12. u(0,) = F(y), u(a,y) = G(»)
u(x, 0) = f(x), u(x, b) = g(x) u(x,0)=0, u(x,b) =0
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In Problems 13 and 14 use the superposition principle to find the steady-
state temperature for a square plate with boundary conditions as given.
13. u(0,y) =1, u(my)=1

u(x,0 =0, ux m =1
l4° u(()’y):()’ u(z,}’)=}"(2_}’)

X, 0<x<l1
u(x,0) =0, u(x?2)= y oy 1=x<?

NONHOMOGENEOUS EQUATIONS AND
BOUNDARY CONDITIONS

m Use of a change of dependent variable wm Steady-state solution w Transient solution

The method of separation of variables may not be applicable to aboundary-
value problem when the partial differential equation or boundary condi-
tions are nonhomogeneous. For example, when heat is generated at a
constant rate r within a rod of finite length, the form of the heat equation is

%u _ou

kax2+r—at. (§0)
Equation (1) is nonhomogeneous and is readily shown to be not separable.
On the other hand, suppose we wish to solve the usual heat equation
ku,, = u, when the boundaries x = 0 and x = L are held at nonzero
temperatures k; and k,. Even though the assumption u(x, t) = X(x)T(¢)
separates the partial differential equation, we quickly find ourselves at an
impasse in determining eigenvalues and eigenfunctions since no conclu-
sions can be obtained from u(0, t) = X(0)T(¢) = k; and u(L, t) =
X(L)YT(®) = k.

A few problems involving nonhomogeneous equations or nonhomo-
geneous boundary conditions can be solved by means of a change of
dependent variable:

u=v + i

The basic idea is to determine ¢, a function of one variable, in such a
manner that v, a function of two variables, is made to satisfy a homoge-
neous partial differential equation and homogeneous boundary condi-
tions. The following example illustrates the procedure.

m Nonhomogeneous Boundary Condition

Solve (1) subject to

u(0,1) =0, u(l,t)=uy, t>0
u(x,0)=f(x), 0<x<1.
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Observe in (5) that u(x, f) > ¥(x) as t — . In the context of solving
forms of the heat equation, ¢ is called a steady-state solution. Since
v(x,f)—> 0 as t — o, v is called a transient solution.

The substitution # = v +  can also be used on problems involving
forms of the wave equation as well as Laplace’s equation.

Answers to odd-numbered problems begin on page A-24.

In Problems 1 and 2 solve the heat equation ku,, = u, 0 <x <1,:>0
subject to the given conditions.
1. u(0,£) =100, u(1,t)=100 2. u(0,f) =u,, u(1,0)=0
u(x,0)=0 u(x,0) = f(x)

In Problems 3 and 4 solve the partial differential equation (1) subject to
the given conditions.

3. u(0,0) =uy, u(l,t)=u, 4. u(0,1) =uy, u(l,?)=u
u(x,0)=0 u(x,0) = f(x)
5. Solve the boundary-value problem
d’u L
k8x2+Ae = B>0, 0<x<l1, t>0

u(0,1) =0, u(1,n=0, t>0
ulx,0)=f(x), 0<x<l1.
The partial differential equation is a form of the heat equation when

heat is generated within a thin rod from radioactive decay of the
material.

6. Solve the boundary-value problem

du u
Py hu e O<x<m t>0
u(0,1) =0, u(m,t) =u,, t>0

u(x,0)=0, 0<x<m.

k

7. Find a steady-state solution y(x) of the boundary-value problem
ou ou
— - —uy)=— <x< >
kax2 h(u — up) > 0<x<l1, t>0
u(0, 1) = u,, u(l,n)=0, t>0
u(x,0)=f(x), 0<x<Ll.
8. Find a steady-state solution ¢(x) if the rod in Problem 7 is semi-
infinite extending in the positive x-direction, radiates from its lateral
surface into a medium at temperature zero, and

u(0, 1) = u,, limu(x,f)=0, t>0

u(x,0)=f(x), x>0.
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9. When a vibrating string is subjected to an external vertical force that
varies with the horizontal distance from the left end, the wave equation
takes on the form

2 2
2M+Ax—au

a =—,
ax? ar?

Solve this partial differential equation subject to

u@0,=0, u(l,5)=0 t>0
u

=0 0<x<l1.
ot li=0

u(x,0) =0,

10. A string initially at rest on the x-axis is secured on the x-axis at x = 0
and x = 1. If the string is allowed to fall under its own weight for

y t > 0, the displacement u(x, t) satisfies
u=uy 2 2
I S ad ad
1 a2—l;—g=—l;, 0<x<l1, t>0,
u=0 ox ot
0 = - where g is the acceleration of gravity. Solve for u(x, 7).
11. Find the steady-state temperature u(x, y) in the semi-infinite plate
FIGURE 12.16 shown in Figure 12.16. Assume that the temperature is bounded as

x — oo [Hint: Try u(x, y) = v(x,y) + ¢(y).]
Poisson’s equation

5

2 2
a—‘;+a—l;=—h, h>0
ax”  ady

occurs in many problems involving electric potential. Solve the above
equation subject to the conditions

u(0,y) =0, u(m,y)=1, y>0
u(x,00=0, 0<x<m.

USE OF GENERALIZED FOURIER SERIES

m Boundary-value problems that do not lead to Fourier series m Using generalized Fourier series

For certain types of boundary conditions, the method of separation of
variables and the superposition principle lead to an expansion of a function
in a trigonometric series that is not a Fourier series. To solve the problems
in this section we shall utilize the concept of generalized Fourier series
developed in Section 11.1.

m Using Generalized Fourier Series

The temperature in a rod of unit length in which there is heat transfer
from its right boundary into a surrounding medium kept at a constant
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As in Example 1, the set of eigenfunctions {sin <2n 2_ 1)77;:}, n=

1,2,3,...,is orthogonal with respect to the weight function p(x) = 1

on the interval [0, 1]. The series 2 A, sin (2’1 2_

sine series since the argument of the sine is not an integer multiple of
wx/L (L = 1 in this case). The series is again a generalized Fourier
series. Hence from (8) of Section 11.1 the coefficients in (7) are

f:)x sin (2/12— l)ﬂx dx

1) :) sin’ (Zn —

Carrying out the two integrations, we arrive at

1 . .
7x is not a Fourier

n=1

A, =

1)7rx dx

_ 81
4. = (2n — 1)
The twist angle is then
n+1 — —
0(x,t) = Z (gnl) cosa(zn2 l)msin <2n2 l)ﬂx. "

* SECTION 12.7 EXERCISES

Answers to odd-numbered problems begin on page A-24.

1. In Example 1 find the temperature u(x, ) when the left end of the
rod is insulated.

2. Solve the boundary-value problem

u du

== 0<x< >

k=2 0<x<1, 1>0

u(0, 1) =0, Z—;‘ = —h@u(L,t) —u), h>0, >0
Ix=1

u(x,0) = f(x), 0<x<I.

3. Find the steady-state temperature for a rectangular plate for which
the boundary conditions are

u©y)=0, 2 =-huay), 0<y<b
u(x,0) =0, u(x, b) = f(x), 0<x<a.
4. Solve the boundary-value problem
ou 82
= <y< >
ax2 ay2 =0, 0<y<l1l, x>0
u(0,y) = uy, lim u(x,y) =0, 0<y<l1
ou ou
—| =0, —| =—hu(x,1), h>0, x>0.
ay y=0 ay y=1 ( )
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FIGURE 12.18
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5.

6.

e

Find the temperature u(x, t) in a rod of length L if the initial tempera-
ture is f(x) throughout and if the end x = 0 is kept at temperature
zero and the end x = L is insulated.

Solve the boundary-value problem
u
le=— <x< >
a o 0<x<L, t>0
u
= —_— = >
u(0,7) =0, E ox|_, F, t>0
u(x,00=0, X =y, 0<x<L.
at t=0

The solution u(x, t) represents the longitudinal displacement of a
vibrating elastic bar that is anchored at its left end and is subjected
to a constant force of magnitude F; at its right end. See Figure 12.10
on page 492. E is a constant called the modulus of elasticity.

Solve the boundary-value problem
u | du
o oy 0, 0<x<1, O<y
ou
—_— = = <
ol _, 0, u(l,y)=u,, 0<y<l1
u(x,00=0, %4 =0, o<x<1

ay y=1

The initial temperature in a rod of unit length is f(x) throughout.
There is heat transfer from both ends, x = 0 and x = 1, into a
surrounding medium kept at a constant temperature zero. Show that

u(x,t) = D A,e™ (A, cos A,x + hsin A,x),
n=1

2 1 .
o —— +
where A, 2+ 2k 19) f . f(x)(A, cos A, x + hsin A,x) dx
and-the A,, n = 1, 2, 3,..., are the consecutive positive roots of

tan A = 2Ah/(A? — R?).

A vibrating cantilever beam is embedded at its left end (x = 0)
and free at its right end (x = 1). See Figure 12.18. The transverse
displacement u(x, t) of the beam is determined from the boundary-
value problem

+—= <x< >
axt | oz’ 0, 0<x 1, ¢ 0
ou
= — = >
u(0,1) =0, o1, 0, >0
u Su
| = —| = t>
Xl x| -, 0 0
ou
u(x, 0) = f(x), Sl =80, x>0.
t=0
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CHAPTER 12 REVIEW EXERCISES

Answers to odd-numbered problems begin on page A-25.
1. Use separation of variables to find product solutions of

iu _ U
dx dy

2. Use separation of variables to find product solutions of

Pu, Fu ou o ou_

+— 0.
ax? a9y’ ox dy

Is it possible to choose a separation constant so that both X and Y
are oscillatory functions?

3. Find a steady-state solution ¢(x) of the boundary-value problem

’u ou
k22 o<x<m >0
ax? ot .
d
u(0, 1) = up, —ﬁ C=u(m)—u, t>0

u(x,00=0, 0<x<m.

4. Give a physical interpretation for the boundary conditions in Prob-
lem 3.

5. Att = 0 a string of unit length is stretched on the positive x-axis. The
ends of the string x = 0 and x = 1 are secured on the x-axis for
t > 0. Find the displacement u(x, ¢) if the initial velocity g(x) is as
given in Figure 12.22.

a

The partial differential equation

Puy o du

a2 ¥ T e
is a form of the wave equation when an external vertical force propor-
tional to the square of the horizontal distance from the left end is
applied to the string. The string is secured at x = 0 one unit above
the x-axis and on the x-axis at x = 1 for ¢ > 0. Find the displacement
u(x, t) if the string starts from rest from the initial displacement f(x).

N

Find the steady-state temperature u(x, y) in the square plate shown
in Figure 12.23.

8. Find the steady-state temperature u(x, y) in the semi-infinite plate
shown in Figure 12.24.

Solve Problem 8 if the boundaries y = 0 and y = 7 are held at
temperature zero for all time.

©
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10. Find the temperature u(x, t) in the infinite plate of width 2L shown
in Figure 12.25 if the initial temperature is u, throughout. [Hint:
u(x, 0) = uy, —L < x < L is an even function of x.]

11. Solve the boundary-value problem

u_ou
axz  at’
u(0,7) =0,

u(x,0) =sinx, 0

12. Solve the boundary-value problem

u . A du

—_— + —_——
k o sin 2mx o
u(0,7) =0, u(1,1)

u(x,0) =sinmx, 0<
13. Find a formal series solution of the

u ou du du

+2—=—
dx? ax o ot
u(0,7) =0, u(m,t) =0
g _ 0, 0<x<m.
ot {1=0

O<x<m t>0

u(mt)=0, t>0

<x<m.

0<x<1, t>0

=0, t>0
x <1.

problem

+2—+u O0<x<m t>0

, t>0

Do not attempt to evaluate the coefficients in the series.

14. The concentration c(x, t) of a substance that both diffuses in a medium
and is convected by currents in the medium satisfies the partial differ-

ential equation

3% dc ac

k

awr Tax ot
Solve the equation subject to
c(0,7) =0,

h a constant.

c(1,=0, t>0

c(x,0)=¢,, 0<x<1,

where ¢, is a constant.
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FIGURE 13.4
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Applying the boundary conditions ®(0) = 0 and O(w) = 0 to the
solution ® = ¢, cos Af + ¢, sin A6 of (16) gives, in turn, ¢; = 0 and
A=n,n=1,2,3,.... Hence ® = ¢, sin n6. In this problem, unlike
the problem in Example 1, n = 0 is not an eigenvalue. With A = n the
solution of (15) is R = c3r" + c4r™". But the assumption that u(r, 6) is
bounded at » = 0 prompts us to define ¢, = 0. Therefore u, =
R(r)®(6) = A,r" sin nf and

u(r, ) = >, A,r"sin né.
n=1
The remaining boundary condition at r = c gives the sine series

Uy = 2 A,c"sin né.
n=1

2 .
Consequently Anct = - Io uysinn6do,
and so ,,=2—uf:———1—(—l) .
mc n

Hence the solution of the problem is given by

u(r, ) = 2u02 ( D (—) sin né.

Answers to odd-numbered problems begin on page A-25.

In Problems 1-4 find the steady-state temperature u(r, 6) in a circular
plate of radius r = 1 if the temperature on the circumference is as given.

1 1) = uy,, 0<o<m 2. u(l, 0, o<o<m
- u(l, ) = 0, m<6<2m u(1, 6) = -6, T<0<2m

3. u(1,0)=210- ¢, 0<6<2r 4 u(1,0)=6, 0<06<2nm

5. Solve the exterior Dirichlet problem for a circular disk of radius c if
u(c, 8) = f(8), 0 < 6 < 2m. In other words, find the steady-state
temperature u(r, 0) in a plate that coincides with the entire xy-plane
in which a circular hole of radius ¢ has been cut out around the origin
and the temperature on the circumference of the hole is f(6). [Hint:

Assume that the temperature is bounded as r — .]

6. Find the steady-state temperature in the quarter-circular plate shown

in Figure 13.4.

7. If the boundaries § = 0 and 6 = #/2 in Figure 13.4 are insulated, we

then have, respectively

du
d01e6

_ au
= 36

o=ni2
1, 0<o<mwl/4

Find the steady-state temperature if u(c, 6) = { 0. mA< o<
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Find the steady-state temperature in the infinite wedge-shaped plate
shown in Figure 13.5. [Hint: Assume that the temperature is bounded
as r— 0 and as r —» «.]

Find the steady-state temperature u(r, 6) in the circular ring shown
in Figure 13.6. [Hint: Proceed as in Example 1.]

If the boundary conditions for the circular ring in Figure 13.6 are
u(a, 0) = u,, u(b, 6) = u;, 0 < 6 < 2m, u, and u, constants, show
that the steady-state temperature is given by

uy In(r/b) — u, In(r/a)
In(a/b) ’

u(r, 6) =

[Hint: Try a solution of the form u(r, 6) = v(r, 6) + ¥(r).]
Find the steady-state temperature u(r, 6) in a semicircular ring if

u(a, 6) = 6(mr — 0), ub,0)=0, 0<o<m
u(r,0) =0, u(r,m)=0, a<r<b.
Find the steady-state temperature u(r, 6) in a semicircular plate of
radius r = 1 if
u(l,0) =uy, 0<6<mw
u(r,0) =0, u(r,m)=u,, 0<r<l,

u, a constant.

Find the steady-state temperature u(r, 6) in a semicircular plate of
radius r = 2 if

u, 0<6<m2

0, mw2<o6<m,

Ml@={

u, a constant, and the edges 6 = 0 and 6 = 7 are insulated.

Show that the steady-state temperature in Example 1 can be written
as the integral

1 on ct—r?

u(r, 6) = 21 Jo ¢? — 2cr cos(t — 6)

T f()ar

This result is known as Poisson’s integral formula for a circle. [Hint:
First show that

u(r, 0) = Zl—nfz"f(t) [1 + 22 (E)n cosn(t — 0)] dr.

Then use cos nv = 3(e™ + e"™) and geometric series to show that

® —_ g2
1+2> u"cosnv = 1—u

<1.
= 1—2ucosv + u? lul <11

Discussion Problem

Consider the circular ring shown in Figure 13.6. Discuss how the
steady-state temperature u(r, ) can be found when the boundary
conditions are u(a, 0) = f(0), u(b,6) = g(6),0 = 0 < 2r.
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The remaining boundary condition at z = 4 then gives the Fourier-
Bessel series

uo =Y, A,sinh 4A,Jo(A,r),
n=1

so that in view of (12) the coefficients are defined by (16) of Section 11.5,

2Lt0 2

A,, sinh 4/\,, = m 0

rdo(A,r) dr.

To evaluate the last integral we first use the substitution t = A,r,
followed by g;[tll(t)] =tJo(2):

Finally we arrive at A, =

. _ U 2, d _
A,sinh4A, = IR o i [¢J1(0)]) dt =

Uy

MJ12A,)

Uy
A, sinh 40, J,(27,)

Thus the temperature in the cylinder is given by

SECTION 13.2 EXERCISES

>, sinh A,zJy(A,r)
= A, sinh 40, J,(27,)

u(r,z) = uy

Answers to odd-numbered problems begin on page A-25.

1.

2.

Find the displacement u(r, t) in Example 1 if f(r) = 0 and the circular
membrane is given an initial unit velocity in the upward direction.

A circular membrane of unit radius 1 is clamped along its circumfer-
ence. Find the displacement u(r, ¢) if the membrane starts from rest
from the initial displacement f(r) = 1 — r?, 0 < r < 1. [Hint: See
Problem 10 in Exercises 11.5.]

. Find steady-state temperature u(r, z) in the cylinder in Example 2

if the boundary conditions are u(2, z) = 0,0 < z < 4, u(r, 0) = u,,
u(r,4) =0,0<r<2.

. If the lateral side of the cylinder in Example 2 is insulated, then

gu =0, 0<z<4.
orlr=2

(a) Find the steady-state temperature u(r, z) when u(r, 4) = f(r),
o<r<2.

(b) Show that the steady-state temperature in part (a) reduces to
u(r, 7) = upz/4 when f(r) = u,. [Hint: Use (11) of Section 11.5.]
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The temperature in a circular plate of radius ¢ is determined from
the boundary-value problem

10u ou
k += — <r< >
<3r r ar> at’ O<r<ec >0

u(c,t)=0, t>0
u(r,0)=f(r), 0<r<ec.
Solve for u(r, t).
Solve Problem 5 if the edge r = c of the plate is insulated.

When there is heat transfer from the lateral side of an infinite circular
cylinder of unit radius (see Figure 13.11) into a surrounding medium
at temperature zero, the temperature inside the cylinder is determined
from

1du du
+ - — <r< >
k (ar r 3r> o’ O<r<i, ¢>0

dul
i hu(1,t), h>0, t>0
u(r,0) = f(r), 0<r<l1.

Solve for u(r, t).

Find the steady-state temperature u(r, z) in a semi-infinite cylinder
of unit radius (z = 0) if there is heat transfer from its lateral side into
a surrounding medium at temperature zero and if the temperature of
the base z = 0 is held at a constant temperature u,.

. A circular plate is a composite of two different materials in the form

of concentric circles. See Figure 13.12. The temperature in the plate
is determined from the boundary-value problem

1 du _ du
_ <r< >
ar ror ot 0<r<2, >0

u(2,t) =100, t>0

0 = {200, o<r<1
“rh0=1400, 1<r<2.
Solve for u(r, t). [Hint: Let u(r, t) = v(r, t) + ¥(r).]

Solve the boundary-value problem
1 6u ou
=— <r< >
6r2 ror +B= Py 0<r<1, t>0, Paconstant

u(l,)=0, t>0
u(r,00=0, 0<r<l1.

The horizontal displacement u(x, ) of a heavy chain of length L
oscillating in a vertical plane satisfies the partial differential equation

3 [ ou u
—_ )| === <x< >0.
g ( 6x) PyeR O0<x<L, t>0

See Figure 13.13.
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(a) Using — A% as a separation constant, show that the ordinary differ-
ential equation in the spatial variable x is xX” + X' + A’X = 0.
Solve this equation by means of the substitution x = /4.

(b) Use the result of part (a) to solve the given partial differential
equation subject to

u(L,t)=0, t>0
u

u(x,0) = f(x), Et=0=0, 0<x<L.

[Hint: Assume the oscillations at the free end x = 0 are finite.]

12. In this problem we consider the general case of the vibrating circular
membrane of radius c:

2 2 2
a2<a”+1%+la—”)—a" 0<r<ec t>0

arr ror r2o@?) ot
u(c, 6,t) =0, 0<9<2m t>0
u(r,0,0)=f(r,0), 0<r<c, 0<0<2m
du V

ot =g(r’0)9 0<r<c, 0<0<27T.

=0

(a) Assume thatu = R(r)®(6)T(¢) and that the separation constants
are —A? and — % Show that the separated differential equations
are

T" + a’A*T =0, 0"+ 10 =0
r’R" +rR' + (Ar* = v*)R =0.

(b) Solve the separated equations.
(c) Show that the eigenvalues and eigenfunctions of the problem are

as follows:
Eigenvalues: v =n,n =0, 1, 2, . . . ; eigenfunctions: 1, cos né,

sin né.
Eigenvalues: A,; = x,;/c,i = 1,2, ..., where, for each n, x,; are

the positive roots of J,(Ac) = 0; eigenfunctions: J,(A,7).

(d) Use the superposition principle to determine a multiple series
solution. Do not attempt to evaluate the coefficients.

13. (a) Consider Example 1 with a = 1, ¢ = 10, g(r) = 0, and f(r) =
1 —r/10, 0 < r < 10. Find the numerical values of the first three
eigenvalues A, Ay, A; of the boundary-value problem and the first
three coefficients A;, A,, Az of the series solution u(r, t). Write
the third partial sum S; of the series solution. [Hint: Use the table
on page 247. Also see Problem 25 in Exercises 6.4.]

(b) Use computer software to graph S; for t = 0, 4, 10, 12, 20.



526

u = fi6)

X
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Furthermore, when A* = n(n + 1), the general solution of the Cauchy-
Euler equation (2) is

R = cir" + cr~ D,

Since we again expect u(r, 6) to be bounded at r = 0, we define ¢, = 0.
Hence u, = A,r"P,(cos 6), and

u(r, ) = > A,r"P,(cos 6).
n=0

Atr=c, f(6) = A,c"P,(cos 6).
n=0

Therefore A,c" are the coefficients of the Fourier-Legendre series (23)
of Section 11.5:

2n+1
2c"

A, = [7 #(0)Pu(cos ) sin 0o,

It follows that the solution is

u(r,0) = g <2n2+ 1 J;f(G)P,,(cos 0) sin 0d0> (E)n P,(cos 6).

Answers to odd-numbered problems begin on page A-26.
1. Solve the problem in Example 1 if

o _{50, o<o<al2
f(6) = 0, w2<6<m.

Write out the first four nonzero terms of the series solution. [Hint:

See Example 3, Section 11.5.]

2. The solution u(r, ) in Example 1 could also be interpreted as the
potential inside the sphere due to a charge distribution f(6) on its

surface. Find the potential outside the sphere.

3. Find the solution of the problem in Example 1 if f(6) = cos 6,

0 < 0 < m. [Hint: P,(cos 0) = cos 6. Use orthogonality.]

4. Find the solution of the problem in Example 1 if f(8) = 1 — cos 26,

0 < 0 < 7. [Hint: See Problem 16, Exercises 11.5.]

5. Find the steady-state temperature u(r, ) within a hollow sphere
a < r < b if its inner surface r = a is kept at temperature f(6) and
its outer surface r = b is kept at temperature zero. The sphere in the

first octant is shown in Figure 13.16.
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The steady-state temperature in a hemisphere of radius r = c is
determined from
0%u  20u , 10*u , cotfou s
—t-—t+t S5 +———==0, 0<r< 0<o<z
o ror ro® 2 a0 - = ¢ 2

u(r,z>=0, 0<r<ec
2
u(c, ) = (), 0< 9<§.

Solve for u(r, ). [Hint: P,(0) = 0 only if n is odd. Also see Problem
18, Exercises 11.5.]

Solve Problem 6 when the base of the hemisphere is insulated; that
is,

Ju

— = <r<ec.

36l e=m12 0, O<r<c

Solve Problem 6 for r > c.

The time-dependent temperature within a sphere of unit radius is
determined from

Pu  20u_ ou

— = <r< >
or2 ror ot’ O<r<I, >0
u(l,1)=100, >0

u(r,0)=0, 0<r<l1.

Solve for u(r, t). [Hint: Verify that the left side of the partial differential
2
equation can be written as %% (ru). Let ru(r, t) = v(r, t) + ¥(r).

Use only functions that are bounded as r — 0.]

A uniform solid sphere of radius 1 at an initial constant temperature
u, throughout is dropped into a large container of fluid that is kept
at a constant temperature u, (1; > u,) for all time. See Figure 13.17.
Since there is heat transfer across the boundary r = 1, the temperature
u(r, t) in the sphere is determined from the boundary-value problem

u  20u  ou

4T 0<r< >
or Frar ar OSrsh 120
Mm@, f) —u), 0<h<1
orlr=1 ’ 1

u(r,0) = u,, 0<r<1.

Solve for u(r, t). [Hint: Proceed as in Problem 9.]

Solve the boundary-value problem involving spherical vibrations:
%u  20u) _du
H=s+="—=)=— <r< >
a (c’)r2 r6r> arr’ O<r<e, >0
u(c,t)=0, t>0
u(r,0) = f(r), ) _ glr), 0<r<ec.

of =0
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insulated
U=up+

\
u=0
FIGURE 13.19
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[Hint: Write the left side of the partial differential equation as
1 9?

2= - =

s (ru). Let v(r, t) = ru(r, 1).]

A conducting sphere of radius r = ¢ is grounded and placed in a
uniform electric field that has intensity E in the z-direction. The
potential u(r, 6) outside the sphere is determined from the boundary-
value problem

0’u 20u 10%m  cotBou

it oy —=——= >c, 0<0<
or:  ror r*o@? rr 90 0, r>e o<m
u(c,0) =0, 0<o6<m

lim u(r, ) = —Ez = —Ercos 6.

r—o

3
Show that u(r,0) = —Ercos 0+ E %cos 0.

[Hint: Explain why [ g cos 6 P,(cos 0) sin 6 d6 = 0 for all nonnegative
integers except n = 1. See (24) of Section 11.5.]

Answers to odd-numbered problems begin on page A-26.

1.

Find the steady-state temperature u(r, 0) in a circular plate of radius
c if the temperature on the circumference is given by

Uy, o<éo<m
—uy, m<O<2m.

u(c, 0) = {

Find the steady-state temperature in the circular plate in Problem 1 if

1, 0<oO<w/2
u(c,0) =410, 7/2<60<3m/2
1, 37/2<60<2m.

Find the steady-state temperature u(r, 6) in a semicircular plate of
radius 1 if

u(l,0) =uy(r6—6*), 0<6<m

u(r,0) =0, u(r,m)=0, 0<r<l1.
Find the steady-state temperature u(r, 6) in the semicircular plate in
Problem 3 if u(1, ) =sin 6,0 < 6 < 7.

Find the steady-state temperature u(r, 6) in the plate shown in Fig-
ure 13.18.

Find the steady-state temperature u(r, 6) in the infinite plate shown
in Figure 13.19.
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. Suppose heat is lost from the flat surfaces of a very thin circular unit

disk into a surrounding medium at temperature zero. If the linear law
of heat transfer applies, the heat equation assumes the form

’u  1ou ou

— 2 hu=— > <r<l1, t>0.

arzrarhuat,hO,Or,IO
See Figure 13.20. Find the temperature u(r, t) if the edge r = 1 is
kept at temperature zero and if initially the temperature of the plate
is unity throughout.

Suppose x, is a positive zero of J,. Show that a solution of the boundary-
value problem

u  1ou\ o
=422 ) =22 0<r<1, t>
“ <ar2 rE)r) arr O<r<l 1>0

u(l,t)=0, t>0
ou

u(r,0) = uoJo(xir), o

_0=O, 0<r<i

is u(r, t) = ueJo(x,r) cos ax,t.

. Find the steady-state temperature u(r, z) in the cylinder in Figure

13.10 if the lateral side is kept at temperature zero, the top z = 4 is
kept at temperature 50, and the base z = 0 is insulated.

Solve the boundary-value problem

u Lou, du
or* ror 9z*
ou

or
u(r,0) = f(r), u(r,1)=g(r), 0<r<1.

Find the steady-state temperature u(r, 6) in a sphere of unit radius
if the surface is kept at

=0, 0<r<1, 0<z<l1

=0, 0<z<1

r=1

10 = 100, 0<O6<mw/2
w0 =1\ _100, m2<p<m.

[Hint: See Problem 20 in Exercises 11.5.]
Solve the boundary-value problem

82u+26_u_62u

W ;GY—W, 0<r<i1, t>0

ul
or lr=1 —O, >0
ou
u(r,0) = f(r), " _0=g(r), 0<r<l1.

[Hint: Proceed as in Problems 9 and 10, Exercises 13.3, but let
v(r, t) = ru(r, t). See Section 12.7.]
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13.

14.

The function u(x) = Y,(Aa)Jo(Ax) — Jo(Aa) Y(Ax), a > O is a solution
of the parametric Bessel equation

2
x2%§+x%+ AMxtu=0

on the interval a = x = b. If the eigenvalues A, are defined by the
positive roots of the equation Yy(Aa)Jy(Ab) — Jo(Aa) Yo(Ab) = 0, show
that the functions

Un(x) = Yo(Ana)Jo(Anx) — Jo(Ana) Yo(Anx)

u,,(x) = Yo(A,,a)Jo(/\,,X) - Jo(A,,a) Yo(A,,X)

are orthogonal with respect to the weight function p(x) = x on the
interval [a, b]; that is,

fb XUp(X)u,(x)dx =0, m#*n.

[Hint: Follow the procedure on page 460.]
Use the results of Problem 13 to solve the following boundary-value
problem for the temperature u(r, ¢) in a circular ring:
2
Pu, Vou_ou
or* ror ot
u(a,t) =0, u(b,ty=0, t>0
u(r,0)=f(r), a<r<b.

a<r<b, t>0



7. (a) If X(0) = X, lies on the line y = 3x, then X(¥)
approaches (0, 0) along this line. For all other initial
conditions, X(f) becomes unbounded and y = x
serves as the asymptote.

(b) y

-3-2-1 1 2 3
9. saddle point 11. saddle point
13. degenerate stable node 15, stablespiral 17. |u|<1
19. u < —1 for a saddle point; —1 < u < 3 for an unstable
spiral point
23. (a) (—3,4)
(b) unstable node or saddle point
(¢) (0, 0) is a saddle point.
25. (a) (3,2)
(b) unstable spiral point
(¢) (0, 0) is an unstable spiral point.

SECTION 10.3 EXERCISES, page 418

1. r = ree”

3. x = 0 is unstable; x = n + 1 is asymptotically stable.

5. T = T, is unstable.

7. x = « is unstable; x = B is asymptotically stable.

9. P = a/b is asymptotically stable; P = c is unstable.

11. (3, 1) is a stable spiral point.

13. (V2, 0) and (—V2, 0) are saddle points; (3, — ) is a
stable spiral point.

15. (1, 1) is a stable node; (1, —1) is a saddle point; (2, 2)
is a saddle point; (2, —2) is an unstable spiral point.

17. (0, —1) is a saddle point; (0, 0) is unclassified; (0, 1) is
stable but we are unable to classify further.

19. (0, 0) is an unstable node; (10, 0) is a saddle point;
(0, 16) is a saddle point; (4, 12) is a stable node.

21. 6 = 0 is a saddle point. It is not possible to classify
either 6 = w/3 or 6 = —u/3.

23. It is not possible to classify x = 0.

25. It is not possible to classify x = 0, but x = 1/Ve and
x = —1/Ve are each saddle points.

29. (a) (0, 0) is a stable spiral point.

33. (@ (1,0),(-1,0)

35. |vo| < V2

37. If B > 0, (0, 0) is the only critical point and is stable.
If 8 <0, (0, 0), (£, 0), and (X, 0), where x* = —a/p,
are critical points. (0, 0) is stable, while (¥, 0) and
(=%, 0) are each saddle points.

39. (b) (57/6, 0) is a saddle point.
(¢) (m/6, 0) is a center.

SECTION 10.4 EXERCISES, page 430

138
. < . [E
1 |wo| L

1+ x?
. 2,2
5. (a) First show that y> = v + gln (1 n xoz)'

9. (a) The new critical point is (d/c — €,/c, alb + €/b).
(b) yes
11. (0, 0) is an unstable node, (0, 100) is a stable node,
(50, 0) is a stable node, and (20, 40) is a saddle point.
17. (a) (0, 0) is the only critical point.

CHAPTER 10 REVIEW EXERCISES, page 433

1. true 3. a center or a saddle point 5. false
7. false 9. a = —1
11. r=1/V/3t + 1, 8 = t. The solution curve spirals toward
the origin.
13. (a) center (b) degenerate stable node
15. (0, 0) is a stable critical point for a < 0.
17. x = 1is unstable; x = —1 is asymptotically stable.
19. The system is overdamped when B2 > 12kms® and
underdamped when 82 < 12kms>.

SECTION 11.1 EXERCISES, page 442

S0
75 %5 1=

SECTION 11.2 EXERCISES, page 447

\/1;; cosn’Tﬂx

L f(x) = 2 E _(_1)" sin nx
3. f(X)_%+i{( 1)n_ cosnﬂx—;%smnﬂx}
5. f(x) =%2+i{2(_ )’ cos nx

—1)n+l
%L&l+2
n

ﬁ[(—l)” - 1]) sinnx}
7 j@ =+ 23

sin nx
9. f(x)—%+%smx+ E( 1)
18 nmw
+;n§=:1{ —sm7c057x
3 n nmw
+;(1 cos;) sm7x}
13. f(x)—% E{( 1) _1 os?x
— n+1
+(—1)——sinﬂx}
nmw 5

15. f(x) = @ [ E s (cos nx — nsin nx)]
19. Set x = 7/2.

COS nx

NP

1. f(x) = -
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SECTION 11.3 EXERCISES, page 455

1. odd 3. neither even nor odd 5. even 7. odd

9. neither even nor odd

1L f(x) = E%ZESmnx

Tp=1

T, 2 < " —
3. f(x) = 3 ;"21( ’)12 cos nx
1, 43(-1)
15. f(x) = 3 ﬂ'_,,§=:1(n2 COS nTTX
2 © ¢ __1\n+1
17 f(x)=2—”—+4§‘,( 12 cos nx
3 n=1 n
19. f(x) = _(_131"(1 ) Gin nx
T =1
3 4o cosﬂ—l
2 f(0) =7+ ”21 T—Ccos /- x
2 281+ (-1)
2. f(x) == ;n% 1( > cOS nx
1 2 sin —
25. f(x) = 5 =y coS nIx
n=1
« 1 —cos—
flx) ==Y ——=sinnmx

n
4 (D"
+ 772 T4 Cos nx

-1
S
E4n2 7 sin 2nx

nw .
2cos? (- -1

T, 2«
= —+4 -
29. f(x) 2 77,.§=:1 ~ COS nx
. nw
4= SN
f()=-7;2 — sin nx
n=1
n
cos——1
3.4 & nm
31 f(x) = 4+;T-5,,21 > COS7)C
S A 2 el T
fx) = ,,21 {nzﬂzsm > 1) }sm 5 X
33 f(x) = -5—+%Z3(—1) — cosnmx

®

2 1 T .
35. f(x) = —§— 4> {P cos rx — - sin nx}

n=1

6
fix)y=4 i {(_17)7"” + (_’112;3— 1}sin nwx
4

37. f(x) = ———ilsinZnﬂx

39. x,(H) = — ]mg—-l—)—)-smnt

41. x,,(t)— +162 oy 48)cosnt

2WOL 2( 1)n+1 me

3. () y(x) = i T

A-22

ST+

n=1

{(_ )" = cos nx + (_;)M sin nx}

4
53. f(x,y) = %+#21(—131—21005m77x
(-D"—-1
cos nmy

D"~ 1[(=D" ~1]

m*n?

IIMS

-

)n
n?
D (=

1
5
4

+

7 COS MTX COS NTY
T

SECTION 11.4 EXERCISES, page 463

1. y = cosVA, x; cot VA = VA; 0.7402, 11.7349, 41.4388,
90.8082; cos 0.8603x, cos 3.4256x, cos 6.4373x,
cos 9.5293x
5. 3(1 + sin?VA,)

_ —wn [ BT _
7. (a) A= (l 5) sm(—lnslnx),n 1,2,3,...
d
(b) '—[xy']+-y=0

(c)f—sm(—lnx)sm(l 5lnx>dx=0,m5ﬁn

9. (a) f , COS XpX COS XX dx = 0, m # n, where x,, and
X, are positive roots of cot x = x
d —x ! Xy =0 2 o =
1. 2= [re™y'] + nety = o,fo e*L(x)La(x) dx = 0

m#n
13. (a) A = 16n% y =sin(dntan'x),n = 1,2, 3, ...

11
(b) 0] + x?

m#n

sin(4m tan~x) sin (4n tan~x) dx = 0,

SECTION 11.5 EXERCISES, page 471
1. 1.277, 2. 339 3 391, 4.441

/\J(Z)t)
5. £ = 42m

Ada(41)
7. f(x) = 202(2/\—2+‘1%'J‘2(T)11(MX)

JQ(/\,'X)

9. f) =3~ 4 3 A= Ii(h)

11. f(x) = §P0(x) + 2P, (x)
13. f(x) = $Po(x) + 3P1(x) + %P2(x) — HP4(x) + - -+
15. Use cos 260 = 2 cos?§ — 1.
19. f(x) = 3Po(x) + §Py(x) — &P4(x) + - - -
f(x) = |x|on (=1,1)

CHAPTER 11 REVIEW EXERCISES, page 472
1. true 3. cosine 5.3 7. false

9. 1
1—-x

,—l=x=1
2



1,23 u _ du
=-+= " — L k—=—,0<x< >
13. f(x) 2+1T§1{ [(=1)" — 1] cos nmx 3 kax2 at’O x<L, t>0
0
+2 -1y sin m} w(©,0=100, 2| = —hu(L,0,6>0
g™ x,0 x),0<x<L
15. fx) =1 —-e1+2 2 ( 1) COS nTX u(az ) afb(t )
n=1 S.a ——-——2,0<x<L t>0
(2n —1)*x? ax? ot
l7.)t=—36 ,n=1,273 ..., u(0,)=0, u(L,f)=0,>0
_ _ _ ou|  _
) = cos (2112 1ﬂlnx> u(x, 0) = x(L — x), az|,= —0,0<x<L
w 6 U ou
1. f()-12AJJ(22(2)3)Jo(A-X) 7. a*—— ,3——5—2—,0<x<L t>0
= u(O,t) 0,u(L,f) =sinmt,t>0

SECTION 12.1 EXERCISES, page 478 u(x,0) = f(x), %%l L =0,0<x<L
1. The possible cases can be summarized in one form o%u 6 ”

u = c;e%"* where c, and ¢, are constants. 9. — Py ;97 =0, 0<x<4,0<y<2
3. u = el 5 u=c¢xy)> ou
7. not separable e =0 UGV =f(y), 0<y<2
9. u = e(A;e"" cosh Ax + Ble““ sinh Ax) ou

u = e(Ae ™ cos Ax + Bye™™" sin Ax) 3 yeo =0, u(x2)=0, 0<x<4

)=

u = (cx + cg)coe™
11. u = (¢; cosh Ax + ¢, sinh Ax)
X (c3 cosh Aat + ¢, sinh Aat)

u = (¢s cos Ax + ¢4 sin Ax)(¢; cos Aat + ¢ sin Aar)
u = (cox + cyo)(cyt + c) SECTION 12.3 EXERCISES, page 489

13. u = (¢; cosh Ax + ¢, sinh Ax)(¢; cos Ay + ¢, sin Ay)
’ w [ —COS 7 +1
2 — 2 | keliggp ”L_T’x

u = (¢s cos Ax + ¢ sin Ax)(¢; cosh Ay + ¢g sinh Ay)
u = (cox + cp)(eny + cn) 1 u(x,t)=
15. For A? > 0 there are three possibilities:

SUN

_ : 1
u = (¢, cosh Ax + ¢;sinh Ax) 3ou(x,t)y=—| f(x)dx
X (c3cosh V1 — A%y + ¢, sinh V1 — A2y), Lf
A< 2 S w212
“ —xd 7L ) —_
u = (c¢; cosh Ax + ¢, sinh Ax) L 2:: <f &) cos; x x) cos; L %
X (c3c08 VA2 — 1y + ¢;sin VA2 — 1y), 1L
Y1 5. u(x,f)=e [zfof(x)dx
u = (c¢; cosh x + ¢, sinh x)(c;y + ¢y), 5=
L
r=1 + ZE (fo f(x) cos n—Zx dx) eI cos %x]
The results for the case —A*> < 0 are similar. For !
= (0 we have

u = (c1x + ¢;)(¢c; cosh y + ¢, sinh y).
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17. elliptic 19. parabolic 21. hyperbolic SECTION 12.4 EXERCISES, page 492

23. parabolic 25. hyperbolic 1-(-1 nw
29, y = "3y = en®xty) L ou(x,0)= = E ( ) L tsm—Z—x
31. The equation x* + 4y? = 4 defines an ellipse. The 3 -
partial differential equation is hyperbolic outside the 3. ux, )= (cos-z—tsm *
ellipse, parabolic on the ellipse, and elliptic inside
the ellipse. L cos ma tsin -S—Ex
5? L L
1 Tma Ik
SECTION 12.2 EXERCISES, page 485 + 5 7 cosTt51nZ—x -
2
1 ka—u=a—u,0<x<L, t>0 5. u(x,t)=-1—sinatsinx
ax° ot a
u(O,t)=0,a—u =0,t>0 w Si n—ﬂ
Oxlae 7. u(x,t)= —hz cos@tsmﬂx
u(x,0) =f(x),0<x<L Ve 2 L L
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B

9. u(x,t)y=e* 2 A,{cos g,t + =sin g,t} sin nx, 13. u = u, + u,, where
> o u(x,y) = 2il—_—L_l—)smh ny sin nx
where A, = —f f(x) sin nx dx and g, = Vn? — 8? ’ 7 & nsinh nw
-1
222 uy(x, = — JL S V—— A §
1L u(x,0) = 2 <A cos—LTat + B, sin nLZ at) (%) Tr,,z-" n
sinh nx + sinh n(7 — x) .
nm X : sin ny
X sin — x sinh nw
L b
where A, = %L’; f(x)sin ’Z—ﬂx dx
2L (L onm SECTION 12.6 EXERCISES, page 501
B,, = TJ’ g(x) sin —x dx
nimalo L 2004 (=1)"=1 e
15. u(x, 1) = t + sin x cos at 1. u(x,t) =100 + —2 —T—e sin nmx
1 .
17. u(x,f) = =—sin2 2at
u(x,t 5 sin 2xsin 2a 3 u(xt)—uo——x(x—1)+22[ 23]
19. (a) nw kn m
u X [(—1):— 1]e”*""" sin nmx
1 5. u(x,t) = Y(x) + >, Aye ™" sin nrx,
n=1
where y(x) = k%z [—e b+ (ef— D)x + 1]
% T T T e and A,,=2f1[f(x)—t//(x)]sinnﬂxdx

sinh h/kx)
7. ¥(x) =
v uo( sinh Vh/k

9. u(x,t)= 6A[12(x - x%)
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+ 22'7:3 2 (— ) cOs nmat sin nmx
ECTION 125 E ,
SECTION 12.5 EXERCISES, page 498 1L u(xy) = (uo _ ul)y +u
u(=1)"—u
© + 20 /7 1 mrxs
1. u(x,y) =22( jf(x) sm—xdx) 77,,21 n mn ey
a
h oy
X smh— smﬂx
ysmng, SECTION 12.7 EXERCISES, page 505
2& SiIlA e X
3 u(x,y)= a2 2 ( j f(x)sin —x dx) L u(x,1)=2h 2 m kAt cos A,x,
h_b where the /\,, are the consecutive positive roots of
. . onm cot A = A/h
xsnnh—(b—y)sm—x ©
1= (1y a 3. u(x,y) = >, A, sinh A,y sin A,x,
5 u(x,y) = —x sinh nmx cos nmy " y
™ smh nm where A, = — 2h 5 f f(x)sin A,x dx and
[1-(-1)] sinh A,b[ah + cos’A,a] o
T u(xy) = ;g n the A, are the consecutive positive roots of tan Aa =

n cosh nx + sinh nx sin ny —Alh
i z . (2n—1
n cosh nm + sinh nar 5w )= S Ae o v o ( ) .

pt 2L
9. u(x,y)= ( f f(x) sin nx dx) " sin nx " _1
where A, _Lj f(x)sin ( 7L )Trxdx

. . nm
11 u(x,y) = z (A,, cosh” —y + B, sinh —y) sin—x,
a a’) 7. u(xy) =5 1
where A, = gjaf()c) sin ™2 x dx (2n — 1) cosh (2 1) b
" alo a 2
B.= S (2 fa g(x) sin 22 x dx — A, cosh o, X cosh zi_—-l—> X sin (2n - 1) Ty
sinh 22 p \*7° e . 2 2
a 9. (b) 1.8751, 4.6941




SECTION 12.8 EXERCISES, page 509

o

L ou(x,y,0)=2 > Apme 0" sin mx sin ny,

m=1n=1

4u0

where A,,, =

=] Ul G VA Ll b

3. ux,y,0) = 2 2 Ay Sin mx sin ny cos aVm? + nt,

m=1n=1

where A,,, = —3163-7; (D" =1][(-1)" —1]

5 u(x,y,2)= Z Z A,y sinh @,z sm-——x sin bﬂy

m=1n=1

where w,,, = <ﬂ> + <£7—T>
a b

mn

ab smh(cw,,,,,

CHAPTER 12 REVIEW EXERCISES, page 510

U - uo)
1. u=ce"e 3, y(x)=u,+ ( —w)
1 lp( ) 0 1 .
nmw 3nw
. COS— — CcOS ——
5 u(x, 0= 2h 2 — 4 3 nnmatsinnmx
o ma s n

10051 - (=" . .
7. u(x,y) = ”zl P — sinh nx sin ny

9. u(x, )—1002 ﬂfi_l)ne"“sinny
n=1

11. u(x, f) = e'sinx
13. u(x,f) = e "> A [V + 1cos Vi + 1t
n=1
+ sin Vn? + 1¢] sin nx

SECTION 13.1 EXERCISES, page 516
L u(r, 0) = EL)+l—lgi1—:—(”———lxr"sinno
3. u(r, 0)———42—5cos no
5. u(r, ) = Ay + 2—11 r"(A, cos n6 + B, sin n6),
where Ay = % J?’f(f)) de
A, = C;nfzﬂf(o) cosnfdo

_C_" 2 .
B,= ﬂfo f(0)sinn6de

© n 2n
7. u(r, 0)=%+%2 n2 <£> cos2n 8

n=1

)j jf(x y)sm—xsm?ydxdy

9. u(r, 6) = AgIn <£> +il [(é) B (9]

X [A, cos né + B, sin nb),
where A,ln (a) L jznf(ﬁ) de

-] e
[(g) - <b> ]B _—j £(8)sinnodo

® — (—1)\n Zn_
11 u(r, 0)=%21—ﬂ’ (%) sin n

n3 a2n — b?.n

SECTION 13.2 EXERCISES, page 522

sin A,at Jo(A,r)
L u(r,?) = '121 ——)t,f.ll()\,,c)
3 u(r 2) = u 2 sinh A,(4 — 2) Jo(A,r)

® < A,sinh4A,J,(21,)
5. u(r, 1) = > A Jo(Ar)e ",
n=1

where A, = “rlo(Ar) f(r) dr

el

I (Ac) Jo

7.ou(r, t) = 2 Ady(A\r)e ™,
n=1

where 4, 'Tffn‘ﬁm [ rnan £ dr

9. u(r, 1) = 100 + 50 2%{)

11. (b) u(x, 1) = i A, cos(A,VgN)Jo(2A,Vx),
n=1

2 2
where A, = LIion, \/_)f vJo(2A,0) f(v?) dv

13. (a) A, = 0.2405, A, = 0.5520, A; = 0.8654;
A, = 07966, A, = 0.0687, A; = 0.0535;
S, = 0.7966 cos(0.2405)J,(0.2405r)
+ 0.0687 c0s(0.5520¢)J,(0.5520r)
+ 0.0535 cos(0.86541)J,(0.8654r)
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SECTION 13.3 EXERCISES, page 526

L u(r, ) = 50 [% Py(cos 6) + % <£> Py(cos 0)

7 (r\’ 11 (ry
T (Z) Ps(cos ) +t35 (E) Ps(cos 0) + - - ]

2rl+

5. u(r,0) = EA bz,,ﬂ <= P.(cos 6), where
b2n+1 _ a2n+l 2’1 + 1
g An =5 || F(O)P(cos 0) sin 6 do

7. u(r, 0) = >, A,r*"Py,(cos 6),
n=0
4n + 1) (m .
where A, = (_cZ"_)Jo f(8)Py,(cos 6) sin 6 dO
200 < (—1)" _22 .,
o = + — [ WA nnt
9. u(r, 1) = 100 + — > e sin nar

> nma . hma \ . nw
1L u(r, t) = E (A,,cos-—c—t+ B, sm——c—t> sin=—=r,

where A, = —J rf(r) sm——rdr

2
B,= pl rg(r)sm—rdr

CHAPTER 13 REVIEW EXERCISES, page 528
L u(r, 0)_21402 ( D (—) sinn6

3. u(r,6)= 4u02 1) sinn6

4n 4n 1 — (—=1)"
S. u(r,0)= zuoz;,l:; 4”1 Ez 1) sin4n 6

_ Jo(A,r)
7. u(r,t) =2e > 020/
u(r,t) = 2e ,.El)tn]1()tn)

cosh A,z Jo(Aur)
9 u(r2)= 502 X, cosh 41, 11(2A )

1L u(r, 6) = 100 B rP(cos 6) - 1 7 3py(cos 0)

11
+ T Ps(cos 6) + ]

SECTION 14.1 EXERCISES, page 533

1. (a) Let 7 = u? in the integral erf(V7).
7. y(t) = e™ erfc(\/ﬂ_t)

9. Use the property L’: - ﬁ; = J Z + ﬁ

SECTION 14.2 EXERCISES, page 538

Lou@x,)=A cosggtsin%x

3. u(x,t) = f(t—i)%(t—;—c)

A-26

U
3 (t 2nL+L+x>
a

o %<t_2nL+aL+x>}

9. u(x, t) = (t — x) sinh(t — x)U( — x)
+ xe™* cosh t — e™*t sinh ¢

11. u(x, t) = u, erfc <L>
1) = Wk

13, ulx, t) = uy + (uo — wy) erfc (ﬁ)

15. u(x, t) = u, [1 - {erfc (ﬁ)

— e erfc (\/E + ﬁ)}]

X t—T _xzT
17. u(x, t) —2\/_ f(T:;/z ) - dr

19.ux,t=60+406rfc< X )%t—2
0 ia) MY

21. u(x, r) = 100 [—el‘“‘ erfc (

1-x
+ erfc ( )]
2Vi
23, u(x, t) = up + uge LN sin (%x)

25, u(x, 1) = up — o S, (1) [erfc (%)
n=0

)

Vkt
2n+1+x
+ erfi ( )]
2Vkt
27. u(x, t) = uge %c erf <§ R_tC>

29, u(x,t) = A %‘ e~k an impulse of heat, or flash

burn, takes place at x = 0.

SECTION 14.3 EXERCISES, page 548

1. f(x) = do

3. f(x) = % [7 14(@) cos ax + B(@) sin ax] da,

3asin 3a + cos 3 — 1
aZ
sin 3a — 3 cos 3
a2

1 = sinacos ax + 3(1 — cos a) sin ax
0 o

where A(a) =

B(a) =



