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Abstract. In XXVIII CILAMCE edition a new finite element method for Helmholtz equation 
was introduced: The Galerkin Plus Multiplies Projection of Residual Method (GMPR). This 
method was obtained adding to the Galerkin formulation an appropriate numbers of 
projections of the residual of PDE within each element. This allows that the element matrix 
has a maximum number of free parameters. Also, for rectangular domain, uniform mesh and 
bilinear elements, a methodology to choose these free parameters was presented. The 
criterion adopted to determine the free parameters consists of minimizing the phase error of 
the approximate solution. The GMPR method is a “variationally” consistent finite element 
formulation and convergent for the homogeneous Helmholtz equation.  In spite of everything, 
this initial version of the GMPR method is not necessarily convergent for all non 
homogeneous problems. Therefore, in this work we introduced a necessary modification to 
obtain a FEM of the GPR class (initially denoted by GMPR and now by GPR) with uniform 
convergence properties. The modification is introduced through a new projection term in the 
weak formulation: the residual gradient projection term. With this modification the GPR 
formulation remains “variationally” consistent and uniform convergence properties are 
recovered in all cases: homogeneous and non homogeneous Helmholtz problems. We 
presented some numerical tests with source term to show the good rates of convergence of the 
GPR formulation. 
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1. INTRODUCTION 
 
 It is known that numerical approximation of time-harmonic acoustic, elastic and 
electromagnetic wave problems governed by the Helmholtz equation is particularly 
challenging. The oscillatory behavior of the exact solution and the quality of the numerical 
approximation depend on the wave number k. To approximate Helmholtz equation with 
acceptable accuracy the resolution of the mesh should be adjusted to the wave number 
according to a rule of thumb (Ihlenburg et al, 1995), which prescribes a minimum number of 
elements per wavelength. Despite of this rule, the performance of the Galerkin finite element 
method deteriorates as k increases. This misbehavior, known as pollution of the finite element 
solution, can only be avoided after a drastic refinement of the mesh, which normally entails 
significant barriers for the numerical analysis of Helmholtz equation at mid and high 
frequencies. 
 A great effort has been devoted to alleviate the pollution effect. There exist several 
attempts to minimize the phase error of finite element approximations to Helmholtz equation. 
In one-dimension a Galerkin Least Square (GLS) stabilization, as proposed in (Harari et al,  
1992), can completely eliminate the phase error, but not in two (Thompson et al,  1995) or 
three dimensions (Thompson et al,  2004). For two dimensions, stencils with minimal 
pollution error are constructed in (Babuška et al,  1995) through the Quasi Stabilized Finite 
Element Method (QS). As the Quasi-Stabilized Finite Element Method is not based on a 
variational formulation it is not clear how this formulation can be applied to non uniform 
meshes, high-order polynomials and non homogeneous problems. Finite element methods 
based on variational formulations, such as Residual-Based Finite Element Method (RBFEM) 
(Oberai et al,  2000) and Discontinuous Finite Element Method at Element Level (DGB) 
(Loula et al,  2007; Rochinha et al, 2007), have also been developed to minimize the phase 
error in two dimensions. 
 These two methods present some disadvantages. The RBFEM method is obtained from 
the Galerkin approximation by appending terms that are proportional to residuals on element 
interiors and inter-element boundaries. These terms implicate in an extra computational effort 
when the RBFEM formulation is compared with a classical continuous finite element 
formulation. The DGB method is a discontinuous finite element formulation, where 
discontinuities are introduced locally, inside each element. This method needs the 
condensation technique to eliminate degrees of freedom introduced by the discontinuities and 
implicate in an extra computational effort. Besides, these two methods are not able to 
minimize the phase error in three dimensions. 
 In XXVIII CILAMCE edition our first ideas about a new finite element method with 
multiplies projection of residual were developed to address the Helmholtz equation (Dutra do 
Carmo et al, 2006). The Galerkin Plus Multiplies Projection of Residual Method (GMPR) was 
obtained adding to the Galerkin formulation an appropriate numbers of projections of the 
residual of PDE within each element. This allows that the element matrix has a maximum 
number of free parameters. Also, for rectangular domain, uniform mesh and bilinear elements, 
a methodology to choose these free parameters was presented. The criterion adopted to 
determine the free parameters consists of minimizing the phase error of the approximate 
solution. The GMPR method is a “variationally” consistent finite element formulation and 
convergent for the homogeneous Helmholtz equation. In spite of everything, this initial 
version of the GMPR method is not necessarily convergent for all non homogeneous 
problems. Therefore, in this work we introduced a necessary modification to obtain a FEM of 
the GPR class (initially denoted by GMPR and now by GPR) with uniform convergence 
properties. The modification is introduced through a new projection term in the weak 
formulation: the residual gradient projection term. With this modification the GPR 



formulation remains “variationally” consistent and uniform convergence properties are 
recovered in all cases: homogeneous and non homogeneous Helmholtz problems. We 
presented some numerical tests with source term to show the good rates of convergence of the 
GPR formulation. 
 
2. THE HELMHOLTZ EQUATION 
  
2.1 The boundary value problem 
 

Let )1( ≥⊂Ω nRn  be an open bounded domain with a Lipschitz continuous smooth 
piecewise boundary. Let gΓ , qΓ  and rΓ  subsets of Γ satisfying 

∅=Γ∩Γ=Γ∩Γ=Γ∩Γ rqrgqg  and Γ=Γ∪Γ∪Γ rqg . We shall consider the interior 
Helmholtz problem:  
 
 Ω=−∇⋅−∇≡ in)()( 2 fukuuL , (1) 
 ggu Γ= on , (2) 
 qqnu Γ=⋅∇ onˆ , (3) 
 rrunu Γ=+⋅∇ onˆ α , (4) 
 
where u  denotes a scalar field that describes time-harmonic acoustic, elastic or 
electromagnetic steady state waves. The coefficient Rk ∈  is the wave number, )(2 Ω∈ Lf  is 

the source term, )()( 02
1

gg CHg Γ∩Γ∈ , )(2
qLq Γ∈  and )(2

rLr Γ∈  are the prescribed 

boundary conditions. The coefficient )( rL Γ∈ ∞α  is positive on rΓ  and n̂  denotes the 
outward normal unit vector defined almost everywhere on Γ . 
 
2.2 The associated variational problem 
 
 Let S  and V  defined as { }gguHuS Γ=Ω∈= on:)(1 , { }gvHvV Γ=Ω∈= on0:)(1  

The variational problem associated to the boundary value problem defined by Eqs. (1-4) 
consist of finding Su ∈  satisfying the following variational equation: 
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 The major challenges, in term of FEM, is to find a consistent formulation in continuous 
or discontinuous finite dimensional spaces, such that, its approximate solution is stable and 
the closest possible of the correspondent solution in infinite dimensional space given by Eq. 
(5). Here, we will just treat with continuous finite dimensional spaces. 
 
2.3 The associated Galerkin finite element formulation 
 
 Let },,{ 1 NE

hM ΩΩ= K  be a partition of  Ω  in no degenerated finite element eΩ , such 
that eΩ  can be mapped in standard elements by isoparametric mapping and that satisfy 
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Γ∪Ω=Γ∪Ω , where eΓ  denotes the boundary of eΩ . 



     Let 1≥p  an integer and consider )( e
pP Ω  defined as the space of polynomials of 

degree less than or equal to p . Let )}();({)( 1
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p
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hg  be the interpolate of g  on )(,2
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g
hH Γ . The Galerkin formulation consists of finding 

}on   );({ g
hhhh gHSu Γ=Ω∈=∈ ϕϕ  that satisfies }on   0);({ g

hhh HVv Γ=Ω∈=∈∀ ϕϕ : 
 
 )(),( hhh vFvuA = , (6) 
  
 For purely diffusive problems the solution of Galerkin FEM is the best approximation in 
the energy norm. It is well know that the Galerkin FEM is shown unstable and little accuracy 
for Helmholtz equation. Its numerical solution presents spurious oscillations that do not 
corresponding with the physical solution of problem. 
 
3. THE GALERKIN PROJECTED RESIDUAL METHOD 
 
 In XXVIII CILAMCE edition our first ideas about a new finite element method with 
multiplies projection of residual were developed to address the Helmholtz equation (Dutra do 
Carmo et al, 2006). This method, initially denoted by GMPR and now by GPR, was obtained 
adding to the Galerkin formulation an appropriate numbers of projections of the residual of 
PDE within each element. This allows that the element matrix has a maximum number of free 
parameters. Formally it is represented by the following equation 
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where Ν  is the dimension of a local real linear space )( eGPRE Ω  defined as 
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npel  denotes the number of nodal points of the element eΩ  and ),,1( npelii K=η  denotes the 
usual local shape functions associated to nodal point i. More details on  )( eGPRE Ω  and el ,ψ  

can be found in Carmo et al (2008). The free stabilization parameters are denoted by e
lτ  and 
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 This method is a “variationally” consistent finite element formulation and convergent for 
the homogeneous Helmholtz equation.  However, this initial version is not necessarily 
convergent for all non homogeneous problems. Numerical experiments indicate that the 
method, built this way, it is not convergent for some source term, for example, when 

02 ≠∇ exactu . Therefore, in order to obtain a FEM of the GPR class with uniform convergence 
properties a new projection term was included to the initial formulation. With this 
modification the GPR formulation remains “variationally” consistent and uniform 
convergence properties are recovered in all cases: homogeneous and non homogeneous 



Helmholtz problems. The new term is introduced through a projection of residual gradient of 
the PDE, which can be formally represented by finding hh Su ∈  that satisfies hh Vv ∈∀ the 
variational equation 
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 Note that, a new GPR formulation is consistent, in sense that the exact solution of Eq. (5) 
is also solution of Eq. (9). 
 
3.1 The element matrix 
 
 Let h

eu  be the restriction of hu  to eΩ  given by: 
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where )(ˆ mu h

e  denote the value of h
eu  in local node m  of  eΩ  element. Therefore, we have: 
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 Ν== ,,1  and  ,,1 KK lnpeli .           (12) 
 
 Consider ),,1( Ν= KlM l  as being a set of npel×npel matrices defined as: 
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 Therefore, 
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and [ ]ime
GPRA  denoting entries of the element matrix detailed through 
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 We can notice that the element matrix is formed by the usual part of Galerkin plus a 
projected residual with the correspondent projected residual gradient of the differential 
equation at element level. A possible criterion to determine the free parameters ee

Νττ ,,1 K , 
corresponding to each projection of residual, consists of fitting the element matrix of GPR 
method to given matrix determined through some stability and/or convergence criteria. This 
matrix will be denominated GPR-generating matrix and denoted by genM . For Helmholtz 
equation with uniform mesh and bilinear quadrilateral elements we have the basis Νψψ ,,1 K  
for )( eGPRE Ω : 
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 With above conditions and Dirichlet boundary condition the element matrix QSM  that 
minimizes the phase error is associated to the stencil given in Babuška (1995). In this case, is 
interesting to choose the GPR-generating matrix as: 
 
 QSgen MM 3λ= ,                     (18) 
 
where 3λ  is a parameter that should be determined and the matrix QSM  is 
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being that the *

iτ  can be determined though the standard dispersion analysis following the 
steps: 
 



1) From typical dispersion analysis, a plane wave solution )0,1()sincos(~
πθθθ ≤≤−=+ ie yxki  

propagating in the θ  with wave number k~  is imposed to the interior stencil of GPR, yielding 
 
 0)cos~cos()sin~cos()cos~cos()sin~cos( 3210 =+++ θθτθτθττ hkhkhkhk ,      (20) 
 *

9
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5
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10 τττττ +++= ,             (21) 
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6

*
41 τττ += ,              (22) 

 )(2 *
8

*
22 τττ += ,              (23) 

 *
33 4ττ = .               (24) 

 
 Notice that the parameters 210 ,, τττ  and 3τ  depend on k  but not on k~ . The stencil Eq. 
(20) is a linear algebric equation with four unknowns 210 ,, τττ  and 3τ . Choosing two different 
directions 1θ  and 2θ  for the plane wave the interior stencil generates two linearly independent 
equations. Thus, two unknowns are still undetermined within the dispersion analysis. 
 
2) Due to the mesh symmetric, the following restrictions for the free parameters can be 
imposed 
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 It should be emphasized that for uniform meshes only two free parameters are necessary 
to retrieve the optimal stencil obtained in Babuška (1995). For non uniform meshes these 
restrictions can not be imposed, since the mesh is not symmetrical. With the imposed 
restrictions, the interior stencil leads to 
 
 0)cos~cos()sin~cos())cos~cos()sin~(cos(1 31 =+++ θθτθθτ hkhkhkhk .      (27) 
 
3) Minimizing the phase error of the approximate solution, following the work (Babuška et al, 
1995), yields 
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with 
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 Therefore, the GPR-generating matrix genM  corresponds to the matrix given in Babuška 
(1995) is  
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 To determine the nine free parameters e

lτ  in Eq. (15) by fitting the element matrix of 
GPR method to genM  we considered the J functional defined as: 
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 Due to the mesh symmetric, the following restrictions for the free parameters can be 
imposed again 
 
 09751 ==== ττττ ,                      (34) 
 18642 λττττ ==== ,                        (35) 
 23 λτ = .                (36) 
 
 Therefore, the J functional can be writing as 
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 Finally, for each eΩ  the parameters 1λ , 2λ  and 3λ  are determined solving the following 
system of algebraic equations 
 

 3,2,1,0 ==
∂
∂ mJ

mλ
.                   (38) 

 
 It should be observed that for the parameters 1λ , 2λ , 3λ  and lτ  determined by Eqs. (34-
36) and Eq. (38), the element matrix of GPR method coincides with the GPR generating 
matrix. 
 We should emphasize that the GPR formulation possesses a general methodology, that it 
is valid for any geometry and dimension of the domain, as well as, for any local approach 
space. A GPR method is derived for each particular choice of the set of free parameters e

lτ . 
Usually, these parameters are determined through a dispersion analysis of the finite element 
approximation restricted to uniform meshes. In this sense, when a dispersion analysis is 
applied to the GPR method the stencil of the Quasi Stabilized Finite Element Method 
(Babuška et al, 1995) can be retrieved for a certain choice of the stabilization parameters. It’s 
well known that the element matrix associated to this stencil minimizes the phase error in 
relation to uniform meshes. Also, it’s well known that a FEM with two free parameters can 
retrieve this stencil. Since there is no notice about an optimal stencil for non-uniform meshes, 
choosing free parameters of stabilized finite element formulation applied to Helmholtz 
equation is an open question for unstructured meshes, in general. And the optimal values of 



the stabilization parameters, determined for uniform mesh, are surely not optimal for non-
uniform meshes. If an element matrix associated to optimal stencil for non-uniform meshes 
were known (GPR-genetating matrix), the free parameters could be chosen to retrieve this 
stencil. Since non-uniform meshes are not symmetrical, in order to retrieve this kind of stencil 
one should expect a FEM formulation with more than two free parameters. In this case, a 
FEM with a greater number of free parameters has a greater capability to retrieve this optimal 
stencil.  
 
4. NUMERICAL RESULTS 
 
 In the present section a number of examples to illustrate the main features and potential 
of GPR method applied to Helmholtz equation are presented. The first group the numerical 
test deals with homogenous Helmholtz equation and a second group the numerical test deals 
with inhomogeneous Helmholtz equation. These numerical tests show that uniform 
convergence properties are recovered in all cases: homogeneous and non homogeneous 
Helmholtz problems. In all examples a unity square domain, bilinear shape functions, 3x3 
Gaussian integration, uniform mesh (160x160) and the same wave number (k = 100) are 
adopted. 
 The first group the numerical test deals with plane-waves propagating in 2-D domains. 
As the propagation direction is not known a priori, the free parameters are the ones computed 
in the previous section. Three 2-D examples are presented to show the importance of having a 
finite element formulation capable to minimize the phase error for homogenous Helmholtz 
equation. These examples illustrate as the accuracy and stability of some FEM with large 
phase errors (such as, Galerkin and GLS methods) deteriorate and compare them with 
stabilized formulations able to minimizing the phase error (such as, QS, DGB, RBFEM and 
GPR methods). It should be highlight that for uniform meshes and homogenous equation the 
solution of QS, DGB and GPR methods coincide. 
 The first example this group the numerical test have Dirichlet boundary conditions such 
that the exact solution is a plane-wave propagating in θ -direction: 

))cos(cos(),( θθ ysinxkyxu += . In all examples of this group the numerical test the 
stabilization parameter of GLS method is determined by eliminating the phase error in the 
direction 8

πθ = , as proposed in (Thompson et al, 1995). 
 Figures 1 and 2 present a comparison between the relative errors in L²-norm and H¹-
seminorm of the GPR, continuous interpolant (CI) and QS solutions. In this case, the solution 
of the QS and GPR methods coincide. Fig. 3 shows the nodal interpolant, GPR and GLS 
solutions in sections x=0.5 along the y direction for θ=(π/4) for this example. 
 The next example is similar to previous example, but now the exact solution is given by a 
superposition of n mono-energetic plane-waves propagating in n different θ -directions: 

∑
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i
ii ysinxkyxu

1
))cos(cos(),( θθ . Firstly, three plane waves propagating in the directions 

821   ,0 πθθ == and 43 πθ =  are considered. The relative errors in L²-norm, H¹-seminorm and 
H¹-norm are present in Table 1. Figure 4 shows the nodal interpolant, GPR and GLS solutions 
in sections x=0.5 along the y direction. Figure 5 shows the same FEM solutions in section 
y=0.5 along the x direction. Again, the results show the good performance of the GPR 
formulation and how this formulation reduces the phase error over all wave vector 
orientations θ. 
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          Fig. 1 Relative error of the CI, GPR                   Fig. 2 Relative error of the CI, GPR 
          and QS solutions in the L²-norm as                  and QS solutions in the H¹-seminorm as 
                 a function of θ-direction.                                     a function of θ-direction. 
 

 
Fig. 3 Solution of homogeneous problem in two dimension at sections x=0.5 for θ=(π/4). 

 
Table 1. Relative errors of FEMs for three and six plane waves 

 Relative Errors of three finite element methods 
Three plane waves CI GMPR GLS Galerkin 

L²-norm 3.22E-02 3.23E-02 5.40E-01 1.71E+00 
H¹-seminorm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 

H¹-norm 1.56E-01 1.56E-01 5.59E-01 1.72E+00 
Six plane waves CI GMPR GLS Galerkin 

L²-norm 3.22E-02 3.23E-02 5.45E-01 3.24E+00 
H¹-seminorm 1.56E-01 1.56E-01 5.69E-01 3.24E+00 

H¹-norm 1.56E-01 1.56E-01 5.69E-01 3.24E+00 
 
 Secondly, six plane waves propagating in the directions 

5520
3

41032021   ,  ,  ,  ,0 ππππ θθθθθ =====  and 46
πθ =  are considered. Figures 6 and 7 show the 

nodal interpolant, GPR and GLS solutions in sections x=0.5 and y=0.5 respectively. Very 
similar conclusions to the previous example can be drawn. We should observe that, in these 
two examples the directions of plane waves propagations are always different to 161

πθ =  and 

16
3

2
πθ = , which are the directions for asymptotically optimal interior stencil. 
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              Fig. 4 GPR and GLS solutions of                 Fig. 5 GMPR and GLS solutions of 
        homogeneous problem in two dimension        homogeneous problem in two dimension 
            at sections x=0.5, three plane-waves.           at sections y=0.5, three plane-waves. 
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           Fig. 6 GMPR and GLS solutions of                Fig. 7 GMPR and GLS solutions of 
       homogeneous problem in two dimension         homogeneous problem in two dimension 
            at sections x=0.5, six plane-waves.                 at sections y=0.5, six plane-waves. 
 
 The second group the numerical test have source term (inhomogeneous Helmholtz 
equation) and Dirichlet boundary conditions such that the exact solution is a plane-wave 
propagating in θ -direction plus a polynomial function, 

))sincos(sin(),(),( θθ yxkyxpyxu ++= . In the first example yxyxp +=),(  (case 1), the 
second example 22),( yxyxp +=  (case 2) and the third example 3)1(),( yxyxp ++=  (case 
3). That is, )(),( 2 yxkyxf +−= , )(4),( 222 yxkyxf +−−=  and 

32 )1()1(12),( yxkyxyxf ++−++−=  respectively. In Fig. 8 and Fig. 9 the errors of the GPR 
method in L2-norm and H1-seminorm relative to the continuous bilinear interpolant are 
presented respectively. The GPR approximation is very close to the continuous interpolant for 
any θ -direction of plane-wave. Notice that for the case 1 the errors of the GPR method just 



has the part corresponding to the error of the plane wave, since the bilinear shape functions 
approximate the linear polynomial function exactly. Figure 10 shows the GPR solutions in 
sections x = 0.5 along the y direction obtained with 4

πθ =  for cases 1 and 2 of the source 
term. These results show clearly that the GPR solution is very close to the exact solution for 
this θ -direction of plane-wave which corresponds to the direction of largest phase lag for 
GPR approximation.  
 

 
Fig. 8 Non homogeneous Helmholtz equation. Error of the GPR solutions in the L2-norm as a 

function of θ -direction relative to continuous interpolant. 
 

 
Fig. 9 Non homogeneous Helmholtz equation. Error of the GPR solutions in the H1-norm as a 

function of θ -direction relative to continuous interpolant. 



 
Fig. 10 Non homogeneous Helmholtz equation. GPR solutions in two dimensions at  

sections x = 0.5 for 4
πθ = . 

 
 A convergence study is carried out for non homogeneous Helmholtz equation and we 
observe uniform convergence, independently of the value of the wave number k. Fig. 11 
present, for cases 2 and 3 with k = 10, the errors of the GPR solutions in the L2-norm and H1-
seminorm as a function of h relative to continuous interpolant. A uniform refinement is 
employed starting with a (10x10) mesh until a (100x100) mesh. The results show the good 
rates of convergence for the GPR approximation. 
 

 
Fig. 11 Convergence study for non homogeneous Helmholtz equation. Error of the GPR 

solutions in the L2-norm and H1-seminorm as a function of h relative to continuous interpolant 
for cases 2 and 3 with k = 10. 



5. CONCLUSIONS 
 
 We present a modified version of the GPR finite element formulation initially developed 
in Dutra do Carmo (2006) for Helmholtz equation. The initial GPR version was obtained 
adding to the Galerkin formulation an appropriate numbers of projections of the residual of 
PDE within each element. This allows that the element matrix has a maximum number of free 
parameters. Also, for rectangular domain, uniform mesh and bilinear elements, a methodology 
to choose these free parameters was developed. The criterion adopted to determine the free 
parameters consists of minimizing the phase error of the approximate solution. The initial 
version is a “variationally” consistent finite element formulation and convergent for the 
homogeneous Helmholtz equation. However, the initial version of the GPR method is not 
necessarily convergent for all non homogeneous problems.  
 Herein, we introduced a necessary modification to obtain a FEM of the GPR class with 
uniform convergence properties. The modification is introduced through a new projection 
term in the weak formulation: the residual gradient projection term. With this modification the 
GPR formulation remains “variationally” consistent and uniform convergence properties are 
recovered in all cases: homogeneous and non homogeneous Helmholtz problems.  
 The numerical simulations presented here emphasize the importance of having a FEM 
that minimizes the phase error consistently. Also, the numerical tests with source term show 
the good rates of convergence of the GPR formulation. The good performance of the modified 
formulation obtained for Helmholtz equation, stimulates to apply the GMPR method to other 
problems in future works. 
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