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Abstract. The Galerkin Projected Residual Method (GPR) is a finite element formulation 
developed to scalar and linear second-order boundary value problems. The method is 
obtained adding to the Galerkin formulation an appropriate numbers of projections of the 
residual of PDE within each element. These multiple projections allow the generation of 
appropriate number of free stabilization parameters in the element matrix depending on the 
local space of approximation and on the differential operator. The free parameters can be 
determined imposing some convergence and/or stability criteria or by postulating the element 
matrix with the desired stability properties. The element matrix of most stabilized methods 
(such as, GLS and GGLS methods) can be obtained from this new method with appropriate 
choices of the stabilization parameters. The GPR formulation has been applied with success 
to Helmholtz problem. In this work we applied the GPR method to diffusion-reaction 
singularly perturbed problem. In this case, the methodology to choose the free parameters 
consists in to postulate an element matrix with the desired stability properties (GPR-
generating matrix) and the free parameters are determinate solving a least square problem at 
element level. The methodology is applicable to the both: uniforms and non uniform meshes 
with bilinear rectangular elements or linear triangular elements. Some numerical tests show 
the optimal rates of convergence for regular solutions and good stability of the GPR 
formulation in problems with sharp layer. 
Keywords: Finite element method, Stabilization, GPR, GLS, diffusive-reactive equation 



1. INTRODUCTION 
 
 Boundary-value problems governed by second-order linear partial differential equations 
model several physical phenomena. Usually, the Galerkin Finite Element Method (FEM) is 
used to solve numerically these boundary value problems. However, only for purely diffusive 
problems the Galerkin method provides the optimal solution. In many other problems the 
Galerkin FEM is unstable and inaccurate, presenting spurious oscillations that do not 
correspond to the actual solution of the problem. Stable and accuracy numerical solution via 
FEM for these problems has been the greatest challenge. The reaction-diffusion equation is a 
representative example of the great effort has been devoted to obtain stable and accurate 
FEM. In the references we cite some representative works. 
 Here we will consider only continuous stabilized FEM for reaction-diffusion equation. 
Recently, a new continuous stable FEM was developed to scalar and linear second-order 
boundary value problems: the Galerkin Projected Residual Method. The method is obtained 
adding to the Galerkin formulation an appropriate numbers of projections of the residual of 
PDE within each element. These multiple projections allow the generation of appropriate 
number of free stabilization parameters in the element matrix depending on the local space of 
approximation and on the differential operator. The free parameters can be determined 
imposing some convergence and/or stability criteria or by postulating the element matrix with 
the desired stability properties. The element matrix of most stabilized methods (such as, GLS 
and GGLS methods) can be obtained from this new method with appropriate choices of the 
stabilization parameters.  
 The GPR formulation has been applied with success to Helmholtz problem (Dutra do 
Carmo et al, 2008). In this work we applied the GPR method to diffusion-reaction singularly 
perturbed problem (Dutra do Carmo, submitted). In this case, the methodology to choose the 
free parameters consists in to postulate an element matrix with the desired stability properties 
(GPR-generating matrix) and the free parameters are determinate solving a least square 
problem at element level. The methodology is applicable to the both: uniforms and non 
uniform meshes with bilinear rectangular elements or linear triangular elements. Some 
numerical tests show the optimal rates of convergence for regular solutions and good stability 
of the GPR formulation in problems with sharp layer. 
 
2. THE REACTIVE-DIFFUSIVE EQUATION 
  
2.1 The boundary value problem 
 
 Let )1( ≥⊂Ω nRn  be an open bounded domain with a Lipschitz continuous smooth 
piecewise boundary. Let gΓ , qΓ  and rΓ  subsets of Γ satisfying 

∅=Γ∩Γ=Γ∩Γ=Γ∩Γ rqrgqg  and Γ=Γ∪Γ∪Γ rqg . We shall consider the problem:  
 
 Ω=+∇⋅−∇≡ in)()( fuuDuL σ , (1) 
 ggu Γ= on , (2) 
 qqnuD Γ=⋅∇ onˆ , (3) 
 rrunuD Γ=+⋅∇ onˆ α . (4) 
 
where the functions D  (diffusive coefficient) and σ  (reactive coefficient) are assumed 
satisfy: DD ≤<0  and σσ ≤<0  with D  and σ  being positive real constants. )(2 Ω∈ Lf  



is the source term, )()( 02
1

gg CHg Γ∩Γ∈ , )(2
qLq Γ∈  and )(2

rLr Γ∈  are the prescribed 

boundary conditions. The coefficient )( rL Γ∈ ∞α  is positive on rΓ  and n̂  denotes the 
outward normal unit vector defined almost everywhere on Γ . 
 
2.2 The associated variational problem 
 
  Let S  and V  defined as { }gguHuS Γ=Ω∈= on:)(1 , { }gvHvV Γ=Ω∈= on0:)(1  

The variational problem associated to the boundary value problem defined by Eqs. (1-4) 
consist of finding Su ∈  satisfying the following variational equation: 
 

VvvFdrvdqvdvfduvduvvuDvuA
q rr

∈∀≡Γ+Γ+Ω=Γ+Ω+∇⋅∇≡ ∫ ∫∫∫∫
Γ ΓΩΓΩ

)(][),( ασ , (5) 

 
 The major challenges, in term of FEM, is to find a consistent formulation in continuous 
or discontinuous finite dimensional spaces, such that, its approximate solution is stable and 
the closest possible of the correspondent solution in infinite dimensional space given by Eq. 
(5). In the present work we pursue this goal for the diffusive reactive problem. A similar 
effort was developed in Dutra do Carmo (2008) for the Helmholtz equation. 
 
2.3 The associated Galerkin finite element formulation 
 
 Let },,{ 1 NE

hM ΩΩ= K  be a partition of  Ω  in no degenerated finite element eΩ , such 
that eΩ  can be mapped in standard elements by isoparametric mapping and that satisfy 

 ≠   0/=Ω∩Ω /e  if/ e
ee and U

ne

e
ee

1

)(
=

Γ∪Ω=Γ∪Ω , where eΓ  denotes the boundary of eΩ . 

     Let 1≥p  an integer and consider )( e
pP Ω  defined as the space of polynomials of 

degree less than or equal to p . Let )}();({)( 1
e

p
e

h PHH Ω∈Ω∈=Ω ϕϕ  and 

}on   and )();({)( 1, 2
1

2
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ggg
h HHH Γ=Ω∈∃Γ∈=Γ ϕφφϕ  are the finite dimension spaces and let 

hg  be the interpolate of g  on )(,2
1

g
hH Γ . The Galerkin formulation consists of finding 

}on   );({ g
hhhh gHSu Γ=Ω∈=∈ ϕϕ  that satisfies }on   0);({ g

hhh HVv Γ=Ω∈=∈∀ ϕϕ : 
 
 )(),( hhh vFvuA = , (6) 
  
 For purely diffusive problems the solution of Galerkin FEM is the best approximation in 
the energy norm. It is well know that the Galerkin FEM is shown unstable and little accuracy 
for diffusion-reaction singularly perturbed equation. Its numerical solution presents spurious 
oscillations that do not corresponding with the physical solution of problem. 
 
3. THE GALERKIN PROJECTED RESIDUAL METHOD 
 
 The GPR method was previously introduced for Helmholtz equation in Dutra do Carmo 
(2006 and 2008). This method was obtained adding to the Galerkin formulation an 
appropriate numbers of projections of the residual of PDE within each element. This allows 
that the element matrix has a maximum number of free parameters. Other theoretical details 



on the method can be found in Dutra do Carmo (submitted). The GPR method applied to 
reactive-diffusive equation can be formally statement as: find hh Su ∈  satisfying hh Vv ∈∀  
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where Ν  is the dimension of a local real linear space )( eGPRE Ω  defined as 

}),()(;:{)(
1 1

,,∑∑
= =

∈=→Ω=Ω
npel

i

npel

j
jijijieeGPR RCLLCRE ηηψψ  with basis denoted by el ,ψ  and 

npel  denotes the number of nodal points of the element eΩ  and ),,1( npelii K=η  denotes the 
usual local shape functions associated to nodal point i. More details on  )( eGPRE Ω  and el ,ψ  
can be found in Carmo et al (2008 and submitted). The free stabilization parameters are 
denoted by e

lτ . Note that, a new GPR formulation is consistent, in sense that the exact 
solution of Eq. (5) is also solution of Eq. (7). 
 
3.1 The element matrix 
 
 Let h

eu  be the restriction of hu  to eΩ  given by: 
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where )(ˆ mu h

e  denote the value of h
eu  in local node m  of  eΩ  element. Therefore, we have: 
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 Ν== ,,1  and  ,,1 KK lnpeli .                      (10) 
 
 Consider ),,1( Ν= KlM l  as being a set of npel×npel matrices defined as: 
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and [ ]ime

GPRA  denoting entries of the element matrix detailed through 
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1
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GPR MAA τηη .           (13) 

  
 We can notice that the element matrix is formed by the usual part of Galerkin plus a 
projected residual of the differential equation at element level. In Dutra do Carmo (submitted) 



is proof that the functions el ,ψ  are linearly independent if and only if the Ν  matrices lM are 
linearly independent. This allows choosing an appropriate base for the space of matrices 
generated by the GPR method. A particular GPR method is derived for each specific choice of 
the set of free parameters ee

Νττ ,,1 K , corresponding to each projection of residual. A possible 
criterion to determine the free parameters consists of fitting the element matrix of GPR 
method to given matrix determined through some stability and/or convergence criteria. This 
matrix will be denominated GPR-generating matrix and denoted by genM . Then the 
components of the vector ee

Νττ ,,1 K  can be determined, for example, by solving the following 
minimization problem at element level: 
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 Considering that successful stabilized finite element methods have been already applied 
to reaction diffusion problems, such as the Gradient Galerkin Least Squares (GGLS) and the 
Unusual Stabilization (USFEM), we design our method departing from a nontrivial 
combination of both. Indeed, the possibility of directly combining two stabilizing 
formulations was explored in Dutra do Carmo et al (submitted), Valentin et al (1995) and 
Hauke et al (2001and 2002) aiming at obtaining their best features. Here we built the GPR 
generating matrix through the weighted stiffness matrix inspired on the GGLS method 
 
 ∫

Ω

Ω∇⋅∇=
e

dK ij
ee

ij )()(2, ηησχ JJ ,              (15) 

 
and also using the stabilization matrix of the USFEM method to introduce the weighted mass 
matrix 
 
 ∫

Ω

Ω−=
e

dB ij
ee

ij ηησχ 1, ,                          (16) 

 
where 1,eχ  and 2,eχ  are dimensionless functions, understood as the weights of the nontrivial 
combination mentioned above, and J  is the Jacobian matrix corresponding to the mapping 
between reference and actual elements. The resulting GPR-generating matrix was adopted to 
reproduce the ability of the GGLS method in capturing thin sharp layers along with the stable 
behavior obtained by the USFEM when applied to problems where those layers are no longer 
confined to thin regions. Indeed, as will be confirmed by the numerical experiments reported 
in the next section, by exploring this combination the GPR method developed here achieves 
optimal convergence even in the presence of sharp gradients. Figure 1 presents numerical 
results illustrating typical instability of Galerkin approximations for a predominantly reactive 
reaction diffusion problem. We clearly observe the spurious oscillations close to the boundary 
layers compared to the nodally exact solution presented in Fig. 2. The well known GGLS 
stabilization is capable to reduce these oscillations as shown in Figures 3 and 4. We also 
observe the improved performance of GGLS method with bilinear elements (Fig. 3) compared 
to linear elements (Fig. 4). 
 It is also worth mentioning that the expression inspired on the GGLS method was used 
above as, indeed, Eq. (15) differs fundamentally from the original form of the stabilizing 
GGLS term due to the presence of the Jacobian J  replacing the 2h  in order to handle 



distorted elements. This is also confirmed by the numerical tests. Considering the definition 
of the Jacobian matrix J , we observe that e

ijK  can be equivalently given by 
 
 ∫∫

ΩΩ

−− Ω∇⋅∇=Ω∇⋅∇=
ee

ddK ilocjloc
e

ilocjloc
ee

ij ηησχηησχ 2,112, )()( JJJJ        (17) 

 
with  
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for quadrilateral elements and hexahedron elements, and 
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for triangular elements and tetrahedral elements. 
 
 

  
Fig. 1 Galerkin - Bilinear Elements                  Fig. 2 Nodally Exact 

 

  
Fig. 3 GGLS - Bilinear Elements                  Fig. 4 GGLS - Bilinear Elements 



 For the elements eΩ  such that matrix
egenM 0≠,  the components of the vector 

),,( 1
eee
Ν= τττ K  are determined as being the solution of the minimization problem given by 

Eq. (14) considering the matrix egenM ,  given by 
 
 eeegen BKM +=,              (20) 
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 We still need to determine the real constant 0,eς  and the dimensionless function 2,eς . To 
this end, for each eΩ  and for each 'eΩ  we consider [ ] 'eeϕ  being defined as follows: 
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ee
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which keeps track of possible discontinuities across element edges. We also introduce intΓ  
defined as 
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which is the union of the external boundary with the internal edges between two elements 
presenting discontinuous properties or sources. It should be observed that for diffusive 
reactive problems, sharp layers will only occur inside an element eΩ  if ∅≠Γ∪Γ∩Γ )( inte . 
 Based on this observation and inspired on references Franca et al (1989) and Franca et al 
(2005), we accomplished a large number of computational experiments with bilinear 
rectangular elements and linear triangular elements and conclude that the following 



expressions for the real constant 0,eς  and the dimensionless function 2,eς  present very good 
stability and accuracy properties: 
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where qe,ς  for bilinear quadrilateral element and trilinear hexahedron element and te,ς  for 
linear triangular element and linear tetrahedral element are respectively data as follows: 
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where e

faceN  is the number of faces of  eΩ contained in Γ . 
 From Eq. (30) we observe that the extra computational effort demanded by the proposed 
GPR formulation compared to the Galerkin method is not significant as it corresponds 
basically to the calculations of the stabilization matrices and forcing vectors of the elements 

eΩ  such that ∅≠Γ∪Γ∩Γ )( inte . It must be emphasized that those elements are mapped 
beforehand, which significantly reduces the computational burden. Also, for GPR finite 
element approximations with polynomials of degree bigger than 1, additional numeric 
experiments need to be accomplished to validate the proposed expressions for qe,ς  and te,ς . 
 
4. NUMERICAL RESULTS 
 
 To assess the overall performance of the proposed GPR method, a comprehensive 
number of numerical tests were carried out. Special emphasis was placed in sharp layers and 
distorted meshes, which often are present on real applications. We will only describe, along 
their corresponding results, the most significant numeric experiments. 
 The assessment of our method was accomplished through the use of examples with exact 
solutions, and comparisons with well known stabilized formulations were also considered 
here. We will denote by ”EMM” (Enriched Multiscale Method) the method presented in 
reference Franca et al (2005), “USFEM” (Unusual Stabilization) the method presented in 
Franca  et al (2000) and “ASGS” (Algebraic Subgrid Scales) the method introduced in Codina  
(2000) and Hauke (2002). 
 
4.1 Quadrilateral domain using non uniform meshes 
 
 This experiment demonstrates the performance of GPR method when applied to a 
reactive dominant problem defined over a quadrilateral domain of vertexes (0.5, 0.0), (1.5, 
0.0), (2.0, 2.0) and (0.0, 1.0) with 610−=D , 1=σ , 1=f  and homogeneous Dirichlet 
boundary conditions. 



 Special emphasis is placed on the use of non uniform meshes. Results were obtained for 
the mesh of quadrilateral elements shown in the Fig. 5 and for the mesh of triangular elements 
shown in the Fig. 6. Results in 3D plots for “USFEM”, “ASGS”, “GPR” and nodally exact 
solutions are presented in Figures 7, 8, 9 and 10, respectively, for the mesh of 20x20 
quadrilateral elements. As reference Franca et al (2005) doesn’t present the corresponding 
formulation for distorted quadrilateral elements, we didn’t present results for the method 
denominated “EMM”. Clearly, we can observe the great performance of the “GPR” method, 
showing that the effects of the distortion on the elements do not cause loss of accuracy and 
stability, maintaining the accuracy and the stability observed with uniform meshes. However, 
the effect of the distortion on the elements is clearly observed for the methods “USFEM” and 
“ASGS”, with evident losses of accuracy and stability. Figures 11 and 12 present 2D plots 
comparing these solutions in two sections. 
 Similar results in 3D plots are presented in Figures 13, 14, 15 and 16 for the mesh of 800 
triangular elements. Once more, we can observe the great accuracy and stability of the 
methods “GPR” and presenting equivalent performance, and indicating again that the effects 
of the distortion on the elements do not cause loss of accuracy and stability. Again, it is clear 
the effect of the distortion on the elements for the methods “USFEM” and “ASGS”, with 
remarkable losses of accuracy and stability. In this case the “EMM” method, not shown here, 
presents performance to the “GPR” method. Figures 17 and 18 present 2D plots comparing 
these solutions in two sections. 
 

  
Fig. 5 Nonuniform mesh – Quadrilaterals      Fig. 6 Nonuniform mesh - Triangles 

 
4.2 Convergence Study 
 
 The second numerical experiment consists of obtaining the convergence rates expressed 
in terms of )(2 ΩL  and )(1 ΩH  norms for the problem defined over the quadrilateral domain 
given in Section 4.1 above, with 1=σ , )sin()sin()12( 2 yxDf πππ +=  and boundary 
conditions )sin()sin( yxu ππ=  on Γ . The results were obtained for quadrilateral meshes with 
partitions 10x10, 20x20, 40x40, 80x80 and 120x120 and for triangular meshes with 400, 
1600, 3600, 6400 and 10000 elements. The convergence results are presented in graphs 

ErrorHmesh log)log( ×−  in the natural basis, where 2
1

)(neHmesh = , 
)(2 Ω

−=
L

huuError  

or 
)(1 Ω

−=
H

huuError  with ne denoting the number of elements, n the dimension of the 



domain and 
)(1 ΩH

o  the H1−seminorm. The quadrilateral mesh 20x20 is shown in the Fig. 5 

and the triangular mesh with 800 elements in the Fig. 6. The convergence study was 
performed for different values of the diffusion coefficient, e.g.: 1=D , 310−=D  and 610−=D . 
Results for quadrilateral meshes are presented in Figures 19, 21 and 23 and for triangular 
meshes are presented in the Figures 20, 22 and 24, for different values of the diffusion 
coefficient D. Clearly, for all values of D tested, the GPR method presents optimum rates of 
convergence. 
 

 
Fig. 7 USFEM - Bilinear Elements                  Fig. 8 ASGS - Bilinear Elements 

 

  
             Fig. 9 GPR - Bilinear Elements                         Fig. 10 Nodally Exact 
 



  
                    Fig. 11 Bilinear - inclined section             Fig. 12 Bilinear - vertical section 
 

  
Fig. 13 USFEM - Linear Elements                  Fig. 14 ASGS - Linear Elements 

 

  
            Fig. 15 GPR - Linear Elements                             Fig. 16 Nodally Exact 



  
                Fig. 17 Linear - inclined section                    Fig. 18 Linear - horizontal section 
 

  
Fig. 19 Bilinear Elements                           Fig. 20 Linear Elements 

 

  
Fig. 21 Bilinear Elements                                  Fig. 22 Linear Elements 



  
Fig. 23 Bilinear Elements                                  Fig. 24 Linear Elements 

 
5. CONCLUSIONS 
 
 We present a new consistent FEM to be applied to diffusive-reactive boundary value 
problems. The method is obtained adding to the Galerkin formulation an appropriate numbers 
of projections of the residual of PDE within each element. These multiple projections allow 
the generation of appropriate number of free stabilization parameters in the element matrix 
depending on the local space of approximation and on the differential operator. The free 
parameters can be determined imposing some convergence and/or stability criteria or by 
postulating the element matrix with the desired stability properties. In this work, the 
methodology to choose the free parameters consists in to postulate an element matrix with the 
desired stability properties (GPR-generating matrix) and the free parameters are determinate 
solving a least square problem at element level. The methodology is applicable to the both: 
uniforms and non uniform meshes with bilinear rectangular elements or linear triangular 
elements. 
 A comprehensive number of numerical experiments was undertaken in order to assess 
and analyze the proposed method. They clearly indicate that the new method possesses a great 
performance in terms of accuracy and of stability which compensates the extra computational 
effort. Moreover, it was possible to embed in generating matrix the mesh distortion what we 
are convinced helped on reducing the sensitivity of the solution to mesh distortions frequently 
found in real applications. 
  The presented results are representative as they deal with both regular situations and 
some presenting sharp layers. A study with a typical regular problem indicates that the 
proposed method presents optimum convergence rates. Boundary layers were captured with 
high precision as well. The good performance of the proposed formulation obtained for 
diffusive-reactive problem and Helmholtz equation, stimulates to apply the GPR methodology 
to other problems in future works. 
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